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MOVING DOWN THE ENERGY LADDER: IN-UTERO TEMPERATURE 
AND FUEL CHOICE IN ADULTHOOD

MANUEL BARRÓN1

ABSTRACT

A growing literature shows that weather conditions during gestation can have persistent impacts on education and 
income, especially among females. However, the consequences of these impacts on behavior and choices during 
adulthood are still underexplored. To shed light on this issue, I use survey data for over 200,000 households in 
Peru and find that average temperature during gestation affects fuel choice during adulthood among women, 
with extensive margin increases in the use of dirty cooking fuels, but no changes in the likelihood of fuel stacking. 
Analysis of the mechanisms suggests that female head’s income may be a more important driver than education. 
Supporting this argument, I show that the effects of in-utero temperature disappear among female beneficiaries 
of a conditional cash transfer program.

RESUMEN

Una serie de estudios recientes muestran que las condiciones climáticas durante la gestación pueden tener 
impactos persistentes en la educación y el acceso al mercado laboral, especialmente en el caso de las mujeres. 
Sin embargo, aún no se ha investigado a profundidad las consecuencias de estos impactos sobre las elecciones 
y el comportamiento durante la adultez. Para contribuir a cerrar esta brecha, utilizo datos de más de 200,000 
hogares en Perú y muestro que la temperatura promedio durante la gestación afecta el uso de combustibles 
tradicionales para cocinar, pero no para iluminación. Tampoco afecta la probabilidad de combinar combustibles 
modernos y tradicionales. El análisis de los mecanismos sugiere que el ingreso es un canal más importante que 
la educación. Además, los efectos de la temperatura en útero desaparecen entre beneficiarias de un programa 
de transferencias monetarias.

JEL codes: O12, O13, O15, Q56, J24

Keywords: In-utero weather, energy use, climate change

1	 Department of Economics, Universidad del Pacifico (MF.BarronA@up.edu.pe). I am thankful to Pia Basurto for insightful 
comments, Lucina Rodriguez for outstanding research assistance, and to Sam Heft- Neal for sharing the weather data. All 
errors are my own.
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1. INTRODUCCIÓN

A growing body of literature shows that, through a chain of socioeconomic and physiological channels, weather 
conditions during gestation can have permanent effects on schooling and earnings during adulthood, mainly 
for females. Since female education and income are two of the most prominent determinants of the use of dirty 
fuels, a corollary is that weather conditions during gestation could impact fuel choice during adulthood, but this 
link has not been tested empirically. This paper contributes to closing this gap by studying how average in-utero 
temperature affects fuel choice during adulthood.

Uncovering effects of weather during gestation on fuel use during adulthood is an important policy question 
because of dirty fuels’ detrimental effects on respiratory health and climate change. The negative health effects 
of dirty fuel use have been extensively documented and disproportionately affect females and young children, 
who are exposed to pollutant emissions while cooking (see, e.g. Smith et al., 2013, 2011). Furthermore, use of 
dirty fuels for cooking can affect climate because inefficient fuel combustion releases products of incomplete 
fuel combustion like methane and carbon monoxide into the atmosphere (Sagar and Kartha, 2007). In fact, 
biomass and fossil fuel cookstoves together emit 29 percent of global black carbon emissions (Ramanathan and 
Carmichael, 2008), and kerosene wick lamps account for an additional 7 percent (Lam et al., 2012).

The study setting is Peru, an especially interesting setting to study the effects of climate change, since it has been 
deemed as the third most vulnerable country worldwide by the Tyndall Centre for Climate Research (Molina 
and Saldarriaga, 2017). Long spells of unfavorable temperature are linked to livestock death, poor health, lower 
agricultural productivity and diminished accessibility in rural areas, which impact food prices and availability in 
urban areas. Thus, holding other factors constant, adverse temperature during pregnancy likely translate into less 
resources available for the pregnant mother. According to the well-established “fetal programming” or “Barker” 
hypothesis (Barker, 1990, 1995), poor maternal nutrition during pregnancy can hinder fetal development with 
effects that last through adulthood. Hence, there are reasons to believe that unfavorable in-utero weather may 
hurt human capital accumulation during childhood (Almond, Mazumder, and Ewijk, 2015), which in turn can 
have permanently negative consequences on adult life outcomes (Elango et al., 2015).

To study the relation between in-utero weather and fuel choice during adulthood I use data on socioeconomic 
outcomes and weather conditions during gestation for the principal couple (or the household head if he or she 
does not have a spouse) of the roughly 200,000 households that responded to Peru’s National Household Survey 
between 2005 and 2015. The focus is on the principal couple because the decision on use of fuel is likely made 
by one

– or the both – of them. The National Household Survey has information on socioeconomic outcomes, date, 
and district of birth. Temperature data were obtained from the Climatic Research Unit at the University of East 
Anglia. While most of the literature focuses on extreme events like droughts or heat days, I study the role of 
average in-utero temperature. The idea behind using average temperature is to show that temperature levels are 
indeed important, as explored by a small branch of the literature (Schlenker and Roberts, 2009; Burke, Hsiang, 
and Miguel, 2015; Barron, Heft-Neal, and Perez, 2018; Fishman, Russ, and Carrillo, 2015; Torres and Santa Maria, 
2017).

The main explanatory variable is average temperature during gestation in the district of birth, henceforth temp. 
Following Barron, Heft-Neal, and Perez (2018) and Schlenker and Roberts (2009) I estimate a step regression, 
which provides considerable flexibility in estimating nonlinear relations. The specification compares individuals 
born in the same district at different points in time, and hence exposed to different average in-utero temperature, 
accounting for factors that vary across districts over time with district-by-year fixed effects.  A number of findings 
come to light. First, females exposed to temp below 12.5C have higher probability of using dirty fuels for cooking 
relative to the comparison category, but there are no effects on dirty fuels for lighting or fuel stacking. These 
effects are nonlinear, starting at 6.5 percentage points (12% of the mean) for temp below 5C and decreasing 
monotonically for higher values of temp. Effects are not statistically significant for females born in temp above 
12.5C or for males. Not only the effects of exposure to temp below 12.5C are sizable, they are statistically significant 
for 40% of females in the sample.

Second, I investigate potential mechanisms behind these effects. In the same setting, Barron, Heft-Neal, and 
Perez (2018) find that low average in-utero temperature reduced female – but not male – schooling and income, 
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two key drivers of dirty fuel usage (Muller and Yan, 2018; Lewis and Pattanayak, 2012). Hence, I explore the role 
of these variables as mechanisms driving the results documented in this paper. The same pattern of magnitudes 
and statistical significance found in dirty fuel use appears in female income, but not in schooling or in household 
poverty status. This suggests that lower female income could be a driving force behind the increase in use of dirty 
fuels for cooking, even more important than household socioeconomic status.

Third, I analyze partner characteristics and intra-household bargaining power. I find that temp has no effect on 
the likelihood of having a partner. Then, conditional on having a partner, neither the difference between male 
and female schooling nor the female share of income respond to temp. However, exposure to temp below 15C 
reduces the likelihood that the female’s partner has post-primary education, a measure of partner quality, by 
6.3-8.5 percentage points.

Fourth, consistent with Kumar, Molitor, and Vollmer (2014), the effects on fuel use are mostly driven by average 
temperature during the first trimester of the pregnancy, although neither income nor schooling follow this 
pattern. The effects on fuel use are significant for females born in rural districts, and are not significant for 
females born in urban districts, suggestive of a story of reduced production and accessibility in rural areas as a 
result of unfavorable weather. In addition, the effects are more precisely estimated for females over 42 years old 
(the sample median), but the point estimates are similar above and below the median.

I conduct three types of robustness check to assess the trustworthiness of these results. First, I (i) expand the 
definition of dirty fuels to include “other fuels” and (ii) narrow it to only the most common fuel for cooking. 
Second, I employ a wide set of empirical specifications, exploring the consequences of changing the fixed effects. 
In both cases the results remain unchanged. Third, as falsification test I use temperature the trimester prior  to 
the start of the pregnancy. The resulting coefficients are small in magnitude and not statistically significant.

In section 6.1 I conduct back-of-the-envelope calculations to estimate the health costs derived from these results. 
The analysis suggests that average in-utero temperature has increased use of dirty fuels by 1.8%. Based on 
calculations by Triana et al. (2007), this amounts to annual losses of US$ 4.8 million. Section 6.2 shows that 
climate change is has  not reduced the likelihood of exposure to low temp during the study period (1950-2015). 
In contrast, section 6.3 provides evidence that the effects of temp fade among recipients of a conditional cash 
transfer program, JUNTOS, compared to non-recipient poor households. This is supportive evidence of income 
as an important driving force behind the effects of  temp on fuel use.

This paper contributes to the literature of long-term effects of weather conditions around time of birth, which is 
reviewed in Section 2. Its main contribution is to provide evidence that in-utero temperature affects an important 
outcome that has not been explored yet: fuel choice during adulthood. I explore two margins of this relation: 
the extensive margin use of dirty fuels and fuel stacking2. Secondly, it offers evidence on the mediating channels 
behind these effects, pointing at income as a likely important driver of this relation. Third, in line with Schlenker 
and Roberts (2009); Burke, Hsiang, and Miguel (2015); Barron, Heft-Neal, and Perez (2018); Fishman, Russ, and 
Carrillo (2015) and Torres and Santa Maria (2017) it provides further evidence that temperature levels matter, not 
only extreme events, like heat days or droughts, which are the focus of most of the literature.

More generally, this study contributes to the literature of long-term effects of events during early life, which 
shows that such diverse events as exposure to pollution, radioactive fallout and fasting in this period can have 
consequences on childhood and adulthood. For instance, in Chile, Bharadwaj et al. (2014) show that fetal 
exposure to air pollution reduced academic performance among fourth graders. Rau, Urzúa, and Reyes (2015) 
find a similar effect for early exposure to toxic waste. Black et al. (2013) explore the effects of radioactive fallout 
in Norway. Exposure to nuclear radiation reduced schooling attainment and earnings among men and women. 
Importantly, the authors even find evidence of intergenerational effects in the same spirit as this study. Almond, 
Mazumder, and Ewijk (2015) provide evidence of the effects of maternal nutrition on test scores using exposure 
to Ramadan as a natural experiment. Test scores at age 7 are 0.05 to 0.08 standard deviations smaller for children 
exposed to Ramadan early in the pregnancy. Butikofer, Løken, and Salvanes (2015) find that a Norwegian early-life 
health program increased education and earnings in adulthood, with differentially stronger effects for children 
from low socioeconomic background.

2	 In the empirical analysis, dirty fuels include firewood, charcoal, and kerosene, while clean fuels include LPG and 
electricity (which in Peru is mostly hydro-powered). “Fuel stacking” consists the use of both clean and dirty fuels by the 
same household.
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The next section reviews the literature in more detail and develops the conceptual framework that guides the 
analysis, which is especially important given the long chain of causality investigated in this paper. Section 3 details 
the data and provides descriptive statistics of the study setting. In section 4 I describe the empirical approach, 
highlighting the assumptions required for identification of causal effects. Section 5 presents the main results of 
the paper, together with heterogeneity analysis, and sheds light on some of the most important mechanisms 
behind them. This section also presents robustness checks. Section 7 presents the main conclusions.
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2. LITERATURE REVIEW

This section reviews evidence on the long-term effects of in-utero weather, and outlines how it can affect use 
of dirty fuels during adulthood. Burke, Hsiang, and Miguel (2015) show that temperature affects economic 
production and productivity worldwide, and that these effects are not constrained to agricultural production3. 
Beyond the local effects on rural incomes, weather conditions also have economy-wide effects through food 
prices and availability (Hoddinott, 2006; Skoufias and Vinha, 2012; Kim and Lafortune, 2010; Rosales, 2014; 
Mendiratta, 2015), which can hurt the nutritional status of pregnant women (Aguilar and Vicarelli, 2011). 
Nutritional deprivation of pregnant women can impact the fetus, leading to impaired fetal development, with 
consequences that persist even through adulthood (Barker, 1990, 1995).

The economics literature has explored some of these effects. A number of studies have shown that weather 
conditions during gestation affect birth outcomes like mortality, weight and height (Yamauchi, 2012; Pereda, 
Menezes, and Alves, 2014; Rose, 1999; Rocha and Soares, 2015; Molina and Saldarriaga, 2017; Hu and Li, 2016; 
Andal´on et al., 2014; Kudamatsu, Persson, and Str¨omberg, 2012). Moreover, there is increasing evidence that 
these shocks can affect early life outcomes. In fact, Almond, Mazumder, and Ewijk (2015) show that maternal 
nutrition can shape human capital formation in childhood even in developed countries. In India, several studies 
find that adverse rainfall conditions in-utero had detrimental effects on the nutritional status of children under 5 
(Kumar, Molitor, and Vollmer, 2014; Mendiratta, 2015; Lokshin and Radyakin, 2012)4. In turn, Shah and Steinberg 
(2017) show that rural primary school students in India exposed to droughts during gestation and early life score 
significantly worse on math and reading tests. In Latin America, Aguilar and Vicarelli (2011) and Rosales (2014) 
show that floods during early stages of life can affect cognitive development and height during the first years of 
primary education in Mexico and Ecuador, respectively.

A handful of studies shows that the effects on early life and childhood can have persistent effects on life outcomes 
like schooling achievement and earnings – mostly among females. Ina seminal paper, Maccini and Yang (2009) 
show that positive rainfall shocks during early life affect health, schooling, and wealth among Indonesian females 
during adulthood, with no significant effects among males. In turn, Hu and Li (2016) show that high temperature 
days during pregnancy reduce schooling and height during adulthood in China, with impacts concentrated in 
the first and third trimesters. On the other hand, in a sample of Ecuadorian formal workers, Fishman, Russ, and 
Carrillo (2015) find statistically significant but small negative effects of average in-utero temperature on female 
earnings. Barron, Heft-Neal, and Perez (2018) show that exposure to average in-utero temperature below 12.5C 
reduces schooling and earnings in Peru among females, but not males. Torres and Santa Maria (2017) argue that 
this difference may be due to household resource reallocation. The authors document that, following a gestation 
period with low average temperature, mothers wean their boys, but not their girls, at a later age.

At the current state of knowledge, the next step consists in understanding the consequences of the reductions in 
schooling and earnings that arise from unfavorable weather, especially since females seem to bear most of the 
negative effects. Given that female schooling and earnings are two of the most prominent determinants of use of 
dirty fuels5 (see the reviews by Muller and Yan, 2018; Lewis and Pattanayak, 2012) weather during gestation could 
feasibly affect fuel choice during adulthood. This choice is particularly important due to the detrimental effects 
of biomass combustion on health6 (see e.g. Jeuland, Pattanayak, and Bluffstone, 2015; Smith et al., 2011, 2013) 
and the environmental externalities it gener ates (Sagar and Kartha, 2007; Ramanathan and Carmichael, 2008).

3	 Using a similar empirical approach and identification strategy as this paper, Schlenker and Roberts (2009) find that 
temperature levels significantly affect US crop yields. Burke and Emerick (2016) find that US farmers do not show signs of 
adaptation to climate change.

4	 Kumar, Molitor, and Vollmer (2014) find that these effects are stronger for children exposed to drought in the first 
trimester of pregnancy.

5	 Other determinants include urban location, fuel availability, fuel prices, household size and composition, sex of the 
household head, credit, supply chain, and social marketing (Muller and Yan, 2018; Lewis and Pattanayak, 2012).

6	 Indoor air pollution (IAP) is the third leading risk factor for global disease burden, after high blood pressure and smoking 
(Lim et al., 2012). In Peru, Gajate-Garrido (2013) finds negative health effects of biomass cooking on children under six.
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3. DATA AND STUDY SETTING

3.1. Socioeconomic outcomes

Table 1: Descriptive statistics

(1) (2) (3)

Variable Observations Mean Standard deviation

Panel A - Females 
Age (years) 178,214 42.0 10.9

Two-headed household(1/0) 178,214 .71 .45

Schooling (years) 178,202 7.3 5.0

Monthly individual income (2015 Soles) 123,903 607.4 967.5

Pooor (1/0) 178,214 .33 .47

Born in rural district (1/0) 174,282 .65 .48

Average temperature during gestation (C) 176,232 15.1 6.7

Panel B - Males 
Age (years) 152,653 43.4 10.4

Two-headed household (1/0) 152,653 .83 .37

Schooling (years) 152,640 8.8 4.4

Monthly individual income (2015 Soles) 145,869 1,109.1 1,609.9

Poor (1/0) 152,653 .33 .47

Born in rural district(1/0)) 149,260 .66 .47

Average temperature during gestation (C) 150,595 15.0 6.6

Panel C - Fuel use in the household
Fuel stacking (1/0) 203,510 .22 .41

Dirty fuel for lighting (1/0) 203,510 .16 .37

Dirty fuel for cooking (1/0) 203,510 .52 .50

Kerosene for cooking (1/0) 203,510 .02 .13

Charcoal for cooking (1/0) 203,510 .14 .35

Wood for cooking (1/0) 203,510 .39 .49

Other fuel for cooking (1/0) 203,510 .25 .43

Notes: The sample includes the principal couple, or the household head in case he or she doesn’t have a

spouse. Source: 2005-2015 ENAHO and CRU. The main data source for socio-economic variables and fuel use is 
Peru’s National Household Survey (in Spanish, Encuesta Nacional de Hogares, or ENAHO) pooled from 2005 to 
2015. Since the objective is to understand household fuel choices, the focus of this paper is the household head 
and his or her partner, who are likely in charge of the decision of fuel choice. The pooled survey data consists of 
around 200,000 households, with 330,000 individuals between the household head and partners. The survey 
includes information on the district and date of birth, which allows matching household survey with weather 
data at the time of birth.

Table 1 shows the main descriptive statistics of the sample. Panels A and B report the descriptive statistics for 
females and males, respectively. Females in the sample are on average 42 years old, have 7.3 years of schooling 
and earn 607 Soles (spatially and temporally deflated using as base the price level of Lima, the capital, in 2015, 
roughly equivalent to USD 175)7, while males are on average 43.4 years old, have 8.8 years of schooling, and earn 
1109 Soles per month (around USD 320). Twenty-nine percent of females are single household heads, while the 
figure for males is 17 percent. The poverty rate in both groups is 33 percent, and around two-thirds of the sample 
were born in rural areas. Average temperature during gestation was 15.0C for males and 15.1C for females.

7	 The exchange rate was fairly stable during the 11-year period, from 3.27 Soles per USD in January 2005 to 3.44 Soles per 
USD in December 2015.
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Panel C reports use of dirty fuels, the main outcome of interest. As in most developing countries, females are in 
charge of cooking in Peru, so they carry a disproportionate share of the burden of dirty fuel use (Gajate-Garrido, 
2013). Sixteen percent of households in the sample use dirty fuels for lighting, but over fifty percent of the 
sample uses dirty fuels for cooking. This is likely an underestimate since the survey does not include dung as 
an independent category, and instead lumps it as “other fuels”. “Dirty fuels” include firewood (39 percent), 
charcoal (14 percent), and kerosene (2 percent). Twenty-five percent of households report using other fuels, 
but there is no information on which are these other fuels, so in the main analysis the “dirty fuels” category is 
defined as firewood, charcoal or kerosene, but in section 5.4 I show that the main results are robust to changing 
the definition to include “other fuels”. Twenty-two percent of households simultaneously use clean and dirty fuel 
sources for cooking, a behavior known in the literature as “fuel stacking”.

Figure 1: Use of dirty fuels for cooking and lighting, 2005-2015
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Figure 1 shows the trends in use of dirty fuels for cooking and lighting from 2005 to 2015. There has been a steady 
improvement, with use of dirty fuels for lighting falling from nearly 35 percent to 8 percent. The use of dirty fuels 
for cooking fell from 65 percent in 2005 to 47 percent in 2015. Fuel stacking, on the other hand has increased 
from 15 percent in 2005 to 29 percent in 2015, as households gained access to clean sources like natural gas while 
keeping the dirty sources generally as backup.

3.2 Weather data

Weather data were obtained from the Climatic Research Unit at the University of East Anglia (CRU). The monthly 
data has a resolution of 0.5 x 0.5 degrees (Mitchell and Jones, 2005). Since districts typically cover parts of 
multiple grid cells, area-weighted averages were constructed using the grid cells overlapping the district.

There are three sources of measurement error in the empirical measurement of average temperature during 
gestation. First, being based on projections and interpolations, the dataset contains measurement error in each 
grid. Second, average temperature during gestation was constructed assuming nine-month pregnancy periods. 
For instance, a female born in September 1976 is assigned average temperature from January to September 1976. 
This may incorporate measurement error in average in-utero temperature, since gestation may have lasted more 
or less than nine months. Third, some districts are large, so weather conditions in the location of birth may not be 
accurately represented by the district average. Hence, an individual’s true average temperature during gestation 
may be higher or lower than my empirical approximation. The likely consequence on the estimated effects is 
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attenuation bias, in which case the estimated coefficients should be interpreted as lower bounds (in absolute 
magnitude) of the true effects of average in-utero temperature.

Figure 2: Average in-utero temperature
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Notes: The red lines indicate the 25th, 50th, and 75th percentiles of the pooled sample. Source: 2005-2015 
National Household Surveys and Climatic Research Unit, University of East Anglia.

Figure 2 plots the histogram of average in-utero temperature for males and females. The distributions are almost 
exactly identical across groups. The vertical lines denote the quartiles of the full sample. The median value is 
14.5C, while 25 percent of the sample was exposed to average in-utero temperature below 9C and 25 percent was 
exposed to average in-utero temperature above 21C.

4. EMPIRICAL APPROACH

I use a step estimating equation to allow for considerable flexibility regarding the nature of the relationship 
between weather variables and the outcomes of interest (Schlenker and Roberts, 2009; Barron, Heft-Neal, and 
Perez, 2018). The main estimating equation is of the form:

where y  is the outcome of interest for individual i born in district d on date b,8 and surveyed in year t. 
Temperature is measured in degrees Celsius, binned at 2.5C intervals. I use the bin that includes 18C (≈ 65F) 
which is usually deemed as “thermal comfort”, as a comparison category. In addition, xidbt is the number of 
months that in-utero temperature fell in bin j. In this variable, the comparison category is also 17.5-20C. Hence, 
the comparison category is formed by people exposed to average in-utero temperature of 17.5-20C, and who were 
not exposed to average monthly temperatures outside that bin. In other words, βj measures the difference in 

8	 Date of birth is month and year of birth, e.g. May 1979
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outcomes between a person exposed to average in-utero temperature in bin   and a person who was only exposed 
to monthly in-utero temperature between 17.5 and 20C.

I also employ average temperature by trimester of the pregnancy and, for a falsification test, average temperature 
during the three months prior to the pregnancy.9 The sample is composed of the members of the principal 
couple or the household head, if he or she is single. Regressions are estimated separately for males and females.

The specification includes fixed effects for month-by-year of birth, and district of birth by year of the survey. 
In words, the coefficients are estimated by comparing outcomes across individuals born in the same district, 
controlling for economy-wide shocks at the time of their birth. In addition district-by-year fixed effects account 
flexibly for annual changes in outcomes across and space. To account for spatial correlation of weather, standard 
errors are clustered at the province level.10 After controlling for fixed effects as described above, if monthly 
variations in temperature are exogenous to the individual, OLS provides consistent and unbiased estimates for 
β. This identification assumption is similar to Schlenker and Roberts (2009); Barron, Heft-Neal, and Perez (2018); 
and Molina and Saldarriaga (2017).

There are three threats to identification worth considering in this setting. First, there could be selection into 
pregnancy, as in most of the papers in this literature. Higher income or more educated households could choose 
the timing of their pregnancy for specific reasons which might correlate with temperature, and this self-selection 
would be the actual cause of the differences in outcomes during adulthood. Ideally, one would show that temp 
is not correlated with household characteristics at the time of birth, but this information is not available in the 
household survey. However, there is indirect evidence against this story. Section 5.1 below shows that temp had 
statistically significant effects on outcomes for females, not for males. For this to be consistent with a “selection 
into pregnancy” story would require pregnant mothers of males to seek more favorable temperatures. However, 
as shown in Figure 2, the distribution of temp for males and females is essentially identical. Hence, there does 
not seem to be a strong concern for selection into pregnancy.

Second, there could be sex-selection in-utero, as proposed by the Trivers-Willard hypothesis (Trivers and Willard, 
1973), and recently documented by Dagnelie, De Luca, and Maystadt (2018) and Valente (2015). These studies 
show that civil conflict in Nepal and Congo led to a higher share of female births, which could lead to the selection 
of other characteristics and bias the results. If this were the case in this sample, we would observe fewer males 
being born in cold temperatures. However, Figure 2 suggests that this is not a concern in this sample, as the 
distribution of average in-utero temperature is essentially identical between males and females.

A third threat to identification of β is that there could have been supply side changes with regard to fuel access 
and prices, which could affect the internal validity of β if these changes were correlated with temp. Although the 
available data do not allow to rule this out directly, to ameliorate this concern, at least to a degree, equation (1) 
includes district-by-year fixed effects.

Using average temperature during gestation involves a few empirical limitations worth discussing. First, hot and 
cold months could cancel each other out, so pregnancies with high temperature variability could appear as if 
they had usual temperature.  The role of θj in equation (1) is to hold constant the number of months in each bin, 
addressing this concern. Second, according to this definition a one-degree increase for one month is treated 
equally as a one-ninth degree increase over the entire pregnancy, but there is no biological evidence to back up 
this statement.11

9	 Given the uncertainty about the exact duration of the pregnancy, I do this two ways: using months 10 to 12, and 11 to 13 
prior to the birth. Results are essentially identical.

10	 There are 196 provinces in the country, which group approximately 10 districts each.
11	 An alternative definition would use the number of hot months or cold months as a regressor, although doing so would not 

allow to evaluate the effects of temperature along the distribution of temperature, which is my primary objective.
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5. RESULTS

5.1 Main results

Table 2 reports the main results in the paper. The main explanatory variable is average temperature during 
gestation (temp). The dependent variables are dichotomous indicators of dirty fuel use at the time of the survey 
(when subjects were 18 years old or older). The sample is composed by household heads and their spouses. The 
dependent variable in columns (1) and (4) is an indicator of use of dirty fuels for lighting; in columns (2) and (5), 
dirty fuel use for cooking. The dependent variable in columns (3) and (6) is a dichotomous indicator that turns 
on for households that use simultaneously clean and dirty fuels for cooking, allowing to investigate the effects of 
temp on fuel stacking. The results of Table 2 are summarized in panels (a) and (b) of figures 3 and 4.

Figure 3: Main results, females
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These figures plot the coefficients results of equation (1). Dashed lines represent the 95% confidence intervals. 
The comparison category is temp between 17.5 and 20C. See main text, and tables 2 and 4 for details. Source: 
INEI and CRU.
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Figure 4: Main results, males

Average in-utero temperature (degree Celsius)

(b) Fuel stacking

(a) Use of dirty fuels for cooking in the household

Pe
rc

en
ta

ge
 p

oi
un

ts
-.2

-.1
 0

.1
.2

0 10 20 30

Average in-utero temperature (degree Celsius)

(c) Income

M
ar

gi
na

l e
�e

ct
 (p

er
ce

nt
 p

oi
nt

s)
-.2

-.1
0

.1
.2

0 10 20 30

Average in-utero temperature (degree Celsius)

So
le

s
-5

0
0

-2
50

0
25

0
50

0

0 10 20 30

These figures plot the coefficients results of equation (1). Dashed lines represent the 95% confidence intervals. 
The comparison category is temp between 17.5 and 20C. See main text, and tables 2 and 4 for details. Source: 
INEI and CRU. 
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Table 2: Effect on use of dirty fuels

Females Males

(1) (2) (3) (4) (5) (6)

Lighting Cooking Fuel
Stacking Lighting Cooking Fuel

Stacking

  temp ≥ 5.0 0.008 0.065** -0.010 -0.035 -0.015 0.026

(0.021) (0.025) (0.027) (0.023) (0.029) (0.027)

 5.0 < temp	≤7.5 0.015 0.045** -0.024 -0.003 -0.011 0.025

(0.018) (0.021) (0.024) (0.019) (0.024) (0.023)

 7.5 < temp	≤10.0 0.020 0.046** -0.011 0.005 0.003 0.021

(0.018) (0.020) (0.023) (0.017) (0.022) (0.021)

10.0 < temp ≤ 12.5 -0.000 0.035** 0.002 -0.004 -0.008 0.009

(0.016) (0.017) (0.021) (0.017) (0.021) (0.020)

 12.5 < temp ≤ 15.0 0.005 0.021 0.006 -0.013 0.016 0.012

(0.012) (0.014) (0.017) (0.013) (0.017) (0.016

 15.0 < temp ≤ 17.5 0.001 0.005 0.007 -0.004 0.002 -0.002

(0.006) (0.010) (0.010) (0.007) (0.012) (0.010)

20.0 < temp ≤ 22.5 0.016* 0.011 -0.016* 0.019** -0.016* -0.008

(0.009) (0.010) (0.009) (0.009) (0.009) (0.012)

 22.5 < temp ≤ 25.0 0.011 0.005 -0.025 0.015 -0.015 0.004

(0.013) (0.023) (0.018) (0.011) (0.014) (0.016)

temp > 25.0 0.016 0.017 -0.025 -0.011 0.017 0.032

(0.015) (0.025) (0.024) (0.014) (0.023) (0.020)

Mean of Dep Variable 0.164 0.544 0.234 0.178 0.539 0.220

Number of Observations 175105 175105 175105 149776 149776 149776

Number of Clusters 193 193 193 193 193 193

R squared 0.350 0.333 0.154 0.361 0.343 0.166

Notes: The sample is the principal couple, aged 18 or more. Dependent variables are indicators of use of dirty fuels for lighting (columns 1, 4), 
cooking (columns 2, 5), or fuel stacking (columns 3, 6). temp is average in-utero temperature (in degrees Celsius). The comparison category is 
17.5-20C. All regressions include fixed effects date of birth (month and year), district of birth-by-year fixed effects, and a count of months in each 
temperature bin following the specification in equation (1). Standard errors are clustered at the province level. Statistically significant at the 90(*), 
95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.

Columns (1)-(3) report the results for females. The point estimates of temp on the likelihood of using dirty fuels for 
lighting are small and only one of them is significant at the 90% of confidence. In contrast, exposure to low temp 
has sizable impacts on the probability of using dirty fuels for cooking during adulthood. Exposure to temp below 
12.5C increases the probability of using dirty fuel sources for cooking by 3.5-6.5 percentage points relative to the 
comparison category, around 6-12 percent of the mean. This is the same temperature range for which Barron, 
Heft-Neal, and Perez (2018) find statistically significant effects on schooling and labor market outcomes. The 
point estimate loses significance and decreases to 2 percentage points for temp between 12.5 and 15C, and fades 
as temp approaches the comparison category.  For temp greater than the comparison category, the coefficients 
are small and not statistically significant. The coefficients in column (3) are close to zero in all cases and only one 
of them is significant at the 90% of confidence, indicating that temp is not a major driver of the likelihood of fuel 
stacking. This finding holds for alternative definitions of fuel stacking, including the combination of clean and 
dirty fuels for cooking and lighting, and alternative specifications in the same fashion as the robustness checks 
discussed in section 5.4.

The next three columns show the effects of the male temp on the same variables. The point estimates are small 
relative to the outcome mean and, with a few exceptions, are not statistically significant, indicating that male 
temp has no extensive margin effects on the use of dirty fuels or on fuel stacking. There are two exceptions worth 
noting: exposure to temp between 20 and 22.5C increases the use of dirty lighting by 2 percentage points and 
decreases the use of dirty fuels for cooking by the same amount, both at the 90% of confidence.

The following tables examine the effects of temp on related outcomes and mechanisms. To streamline the 
exposition, I will analyze the pattern of significance first for females exposed to temp below 12.5C, then for 
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females exposed to temp above 12.5C, and then for males.

Table 3: Effect by fuel, females

Fuel Type Area Age

(1) (2) (3) (4) (5) (6) (7)

temp ≤ 5.0 0.093*** -0.016 0.000 0.077** 0.052 0.135*** 0.037

(0.026) (0.014) (0.007) (0.031) (0.063) (0.048) (0.032)

5.0 < temp ≤ 7.5 0.071*** -0.017 -0.003 0.057** 0.028 0.061* 0.060**

(0.021) (0.014) (0.006) (0.027) (0.053) (0.036) (0.030)

7.5 < temp ≤ 10.0 0.065*** -0.010 -0.002 0.057** 0.029 0.052* 0.065**

(0.019) (0.013) (0.005) (0.025) (0.044) (0.031) (0.028)

10.0 < temp ≤ 12.5 0.047** -0.005 -0.003 0.042* 0.024 0.036 0.048*

(0.018) (0.011) (0.004) (0.022) (0.042) (0.027) (0.025)

12.5 < temp ≤ 15.0 0.025* 0.004 -0.002 0.025 0.021 0.009 0.043*

(0.014) (0.008) (0.004) (0.019) (0.023) (0.021) (0.023)

15.0 < temp ≤ 7.5 0.004 0.004 -0.001 0.004 0.007 -0.013 0.017

(0.009) (0.005) (0.002) (0.016) (0.013) (0.015) (0.013)

20.0 < temp ≤ 22.5 0.019** -0.008 -0.000 0.014 0.008 0.011 0.015

(0.008) (0.006) (0.004) (0.014) (0.013) (0.016) (0.017)

22.5 < temp ≤ 25.0 -0.002 -0.000 0.001 0.015 0.002 -0.010 0.035

(0.016) (0.014) (0.004) (0.021) (0.035) (0.028) (0.032)

temp > 25.0 -0.008 0.022 0.008* 0.018 0.025 0.025 0.014

(0.021) (0.025) (0.005) (0.025) (0.043) (0.037) (0.032)

Mean of Dep Variable 0.406 0.151 0.018 0.639 0.370 0.551 0.536

Number of Observations	 175105 175105 175105 112090 60570 87692 83033

Number of Clusters 193 193 193 191 64 193 193

R squared 0.393 0.395 0.202 0.338 0.193 0.370 0.363

Notes: The sample is the principal couple, aged 18 or more.  Dependent variables in columns (1)-(3) are indicators of dirty fuels for cooking, in 
columns (4)-(7) is an indicator of dirty fuel use, but the sample is split by area of birth (columns 4, 5) or age (columns 6, 7). The comparison 
category is 17.5-20C. All regressions include fixed effects date of birth (month and year), district of birth-by-year fixed effects, and a count of 
months in each temperature bin following the specification in equation (1). Standard errors are clustered at the province level. Statistically 
significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.

Table 3 analyzes more closely effects on fuel choice among females. Columns (1)-(3) analyze the effects of temp 
on the most common dirty fuels in the sample: firewood, charcoal, and kerosene.12  First, let’s focus on females 
exposed to temp below 12.5C. The effects on firewood are large and statistically significant: from 5 percentage 
points in the 10-12.5C bin to 9 percentage points in the coldest bin, from 12 to 22 percent of the mean. The 
effects on charcoal and kerosene, on the other hand, are small and not statistically significant. Hence, most of 
the variation in use of dirty fuels arising from exposure to temp below 12.5C stems from firewood use. Exposure 
to temp above 12.5C has no statistically significant effects on fuel use, with three exceptions. Exposure to temp 
between 12.5-15C increased firewood use by 3 percentage points (at the 90% of confidence), while exposure to 
temp between 20 and 22.5C increased firewood use by 2 percentage points (at the 95% of confidence). Lastly, 
exposure to temp above 25C increased kerosene use by one percentage point, at the 90% of confidence.

Columns (4) and (5) explore the use of dirty fuels for cooking between females born in rural versus urban areas. 
District’s rurality status at the time of the survey is used as a proxy for rurality at the time of birth. Since some 
rural districts have become urbanized with the passing of time, but not the converse, the measurement error in 
this proxy leads to compare people born in the most rural districts (those that did not become urban in the last 
50 years) to the rest of the country (those that either became urban or were urban all along). However, note that 
over 60% of the sample was born in these “most rural” districts, so urbanization of rural districts does not seem 

12	 The survey includes an “other fuels” category which includes dung, used by 8 percent of rural households for cooking 
according to the 2017 Census (Instituto Nacional de Estad´ıstica e Inform´atica, 2017), but the other fuels are not detailed 
so this category is not categorized as dirty fuels in the main results. Section 5.4 shows that the results of this table hold if 
“other fuels” are included into dirty fuels.
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to be too strong. With this in mind, we turn to analyze the effects by area of birth. Starting the analysis for the 
group with temp below 12.5C, the effects are statistically significant for females born in rural areas, with an effect 
of 8 percentage points for rural women in the coldest temp bin, to 4 percentage points for women in the bin with 
temp between 10-12.5C. The coefficients are not statistically significant for other temperatures or for women born 
in urban areas. However, this is not conclusive evidence that the effect is not present among females from urban 
areas, as the lack of significance in the colder bins is partly due to larger standard errors. In turn, the increase 
in standard errors may owe to a smaller number of observations and, more importantly, fewer clusters in this 
subsample, as only 64 provinces had urban areas.

Columns (6) and (7) split the sample by median age at the time of the survey (42 years old). As before, let’s start 
with the analysis of exposure to temp below 12.5C. With the exception of women exposed to temp below 5C, the 
point estimates are fairly similar across groups, suggesting no considerable effect heterogeneity by age. However, 
the point estimates for women under 42 are less precisely estimated, and are significant only at the 90% level of 
confidence for temp between 5-10C, while the coefficient for women under 42 exposed to temp between 10-12.5C 
is not significant. The lower precision of the coefficients for the younger females may signal that the effects of 
weather in utero have started to fade towards the end of the study period. The year-by-district fixed effects would 
capture time varying variables if they were common to both cohorts, like improved availability of clean fuels 
or more widespread knowledge of their adverse effects. Thus, the loss in precision may be due to differential 
knowledge or changes in preferences across cohorts, but our data does not allow to test this. As in previous 
tables, most of the coefficients for temp above 12.5C are small and not statistically significant.13

5.2 Mechanisms

Table 4: Mechanisms: Schooling and income

Females Males

(1) (2) (3) (4) (5) (6)

Schooling Income HH is poor Schooling Income HH is poor

temp ≤ 5.0 -0.018 -199.238*** 0.043 0.054 163.776* 0.001

(0.034) (69.302) (0.027) (0.036) (87.735) (0.030)

5.0 < temp ≤ 7.5 -0.026 -189.172*** 0.036 0.050* 102.752 0.006

(0.029) (66.811) (0.023) (0.028) (75.791) (0.026)

7.5 < temp ≤ 10.0 -0.039 -134.258** 0.043** 0.024 145.644* 0.008

(0.026) (66.606) (0.020) (0.025) (73.967) (0.023)

10.0 < temp ≤ 12.5 -0.010 -89.909 0.036* 0.015 128.267* 0.015

(0.024) (60.692) (0.020) (0.023) (72.769) (0.020)

12.5 < temp ≤ 15.0 0.003 -70.993 0.036*** 0.008 100.000 0.024

(0.021) (49.475) (0.013) (0.021) (74.298) (0.017)

15.0 < temp ≤ 17.5 0.011 -60.059 0.018*** 0.017 160.352*** 0.016

(0.017) (41.240) (0.007) (0.011) (52.108) (0.010)

20.0 < temp ≤ 22.5 -0.020* 14.585 0.015 0.002 25.711 -0.001

(0.012) (25.900) (0.010) (0.011) (43.051) (0.011)

22.5 < temp ≤ 25.0 -0.020 48.729 0.023* 0.009 90.699 0.006

(0.018) (36.747) (0.013) (0.019) (75.862) (0.015)

temp > 25.0 -0.031 59.382 0.045** 0.025 65.416 0.003

(0.022) (67.475) (0.021) (0.025) (104.168) (0.019)

Mean of Dep Variable 0.489 607.763 0.331 0.632 1108.845 0.331

Number of Observations 175092 120584 175105 149764 142970 149776

Number of Clusters 193 193 193 193 193 193

R squared 0.345 0.162 0.296 0.312 0.161 0.301

Notes: The sample is the principal couple, aged 18 or more. Dependent variable: in columns (1) and (4) is years of schooling; in columns (2) and (5) 

13	 The only statistically significant coefficient for temp above 12.5C is appears in the 12.5-15C bin for women over 42.
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is income in Soles of 2015-Lima; in columns (3) and (6) is an indicator that takes the value of 1 if the household is classified as poor. temp is average 
in-utero temperature (in degrees Celsius). The comparison category is 17.5-20C. All regressions include fixed effects date of birth (month and 
year), district of birth-by-year fixed effects, and a count of months in each temperature bin following the specification in equation (1). Standard 
errors are clustered at the province level. Statistically significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO 
and CRU.

The literature suggests education and income as two potential driving forces behind the use of dirty fuels. Table 
4 examines their relation with temp, distinguishing between own income (in Soles of 2015 Lima) and the poverty 
status of the household, a measure of aggregate household wellbeing. The first three columns report results 
for females and the last three for males. Column (1) shows that exposure to temp below 12.5C does not affect 
schooling significantly. However, column (2) shows that exposure to temp below 7.5C reduces own income by up 
to S/ 200 (one-third of the sample mean), by S/ 134 for temp between 7.5-10C, and by S/ 90 in the 10-12.5C bin, 
although the last coefficient is not statistically significant. Column (3) shows that exposure to temp below 12.5C 
also increases poverty, although the coefficients are not statistically significant below 7.5C.

Let’s turn to analyze the coefficients for females exposed to temp above 12.5C. Recall that in this temperature range 
there are no statistically significant differences in use of dirty fuels for cooking with respect to the comparison 
category (17.5-20C). First, temp between 15-17.5C increased schooling by 0.26 years with respect to the comparison 
category, while temp between 20-22.5C reduced it by the same magnitude. Exposure to other values of temp did 
not lead to statistically significant differences in schooling.  This erratic pattern is inconsistent with the pattern of 
the main outcome variable,  suggesting that schooling is not a main driving force behind the results reported in 
section 5.1. Next, the effects on income for temp bins above 12.5C are not statistically significant, consistent with 
the lack of significant effects in the main outcome variable in these bins. In turn, column (3) for females exposed 
to temp above 12.5C shows that exposure to this temperature in-utero significantly increased the probability that 
females live in a poor household with respect to the comparison category, except for the 20-22.5C bin. This lack 
of consistency with the patterns in the main specification suggests that household wellbeing does not drive the 
use of dirty fuels for cooking in this sample, but rather the female’s own income.

Columns (3)-(6) study the same variables for males. Schooling is unaffected by temp for this subsample, as is their 
household’s poverty status. However, male income also responds to temp, but in the opposite direction as female 
income: exposure to temp below 12.5C increased incomes by roughly S/100 to 165 (9-15% of the sample mean).14  
Income is also higher for males with temp between 15 and 17.5C.

14	 The regressions for males and females report different results due to (i) single-headed households and (ii) different values 
of the explanatory variables: male temp and female temp.
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Table 5: Mechanisms: Partner characteristics and intra-household bargaining power

Intrahousehold Barganing Partner Characteristics

(1) (2) (3) (4) (5)

Two-headed household Difference in schooling Income share Post-Primary Income

temp ≤ 5.0 0.059* 0.131 -0.014 -0.074* -142.724

(0.031) (0.307) (0.028) (0.044) (99.278)

5.0 < temp ≤ 7.5 0.045 -0.017 -0.022 -0.074* -96.387

(0.029) (0.258) (0.022) (0.040) (91.843)

7.5 < temp ≤ 10.0 0.029 -0.093 -0.021 -0.069* -82.426

(0.027) (0.219) (0.020) (0.036) (89.398)

10.0 < temp ≤ 12.5 0.020 0.088 -0.017 -0.085*** -104.691

(0.025) (0.194) (0.017) (0.033) (76.349)

12.5 < temp	≤ 15.0 0.017 0.172 -0.007 -0.063** 4.138

(0.019) (0.167) (0.016) (0.030) (61.511)

15.0 < temp	≤ 17.5 0.007 0.026 0.003 -0.005 21.313

(0.014) (0.100) (0.011) (0.025) (42.213)

20.0 < temp ≤ 22.5 -0.005 -0.369*** 0.005 0.017 -34.716

(0.012) (0.110) (0.010) (0.023) (38.242)

22.5 < temp ≤ 25.0 -0.007 -0.360** 0.000 0.027 -2.595

(0.016) (0.149) (0.018) (0.033) (68.632)

temp > 25.0 -0.014 -0.413 -0.007 0.017 -24.381

(0.022) (0.251) (0.019) (0.046) (92.474)

Mean of Dep Variable 0.715 -1.469 0.356 0.763 1086.116

Number of Observations 175105 123947 77435 81056 118216

Number of Clusters 193 193 193 191 193

R squared 0.218 0.169 0.176 0.257 0.178

Notes: The sample consists of female heads or spouses of the head aged 18 or over. Dependent variable: in column (1) is an indicator that the 
household has male and female head; in column (2) is female head’s schooling minus male head’s schooling, in column (3) is female income as 
share of the principal couple’s income, in column (4) is an indicator that her partner has post-primary studies, and in column (6) is partner’s 
income. temp is average in-utero temperature (in degrees Celsius). The comparison category is 17.5-20C. All regressions include fixed effects 
date of birth (month and year), district of birth-by-year fixed effects, and a count of months in each temperature bin following the specification 
in equation (1). Standard errors are clustered at the province level. Statistically significant at the 90(*), 95(**) and 99(***) percent of confidence. 
Source: 2005-2015 ENAHO and CRU.

Table 5 sheds further light on the driving mechanisms by analyzing partner characteristics and females’ 
intrahousehold bargaining power. The dependent variable in column (1) is an indicator that the female has a 
partner. In columns (2) and (3), the dependent variables are difference in years of schooling and female income 
as percentage of the couple’s total income, two commonly used measures of female bargaining power in the 
household.15 Columns (3) and (4) explore partner characteristics. The first column shows that female temp has 
no effect on the probability of having a partner, which suggests that splitting the sample by this post-treatment 
variable should not generate major concerns about selection issues. However the results of this exercise are 
merely suggestive and subject to the usual caveat that splitting the sample by a post-treatment variable could 
bias the results. In columns (2) through (5), the sample is restricted to households where the head has a partner.

15	 These are the main intrahousehold bargaining indicators that can be constructed with the ENAHO survey data. A 
limitation of these variables is that they do not measure actual decision making. Other surveys, like the Demographic and 
Health Survey (DHS), include information on decision making in daily purchases, large purchases, freedom of movement, 
decision over the use of own income, as well as domestic violence. However, the DHS does not include information on 
place of birth, so it is impossible to construct an estimate of weather during gestation.
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Column (2) examines how differences in schooling between the female and the male respond to female temp. This 
variable is defined in a way that negative numbers reflect that male schooling is higher than female schooling. 
The coefficients are negative, although not statistically significant in the same pattern as in the previous tables. 
In fact, another erratic pattern arises, suggesting that education is not a channel through which temp affects 
fuel choice. Column (2) shows that temp doest no affect the female income share, with coefficients that are 
small in magnitude and not statistically significant. Column (3) shows that exposure to temp below 12.5C reduces 
the probability of the partner having post-primary studies by 7-9 percentage points relative to the comparison 
category. The only other statistically significant coefficient is the 12.5-15C bin. Column (4) shows that effects on 
partner income are large (especially for temp below 12.5C) but imprecisely estimated.

Taken together, the evidence in this section suggests that female income and partner “quality” could be driving 
the effects of temp on fuel choice reported in section 5.1. However, it is also possible that lack of differences 
in schooling could be masking differences in learning outcomes, and these learning outcomes are generating 
differences in income. Further evidence is needed to explore the education channel more closely.

5.3 Effects by Trimester

Table 6 investigates differential effects by trimester of pregnancy. Previous literature has found that shocks in the 
first trimester have larger effects than shocks in the rest of the pregnancy 16 (e.g. Almond, Mazumder, and Ewijk, 
2015; Rosales, 2014; Kumar, Molitor, and Vollmer, 2014). In addition, analyzing temperature by trimester also 
allows to ameliorate the limitation that hot and cold months may cancel each other out. However, by covering a 
shorter timespan, average temperature in a given trimester has potentially less scope to affect life outcomes than 
average temperature during the whole pregnancy period. Columns

(1) through (3) show the effects of female temp by trimester on the likelihood of use of dirty fuels. In line with 
previous literature, the first trimester of gestation seems to be the most important. Female exposure to first 
trimester temp below 12.5C significantly increases the use of dirty fuels along the extensive margin, by 2-5 
percentage points, while the effects of first trimester temp above 12.5C are small and not significant. Effects in the 
second or third trimester are not statistically significant, with the exception of third trimester temp above 25C, 
which reduced dirty fuel use for cooking by 2 percentage points.

Table 7 examines effects of temperature on schooling and income by trimester of the pregnancy. To ease the 
exposition, I start the analysis with the first trimester, which drives the results of fuel use. Contrary to the findings 
in Table 6, the effects on schooling are not significant for first trimester temp below 12.5 (with one exception at the 
90% of confidence), but are significant for temp over 20C. The effects of exposure to first trimester temp below 
12.5C on income are not significant, but their large standard errors do not allow to reject reductions of 15% of the 
mean or more. In contrast to Table 6, exposure to first trimester temp between 12.5C and 17.5C decreased income 
by 7-8%, while the point estimates for values over 20C are not significant. In addition, there are statistically 
significant negative effects of second trimester temp above 20C on schooling and income, together with mixed 
results of third trimester temp.

16	 Hu and Li (2016) find stronger effects in the first and third trimester.
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Table 6: Effects by trimester

Dirty Fuel

(1) (2) (3)

1st Trim 2nd Trim 3rd Trim

temp ≤ 5.0 0.048*** 0.025 0.003

0.017) (0.021) (0.019)

5.0 < temp ≤ 7.5 0.027** 0.016 0.005

(0.014) (0.017) (0.017)

7.5 < temp ≤ 10.0 0.024** 0.006 0.004

(0.012) (0.015) (0.015)

10.0 < temp ≤ 12.5 0.024** 0.014 0.004

(0.010) (0.012) (0.013)

12.5 < temp	≤ 15.0 0.013 0.006 0.002

(0.008) (0.009) (0.011)

15.0 < temp ≤ 17.5 0.010 0.001 -0.005

(0.007) (0.006) (0.009)

20.0 < temp ≤ 22.5 -0.003 -0.002 -0.001

(0.008) (0.008) (0.007)

22.5 < temp ≤ 25.0 -0.009 0.010 -0.007

(0.010) (0.012) (0.009)

temp > 25.0 -0.006 0.003 -0.018**

(0.010) (0.012) (0.009)

Mean of Dep Variable 0.544 0.544 0.544

Number of Observations 175105 175105 175105

Number of Clusters 193 193 193

R squared 0.333 0.333 0.333

Notes: The sample consists of female heads or spouses of the head aged 18 or over. Dependent variable is an indicator of use of dirty fuels for 
cooking. temp is average in-utero temperature (in degrees Celsius) over the first trimester (column 1), second trimester (column 2), and third 
trimester (column 3). The comparison category is 17.5-20C. All regressions include fixed effects date of birth (month and year) and district of 
birth- by-year fixed effects following the specification in equation (1). Standard errors are clustered at the province level. Statistically significant at 
the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.
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Table 7: Effects by trimester on Schooling and Income

Schooling Income

(1) (2) (3) (4) (5) (6)

1st Trim 2nd Trim 3rd Trim 1st Trim 2nd Trim 3rd Trim 

temp ≤ 5.0 -0.258 0.173 0.282 -53.312 -36.615 62.552

(0.199) (0.222) (0.246) (41.542) (38.091) (48.767)

5.0 < temp ≤ 7.5 -0.245 0.134 0.239 -46.233 -43.924 50.897

(0.174) (0.186) (0.199) (35.955) (35.849) (44.292)

7.5 < temp ≤ 10.0 -0.231 0.046 0.302* -40.007 -43.418 45.594

(0.156) (0.166) (0.178) (32.763) (35.027) (39.922)

10.0 < temp ≤ 12.5 -0.261* 0.066 0.294* -40.444 -30.545 42.842

(0.138) (0.138) (0.156) (25.766) (30.372) (34.273)

12.5 < temp ≤ 15.0 -0.155 0.029 0.154 -38.168** -21.385 51.064*

(0.108) (0.107) (0.101) (18.399) (29.201) (28.181)

15.0 < temp ≤ 17.5 -0.036 -0.021 0.107* -52.619*** 7.056 55.921**

(0.067) (0.066) (0.065) (13.628) (31.441) (23.554)

20.0 < temp ≤ 22.5 -0.165** -0.035 -0.051 1.066 -34.424*** 0.015

(0.083) (0.068) (0.070) (24.821) (12.606) (16.865)

22.5 < temp ≤ 25.0 -0.211** -0.212** 0.006 4.120 -39.683** -10.156

(0.099) (0.084) (0.094) (21.286) (18.929) (20.413)

temp > 25.0 -0.228* -0.244*** 0.005 15.168 -49.941*** -27.575*

(0.118) (0.092) (0.088) (21.379) (16.901) (15.874)

Mean of Dep Variable 7.260 7.260 7.260 607.763 607.763 607.763

Number of Observations 175092 175092 175092 120584 120584 120584

Number of Clusters 193 193 193 193 193 193

R squared 0.386 0.386 0.386 0.162 0.162 0.162

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable: in columns (1) - (3) years of schooling; in columns 
(3) - (6) is income in Soles of 2015-Lima. temp is average in-utero temperature (in degrees Celsius) over the first trimester (columns 1 and 4), 
second trimester (columns 2 and 5), and third trimester (columns 3 and 6). The comparison category is 17.5-20C. All regressions include fixed 
effects date of birth (month and year), and district of birth-by-year fixed effects following the specification in equation (1). Standard errors are 
clustered at the province level. Statistically significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.

5.4 Robustness checks

This section reports the results of three sets of robustness checks to assess the reliability of the estimates presented 
in this study. The first set of robustness checks is presented in Appendix Table A.1, and consists in changing the 
definition of dirty fuel use. The definition used in all columns is a dichotomous indicator that the household 
uses any dirty fuel, which includes households that rarely use dirty fuels. In column (1) the dependent variable 
is an indicator that the main fuel for cooking used by the household is dirty (firewood, kerosene, or charcoal). 
Recall that in the survey, dung is lumped together with other potentially clean fuels in the “other fuel” category. 
Column (2) presents the results changing the definition to include “other fuel” as dirty fuel. Results are almost 
identical to those presented in Table 2, with two exceptions. First, the coefficient for the 10-12.5C bin in column 
(2) is not statistically significant, unlike the main specification. Second, that exposure to temp between 20 and 
22.5C increases the use of dirty fuels according to these definitions.

The second set of robustness checks is presented in Appendix Table A.2. These robustness checks relate to 
the econometric specification. To ease comparison, column (1) reports the main results in Table 2.  Column 
(2) removes θj, the count of months in each bin that were included to control for temperature variation within 
the nine-month gestation period. Results are essentially unchanged when this variable is removed.  Column (3) 
replaces θj by the standard deviation of in-utero temperature (SDT). The coefficient on SDT is small (0.006) and 
not significant (SE=0.005). The 95% confidence interval for the effect of a one-standard deviation increase in 
SDT (0.66 C) on the likelihood of cooking with dirty fuels runs from a 0.9 percentage point reduction to a 0.2 
percentage point increase. Being a non-significant variable with a tight confidence interval, SDT can be safely 
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omitted from the regression.17  Column (4) includes fixed effects for district of residence. Note that this is an 
endogenous regressor, since households self-select into moving across districts, and select their destination. 
The effects in this column are estimated off of households that migrate, who are arguably better-off than those 
who do not migrate. The effects of temp are not statistically significant, which would suggest that the significant 
effects are concentrated on households who did not migrate (subject to the caveat of splitting the sample by a 
post- treatment regressor).

The third set of robustness checks is a falsification test, presented in Appendix Table A.4. The explanatory variable 
is average temperature during the trimester prior to conception, defined as months 10-12 prior to birth.18 In this 
table, the dependent variables are indicators of use of dirty fuels for cooking. The first column corresponds to the 
main definition, use of any dirty fuel for cooking by the household, while the second and third columns employ 
the alternative definitions reported in Table A.1. The point estimates are essentially zero and none of them is 
statistically significant, providing further evidence that the findings in the previous tables are not artifacts of the 
data.

6. DISCUSSION

6.1 Health Costs

In this section I perform back-of-the-envelope calculations to provide a monetary estimate of the health costs 
generated by the increased use of dirty fuels arising from the exposure to low average in-utero temperature. In 
the sample, 54.4% of females use dirty fuels for cooking, and 40% were exposed to temp below 12.5C.19  If none 
of them had been exposed to temp below 12.5C, the model predicts that the share of households using dirty fuels 
for cooking would have fallen by 1.8 percentage points in the country. The estimated reductions in use of dirty 
fuels are stronger among more vulnerable women: for instance they are larger for women born in rural areas 
(2 percentage points vs 1 percentage points in urban areas) and among women with only primary education (2 
percentage points vs 1.6 for women with post-primary)

Triana et al. (2007) estimate the average annual health costs of biomass fuels in Peru at US$ 270 million, of which 
two-thirds are attributable to adverse health effects on children. Using this figure as benchmark implies that the 
1.8% increase in dirty fuels for cooking attributable to cold in-utero weather amounts to health losses of US$ 4.9 
million per year.

6.2 Can climate change “solve” this problem?

Since the negative effects estimated in this study arise from exposure to low in-utero temperature, one could 
argue that climate change would solve the problem, as it leads to warmer weather. In this section I argue this 
has not been the case in Peru, as the likelihood of a 9-month period with average temperature below 12.5C has 
not decreased in the last 60 years. With the CRU weather dataset, I calculated 9-month temperature averages in 
each district of the country, from January 1950 to December 2014. This variable, denoted τ , is a measure of the 
average in-utero temperature to which a fetus would be exposed in the country over this period. As in the main 
analysis, τ is binned at 2.5C intervals. Figure 5 shows the probability of τ falling in each bin at each month in the 
dataset.

17	 Table A.3 shows the interaction of SDT with the binned values of temp. At the mean value of SDT, the confidence intervals 
of the marginal effects of temp on the use of dirty fuels overlap with the results of the main specification.

18	 Appendix Table A.5 replicates the analysis using months 11-13 prior to birth with the same results.
19	 The breakdown by bins is: 3.5 % were exposed to temp below 5C, 10% to temp between 5 and 7.5C, 16.7 % to temp 

between 7.5 and 10C, and 9.8% to temp between 10C and 12.5C. The remaining 60% were exposed to temp above 12.5C.
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Figure 5: Nine-month average temperature (τ) per district, 1950-2015
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Notes: τ is the nine-month average temperature up to the date indicated in the horizontal axis. The vertical axis measures the share of districts 

where τ fell in each bin. The gray lines denote bins above 12.5C.

The figure shows that the likelihood of exposure to average in-utero temperature below 12.5C, as well as the other 
bins, has remained fairly stable from that point to the end of the sample. Because of the timing of the surveys and 
the requirement that individuals are over 18 years old to be included in the main analysis, 99% of individuals in 
the sample were born before 1991. The findings in this paper suggests that as the younger cohorts become heads 
of their own households we could expect similar effects on fuel use.

However, in the future, climate change is expected to accelerate, so nine-month periods below 12.5C may become 
less likely. Indeed, by 2065 the World Bank’s climate projections for Peru point to increases in average maximum 
temperatures of 2-3C and of average minimum temperatures by 4-6C,20. However, these temperature increases 
will likely alter the country’s entire productive structure, in which case the relation between in-utero temperature 
and fuel choice estimated here would not hold.

6.3 Policy Implications

The evidence shown thus far puts forward female income as a potentially important mechanism behind the 
effects of temp on use of dirty fuels for cooking. If this were the case, income transfers could mitigate the impact 
of exposure to low in-utero temperature. To test this hypothesis, albeit indirectly, I analyze whether a large 
conditional cash transfer program targeted at poor households, JUNTOS, mitigated the effects of average in-utero 
temperature. Importantly, JUNTOS is a CCT targeted at women, so it allows to test whether changes in female 
income alter the effect of temp on the use of dirty fuels for cooking.

20	 https://climateknowledgeportal.worldbank.org/country/peru/climate-data-projections, accessed June 19, 2021
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Table 8: Effects of average in-utero temperature and conditional cash transfers, 2009-2015

(1) (2) (3)

All households Poor, Juntos Beneficiary

temp≤ 5.0 0.061* 0.186** 0.047

(0.033) (0.079) (0.087)

5.0 < temp ≤ 7.5 0.059** 0.169*** -0.018

(0.028) (0.063) (0.069)

7.5< temp ≤ 10.0 0.068*** 0.117** -0.037

(0.024) (0.057) (0.060)

10.0 < temp ≤ 12.5 0.055** 0.058 -0.056

(0.021) (0.049) (0.057)

12.5 < temp ≤ 15.0 0.034* 0.018 -0.047

(0.018) (0.047) (0.051)

15.0 < temp	 ≤ 17.5 0.003 -0.008 -0.049

(0.012) (0.035) (0.039)

20.0 < temp ≤ 22.5 0.006 0.024 0.010

(0.012) (0.041) (0.043)

22.5 < temp ≤ 25.0 -0.001 0.019 -0.030

(0.030) (0.050) (0.059)

temp > 25.0 -0.005 0.017 -0.135

(0.031) (0.059) (0.100)

Mean of Dep Variable 0.511 0.697 0.806

Number of Observations 123575 20839 15193

Number of Clusters 193 192 151

R squared 0.327 0.469 0.561

Notes: The sample is female heads or spouses of the head aged 18 or over. The dependent variable is an indicator that the household uses wood, 
charcoal or kerosene for cooking. Column (1) contains all households in the 2009-2015 surveys. Column (2) is the subsample of poor household 
that are not beneficiaries of JUNTOS, a conditional cash transfer program. Column (3) is the subsample of JUNTOS beneficiaries. temp is average 
in-utero temperature (in degrees Celsius). The comparison category is 17.5-20C. All regressions include fixed effects date of birth (month and 
year), district of birth-by-year fixed effects, and a count of months in each temperature bin following the specification in equation (1). Standard 
errors are clustered at the province level. Statistically significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2009-2015 ENAHO 
and CRU.

Table 8 shows the results. Since the program started in 2009, the first column reports the results of the main 
specification for all households in the 2009-2015 sample, showing that these are essentially the same as the results 
for the whole study period (2005-2015). Both the magnitude and the statistical significance of the coefficients 
are similar to the results in Table 2. The second column reports the results for females from poor households 
who were not CCT recipients. The point estimates in this subsample are larger than for the full sample.  The 
third column reports the results for female CCT recipients.  The coefficients become smaller and lose statistical 
significance, suggesting that the conditional cash transfer counteracted the effect of exposure to low average 
in-utero temperature.

There are two important caveats with this test. First, since poverty and beneficiary status are potentially 
endogenous outcomes, this test is far from perfect. Second, since CCTs are given to females, higher income 
mechanically increases female income share and intra-household bargaining power, so the effect could be 
operating through these variables instead of income.



25

7. CONCLUSIONS

A growing body of evidence has shown that weather conditions in utero can have strong effects on birth 
outcomes, early childhood development and education and labor market outcomes. This paper shows that there 
are effects on tangible choices during adulthood, like the use of dirty fuels for cooking. Exposure of females to 
average in-utero temperature below 12.5C (roughly 40% of the sample) increases the likelihood of using dirty 
fuels for cooking by 3.5-6.5 percentage points compared to females born in the comparison category of 17.5-20C, 
a 6-12% increase. These results are robust to three types of robustness checks, and a falsification test supports the 
argument that these findings are not artifacts of the data.

Female education and income are two of the most important determinants of fuel choice (Lewis and Pattanayak, 
2012; Muller and Yan, 2018). The analysis in this paper supports the role of income as a likely channel through 
which exposure to low temp affects fuel choice. Further research is needed to draw a clearer conclusion especially 
given the results by trimester, but altogether the evidence in this study suggests that interventions aimed at 
increasing female income could effectively counteract the increased use of dirty fuels attributable to exposure 
to low temp. However, it is important to note that lower income is in itself an intermediate outcome, a result of 
changes physiological and socioeconomic changes unleashed by exposure to low average in-utero temperature. 
Other complementary measures like incentivizing thermal insulation of dwellings and barns, or the diffusion of 
cold-resistant crops could also be considered.

A possible reason for the gender gap in the effects of temperature on income is household resource reallocation 
to favor boys. In fact Torres and Santa Maria (2017) show that households in Peru respond to average temperature 
during gestation below 12.5C by weaning boys, but not girls, at a later age. This could point at households 
reallocating resources to compensate the adverse developmental effects of in-utero temperature on boys, but 
not girls.

Average temperature during gestation has no effects on fuel stacking, a common practice in the study setting 
as well as in most developing regions that consists in using dirty and clean fuels, the former usually as backup. 
This finding suggests that changes in fuel stacking may require stronger changes in education, income, or 
intrahousehold bargaining power than those required to change the likelihood of using dirty fuels.

Most of the statistically significant coefficients correspond to females exposed to temp below 12.5C. However, 
there are some statistically significant coefficients outside this subsample, either for females in higher temp or 
for males, but these are scattered, with the exception of temp between 20 and 22.5C. Overall, exposure to temp 
between 20 and 22.5C seems to increase the use of dirty fuels. First, this is the only bin that had significant effects 
on the use of dirty fuels for lighting (of 2 percentage points, for both males and females). Second, females exposed 
to temp between 20 and 22.5C were the only group that had significantly lower likelihood of fuel stacking than 
the comparison category. Third, female exposure to temp between 20 and 22.5C increased the use of dirty fuels 
for cooking (with the definitions in Tables A.1) by 3 percentage points and the use of firewood by 2 percentage 
points. However, male exposure to temp in this bin reduced the use of dirty fuels for cooking by 2 percentage 
points. The story regarding the mechanisms is also contrary to the findings for temp below 12.5C: exposure to 
temp in the 20-22.5 bin does not reduce female income, but reduces female schooling in absolute terms and 
relative to their partners. This suggests that different mechanisms may operate in cold versus warm temp, but 
the available data cannot provide a convincing explanation.

A second limitation relates to the lack of information on respiratory health in children. Increases in use of dirty 
fuel for cooking likely affect respiratory health among children, but the data does not allow to test these effects 
empirically. The National Household Survey lumps together respiratory problems with headaches and “other 
symptoms”, making it unsuitable for this purpose.21 A third important limitation is that the analysis focuses on 
the extensive margin exclusively. However, working with intensive margins requires having trustworthy measures 
of consumption, which are not available in this setting since firewood is collected by household members, and 
when it is bought in the market, it is usually measured in non-standard units like “bunches” instead of kilograms.

21	 The Demographic and Health Survey provides a finer disaggregation of illnesses and symptoms, but does not include 
information on place of birth.
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The main message of this paper is that, among Peruvian females, exposure to average temperature during gestation 
below 12.5C had tangible effects on fuel choice during adulthood. This is likely a consequence of the effects of 
in-utero weather conditions on income. Changes along this margin of behavior contribute to the household’s 
entrapment in poverty, through effects on health and productivity, but in addition they also contribute to further 
climate change. The analysis presented here suggests that female income-generating interventions can ameliorate 
these effects, at least to an extent.
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APPENDIX 

Table A.1: Alternative definitions

(1) (2)

Cook Dirty 2 Cook Dirty 3

temp ≤ 5.0 0.068*** 0.059**

(0.025) (0.027)

5.0 < temp ≤ 7.5 0.047** 0.046**

(0.020) (0.021)

7.5 < temp ≤ 10.0 0.039** 0.035*

(0.018) (0.019)

10.0 < temp ≤ 12.5 0.034** 0.013

(0.017) (0.017)

12.5 < temp ≤ 15.0 0.012 0.006

(0.013) (0.014)

15.0 < temp ≤ 17.5 -0.006 -0.005

(0.007) (0.007)

20.0 < temp ≤ 22.5 0.027*** 0.028***

(0.008) (0.008)

22.5 < temp ≤ 25.0 0.019 0.014

(0.015) (0.013)

temp > 25.0 0.026 0.011

(0.021) (0.021)

Mean of Dep Variable 0.378 0.470

Number of Observations 173003 173003

Number of Clusters 193 193

R squared 0.374 0.370

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable: in columns (2) is an indicator that the household 
cooks with: wood, charcoal, kerosene or “other fuels” (see main text for discussion); in column (2) is an indicator that the household’s main fuel 
for cooking is wood, charcoal, or kerosene. temp is average in-utero temperature (in degrees Celsius). The comparison category is 17.5- 20C. 
All regressions include fixed effects date of birth (month and year), and district of birth-by-year fixed effects, and a count of months in each 
temperature bin following the specification in equation (1). Standard errors are clustered at the province level. Statistically significant at the 90(*), 
95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.
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Table A.2: Alternative specifications

(1) (2) (3) (4)

Main Specification Removing θj
Controlling

for SDT
District of 

Residence FFEE

temp ≤5.0 0.065** 0.058*** 0.059** 0.040*

(0.025) (0.020) (0.025) (0.022)

5.0 < temp ≤7.5 0.045** 0.035* 0.031 0.018

(0.021) (0.018) (0.022) (0.020)

7.5 < temp ≤ 10.0 0.046** 0.034** 0.025 0.023

(0.020) (0.016) (0.018) (0.018)

10.0 < temp ≤ 12.5 0.035** 0.032** 0.023 0.014

(0.017) (0.014) (0.016) (0.015)

12.5 < temp ≤ 15.0 0.021 0.022** 0.017 0.014

(0.014) (0.011) (0.012) (0.012)

15.0 < temp ≤ 17.5 0.005 0.011 0.009 -0.001

(0.010) (0.007) (0.008) (0.009)

20.0 < temp ≤ 22.5 0.011 0.011 0.013 0.009

(0.010) (0.008) (0.009) (0.009)

22.5 < temp ≤ 25.0 0.005 0.005 0.007 0.014

(0.023) (0.013) (0.014) (0.022)

temp > 25.0 0.017 0.009 0.012 0.026

(0.025) (0.016) (0.018) (0.026)

SD of in-utero temperature -0.006

(0.005)

Mean of Dep Variable 0.544 0.544 0.544 0.544

Number of Observations 175105 175105 173101 175101

Number of Clusters 193 193 193 193

R squared 0.333 0.333 0.333 0.449

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable is an indicator that the household uses wood, 
kerosene or charcoal for cooking. Column (1) is the main specification. In column (2) the count of months in each temperature bin was removed. 
In column (3) the count is replaced by the standard deviation of mean monthly temperature in the district of birth during the 9 months prior 
to birth. Column (4) controls for district of residence fixed effects. The comparison category is 17.5-20C. Standard errors are clustered at the 
province level. Statistically significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.
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Table A.3: Interaction with standard deviation of in-utero temperature

(1) (2) (3) (4) (5)

Marginal Effect

Level × SDT at mean SDT 95% Confidence 
Interval

temp ≤5.0 0.132*** -0.056*** 0.068*** 0.018 0.118

(0.033) (0.013) (0.025)

5.0< temp ≤7.5 0.064** -0.025* 0.035 -0.010 0.080

(0.031) (0.015) (0.023)

7.5< temp ≤10.0 0.044* -0.015 0.026 -0.013 0.066

(0.025) (0.011) (0.018)

10.0< temp ≤12.5 0.027 -0.001 0.026 -0.001 0.061

(0.024) (0.013) (0.018)

12.5< temp ≤15.0 0.036 -0.020 0.012 -0.016 0.040

(0.022) (0.013) (0.014)

15.0< temp ≤17.5 0.011 -0.001 0.010 -0.011 0.030

(0.019) (0.008) (0.011)

20.0< temp ≤22.5 0.033* -0.014 0.018* -0.002 0.038

(0.019) (0.009) (0.010)

22.5< temp ≤25.0 0.009 -0.003 0.005 -0.022 0.032

(0.024) (0.014) (0.014)

temp >25.0 -0.002 0.011 0.011 -0.027 0.048

(0.031) (0.018) (0.019)

SD in-utero temperature 0.005

(0.008)

Mean of Dep Variable 0.544

Number of Observations 173101

Number of Clusters 193

R squared 0.333

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable is an indicator that the household uses wood, 
charcoal or kerosene for cooking. Column (1) reports the coefficient each variable, and column (2) the coefficient of the interactions of each 
variable with the standard deviation of in-utero temperature. Column (3) reports the marginal effect evaluated at the mean value of SDT, and 
columns (4) and (5) report its 95% confidence interval. The regression includes date of birth (month and year) and district of birth-by-year fixed 
effects following the specification in equation (1). Standard errors are clustered at the province level. Statistically significant at the 90(*), 95(**) 
and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.
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Table A.4: Falsification test: Temperature before pregnancy

Months 10-12 prior to birth

(1) (2) (3)

Cook Dirty Cook Dirty 2 Cook Dirty 3

temp ≤ 5.0 0.004 -0.007 -0.006

(0.005) (0.005) (0.005)

5.0 < temp ≤ 7.5 0.006 0.006 0.005

(0.008) (0.007) (0.008)

7.5 < temp ≤ 10.0 0.005 0.001 -0.007

(0.007) (0.007) (0.007)

10.0 < temp ≤ 12.5 -0.000 0.005 0.005

(0.007) (0.007) (0.007)

12.5 < temp ≤ 15.0 -0.004 -0.006 -0.008

(0.008) (0.008) (0.008)

15.0 < temp ≤ 17.5 -0.011 0.001 0.008

(0.008) (0.008) (0.009)

20.0 < temp ≤ 22.5 -0.001 -0.009 -0.010

(0.009) (0.009) (0.009)

22.5 < temp ≤ 25.0 0.005 -0.001 0.003

(0.011) (0.010) (0.011)

temp > 25.0 0.008 0.006 0.000

(0.009) (0.009) (0.010)

Mean of Dep Variable 0.544 0.378 0.470

Number of Observations 175105 173003 173003

Number of Clusters 193 193 193

R squared 0.333 0.374 0.370

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable: in column (1) is an indicator that the household 
uses wood, charcoal or kerosene for cooking, in column (2) is an indicator that the household uses wood, charcoal, kerosene or other fuel for 
cooking, in column (3) is an indicator that the household’s main cooking fuel is wood, charcoal or kerosene. temp is average in-utero temperature 
(in degrees Celsius) over months 10-12 prior to birth. The comparison category is 17.5-20C. All regressions include date of birth (month and year) 
and district of birth-by-year fixed effects following the specification in equation (1). Standard errors are clustered at the province level. Statistically 
significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.
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Table A.5: Falsification test: Temperature before pregnancy

Months 11-13 prior to birth

(1) (2) (3)

Cook Dirty Cook Dirty 2 Cook Dirty 3

temp ≤ 5.0 0.004 -0.014 -0.028

(0.018) (0.016) (0.018)

5.0 < temp ≤ 7.5 -0.001 -0.008 -0.023

(0.015) (0.014) (0.015)

7.5 < temp ≤ 10.0 0.003 -0.010 -0.024**∗

(0.013) (0.011) (0.012)

10.0 < temp ≤ 12.5 0.010 -0.003 -0.014

(0.011) (0.010) (0.011)

12.5 < temp ≤ 15.0 0.001 0.004 -0.006

(0.009) (0.007) (0.007)

15.0 < temp ≤ 17.5 -0.010 0.002 -0.002

(0.006) (0.005) (0.005)

20.0 < temp ≤ 22.5 -0.006 -0.000 0.005

(0.007) (0.006) (0.006)

22.5 < temp ≤ 25.0 -0.001 0.007 0.019**

(0.008) (0.008) (0.009)

temp > 25.0 -0.003 -0.005 0.005

(0.010) (0.010) (0.011)

Mean of Dep Variable 0.544 0.378 0.470

Number of Observations 175105 173003 173003

Number of Clusters 193 193 193

R squared 0.333 0.374 0.370

Notes: The sample is female heads or spouses of the head aged 18 or over. Dependent variable: in column (1) is an indicator that the household 
uses wood, charcoal or kerosene for cooking, in column (2) is an indicator that the household uses wood, charcoal, kerosene or other fuel for 
cooking, in column (3) is an indicator that the household’s main cooking fuel is wood, charcoal or kerosene. temp is average in-utero temperature 
(in degrees Celsius) over months 11-13 prior to birth. The comparison category is 17.5-20C. All regressions include date of birth (month and year) 
and district of birth-by-year fixed effects following the specification in equation (1). Standard errors are clustered at the province level. Statistically 
significant at the 90(*), 95(**) and 99(***) percent of confidence. Source: 2005-2015 ENAHO and CRU.


