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Psoriasis is a chronic skin disease affecting 1% to 3% of the world population. Psoriasis
vulgaris (PV) is the most common form of psoriasis. PV patients suffer from inflamed,
pruritic and painful lesions for years (even a lifetime). However, conventional drugs
for PV are costly. Considering the need for long-term treatment of PV, it is urgent to
discover novel biomarkers and therapeutic targets. Plasma exosomal miRNAs have
been identified as the reliable biomarkers and therapy targets of human diseases. Here,
we described the levels of plasma exosomal miRNAs in PV patients and analyzed the
functional features of differently expressed miRNAs and their potential target genes
for the first time. We identified 1,182 miRNAs including 336 novel miRNAs and 246
differently expressed miRNAs in plasma exosomes of healthy people and PV patients.
Furthermore, the functional analysis found differently expressed miRNA-regulated target
genes enriched for specific GO terms including primary metabolic process, cellular
metabolic process, metabolic process, organic substance metabolic process, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway containing cellular
processes, human diseases, metabolic pathways, metabolism and organismal systems.
In addition, we found that some predicted target genes of differentially expressed
miRNAs, such as CREB1, RUNX2, EGFR, are both involved in inflammatory response
and metabolism. In summary, our study identifies many candidate miRNAs involved in
PV, which could provide potential biomarkers for diagnosis of PV and targets for clinical
therapies against PV.

Keywords: psoriasis vulgaris, plasma, exosome, miRNA, inflammatory response, metabolism

INTRODUCTION

Psoriasis is a chronic, inflammatory,systemic skin disease (1, 2). 1% to 3% of the world population
suffers from psoriasis (3). PV is the most common form of psoriasis occurred in 80%–90% psoriasis
patients who manifest erythematous papules covered with pearly scales on extensor surface of
extremities, scalp and sacral region (1, 4). Due to its prevalence, diversity and duration, scientists
and medical workers pay more and more attention to discovering novel biomarkers and therapeutic
targets for psoriasis vulgaris.
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As membrane-bound nanovesicles of 30–100 nm in diameter,
exosomes are secreted by most cell types and exit in almost
all bodily fluids (5–7). Various components including lipid,
protein, mRNAs, microRNAs (miRNAs), long non-coding RNA
(lncRNA) have been identified in exosomes (5, 6, 8). Numerous
studies have indicated that recipient cells can be regulated by
the above exosomal RNAs through the uptake of circulating
exosomes (9, 10). Of these, circulating exosomal miRNAs have
been identified as the reliable biomarkers and therapy targets
of human diseases, such as cancers, respiratory illness, diabetic
nephropathy and autoimmune diseases (11–14). For example, the
serum exosomal miR-24-3p level in nasopharyngeal carcinoma
has been revealed to correlate with worse disease-free survival
of patients (15). Furthermore, plasma exosomal miRNA miR-
126 have potential to predict acute respiratory distress syndrome
(16). A subset of serum exosomal miRNAs (miR-4449, miR-642a-
3p, miR-1255b-5p, let-7c-5p, miR-1246, let-7i-3p, miR-5010-5p,
miR-150-3p) associate with diabetic nephropathy (17). More
importantly, a recent study has demonstrated that extrinsic
microRNA let-7i transferred by plasma exosomes might have an
active role in triggering autoimmune diseases (18).

Considering that circulating exosomal microRNAs modulate
immune response (11), plasma exosomal microRNAs might
have the potential to predict immune disorders including
psoriasis vulgaris. In this study, the high-throughput RNA
sequencing was employed to identify differentially expressed
plasma exosomal miRNAs in patients with psoriasis vulgaris,
and results were validated by quantitative real-time polymerase
chain reaction (qRT-PCR). Subsequently, the enrichment
analysis of the GO term and Kyoto Encyclopedia of Genes and
Genomes (KEGG) for target genes of differently expressed
miRNA were conducted to provide insights exploring

TABLE 1 | Demographic characteristics of psoriasis vulgaris (PV) patients and
healthy control.

Variable Healthy control (n = 15) PV (n = 15)

Age, years# 49.33 (8.15) 53.73 (14.88)

Age, group, n

≤ 25 0 1 (6.67%)

26–40 2 (13.33%) 2 (13.33%)

41–55 10 (66.67%) 4 (26.67%)

≥ 56 3 (20.00%) 8 (53.33%)

Sex, n

Male 9 (60.00%) 11 (73.33%)

Female 6 (40.00%) 4 (26.67%)

PASI

0 15 (100.00%) 0 (100.00%)

1 0 0

2 0 5 (33.30%)

3 0 3 (20.00%)

4 0 4 (26.67%)

5 0 2 (13.33%)

6 0 1 (6.67%)

#Age data are presented as the mean (SD). PV: psoriasis vulgaris; HC:
healthy controls.

reliable candidates for the diagnosis and treatment of
psoriasis vulgaris.

MATERIALS AND METHODS

Ethics Statement
All experimental procedures of the present study were approved
by the Institutional Review Board of Guangdong Provincial
Hospital of Chinese Medicine and conducted in accordance with
the Declaration of Helsinki (#B2014-029-01). Written informed
consent was obtained from all recruited participants.

FIGURE 1 | The hairpin structures of four novel precursor miRNAs. The
secondary structures of four novel precursor miRNA identified in this study,
including novel-100 (A), novel-103 (B), novel-104 (C) and novel-105 (D).
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Patients
The clinical characteristics of 15 healthy people and 15 PV
patients recruited for this study were shown in Table 1. All
selected PV patients fulfilled the Clinical Guidelines of Psoriasis
2008 formulated by the Chinese Medical Association (19). The
inclusion criteria were: (1) patients meeting diagnosis standards
of PV; (2) patients corresponding the progressive stage of PV; (3)
patients diagnosed by two clinicians regarding relevance to PV.
Besides, patients combined with tumor, serious cardiovascular,
liver and kidney comorbidities, hematopoietic system disease,
high fever, tuberculosis, acute suppurative and other infectious
diseases were excluded. In addition, women in pregnancy and
lactation were also excluded. Fasting venous blood was drawn
and centrifuged, then the separated plasma was stored at −80◦
until detection.

Exosome Isolation
Exosomes were isolated from 500 µl plasma samples according
to the manufacturer’s protocols using Exo Quick Exosome
Precipitation Solution Kit (20), and identified by scanning
electron microscopy (SEM) (FEI XL30, The Netherlands) with

low-voltage (1 KeV) and magnification of 20,000, NanoSight and
Western blot analysis in our previous study (20), which shared
exosomes used in the present study.

Small RNA Library Construction,
Sequencing, and miRNA Identification
After the extraction of total RNA from plasma exosome
by TRIzol (Thermo Fisher Scientific, Waltham, MA,
United States), the RNAs ranged from 18 to 30 bp were
enriched. Then adapters were ligated to RNAs followed
by the reverse transcription of adapter-ligated RNAs,
and the 140–160 bp size products were collected for the
construction of cDNA library and sequencing by Illumina
HiSeqTM 4000.

Subsequently, raw reads were analyzed by in-house Perl scripts
to collect clean tags. After discarding dirty reads with over
10% poly-N sequences or whose Phred scores were < 5%, all
clean tags were aligned with miRNAs using GeneBank database
and Rfam database (v11.0). Besides, all clean tags were also
aligned with human reference genome (Grch37) utilizing TopHat
v2.0.9 (21). Next, clean tags were blasted in miRBase database

FIGURE 2 | Characteristics of miRNA levels between control group and PV group. All miRNA levels are shown, and miRNAs with differentially levels are shown in red
(up-regulated) or green (down-regulated).
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(v21) to screen known miRNAs. Moreover, all unannotated
tags were predicted using Mireap_v0.2 software based on their
genome positions and hairpin structures to identify novel miRNA
candidates.

miRNA Levels
The levels of total miRNAs were calculated and normalized
to transcripts per million (TPM) using the following
formula: TPM = Actual miRNA counts/Total counts of
clean tags × 106. Besides, levels of miRNAs in different groups

were displayed by the heatmaps to cluster miRNAs with
similar level patterns.

Analysis of miRNA Differential Levels
The formula used to determine miRNA differential levels across
groups was shown as follows:

p(x|y) = (
N2

N1
)

y (x+ y)!
x!y!(1+ N2

N1
)(x+y+1)

C(y≤ymin|x)=
∑y≤ymin

y=0 p(y|x)

D(y≥ymax|x)=
∑
∞

y≥ymax p(y|x)

FIGURE 3 | Characteristics of miRNA levels between different groups. Heat map showing the levels of miRNAs (P < 0.05) in different groups. Colors from blue to red
stand for z-score got through the dimensionality reduction of FPKM value and reveal decreasing miRNA levels in each group.
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Besides, miRNAs with a fold change (FC) ≥ 2 and P
value < 0.05 in a comparison were considered as significant
differently expressed miRNAs.

Prediction of Target Genes of Differently
Expressed miRNAs
The candidate target genes of differently expressed miRNAs of
miRNAs were predicted by RNAhybrid (v2.1.2), Miranda (v3.3a)
and TargetScan (v7.0) software based on sequences. Besides, the
miRNA-target gene network was established using Cytoscape
software (v3.6.0).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis for Target Genes
All target genes of different expressed miRNAs were
mapped to GO terms based on Gene Ontology database.
Besides, significantly enriched GO terms were identified by
hypergeometric test. KEGG is an important public pathway-
related database. Therefore, KEGG was used for analyzing
pathway enrichment to determine significantly enriched
pathways for target genes of different expressed miRNAs.

Validation of Small RNA Sequencing
Data by Quantitative Real-Time
Polymerase Chain Reaction
Quantitative real-time polymerase chain reaction (qRT-PCR)
assays were performed to confirm the reliability of the small
RNA-seq data according to previous studies (22, 23). Small RNA
was reversed transcripted by the miRcute miRNA First-Strand
cDNA Synthesis Kit (Tiangen, Beijing, China). Besides, miRNA
levels were normalized to the level of U6 according to the
11 CT method.

Statistical Analysis
Statistical differences of data in this study were analyzing by the
unpaired Student’s t-test between two groups using SPSS software
(v20.0, SPSS Inc., Chicago, United States). Besides, P < 0.05
indicated statistically significant.

RESULTS

Analysis of Small RNA Sequencing
Thirty small RNA libraries, including 15 PV samples (PV1-
15) and 15 samples (HC1-15), were constructed and sequenced
to reveal miRNA profiles. After the filter of low-quality reads,
approximately 13 million clean tags were obtained from PV
groups while the number of clean tags obtained from control
groups was about 11 million. The percentage of clean reads
in each group was approximately 88%. Then, clean reads were
mapped to the human reference genome (Grch37) by TopHat.
Results showed that more than 90% of clean reads were mapped.

Identification of miRNA
After the alignment with GenBank and Rfam (11.0), rRNA,
scRNA, snoRNA, snRNA, tRNA were removed from clean tags.
Results of the mapping to human reference genome revealed
that 751 and 846 known miRNAs were found in clean tags of
control and PV groups, respectively (Supplementary Table 1).
Moreover, 257 and 336 novel miRNAs were uncovered from
clean tags of in clean tags of control and PV groups, respectively
(Supplementary Table 2). The hairpin structures of four novel
precursor miRNAs (novel 100, novel 103, novel 104, novel 105)
were displayed in Figures 1A–D.

miRNA Differential Levels
Levels of total miRNAs were quantified the read count and
TPM analyses. Compared with the control group, 246 differently
expressed miRNAs (166 up-regulated and 80 down-regulated)
were found in PV group (Figures 2A,B and Supplementary
Table 3), including hsa-let-7d-3p, hsa-miR-125a-5p, hsa-miR-
134-5p, hsa-miR-142-3p, hsa-miR-155-5p, hsa-miR-375-3p, hsa-
miR-485-5p, hsa-miR-941, and hsa-miR-1228-5p. In addition,
the heat map (Figure 3) revealed the differentially expressed
miRNAs (P < 0.05) between the control group and the PV
group. Besides, top differential miRNAs between PV patients and
healthy control were stated in Table 2. Subsequently, qRT-PCR
was performed to validate data of small RNA sequencing in 20
healthy control samples (control group) and 20 PV samples (case
group). Except hsa-miR-125a-5p, hsa-miR-142-3p and hsa-miR-
375-3p, qRT-PCR results of other miRNAs were consistent with
those in small RNA sequencing (Figures 4A–I).

Target Prediction of Differently
Expressed miRNAs
Usually, miRNAs play roles in biology progresses through
regulating target gene expression. To understand the roles of
differently expressed miRNAs responded to PV, target prediction
was assessed. Target genes of differently expressed miRNAs
were identified including DEAD-box helicase 5 (DDX5), SEC11

TABLE 2 | Top differential miRNAs between psoriasis vulgaris (PV) patients and
healthy control.

miRNA TPM Up/Down Log2 (Fold change)

HC PV

hsa-miR-222-5p 0.005 0.4845 Up 6.5984

hsa-miR-376b-3p 0.011 1.028 Up 6.5462

hsa-miR-449a 0.0028 0.174 Up 5.9575

hsa-miR-2115-5p 0.0171 0.8727 Up 5.6734

hsa-miR-4785 0.0055 0.2507 Up 5.5104

hsa-miR-4488 281.3985 4.1762 Down −6.0743

hsa-miR-6513-3p 0.1356 0.004 Down −5.0832

hsa-miR-4485-3p 1.3131 0.0482 Down −4.7678

hsa-miR-4481 0.8671 0.0325 Down −4.7377

hsa-miR-203a-3p 19.5013 0.8938 Down −4.4475

PV: psoriasis vulgaris; HC: healthy controls; TPM: transcripts per million.
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FIGURE 4 | Validation of miRNAs by RT-PCR. (A–I) Levels of 9 selected miRNAs are determined by RT-PCR. * P < 0.05, ** P < 0.01, *** P < 0.001. Ctrl: healthy
control samples; Case: PV samples.

homolog A, signal peptidase complex subunit (SEC11A), TSR1
ribosome maturation factor (TSR1), ribosomal protein L13a
(RPL13A), epidermal growth factor receptor (EGFR) and UTP6
small subunit processome component (UTP6) (Figure 5 and
Supplementary Tables 4, 5). Moreover, miRNA-mRNA network
indicated that a target gene could be modified both by up-
regulated and down-regulated miRNAs (Figure 5).

Functional Analysis of Differently
Expressed miRNAs
To further identify cellular processes and pathways related
to differently expressed miRNAs, GO and KEGG pathway
enrichment were further utilized to analyze their targets.

GO enrichment analysis revealed that significantly enriched
biological process for target genes of differently expressed
miRNAs included primary metabolic process, cellular metabolic
process, organic substance metabolic process, metabolic process,
regulation of cellular process, signal-organism cellular process,
regulation of biological process, biological regulation, cellular
process (Figures 6A,B and Supplementary Table 6). In addition,
the KEGG pathway enrichment analysis indicated that targets
of up-regulated miRNAs were associated with metabolic
pathways, endocytosis, apoptosis, alcoholism, spliceosome
(Figure 7A and Supplementary Table 7), while targets of
down-regulated miRNAs were involved in metabolic pathways,
alcoholism, measies, spliceosome, toxoplasmosis (Figure 7B and
Supplementary Table 7).

Frontiers in Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 895564

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-895564 August 17, 2023 Time: 15:32 # 7

Chen et al. Plasma Exosomal microRNA in PV

FIGURE 5 | miRNA-mRNA regulatory network between differently expressed miRNAs and target genes. View of miRNA-mRNA regulatory network according to
miRNAs with differently levels and their regulated target genes.

DISCUSSION

Here, we identified the levels of plasma exosomal miRNAs in
PV patients. 1182 miRNAs including 336 novel miRNAs were

investigated. In addition, 246 differently expressed miRNAs were
identified including hsa-let-7d-3p, hsa-miR-125a-5p, hsa-miR-
134-5p, hsa-miR-142-3p, hsa-miR-155-5p, hsa-miR-375-3p, hsa-
miR-485-5p, hsa-miR-941and hsa-miR-1228-5p.
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FIGURE 6 | GO enrichment analysis for target genes of miRNAs with differently levels. The GO enrichment histograms and GO terms for target genes of
up-regulated miRNAs (A) and down-regulated miRNAs (B) are shown.

Previous studies have indicated that some of these differently
expressed miRNAs associate with psoriasis. For example,
serum hsa-miR-142-3p is significantly downregulated in
patients with psoriasis after anti-tumor necrosis factor-α

(TNF–α) therapy (24). In addition, hsa-miR-142-3p is highly
upregulated in psoriatic skin (25). Moreover, miR-155 promotes
proliferation and suppresses apoptosis of psoriasis cells (26),
while treatment of methotrexate (MTX) and narrow-band
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FIGURE 7 | KEGG pathway enrichment analysis for target genes of miRNAs with differently levels. The KEGG pathway enrichment scatter plots for target genes of
up-regulated miRNAs (A) and down-regulated miRNAs (B) are shown.

ultraviolet B phototherapy (NB-UVB) decrease hsa-miR-155-
5p expression in psoriatic skin lesions (27). Therefore, these
miRNAs may exert influence on PV through exosome.

PV is an inflammatory skin disease (2, 28). Consistently,
numerous of target genes of differently expressed miRNAs are
involved in immunity. cAMP-response element binding protein
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1 (CREB1), RUNX family transcription factor 2 (RUNX2) and
epidermal growth factor receptor (EGFR) are targets of up-
regulated miRNAs. CREB1 can activate the transcription of
cytokine interleukin (IL) 33 as a transcription factor (29).
CREB1 also enhances the production of IL-1 and TNF-α (30).
Moreover, RUNX2 suppresses antitumor immunity in multiple
myeloma cells (31). In contrast, RUNX2 contributes to clear viral
infections through promoting IL-1 production in plasmacytoid
dendritic cells (32). Recent studies have indicated that EGFR is a
target of immunotherapy for tumors including lung cancer and
glioblastoma multiforme (33–35).

Prediction of target genes revealed that insulin like growth
factor binding protein 5 (IGFBP5), interleukin 13 receptor
subunit alpha 1 (IL13RA1), cyclin D1 (CCND1) were modified
by down-regulated miRNAs. IGFBP5 is essential for IL-6
production in human fibroblasts (36). IL-13Ralpha1 plays a
critical role in immune responses for T helper type 2 -
mediated disease (37). Furthermore, CCND1 is a target of
immunotherapy for numerous cancers (38–40). Thus, plasma
exosomal miRNAs may contribute to the inflammatory response
in PV patients.

However, analysis of GO and KEGG pathway for target
genes of differently expressed miRNAs demonstrated that these
target genes were not enriched in inflammatory response or
immunity but metabolic processes and metabolism pathways,
indicating that most of target genes associated with metabolism.
Metabolism fundamentally influences inflammatory response
and ultimately affect progression of numerous diseases (41).
T lymphocytes (T cells) are sentinels of immune system, and
cellular metabolism activates T cell upon immune challenge
through regulating blast, proliferation and differentiation (41).
T cell metabolism is dynamically regulated with activation
state (42). Upon antigen encounter, T cells are activated
in a high rate of glycolysis for extensive proliferation and
differentiation into effector. After pathogen clearance, most of
effector T cells die while a few antigen-specific memory T
cells were maintained (41–45). In addition, metabolism may
contribute to the transition of effector T cells to memory
T cells (46–48).

In detail, iron metabolism contributes to the proliferation
of immune cells and cytokine action (49), consistent with the
enriched GO terms “iron binding ” and “metal iron binding.”
Moreover, cholinergic metabolism is essential for vagus nerve-
mediated immune function and proinflammatory responses (50).
Furthermore, arginine metabolism, Vitamin D metabolism, Zinc
metabolism, Myo-Inositol metabolism are crucial for immune
cell growth and immunity (51–54). More importantly, some of
immunity-related target genes in this study also contribute to
metabolism. For example, CREB1 suppresses hepatic glucose
metabolism (55). RUNX2 alters nutrient metabolism including
glucose metabolism in cancers (56, 57). EGFR also regulates
glucose metabolism in chondrosarcomas (58). Thus, plasma
exosomal miRNAs may regulate immunity through modifying
metabolism in PV patients.

However, the small size of the patient group was the
limitation of this study. More PV patients would be recruited in
the future study.

CONCLUSION

In summary, the present study revealed candidate plasma
exosomal miRNAs associated with PV and the signaling pathways
modulated by miRNAs. These findings could provide potential
biomarkers for diagnosis of PV and targets for clinical therapies
against PV. However, the small size of the patient group was the
limitation of this study. More PV patients would be recruited in
the future study.
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