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A B S T R A C T   

Estimating vineyard yield in advance is essential for planning and regulatory purposes at the regional level, with 
growing importance in a long-term scenario of perceived climate change. With few tools available, the current 
study aimed to develop a yield estimation model based on remote sensing and climate data with a machine- 
learning approach. Using a satellite-based time-series of Normalized Difference Vegetation Index (NDVI) 
calculated from Sentinel 2 images and climate data acquired by local automatic weather stations, a system for 
yield prediction based on a Long Short-Term Memory (LSTM) neural network was implemented. The study was 
conducted in the Douro Demarcated Region in Portugal over the period 2016–2021 using yield data from 169 
administrative areas that cover 250,000 ha, in which 43,000 ha of the vineyard are in production. The optimal 
combination of input features, with an Mean Absolute Error (MAE) of 672.55 kg/ha and an Mean Squared Error 
(MSE) of 81.30 kg/ha, included the NDVI, Temperature, Relative Humidity, Precipitation, and Wind Intensity. 
The model was tested for each year, using it as the test set, while all other years were used as input to train the 
model. Two different moments in time, corresponding to FLO (flowering) and VER (veraison), were considered to 
estimate in advance wine grape yield. The best prediction was made for 2020 at VER, with the model over-
estimating the yield per hectare by 8 %, with the average absolute error for the entire period being 17 %. The 
results show that with this approach, it is possible to estimate wine grape yield accurately in advance at different 
scales.   

1. Introduction 

Because yield is a quality grape and wine indicator (De la Fuente 
Lloreda, 2014; Diago et al., 2015; Santesteban and Royo, 2006; Sun 
et al., 2017; Zabawa et al., 2019) an early estimation allows growers to 
find the best balance between vegetative and reproductive growth and 
make better management and planning decisions (Fernandez-Gonzalez 
et al., 2011; Fernández-González et al., 2011; Nuske et al., 2014) that 
can directly impact the business model. 

Estimating yield is complex and requires knowing driving factors 
related to climate, plant, and crop management (Weiss et al., 2020) that 
directly influence the number of clusters per vine, berries per cluster, 
and berry weight. These three yield components (Nuske et al., 2014) 
explain 60 %, 30 %, and 10 % of the yield, respectively (Cunha et al., 
2015; Guilpart et al., 2014). 

The different approaches for vineyard yield estimation depend on the 
scale of implementation, and from there, direct (based on manual 
sampling) or indirect methods (statistical and regression models, prox-
imal/remote sensing, and dynamic or crop simulation models) are used 
(Bindi et al., 1996; Sirsat et al., 2019; Taylor et al., 2019; Ubalde et al., 
2007; Weiss et al., 2020). The first represent the traditional method (De 
La Fuente et al., 2015) susceptible to spatial and temporal variability 
and dependent on historical data (Victorino et al., 2022), costly and time 
consuming (Diago et al., 2015), with low accuracy (Tardaguila et al., 
2013) and limited to small-scale application. On the other hand, indirect 
methods can cope with the limitations off the traditional manual sam-
pling methods and with better results on accuracy, despite the low 
adoption in real commercial vineyards (Barriguinha et al., 2021). 

At a regional level, the vineyard yield estimation goals are more 
related to regulation and monitoring activities (Barriguinha et al., 
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2021), with yield estimation becoming more and more relevant due to 
inter-annual variability attributed to climate change’s impact on qual-
ity, sustainability, efficiency, commercial strategies, regulations, and 
management of insurance, stock, and quotas (Cunha et al., 2015; New-
lands, 2022). The decisions made on this scale can have a large impact, 
especially in terms of vineyard area and the number of producers 
involved. A clear example are the Wine Protected Designation of Origin 
(PDO) label as an European quality scheme that protects high quality 
wines by linking them to legally defined geographic areas and a set of 
specific production practices that covers 21 countries (Candiago et al., 
2022) with >2,1 million hectares of PDO vineyards (Eurostat. Restruc-
turing of vineyards in the EU continues, 2022). 

From previous works, the authors found few examples of yield esti-
mation for regional scales (Barriguinha et al., 2021), divided mainly into 
climate-based models (Fraga and Santos, 2017; Gouveia et al., 2011; 
Santos et al., 2020; Sirsat et al., 2019); pollen-based models (Besselat, 
1987; Cunha et al., 2015; González-Fernández et al., 2020; Cristofolini 
and Gottardini, 2000); a combination of one or both adding phenolog-
ical and phytopathological variables (Fernandez-Gonzalez et al., 2011; 
Fernández-González et al., 2011); Simulateur mulTIdisciplinaire pour 
les Cultures Standard, or multidisciplinary simulator for standard crops 
(STICS) models (Fraga et al., 2015); and models based on correlation 
with Vegetation Indices (VI) (Arab et al., 2021; Cunha et al., 2010). Only 
a few are referenced for real environment, producing estimation for 
decision-making (Barriguinha et al., 2021). 

The more commonly used for regional yield estimation are the ones 
based on the relationship between airborne pollen and yield, relying on 
the principle that more flowers per area unit in more productive years 
relates to higher airborne pollen concentrations (Besselat, 1987; Cunha 
et al., 2015; Fernandez-Gonzalez et al., 2011; Fernández-González et al., 
2011, 2020; González-Fernández et al., 2020; Cristofolini and Gottar-
dini, 2000). The main disadvantages/difficulties of using pollen-based 
models (Barriguinha et al., 2021) are: choosing the best placement for 
sampling devices to represent effectively spatial variability; the number 
of observations for model calibration (historical data not commonly 
available); costly and complex laboratory processes; plant dynamics 
(high variations of the area with vineyards around the pollen traps); 
temperature and precipitation variations; vineyard management activ-
ities (fertilization impact); and identification of the beginning and final 
of the pollen season. 

Another relevant approach for large areas is the combination of 
meteorological data and Remote Sensing (RS), based on satellite imag-
ery products such as VI to effectively estimate in advance vineyard yield 
(Cunha et al., 2010; Gouveia et al., 2011; Sun et al., 2017), with VI 
explaining crop characteristics and climatic conditions directly influ-
encing crop yield prediction (Muruganantham et al., 2022). 

Regarding climate, wine grapes are susceptible and dependent on a 
region’s climatic environment and weather dynamics, with climatic 
variables impacting vine and grape growth and development (Anderson 
et al., 2012; Badr et al., 2018; Fraga et al., 2013). Precipitation, hu-
midity, temperature, radiation, and wind have the more influence on 
grapevine phenology, yield, and wine quality (Badr et al., 2018; Parker 
et al., 2022; Santos et al., 2012). 

VI, as mathematical expressions corresponding to values of growth, 
vigor, and other vegetation properties, can be derived from satellite 
time-series images (Matese and Di Gennaro, 2021; Di Gennaro et al., 
2019) and are related to vineyard productive and vegetative parameters 
including yield (Matese and Di Gennaro, 2021; Stamatiadis et al., 2010; 
Xue and Su, 2017). These indices have been widely implemented within 
remote sensing (RS) applications (Murali et al., 2021; Snevajs et al., 
2022) using multiple satellite platforms. Giovos et al. (Giovos et al., 
2021) traced their origin to 1968 with RVI (Birth and McVey, 1968) and 
in 1973 with NDVI (Rouse et al., 1974). 

There are unlimited combinations for creating different VI, but 
regarding viticulture, NDVI is the most used (Giovos et al., 2021). The 
Index Database (Henrich et al., 2009) has over 500 different indices 

extensively used in applications of RS for precision agriculture (Sishodia 
et al., 2020), with the Normalized Difference Vegetation Index (NDVI) 
considered a critical parameter (Carrillo et al., 2016; Pelta et al., 2022) 
capable of reliable yield prediction models (Arab et al., 2021). For 
discontinuous crops such as a vineyard, proximal data acquisition with 
spectroradiometers (Maimaitiyiming et al., 2019) or with multispectral 
cameras mounted on Unmanned Aerial Vehicles (UAV) (Matese and Di 
Gennaro, 2021) can overcome the limitations attributed to satellite data, 
namely the soil effects (low for the vineyard as the critical growing stage 
- were indices/yield correlations tend to increase - occurs when cover 
crops are in most cases, senescent (Sun et al., 2017), cloud coverage, or 
the fact that spectral measurement only describes the top part of the 
canopy, being nevertheless of limited use in large areas due to sparse 
sampling and high acquisition costs. Gouveia et al. (Gouveia et al., 2011) 
developed multi-linear regression models of wine production, using 
NDVI and meteorological variables as predictors to estimate yield (e.g., 
monthly averages of maximum, minimum, and daily mean temperature 
and precipitation). A similar approach was made by Cunha et al. (Cunha 
et al., 2010) with Satellite Pour l’Observation de la Terre (SPOT) ten-day 
synthesis vegetation product (S10) for three different regions in 
Portugal with significant interannual variability, based on a correlation 
matrix between the wine yield of a current year and the full set of 10-day 
synthesis NDVI. 

In recent years, Deep Learning (DL) has been considered a break-
through technology in Machine Learning (ML) and Data Mining (DM), 
including in the RS research field (Zhong et al., 2019). ML methods are 
increasingly being used as a tool for crop yield prediction (Arab et al., 
2021; van Klompenburg et al., 2020), with Long Short-Term Memory 
(LSTM) and Convolutional Neural Networks (CNN) being the most 
widely used DL approaches, with better results when compared to 
traditional ML approaches for crop yield prediction, taking advantage of 
the ability to extract features from available data (Muruganantham 
et al., 2022). This data science approach based on Artificial Neural 
Networks (ANN), despite recent, is not new to vineyard yield estimation 
and is leading the alternative methods as one of the most utilized 
techniques for attempting an early yield estimation. However, it has 
been limited to small-scale experiments, mostly in controlled environ-
ments associated with models based on computer vision and image 
processing (Barriguinha et al., 2021). 

The purpose of the present paper is two-fold: first, to evaluate a new 
methodology for estimating vineyard yield at the regional level, using 
the Douro Demarcated Wine Region as a study area with readily avail-
able data, and allowing transferability to other regions, to give decision- 
makers, as far in advance as possible, a good estimation, not only for the 
total regional and sub-regional wine grape production areas but also at a 
more detailed scale, considering three sub-regions and 169 sub- 
administrative regions where there are vineyards in production. Sec-
ondly, to cope with the limitations identified in the current model in use 
in the study area, based on the work of Cunha et al. (Cunha et al., 1999, 
2003), which relies on the relationship between airborne pollen and 
wine production, namely: predicting only for the entire region; pre-
dicting wine production instead of wine grape production; the need to 
maintain representative pollen sampling devices with high maintenance 
and operational costs, and complex laboratory process to treat the data; 
and a wide prediction interval. 

The proposed model using NDVI and climate data with a DL 
approach based on a Long Short Term Memory (LSTM) Neural Network 
can produce an adequate estimation of wine grape yield up to 1–2 
months before harvest. To the best of the authors’ knowledge, it is the 
first application of DL to regional vineyard yield estimation. 

2. Materials and methods 

2.1. Study area 

The study was carried out using the different datasets described in 
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the next points, covering six years (2016–2021). 
The study area is covered by the Douro Demarcated Wine Region 

(DDR), which is the oldest wine-demarcated region in the world. It is 
located in the northeast of Portugal (Fig. 1) in the Douro watershed, 
surrounded by complex terrain with unique orographic, mesological and 
climatic characteristics. The region extends over a total area of about 
250,000 ha and is divided into three naturally distinct sub-regions 
(“Baixo Corgo”, “Cima Corgo” and “Douro Superior”), not only due to 
climatic factors but also socio-economic ones. Regarding regulatory 
purposes, the DDR has some specificities. From the total area planted 
with vines (about 43,000 ha), only 26,000 ha are authorized to produce 
Port Wine. In fact, the vineyards suitable for production are selected 
according to qualitative criteria (classified through a scale) that consider 
soil, climate, and cultural parameters with decisive importance in the 
qualitative potential of the plots. Only vineyards with more than five- 
year-old can be considered for producing Port Wine. According to the 
cadastral elements, each plot is entitled to a certain benefit coefficient 
that needs to be determined every year and indexed to the classification 
scale. The vineyard areas are divided into 104,000 individual plots (47 
% on “Cima Corgo”; 39 % on “Baixo Corgo”, 14 % on Douro Superior) 
spread into 169 administrative regions called “Freguesias” (Parishes). 
These were considered for the present study as the minimum scale areas 
for grape yield estimation, followed by the sub-regions and the entire 
DDR. 

Each year the vineyard area in production varies since there are new 
areas, areas not yet in production, and areas considered unsuitable for 
producing wine with denomination of origin. This was considered for 
the present study due to the impact on determining the grape yield per 
area unit (kg/ha) for each year and each parish. Table 1 shows the 
aggregated data for the three sub-regions and the entire DDR. 

2.2. Remote sensing data 

For the present study, the initial dataset used to produce the tem-
poral NDVI profiles was collected from Copernicus Sentinel-2A 
(launched on June 23rd, 2015) and 2B (launched on March 7th, 
2017), with a Level-2A of processing level and 10 m of spatial resolution, 
for the period 2016–2021. A total of 686 usable Sentinel images were 
retrieved from the Copernicus Open Access Scientific Hub, corre-
sponding to 343 different acquisition dates (two images per acquisition 
date due to the study area extension), from January 11th, 2016, to 
December 30th, 2021, from which the NDVI was calculated using Band 4 
(RED) and Band 8 (NIR) as described in equation (1). 

NDVI = (NIR − RED)/(NIR + RED) (1) 

Where: NIR is the reflectance in the near-infrared channel and RED is 
the reflectance in the red channel. 

From the initial dataset, as explained in 2.4, only values between 
March (when on average, budburst occurs, marking the beginning of 
seasonal grapevine growth and resumed physiological activity) and 
October (when most of the harvest has already taken place) were 
considered (Table 2). Those were used to build a spatiotemporal cube by 
clipping the areas of each parish with the vineyard in production, 
resulting in the average NDVI values for each parish at each date used in 
the model described in 2.6. 

With both satellite data, the best average temporal resolution for the 
study area is five days from 2018, 2020, and 2021 (71 images retrieved) 
followed by 2019 with six days (60 images retrieved). The lower tem-
poral resolutions in 2016 (15 days – 25 images retrieved) and 2017 (8 
days – 43 images retrieved) are related to the inexistence of the Sentinel- 
2B sensor until March 2017. 

Regarding the expected negative effect of cloud coverage, we first 
considered all images for conducting the evaluation of the yield pre-
diction model through a stepwise backward feature selection process, 
thus allowing us to assess the true impact and the limit to which we 
might consider the validity (or not) of each image. 

2.3. Climate data 

The DDR climate is the Mediterranean, with continental influence 
and marked annual thermal contrast and water stress, especially during 
summer with the vineyards located in some of the aridest regions in 
Europe, with strong and consistent post-flowering vine water and ther-
mal stress (Cunha et al., 2010). 

The climate data used in the present study resulted from observed 
daily values of the parameters described in Table 3 acquired by six IPMA 
(Instituto Português do Mar e da Atmosfera - https://www.ipma.pt/pt/) 
automatic weather stations between 2016 and 2021. The considered 
areas of influence of every station (closest distance to the plot’s poly-
gons) are shown in Fig. 2. For the present study, the climate data 
computed in the prediction model described in 2.5 follows the same date 
range (March-October), similar to the approach made regarding remote 
sensing data. 

2.4. Phenology data 

Phenology data was used to define the different timeframes 

Fig. 1. Study area overview with the three sub-regions, vineyard plots locations (provided by the IVV - Instituto da Vinha e do Vinho, IP (Portuguese Institute of Vine 
and Wine), and 169 administrative regions considered for the present study as the minimum scale areas for grape yield estimation. 
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necessary for the model to predict yield as far in advance as possible 
effectively. The three main grapevine phenological stages are (1) bud-
burst (BUD), which marks the beginning of seasonal grapevine growth 
and resumed physiological activity after a long period of winter 
dormancy; (2) flowering (FLO), which is crucial for the reproductive 
cycle and closely followed by the fruit set stage; and (3) veraison (VER), 
which initiates the ripening stage, correlated to wine grape quality at-
tributes (Fraga et al., 2016; Jones and Davis, 2000). The dates for the 
beginning of each stage were collected from the harvest report gener-
ated by ADVID (Association for the Development of Viticulture in the 
Douro Region - https://www.advid.pt/en) each year (ADVID, 2016; 
ADVID, 2017; ADVID, 2018; ADVID, 2019; ADVID, 2020; ADVID, 
2021). The harvest (HAR) start and end dates were collected from the 
IVDP dataset (Instituto dos Vinhos do Douro e do Porto, I.P. - htt 
ps://www.ivdp.pt/en) according to the registration of grape entry in 
the wine-producing facilities (Table 4). 

2.5. Yield data 

Yield data was provided by IVDP for each parish from 2016 to 2021. 
The data is collected yearly in grape receptions units scattered along the 
entire DDR, with the grapes’ amount (kg) and origin (parish) recorded 
for each delivery. The evolution through the different years is aggre-
gated by sub-region and for the entire DDR in Table 5. This same table 

also shows the average production in kg/ha. 

2.6. Yield prediction model 

The system implemented for yield prediction is a Long Short Term 
Memory (LSTM) Neural Network (Hochreiter and Schmidhuber, 1997) 
implemented using the Keras framework (https://keras.io/), an open- 
source software library that provides a Python interface for artificial 
neural networks, part of TensorFlow library (https://www.tensorflow. 
org/). 

This model was chosen since its architecture is designed to learn 
long-term dependencies in sequences like time series. The LSTM can 
process sequences of variables by holding a cell state ct that carries in-
formation across the different time steps of the sequence, receiving 
minimal updates based on three different gates, namely the forget gate 
(Equation (2)), the input gate (Equation (3)), and the output gate 
(Equation (4)). 

ft = σ
(
Wf • [ht− 1; xt] + bf

)
(2)  

it = σ(Wi • [ht− 1; xt] + bi ) (3)  

ot = σ(Wo • [ht− 1; xt] + bo ) (4) 

Fig. 3 displays the system’s architecture. The network receives an 

Table 1 
Vineyard area distribution in the DDR sub-regions (2016–2021).  

Year BC (57 parishes) CC (64 parishes) DS (48 parishes) DDR (169 parishes) 

sum avg sd sum avg sd sum avg sd sum avg sd 

2016 12,808  224.7  165.7 19,700  307.8  318.5 9598  200.0  171.0 42,106  249.1  240.0 
2017 12,842  225.3  166.2 19,778  309.0  319.9 9600  200.0  170.4 42,220  249.8  240.8 
2018 12,794  224.5  165.0 19,899  310.9  322.9 9661  201.3  174.0 42,354  250.6  242.8 
2019 12,740  223.5  164.9 19,958  311.8  325.8 9684  201.7  175.3 42,382  250.8  244.6 
2020 13,202  231.6  171.1 20,429  319.2  334.2 10,078  210.0  181.4 43,709  258.6  251.3 
2021 12,966  227.5  166.5 20,510  320.5  335.7 10,207  212.6  182.1 43,683  258.5  251.3 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated Region); sum (productive vineyard area - 
hectare); avg (average productive vineyard area/parish – hectare); sd (standard deviation). 

Table 2 
Descriptive statistics of NDVI data from the entire DDR for the areas with vineyards (2016–2021) – from March to October.  

Year CC MIN MAX MEAN PCT90 

avg sd avg sd avg sd avg sd avg sd 

2016  34.8  39.0  0.026  0.062  0.648  0.224  0.303  0.126  0.420  0.165 
2017  23.7  32.1  0.009  0.070  0.603  0.218  0.250  0.117  0.348  0.153 
2018  25.3  33.7  − 0.002  0.086  0.628  0.222  0.275  0.136  0.393  0.176 
2019  30.3  34.0  − 0.002  0.076  0.569  0.242  0.233  0.129  0.334  0.172 
2020  42.5  37.5  − 0.006  0.096  0.540  0.283  0.234  0.154  0.332  0.202 
2021  34.0  35.6  0.001  0.077  0.606  0.241  0.272  0.139  0.385  0.182 

CC (Average Cloud Coverage - %); MIN (Average Minimum NDVI value); MAX (Average Maximum NDVI value); MEAN (Average NDVI value); PCT90 (Average NDVI 
value 90 percentile); sd (standard deviation). 

Table 3 
Descriptive statistics of climate data for the six areas of influence, considering the data from the six automatic weather stations used for the present study (2016–2021) 
– from March to October.   

P (mm) T (◦C) H (%) W (m/s) R (KJ/m2) 

avg sd avg sd avg sd avg sd avg sd 

Area 1 429 152  16.7  4.5  66.0  8.6  1.6  0.3 19,813 5878 
Area 2 256 110  19.8  4.8  55.3  9.6  1.7  0.3 20,251 5045 
Area 3 438 187  16.1  4.8  64.3  9.3  2.3  0.4 20,062 4283 
Area 4 364 181  15.5  4.6  67.1  8.8  1.5  0.3 20,025 5489 
Area 5 258 110  18.4  5.0  63.1  10.2  2.1  0.4 20,255 5213 
Area 6 298 108  17.8  5.0  57.5  9.9  2.2  0.4 21,125 5371 

P (Average annual total precipitation amount - mm); T (Average daily air temperature at 1.5 m – ◦C); H (Average daily relative humidity - %); W (Average daily wind 
speed – m/s); R (Average daily global radiation – KJ/m2); sd (standard deviation). 
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input xyp = [xt , xt+1, ⋯, xt+n], a sequence of 49 vectors (sequence length 
corresponding to the number of observations between March and 
October), each containing the observed values of every input (NDVI, 
Rad., Temp., CC, Hum., Prec., Wind – see Table 9) at a point in time t, for 
a given year y and parish p. 

This input, together with a cell state ct− 1 and the hidden state ht− 1, of 
the previous time step t, are passed through the network. The forget gate 
ft, a sigmoid layer, takes ht− 1 and xt and computes what information 
should be erased from the previous steps at the current one. Similarly, 
the input gate it, another sigmoid layer, decides what information from 
the input xt should be kept. Next, xt passes a tanh layer that computes 
new candidate values ̃ct for the cell state (Equation (5)). The cell state ct 
is updated by multiplying the old one with the output of the forget gate 

ft , and adding the resulting value with the product of the input gate it 
result and the candidate values c̃t (Equation (6)). This process enables 
the network to store the information from the current time step and pass 
it to future steps. 

c̃t = tanh(Wc • [ht− 1; xt] + bc ) (5)  

ct = ft*ct− 1 + it*c̃t (6) 

Lastly, xt goes through the output gate ot. The resulting value is 
multiplied with the cell state value squashed by a tanh layer (Equation 
(7)). 

ht = ot*tanh(ct) (7) 

Through this calculation, we obtain the output value of the network 
at the current time step ht. The hidden state of the last time step, hyp, goes 
through a linear activation layer that computes the Yield Production in 
Kg/ha for that year y and parish p. 

3. Results and discussion 

LSTM is one of the most widely used deep learning algorithms in crop 
yield prediction, along with CNN and Deep Neural Networks (DNN), 
with temperature, precipitation, and humidity among the most used 
independent variables (van Klompenburg et al., 2020) to predict yield 
(dependent variable). This is consistent with the developed model as all 
three variables are part of the model with the best metrics, with NDVI 

Fig. 2. Considered areas of influence for the six weather stations used in the present study.  

Table 4 
Average start date for the main phenological stages and harvest in the DDR 
(2016–2021).  

Year BUD FLO VER HAR (start) HAR (end) 

2016 >15 Feb >15 May >15 Jul >18 Aug <17 Nov 
2017 >15 Mar >15 Apr >15 Jun >07 Aug <21 Nov 
2018 >22 Mar >19 May >26 Jul >14 Aug <15 Nov 
2019 >12 Mar >06 May >13 Jul >12 Aug <15 Nov 
2020 >04 Mar >08 May >07 Jul >05 Aug <18 Nov 
2021 >06 Mar >07 May >08 Jul >26 Jul <16 Nov 

BUD (budburst); FLO (flowering); VER (veraison); HAR (harvest). 

Table 5 
Wine grapes yield in the sub-regions of the DDR (2016–2021).  

Year BC (57 parishes) CC (64 parishes) DS (48 parishes) DDR (169 parishes) 

Sum avg sd sum avg sd sum avg sd sum avg sd 

2016 43,747 3223 539 79,329 3427 806 32,430 2969 819 155,506 3228 750 
2017 57,671 4258 1017 76,524 3565 1161 34,551 3342 816 168,746 3736 1088 
2018 41,828 3197 769 67,487 3047 863 33,297 3104 803 142,611 3114 813 
2019 64,514 4747 1124 95,523 4370 1132 44,187 4212 1214 204,024 4452 1167 
2020 44,824 3171 737 73,819 3200 931 35,129 3194 968 153,771 3189 877 
2021 55,723 4083 957 95,896 4233 1148 44,167 3846 1149 195,787 4073 1092 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated Region); sum (total annual wine grape production 
in tons); avg (average annual wine grape production in kg/ha); sd (standard deviation). 
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and wind also as explanatory features (also referenced by T. van 
Klompenburg, et al. (van Klompenburg et al., 2020) as commonly used 
for the same purpose). 

The average annual wine grape production inter-annual variability 
can be observed in Table 5 and Fig. 4 and is transversal to the different 

scales of observation, namely DDR, the three subregions (BC, CC and 
DS), and the 169 parishes. The lowest total production occurred in 2018, 
with 142,611 tons of grapes for the entire DDR, reaching its peak in the 
following year (2019) with a value of 204,024 tons of grapes. The 
behavior of each sub-region reveals the same tendency registered for the 

Fig. 3. Yield prediction model overview. The model is divided into two parts: 1) a time-series encoder module that uses an LSTM to generate dense representations; 
and 2) a regressor module that receives the last hidden state of the LSTM and calculates the yield volume for a year and location (parish). 

Fig. 4. Spatial distribution of the average Yield Production in kg/ha by year and parish.  
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entire DDR either in total aggregated value or production per area unit 
(kg/ha). 

Fig. 4 displays the spatial distribution of the average wine grape yield 
production in kg/ha for each year and each parish. The variability be-
tween years and parishes is visible (the values are related to the areas 
with vineyards and are represented by parish administrative boundaries 
for easier visualization). 

This variability was identified by Cunha et al. (Cunha and Richter, 
2011) for the DDR and other regions (Cunha et al., 2010). It can be 
explained by the spatio-temporal distribution that characterizes agri-
cultural systems as a whole and vineyards in particular, with vulnera-
bility to inter-annual climate variability, especially in the case of our 
study area, where the vineyards grow under marginal conditions for 
production with distinctive climatic, topographic and soil characteris-
tics (Gouveia et al., 2011) with temperature and precipitation having a 
deep connection to yield variability (Camps and Ramos, 2012). 

The range between minimum and maximum production per area unit 
also shows high inter-annual variability, reaching higher values in years 
when total productivity was higher, namely in 2017, 2019, and 2021. 

The spatial autocorrelation was evaluated using Global Moran’s I, 
showing the randomness of the yield data for all years (Table 6). 

Calculated NDVI values show a great inter-annual variability 
throughout the six years between March and October of each year 
(Table 2), with a strong standard deviation, in the vineyard areas of each 
parish. Being a region with a low precipitation level, low NDVI values 
were expected. 

The spatial distribution considering the average NDVI values for the 
period between March and October from vineyard plots represented at 
the parish level is shown in Fig. 5. The identifiable clusters in the 
different sub-regions, with BC showing higher average values 
throughout the vegetative cycle, followed by CC and DS with the lower 
scores, were evaluated using Global Moran’s Index, indicating a clus-
tered pattern of the average NDVI values for all years (Table 7). As 
already mentioned, these values represent the average pixel values in-
side the areas with vineyards in production in each parish. 

The NDVI profile over the crop vegetative cycle tends to increment 
after BUD, reaching its highest values between FLO and VER and 
decreasing after harvest. This is consistent with the work of several 
authors (Boulton et al., 1996; Cunha et al., 2010; Gouveia et al., 2011) 
and associated with the growing period of the vineyards until flowering 
in May. 

Vineyard growth could be restricted in the early stages of the 
growing season due to the soil water content frequently low at BUD and 
the lack of winter rainfall (Cunha et al., 2010). The higher average NDVI 
values demonstrate this in 2016 and 2018, where winter rainfall was 
more elevated. The highest average NDVI value was recorded on July 
9th of 2018, with a 2 % cloud coverage value. The effect of cloud 
coverage is very noticeable, as expected, although the cloud coverage 
percentage is related to the entire image (to cover the whole DDR 
spatially, two Sentinel-2 scenes are required). It is usually not noticeable 
if it concerns areas effectively occupied by vineyards. 

Climate plays a fundamental role in the productivity of the vineyard 
(Fraga et al., 2013, 2016) as phenological events and composition are 

significantly influenced by the climate of preceding months, especially 
during the growing season (Bock et al., 2011). Weather variables can 
explain 57.3 %, 64.3 %, and 57.8 % of the variance in yield, sanitary 
status, and grape composition (Ferrer et al., 2017). According to Gou-
veia et al. (Gouveia et al., 2011), low rainfall in March positively affects 
vegetative growth, and high temperatures in late spring are beneficial. 
This can be seen in the year 2018, where abnormal high precipitation in 
March accompanied by below-average mean temperatures (Fig. 6) was 
reflected in the production, being the year with the lowest production 
according to the series considered in the present study (Table 5). 
Although the precipitation throughout the cycle allowed the recovery 
from water stress that occurred in 2017 (the driest year of the analyzed 
time range, with lower NDVI values, especially in CC and DS sub- 
regions, as visible in Fig. 5), its volume and timing had a negative 
impact through an increase in the phytosanitary pressure, scorching and 
dehydration at a later stage (ADVID, 2018). Precipitation stands out in 
the years of the present study not only by the high variability between 
the different areas, months, and years but also from the difference in the 
available 30-year climatological series (1931–1960 (ADVID, 2016) and 
1970–2000 (ADVID, 2021). 

The year 2016 was characterized by a warm and rainy winter, a cold 
and extremely rainy spring, and very hot and dry summer, contributing 
to an earlier BUD and a later delay in the previous phenology stages. 
Intense precipitation in a sensitive phase of the vegetative cycle gave rise 
to the strong pressure of mildew (ADVID, 2016). Regarding yield, it was 
the third lowest year of the studied period and below the average of 
170,074 tons (− 9 %) for the entire DDR. 

The year 2017, as already stated, was an arid and hot year where the 
climatic conditions contributed to a significant advance in the vegeta-
tive cycle. The prolonged scarcity of precipitation and very high tem-
peratures led to intense hydric and thermal stress at an early stage of the 
cycle, conditioning the evolution of the vegetation wall and impacting 
production (ADVID, 2017). Despite that, according to the data provided 
by IVDP, 2017 had a grape production higher than the one recorded in 
2016, but still under the average for the six years (− 1 %), which can be 
justified by the quasi-absence of pressure on the phytosanitary aspect. 

As already stated, the year with the lowest total production was 2018 
(− 16 % from the average), with a cold and dry winter, cold and 
extremely rainy spring, and, in its first phase, a cold and rainy summer, 
and in its second phase, a hot and arid one. Despite the perceived high 
production potential, climate instability significantly reduced it due to 
the abnormal harmfulness of the downy mildew (ADVID, 2018). 

The years with the highest production were 2019 (+17 % from the 
average) and 2021 (+15 % from the average). Both years are charac-
terized by standard dry years with low disease impact (ADVID, 2019; 
ADVID, 2021) and are the closest to the 30-year Climatological Normals 
series. This is also true for the year 2020, although in this case, the spring 
precipitation led to high pressure regarding the phytosanitary aspect 
(namely mildew and powdery mildew (ADVID, 2020), which could 
explain the lower total production (− 11 % from the average). 

Testing for normality through the D’Agostino’s (D’agostino, 1970) 
and Shapiro-Wilk Test (Shapiro and Wilk, 1965), we concluded that 
none of the variables was normally distributed, despite some of them, 
namely Yield Production, Temperature, and Relative Humidity, showing 
a Gaussian pattern. We calculated the Pearson correlation to assess how 
the different explanatory variables are related (Table 8). 

NDVI presents a negative correlation of − 0.87 with Cloud Coverage, 
− 0.61 with Humidity, − 0.51 with Precipitation and − 0.19 with Wind 
Intensity. On the other hand, NDVI has a positive correlation of 0.75 
with radiation and 0.47 with Temperature. The polarity of the correla-
tions provides a clear distinction between variables that exhibit a similar 
pattern to NDVI, namely Radiation, and variables that present almost an 
opposite behavior, namely Cloud Coverage and Humidity. It is also 
possible to conclude that radiation values vary inversely to Cloud 
Coverage and Humidity. 

Table 6 
Spatial autocorrelation assessment (with Global Moran’s Index) regarding 
parish-based wine grape yield in kg/ha (2016–2021).   

Moran’s Index z-score p-value 

2016  − 0.003765  0.171343  0.863954 
2017  0.017237  1.042057  0.297385 
2018  − 0.024546  − 1.010945  0.312043 
2019  − 0.022819  − 0.833334  0.404656 
2020  − 0.002469  0.144244  0.885308 
2021  − 0.005352  0.026708  0.978693 

(Spatial relationships: Inverse distance; Distance method: Euclidian; Standard-
ization: Row; Distance threshold: 14187 m). 
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3.1. Yield prediction model optimization 

Yield prediction was evaluated for the period between March and 
October by performing a random training/test split, leaving 80 % of the 
observations to train the model and 20 % to test it. The metrics used to 
evaluate the prediction performance were the MAE and the MSE. The 
different number of LSTM layers and 8, 16, 32, 64, and 128 hidden units 
were tested during the training setup. We also introduced a dropout 
layer with different values and experimented with different learning 
optimization methods and rates. Ultimately, a small model with only 
one layer and 16 hidden units, no dropout, using the Adam optimizer 
(Kingma, 2014) and a fixed learning rate of 0.001, yielded the best 
performances (execution environment: GPU; Loss Function: Cross- 

entropy). Moreover, to understand the impact of each input variable 
on the yield prediction performance and find the best combination of 
variables, we ran a stepwise backward feature selection process, in 
which we started by evaluating the model using all variables as input 
and gradually removing one at the time, based on their correlation with 
NDVI (higher absolute correlations were removed first). Table 9 sum-
marizes these experiments. 

In the scenario in which the model’s performance increases or re-
mains the same after removing a variable, we excluded the variable for 
the next tests. Alternatively, the variable would be added in the 
following experiment if the performance decreased. We also ran the 
model considering only NDVI as input (step 8). The optimal combination 
of input features, with an MAE of 672.55 and an MSE of 81.30, 
considered NDVI, Temperature, Relative Humidity, Precipitation, and 
Wind Intensity (step 3). The removed variables in the best model, Ra-
diation, and Cloud Coverage, were the ones with the highest correlation 
with NDVI (see Table 8). This was expected since their explanatory 
power is already expressed in NDVI. On the other hand, the most sig-
nificant drop in model performance seems to be when removing the 
feature Wind, the one with the lowest correlation with NDVI. Wind in-
fluence can be negative (e.g., physiological effects of photosynthesis 
disruption, breaking off new shoots, increasing evapotranspiration) and 
positive (e.g., reduced disease infestations, limiting the occurrence of 
radiation frosts) on vine health and yield. The data referring to this 
variable shows high interannual variability between areas of influence, 
where areas 3 and 6 stand out with consistently higher values than the 
other areas. Also, it is worth noting that the model using only NDVI as a 

Fig. 5. Spatial distribution of the average NDVI for each year and each parish (March-October).  

Table 7 
Spatial autocorrelation assessment (with Global Moran’s Index) regarding 
parish-based average NDVI (2016–2021).   

Moran’s Index z-score p-value 

2016  0.522983  21.769401  0.000000 
2017  0.591388  24.319456  0.000000 
2018  0.367304  15.532358  0.000000 
2019  0.536924  22.273663  0.000000 
2020  0.532426  22.293926  0.000000 
2021  0.380097  16.151957  0.000000 

(Spatial relationships: Inverse distance; Distance method: Euclidian; Standard-
ization: Row; Distance threshold: 14187 m). 
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feature for yield prediction achieves higher performance than the one 
using NDVI, Humidity, Precipitation, and Temperature. 

3.2. Yield prediction model analysis 

The model with the best metrics was run to analyze in more detail its 
prediction performance. The prediction was made for each year, using it 
as the test set, while all other years were used as input to train the model. 
We considered two different moments in time, corresponding to FLO 
(May) and VER (July) phenology stages, considering the main charac-
teristics of vineyards at DDR (Table 4). 

The model’s performance at the FLO stage is considered very poor 
with an average absolute prediction error for the entire DDR between 
2016 and 2021 of 38 % against the 17 % average error achieved when 
the same model is run at the VER stage. This error represents the devi-
ation regarding kg/ha from the actual average of wine grapes collected. 

Analyzing each year for the entire DDR and the different sub-regions 
at the FLO stage (Table 10), the best prediction was made in 2021 for the 
whole DDR, with the model underestimating the yield per hectare at 25 
% and 19 % for the DS sub-region. In 2016, we can see the most sig-
nificant difference between predictions in sub-regions, with DS showing 
almost twice the error as CC. The worst performances are for 2017, an 
arid year, and 2019, the year with the highest productivity per hectare 
compared to the other years. 

The results mainly improved at the VER stage (Table 11) and didn’t 
follow the same FLO estimation pattern. The best prediction was made 
in 2020 for the whole DDR, with the model overestimating the yield per 
hectare at 8 % and 6 % for CC and DS sub-regions, respectively, followed 
by the results for 2019. These years are less deviant from normal climate 

variables, despite having the higher production (in 2019) and the second 
lower production (in 2020). This is also true for 2021, but with a worst 
prediction. The biggest difference between predictions in sub-regions is 
in 2017, with CC and DS having almost triple of error value as BC, in 
2020 where the error in BC doubles the one in the other sub-regions. The 
worst performances are for 2016, with the model underestimating yield, 
characterized by climate conditions that favored phytosanitary prob-
lems, and in 2017, especially arid in CC and DS sub-regions. 

Table 12 illustrates the descriptive statistics at parish level. 
Furthermore, Fig. 7 shows the spatial distribution by parish of the 
average absolute errors for the six-year analyzed period. The model’s 
overall performance at the parish level is considered poor, not only 
regarding the error but also the high inconsistency when we look at 
individual parishes and the error behavior for each year. 

Between the two stages, it is clear that also at the parish level, the 
model works better at VER stage, although in 36 % of the parishes the 
error is lower if the model is run in the FLO stage, with an average 
difference of 10 %, being the lowest 2 % and the highest 23 %. 

3.3. Comparative study and discussion 

To further evaluate our model, we conducted a comparative study 
regarding other alternatives for regional vineyard yield estimation 
(Table 13). A more in-depth comparison was made considering the 

Fig. 6. Average monthly precipitation and mean temperature (2016–2021); Average monthly precipitation and mean temperature (30-year climatological series for 
1931–1960 and 1970–2000); Phenology (BUD: 1; FLO: 2; VER:3) for DDR. 

Table 8 
Pearson correlation between the variables used for Yield Prediction.  

Pearson Correlation NDVI R T W P H CC 

NDVI  1.00       
Radiation  0.75  1.00      
Temperature  0.47  0.61  1.00     
Wind  − 0.19  − 0.07  − 0.28  1.00    
Precipitation  − 0.51  − 0.49  − 0.36  0.36  1.00   
Humidity  − 0.61  − 0.65  − 0.61  0.07  0.49  1.00  
Cloud Coverage  − 0.87  − 0.66  − 0.43  0.11  0.38  0.65  1.00 

NDVI (Normalized Difference Vegetation Index); R (Global radiation); T (Air 
temperature); W (Wind speed); P (Precipitation); H (Relative humidity); CC 
(Cloud Coverage). 

Table 9 
Evaluation of Yield prediction model through a stepwise backward feature se-
lection process. Best metrics highlighted.  

Step Variables MAE (kg/ 
ha) 

MSE (kg/ 
ha) 

1. All variables NDVI, Rad., Temp., CC, 
Hum., Prec., Wind  

688.29  83.77 

2. Remove Cloud 
Coverage 

NDVI, Rad., Temp., Hum., 
Prec., Wind  

678.84  81.80 

3. Remove Radiation NDVI, Temp., Hum., Prec., 
Wind  

672.55  81.30 

4. Remove Relative 
Humidity 

NDVI, Temp., Prec., Wind  685.28  82.80 

5. Remove 
Precipitation 

NDVI, Temp., Wind. (þ) 
Hum.  

680.05  82.64 

6. Remove Temp NDVI, Hum., Wind., (þ) 
Prec.  

698.93  83.73 

7. Remove Wind NDVI, Hum., Prec., (þ) 
Temp.  

823.49  106.85 

8. Only NDVI NDVI  766.59  99.24  
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model currently used in the study area by the local authorities. 
Comparing our results with the works of Cunha et al. (Cunha et al., 

1999, 2003), that developed and used an estimation model in the same 
study area (DDR) and relied on the relationship between airborne pollen 
and yield (Table 14), we can state that our results are very satisfactory. 
The pollen-based model predicts wine production for the whole DDR 

with a minimum and maximum threshold, and ADVID has used it since 
1992 with the predictions made yearly at the VER stage. To compare 
both errors, we considered the average absolute error and a conversion 
factor of 750 kg of grape for 550 L of wine (average based on the IVDP 
data set for the six years). 

Since the pollen model only estimates the whole DDR, the compar-
ison was only made considering that at the VER stage. According to the 
authors, both models can obtain very good results. In the study’s time 
frame, the pollen model achieved a lower average error for the years 
2016 and 2019 to 2021 and a worse result for the years 2017 and 2018. 
Considering the average differential for the pollen model, both models 
coincide in the years in terms of underestimation and overestimation 
yield. The worst performance could be attributed in 2017 due to early 
flowering and in 2018 due to significant variation in water stress as 
discussed by the authors, stating that additional parameters, such as 
disease occurrence, agronomic, and weather conditions after flowering 
are required (Cunha et al., 2003). 

The model developed in the present study can deliver prediction at a 
sub-regional level. Implementing the pollen model would require a more 
comprehensive network of pollen traps with cost implications. 
Furthermore, developing a model estimating grape yield in kg/ha and 
not in wine production can be seen as an advantage for being more 
comprehensive for the different actors in the DDR and for other regions 
where the regulations are not so specific and focused on the Port wine. 

The current model also performs well when referring to other pollen- 
based models (and without the limitations mentioned above) with es-
timations in line with the work of Cunha et al., (Cunha et al., 1999, 
2003, 2015) for the DDR. The different studies for regional-scale ap-
plications identified in the authors’ previous work (Barriguinha et al., 
2021) have an overall average R2 between 0,71 and 0,99. Cristofolini 
et al. (Cristofolini and Gottardini, 2000) determination of the pollen 
index between the days when 5 and 95 % of the season’s total pollen 
concentration were found achieved very good results, similarly to the 
work of Besselat (Besselat, 1987). With a different approach, Gonzaléz 
et al. (González-Fernández et al., 2020) and Fernandez et al. (Fernandez- 
Gonzalez et al., 2011; Fernández-González et al., 2011, 2020) combined 
aerobiological, phenological, and meteorological data achieving equally 
accurate production estimations more than one or two months in 
advance. 

Compared with other models based on vegetation indices applied to 
vineyard yield estimation at the regional level, the current model also 
performs well. Gouveia et al. (Gouveia et al., 2011) worked on multi- 
linear regression models using Corine Land Cover, wine statistics, 
NDVI, and meteorological variables (monthly averages of maximum, 
minimum, and daily mean temperature and precipitation) to estimate 
yield with 0,62 < R2 < 0,90 in a simulated test environment. Using 
Satellite Pour l’Observation de la Terre (SPOT) ten-day synthesis vege-
tation product (S10) Cunha et al. (Cunha et al., 2010) based on a cor-
relation matrix between the wine yield of a current year and the full set 
of 10-day synthesis NDVI also achieved good results (0,73 < R2 < 0,84). 
Sun et al. (Sun et al., 2017) combined satellite-based NDVI from Landsat 
and MODIS with LAI obtained using a Li-Cor LAI-2000 instrument with 
good results, 0,66 < R < 0,83 (for NDVI and Yield) and 0,66 < R < 0,83 

Table 10 
Prediction for the DDR and sub-regions made at the FLO stage.  

Year Region AVG PRED DIF DIF_abs DIF_% DIF_abs_% 

2016 DDR 3228 4196 968 968 30 30 
BC 3223 4157 934 934 29 29 
CC 3427 4194 767 767 22 22 
DS 2969 4245 1276 1276 43 43 

2017 DDR 3736 1873 − 1863 1863 − 50 50 
BC 4258 1921 − 2337 2337 − 55 55 
CC 3565 1865 − 1700 1700 − 48 48 
DS 3342 1827 − 1515 1515 − 45 45 

2018 DDR 3114 4124 1010 1010 32 32 
BC 3197 4286 1089 1089 34 34 
CC 3047 3983 937 937 31 31 
DS 3104 4118 1013 1013 33 33 

2019 DDR 4452 1779 − 2673 2673 − 60 60 
BC 4747 1711 − 3036 3036 − 64 64 
CC 4370 1751 − 2619 2619 − 60 60 
DS 4212 1897 − 2315 2315 − 55 55 

2020 DDR 3189 4127 939 939 29 29 
BC 3171 4110 939 939 30 30 
CC 3200 4121 920 920 29 29 
DS 3194 4156 962 962 30 30 

2021 DDR 4073 3071 − 1001 1001 − 25 25 
BC 4083 2999 − 1084 1084 − 27 27 
CC 4233 3090 − 1143 1143 − 27 27 
DS 3846 3132 − 714 714 − 19 19 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior 
sub-region); DDR (Douro Demarcated Region); AVG (Real wine grape produc-
tion average in kg/ha); PRED (Estimated wine grape production in kg/ha); DIF 
(PRED-AVG in kg/ha); DIF_abs (DIF in absolute value); DIF_% (PRED-AVG in %); 
DIF_abs (DIF_% in absolute value). 

Table 11 
Prediction for the DDR and sub-regions made at VER stage.  

Year Region AVG PRED DIF DIF_abs DIF_% DIF_abs_% 

2016 DDR 3228 2459 − 769 769 − 24 24 
BC 3223 2454 − 769 769 − 24 24 
CC 3427 2460 − 967 967 − 28 28 
DS 2969 2463 − 505 505 − 17 17 

2017 DDR 3736 4441 706 706 19 19 
BC 4258 4605 347 347 8 8 
CC 3565 4392 826 826 23 23 
DS 3342 4312 970 970 29 29 

2018 DDR 3114 3621 507 507 16 16 
BC 3197 3730 533 533 17 17 
CC 3047 3552 505 505 17 17 
DS 3104 3583 479 479 15 15 

2019 DDR 4452 3827 − 625 625 − 14 14 
BC 4747 4000 − 747 747 − 16 16 
CC 4370 3737 − 633 633 − 14 14 
DS 4212 3741 − 470 470 − 11 11 

2020 DDR 3189 3446 257 257 8 8 
BC 3171 3549 378 378 12 12 
CC 3200 3399 198 198 6 6 
DS 3194 3385 191 191 6 6 

2021 DDR 4073 3312 − 761 761 − 19 19 
BC 4083 3226 − 857 857 − 21 21 
CC 4233 3373 − 860 860 − 20 20 
DS 3846 3333 − 513 513 − 13 13 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior 
sub-region); DDR (Douro Demarcated Region); AVG (Real wine grape produc-
tion average in kg/ha); PRED (Estimated wine grape production in kg/ha); DIF 
(PRED-AVG in kg/ha); DIF_abs (DIF in absolute value); DIF_% (PRED-AVG in %); 
DIF_abs (DIF_% in absolute value). 

Table 12 
Descriptive statistics for average absolute error in each parish (2016–2021).   

avg sd median min max 

2016  0.26  0.14  0.27  0.00  0.80 
2017  0.38  0.58  0.22  0.00  6.55 
2018  0.32  0.36  0.22  0.00  2.21 
2019  0.24  0.21  0.20  0.00  1.51 
2020  0.29  0.38  0.18  0.00  3.11 
2021  0.26  0.23  0.22  0.00  2.10 

avg (Parish average absolute error); sd (standard deviation); median (Parish 
average median absolute error); min (Parish average minimum absolute error); 
max (Parish average maximum absolute error). 
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(for LAI and Yield) although the validation was made locally in a small 
area. 

At the regional scale, crop simulation models are also an alternative 
for vineyard yield estimation (Barriguinha et al., 2021). This approach 

allows virtual experiments that can be made, for example, at specific 
phenological stages for testing hypotheses that could take years under 
real field conditions, with the added capability of integrating the find-
ings in decision support systems (DSS). Cola et al. (Cola et al., 2014) 

Fig. 7. Spatial distribution of the average absolute error (%) in each parish for the period 2016–2021 at FLO (left) and VER (right).  

Table 13 
Different methodological approaches for regional vineyard yield prediction (Barriguinha et al., 2021).  

Reference Methodological 
Approach 

Data Sources Test 
environment 

Related Variables Estimation 

(Cristofolini and 
Gottardini, 
2000) 

Pollen Based Hirst type sampler volumetric 
spore trap 
(Lanzoni VPPS-2000) 

In-field Airborne pollen concentration R2 = 0,92 (for grape production) 

(Fernandez- 
Gonzalez et al., 
2011) 

Pollen Based Aerobiological data (Lanzoni 
VPPS-2000 volumetric trap) 

In-field Meteorological and 
phytopathological variables 

R2 = 0,98 (for yield) 

(Fernández- 
González et al., 
2020) 

Pollen Based Pollen Hirst volumetric sampler 
and Cour passive trap 

In-field Airborne pollen concentration, 
weather data 

R2 = 0,96 (Cour); R2 = 0,99 (Hirst) 

(Besselat, 1987) Pollen Based Pollen concentration data In-field Airborne pollen concentration R2 < 0,98 (for yield) 
(Cunha et al., 

2015) 
Pollen Based Airborne pollen trap Simulated Airborne pollen concentration 0,71 < R2 < 0,86 (for annual wine 

production) 
(Cunha et al., 

1999) 
Pollen Based Pollen concentration data In-field Airborne pollen concentration R2 = 0,93 (for yield) 

(Cunha et al., 
2003) 

Pollen Based One Cour Pollen Trap In-field Airborne pollen concentration 0,66 < R2 < 0,99 (for wine 
production) 

(González- 
Fernández 
et al., 2020) 

Pollen Based Aerobiological data (Lanzoni 
VPPS-2000 volumetric sampler), 
Meteorogical data 

In-field Airborne pollen concentration and 
Meteorologic data 

R2 = 0,99 (for yield) 

(Gouveia et al., 
2011) 

Vegetation Indices Corine Land Cover map, wine 
statistics, monthly means of 
climate variables and NDVI 

Simulated tmax, tmin, tavg, prec, NDVI 0,62 < R < 0,90 (for wine 
production) 

(Sun et al., 2017) Vegetation Indices Satellite-based (NDVI) and (LAI) In-field NDVI, LAI 0,66 < R < 0,83 (for NDVI and Yield) 
and 0,66 < R < 0,83 (for LAI and 
Yield) 

(Cunha et al., 
2010) 

Vegetation Indices Satellite data from vegetation 
(NDVI from SPOT) 

In-field NDVI 0,73 < R2 < 0,84 (for yield) 

(Cola et al., 
2014) 

Crop Simulation 
Model 

Weather data and plant 
characteristics 

Simulated/In- 
field Validation 

Weather data and plant 
characteristics 

R2 = 0,96 (for yield in low-density 
canopies) R2 = 0,94 (for yield in 
high-density canopies) 

(Fraga et al., 
2015) 

Crop Simulation 
Model 

Climate, soil, and management 
practices 

Simulated/In- 
field Validation 

Climate data, soil and terrain 
parameters, water stress indices, 
management practices 

R2 = 0,86 (for yield) 

(Valdes-Gomez 
et al., 2009) 

Crop Simulation 
Model 

Phenology and harvest date, Soil 
water content, water stress, and 
grapevine growth and yield 

Simulated/In- 
field Validation 

Phenology and harvest date, soil 
water content, water stress, and 
grapevine growth and yield 

R2 = 0,85 (for yield) 

(Sirsat et al., 
2019) 

Crop Simulation 
Model 

Weather, yield, phenological dates, 
fertilizer information, soil analysis, 
and maturation index data 

Simulated/In- 
field Validation 

Weather, phenological dates, 
fertilizer information, soil analysis, 
and maturation index data 

24,2 %<RRMSE < 28,6 % 

(Fraga and 
Santos, 2017) 

Other Models Daily historic meteorological 
conditions, yield data 

In-field Temperature and Precipitation 0,68 ≤ r ≤ 0,84 (for grapevine 
production) 

(Santos et al., 
2020) 

Other Models Monthly mean air temperatures 
and monthly total precipitation 
data 

In-field Monthly mean air temperatures and 
monthly total precipitation 

Wine production classes (1-low, 2- 
normal, 3-high): average estimation 
ratio of 79 % (calibration) 67 % 
(validation)  
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achieved good results simulating the fruit load based on light intercep-
tion derived gross assimilation and thermal and water limitations with 
R2 = 0,96 (for yield in low-density canopies) and R2 = 0,94 (for yield in 
high-density canopies). Sirsat et al. (Sirsat et al., 2019) focused on grape 
yield predictive models for flowering, coloring, and harvest phenostages 
using ML techniques and climatic conditions, yield, phenological dates, 
fertilizer data, soil analysis, and maturation index data to construct the 
relational dataset. The authors identified dew point, relative humidity, 
and air temperature as the most favorable variables in building the 
model, with 24,2 %<RRMSE < 28,6 % for yield estimation. Fraga et al. 
(Fraga et al., 2015) and Valdes et a. (Valdes-Gomez et al., 2009) used a 
similar approach using STICS models with R2 = 0,86 and R2 = 0,85 
respectively both with overestimation and underestimation, depending 
on the regions. In terms of performance, the current model can perform 
as well as the crop simulation alternatives. Those are much more com-
plex as they are not limited to yield and simulate plant growth and 
development. They need to be calibrated and validated, requiring 
adaptability for new environments (distinct climate, soil, varieties, and 
management), making operationality and transferability difficult, 
complex, and costly in terms of time and biophysical data requirements 
(Sirsat et al., 2019). 

The current model outperforms other models, such as the simple 
grape production model (PGP) based on favorable meteorological con-
ditions, developed by Fraga et al. (Fraga and Santos, 2017), and the 
empirical model proposed by Santos et al. (Santos et al., 2020) where 
temperature and precipitation averaged over different periods, along 
with the anomalies of wine production in the previous five years, were 
used as predictors. 

Models based on computer vision and image processing (by extrac-
tion of variables that can be related to the actual yield: number of 
berries, bunch/cluster area, leaf area, number of flowers, stems, and 
branches), trellis tension, laser, radar, and radio frequency data pro-
cessing also constitute viable approaches for estimating vineyard yield. 
Nevertheless, those are not suitable for regional-scale implementation. 
Apart from the trellis tension approach, the real applicability under field 
conditions in commercial vineyards is not referenced for the most part 
(Barriguinha et al., 2021). 

4. Conclusions 

The use of LSTM neural network can be applied to vineyard yield 
prediction at the regional scale. It can perform as well as the other 
identified methodologies, outperforming some of them while dealing 
with some of the above-mentioned limitations. This and other ML-based 
methods can help study complex interactions between biotic and abiotic 
systems to understand and make predictions (Thessen, 2016), as in the 
current study. 

The developed model allows for an early yield estimation with better 
results at the VER stage (one month before harvest start) when 

compared to the FLO stage (3 months before harvest start), with an 
absolute error for the whole study region between 8 % and 24 %, and 
between 6 % and 29 % for the sub-regions. The estimation range is much 
broader regarding estimations made at higher spatial resolution (parish 
level). Although 68 % of the parishes have an average error below 20 %, 
we consider that the model is not yet capable of predicting at that more 
detailed scale. 

Despite the good results, the fact that there are no production data at 
the plot level (limiting the size of the dataset), a short time series of yield 
data, and a low number of weather stations (limiting the size and quality 
of the dataset considering the size and characteristics of the study area), 
are factors perceived as sources of error and limitations for the current 
model, and the reason for not being able to go further for larger scales. 
This is consistent with the limitations identified for this type of model 
applied to yield prediction (van Klompenburg et al., 2020). 

Being a prediction model, this DL approach falls short of interpret-
ability and, unlike more common inferential models, is a black-box 
model for making predictions (Emmert-Streib et al., 2020). 

The variability and randomness of the yield and the different 
explanatory variables used between seasons, sub-regions, and parishes 
make the challenge of rapidly estimating yield very complex (Cunha 
et al., 2010). For the present study, we concluded that using NDVI alone 
is insufficient for a robust and accurate model developed with this 
methodology. As climatic variables have a strong correlation to yield 
(Badr et al., 2018; Ferrer et al., 2017), using satellite data and meteo-
rological variables constitutes a better strategy for regional scale esti-
mation of wine production (Gouveia et al., 2011). The performance is 
also very dependent on environmental conditions and management 
strategies (Sun et al., 2017), with yield correlated with an extensive list 
of climate, soil, and plant variables with high temporal and spatial 
heterogeneity. Also, the relation to quality is one of the biases that yield 
estimation needs to deal with, as the producer’s management decision 
directly impacts quality and yield. 

The integration of more specific multispectral based VI data, such as 
Leaf Area Index (LAI), or the use of Synthetic Aperture Radar (SAR) and 
Light Detection And Ranging (LIDAR) data can be tested as potential 
future developments in this field. 
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Table 14 
Prediction for the DDR based on pollen model made at the VER stage (prediction data from ADVID reports (ADVID, 2016; ADVID, 2017; ADVID, 2018; ADVID, 2019; 
ADVID, 2020; ADVID, 2021).  

Year PROD PRED 
(min) 

DIF 
(min) 

DIF (min) 
(%) 

PRED 
(max) 

DIF 
(max) 

DIF (max) 
(%) 

PRED 
(avg) 

DIF 
(avg) 

DIF (avg) 
(%) 

2016 158,677 143,727 − 14950 − 9 % 158,318 − 359 0 % 151,023 − 7654 − 5 
2017 171,413 199,500 28,087 16 % 215,864 44,450 26 % 207,682 36,269 21 
2018 145,282 190,636 45,355 31 % 204,955 59,673 41 % 197,795 52,514 36 
2019 207,900 197,318 − 10582 − 5 % 216,273 8373 4 % 206,795 − 1104 − 1 
2020 153,940 148,364 − 5576 − 4 % 168,136 14,197 9 % 158,250 4310 3 
2021 195,802 176,455 − 19347 − 10 % 191,045 − 4756 − 2 % 183,750 − 12052 − 6 

DDR (Douro Demarcated Region); PROD (wine grape production for the entire DDR in tons/year); PRED(min) (minimum estimated wine grape production in tons/year 
considering a conversion factor of 750 kg of grape for 550 L of wine); PRED(max) (maximum estimated wine grape production in tons/year considering a conversion 
factor of 750 kg of grape for 550 L of wine); PRED(avg) (average estimated wine grape production in tons/year considering a conversion factor of 750 kg of grape for 
550 L of wine); DIF(min) (PRED(min)-PROD in kg/year); DIF(min)(%) (PRED(min)-PROD in %); DIF(max) (PRED(max)-PROD in kg/year); DIF(max)(%) (PRED(max)- 
PROD in %); DIF(avg) (PRED(avg)-PROD in kg/year); DIF(avg)(%) (PRED(avg)-PROD in %). 
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Barriguinha, André, de Castro Neto, Miguel, Gil, Artur, 2021. Vineyard Yield Estimation, 
Prediction, and Forecasting: A Systematic Literature Review. Agronomy 11 (9), 
1789. 
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