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This paper describes work carried out under the EC `DRIVE' programme, the aim 
being to develop route guidance strategies which direct users to multiple routes 
between each origin-destination pair, and thereby provide stable and effective 
guidance even when a large proportion of drivers are guided. 
 
A model is proposed in which guided and unguided drivers have different route 
choice assumptions, but are still able to interact with one another; the guidance may 
be based on either user or system objectives.  Conditions are deduced under which 
the resulting route pattern is guaranteed to exist and be stable.  To assess the 
performance of the strategies, simulations are carried out on two real-life networks, 
for a number of different demand levels, levels of equipped vehicles, levels of error in 
(or adherence to) the guidance recommendations, and different guidance criteria.  
The simulations are extended, in order to examine firstly the influence of behaviour of 
unguided drivers on the benefits obtained, and secondly the performance of the 
strategies in cases of unforeseen variations in network conditions.  Finally, some 
comparisons are drawn with a route guidance strategy developed in a parallel 
`DRIVE' project, where only one route is recommended per origin-destination pair. 
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In this report, work carried out by Leeds under DRIVE V1011 ("CAR-GOES") activity 
B2.4 ("Methods for stabilisation of route recommendations") is described.  The 
objective of this project was to consider algorithms for route guidance which provide 
efficient routes, independent of the level of take-up (that is, the proportion of the 
driver population in the network which has guidance equipment) and congestion 
levels.  The work reported builds on the introduction in deliverable 14 (CAR-GOES, 
1990a). 
 
Currently, a number of route guidance systems are undergoing field trials - such as 
the ALI-SCOUT system in Berlin (Von Tomkewitsch, 1987), and AUTOGUIDE in 
London (Belcher and Catling, 1987).  The current operation of such systems is for a 
single route to be recommended to equipped drivers for an origin/beacon and 
destination pair, with a new route chosen in the light of prevailing traffic conditions 
every, say, 5 minutes.  Whilst with few vehicles equipped with guidance devices there 
will be little change to individual link travel times in the network due to guidance, as 
the level of take-up increases re-routed traffic will eventually congest the 
recommended route - at the current rate of route updating - and the benefits of 
guidance are likely to be lost.  A natural reaction would appear to be to increase the 
frequency at which route information is updated as the level of take-up increases.  
There are a number of problems with such an approach: 
 
(a)Limitations exist on the speed at which the process can be conducted of relaying 

information on current traffic conditions to the central guidance system, 
computing recommended routes and sending the route information to the 
beacons and thence to the drivers.  At higher levels of take up, then, it may 
not be possible to update routes at a sufficiently frequent rate. 

 
(b)At higher levels of take up/congestion, there is likely to be instability in the route 

recommendations.  For example, when two routes with similar characteristics 
exist between an origin-destination pair, the recommendations are likely to 
fluctuate between the two routes in successive time intervals.  Such instability 
in the routing pattern - and hence the travel times - would make the task of 
signal control a very difficult one, even if it were integrated with the route 
guidance system, and the benefits of route guidance may be lost. 

 
(c)As more vehicles are equipped with guidance devices, it may be expected that 

errors in the journey time prediction methods would become smaller - since 
information on current conditions comes only from equipped vehicles, then as 
take-up increases so does the "sample size".  If, however, routes are updated 
more frequently as take-up increases, there would be a corresponding 
decrease in sample size, since the total number of vehicles in each update 
period would decrease as the period becomes smaller.  The end product would 
be that we would lose some of the greater accuracy in the estimation of 
current conditions which would normally have arisen with higher levels of 
take-up. 

 
The work in this report is the first step to developing strategies which advise multiple 
(>1) routes for each origin-destination pair in each update period.  In fact here we 
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only consider the steady state (fixed demand) situation, and so there will be no 
specific mention of updating of route information; the assessment of the strategies 
will be based on their benefits under average conditions.  The guidance strategies 
considered are equilibrium-based, in that they consider the effect of re-routed traffic 
on link travel times.  In this way, by anticipating the magnitude of the change in link 
travel times due to the route advice given, it would be hoped that greater stability 
would be introduced into the guidance system. 
 
Having given a review of previous work in this area, the strategies to be considered 
are described.  The basic model is one of a multiple user class equilibrium 
assignment, where the classes are the unguided and guided drivers, the latter 
subdivided into those following different guidance advice (either system or user 
optimal) or those receiving poorer information or with less confidence in the 
recommendations.  The advantage of such an approach is that it is able to take into 
account interactions between equipped and unequipped vehicles - so not only does 
the route choice of unguided drivers affect that of guided drivers, but also unguided 
drivers may (in the long term) choose new routes in response to the behaviour of 
guided drivers. 
 
The concept of multiple user class assignment is introduced, and relevant theoretical 
work described.  Conditions (on the cost functions) are then deduced, under which a 
unique, stable equilibrium (for both guided and unguided vehicles) may be 
guaranteed to exist. 
 
The strategies are then investigated in relation to real-life networks, using an 
adaptation of the simulation/assignment model SATURN.  Care is taken to first 
model the route choice of unguided drivers in a realistic manner, and the scenarios to 
be studied are then selected, taking into account the recommendations of deliverable 
9 (CAR-GOES, 1990b).  Two real-life networks, of differing sizes, are studied under 
scenarios consisting of a number of different demand levels; various levels of take-up 
of guidance; difference guidance criteria; and a number of levels of information 
quality supplied to the guidance system (which could be regarded alternatively as 
levels of adherence of the guided drivers to the recommendations).  The performance 
of a strategy in each case is measured by network-wide quantities, such as total 
system travel time and average speed, as well as the benefit (or disbenefit) to 
individual guided and unguided drivers in terms of the change in their average travel 
time due to guidance. 
 
Two features of this equilibrium-based model are then studied in more detail, as a 
form of sensitivity analysis.  Firstly, the influence of assumptions regarding the 
behaviour of unguided drivers is studied, where the simulations are carried out again 
assuming that unequipped drivers stay on the routes they chose before guidance was 
in operation.  Secondly the basic model (with unguided drivers re-routing) is tested in 
situations of unforeseen variations in network conditions, with the performance and 
stability of the routing algorithms studied in conditions of random variations in link 
capacities, but when the routing is based on average capacities. 
 
Finally, in order to gain some comparison between the above multi-route strategies 
and single route guidance systems applied to the same network, a study is also 
carried out with the model developed at Leeds for the DRIVE "ASTERIX" project.  This 
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model, as an extension to SATURN, may be used to assess the effect of using 
guidance to re-route equipped drivers in response to day-to-day variability in 
demand.  A single route only is recommended, based on either minimum actual cost 
or minimum marginal cost.  In particular, from this study, the level of take-up may 
be determined at which such a single route strategy is no longer effective. 
 

 
 
Before proposing the route guidance model to be studied here, a review of similar 
work will be given.  Since this paper does not address the problem of responding to 
incident congestion, the review will not concern itself with the application of guidance 
systems in such situations, although it is clearly an area where there is great 
potential for the use of real time information. 
 
The review will concentrate on aspects of particular relevance to this report, notably 
(where details are available): the guidance strategy implemented (single or multi-
route, user or system based objectives); the model used to assess the strategy 
(dynamic or static, assignment or simulation); the size and other attributes of the test 
network used, and the current level of congestion; global benefits and the effect on 
guided and unguided drivers, and the influence of levels of take-up and congestion.   
 
Kobayashi (1979) proposed a model in which unguided drivers chose routes 
according to (flow-independent) attributes such as road length, number of lanes and 
number of left or right turns, whereas equipped drivers were guided according to one 
of three strategies: 
 
(i)single shortest path guidance between each O-D pair 
(ii)guidance onto multiple routes using a smoothed "weighted average" of the current 

and the previous shortest paths 
(iii)an heuristic user equilibrium-like guidance, obtained by an incremental 

assignment technique. 
 
The strategies were implemented with a (dynamic) simulator based on probabilistic 
queuing theory.  They were tested on a sub-network of Tokyo - in order to estimate 
the benefits of the CACS route guidance system - consisting of some 99 intersections 
and 286 directional links; a time-sliced origin-destination matrix was estimated for 
this area.  For a 100% take-up of guidance, the results showed that the strategy 
reducing total travel time by the greatest amount was (iii) and then (ii).  Whilst (i) was 
also able to provide significant overall travel time savings, it was seen that at higher 
demand levels during the period modelled, there could actually be a (short-term) 
disbenefit of such guidance.  Interpolating the results for this sub-network and two 
similar ones, Kobayashi estimated a total travel time saving in the whole of Tokyo of 
6%.  Kobayashi also examined the effect of level of take-up (at 25%, 50%, 75% and 
100% of vehicles equipped) on overall travel time for the sub-network considered 
previously, and found that the benefit of using strategy (i) or (ii) increased as more 
vehicles were equipped, up to 75% take-up.  After then, however, moving to 100% 
take-up, the benefit may decrease.  Unfortunately, strategy (iii) was not investigated 
in this way.  Finally, from studying a random sample of origin-destination pairs, he 
found that guidance tended to reduce the variance in travel times. 
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Tsiji et al (1985) later investigated the test area for the CACS system in Tokyo using a 
quite different model to that of Kobayashi.  They considered the case where only a 
small proportion of drivers were equipped, and assumed that there would be no effect 
on the behaviour of unequipped drivers of implementing guidance.  Furthermore, 
they assumed that unequipped drivers would gain no benefit from guidance, and so 
confined their study to the effect on equipped vehicles.  Their model had the 
advantage of being able to incorporate two sources of random variation - not only in 
the travel times, in order that a reasonable spread of routes may be obtained, but 
also in the times yielded by the journey time prediction algorithm (that is, the input 
to the guidance system).  On the other hand, a number of other strong assumptions 
were made:  in particular, that travel times on alternative routes were independent, 
that there were only two alternative routes between each origin-destination pair, and 
that each was used only by guided drivers or only by unguided drivers.  Extrapolating 
the results they obtained for the test area, they estimated an 11% reduction in total 
travel time due to guidance in the whole metropolitan area of Tokyo, at a 10% level of 
take-up. 
 
Al-Deek et al (1989) studied a portion of the SMART corridor in Los Angeles - which 
included a freeway and three parallel streets.  From an initial survey, they concluded 
that the "preferred route" for drivers was to enter and leave the corridor on the 
freeway, and inferred that a suitable indicator of the possible benefit of guidance was 
the difference between the time on the freeway route and that on the minimum time 
route (the estimate of the minimum time route being updated over time).  These 
assumptions clearly ignore any effect the re-routed traffic may have on travel times in 
the network, and the response of and (dis)benefit to unguided drivers.  In 
implementing the strategy on the test network - using TRANSYT as a basis for the 
simulation - they found that the maximum travel time saving for guided drivers was 
3 minutes for a 20-25 minute trip. 
 
Smith and Russam (1989) made use of the heuristic dynamic assignment model 
CONTRAM (Leonard et al, 1979), in order to estimate the potential benefit of the 
AUTOGUIDE system in London.  They used the London Transportation Studies 
model, consisting of some 7000 intersections and 16000 one-way links, together with 
985 zones.  Demand was assumed to be fixed over time on a particular day, and so in 
this way some of the dynamic element to CONTRAM was lost.  The origin-destination 
matrix provided was assumed, however, only to represent an average demand, with 
day-to-day variability introduced into the model by a randomisation process.  
Unguided drivers base their route choice on a stochastic user equilibrium-like 
assignment for the average origin-destination matrix - that is, the route flows for the 
assignment of the average matrix are scaled up to conform to the actual (realised) 
matrix - and do not change their routes in response to the new behaviour of guided 
drivers.  Equipped drivers, on the other hand, are assigned to the minimum cost 
route for each O-D pair according to the actual O-D matrix and current conditions.  
That is to say, unguided drivers can only choose routes according to average 
conditions they have previously encountered (and even then they perceive travel costs 
differently); guided drivers, on the other hand, are routed according to the conditions 
specific for that particular day/time.  Studying levels of take-up of 10%, 20%, 30% 
and 100%, it was found that there was a system benefit in terms of reduction of total 
travel time (2.5%-6.0%) and total distance travelled (0.2%-1.3%) for all cases, whilst 
the average network speed showed a corresponding increase (2.4%-5.3%).  
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Disaggregating into the separate groups of drivers, it was found that equipped drivers 
obtained a reasonably constant 6% reduction in travel time, whilst the unequipped 
drivers tended to benefit slightly more with higher take-up (benefit 2.2%-3.1%) up to 
the maximum 30% take-up for which their behaviour was studied. 
 
Breheret et al (1989) made use of CONTRAM in a somewhat different way, in order to 
study the effects of route guidance in both incident and incident-free scenarios.  In 
the incident-free situation, unguided drivers were assumed to follow minimum 
perceived cost paths, the perceived cost of a link being a random variable with mean 
the actual cost (given current traffic conditions) - that is, the routing pattern is 
something akin to a stochastic user equilibrium assignment.  It was assumed that 
unequipped drivers would not change their routes in response to the new conditions 
brought about by guidance.  The strategy of guiding equipped drivers to actual 
minimum cost routes was tested for a number of levels of take-up, on a test network 
consisting of some 81 links and 21 nodes.  It was seen that both equipped and 
unequipped vehicles experienced a reduction in travel time, at all levels of take-up.  
The maximum benefit to unguided vehicles (3%) and the system as a whole (6%) was 
virtually attained at 20% take-up, after which the changes were small.  The greatest 
journey time savings for equipped drivers (15%) were obtained at 5%-10% take up, 
after which the benefits decreased considerably.  These findings were considered to 
be a measure of maximum benefits, since in reality the guidance system would not 
continuously re-compute optimum routes.  A more realistic strategy is therefore also 
studied, in which routes are re-calculated only every 15 minutes.  In this case too it 
was found that the total travel time reduced for all levels of take-up considered, with 
the maximum saving of around 3% achieved at a take-up of 20%.  Finally, a strategy 
consisting of a single route recommended for the whole peak period was studied and 
was found to produce a substantial increase in travel time, which became greater as 
more vehicles were equipped.  Perhaps, more interesting than that performance of 
this strategy is, however, their findings regarding the influence of unguided drivers' 
behaviour.  If, contrary to the assumptions above, unguided drivers do change their 
routes in response to the new conditions under guidance, then this single route 
strategy performs much differently, leading to a small (up to 1%) saving in total travel 
time for levels of take-up of less than 30%. 
 
Koutsopoulos and Lotan (1989) modelled the interaction between equipped and 
unequipped vehicles in the form of a stochastic user equilibrium assignment of two 
user classes, where equipped drivers are assumed to have a smaller variance in their 
perceived cost of travel, to represent the effect of the guidance system improving the 
quality of the information available to them.  They applied the model to the network 
of Sudbury, Massachussetts, consisting of 204 nodes, 70 zones and 578 links 
(including 214 centroid connectors).  Under user optimal routing (when the 
perception errors of equipped drivers are completely removed) and with a 100% take-
up of guidance, a saving in total travel time of 3%-4% was observed for three different 
levels of congestion in the demand.  As would be expected, as the perception errors of 
equipped drivers increased in magnitude, the benefit decreased.  Studying the effect 
of level of take-up on total travel time, it was found that under user optimal routing 
(with or without stochastic errors), time decreased linearly with the percentage of 
equipped drivers, for all levels of congestion.  This finding was found, however, to be 
sensitive to the model of unequipped drivers; with a decrease of 10% in their 
perception error variance, total travel time was found to decrease less rapidly as take-
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up increased.  In terms of the benefits to individual groups - under stochastic user 
optimum routing, with a low level of error for guided drivers (the only strategy 
investigated in this way) - equipped drivers were found to experience a decrease in 
average travel time of around 3%.  The benefit decreased with an increase in take-up, 
but by only a very small amount (range of less than 0.5%).  For unequipped drivers, 
on the other hand, there was a disbenefit at all levels of take-up, although the 
increase in their average travel time due to guidance was never more than 0.2%.  
These results on equipped/unequipped drivers appear to relate to the least congested 
case; other results indicate that the relative benefit of equipped over unequipped 
drivers decreases as congestion increases. 
 
Rakha et al (1989) were mainly interested in incidents and the optimisation of signal 
settings in interaction with route guidance, but in passing studied the case of route 
guidance alone, in incident-free conditions.  They considered a small network 
consisting of a freeway and parallel arterial, with five connecting roads.  The 
simulation model used was INTEGRATION (Van Aerde and Yagar, 1988), which 
requires the input of a fixed demand pattern.  Unequipped drivers were assumed to 
follow the minimum free flow travel time route between each origin-destination pair, 
these being fixed throughout the simulation period.  Equipped drivers, on the other 
hand, were guided to the minimum time route based on current traffic conditions - 
this information being updated approximately every six seconds, and providing the 
capability to re-route equipped drivers during their journey.  The average network 
speed before guidance was high - 59kph - although it may be expected to be higher 
than in a usual urban situation, due to the relatively large amount of freeway travel.  
For the lowest level of take-up considered (20%), they found a huge reduction in total 
travel time of some 18%; although this benefit continued to increase with level of 
take-up, only an additional 3% saving was accrued by 100% take-up.  Average 
network speed and total distance travelled, on the other hand, increased with level of 
take-up.  These findings are clearly dependent to a great extent on the model of 
unguided drivers, who are assumed not to respond to congestion.  Since the length of 
a link is probably a reasonable proxy for free flow travel time, their study of the 
impact of guidance is very much like a comparison between a population of distance 
minimisers (before guidance) and one of time minimisers and distance minimisers 
(after guidance) - not surprisingly, since the former population would yield minimum 
total distance travelled in the network, the latter population travels a greater distance 
but in a smaller time (because minimisation of time, albeit on an individual basis, is 
now an objective). 
 
A quite different approach to those discussed so far was proposed by Mahmassani 
and Jayakrishnan (1989), being the first specifically to address the behaviour of 
equipped drivers in response to guidance.  The dynamic model they use comprises a 
macro-simulator coupled with a set of rules for describing the behaviour of individual 
guided drivers.  It is assumed that the guidance system tells the driver the estimated 
time to his destination on his current route and on what is predicted to be the 
quickest route.  The driver switches to the recommended route if the percentage 
journey time saving is greater than some threshold value, this value being modelled 
as a random variable across the user population.  (A device is also included to make 
switching less likely as the destination is approached).  This is intended to represent, 
for example, drivers not wishing to change when the alternative route is unfamiliar.  
Two implementational aspects to note are, firstly, that the model has been developed 
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specifically for a network of the type they use for evaluation purposes (a commuting 
corridor consisting of three major expressways, connected at regular intervals by 
cross-over links).  Secondly, the computational demands for such detailed modelling 
are very high (viz. a Cray super computer). 
 
Two quite different "loading patterns" were used to assess the strategy (with the first, 
more congested, pattern having a "before guidance" travel time of nearly twice as 
much as that of the second pattern, which tends to spread peak traffic over a greater 
period).  In the case where the switching threshold was identically equal to zero - so 
that equipped drivers always switch to the quicker routes, when recommended - the 
maximum saving in total travel time was around 5% at levels of take-up of 10% and 
25%; but at 50% and above, the benefits decreased considerably, even to the extent 
of a large disbenefit.  In terms of the effect on individual equipped drivers, the 
greatest benefit was again found to occur at the lowest level of take-up (10%), with 
travel time savings decreasing to a 8%-9% increase in average travel time at 75% 
take-up.  Unequipped drivers always benefitted, though never as much as the 
maximum for equipped drivers with the maximum savings again at low levels of take-
up.  For switching thresholds other than zero, on the other hand - except when 
drivers were very unwilling to switch (where there was little change in travel times) - 
it was seen that for all levels of take-up, equipped drivers, unequipped drivers and 
the system as a whole (maximum 6% saving) would benefit from guidance.  The travel 
time savings increase with take-up for unequipped drivers and the system as a 
whole. 
 
The second loading pattern studied satisfied stochastic, dynamic user equilibrium 
conditions, in the sense that "no user can improve his/her random utility by 
unilaterally switching either departure time or route", where the components of utility 
are travel time and the difference between desired and actual arrival time.  For all 
switching thresholds considered (except the one with a high mean, where there was 
little change), a benefit was observed for both equipped and unequipped vehicles at 
all levels of take-up.  In the degenerate case of a threshold equal to zero, the 
maximum benefit for the system (4% reduction in total travel time) and for 
unequipped drivers (2%) was at a take-up of 25%-50%, whereas the benefits to 
equipped drivers steadily decreased with increasing take-up (from a maximum 12% 
saving at a 10% take-up).  For the other, randomly dispersed thresholds, although 
the maximum benefits were similar to those in the zero threshold case, the behaviour 
was somewhat different at higher levels of take-up.  The benefit to unguided drivers 
and the system as a whole increased with take-up, although the rate of this change 
decreased; meanwhile, for equipped drivers, the travel time savings decreased, but 
again at a decreasing rate. 
 
Finally, Van Vuren et al (1989) studied a model of route guidance which is closely 
related to that considered here (and will be discussed again, later in this report).  
Their steady state model was one of a two user class assignment in which unguided 
drivers were assumed to follow a user equilibrium and guided drivers were routed 
according to a system optimal flow pattern with interactions between guided and 
unguided drivers thereby modelled.  Conditions were derived under which the 
combined flow pattern is guaranteed to be unique and stable.  Furthermore, it was 
shown that in such a system, the equipped and unequipped drivers could share at 
most one route for each origin-destination pair; guided drivers on other routes take a 
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travel time which is higher than that of the unguided drivers.  Numerical results were 
confined to a demonstration on an artificial two-link network. 
 

 
 
Having reviewed previous work in simulating route guidance systems, the model to 
be studied in this report may be developed.  It will be based on the concept of 
multiple user class equilibrium assignment, and so a brief introduction to this area 
will be given, along with relevant theoretical results. 
 
As a steady state model of driver route choice under long term average conditions, 
the user equilibrium (UE) assignment proposed by Wardrop (1952) - in which each 
driver is assumed to be aiming to minimise, non-cooperatively, his own personal 
travel cost - is accepted by many to be a reasonable approximation to "average" driver 
behaviour.  Two key assumptions are that drivers define "cost" in the same way and 
that they know the cost of travelling along each route between their origin and 
destination.  Studies show (for example, Wootton and Ness, 1989 - from where the 
figures to follow are taken) that although time minimisation is the predominant route 
choice criterion (more than 70% of drivers), distance minimisation (10%) and having 
no known alternative route (10%) are also reasons given for choosing a particular 
path.  In such cases, when it is possible to divide the demand, a priori, into "user 
classes", where the cost definition is the same within a user class (but may differ 
between classes), a multiple user class equilibrium assignment may be defined.  
Within each user class, a user equilibrium is obtained, but there is a dependence 
between the classes, in the sense that the flow of one user class affect the costs of 
another user class (Van Vliet et al, 1986).  As will become clear later, the fact that 
different cost functions may be specified for each user class makes the concept 
particularly relevant to the modelling of guided and unguided vehicles in a route 
guidance context.  The framework also allows network restrictions to be applied to 
certain user classes, so that it is straightforward to define a limited (strategic or 
tactical) network available to equipped drivers - although the study of such strategies 
is not within the scope of this report. 
 
The second assumption in Wardrop's model which was highlighted above - that 
drivers know the relevant travel costs - may also be relaxed to some extent.  (It is 
noted that Wootton and Ness found that "only 50% of drivers seeking either their 
quickest or shortest routes succeed in finding the route they desire").  The reasoning 
is that if drivers do not know the costs exactly, they will not necessarily choose the 
user optimum routes when they aim to minimise their own cost of travel.  Such an 
effect may be reproduced by a stochastic user equilibrium (SUE) assignment - 
developed by Daganzo and Sheffi (1977) - in which the link costs are treated as 
random variables, but with the same behavioural assumption as Wardrop (ie drivers 
aim to minimise personal travel cost).  Because of the mutual dependence between 
cost and flow, the link flows are then also random variables, the assignment being 
the expectation of these random variables.  The randomised costs are usually referred 
to as perceived costs, with the random perturbations known as perception errors.  
The name "perceived cost" stems from the idea that drivers may perceive cost 
differently - in a (macro) SUE assignment, this micro behaviour is modelled by the 
random variation in the sample mean link cost (since if the individual perceived 
driver costs are random variables, then in repeated sampling the mean of these costs 
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will also be a random variable).  It will be proposed here that a SUE assignment is a 
reasonable model of the route choice behaviour of drivers who do not have access to a 
guidance device. 
 
The concept of stochastic equilibrium assignment and multiple user classes were 
brought together in a paper by Daganzo (1983); the main results of this paper are 
outlined here.  Daganzo considered a family of link cost functions of the form 
 
 cai = dai + ßi ta (F) 
 
where for each link a and user class i, 
 
 cai is the cost to user class i of using link a 
 
 Fa = Ȉj Įj faj

 
 F = (F1, F2, ...) 
 
 fai is the flow of user class i on link a 
 
 ta is a continuously differentiable function 
 
and 
 
 dai, Įi (>0) and ßi (>0) are finite constants. 
 
The idea of representing the flow of all user classes on a link in terms of a single 
measure Fa is consistent, for example, with the concept of expressing a combination 
of car and lorry flow in terms of "passenger car units" or "passenger car equivalents". 
 
The perceived cost of travel Cai for link a and user class i is assumed to be given by  
 
 Cai = cai + ĭai

 
where ĭai is a random variable (the "perception error") with an expectation of zero. 
 
Daganzo imposed two sets of conditions - firstly on the cost functions and secondly 
on the perception errors- under which a stable equilibrium flow pattern exists and is 
unique: 
 
(1)The inverse of t (F) is a monotonically increasing, continuously differentiable 

function in the domain where it takes finite values, is defined for all t (=(t1, t2, 
...)), and is uniformly bounded.  Furthermore, t (F) is defined for all feasible 
flow patterns. 

 
(2)For each user class i, the components of ĭi = (ĭ1i, ĭ2i, ...) are mutually independent, 

independent of the costs cai, and have densities which are finite, have at most 
a finite number of discontinuities and have finite second moments. 

 
Now, condition 2 excludes the possibility of some of the perceived costs being 
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deterministic; that is, for example, if there are no perception errors for a certain class 
of drivers.  In the case of models with some deterministic aspects, two approaches are 
suggested.  One option is to approximate the deterministic costs by stochastic costs 
with sufficiently narrow densities.  Alternatively, Daganzo offers modified properties 
of the assignment, which may be shown to follow when the second condition is 
relaxed to: 
 
(2')Condition 2 holds, but some (or all) of the ĭai are allowed to be zero. 
 
Under this revised condition, a stable equilibrium is guaranteed to exist and will be 
unique with respect to link flows (though not necessarily with respect to user class 
link flows). 
 
Daganzo also suggests two solution algorithms for the multiple user class SUE 
problem - one in terms of link costs and the other based on flows.  The latter was 
chosen for the purposes of this study, being a more standard formulation (an 
extension of the "method of successive averages", suggested by Powell and Sheffi 
(1982) for the single user class SUE problem) and being already implemented within 
SATURN.  In order to prove the convergence of his flow-space algorithm, Daganzo 
made the additional assumption that the Jacobian of t (F) is symmetric.  The scheme 
is implemented as follows: 
 
(1)Set fai

(0) = 0, ∀ a, i, where fai
(r) refers to the estimate of the equilibrium user class 

flows at iteration r.  Set r = 0. 
 
(2)Calculate F(r) from 
 
  Fa

(r) = Ȉj Įj faj
(r)

 
 and hence the costs cai

(r) corresponding to F(r) (∀ a, i). 
 
(3) For each user class i: 
 
 (a)Sample a set of link error terms ĭai (>a) from the specified probability 

distribution, by a pseudo-randomisation process, and set 
   
  Cai

(r) = cai
(r) + ĭai ∀ a 

 
 (b)Perform an all-or-nothing assignment for this user class using the 

randomised costs Cai
(r) - yielding a set of user class link flows gai

(r) (for all 
a) 

 
 (c)Set 
 
  fai

(r+1) = (1 - 1/n) fai
(r) + 1/n gai

(r) (∀ a) 
 
 (d) Set 
 
  Fa

(r) = Fa
(r) - Įi fai

(r) + Įi fai
(r+1) (∀ a) 
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 and recompute the costs corresponding to F(r) - store again in cai
(r) (∀ a) 

 
(4)Set r = r+1 and return to step 2 until the pre-determined number of iterations are 

complete. 
 
Two points are worth noting regarding the details of the above algorithm.  On a 
particular iteration, the costs are updated after loading each user class; an 
alternative would have been to recalculate the costs only after loading all user 
classes.  In the former approach, the aim is in some way to anticipate the effect on 
link costs for the next iteration, of the newly loaded flows of user classes already 
considered on the current iteration and thereby to improve the rate of convergence to 
the equilibrium link flow pattern.  As stated earlier, however, it may not be possible 
to guarantee the uniqueness of the user class link flows, and in this sense the latter 
approach may produce a more even distribution of flow between the user classes on a 
link basis.  This is because in the former approach, after loading user class 1 flows 
on a particular iteration, for example, a link may become congested and then very few 
user class 2 flows will be loaded onto it. 
 
The second point to note is that the randomisation process in step 3(a) of the above 
algorithm follows that standard SATURN procedure of "sampling" a new set of link 
error terms before building the minimum cost tree from each origin, and so in fact 
there are a number of randomisations performed for each application of this step. 
 

 
 
Having introduced the concept of multiple user class equilibrium assignment, with 
possibly a mixture of stochastic and deterministic costs, the route guidance model 
will now be introduced. 
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The demand for travel (as represented by the mean origin-destination matrix) is 
assumed to be fixed, as are the network supply conditions.  It is also assumed that 
the whole network is available to the guidance system.  Average cost-flow 
relationships are supplied for each link.  Throughout this report, "cost" will be 
measured purely in terms of travel time, and so the words cost and time will be used 
interchangeably below. 
 
The model consists of four user classes, the demand level for each being a fixed 
(known) proportion of the origin-destination matrix. Three of the user classes 
correspond to vehicles equipped with a guidance device, and for two of these three 
equipped classes it is assumed further that the guidance system is provided with 
perfect information and that the guided drivers adhere totally to the route 
recommendations. The first class consists of unguided drivers, each of which aims to 
minimize his own personal cost of travel, but in general fails to do so because of 
imperfect knowledge of the traffic conditions.  This class is modelled by a stochastic 
user equilibrium (SUE), the "perceived cost" for each link following some specified 
distribution (discussed later).  The second class is a subset of the equipped vehicles 
where each driver is guided so as to minimize his own personal travel cost. The 
perfect information assumed to be available to the guidance system is used to 
eliminate the perception errors, i.e. they follow a Wardrop user equilibrium.  The 
third class consists of a second subset of the equipped drivers, which are guided so 
as to minimize the total system cost ("system optimal" - SO), again using the perfect 
information available. The fourth class comprises the remaining equipped drivers. 
The aim of the guidance system for this class is again to recommend routes according 
to a UE pattern; however, in order to represent the effect of errors in the journey time 
prediction methods or of drivers not adhering completely to the recommendations, 
they are modelled by a SUE, but with a distribution for the stochastic variations 
which is different to that of the unguided drivers. 
 
The four user classes interact with one another, in the sense that the flows of one 
user class affect the costs, and hence the route choice, of the other user classes.  In 
this way, the assumption is that under such steady state conditions, the unguided 
drivers will tend to change their routes in response to the new route choice of the 
guided drivers (the influence of this assumption will be investigated at a later stage in 
the report). 
 
Now, Van Vuren et al. (1989) concluded that for the case of a guidance system with 
user equilibrium unguided drivers and system optimal guided drivers, the only link 
cost functions ca of the family which was established by Van Vliet et al. (1986) to 
ensure existence and uniqueness of a multiple user class equilibrium, were of the 
polynomial form: 
 
 ca = da + ba Fa

k ...(1) 
 
where Fa is the total flow on link a, da is a constant representing fixed effects such as 
free flow travel time, ba is a constant and the power k (>0) is a link independent 
constant. In the more general four user class model considered here, we cannot use 
the same result of Van Vliet et al., since the properties were established only for the 
deterministic cost case, whereas here we have a mixture of stochastic and 
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deterministic costs. We may, however, use results established by Daganzo (1983) for 
a similar (though more general) family of cost functions to those of Van Vliet el al., 
but for the case where some of the classes may have stochastic costs. Then, in a 
similar way to Van Vuren et al., by applying the work of Daganzo, it follows that the 
equilibrium for our more general four user class model is guaranteed to exist and be 
unique (with respect to link flows and user class/link costs) for cost functions of the 
form (1). In this case, ca is the actual link travel time for all drivers; in the 
assignment, however, each class will be associated with a different cost: the unguided 
drivers making random perception errors with (1) as the mean; the guided SUE 
drivers experiencing different random errors due to imperfect recommendations, etc.; 
the guided SO drivers using marginal costs corresponding to the actual costs (1); and 
the guided UE drivers using the actual costs (1). The fact that Daganzo's results may 
be applied to guarantee the above conditions on the equilibrium may be verified as 
follows. 
  
It is well known that a system optimal assignment in the one user class case with 
link costs ca may be obtained by a user equilibrium assignment with marginal link 
costs c'a given by 
 
 c'a = ca + Fa  dca

   dFa

 
To obtain, then, the required routing pattern with actual link costs (1), the user class 
costs cai for link a and user class i must be  
 
 ca1 = ca2 = ca4 = da + [ba Fa

k] 
 
 ca3 = da + (k+1) [ba Fa

k] 
 
where user class 1 consists of the unguided drivers, and the remaining classes are 
the guided drivers, following (respectively) UE, SO and SUE routing; perceived costs 
are therefore stochastic for user classes 1 and 4, and deterministic for user classes 2 
and 3. It may be seen that the user class cost functions above are indeed of the form 
required to apply Daganzo's work. 
 
Furthermore, Daganzo's conditions require that the variance of the perceived journey 
time distribution is flow independent.  This condition has been noted variously by 
authors investigating the single user class stochastic user equilibrium case: Sheffi 
and Powell (1982), Daganzo (1982) and Sheffi (1985).  In the latter reference, Sheffi 
suggests - for a probit-based route choice model - the use of a standard deviation of 
link a perceived cost of școa, where coa is the free-flow travel time and ș (>0) is a 
constant.  In the guidance model proposed here, we have also chosen to use Normally 
distributed perception errors for the unguided drivers, but with a standard deviation 
of șca

UE, where ca
UE is the travel cost for link a corresponding to a (deterministic) user 

equilibrium flow pattern for all drivers.  This is preferred because it is more closely 
related to the idea that larger perception errors are made with larger travel times and 
greater congestion, rather than using the free flow travel time which may be more 
related to the physical characteristics of the link (for example, an uncongested 
freeway would have a relatively large free-flow travel time and would thus counter-
intuitively tend to result in large perception errors). The guided SUE drivers are 
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modelled in the same way, except that their link travel time standard deviation is 
Ȍca

UE, where 0<Ȍ<ș (ie guidance tends to reduce the size of the errors made by 
equipped drivers). The errors are distributed independently between user classes and 
between links. It is noted that this model is somewhat unrealistic in one respect, 
since the journey time prediction methods will tend to be more precise with larger 
levels of take-up - data on actual travel times relayed to the guidance system from 
the beacons will relate only to equipped vehicles, and so an increase in level of take-
up will essentially lead to an increase in sample size. It would be expected, then, that 
the variance of the random errors would be a decreasing function of the level of take-
up. Since no suitable relationship of this kind was available, however, it was 
necessary to retain the assumption of a constant error variance relative to the 
proportion of vehicles equipped.  
 

 
 
The guidance strategy was implemented using an adaptation of the simulation/ 
assignment model SATURN (Van Vliet, 1982) and the solution algorithm of Daganzo, 
as described above.  Scenarios to simulate were chosen according to the 
recommendations of deliverable 9 (CAR-GOES, 1990b).  The two real-life networks 
considered were those of Weetwood (an area of Leeds) consisting of 70 zones, 104 
intersections and 440 links, with approximately 20,000 origin-destination trips in the 
base (demand level 1) matrix; and of Barcelona comprising some 110 zones, 820 
intersections and 2547 links, with around 60,000 origin-destination trips in the base 
matrix.  The cost functions used were of the form (1), where k was given the value 5 
for both networks. 
 
For each network, the guidance model was implemented under  
 
(a)three different demand levels, corresponding to an average network speed (before 

guidance) of approximately 15, 25 and 35 kph; 
(b)nine different levels of equipped vehicles: 0%, 5%, 10%, 20%, 30%, 50%, 70%, 90% 

and 100%; and 
(c)three different routing criteria - with equipped drivers either all guided as a UE, all 

guided as a SO or all guided as a SUE (with two different levels of error in this 
latter case). 

 
The desired network speeds were obtained by running the model a number of times 
with different origin-destination matrices, obtained by multiplying the base matrix by 
a scalar factor.  Coincidentally, it was found that for both networks, the demand 
levels defined in (a) corresponded to 100%, 130% and 160% of the observed origin-
destination flows. 
 
It is noted that additional scenarios, of a level of take-up of 0.1% and 1%, were also 
studied, although it was not convenient to display these results (in any case, the 
strategies developed here are specifically carried at higher participation levels); the 
results, may, however, be referred to in passing in the text. 
 
Finally, in order to decide upon a suitable value for the parameter ș, which 
determines the link travel time variances for the unguided drivers, an idea due to 
Breheret et al (1990) is used.  For a number of values of ș, the average inefficiency 
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I(ș) is calculated, given by 
 
 I(ș) = 100 (p(ș) - 1) % 
 
where 
 
 p(ș) = Total system travel time under SUE(ș)
  Total system travel time under UE 
 
and where SUE(ș) means an SUE assignment for the whole O-D matrix, with 
parameter ș.  That is, assuming that drivers are aiming to follow a UE, I(ș) is a 
measure of the average excess travel time incurred by their perception errors. 
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For the purposes of this report, for a given network, a value for ș is then chosen 
which gives rise to an inefficiency of the order of 5%-6% for each of the demand levels 
considered.  The reasoning behind this is that various studies have shown that the 
percentage wastage caused by drivers not fulfilling their objective of choosing the 
minimum time or minimum distance route is of this order - for example, Lunn (1978) 
estimated the average excess on all journeys in Great Britain, excluding commuter 
trips, to be at least 5% of total costs; Wootton et al (1981) arrived at figures of 4%-
6.5% inefficiency; and Jeffrey (1987), from analysing times and distances 
corresponding to a sample of journeys made in the U.K., concluded that the average 
inefficiency of drivers was around 6%.  The use of inefficiency to build a suitable 
route choice model for unguided drivers is appealing, in that it allows the calibration 
of the model against observed data (though in a very coarse manner). 
 
The values of I(ș) for a number of values of ș are given in figures 1 and 2. For 
Weetwood, there is a clear pattern of an increased I(ș) with increased ș or greater 
demand.  The value ș=0.3 is chosen for the purposes of further investigation, giving 
an average inefficiency of 6% over the three demand levels. For the Barcelona 
network, the pattern is somewhat different, with much less difference between 
demand levels and with the possibility of I(ș) decreasing with greater demand 
(demand level 1 showing greatest inefficiencies).  It is still the case, however, that I(ș) 
is an increasing function of ș. ș=0.4 is chosen for future study. 
 
There are two studies (the findings of which were described in Section 2) with which 
some comparison may be drawn on this point of modelling unguided drivers.  
Breheret et al (1990), in using a Uniform error structure for perceived costs (with flow 
dependent range), found the relationship between inefficiency and spread parameter 
to be highly network dependent and demand dependent - because of this, and 
because they give no indication as to the size of the networks or the absolute levels of 
congestion, it is difficult to draw any further parallels with this work.  Koutsopoulos 
and Lotan (1989), on the other hand, used a very similar `before guidance' model to 
that considered here, the most notable disparity being their use of a flow dependent 
perception error variance of ĳca(Fa).  For their study on a network of a similar size to 
Weetwood, they used a value of ĳ=0.5, which gave rise to an inefficiency of around 
4% (relative to the UE, ĳ=0, case) for the three demand levels considered. 
 
Note:It is evident that quite large values of the spread parameters are required to give 

'realistic' inefficiencies. In one respect this is unappealing, since - as it makes 
sense to truncate the perceived travel time distributions at zero - the 
randomisation may be biased (although for the values chosen below for the 
Weetwood and Barcelona networks, the bias will tend to be very small).  

 
The model was applied to the networks described, with unguided drivers modelled by 
a SUE with ș=0.3 for Weetwood and ș=0.4 for Barcelona.  From initial studies of the 
Weetwood network, it appeared that in order to obtain a reasonable degree of 
convergence a large number of iterations would be required - the stopping criterion 
chosen was the completion of 200 iterations.  Although this may have been the case 
too for Barcelona, the size of the network meant that such a large number of 
iterations would be computationally prohibitive, and so only 30 iterations were 
carried out in this case.  The results are given in Figures 3 to 14.  In the figures on 
system benefit (expressed in terms of total travel time, Figures 3-5 and 9-11), each of 
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the four strategies is represented - for example, the trend labelled SUE(0.2) refers to 
the strategy in which all equipped vehicles are guided according to a SUE with Ȍ=0.2. 
 In the figures on individual benefits (figures 6-8 and 12-14), results relating to the 
UE (broken line) and SO (continuous line) routing strategies only are given, with each 
separated into guided (star symbol) and unguided (square symbol) vehicles. 
 
The first point to note is that in a small number of situations, there is evidence of 
strange behaviour - firstly, in figure 5, for Weetwood at demand level 3 with 100% of 
vehicles equipped, the total travel time arising from SO routing is greater than that 
arising from UE routing, which clearly should not be the case. Investigating the 
algorithm further for a number of different cases, it was found that the flows under 
SO routing tend to converge slower than under UE routing (convergence being 
measured by the indicator suggested by Sheffi & Powell (1982) for SUE assignment, 
and applied here to the total link flows).  The results given here were obtained by 
applying the algorithm for a pre-determined number of iterations; it appears to be, 
then, that the results are due to the algorithm achieving a greater degree of 
convergence under UE, than SO, routing.  Secondly, for Barcelona at higher demand 
levels (figures 10 and 11) a similar problem is evident - for example, in figure 11, an 
assignment with 70% guided according to a SO routing gives a smaller total travel 
time than a 100% SO routing.  This is most likely due to the smaller number of 
iterations permitted for Barcelona, where in some cases the flow pattern may not 
have stabilised by the time the algorithm is terminated. The Barcelona results 
therefore have to be viewed with a little more scepticism than the Weetwood ones. 
 
In terms of the system benefit (as measured by total travel time), it can be seen that 
for all of the routing strategies considered and for both networks, guidance offers an 
improvement over the base (no guidance) situation, for all levels of equipped vehicles 
and all demand levels considered.  In all cases, the travel time saving becomes 
greater as the level of take-up increases (with one or two exceptions - see comments 
above on convergence), following an almost linear trend in the Weetwood case. Below 
a 50% take-up, the percentage saving in total travel time tends to be a higher with 
higher demand levels, although in all cases the differences between demand levels 
are not great.  Concentrating specifically on the UE and SO routing strategies, figures 
3-5 show that for Weetwood the percentage saving in total travel time due to 
guidance increases with demand for most levels of take-up - for example, between 
10% and 90% take-up, UE routing gives savings of 0.5%-4.0%, 0.9%-5.6% and 1.0%-
7.1% respectively for demand levels 1, 2 and 3; SO routing, on the other hand, gives 
respective savings of 0.7%-6.4%, 0.8%-6.6% and 0.8%-7.0%.  The differences 
between demand levels are, however, not great, and the same is true for the 
Barcelona network.  In this latter case, though, there is a slight decrease in the 
benefits attainable at higher levels of take-up as demand increases (figures 9-11) - 
the savings for 10%-90% take-up are 0.9%-6.0%, 1.2%-5.5% and 1.2%-5.3% under 
UE routing for demand levels 1, 2 and 3 respectively, and under SO routing the 
respective savings are 1.5%-8.5%, 1.5%-7.7% and 1.8%-5.8%.  On the whole, for 
both networks, the pattern is as one may expect, with an increase in total travel time 
savings as Ȍ decreases for SUE routing (down to Ȍ=0 for UE routing), all of these 
giving rise to larger total travel times than SO routing. 
 
In terms of the benefit to individuals (the percentage decrease in average travel time 
with the guidance system in operation), it may be seen that for a UE routing, 
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equipped drivers are always better off with guidance.  A striking feature is that this 
benefit is approximately constant for all levels of take-up - notably, the benefit is 
achieved at a very low percentage of equipped vehicles (in fact at 1% take-up, not 
shown in the graphs), and does not start to decrease at some participation level.  
From figures 6-8, it may be seen that under UE routing, guided drivers save around 
4%, 5% and 6% respectively for Weetwood demand levels 1, 2 and 3, whereas (figures 
12-14) the savings are around 8%, 7% and 6% for Barcelona demand levels 1, 2 and 
3. Under such a routing scenario, the change in travel time for unequipped drivers is 
always small relative to the benefit to guided drivers (always smaller than 3%, and 
usually less than 1%, with an actual disbenefit for the Barcelona network at demand 
level 1), although there appears to be slightly greater benefit to them as congestion 
increases from demand level 1 to demand level 3.  In most of the situations, the 
benefit to individual unguided drivers also tends to increase with level of take-up.  
 
With SO routing, there is a disbenefit to individual guided drivers on average, for 
`lower' levels of take-up (`low' being levels of equipped vehicles less than of the order 
of 10%-30%); for higher levels of take-up, on the other hand, guided drivers 
experience a saving in travel time which increases with level of take-up. Above 50% 
take-up the savings for equipped drivers under SO routing are 3%-7% for Weetwood 
and 5%-9% for Barcelona, depending on level of take-up and demand level.  The 
journey time saving for unguided drivers tends to be somewhat larger here than with 
UE routing, particularly at lower levels of take-up, with guided and unguided drivers 
benefiting similar amounts at higher levels of take-up.  
 
Comparing the UE and SO routing strategies for both networks, it may be seen that 
UE guidance will always benefit the equipped drivers most, with only limited benefits 
to the unequipped drivers, but giving rise to considerable system benefits.  Not 
surprisingly, SO routing primarily benefits the unguided drivers - at the expense of 
the guided drivers - at lower levels of equipped vehicles. However, equipped drivers 
start benefiting too when their numbers increase.  At the highest levels of equipped 
vehicles (over 50%-70%), under such a routing strategy the guided drivers may even 
benefit more than the unguided drivers, despite being guided to minimum marginal 
cost routes.  The system benefits of SO routing are higher than with UE routing, but 
may not warrant the disbenefits to equipped drivers at lower participation levels. 
 
The above discussion has been concerned with the effect of route guidance on travel 
time - it seems reasonable to use this as the main factor for assessing the strategies, 
as it has been assumed that drivers measure cost purely in terms of time.  However, 
other useful indicators have also been studied - namely, distance travelled and 
average speed - and results corresponding to these are given in Figures 15 to 20 
(distance) and 21 to 23 (speed), for the Weetwood network only. 
 
Firstly, considering figures 15 to 17, under UE routing it may be seen that the total 
distance travelled is always reduced with guidance in operation, decreasing as level of 
take-up increases (with a maximum 4%, 5% and 6% saving for demand levels 1, 2 
and 3 respectively).  Similarly, with the SUE routing strategies there is always a 
benefit, which increases with take-up.  For the SO routing scenarios, on the other 
hand, the total distance travelled under guidance increases with take-up (up to the 
point at which around 30% of drivers are equipped), and there is not a benefit in the 
respect until about 50%-70% take-up. 
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Examining the effect on individuals (figures 18 to 20), under UE routing a similar 
pattern is evident with the change in average distance travelled as there was with the 
change in average travel time - namely, that equipped drivers benefit a constant 
amount (around 5%-6% saving in distance travelled) at all levels of take-up. 
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Unequipped drivers, on the other hand, lose out under such a strategy with an 
increase in distance travelled of up to 1%-2% at higher levels of take-up.  The pattern 
for SO routing is quite different, with equipped drivers experiencing a sharp, 
substantial increase in distance travelled at the lowest levels of take-up (even higher 
at 1% take-up - not shown on the graphs) - the disbenefit at this stage is between 9% 
and 13%, dependent on the demand level.  This is as one may expect an SO routing 
to work, with equipped drivers guided to longer, but less congested, routes.  As more 
vehicles become equipped, the disbenefit becomes smaller in magnitude, but does not 
again reach the average distance travelled at 0% take-up until the stage at which 
about 50%-70% of drivers have guidance devices.  Unequipped drivers, on the other 
hand, travel a shorter distance on average under SO routing than without guidance 
in operation, regardless of the proportion of drivers equipped - although the savings 
are small (around 1%). 
 
Finally, in figures 21-23, the average speed in the network is shown as a function of 
the proportion of equipped vehicles.  Only the SO and UE routing patterns are 
shown, as the SUE routing patterns are very similar to the UE ones, and only serve 
to obscure the other results.  The graphs indicate that under UE routing, the speed 
does not vary much with the level of take-up, but is nevertheless always higher with 
guidance in operation than it is without.  The maximum increase in speed is 2%, with 
the benefits generally being greater at higher demand levels.  With the SO routing 
strategy, on the other hand, a steady increase in average speed is evident as the level 
of take-up increases, which flattens out as the point is approached at which all 
drivers are equipped (the maximum increase in speed is 5%-6%).  The reason for the 
increased speed, from considering results already discussed, is the greater distance 
which tends to be travelled under SO routing, but in a shorter time, relative to the 
base (no guidance) situation. 
 

 
 
A number of features of the strategy proposed and the model assumed will now be 
investigated, beginning in this section with a study of the "stability" of the strategies 
in conditions where there are unforeseen variations in link capacities.  The guidance 
system and the unguided drivers are assumed to base their routing decisions on the 
average capacity of each link - denoted by ha for link a, say.  In order to reproduce 
the effect of day-to-day variations in capacity, for example, the actual capacity for 
link a is modelled as a Normally distributed random variable with mean ha and 
standard deviation įha (where į>0) (NB The distribution is truncated at zero, and so 
may be biased to a small degree).  Since SATURN, on which the guidance model is 
based, calculates the parameters in the flow-delay curve by fitting it to one point at 
zero flow and free flow travel time and to one at capacity and travel time at capacity 
(where free flow travel time and travel time at capacity are assumed here to be fixed, 
user-specified quantities), then link travel times will be different using the actual 
capacity as opposed to the average capacity. 
 
In order to gain an insight into the influence of such variations, the Weetwood 
network was investigated at demand levels 1 and 2, for a take-up of 0%, 5%, 10%, 
20%, 30%, and 50%, and under both UE and SO routing strategies for the guided 
drivers.  In each case, the link capacities in the network were completely randomised 
two hundred times, the total travel time being calculated each time.  The mean and 
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standard deviation of the total travel times was then computed (care was taken to 
draw the same two hundred randomised capacities for each scenario).  The results 
obtained were as follows: 
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Demand %  Guidance   Mean  s.d. 
level  guided criterion į  total time total time 
 
 
1  0  -  0.05  4403.4 53.7 
 
1  5  UE  0.05  4383.5 53.7 
1  10  UE  0.05  4379.6 53.9 
1  20  UE  0.05  4355.3 53.2 
1  30  UE  0.05  4335.0 53.6 
1  50  UE  0.05  4293.4 54.6 
 
1  5  SO  0.05  4384.2 52.4 
1  10  SO  0.05  4368.8 50.1 
1  20  SO  0.05  4341.5 48.1 
1  30  SO 
  0.05  4316.6 46.5 
1  50  SO  0.05  4243.2 46.1 
 
1  0  -  0.10  4531.6 134.2 
 
1  5  UE  0.10  4509.6 133.9 
1  10  UE  0.10  4506.4 134.2 
1  20  UE  0.10  4480.1 132.3 
1  30  UE  0.10  4458.5 133.4 
1  50  UE  0.10  4415.0 135.2 
 
1  5  SO  0.10  4508.5 130.5 
1  10  SO  0.10  4489.8 125.9 
1  20  SO  0.10  4455.8 119.9 
1  30  SO  0.10  4427.1 116.3 
1  50  SO  0.10  4346.6 115.4 
 
1  0  -  0.15  4841.9 352.9 
 
1  5  UE  0.15  4814.0 348.5 
1  10  UE  0.15  4813.3 353.4 
1  20  UE  0.15  4781.3 342.9 
1  30  UE  0.15  4756.4 343.3 
1  50  UE  0.15  4707.1 343.1 
 
1  5  SO  0.15  4808.9 340.4 
1  10  SO  0.15  4783.0 332.7 
1  20  SO  0.15  4732.4 313.8 
1  30  SO  0.15  4695.0 306.9 
1  50  SO  0.15  4597.4 303.0 
 
2  0  UE  0.05  8376.0 210.9 
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2  5  UE  0.05  8312.2 210.5 
2  10  UE  0.05  8299.4 211.8 
2  20  UE  0.05  8245.1 211.7 
2  30  UE  0.05  8200.3 210.7 
2  50  UE  0.05  8083.6 211.5 
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Demand %  Guidance   Mean  s.d. 
level  guided criterion į  total time total time 
 
 
2  5  SO  0.05  8364.7 211.5 
2  10  SO  0.05  8306.3 208.9 
2  20  SO  0.05  8232.6 206.9 
2  30  SO  0.05  8187.2 205.4 
2  50  SO  0.05  8065.1 203.7 
 
2  0  -  0.10  8877.1 536.6 
 
2  5  UE  0.10  8804.8 533.2 
2  10  UE  0.10  8790.9 536.6 
2  20  UE  0.10  8731.9 536.6 
2  30  UE  0.10  8683.3 531.5 
2  50  UE  0.10  8555.4 534.1 
 
2  5  SO  0.10  8862.1 535.6 
2  10  SO  0.10  8794.1 531.8 
2  20  SO  0.10  8708.2 523.5 
2  30  SO  0.10  8655.4 520.0 
2  50  SO  0.10  8518.0 520.5 
 
2  0  -  0.15  10093.0 1421.8 
 
2  5  UE  0.15  9999.4 1403.6 
2  10  UE  0.15  9983.7 1414.4 
2  20  UE  0.15  9911.7 1406.5 
2  30  UE  0.15  9853.6 1391.2 
2  50  UE  0.15  9696.1 1382.6 
 
2  5  SO  0.15  10069.4 1415.3 
2  10  SO  0.15  9978.7 1408.3 
2  20  SO  0.15  9861.6 1375.2 
2  30  SO  0.15  9791.0 1364.7 
2  50  SO  0.15  9617.0 1363.4 
 
Looking at the results as a whole, it can be seen that in all cases, guidance decreases 
mean total travel time, irrespective of the level of variability in capacities; the benefit 
in this respect increases with level of take-up.  As in the standard (fixed capacity) 
case, one or two counter-intuitive results may occur at lower levels of take-up for 
demand level 2, where SO routing may give rise to a slightly longer mean total travel 
time than UE routing; in all other cases, SO routing gives rise to a lower mean travel 
time.  The advantage of SO routing appears to be greater when there is greater 
variability in link capacities and a high level of take-up. 
 
However, perhaps the most interesting feature of the results is the variance in total 
travel time.  For UE routing, on the whole only very small changes (which may be 
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positive or negative) to the total travel time standard deviation arise as a result of 
guidance; the exception appearing to be at the highest level of variabilityin capacities 
(į = 0.15) with a high (30% or more) level of take-up, where a significant decrease 
occurs in variability of total travel time.  Under SO routing, however, there is always 
a significant reduction in the travel time standard deviation with guidance in 
operation, with this saving increasing with level of take-up.  The greatest reduction is 
over 15%, achieved at the highest level of take-up considered, for demand level 1 and 
į = 0.15, with a similarly sized benefit for the same scenario when į = 0.05.  At the 
higher demand level, the benefits tend to be smaller, but still significant (3%-4% 
reduction in standard deviation). 
 
To conclude, then, this small study has to some extent demonstrated the stability of 
the two routing strategies, with significant (mean) total travel time savings over the 
`no guidance' situation, even when there is variability of which the strategy cannot 
take account.  The SO routing strategy appears to be particularly appealing in this 
respect, being more reliable in terms of network performance, with the variance in 
total travel time decreasing significantly as more drivers are equipped with guidance 
devices. 
 

 
 
It has been assumed, in the equilibrium-based strategy proposed, that unequipped 
drivers will respond to the new route choice of guided drivers, and hence still follow a 
stochastic user equilibrium, in interaction with the guided drivers.  Given that an 
SUE assignment is acceptable in the first place as a reasonable route choice model, it 
seems natural to assume that - in the long run - unguided drivers will still seek 
minimum cost routes when guidance is in operation.  Such an assumption does, 
however, neglect any loyalty unguided drivers may have to the routes they used 
before guidance was implemented (compare with Mahmassani and Jayakrishnan, 
1989).  Moreover, if the results obtained here under steady state conditions are to be 
extrapolated to suggest the potential benefits of a dynamic route guidance system, 
then it would seem appropriate to investigate scenarios in which unequipped drivers 
are not able to react fully to the behaviour of guided drivers. 
 
This will be achieved by investigating the other extreme to that already considered, in 
which unguided drivers stay on fixed routes and do not react in any way to the re-
routing of guided drivers.  This is achieved by performing a stochastic user 
equilibrium for the whole demand matrix; for a particular guidance scenario, the link 
flows arising from the 100% SUE assignment are multiplied by the proportion of 
drivers who are not equipped with guidance, and the result loaded onto the network 
as fixed flows, before performing the assignment for the guided drivers. 
 
The test runs considered previously have all been repeated for the Weetwood network 
under this alternative model of unguided drivers, and the results are given in figures 
24 to 29.  Of particular interest here is a comparison with the results obtained when 
unguided drivers were assumed to re-route (figures 3 to 8); since the results are 
bound to coincide for 0% and 100% take-up, the interest will be in the relative 
benefits at intermediate points.  Considering firstly the system travel time at demand 
level 1 - figures 3 and 24 - the most striking feature is the greater difference between 
the effects of SO and UE routing at lower levels (up to around 50%) of take-up for the 
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fixed route assumption over the re-routing one.  In the fixed route case, the SO 
routing strategy is now a pure optimisation of total travel time with respect to guided 
drivers, with unequipped drivers not able to reduce the potential benefits.  There is 
little effect on the (system) performance of the UE and SUE routing strategies of the 
unguided driver assumptions at this demand level.  In more congested conditions 
(figures 4, 5, 25 and 26), similar comments apply, although the relative advantage of 
SO routing over UE routing decreases as demand increases. 
 
In terms of the effects on individual drivers, at demand level 1 (figures 6 and 27) the 
changes in average travel time both for guided and for unguided drivers are similar 
under the two sets of assumptions.  The unguided drivers under SO routing save 
slightly more in the fixed route case (over the re-routing case) at lower levels of take-
up (<20%).  The greatest disparity is, however, in the travel times of guided drivers 
under SO routing, particularly up to around 50% take-up.  Whilst under such a 
strategy there is a similar disbenefit to equipped drivers under the two sets of 
assumptions at 5% and 10% take-up, the fixed route case gives rise to much greater 
travel time savings for guided drivers at 20%, 30% and 50% take-up. 
 
At demand level 2 (comparing figures 7 and 28), the figures for UE routing are again 
similar in the two cases.  For SO routing, on the other hand, guided drivers are on 
average slightly better off in the fixed case, as are unguided drivers at low 
percentages of equipped vehicles.  Finally, in the most congested situation considered 
(figures 8 and 29), there is generally a slightly smaller average benefit for guided 
drivers with the UE routing strategy under the fixed route case compared with the re-
routing case.  The most distinctive feature is the greater similarity between UE and 
SO routing for guided drivers under the fixed route assumption. 
 
To summarise, then, for a UE (or SUE) routing strategy the benefits of route guidance 
do not appear to be significantly affected by the response of unequipped drivers 
(assuming, as has been done throughout this paper, that it is possible to accurately 
model and predict this response).  Under SO routing at lower levels of take-up, 
greater system benefits may be gained if unequipped drivers stay on fixed routes, as 
opposed to re-routing to new minimum perceived cost routes; it tends to be the 
equipped drivers who are gaining out of this. 
 

 
 
The strategies so far considered have been distinctive in the way that they direct 
traffic between each origin-destination pair to multiple routes (ie there is at least one 
recommended route).  Such strategies have been seen to provide efficient guidance, 
even with a high proportion of vehicles equipped.  In order to obtain some 
comparison with strategies in which only a single route is recommended between 
each O-D pair, a number of test runs were also carried out using programs developed 
at Leeds in the DRIVE "ASTERIX" project. 
 
The procedure - known as SATRAP - is again an extension of the SATURN package, 
and is described in deliverable 2 of that project (ASTERIX, 1989).  The aim of the 
strategy is to re-route guided drivers in response to day-to-day variability in demand, 
and so the approach is quite different to that considered thus far (it is closer to the 
approach of Smith and Russam (1989) described in Section 2).  A particular set of 
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options of this procedure were chosen, yielding the following model of the "before 
guidance" situation: 
 
(a)The "average day" route choice is obtained by a UE assignment of the average O-D 

matrix (that is, the O-D matrix supplied). 
 
(b)Today's O-D matrix is obtained by a pseudo-random sampling: today's O-D flow Qij 

between origin i and destination j is assumed to be distributed Normally with 
mean qij and coefficient of variation ß, where qij is the corresponding element 
in the average day O-D matrix. 

 
(c)Today's assignment is obtained by using the routes chosen in the average day case, 

with traffic assigned to routes in the same proportions as the average day 
case.  (That is, the average day route flows are scaled by a factor which is the 
ratio of the average day O-D flow to today's O-D flow). 

 
It is assumed that network supply conditions are fixed, that unequipped drivers do 
not re-route in response to guidance, and that the guidance system is provided with 
perfect information, the recommendations of which are adhered to by the equipped 
drivers. 
 
The model was applied to the Barcelona network (with thirty iterations for step (a)) 
using very similar flow-delay curves to those used in the equilibrium-based strategy - 
that is, the curves are identical for flows up to capacity, but in the SATRAP procedure 
the standard SATURN assumption is used of a linear build-up of delays over 
capacity.  This was not considered to be a serious problem, as the aim was only to 
gain some insight into the performance of single route strategies.  A small number of 
scenarios were considered; these were some (but not all) combinations of: 
 
(i)Two levels of variability in the O-D matrix - ß = 0.2 and ß = 0.7 
 
(ii)Guidance to the minimum actual cost route or to the minimum marginal cost 

route between each O-D pair (the latter strategy intended to push the flows 
closer to a system optimal assignment). 

 
(iii)A number of levels of take-up - the number and range of these depending on the 

particular situation. 
 
(iv)Two demand levels; level 1 corresponding to an average network speed for the 

average day assignment/O-D matrix of approximately 35km/h (100% of the 
"observed" matrix) and level 2 to a speed of 25km/h (150% of the observed 
matrix). 

 
Two points are noted regarding these test runs.  Firstly, the "before guidance" model 
was not calibrated in order to provide a reasonable inefficiency, as for the 
equilibrium-based strategies.  This could have been achieved by basing the average 
day route choice on a SUE, and obtaining a reasonable level of inefficiency by the 
choice of the link travel time variances and the parameter ß controlling the variability 
in the O-D matrix.  This means that it will not be possible to compare the single route 
and the equilibrium-based strategies in absolute terms.  Secondly, in drawing the 
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elements of today's trip matrix at step (b) of the model, the distribution is in fact 
truncated at zero.  This means that in using a coefficient of variation as high as 0.7, 
the randomisation is almost certainly biased.  This has the effect that the mean 
number of trips is increased in the randomisation process, and so - relative to ß = 0.2 
- there is an increase in congestion as well as an increase in variability. 
 
Considering firstly ß = 0.2 and demand level 1, figure 30 shows the total system 
travel time as a function of the proportion of vehicles equipped, both for re-routing to 
the minimum actual cost route and for re-routing to the minimum marginal cost 
route.  Whilst, as mentioned above, little can be inferred about absolute benefits, the 
relative change as take-up is increased shows a clear pattern.  Up to around 10% 
take-up there is an overall benefit of actual cost re-routing, although the greatest 
saving occurs at around 6% take-up.  By the stage at which 20% of drivers are 
equipped, the recommended route for each O-D pair is so congested that the system 
is much worse off than with no guidance at all.  Minimum marginal cost routing gives 
rise to significantly greater system benefits than minimum actual cost routing, with 
the greatest saving over the before guidance situation at a take-up around 9%.  
Again, however, as more vehicles become equipped, such a strategy will eventually be 
detrimental to system performance (at somewhere between 15%-20% take-up). 
 
Figure 31 shows (for the same scenarios) that for guidance based on actual costs, the 
greatest benefit for equipped drivers occurs when few people have guidance devices 
(in fact 0.1% take-up - not shown in the figure - gives rise to a slightly larger benefit 
than 1% take-up too).  The saving decreases as more vehicles become equipped, with 
guided drivers losing out (relative to the "no guidance" situation) when 5% or more 
vehicles are equipped.  At very low levels of take-up (1% or less), unequipped drivers 
benefit through such guidance, but to a lesser extent than equipped ones.  Contrary 
to the pattern for guided drivers, those without guidance experience a greater 
reduction in average travel time as the level of take-up increases, although there is 
some evidence of the benefit stabilising (at around 0.5%).  Turning attention to 
minimum marginal cost routing, the plot shows the pattern one may have expected - 
with equipped drivers losing out to a large extent (with the magnitude of the 
disbenefit increasing with level of take-up), at the expense of unequipped drivers who 
always benefit. 
 
Figure 32 shows the system performance of minimum actual cost re-routing under 
more congested conditions (again with ß = 0.2).  As was observed for demand level 1, 
the greatest benefit is with around 5% of vehicles equipped.  In absolute terms, the 
saving in vehicle hours is also similar at the two demand levels - although as a 
percentage of the total travel time without guidance, the more congested conditions 
lead to a much smaller benefit.  The detrimental effect of such a strategy at demand 
level 2 is first obvious at between 7% and 10% take-up - somewhat lower than with 
demand level 1. 
 
Finally, figures 33 and 34 show (respectively) the system and individual benefits 
under greater variability in the O-D matrix (ß = 0.7, demand level 1).  The greatest 
system benefit of both actual and marginal cost re-routing is virtually achieved at 5% 
take-up, with the maximum saving attainable of similar magnitude for these routing 
criteria.  After this stage, as more vehicles become equipped the system travel time 
increases, with a disbenefit (relative to the "no guidance" situation) becoming 
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apparent at around 10% - 15% take-up.  The total saving in vehicle hours is slightly 
more here than with the less variable O-D matrix (ß = 0.2), although the benefit 
relative to the travel time before guidance is virtually the same in the two cases. 
 
Figure 34 suggests a rather different picture for the individual effects of such 
guidance to that obtained with ß = 0.2.  In the case of actual cost re-routing, all the 
benefit is to equipped drivers, decreasing with level of take-up.  Unequipped drivers 
at the same time experience a slight increase in average travel time due to guidance, 
the disbenefit increasing with take-up.  The pattern for marginal cost routing is not 
too dissimilar - with large benefits to equipped drivers when only a small percentage 
have a guidance device, reducing as the level of take-up increases, with the effect on 
guided drivers again relatively small (two orders of magnitude smaller). 



 

 
 
 30 

 
 

 
A model of a route guidance system has been proposed in terms of a multiple user 
class equilibrium assignment, with vehicles divided into equipped and unequipped 
classes, the former being subdivided further dependent on the routing criterion used 
and the quality of the information supplied.  Guidance is used to route vehicles either 
to a "user optimum" or to a system optimum flow pattern, assuming that without 
guidance drivers aim to follow a user equilibrium but fail to do so because of 
perception errors in their evaluation of travel times.  Furthermore, unequipped 
drivers are assumed to respond to the new route choice of guided drivers, and seek a 
new user equilibrium routing. 
 
For cost functions of a particular polynomial form, it is shown that such routing 
strategies, in combination with the route choice of unequipped drivers, are 
guaranteed to lead to a unique and stable equilibrium flow pattern. 
 
The main advantage of such an equilibrium-based strategy is that it spreads the 
traffic between multiple routes on each origin-destination movement, and so would 
be expected to lead to effective guidance even when a high proportion of drivers are 
equipped with a guidance device.  The test runs on two real life networks were used 
to investigate such a property, as well as the performance of the strategy in a number 
of different scenarios.  It was seen that both user optimal (whether or not subject to 
predictive errors or to drivers not adhering completely to the recommendations) and 
system optimal guidance reduced the total system travel time in all situations, the 
benefit being an increasing function of the level of take-up.  The maximum savings 
were of the order of 5% - 8% reduction in total travel time at 100% take-up; it should 
be remembered, however, that absolute measures of these may be somewhat 
misleading as they are highly dependent on the model of unguided drivers - the study 
of relative benefits is much more appropriate.  The level of congestion appeared to 
have less effect on the benefits, although there was some indication of slightly greater 
percentage savings in more congested situations below 50% take-up. 
 
Under user equilibrium (UE) routing, individual guided drivers experienced a 
significant reduction in average travel time, this being approximately constant (of the 
order of 5%, varying with demand level) for all levels of take-up.  Unguided drivers 
also tended to benefit from such guidance, but always to a much lesser degree than 
guided drivers (usually less than 1% reduction in average travel time); their savings 
tended to increase as the percentage of equipped drivers or the level of congestion 
increased. 
 
System optimal (SO) routing was found to lead to a slightly greater reduction in total 
travel time than UE routing, particularly in the least congested scenarios.  The effects 
on individual groups of drivers are, however, quite different in the two cases.  SO 
routing was seen to primarily benefit unequipped drivers, significantly improving 
their position in comparison with UE routing.  At lower levels of take-up (10% or less) 
this saving tends to be at the expense of equipped drivers, who may experience an 
increase (of as much as 5% in the extreme) in average travel time due to guidance.  
For higher levels of take-up, equipped drivers will benefit too from SO routing, with 
the saving in average travel time growing in similarity (lending to the order of 5%) as 
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the level of take-up increases. 
 
In terms of other performance indicators, it was seen that UE routing decreased the 
total distance travelled in the system (up to a maximum of around 5% decrease), all 
the benefit being to equipped drivers, with unequipped drivers tending to be worse off 
than without guidance in operation.  SO routing, on the other hand, led to an 
increase in total distance travelled of up to 1% at lower (<30%) levels of take-up due 
to guided drivers being directed to significantly longer (by up to 13%) but less 
congested routes.  There was little effect on unequipped drivers.  The greater distance 
travelled in a shorter time meant that the average speed increased under SO routing 
by up to 5%.  UE routing, too, tends to increase average speed, but to a much lesser 
extent. 
 
Various features of the proposed model were then investigated further.  Firstly, the 
effects of unforeseen variability in link capacities on network performance were 
studied, with guidance based, as before, on average (rather than actual) conditions.  
Results indicated that both strategies were reasonably stable even when unexplained 
variability was introduced.  The SO routing strategy was particularly appealing, as it 
was seen to lead to a significant reduction (up to 15%) in the standard deviation of 
total travel time relative to the situation before guidance was in operation. 
 
Secondly, the influence of the assumption was investigated that unequipped drivers 
re-route in response to guidance.  Modifying the model so that instead - at the other 
extreme - they kept on fixed routes, it was found that very similar results were 
obtained for UE (and SUE) routing as those which had arisen from the original 
model.  The most significant different was with SO routing at lower levels of take-up, 
with greater system benefits gained when unequipped drivers kept to fixed routes (it 
tending to be the equipped drivers who were better off than with the former model). 
 
Finally, the performance of a single route (per O-D pair) strategy, which responds to 
day-to-day variability in demand and which was developed at Leeds in a different 
"DRIVE" project, was studied for one of the test networks considered previously.  The 
main findings were that the greatest system benefit of such guidance (whether to 
minimum actual cost or minimum marginal cost routes) was at around 5% take-up, 
for the limited number of scenarios considered.  For levels of take-up higher than 
10%-15%, such guidance is likely considerably to increase total travel time relative to 
the "no guidance" situation. 
 
To conclude, then, the project has been successful in achieving its aims of developing 
(multi-route) strategies which are indeed effective at all levels of take-up and 
congestion, and whose existence and stability is guaranteed by theoretical results. 
 
The limitations of the study have, however, to be recognised, in that the modelling 
has been based only on "average" (steady state) conditions.  Furthermore, the review 
given in this report of past route guidance modelling work served to illustrate how 
model dependent results may be.  Looking to the future, there is a clear need for a 
route choice model which is able to take account of the dynamics and uncertainty of 
urban networks - including "within day" and "between day" variability in network 
supply and demand, as well as the learning process of drivers as they repeat 
particular movements.  Many route guidance issues still remain, including the 
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reaction of drivers to system optimal advice (which may sometimes be poor from a 
users perspective) and the development of strategies which give rise to greater 
stability in network performance (eg ones which are relatively robust to unforeseen 
"incidents"). 
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