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We determine the continuum limit of the curvature of the pseudocritical line of QCD with nf ¼ 2þ 1

staggered fermions at nonzero temperature and quark density. We perform Monte Carlo simulations at
imaginary baryon chemical potentials with Highly Improved Staggered Quarks (HISQ), adopting the
HISQ/tree action discretization as implemented in the code by the MILC Collaboration. Couplings are
adjusted so as to move on a line of constant physics, as determined in Ref. [1], with the strange quark mass
ms fixed at its physical value and a light-to-strange mass ratioml=ms ¼ 1=20. The chemical potential is set
at the same value for the three quark species, μl ¼ μs ≡ μ. We attempt an extrapolation to the continuum
using the results on lattices with temporal size up to Lt ¼ 12. Our estimate for the continuum value of the
curvature κ at zero baryon density, κ ¼ 0.020ð4Þ, is compared with recent lattice results and with
experimental determinations of the freeze-out curve.

DOI: 10.1103/PhysRevD.93.014507

I. INTRODUCTION

The phase diagram of strongly interacting matter in the
temperature (T)-baryon density plane remains a challenge
for theoretical physics. Although there is little doubt that it
features a low-temperature hadronic phase, with broken
chiral symmetry, and a high-temperature deconfined phase,
with restored chiral symmetry, the question about the
precise location and the exact nature of the transition
between these two phases is still open. Yet, the answer
to this question has many phenomenological implications:
the region of the phase diagram with high T and small
baryon density is relevant for the physics of the early
Universe, whereas the region of low T and high baryon
density is interesting for the astrophysics of some compact
objects, but other corners of the phase diagram are not less
interesting (see Ref. [2] for an overview).
Relativistic heavy-ion collisions provide us with a

unique opportunity to infer properties of the transition:
depending on the energy of the ion beams and on the mass
number of the colliding ions, the fireball generated in the
collision could fulfill the temperature and baryon density
conditions under which the deconfined phase appears as a
transient state, before the system freezes out into hadrons,
which are then detected. Thermal-statistical models, assum-
ing approximate chemical equilibrium at the chemical

freeze-out point, are able to describe the particle yields
at a given collision energy in terms of two parameters only,
the freeze-out temperature T and the baryon chemical
potential μB. The collection of freeze-out parameters
extracted from experiments with different collision energy
lie on a curve in the ðT; μBÞ plane, extending up to μB ≲
800 MeV (see Fig. 1 of Ref. [3], or Ref. [4] for a recent
reanalysis of experimental data).
QCD is widely accepted as the theory of strong inter-

actions and, as such, must encode all the information
needed to precisely draw the phase diagram in the ðT; μBÞ
plane. As a matter of fact, only some corners of it can be
accessed by first-principle applications of QCD, in the
perturbative or in the nonperturbative regime. Here, we
focus on the lattice approach of QCD, based on the idea of
discretizing the theory on a Euclidean space-time lattice
and simulating it by Monte Carlo numerical simulations as
a statistical system, with Boltzmann weight given by
expð−SEÞ, where SE is the QCD Euclidean action. The
region of the phase diagram where μB=ð3TÞ≲ 1 is within
the reach of this approach, and one can therefore address, at
least inside this region, the problem of determining the
shape taken by the QCD pseudocritical line separating the
hadronic from the deconfined phase.
There is no a priori argument for the coincidence of the

QCD pseudocritical line with the chemical freeze-out
curve: if the deconfined phase is realized in the fireball,
in cooling down, the system first rehadronizes, then reaches
the chemical freeze-out. This implies that the freeze-out
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curve lies below the pseudocritical line in the μB − T plane.
It is a common working hypothesis that the delay between
chemical freeze-out and rehadronization is so short that the
two curves lie close to each other and can therefore be
compared. Under the assumptions of charge-conjugation
invariance at μB ¼ 0 and analyticity around this point, the
QCD pseudocritical line, as well as the freeze-out curve,
can be parametrized, at low baryon densities, by a lowest-
order expansion in the dimensionless quantity μB=TðμBÞ, as

TðμBÞ
Tcð0Þ

¼ 1 − κ

�
μB

TðμBÞ
�

2

þ…; ð1Þ

where Tcð0Þ and κ are, respectively, the pseudocritical
temperature and the curvature at vanishing baryon density.
Direct Monte Carlo simulations of lattice QCD at non-

zero baryon density are hindered by the well-known “sign
problem”: SE becomes complex, and the Boltzmann weight
loses its sense. Several ways out of this problem have been
devised (see Ref. [5] for a review): redesigning the
Monte Carlo updating algorithms for a complex action
[6], reweighting from the ensemble at μB ¼ 0 [7], Taylor
expanding the relevant observables around μB ¼ 0 and
calculating the first coefficients of the series by simulations
at μB ¼ 0 [8–10], using the canonical formulation [11,12],
using the density of states method [13], and simulating the
theory at imaginary chemical potentials and performing the
analytic continuation to real ones [14–21].
The numerical evidence gathered so far in QCD with

nf ¼ 2þ 1 and physical or almost physical quark masses
points to a scenario with a smooth crossover between the
hadronic and the deconfined (or chirally symmetric) phase
at μB ¼ 0, with a pseudocritical temperature Tcð0Þ of about
155 MeV [1,22]. This crossover behavior should persist in
some neighborhood of μB ¼ 0, up to the onset of a first-
order transition at some value of μB > 0.
The state of the art of lattice determinations of the

curvature κ, up to the very recent papers of Refs. [20,21], is
summarized in Fig. 10 of Ref. [19]: depending on the lattice
setup and on the observable used to probe the transition, the
value of κ can change even by almost a factor of 3. The
lattice setup dependence stems from the kind of adopted
discretization, the lattice size, the choice of quark masses
and chemical potentials, and the procedure to circumvent
the sign problem. This dependence would totally disappear
if, ideally, all groups would use the same lattice setup. A
contribution to the understanding of the impact of the
lattice setup dependence is provided in Appendix B of
Ref. [19]. The dependence on the probe observable is,
instead, irreducible: since a smooth crossover is taking
place rather than a true phase transition, one cannot define a
bona fide order parameter of which the behavior would
permit uniquely locating the transition point; instead, for
any adopted surrogate observable, a different transition
point should be expected, at least in principle.

On the side of the determinations of the freeze-out curve,
two recent determinations [3,4] of κ, both based on the
thermal-statistical model, but the latter of them including
the effect of inelastic collisions after freeze-out, give two
quite different values of κ, each seeming to prefer a
different subset of lattice results (see Fig. 3 of Ref. [18]
for a snapshot of the situation).
The aim of this work is to contribute to a better

understanding of the systematics underlying lattice deter-
minations of the curvature κ, by corroborating our previous
determination [18] with an extrapolation to the continuum
limit and by comparing it with experimental analyses of the
freeze-out curve.
Our lattice setup is as follows. We simulate the HISQ/

tree action of the MILC Collaboration with 2þ 1 staggered
fermions on lattices with the temporal extension Lt ¼ 6, 8,
10, and 12 and aspect ratio equal to 4. We work on the line
of constant physics as determined in Ref. [1], with the
strange mass set at the physical value and the light quark
mass fixed at ml ¼ ms=20. As discussed in Ref. [1], this
amounts to tuning the strange quark mass until the mass of
the fictitious ηss̄ meson matches the lowest-order perturba-
tion theory estimate mηss̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
. Consequently,

within our simulations, the pion mass is mπ ≃ 160 MeV.
We perform simulations at imaginary quark chemical

potentials, assigning the same value to the three quark
species, μl ¼ μs ≡ μ, then extrapolate to real chemical
potentials. Our probe observables are the disconnected
susceptibility of the light quark chiral condensate and its
renormalized counterpart. Simulating the theory at imagi-
nary chemical potentials poses no restriction on the lattice
size or in the choice of the couplings. However, the
periodicity in ImðμlÞ=T of the partition function [23]
implies that the information gathered outside a narrow
interval of imaginary chemical potentials is redundant. For
the setup with μl ¼ μs ≡ μ, this interval can be chosen as
the region 0 ≤ ImðμÞ=T ≤ π=3. A safe extrapolation of the
critical line to real chemical potentials requires that it
exhibits a smooth dependence on imaginary chemical
potential over this interval, a condition which must be
checked to be satisfied a posteriori by our data.
The preference to the disconnected susceptibility of the

light quark chiral condensate has multiple motivations [1].
First of all, for small enough quark masses, its contribution
to the chiral susceptibility dominates over the connected
one, which is harder to compute; then, it shows a strong
sensitivity to the transition; finally, it is exempt from
additive renormalization, undergoing only a multiplicative
one. This translates into a very precise determination of the
critical couplings at imaginary μ, which is the main
prerequisite of a safe extrapolation to the real values of μ.
There are two main limitations in our setup. The first is

that we work with a physical strange quark mass, but with
light quarks a bit heavier than physical ones. Numerical
results in nf ¼ 2 indicate a mild dependence of the
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curvature on the quark mass (see the discussion in Sec. III
of Ref. [17]). If the same applies here, as we believe, our
result for κ will only slightly underestimate (in an absolute
value) the true physical curvature. The second limitation is
that, for the sake of comparison with the freeze-out curve,
our setup of chemical potentials could not be the one which
better reproduces the initial conditions of heavy ion
collision. In fact, strangeness neutrality would rather
impose μs ≲ μl. In general, the setup μl ¼ μs ¼ μB=3
approximates strangeness neutrality at low temperatures,
while the μs ¼ 0 setup is relevant for high enough temper-
atures. It is natural to expect that the effect of taking μs ¼ μl
instead of μs ¼ 0 becomes less and less evident when μl=T
approaches zero, so that the curvature κ at zero baryon
density should not differ too much in the two cases. The
numerical analysis of Refs. [19–21] has shown that this
effect is invisible within the accuracy of the lattice setup
adopted there.
The paper is organized as follows. In Sec. II, we give

some further details of our numerical simulations. In
Sec. III, we show our numerical results for κ. Finally, in
Sec. IV, we draw our conclusions.

II. SIMULATION DETAILS
AND NUMERICAL RESULTS

We perform simulations of lattice QCD with 2þ 1
flavors of rooted staggered quarks at imaginary quark
chemical potential. We have made use of the HISQ/tree
action [24–26] as implemented in the publicly available
MILC code [27], which has been suitably modified by us in
order to introduce an imaginary quark chemical potential
μ ¼ μB=3. That has been done by multiplying all forward
and backward temporal links entering the discretized Dirac
operator by expðiaμÞ and expð−iaμÞ, respectively; in this
way, the fermion determinant is still real and positive so
that standard Monte Carlo methods can be applied. As
already remarked above, in the present study, we have
μ ¼ μl ¼ μs. This means that the Euclidean partition
function of the discretized theory reads

Z ¼
Z

½DU�e−Sgauge
Y

q¼u;d;s

detðDq½U; μ�Þ1=4; ð2Þ

where Sgauge is the Symanzik-improved gauge action and
Dq½U; μ� is the staggered Dirac operator, modified as
explained above for the inclusion of the imaginary quark
chemical (see Ref. [25] and Appendix A of Ref. [26] for the
precise definition of the gauge action and the covariant
derivative for highly improved staggered fermions).
All simulations make use of the rational hybrid

Monte Carlo (RHMC) algorithm. The length of each
RHMC trajectory has been set to 1.0 in molecular dynamics
time units.

We have simulated the theory at finite temperature, and
for several values of the imaginary quark chemical poten-
tial, near the transition temperature, adopting lattices of size
163 × 6, 243 × 6, 323 × 8, 403 × 10, and 483 × 12. We
have discarded typically not less than 1000 trajectories for
each run and have collected from 4000 to 8000 trajectories
for measurements.
The pseudocritical point βcðμ2Þ has been determined as

the value for which the renormalized disconnected suscep-
tibility of the light quark chiral condensate divided by T2

exhibits a peak. The bare disconnected susceptibility is
given by

χ1;disc ¼
n2f

16L3
sLt

fhðTrD−1
q Þ2i − hTrD−1

q i2g: ð3Þ

Here, nf ¼ 2 is the number of light flavors, and Ls denotes
the lattice size in the space direction. The renormalized
chiral susceptibility is defined as

χ1;ren ¼
1

Z2
m
χ1;disc: ð4Þ

The multiplicative renormalization factor Zm can be
deduced from an analysis of the line of constant
physics for the light quark masses. More precisely, we
have [26]

ZmðβÞ ¼
mlðβÞ
mlðβ�Þ

; ð5Þ

where the renormalization point β� is chosen such that

r1
aðβ�Þ ¼ 2.37; ð6Þ

where the function aðβÞ is discussed below. In Fig. 1 is
shown the multiplicative renormalization factor Zm deter-
mined in the case when r1 is used to set the scale (see
below). To precisely localize the peak in χ1;ren=T2, a
Lorentzian fit has been used. For illustrative purposes, in
Fig. 2, we display our determination of the pseudocritical
couplings at μ=ðπTÞ ¼ 0.2i for all lattices considered in
this work. The complete collection of results for the
disconnected susceptibility of the light quark chiral
condensate obtained in this work is presented in the
Appendix.
To get the ratios TcðμÞ=Tcð0Þ, we fix the lattice

spacing through the observables r1 and fK , following
the discussion in Appendix B of Ref. [1]. For the
r1 scale, the lattice spacing is given in terms of the r1
parameter as
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a
r1
ðβÞml¼0.05ms

¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ
1þ d2ð10=βÞf2ðβÞ

; ð7Þ

with c0 ¼ 44.06, c2 ¼ 272102, d2 ¼ 4281, and r1 ¼
0.3106ð20Þ fm. On the other hand, in the case of the fK
scale, we have

afKðβÞml¼0.05ms
¼ cK0 fðβÞ þ cK2 ð10=βÞf3ðβÞ

1þ dK2 ð10=βÞf2ðβÞ
; ð8Þ

with cK0 ¼7.66, cK2 ¼32911, dK2 ¼2388, and r1fK≃0.1738.
In Eqs. (7) and (8), fðβÞ is the two-loop beta function,

fðβÞ ¼ ðb0ð10=βÞÞ−b1=ð2b20Þ expð−β=ð20b0ÞÞ; ð9Þ

b0 and b1 being its universal coefficients.
Our results are summarized in Table I. For all lattice sizes

but 243 × 6 (where we have only one value of μ), the
behavior of TcðμÞ=Tcð0Þ can be nicely fitted with a linear
function in μ2,

TcðμÞ
Tcð0Þ

¼ 1þ Rq

�
iμ

πTcðμÞ
�

2

; ð10Þ

which gives us access to the curvature Rq and, hence, to the
curvature parameter κ ¼ −Rq=ð9π2Þ introduced in Eq. (1).
On the 243 × 6 lattice, the linearity in μ2 has been assumed
to hold, in order to extract Rq from the only available
determination at μ=ðπTÞ ¼ 0.2i.
For the sake of the extrapolation to the continuum limit,

in Fig. 3, we report our determinations of Rq on the lattices
243 × 6, 323 × 8, 403 × 10, and 483 × 12 and from the two
different methods to set the scale, vs 1=L2

t .
Within our accuracy, cutoff effects on Rq are negligible

so that a constant fit works well over the whole region
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FIG. 2. The real part of the renormalized susceptibility of the
light quark chiral condensate over T2 on the lattices 163 × 6,
323 × 8, 403 × 10, and 483 × 12 at μ=ðπTÞ ¼ 0.2i. Full lines give
the Lorentzian fits near the peaks. The temperature has been
determined from the r1 scale.
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FIG. 1. The multiplicative renormalization factor Zm in the case
of the r1 scale. The renormalization point is β� ¼ 6.54706.

TABLE I. Summary of the values of the ratio TcðμÞ=Tcð0Þ for
the imaginary quark chemical potentials μ considered in this
work. The data for μ ¼ 0 on the 243 × 6, 323 × 68, and 483 × 12
lattices have been estimated from the disconnected chiral sus-
ceptibilities reported, respectively, in Tables X, XI, and XII of
Ref. [1]. The datum for μ ¼ 0 on the 403 × 10 lattice has been
estimated from the disconnected chiral susceptibilities reported in
Table XI of Ref. [28]. The values of TcðμÞ=Tcð0Þ evaluated fixing
the lattice scale by r1 and fK are reported, respectively, in the
third and in the fourth columns of the table.

TcðμÞ=Tcð0Þ TcðμÞ=Tcð0Þ
Lattice μ=ðπTÞ (r1 scale) (fK scale)

163 × 6 0.15i 1.038(13) 1.043(14)
0.2i 1.063(15) 1.070(15)
0.25i 1.085(16) 1.095(18)

243 × 6 0.2i 1.061(9) 1.067(10)
323 × 8 0.15i 1.054(7) 1.059(8)

0.2i 1.066(10) 1.071(11)
0.25i 1.117(10) 1.126(10)

403 × 10 0.15i 1.023(23) 1.024(24)
0.2i 1.075(14) 1.079(15)
0.25i 1.102(15) 1.107(15)

483 × 12 0.15i 1.013(31) 1.013(33)
0.20i 1.051(14) 1.052(15)
0.25i 1.094(26) 1.097(25)
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(χ2r ≃ 0.99), thus including also the smallest 243 × 6 lattice.
Taking into account the uncertainties due to the continuum
limit extrapolation,

κ ¼ 0.020ð4Þ: ð11Þ

Our estimate of the uncertainties for the curvature given in
Eq. (11) takes into account both the error in the fit
minimization and the choice of the minimization function.
We stress, however, that if we exclude from the fit the value
on the lattice with the smallest Lt, i.e., the rightmost points
in Fig. 3, the extrapolation to the continuum becomes
largely undetermined. Indeed, with the values of Rq
obtained in the present work (see Table II), the fit with
a constant is rather stable even if Lt ¼ 6 is excluded, but the
fit with a linear function in 1=L2

t in the latter case gives a
much smaller value of the curvature κ, though with a large
uncertainty (see Table III).

III. CONCLUSIONS AND DISCUSSION

We have studied QCD with nf ¼ 2þ 1 flavors discre-
tized in the HISQ/tree rooted staggered fermion formu-
lation and in the presence of an imaginary baryon chemical
potential, with a physical strange quark mass and a light-to-
strange mass ratio ml=ms ¼ 1=20, and μ ¼ μl ¼ μs.
We have estimated, by the method of analytic continu-

ation, the continuum limit of the curvature of the pseu-
docritical line in the temperature-baryon chemical
potential, defined in Eq. (1). The observable adopted to
identify, for each fixed μ, the crossover temperature has
been the disconnected part of the renormalized suscep-
tibility of the light quark chiral condensate, in units of the
squared temperature. This observable is convenient for
many reasons: it dominates, for small enough quark
masses, the whole light chiral susceptibility, which would
be much harder to implement; it undergoes only a multi-
plicative renormalization; it is strongly sensitive to the
transition, thus allowing precise determinations of the
pseudocritical temperatures.
We have found that, within the accuracy of our deter-

minations, cutoff effects on the curvature are negligible
already on the lattice with temporal size Lt ¼ 6. Our
determination of the curvature parameter, κ ¼ 0.020ð4Þ,
is indeed compatible with the value quoted in our previous
paper [18], κ ¼ 0.018ð4Þ, without the extrapolation to the
continuum.
It is interesting to extrapolate the critical line as deter-

mined in this work to the region of real baryon density and
compare it with the freeze-out curves resulting from a few
phenomenological analyses of relativistic heavy-ion colli-
sions. This is done in Fig. 4, where we report two different
estimates. The first is from the analysis of Ref. [3], based on

TABLE II. Summary of determinations of the curvature Rq for all values of Lt considered in this work and from
the two different methods to set the scale.

Lt 6 8 10 12

Rq (r1 scale) −1.466ð306Þ −1.902ð192Þ −1.685ð294Þ −1.337ð410Þ
κ (r1 scale) 0.017(3) 0.021(2) 0.019(3) 0.015(5)
Rq (fK scale) −1.646ð336Þ −2.041ð206Þ −1.769ð309Þ −1.394ð415Þ
κ (rK scale) 0.019(4) 0.023(2) 0.020(3) 0.016(5)

TABLE III. Summary of the fit of the curvature κ with the
function κðLtÞ ¼ κ þ A=L2

t , with A taken equal to zero or left
free. The first column specifies the values of Lt included in the fit,
and the last column specifies the reduced χ2. The uncertainties on
the fit parameters are obtained with 70% confidence level.

Lt included κ A χ2r

6, 8, 10, 12 0.01991(114) 0. 0.76
6, 8, 10, 12 0.02014(449) −0.015ð259Þ 0.89
8, 10, 12 0.02048(127) 0. 0.80
8, 10, 12 0.01182(748) 0.669(559) 0.14

0 0.005 0.01 0.015 0.02 0.025 0.03

1/Lt
2

-3

-2.5

-2

-1.5

-1

-0.5

0

Rq

FIG. 3. Determinations of the curvature Rq on the lattices
243 × 6, 323 × 8, 403 × 10, and 483 × 12 and from the two
different methods to set the scale, vs 1=L2

t . Data points related
with the fK scale setting have been slightly shifted along the
horizontal axis for better readability. The dashed horizontal line
gives the result of the fit to all data with a constant; the solid
horizontal lines indicate the uncertainty on this constant
(95% confidence level).
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the standard statistical hadronization model, where the
freeze-out curve is parametrized as

TcðμBÞ ¼ a − bμ2B − cμ4B; ð12Þ

with a ¼ 0.166ð2Þ GeV, b ¼ 0.139ð16Þ GeV−1, and
c ¼ 0.053ð21Þ GeV−3. The second estimate is from
Ref. [29] and is based on the analysis of susceptibilities
of the (conserved) baryon and electric charges. In fact, our
critical line is in nice agreement with all the freeze-out
points of Refs. [3,29]. In particular, using our estimate of
the curvature, Eq. (11), we get b ¼ 0.128ð25Þ GeV−1, in
very good agreement with the quoted phenomenological
value. The significance of the comparison presented in
Fig. 4, with special reference to the question whether the
pseudocritical line lies indeed above the freeze-out curve,
can be increased at the (non-negligible) price of reducing
the uncertainties on Tcð0Þ and on κ.
Some caveats are in order here. We do not expect our

critical line to be reliable too far from μ ¼ 0; as a rule of
thumb, we can trust it up to real quark chemical potentials
of the same order of the modulus of the largest imaginary
chemical potential included in the fit (10), i.e.,
jμj=ðπTÞ ¼ 0.25. This translates to real baryon chemical
potentials in the region μB ≲ 0.4 GeV. Moreover, the effect
of taking μs ¼ μl instead of μs < μl should become visible
on the shape of the critical line as we move away from
μ ¼ 0 in the region of real baryon densities, thus reducing

further the region of reliability of our critical line. So, from
a prudential point of view, the agreement shown in Fig. 4
could be considered the fortunate combination of different
kinds of systematic effects. We cannot, however, exclude
the possibility that the message from Fig. 4 is to be
interpreted in positive sense; i.e., the setup we adopted
and the observable we considered may catch better some
features of the crossover transition, thus explaining the nice
comparison with freeze-out data. Indeed, our result for the
continuum extrapolation of the curvature κ is in fair
agreement with the recent estimates in Ref. [20], where
both setup μs ¼ μl and μs ¼ 0 were adopted, and Ref. [21],
where the strangeness neutral trajectories were determined
from lattice simulations by imposing hnSi ¼ 0.
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APPENDIX: SUMMARY OF DATA FOR THE
DISCONNECTED SUSCEPTIBILITY OF THE
LIGHT QUARK CHIRAL CONDENSATE

In this Appendix (Tables IV–XVI), we summarize all the
results for the disconnected chiral susceptibility obtained
in our simulations for each considered value of the coupling
β and for the corresponding physical temperature, as
determined from the two different procedures to set the
scale.
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FIG. 4. TcðμBÞ vs μB (units in GeV). Experimental values of
TcðμBÞ are taken from Fig. 1 of Ref. [3] (black circles) and from
Fig. 3 of Ref. [29] (green triangles), for the standard hadroniza-
tion model and for the susceptibilities of conserved charges,
respectively. The dashed line is a parametrization corresponding
to TcðμBÞ ¼ Tcð0Þ − bμ2B with Tcð0Þ ¼ 0.154ð9Þ GeV and
b ¼ 0.128ð25Þ GeV−1. The solid lines represent the correspond-
ing error band.

TABLE IV. Data for the disconnected chiral susceptibility on
the 163 × 6 lattice at μ=ðπTÞ ¼ 0.150i: the second column gives
χl;disc defined in Eq. (3), and the fourth and sixth columns give
χl;ren=T2, with χl;ren defined in Eq. (4) and the temperature T
(columns three and five, respectively) determined by the two
different methods to set the scale.

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.000 0.939 (0.114) 147.3 25.5 (3.1) 138.2 27.7 (3.4)
6.050 0.495 (0.134) 154.6 14.0 (3.8) 145.8 15.0 (4.1)
6.100 1.133 (0.145) 162.3 33.2 (4.3) 153.8 35.4 (4.5)
6.125 1.260 (0.089) 166.3 37.6 (2.6) 158.0 39.8 (2.8)
6.150 1.273 (0.079) 170.4 38.6 (2.4) 162.3 40.7 (2.5)
6.175 1.187 (0.086) 174.6 36.6 (2.7) 166.7 38.4 (2.8)
6.195 1.093 (0.107) 178.1 34.1 (3.3) 170.2 35.6 (3.5)
6.200 0.944 (0.100) 178.9 29.5 (3.1) 171.1 30.8 (3.3)
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TABLE V. Data for the disconnected chiral susceptibility on the
163 × 6 lattice at μ=ðπTÞ ¼ 0.200i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.100 1.010 (0.105) 162.3 29.6 (3.1) 153.8 31.5 (3.3)
6.125 1.026 (0.063) 166.3 30.6 (1.9) 158.0 32.4 (2.0)
6.150 1.135 (0.081) 170.4 34.4 (2.5) 162.3 36.3 (2.6)
6.175 1.208 (0.095) 174.6 37.2 (2.9) 166.7 39.1 (3.1)
6.200 1.191 (0.093) 178.9 37.3 (2.9) 171.1 38.9 (3.0)
6.225 0.915 (0.095) 183.4 29.0 (3.0) 175.8 30.2 (3.2)
6.250 0.814 (0.078) 187.9 26.2 (2.5) 180.5 27.1 (2.6)

TABLE VI. Data for the disconnected chiral susceptibility on
the 163 × 6 lattice at μ=ðπTÞ ¼ 0.250i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.150 0.899 (0.095) 170.4 27.3 (2.9) 162.3 28.8 (3.0)
6.180 1.089 (0.064) 175.5 33.7 (2.0) 167.5 35.3 (2.1)
6.186 1.078 (0.083) 176.5 33.5 (2.6) 168.6 35.0 (2.7)
6.200 1.117 (0.097) 178.9 34.9 (3.0) 171.1 36.5 (3.2)
6.250 0.784 (0.066) 187.9 25.2 (2.1) 180.5 26.1 (2.2)
6.300 0.561 (0.051) 197.3 18.5 (1.7) 190.2 19.0 (1.7)
6.350 0.189 (0.047) 207.2 6.4 (1.6) 200.5 6.5 (1.6)

TABLE VII. Data for the disconnected chiral susceptibility on
the 243 × 6 lattice at μ=ðπTÞ ¼ 0.200i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.120 0.916 (0.107) 165.5 27.3 (3.2) 157.2 28.9 (3.4)
6.150 1.106 (0.136) 170.4 33.6 (4.1) 162.3 35.4 (4.4)
6.165 0.849 (0.079) 172.9 26.0 (2.4) 164.9 27.3 (2.5)
6.180 1.084 (0.073) 175.5 33.5 (2.3) 167.5 35.1 (2.4)
6.195 1.288 (0.078) 178.1 40.2 (2.4) 170.2 42.0 (2.5)
6.210 1.159 (0.087) 180.7 36.5 (2.7) 173.0 38.0 (2.9)
6.225 1.244 (0.098) 183.4 39.5 (3.1) 175.8 41.1 (3.2)
6.240 1.030 (0.070) 186.1 33.0 (2.2) 178.6 34.2 (2.3)
6.255 0.979 (0.160) 188.8 31.6 (5.1) 181.4 32.7 (5.3)
6.270 0.692 (0.062) 191.6 22.5 (2.0) 184.3 23.2 (2.1)
6.300 0.430 (0.038) 197.3 14.2 (1.2) 190.2 14.6 (1.3)

TABLE VIII. Data for the disconnected chiral susceptibility on
the 323 × 8 lattice at μ=ðπTÞ ¼ 0.150i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.415 0.646 (0.073) 165.5 39.7 (4.5) 160.9 40.1 (4.6)
6.424 0.730 (0.047) 167.0 45.0 (2.9) 162.4 45.5 (3.0)
6.429 0.780 (0.035) 167.8 48.2 (2.2) 163.2 48.6 (2.2)
6.436 0.865 (0.059) 169.0 53.6 (3.7) 164.4 54.1 (3.7)
6.450 0.962 (0.047) 171.3 59.8 (3.0) 166.8 60.3 (3.0)
6.460 0.883 (0.070) 173.0 55.1 (4.4) 168.6 55.4 (4.4)
6.470 0.776 (0.060) 174.6 48.6 (3.8) 170.3 48.8 (3.8)

TABLE IX. Data for the disconnected chiral susceptibility on
the 323 × 8 lattice at μ=ðπTÞ ¼ 0.200i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.390 0.585 (0.073) 161.7 35.6 (4.4) 156.8 36.2 (4.5)
6.423 0.751 (0.048) 166.8 46.3 (3.0) 162.2 46.8 (3.0)
6.445 0.757 (0.051) 170.4 47.0 (3.2) 166.0 47.4 (3.2)
6.460 0.834 (0.058) 173.0 52.1 (3.6) 168.6 52.4 (3.7)
6.475 0.808 (0.051) 175.5 50.7 (3.2) 171.2 50.9 (3.2)
6.488 0.860 (0.053) 177.7 54.2 (3.3) 173.5 54.3 (3.3)
6.515 0.565 (0.045) 182.4 35.8 (2.8) 178.3 35.8 (2.8)
6.550 0.420 (0.039) 188.7 26.9 (2.5) 184.8 26.8 (2.5)

TABLE X. Data for the disconnected chiral susceptibility on
the 323 × 8 lattice at μ=ðπTÞ ¼ 0.250i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.420 0.613 (0.055) 166.4 37.7 (3.4) 161.7 38.2 (3.4)
6.455 0.555 (0.044) 172.1 34.6 (2.7) 167.7 34.8 (2.7)
6.490 0.792 (0.053) 178.1 49.9 (3.4) 173.8 50.0 (3.4)
6.525 0.753 (0.051) 184.2 47.8 (3.3) 180.2 47.8 (3.3)
6.560 0.568 (0.030) 190.6 36.5 (2.0) 186.7 36.3 (1.9)

TABLE XI. Data for the disconnected chiral susceptibility on
the 403 × 10 lattice at μ=ðπTÞ ¼ 0.150i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.550 0.444 (0.043) 151.0 44.4 (4.3) 147.9 44.3 (4.3)
6.606 0.570 (0.070) 159.4 57.9 (7.1) 156.5 57.4 (7.0)
6.648 0.524 (0.037) 165.9 53.6 (3.8) 163.2 53.0 (3.8)
6.690 0.525 (0.048) 172.7 54.1 (4.9) 170.2 53.3 (4.8)
6.732 0.402 (0.035) 179.8 41.7 (3.6) 177.4 41.0 (3.5)

TABLE XII. Data for the disconnected chiral susceptibility on
the 403 × 10 lattice at μ=ðπTÞ ¼ 0.200i (legend as in Table IV).

β χl;disc

TðMeVÞ
(r1 scale) χl;ren=T2

TðMeVÞ
(fK scale) χl;ren=T2

6.575 0.420 (0.042) 154.7 42.3 (4.3) 151.7 42.0 (4.2)
6.600 0.425 (0.047) 158.4 43.1 (4.8) 155.5 42.7 (4.7)
6.630 0.407 (0.043) 163.1 41.6 (4.4) 160.3 41.1 (4.3)
6.655 0.525 (0.057) 167.0 53.8 (5.8) 164.4 53.1 (5.8)
6.680 0.550 (0.067) 171.1 56.7 (6.9) 168.5 55.8 (6.8)
6.730 0.481 (0.051) 179.4 49.9 (5.3) 177.1 49.0 (5.2)
6.775 0.297 (0.037) 187.3 31.0 (3.9) 185.1 30.4 (3.8)
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