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ABSTRACT 

 

Abstract State Machines (ASMs) are very helpful in analyzing critical and complex systems, but they lack 

of inherent, domain-independent characterizations of computationally interesting properties. Our long-term 

research aims at providing an ASM-based characterization of the starvation-freedom property. To this end, 

in the present paper the Ad-hoc On-demand Distance Vector (AODV) routing protocol for Mobile Ad-hoc 

NETworks (MANETs) is modeled through ASMs, and starvation is studied. This experience suggests us to 

focus on vulnerable rules as the key issue that drives the risk of starvation within the ASM framework. 
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1. INTRODUCTION  

Several formalisms are successfully applied to 

the development of critical and complex systems in 

a wide range of application domains, and to their 

ex-ante and ex-post analysis aimed at investigating, 

verifying and validating functionality and quality 

issues. Representing the system-under-study at a 

high level of abstraction allows developers to focus 

on algorithmic aspects, rather than on specific reali-

zations of solutions at lower levels. Moreover, the 

mathematical foundation of formal methods pro-

vides complete and unambiguous investigations 

about the properties and the behavior the system-

under-study is required to exhibit. 

In this context researchers usually distinguish 

two classes of computationally interesting proper-

ties [1]. Safety properties specify that “something 

bad never happens”; for instance, in a mutual exclu-

sion algorithm the “bad thing” is when two or more 

processes are in the critical section. Instead, 

liveness properties stipulate that “something good 

eventually happens”; for instance, in the same algo-

rithm, the “good thing” is that each process eventu-

ally enters the critical section. Well-known exam-

ples of liveness properties are the reachability of a 

certain state, the reversibility to a previous state, 

termination, starvation-freedom, and so on. 

Some formalisms provide inherent characteriza-

tions of properties, in the sense that they can be 

viewed as independent from the application do-

main, so that the formal verification of the compu-

tationally interesting properties of the modeled sys-

tems can be easily conducted. For example, in the 

Petri Net framework [2] a marking Mi is reachable 

from an initial marking M0 if there exists a se-

quence of transitions such that M0 is transformed 

into Mi. If a marking is not reachable, then the tran-

sitions it drives are useless and can be deleted. Un-

fortunately, not all formalisms provide such fea-

tures: in fact, from this point of view, Abstract State 

Machines (ASMs) [3] lack. 

This paper specifically deals with the starvation-

freedom property, here intended as the capability of 

a process to “make progress infinitely often” [4]. 

Our long-term research aims at providing an ASM-

based characterization of starvation-freedom in or-

der to systematically investigate it. The aim is to 

enlarge the general body-of-knowledge of the ASM 

framework and reinforce it as a conceptual tool that 

developers can find useful and practical for investi-

gating starvation issues in an operational fashion.  

To this end, in this paper we report on a case 

study in which an ASM-based model of the Ad-hoc 

On-demand Distance Vector (AODV) routing pro-

tocol [5] for Mobile Ad-hoc NETworks (MANETs) 

[6] is used for studying starvation. More precisely, 

the model allows us to identify a vulnerable rule 

which captures starvation risks inside ASMs, and 

analyze the refinement needed to ensure that starva-

tion-freedom is satisfied. It is worth noting that 
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AODV is only studied, but no empirical investiga-

tion is here presented. 

The rest of this paper is structured as follows. 

The next section is about related work. Then, back-

ground on both ASMs and AODV is provided. The 

core of the paper is the ASM model of AODV, and 

its discussion. Finally, the paper concludes with the 

description of future work. 

2. RELATED WORK  
 

The ASM framework supports both manual and 

automatic formal verification of systems.  

Concerning manual analysis, in [7] numerous 

proofs are provided to illustrate how a modeler can 

verify properties of a given ASM. Indeed, ASMs 

are machines equipped with a notion of run that 

lend themselves to traditional mathematical reason-

ing or mental simulation. These proofs range from 

simple to complex and are conceived for being used 

by human experts. Another approach is provided in 

[8], where a verification calculus based on the 

Hoare logic is proposed. However, the calculus on-

ly considers partial correctness, i.e. the result of the 

computation is what was expected, and is only tai-

lored for a specific class of ASMs. Moreover, it is 

worth noting that a logic for ASMs exists [9]. How-

ever, it does not provide characterizations of specif-

ic computationally interesting properties, such as 

starvation-freedom. The ASM notion of run is very 

helpful for supporting the practitioners’ work, inde-

pendently from the possibility of developing auto-

matic verification mechanisms. Nevertheless, since 

it requires human effort, the manual approach does 

not offer absolute guarantee and is error-prone. 

Moreover, it often requires to deal with theorems, 

lemmas, etc., that are quite distant from the devel-

opers’ average background. 

Concerning automatic analysis, several examples 

of model checking techniques applied to ASMs ex-

ist, for example [10] and [11]. However, the Tu-

ring-completeness of the formalism [3] causes an 

unavoidable drawback: properties are, in general, 

undecidable, so the formal verification of ASM 

specifications cannot be fully automatized [12]. In 

fact, an algorithm capable of verifying a specific 

configuration of a given ASM would be able to ver-

ify that a certain configuration, e.g. an halting one, 

is reachable by a Turing machine expressed by 

means of an ASM. Since the halting problem for 

Turing machines is undecidable, such an algorithm 

cannot exist. For this reason, the translation of the 

given ASM under study into the input required by 

the adopted model checker may cause a loss of ex-

pressive power. 

Our long-term study is aimed at proposing an ap-

proach to support the properties analysis capable to 

overcome the previous limitations. On one hand, we 

want to provide operational characterizations of 

properties, so that the manual analysis can be per-

ceived more practical when reasoning about the 

systems’ behavior. On the other hand, since the 

translation of the given ASM under study into a less 

expressive model is not needed, these properties can 

be investigated  preserving the expressiveness of 

the model before the application of usual model 

checking techniques.  

Compared to the other well-known approaches to 

the problem of verifying properties, we focus on 

ASMs because of the advantages they provide un-

der several viewpoints. When the expressivity is 

considered, ASMs represent a general model of 

computation which “subsumes” all other classic 

computational models [13], [14], [15]. In fact, [7] 

emphasizes the naturalness with which other com-

putational models, such as Turing machines, can be 

directly defined as ASM instances without any ex-

traneous encoding (the vice versa is not always 

true). Thanks to this generality, ASMs suffice to 

capture the behavior of wide classes of sequential 

[3] and parallel [16] algorithms, and also a large 

class of distributed algorithms [17]. Secondly, con-

cerning understandability, the ASM approach pro-

vides a way to describe algorithmic issues in a sim-

ple abstract pseudo-code, which can be translated 

into a high level programming language source 

code in a quite simple manner [7]. Thirdly, consid-

ering methodological issues, the ASM formalism 

has been successfully applied for the design and 

analysis of critical and complex systems in several 

domains, and a specific development method got 

prominence in the last years [7]. Finally, consider-

ing the implementation point of view, the capability 

of translating formal specifications into executable 

code, in order to conduct simulations of the models, 

is provided by tools like CoreASM [18]. 

Concerning the specific MANET context, to the 

best of our knowledge few works have used ASMs 

in this domain. In [19] they serve to specify location 

services and position-based routing. In [20] we 

adopt them for specifying a variant of AODV aimed 

at improving the network topology awareness of the 

network nodes. Finally, in [21] we show the suita-

bility of the ASM-based approach in capturing the 

specific MANET features (concurrency, communi-

cations, mobility, and so on), and for reasoning 

about them. The present paper moves from the 
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ASM-based model of AODV we presented there 

and significantly extends it by focusing on the ca-

pability of the formalism to capture starvation is-

sues.  

3. BACKGROUND 

  

3.1 Abstract State Machines 

Briefly speaking, Abstract State Machines are fi-

nite sets of so-called rules of the form if condition 

then updates (possibly with the else clause in addi-

tion) which transform the abstract states of the ma-

chine [7]. The concept of abstract state extends the 

usual notion of state occurring in finite state ma-

chines: it is an arbitrary complex structure, i.e. a 

domain of objects with functions and relations de-

fined on them. On the other hand, a rule reflects the 

notion of transition occurring in traditional transi-

tion systems: condition is a first-order formula 

whose interpretation can be true or false; while up-

dates is a finite set of assignments of the form f(t1, 

…, tn) := t, whose execution consists in changing in 

parallel the value of the specified functions to the 

indicated value. 

Pairs of function names together with values for 

their arguments are called locations [7]: they ab-

stract the notion of memory unit. Therefore, the cur-

rent configuration of locations together with their 

values determines the current state of the ASM. In 

order to better understand the semantics of the 

states with respect to the computational behavior of 

the modeled system, it is worth remarking that each 

ASM state can be characterized by one or more 

predicates over the states. More precisely, in [22] 

we define a predicate ϕ over an ASM state s as a 

first-order formula defined over the locations in s, 

such that that s ⊨ ϕ. In other words, each predicate 

is expressed by the logical conjunction of the inter-

esting locations’ values.  

In each state all conditions are checked, so that 

all updates in rules whose conditions evaluate to 

true are simultaneously executed, and the result is a 

transition of the machine from a state to another, i.e. 

from a configuration of values in locations to an-

other. Moreover, for the unambiguous determina-

tion of the next state, updates must be consistent, 

i.e. no pair of updates must refer to the same loca-

tion. 

The formalism also supports the mechanism of 

procedure calls; this is achieved by the definition of 

ASM submachines, i.e. parameterized rules, which 

supports the declaration of local functions, so that 

each call of a submachine works with its own in-

stantiation of its local functions. 

A generalization of basic ASMs is represented by 

Distributed ASMs (DASMs) [7], capable of captur-

ing the formalization of multiple agents acting in a 

distributed environment. Essentially, a DASM is 

intended as an arbitrary but finite number of inde-

pendent agents, each executing its own underlying 

ASM. In a DASM the keyword self is used for sup-

porting the relation between local and global states 

and for denoting the specific agent which is execut-

ing a rule. 

Moreover, there is a distinction among functions, 

depending on the different roles that locations can 

assume in a given ASM [7]. A primary distinction 

concerns basic functions, intended as elementary, 

and derived functions, whose values are defined in 

terms of other (basic or derived) functions, but nei-

ther the ASM nor the environment (and other ASMs 

in the case of DASMs) can update them: they are 

automatically updated as a side effect of the updates 

over the functions from which they derive. In addi-

tion, basic functions are classified into static, whose 

values never change during a run, and dynamic, for 

which values change as a consequence of the up-

dates executed by the ASM or by its environment 

(or other agents). Furthermore, dynamic functions 

can be: controlled if directly updated only by the 

ASM; monitored if directly updated only by the en-

vironment or other agents, and only read by the 

ASM; shared, which are both controlled and moni-

tored; out, which are updated, but never read by the 

ASM. 

Finally, the ASM Method defined in [7] encloses 

development phases from requirements capture to 

implementation in a unique ASM-based framework. 

Requirements can be captured by constructing so-

called ground models, i.e. representations at high 

level of abstraction that can be graphically depicted; 

then, starting from ground models, a hierarchy of 

intermediate models is constructed by stepwise re-

finements, leading to executable code: each refine-

ment describes the same system at a finer granulari-

ty. The method then supports both verification, 

through formal proof, and validation, through simu-

lation, although it lacks of inherent characteriza-

tions of properties as in other formalisms. 

3.2 AODV Routing Protocol for MANETs 

A Mobile Ad-hoc NETwork [6] is a wireless 

network designed for communications among no-

madic hosts in absence of fixed infrastructure. The-

se networks are useful, sometimes necessary, for 

allowing hosts to communicate when fixed infra-

structures cannot be used, for example for support-

ing rescue teams operating where pre-existing infra-

structures are not reliable [23]. Hosts are intended 
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as autonomous agents: they can dispose without ac-

cording to a predefined topology; moreover, during 

their lifetime, they can enter or leave the network at 

will and continuously change their relative position. 

The twofold role played by hosts (which can act 

both as end-point and intermediate router), as well 

as the continuous change of the network topology 

due to movement, poses the need to define specific 

routing protocols for properly managing the lack of 

fixed infrastructure. In fact, since each host can di-

rectly communicate only within the area established 

by its transmission range, these protocols need to 

take into account the contribution of intermediate 

hosts for realizing communications. The literature 

proposes several protocols, and among them Ad-

hoc On-demand Distance Vector is one of the most 

popular and simple. 

AODV is a reactive protocol that discovers and 

maintains routes on-demand [5]. Routes are built 

only as desired by initiator nodes using a route re-

quest/route reply cycle, which allows each node to 

update its own routing table. When an initiator 

wants to start a communication session to a destina-

tion, and a proper route is not known, it broadcasts 

a route request (RREQ) packet to all its neighbors. 

An RREQ packet includes among the others: initia-

tor address and broadcast id (this pair uniquely 

identifies the packet); destination address; destina-

tion sequence number, which expresses the fresh-

ness of the information about destination; and hop 

count, initially set to 0, and increased by each in-

termediate node, for expressing the distance. Be-

cause of broadcast transmissions, each intermediate 

node can receive several instances of a given RREQ 

from different neighbors: possible duplications of 

RREQs are discarded. 

Knowledge of routes is stored into routing tables. 

A routing table in a node lists all other (known) 

nodes in the network, and the best (known) routes 

to reach them. To this end, each entry in the table 

includes the address of the node, its sequence num-

ber, the hop count to reach it, and the next hop field 

identifying the next node in the route to reach it. 

When a node receives an RREQ, it checks if one 

of the following holds: destination is one of its 

neighbors; or it knows a route to destination with 

corresponding sequence number greater than or 

equal to the one contained into the RREQ (this 

means that its knowledge about the route is recent). 

If so, it unicasts a route reply (RREP) packet back 

to initiator; otherwise, it updates the hop count field 

and rebroadcasts the RREQ to its neighbors, so that 

the process is reiterated. An RREP packet contains: 

initiator and destination address, destination se-

quence number, and hop count. While the RREP 

travels towards initiator, routes are set up inside the 

routing tables of the traversed hosts. When initiator 

receives the RREP, communication starts. 

The protocol also includes mechanisms for re-

cording the up-to-date information about the broken 

links, but this issue is outside the scope of the pre-

sent paper. 

4. ASM MODEL OF AODV  

 

A MANET adopting AODV can be modeled by a 

DASM including a set of agents = {a1, …, an}, 

where each agent models the behavior of a node ex-

ecuting the protocol. We can think that each ai is 

univocally identified by the IP address. Note that in 

general a host is characterized by more features, 

e.g. the amplitude of the area in which it is able to 

transmit, the direction and the speed of its move-

ment, and so on. However, since our purpose is to 

focus on the route discovery process, these features 

are abstracted away: for each agent we only take 

into account its neighborhood. In the following, we 

firstly focus on the main algorithm implementing 

the protocol, so obtaining a starvation-prone ASM 

(sp-ASM in the following); then the refinement able 

to overcome starvation risk is modeled, and a star-

vation-free ASM (sf-ASM) is obtained.  

The case study here described is elaborated with 

respect to both the original, abstract specification of 

the protocol [5], and its discussion in terms of 

ASMs [21] with the inclusion of aspects tailored to 

our purposes. 

4.1 Starvation-prone ASM 

Since all agents implement the same protocol, 

each agent behaves according to the same ASM, so 

only one ASM is discussed in the following. 

Each ASM can be in one of several states ex-

pressing the parallel computational activities of 

each host in the MANET. For the purposes of the 

present work, in order to define the predicates over 

these states [22], the interesting locations’ values 

deal with the following functions: 

• wishToInitiate: agents × agents → boolean, 

which is a shared function indicating whether a 

new communication session to dest is required 

by the environment; 

• receivedRREQ: agents × agents → boolean, 

which is a controlled function acting as a flag 

indicating whether an RREQ packet has been 

received. 
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They allow us to define the following predicates: 

• idle: the agent is inactive, i.e. it does not 

need to start a new communication session and 

it is not involved in a route discovery process. 

This predicate is expressed by the following lo-

cations’ values: wishToInitiate(self, dest) = 

false; receivedRREQ(self, dest) = false, with 

dest ∈ agents; 

• router: the agent has received an RREQ, so 

it acts as a router supporting a route discovery 

process initiated by another host. It is ex-

pressed by the value true for re-

ceivedRREQ(self, dest), regardless of the value 

of wishToInitiate(self, dest); 

• initiator: the agent has to start a new 

communication session, so acting as an initiator 

host. If the desired destination is not in its 

neighborhood and a route to it is not in its rout-

ing table, initiator starts a route discovery pro-

cess. This predicate is expressed by the value 

true for wishToInitiate(self, dest), regardless of 

the value of receivedRREQ(self, dest). 

When the MANET starts operating, each agent is 

idle, i.e. for each agent both wishToInitiate(self, 

dest) and receivedRREQ(self, dest) evaluate to false 

for each dest. During the normal execution of an 

agent, it can fulfill the idle predicate with respect 

to a destination, but at the same time it can fulfill 

different predicates for other destinations: the value 

of the parameter dest is used for distinguishing the-

se cases. 

In addition, each ASM includes the following 

functions: 

• neighb: agents → PowerSet(agents), which is a 

monitored function specifying the nodes in the 

neighborhood of each agent. It is monitored 

because only the environment sets it; 

• routingTable: agents → PowerSet(records), 

which is a controlled function representing the 

information about the nodes recorded into the 

agent’s routing table. So, each record corre-

sponds to an entry of the routing table. 

The values of these two functions, as well as the 

set agents, depend on the particular scenario: they 

are dynamically set according to the MANET evo-

lution, with respect to both the host mobility and the 

computational history. Moreover, in order to check 

if information about a host is stored into the agent’s 

routing table, the derived function hostInRT: Pow-

erSet(records) → PowerSet(agents) is defined: it 

returns the set of the agents stored in a given rout-

ing table. 

Each agent is associated with two types of queues 

of messages: requests and replies, which include 

RREQ and RREP packets, respectively. This allows 

us to model sending/receiving of packets by means 

of enqueuing/dequeuing abstract messages into the 

corresponding queue. Both requests and replies are 

shared functions because updated by the corre-

sponding ASM and by the other agents. These 

queues are managed by the derived function is-

Empty, which states if a queue is empty or not, and 

by some specific ASM framework constructs: 

enqueue, dequeue, empty, and top, which adds an 

element to a queue, removes an element from a 

queue, removes all elements from a queue, and re-

turns the top element of a queue, respectively. 

Note that the routingTable function, even if con-

trolled, indirectly depends on the value of the re-

quests and replies queues. In fact, whenever a node 

receives an RREQ or an RREP, it updates its rout-

ing table according to the content of the received 

packet. 

Each RREQ, RREP, or record is built by concat-

enation of the information listed in the description 

of AODV (in the pseudo-code the dot notation 

helps in identifying the value of a specific field of a 

packet). 

The ASM pseudo-code of the i-th agent is: 

 AgentProgram(ai) = 

  if ¬(isEmpty(requests(self))) then { 

   dest = top(requests(self)).dest 

   receivedRREQ(self, dest) := true 

   Router(dest)  

  } 

  if wishToInitiate(self, dest) = true then 

   Initiator(dest) 

Informally speaking, each agent is inactive until 

its computation is solicited by the receipt of an 

RREQ or because a new communication session is 

required by the environment. Activation of an agent 

unfolds two different computational branches which 

lead to the execution of the Router or Initiator sub-

machine. An instance of a new Router or a new Ini-

tiator submachine is created whenever a new route 

discovery process is needed or a new communica-

tion session is desired, respectively. It is worth not-

ing that both submachines evolve concurrently, and 

in each of them rules are executed as soon as they 

become applicable. 

The pseudo-code of the Router submachine is: 
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 Router(dest) = 

  if dest = self ∨ dest ∈ neighb(self ) ∨  

  dest ∈ hostInRT(routingTable(self)) then { 

   init = top(requests(self)).init 

   UnicastRREP(init) 

   dequeue top(requests(self)) 

   receivedRREQ(self, dest) := false 

  } 

  else { 

   BroadcastRREQ 

   dequeue top(requests(self)) 

   receivedRREQ(self, dest) := false 

  } 

The Router submachine includes the endRout-

ing predicate, which specifies that the execution of 

the routing activities due to the route discovery pro-

cess is completed. This predicate is only expressed 

by the value false for the receivedRREQ(self, dest) 

function. If router is the destination of the received 

RREQ (dest evaluates to self) or if it knows a fresh 

route to dest (dest ∈ neighb(self) ∨ dest ∈ 

hostInRT(routingTable(self))), then it unicasts an 

RREP packet back to initiator. Otherwise, it re-

broadcasts the RREQ to all its neighbors. In both 

cases the computation evolves to the state satisfying 

endRouting for that value of dest.  

For the sake of brevity, the analysis of the 

“freshness” of information in routing tables is not 

described. 

The pseudo-code of the BroadcastRREQ and 

UnicastRREP rules is: 

 BroadcastRREQ = 

  forall n ∈ neighb(self) do { 

   forall r ∈ requests(n) do { 

    if RREQ.dest = r.dest ∧ RREQ.id = 

    r.id then 

     discard RREQ 

   } 

   increase RREQ.hopCount 

   enqueue RREQ into requests(n) 

  } 

 UnicastRREP(i) = 

  r = top(requests(self)) 

  select c from routingTable(self) with 

    c.dest = r.dest and c.destSeqNum ≥  

   r.destSeqNum 

  enqueue RREP with dest = c.dest and   

   destSeqNum = c.destSeqNum  

   into replies(i) 

It is also worth specifying that, in order to reach 

its destination, an RREP packet must travel across 

several intermediate nodes, each of them executing 

some computation for updating routing tables. But, 

for simplicity, these functions have been abstracted 

away. The interested reader can find the full speci-

fication of the protocol and the prove of its correct-

ness in [21]. 

The pseudo-code of the Initiator submachine is: 

 Initiator(dest) =  

  if dest ∈ neighb(self) ∨ dest ∈   

  hostInRT(routingTable(self)) then { 

   StartCommunicationSession(dest) 

   wishToInitiate(self, dest) := false 

   sentRREQ(self) := false 

  } 

  else { 

   BroadcastRREQ 

   sentRREQ(self) := true 

  } 

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  if sentRREQ(self) ∧ (isEmpty(replies(self))) 

  then { 

   select r from replies(self) with maximum 

    destSeqNum 

   StartCommunicationSession(dest) 

   empty replies(self) 

   wishToInitiate(self, dest) := false 

   sentRREQ(self) := false 

  } 

  else if sentRREQ(self) ∧  

  isEmpty(replies(self)) then 

   skip 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

In the pseudo-code above: skip means that no 

computational activity is executed when the corre-

sponding rule fires; BroadcastRREQ behaves as 

well as in the Router submachine; StartCommunica-

tionSession(dest) is not described because it is not 

strictly part of the protocol.  

The Initiator submachine is characterized by two 

local functions: sentRREQ: agents → boolean, 

which is a controlled function indicating whether an 

RREQ has been sent; and the aforementioned re-

plies. This means that a new queue of replies is in-

stantiated for each specific communication session. 

This submachine includes additional states charac-

terized by the following predicates over the states: 

• waiting: it indicates that the agent is waiting 

for responses concerning that dest from the 

other agents. It is expressed by: wishToIniti-

ate(self, dest) = true; sentRREQ(self) = true; 

isEmpty(replies(self)) = true; 

• endInitiating: it indicates that the com-

putational activities executed by initiator, con-
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cerning the route discovery for that dest, are 

completed. It is expressed by the following lo-

cations’ values: wishToInitiate(self, dest) = 

false; sentRREQ(self) = false. 

If a route to dest is known, then the communica-

tion session simply starts; otherwise, Broad-

castRREQ is executed. Its result consists in insert-

ing a new RREQ into the requests queue of all the 

agent’s neighbors and in satisfying the waiting 

predicate. When an RREP is received (i.e. is-

Empty(replies(self)) evaluates to false), then the 

computation continues: the communication session 

starts and then the replies queue is emptied; other-

wise nothing happens, i.e. the node doesn’t take any 

action regarding this particular route discovery at-

tempt, but it simply waits. 

The dashed lines in the model above enclose the 

code fragment stating that the agent must wait until 

it does not receive an RREP corresponding to the 

RREQ previously sent. This is the “vulnerable area” 

of the algorithm which can make the agent starve, 

because it cyclically returns to states satisfying the 

waiting predicate. If no other ASM sends an 

RREP back to the agent, the function is-

Empty(replies(self)) never changes its value to 

false, so the agent’s computation cannot evolve. 

This simple observation suggests to focus on this 

area for changing the algorithm, so that the compu-

tation executed by an agent can continue. 

Note that the starvation issue concerns only the 

route discovery process needed when initiator does 

not know a way to reach a specific destination. In 

all other cases the agent behaves normally: it pro-

cesses all AODV control packets coming in, and is 

receptive to requests for other destinations. 

One more comment concerns the permanence in 

the idle mode: it is not a case of starvation, but 

simply indicates that the agent does not need to ex-

ecute any activity. In ASM terms: the system evolu-

tion only depends on the shared function wishToIn-

itiate(self, dest) and on the derived function is-

Empty(requests(self)). If none of them changes its 

value means that the agent is not proactive (it does 

not need to start a new communication) neither re-

active (it has not received a request). 

4.2 Refinement for Overcoming Starvation 

The starvation issue of initiator can be solved by 

a refinement in accordance with the original formu-

lation of the protocol [5], where the authors have 

introduced a timeout for escaping infinite waiting in 

case a route is not found within a specified amount 

of time. This solution drives to a timeout-based 

synchronization. 

From the ASM point of view, the modification 

only affects the Initiator submachine. It consists in 

adding the local controlled function timeout: agents 

→ integers, which models the maximum waiting 

time for an RREP, and the configuration of the 

waiting predicate now also includes timeout(self) 

> 0.  

The change in the pseudo-code consists in adding 

the following rule: 

  if sentRREQ(self) ∧  

  ¬(isEmpty(replies(self))) then { 

   select r from replies(self) with maximum 

    destSeqNum 

   StartCommunicationSession(dest) 

   empty replies(self) 

   wishToInitiate(self, dest) := false 

   sentRREQ(self) := false  

  } 

  if sentRREQ(self) ∧ isEmpty(replies(self)) ∧ 

  ¬(timeout(self) = 0) then 

   timeout(self) := timeout(self) – 1 

  if sentRREQ(self) ∧ isEmpty(replies(self)) ∧ 

  timeout(self) = 0 then { 

   wishToInitiate(self, dest) := false 

  sentRREQ(self) := false 

  } 

Note that the model does not include the notifica-

tion to the environment about the timeout expira-

tion. In order to acknowledge the impossibility to 

start the communication, the ASM can easily be re-

fined, but this feature is outside our scope. 

The proof of the absence of starvation in this re-

finement is quite straightforward. A generic agent ai 

avoids starvation due to the waiting for one or more 

RREPs concerning dest when its computation is en-

abled to evolve to a state satisfying endInitiat-

ing. There are two paths for reaching this: when 

¬(isEmpty(replies(self))) is satisfied or when 

timeout(self) = 0 is satisfied. The former corre-

sponds to the exit from the vulnerable area because 

of the receipt of at least one RREP, and it is the 

same as in sp-ASM case. The latter is due to the re-

finement and states the exit from the same area be-

cause of the timeout expiration. In ASM terms, this 

happens when both wishToInitiate(self, dest) and 

sentRREQ(self) evaluate to false, regardless of the 

values of the other functions. This configuration is 

surely set within a finite amount of time, since, un-

der the assumption that the initial value of timeout 

is greater than 0, it decreases at each iteration, so 

converging to 0. 
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5. DISCUSSION  

 

The described experience on AODV allows us to 

derive some provisional results to address starva-

tion. The vulnerable area in the sp-ASM is charac-

terized by a rule whose condition depends on both 

the controlled function sentRREQ(self) and the de-

rived function isEmpty(replies(self)), linked togeth-

er by a logical conjunction. The former evaluates to 

true, so it does not affect the condition satisfaction, 

therefore it is important to focus on the latter. If the 

replies queue contains elements, then the computa-

tion evolves outside the vulnerable area; otherwise, 

the skip rule is executed, the values of the locations 

are unchanged, and the computation loops inside 

the vulnerable area. 

Conversely, in the sf-ASM, the condition guard-

ing the model fragment previously affected by star-

vation is the same as in the sp-ASM, but it is en-

riched with the controlled timeout(self) function (in 

logical conjunction to sentRREQ(self) and is-

Empty(replies(self))). Moreover, the waiting 

predicate also considers the timeout(self) function. 

If the computation loops within this model frag-

ment, the value of the locations changes because of 

the update decreasing the timeout, which surely will 

converge to 0. In this way it is guaranteed that the 

state of the ASM will change, so allowing the com-

putation to evolve. 

The above observations suggest that the area of 

the ASM subject to the risk of starvation is a vul-

nerable rule, of the form if cond then update-true 

else update-false, characterized by the following 

features: 

1. The truth value of cond depends on one or 

more risky functions; 

2. a) One update between update-true and update-

false generates a computation that does not 

change the value of the predicate over the 

states representing the waiting issue, so deter-

mining a cyclical return to states characterized 

by the same predicate; 

b) The computation evolves to a subsequent 

state through the other update. 

The functions in feature (1) are “risky” because 

the risk to starve the system depends on their val-

ues, which can be set by the ASM as well as by the 

environment and other ASMs in the same system. 

Concerning the class the risky functions belong to, 

let’s note that out functions surely do not impact 

starvation, because their values are produced by the 

ASM, but never used. Secondly, monitored and 

shared functions surely need special attention, be-

cause their presence indicates that the ASM behav-

ior is affected by the environment or the other 

agents in the same system. Furthermore, we cannot 

exclude the role of controlled functions in driving to 

starvation: their values can be managed by the ASM 

because set inside it, but they can be risky because 

their values can also depend on some monitored or 

shared function. If so, their usage in cond can be as 

risky as using monitored/shared functions: for ex-

ample, if c is a controlled function depending on a 

monitored function m, and c is used in the rule 

guard, there is the same risk of starvation as m is 

used in the guard. Finally, more detailed analysis 

should be executed when derived functions appear 

in conditions of vulnerable rules. In fact, since these 

functions cannot be managed inside the ASM, but 

their values depend on other functions, the latter 

must be investigated. 

Note that the values of controlled functions indi-

rectly depend on other functions, and their updates 

are an effect of updates over the latter; instead, de-

rived functions directly depend on other functions 

and their updates are automatic. Therefore, in order 

to investigate controlled and derived functions, their 

dependency graph must be analyzed. 

Concerning feature (2a), an important issue is re-

lated to the granularity used for defining the states 

in which the computation cyclically returns: if it is 

finer, then the cyclical return can go through several 

intermediate states, but if it is coarser, the rule exe-

cution could not produce any appreciable change of 

the ASM state. Stepwise refinements intrinsic to the 

ASM Method make the definition at the desired 

granularity easy. Moreover, an adequate stepwise 

refinement can be defined so that the case of vul-

nerable areas including just one rule can be general-

ized to any finite number of rules, in which at least 

one rule satisfies the three features above. Finally, it 

is worth noting that the update allowing the compu-

tation to exit from the vulnerable area is the “good 

thing” stated in [1]. 

In the case of presence of vulnerable rules, in or-

der to avoid the starvation risk, the algorithm must 

be restructured with the aim to guarantee that the 

agent does not stuck in an infinite loop. The 

timeout-based solution presented above is only one 

of the possible ways to reach this goal, but other 

methods can be suggested by the specific problem 

under study. 
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6. CONCLUSION  

 

In this paper we have reported on an experience 

aimed at studying starvation risks in the Ad-hoc 

On-demand Distance Vector  routing protocol for 

Mobile Ad-hoc NETworks using Abstract State 

Machines. The starvation-freedom property is an 

instance of the class of liveness properties, that are 

undecidable as well as safety properties. Neverthe-

less, these properties are semi-decidable and the re-

sults discussed in this paper aim at enforcing the 

ASM framework as a conceptual tool for studying 

them.  

In order to investigate this issue, two formaliza-

tions of AODV have been given: the first one is 

starvation-prone because of the lack of a proper 

path between the initiator of a route discovery pro-

cess and the desired destination; the second one is a 

refinement which makes the system starvation-free 

thanks to the adoption of a timeout, as stated in the 

original specification of the protocol. The analysis 

of both models allowed us to provide the ASM-

based definition of vulnerable rules, for capturing 

starvation risks, upon which modelers must focus 

their attention. The obtained results are encouraging 

for the purposes of our research, because the entire-

ly operational definition of vulnerable rules allows 

modelers to treat the analysis of starvation inside 

the ASM framework before adopting it in conjunc-

tion with hybrid model checking approaches. 

From a methodological point of view, the vulner-

able rules definition implicitly suggests some tasks 

a modeler can execute to determine the possible 

presence of starvation risks: analyze the model, 

looking for cyclical returns to states characterized 

by the same predicate over the states; if so, the 

modeler must check if it is driven by conditions 

whose truth value depends on some risky function; 

in this case, the corresponding updates must be 

studied for investigating their effects. Some of these 

activities could be supported by automatic tools, 

such as parsers or dependency graph analyzers. 

Nevertheless, our approach also presents draw-

backs. As other manual techniques, since it is hu-

man-based, it is error-prone and requires expertise 

in order to find an appropriate abstraction of the 

system to be verified. In other words, any analysis 

is as good as the model is. Furthermore, because of 

decidability issues, it cannot be completely automa-

tized, even if, as previously mentioned, automatic 

tools can support it. 

The research will continue with the aim to gener-

alize the finding of the present paper and to formal-

ly prove the necessary conditions that enable starva-

tion inside ASMs. In order to achieve this goal, we 

will deepen into the relationship between the syn-

tactic notion of starvation-freedom inside ASMs 

and the semantic notion of starvation in literature. 
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