
Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

REASONING ON STARVATION IN AODV

USING ABSTRACT STATE MACHINES

1
ALESSANDRO BIANCHI,

 2
SEBASTIANO PIZZUTILO,

3
GENNARO VESSIO

1
Assistant Prof., Department of Informatics, University of Bari, Italy

2
Associate Prof., Department of Informatics, University of Bari, Italy

3
Ph.D. student, Department of Informatics, University of Bari, Italy

E-mail:
1
alessandro.bianchi@uniba.it,

2
sebastiano.pizzutilo@uniba.it,

3
gennaro.vessio@uniba.it

ABSTRACT

Abstract State Machines (ASMs) are very helpful in analyzing critical and complex systems, but they lack

of inherent, domain-independent characterizations of computationally interesting properties. Our long-term

research aims at providing an ASM-based characterization of the starvation-freedom property. To this end,

in the present paper the Ad-hoc On-demand Distance Vector (AODV) routing protocol for Mobile Ad-hoc

NETworks (MANETs) is modeled through ASMs, and starvation is studied. This experience suggests us to

focus on vulnerable rules as the key issue that drives the risk of starvation within the ASM framework.

Keywords: Abstract State Machines, Verification, Starvation, MANETs, AODV

1. INTRODUCTION

Several formalisms are successfully applied to

the development of critical and complex systems in

a wide range of application domains, and to their

ex-ante and ex-post analysis aimed at investigating,

verifying and validating functionality and quality

issues. Representing the system-under-study at a

high level of abstraction allows developers to focus

on algorithmic aspects, rather than on specific reali-

zations of solutions at lower levels. Moreover, the

mathematical foundation of formal methods pro-

vides complete and unambiguous investigations

about the properties and the behavior the system-

under-study is required to exhibit.

In this context researchers usually distinguish

two classes of computationally interesting proper-

ties [1]. Safety properties specify that “something

bad never happens”; for instance, in a mutual exclu-

sion algorithm the “bad thing” is when two or more

processes are in the critical section. Instead,

liveness properties stipulate that “something good

eventually happens”; for instance, in the same algo-

rithm, the “good thing” is that each process eventu-

ally enters the critical section. Well-known exam-

ples of liveness properties are the reachability of a

certain state, the reversibility to a previous state,

termination, starvation-freedom, and so on.

Some formalisms provide inherent characteriza-

tions of properties, in the sense that they can be

viewed as independent from the application do-

main, so that the formal verification of the compu-

tationally interesting properties of the modeled sys-

tems can be easily conducted. For example, in the

Petri Net framework [2] a marking Mi is reachable

from an initial marking M0 if there exists a se-

quence of transitions such that M0 is transformed

into Mi. If a marking is not reachable, then the tran-

sitions it drives are useless and can be deleted. Un-

fortunately, not all formalisms provide such fea-

tures: in fact, from this point of view, Abstract State

Machines (ASMs) [3] lack.

This paper specifically deals with the starvation-

freedom property, here intended as the capability of

a process to “make progress infinitely often” [4].

Our long-term research aims at providing an ASM-

based characterization of starvation-freedom in or-

der to systematically investigate it. The aim is to

enlarge the general body-of-knowledge of the ASM

framework and reinforce it as a conceptual tool that

developers can find useful and practical for investi-

gating starvation issues in an operational fashion.

To this end, in this paper we report on a case

study in which an ASM-based model of the Ad-hoc

On-demand Distance Vector (AODV) routing pro-

tocol [5] for Mobile Ad-hoc NETworks (MANETs)

[6] is used for studying starvation. More precisely,

the model allows us to identify a vulnerable rule

which captures starvation risks inside ASMs, and

analyze the refinement needed to ensure that starva-

tion-freedom is satisfied. It is worth noting that

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

AODV is only studied, but no empirical investiga-

tion is here presented.

The rest of this paper is structured as follows.

The next section is about related work. Then, back-

ground on both ASMs and AODV is provided. The

core of the paper is the ASM model of AODV, and

its discussion. Finally, the paper concludes with the

description of future work.

2. RELATED WORK

The ASM framework supports both manual and

automatic formal verification of systems.

Concerning manual analysis, in [7] numerous

proofs are provided to illustrate how a modeler can

verify properties of a given ASM. Indeed, ASMs

are machines equipped with a notion of run that

lend themselves to traditional mathematical reason-

ing or mental simulation. These proofs range from

simple to complex and are conceived for being used

by human experts. Another approach is provided in

[8], where a verification calculus based on the

Hoare logic is proposed. However, the calculus on-

ly considers partial correctness, i.e. the result of the

computation is what was expected, and is only tai-

lored for a specific class of ASMs. Moreover, it is

worth noting that a logic for ASMs exists [9]. How-

ever, it does not provide characterizations of specif-

ic computationally interesting properties, such as

starvation-freedom. The ASM notion of run is very

helpful for supporting the practitioners’ work, inde-

pendently from the possibility of developing auto-

matic verification mechanisms. Nevertheless, since

it requires human effort, the manual approach does

not offer absolute guarantee and is error-prone.

Moreover, it often requires to deal with theorems,

lemmas, etc., that are quite distant from the devel-

opers’ average background.

Concerning automatic analysis, several examples

of model checking techniques applied to ASMs ex-

ist, for example [10] and [11]. However, the Tu-

ring-completeness of the formalism [3] causes an

unavoidable drawback: properties are, in general,

undecidable, so the formal verification of ASM

specifications cannot be fully automatized [12]. In

fact, an algorithm capable of verifying a specific

configuration of a given ASM would be able to ver-

ify that a certain configuration, e.g. an halting one,

is reachable by a Turing machine expressed by

means of an ASM. Since the halting problem for

Turing machines is undecidable, such an algorithm

cannot exist. For this reason, the translation of the

given ASM under study into the input required by

the adopted model checker may cause a loss of ex-

pressive power.

Our long-term study is aimed at proposing an ap-

proach to support the properties analysis capable to

overcome the previous limitations. On one hand, we

want to provide operational characterizations of

properties, so that the manual analysis can be per-

ceived more practical when reasoning about the

systems’ behavior. On the other hand, since the

translation of the given ASM under study into a less

expressive model is not needed, these properties can

be investigated preserving the expressiveness of

the model before the application of usual model

checking techniques.

Compared to the other well-known approaches to

the problem of verifying properties, we focus on

ASMs because of the advantages they provide un-

der several viewpoints. When the expressivity is

considered, ASMs represent a general model of

computation which “subsumes” all other classic

computational models [13], [14], [15]. In fact, [7]

emphasizes the naturalness with which other com-

putational models, such as Turing machines, can be

directly defined as ASM instances without any ex-

traneous encoding (the vice versa is not always

true). Thanks to this generality, ASMs suffice to

capture the behavior of wide classes of sequential

[3] and parallel [16] algorithms, and also a large

class of distributed algorithms [17]. Secondly, con-

cerning understandability, the ASM approach pro-

vides a way to describe algorithmic issues in a sim-

ple abstract pseudo-code, which can be translated

into a high level programming language source

code in a quite simple manner [7]. Thirdly, consid-

ering methodological issues, the ASM formalism

has been successfully applied for the design and

analysis of critical and complex systems in several

domains, and a specific development method got

prominence in the last years [7]. Finally, consider-

ing the implementation point of view, the capability

of translating formal specifications into executable

code, in order to conduct simulations of the models,

is provided by tools like CoreASM [18].

Concerning the specific MANET context, to the

best of our knowledge few works have used ASMs

in this domain. In [19] they serve to specify location

services and position-based routing. In [20] we

adopt them for specifying a variant of AODV aimed

at improving the network topology awareness of the

network nodes. Finally, in [21] we show the suita-

bility of the ASM-based approach in capturing the

specific MANET features (concurrency, communi-

cations, mobility, and so on), and for reasoning

about them. The present paper moves from the

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

ASM-based model of AODV we presented there

and significantly extends it by focusing on the ca-

pability of the formalism to capture starvation is-

sues.

3. BACKGROUND

3.1 Abstract State Machines

Briefly speaking, Abstract State Machines are fi-

nite sets of so-called rules of the form if condition

then updates (possibly with the else clause in addi-

tion) which transform the abstract states of the ma-

chine [7]. The concept of abstract state extends the

usual notion of state occurring in finite state ma-

chines: it is an arbitrary complex structure, i.e. a

domain of objects with functions and relations de-

fined on them. On the other hand, a rule reflects the

notion of transition occurring in traditional transi-

tion systems: condition is a first-order formula

whose interpretation can be true or false; while up-

dates is a finite set of assignments of the form f(t1,

…, tn) := t, whose execution consists in changing in

parallel the value of the specified functions to the

indicated value.

Pairs of function names together with values for

their arguments are called locations [7]: they ab-

stract the notion of memory unit. Therefore, the cur-

rent configuration of locations together with their

values determines the current state of the ASM. In

order to better understand the semantics of the

states with respect to the computational behavior of

the modeled system, it is worth remarking that each

ASM state can be characterized by one or more

predicates over the states. More precisely, in [22]

we define a predicate ϕ over an ASM state s as a

first-order formula defined over the locations in s,

such that that s ⊨ ϕ. In other words, each predicate

is expressed by the logical conjunction of the inter-

esting locations’ values.

In each state all conditions are checked, so that

all updates in rules whose conditions evaluate to

true are simultaneously executed, and the result is a

transition of the machine from a state to another, i.e.

from a configuration of values in locations to an-

other. Moreover, for the unambiguous determina-

tion of the next state, updates must be consistent,

i.e. no pair of updates must refer to the same loca-

tion.

The formalism also supports the mechanism of

procedure calls; this is achieved by the definition of

ASM submachines, i.e. parameterized rules, which

supports the declaration of local functions, so that

each call of a submachine works with its own in-

stantiation of its local functions.

A generalization of basic ASMs is represented by

Distributed ASMs (DASMs) [7], capable of captur-

ing the formalization of multiple agents acting in a

distributed environment. Essentially, a DASM is

intended as an arbitrary but finite number of inde-

pendent agents, each executing its own underlying

ASM. In a DASM the keyword self is used for sup-

porting the relation between local and global states

and for denoting the specific agent which is execut-

ing a rule.

Moreover, there is a distinction among functions,

depending on the different roles that locations can

assume in a given ASM [7]. A primary distinction

concerns basic functions, intended as elementary,

and derived functions, whose values are defined in

terms of other (basic or derived) functions, but nei-

ther the ASM nor the environment (and other ASMs

in the case of DASMs) can update them: they are

automatically updated as a side effect of the updates

over the functions from which they derive. In addi-

tion, basic functions are classified into static, whose

values never change during a run, and dynamic, for

which values change as a consequence of the up-

dates executed by the ASM or by its environment

(or other agents). Furthermore, dynamic functions

can be: controlled if directly updated only by the

ASM; monitored if directly updated only by the en-

vironment or other agents, and only read by the

ASM; shared, which are both controlled and moni-

tored; out, which are updated, but never read by the

ASM.

Finally, the ASM Method defined in [7] encloses

development phases from requirements capture to

implementation in a unique ASM-based framework.

Requirements can be captured by constructing so-

called ground models, i.e. representations at high

level of abstraction that can be graphically depicted;

then, starting from ground models, a hierarchy of

intermediate models is constructed by stepwise re-

finements, leading to executable code: each refine-

ment describes the same system at a finer granulari-

ty. The method then supports both verification,

through formal proof, and validation, through simu-

lation, although it lacks of inherent characteriza-

tions of properties as in other formalisms.

3.2 AODV Routing Protocol for MANETs

A Mobile Ad-hoc NETwork [6] is a wireless

network designed for communications among no-

madic hosts in absence of fixed infrastructure. The-

se networks are useful, sometimes necessary, for

allowing hosts to communicate when fixed infra-

structures cannot be used, for example for support-

ing rescue teams operating where pre-existing infra-

structures are not reliable [23]. Hosts are intended

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

as autonomous agents: they can dispose without ac-

cording to a predefined topology; moreover, during

their lifetime, they can enter or leave the network at

will and continuously change their relative position.

The twofold role played by hosts (which can act

both as end-point and intermediate router), as well

as the continuous change of the network topology

due to movement, poses the need to define specific

routing protocols for properly managing the lack of

fixed infrastructure. In fact, since each host can di-

rectly communicate only within the area established

by its transmission range, these protocols need to

take into account the contribution of intermediate

hosts for realizing communications. The literature

proposes several protocols, and among them Ad-

hoc On-demand Distance Vector is one of the most

popular and simple.

AODV is a reactive protocol that discovers and

maintains routes on-demand [5]. Routes are built

only as desired by initiator nodes using a route re-

quest/route reply cycle, which allows each node to

update its own routing table. When an initiator

wants to start a communication session to a destina-

tion, and a proper route is not known, it broadcasts

a route request (RREQ) packet to all its neighbors.

An RREQ packet includes among the others: initia-

tor address and broadcast id (this pair uniquely

identifies the packet); destination address; destina-

tion sequence number, which expresses the fresh-

ness of the information about destination; and hop

count, initially set to 0, and increased by each in-

termediate node, for expressing the distance. Be-

cause of broadcast transmissions, each intermediate

node can receive several instances of a given RREQ

from different neighbors: possible duplications of

RREQs are discarded.

Knowledge of routes is stored into routing tables.

A routing table in a node lists all other (known)

nodes in the network, and the best (known) routes

to reach them. To this end, each entry in the table

includes the address of the node, its sequence num-

ber, the hop count to reach it, and the next hop field

identifying the next node in the route to reach it.

When a node receives an RREQ, it checks if one

of the following holds: destination is one of its

neighbors; or it knows a route to destination with

corresponding sequence number greater than or

equal to the one contained into the RREQ (this

means that its knowledge about the route is recent).

If so, it unicasts a route reply (RREP) packet back

to initiator; otherwise, it updates the hop count field

and rebroadcasts the RREQ to its neighbors, so that

the process is reiterated. An RREP packet contains:

initiator and destination address, destination se-

quence number, and hop count. While the RREP

travels towards initiator, routes are set up inside the

routing tables of the traversed hosts. When initiator

receives the RREP, communication starts.

The protocol also includes mechanisms for re-

cording the up-to-date information about the broken

links, but this issue is outside the scope of the pre-

sent paper.

4. ASM MODEL OF AODV

A MANET adopting AODV can be modeled by a

DASM including a set of agents = {a1, …, an},

where each agent models the behavior of a node ex-

ecuting the protocol. We can think that each ai is

univocally identified by the IP address. Note that in

general a host is characterized by more features,

e.g. the amplitude of the area in which it is able to

transmit, the direction and the speed of its move-

ment, and so on. However, since our purpose is to

focus on the route discovery process, these features

are abstracted away: for each agent we only take

into account its neighborhood. In the following, we

firstly focus on the main algorithm implementing

the protocol, so obtaining a starvation-prone ASM

(sp-ASM in the following); then the refinement able

to overcome starvation risk is modeled, and a star-

vation-free ASM (sf-ASM) is obtained.

The case study here described is elaborated with

respect to both the original, abstract specification of

the protocol [5], and its discussion in terms of

ASMs [21] with the inclusion of aspects tailored to

our purposes.

4.1 Starvation-prone ASM

Since all agents implement the same protocol,

each agent behaves according to the same ASM, so

only one ASM is discussed in the following.

Each ASM can be in one of several states ex-

pressing the parallel computational activities of

each host in the MANET. For the purposes of the

present work, in order to define the predicates over

these states [22], the interesting locations’ values

deal with the following functions:

• wishToInitiate: agents × agents → boolean,

which is a shared function indicating whether a

new communication session to dest is required

by the environment;

• receivedRREQ: agents × agents → boolean,

which is a controlled function acting as a flag

indicating whether an RREQ packet has been

received.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

They allow us to define the following predicates:

• idle: the agent is inactive, i.e. it does not

need to start a new communication session and

it is not involved in a route discovery process.

This predicate is expressed by the following lo-

cations’ values: wishToInitiate(self, dest) =

false; receivedRREQ(self, dest) = false, with

dest ∈ agents;

• router: the agent has received an RREQ, so

it acts as a router supporting a route discovery

process initiated by another host. It is ex-

pressed by the value true for re-

ceivedRREQ(self, dest), regardless of the value

of wishToInitiate(self, dest);

• initiator: the agent has to start a new

communication session, so acting as an initiator

host. If the desired destination is not in its

neighborhood and a route to it is not in its rout-

ing table, initiator starts a route discovery pro-

cess. This predicate is expressed by the value

true for wishToInitiate(self, dest), regardless of

the value of receivedRREQ(self, dest).

When the MANET starts operating, each agent is

idle, i.e. for each agent both wishToInitiate(self,

dest) and receivedRREQ(self, dest) evaluate to false

for each dest. During the normal execution of an

agent, it can fulfill the idle predicate with respect

to a destination, but at the same time it can fulfill

different predicates for other destinations: the value

of the parameter dest is used for distinguishing the-

se cases.

In addition, each ASM includes the following

functions:

• neighb: agents → PowerSet(agents), which is a

monitored function specifying the nodes in the

neighborhood of each agent. It is monitored

because only the environment sets it;

• routingTable: agents → PowerSet(records),

which is a controlled function representing the

information about the nodes recorded into the

agent’s routing table. So, each record corre-

sponds to an entry of the routing table.

The values of these two functions, as well as the

set agents, depend on the particular scenario: they

are dynamically set according to the MANET evo-

lution, with respect to both the host mobility and the

computational history. Moreover, in order to check

if information about a host is stored into the agent’s

routing table, the derived function hostInRT: Pow-

erSet(records) → PowerSet(agents) is defined: it

returns the set of the agents stored in a given rout-

ing table.

Each agent is associated with two types of queues

of messages: requests and replies, which include

RREQ and RREP packets, respectively. This allows

us to model sending/receiving of packets by means

of enqueuing/dequeuing abstract messages into the

corresponding queue. Both requests and replies are

shared functions because updated by the corre-

sponding ASM and by the other agents. These

queues are managed by the derived function is-

Empty, which states if a queue is empty or not, and

by some specific ASM framework constructs:

enqueue, dequeue, empty, and top, which adds an

element to a queue, removes an element from a

queue, removes all elements from a queue, and re-

turns the top element of a queue, respectively.

Note that the routingTable function, even if con-

trolled, indirectly depends on the value of the re-

quests and replies queues. In fact, whenever a node

receives an RREQ or an RREP, it updates its rout-

ing table according to the content of the received

packet.

Each RREQ, RREP, or record is built by concat-

enation of the information listed in the description

of AODV (in the pseudo-code the dot notation

helps in identifying the value of a specific field of a

packet).

The ASM pseudo-code of the i-th agent is:

 AgentProgram(ai) =

 if ¬(isEmpty(requests(self))) then {

 dest = top(requests(self)).dest

 receivedRREQ(self, dest) := true

 Router(dest)

 }

 if wishToInitiate(self, dest) = true then

 Initiator(dest)

Informally speaking, each agent is inactive until

its computation is solicited by the receipt of an

RREQ or because a new communication session is

required by the environment. Activation of an agent

unfolds two different computational branches which

lead to the execution of the Router or Initiator sub-

machine. An instance of a new Router or a new Ini-

tiator submachine is created whenever a new route

discovery process is needed or a new communica-

tion session is desired, respectively. It is worth not-

ing that both submachines evolve concurrently, and

in each of them rules are executed as soon as they

become applicable.

The pseudo-code of the Router submachine is:

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

 Router(dest) =

 if dest = self ∨ dest ∈ neighb(self) ∨

 dest ∈ hostInRT(routingTable(self)) then {

 init = top(requests(self)).init

 UnicastRREP(init)

 dequeue top(requests(self))

 receivedRREQ(self, dest) := false

 }

 else {

 BroadcastRREQ

 dequeue top(requests(self))

 receivedRREQ(self, dest) := false

 }

The Router submachine includes the endRout-

ing predicate, which specifies that the execution of

the routing activities due to the route discovery pro-

cess is completed. This predicate is only expressed

by the value false for the receivedRREQ(self, dest)

function. If router is the destination of the received

RREQ (dest evaluates to self) or if it knows a fresh

route to dest (dest ∈ neighb(self) ∨ dest ∈

hostInRT(routingTable(self))), then it unicasts an

RREP packet back to initiator. Otherwise, it re-

broadcasts the RREQ to all its neighbors. In both

cases the computation evolves to the state satisfying

endRouting for that value of dest.

For the sake of brevity, the analysis of the

“freshness” of information in routing tables is not

described.

The pseudo-code of the BroadcastRREQ and

UnicastRREP rules is:

 BroadcastRREQ =

 forall n ∈ neighb(self) do {

 forall r ∈ requests(n) do {

 if RREQ.dest = r.dest ∧ RREQ.id =

 r.id then

 discard RREQ

 }

 increase RREQ.hopCount

 enqueue RREQ into requests(n)

 }

 UnicastRREP(i) =

 r = top(requests(self))

 select c from routingTable(self) with

 c.dest = r.dest and c.destSeqNum ≥

 r.destSeqNum

 enqueue RREP with dest = c.dest and

 destSeqNum = c.destSeqNum

 into replies(i)

It is also worth specifying that, in order to reach

its destination, an RREP packet must travel across

several intermediate nodes, each of them executing

some computation for updating routing tables. But,

for simplicity, these functions have been abstracted

away. The interested reader can find the full speci-

fication of the protocol and the prove of its correct-

ness in [21].

The pseudo-code of the Initiator submachine is:

 Initiator(dest) =

 if dest ∈ neighb(self) ∨ dest ∈

 hostInRT(routingTable(self)) then {

 StartCommunicationSession(dest)

 wishToInitiate(self, dest) := false

 sentRREQ(self) := false

 }

 else {

 BroadcastRREQ

 sentRREQ(self) := true

 }

 -

 if sentRREQ(self) ∧ (isEmpty(replies(self)))

 then {

 select r from replies(self) with maximum

 destSeqNum

 StartCommunicationSession(dest)

 empty replies(self)

 wishToInitiate(self, dest) := false

 sentRREQ(self) := false

 }

 else if sentRREQ(self) ∧

 isEmpty(replies(self)) then

 skip
 -

In the pseudo-code above: skip means that no

computational activity is executed when the corre-

sponding rule fires; BroadcastRREQ behaves as

well as in the Router submachine; StartCommunica-

tionSession(dest) is not described because it is not

strictly part of the protocol.

The Initiator submachine is characterized by two

local functions: sentRREQ: agents → boolean,

which is a controlled function indicating whether an

RREQ has been sent; and the aforementioned re-

plies. This means that a new queue of replies is in-

stantiated for each specific communication session.

This submachine includes additional states charac-

terized by the following predicates over the states:

• waiting: it indicates that the agent is waiting

for responses concerning that dest from the

other agents. It is expressed by: wishToIniti-

ate(self, dest) = true; sentRREQ(self) = true;

isEmpty(replies(self)) = true;

• endInitiating: it indicates that the com-

putational activities executed by initiator, con-

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

cerning the route discovery for that dest, are

completed. It is expressed by the following lo-

cations’ values: wishToInitiate(self, dest) =

false; sentRREQ(self) = false.

If a route to dest is known, then the communica-

tion session simply starts; otherwise, Broad-

castRREQ is executed. Its result consists in insert-

ing a new RREQ into the requests queue of all the

agent’s neighbors and in satisfying the waiting

predicate. When an RREP is received (i.e. is-

Empty(replies(self)) evaluates to false), then the

computation continues: the communication session

starts and then the replies queue is emptied; other-

wise nothing happens, i.e. the node doesn’t take any

action regarding this particular route discovery at-

tempt, but it simply waits.

The dashed lines in the model above enclose the

code fragment stating that the agent must wait until

it does not receive an RREP corresponding to the

RREQ previously sent. This is the “vulnerable area”

of the algorithm which can make the agent starve,

because it cyclically returns to states satisfying the

waiting predicate. If no other ASM sends an

RREP back to the agent, the function is-

Empty(replies(self)) never changes its value to

false, so the agent’s computation cannot evolve.

This simple observation suggests to focus on this

area for changing the algorithm, so that the compu-

tation executed by an agent can continue.

Note that the starvation issue concerns only the

route discovery process needed when initiator does

not know a way to reach a specific destination. In

all other cases the agent behaves normally: it pro-

cesses all AODV control packets coming in, and is

receptive to requests for other destinations.

One more comment concerns the permanence in

the idle mode: it is not a case of starvation, but

simply indicates that the agent does not need to ex-

ecute any activity. In ASM terms: the system evolu-

tion only depends on the shared function wishToIn-

itiate(self, dest) and on the derived function is-

Empty(requests(self)). If none of them changes its

value means that the agent is not proactive (it does

not need to start a new communication) neither re-

active (it has not received a request).

4.2 Refinement for Overcoming Starvation

The starvation issue of initiator can be solved by

a refinement in accordance with the original formu-

lation of the protocol [5], where the authors have

introduced a timeout for escaping infinite waiting in

case a route is not found within a specified amount

of time. This solution drives to a timeout-based

synchronization.

From the ASM point of view, the modification

only affects the Initiator submachine. It consists in

adding the local controlled function timeout: agents

→ integers, which models the maximum waiting

time for an RREP, and the configuration of the

waiting predicate now also includes timeout(self)

> 0.

The change in the pseudo-code consists in adding

the following rule:

 if sentRREQ(self) ∧

 ¬(isEmpty(replies(self))) then {

 select r from replies(self) with maximum

 destSeqNum

 StartCommunicationSession(dest)

 empty replies(self)

 wishToInitiate(self, dest) := false

 sentRREQ(self) := false

 }

 if sentRREQ(self) ∧ isEmpty(replies(self)) ∧

 ¬(timeout(self) = 0) then

 timeout(self) := timeout(self) – 1

 if sentRREQ(self) ∧ isEmpty(replies(self)) ∧

 timeout(self) = 0 then {

 wishToInitiate(self, dest) := false

 sentRREQ(self) := false

 }

Note that the model does not include the notifica-

tion to the environment about the timeout expira-

tion. In order to acknowledge the impossibility to

start the communication, the ASM can easily be re-

fined, but this feature is outside our scope.

The proof of the absence of starvation in this re-

finement is quite straightforward. A generic agent ai

avoids starvation due to the waiting for one or more

RREPs concerning dest when its computation is en-

abled to evolve to a state satisfying endInitiat-

ing. There are two paths for reaching this: when

¬(isEmpty(replies(self))) is satisfied or when

timeout(self) = 0 is satisfied. The former corre-

sponds to the exit from the vulnerable area because

of the receipt of at least one RREP, and it is the

same as in sp-ASM case. The latter is due to the re-

finement and states the exit from the same area be-

cause of the timeout expiration. In ASM terms, this

happens when both wishToInitiate(self, dest) and

sentRREQ(self) evaluate to false, regardless of the

values of the other functions. This configuration is

surely set within a finite amount of time, since, un-

der the assumption that the initial value of timeout

is greater than 0, it decreases at each iteration, so

converging to 0.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

5. DISCUSSION

The described experience on AODV allows us to

derive some provisional results to address starva-

tion. The vulnerable area in the sp-ASM is charac-

terized by a rule whose condition depends on both

the controlled function sentRREQ(self) and the de-

rived function isEmpty(replies(self)), linked togeth-

er by a logical conjunction. The former evaluates to

true, so it does not affect the condition satisfaction,

therefore it is important to focus on the latter. If the

replies queue contains elements, then the computa-

tion evolves outside the vulnerable area; otherwise,

the skip rule is executed, the values of the locations

are unchanged, and the computation loops inside

the vulnerable area.

Conversely, in the sf-ASM, the condition guard-

ing the model fragment previously affected by star-

vation is the same as in the sp-ASM, but it is en-

riched with the controlled timeout(self) function (in

logical conjunction to sentRREQ(self) and is-

Empty(replies(self))). Moreover, the waiting

predicate also considers the timeout(self) function.

If the computation loops within this model frag-

ment, the value of the locations changes because of

the update decreasing the timeout, which surely will

converge to 0. In this way it is guaranteed that the

state of the ASM will change, so allowing the com-

putation to evolve.

The above observations suggest that the area of

the ASM subject to the risk of starvation is a vul-

nerable rule, of the form if cond then update-true

else update-false, characterized by the following

features:

1. The truth value of cond depends on one or

more risky functions;

2. a) One update between update-true and update-

false generates a computation that does not

change the value of the predicate over the

states representing the waiting issue, so deter-

mining a cyclical return to states characterized

by the same predicate;

b) The computation evolves to a subsequent

state through the other update.

The functions in feature (1) are “risky” because

the risk to starve the system depends on their val-

ues, which can be set by the ASM as well as by the

environment and other ASMs in the same system.

Concerning the class the risky functions belong to,

let’s note that out functions surely do not impact

starvation, because their values are produced by the

ASM, but never used. Secondly, monitored and

shared functions surely need special attention, be-

cause their presence indicates that the ASM behav-

ior is affected by the environment or the other

agents in the same system. Furthermore, we cannot

exclude the role of controlled functions in driving to

starvation: their values can be managed by the ASM

because set inside it, but they can be risky because

their values can also depend on some monitored or

shared function. If so, their usage in cond can be as

risky as using monitored/shared functions: for ex-

ample, if c is a controlled function depending on a

monitored function m, and c is used in the rule

guard, there is the same risk of starvation as m is

used in the guard. Finally, more detailed analysis

should be executed when derived functions appear

in conditions of vulnerable rules. In fact, since these

functions cannot be managed inside the ASM, but

their values depend on other functions, the latter

must be investigated.

Note that the values of controlled functions indi-

rectly depend on other functions, and their updates

are an effect of updates over the latter; instead, de-

rived functions directly depend on other functions

and their updates are automatic. Therefore, in order

to investigate controlled and derived functions, their

dependency graph must be analyzed.

Concerning feature (2a), an important issue is re-

lated to the granularity used for defining the states

in which the computation cyclically returns: if it is

finer, then the cyclical return can go through several

intermediate states, but if it is coarser, the rule exe-

cution could not produce any appreciable change of

the ASM state. Stepwise refinements intrinsic to the

ASM Method make the definition at the desired

granularity easy. Moreover, an adequate stepwise

refinement can be defined so that the case of vul-

nerable areas including just one rule can be general-

ized to any finite number of rules, in which at least

one rule satisfies the three features above. Finally, it

is worth noting that the update allowing the compu-

tation to exit from the vulnerable area is the “good

thing” stated in [1].

In the case of presence of vulnerable rules, in or-

der to avoid the starvation risk, the algorithm must

be restructured with the aim to guarantee that the

agent does not stuck in an infinite loop. The

timeout-based solution presented above is only one

of the possible ways to reach this goal, but other

methods can be suggested by the specific problem

under study.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

6. CONCLUSION

In this paper we have reported on an experience

aimed at studying starvation risks in the Ad-hoc

On-demand Distance Vector routing protocol for

Mobile Ad-hoc NETworks using Abstract State

Machines. The starvation-freedom property is an

instance of the class of liveness properties, that are

undecidable as well as safety properties. Neverthe-

less, these properties are semi-decidable and the re-

sults discussed in this paper aim at enforcing the

ASM framework as a conceptual tool for studying

them.

In order to investigate this issue, two formaliza-

tions of AODV have been given: the first one is

starvation-prone because of the lack of a proper

path between the initiator of a route discovery pro-

cess and the desired destination; the second one is a

refinement which makes the system starvation-free

thanks to the adoption of a timeout, as stated in the

original specification of the protocol. The analysis

of both models allowed us to provide the ASM-

based definition of vulnerable rules, for capturing

starvation risks, upon which modelers must focus

their attention. The obtained results are encouraging

for the purposes of our research, because the entire-

ly operational definition of vulnerable rules allows

modelers to treat the analysis of starvation inside

the ASM framework before adopting it in conjunc-

tion with hybrid model checking approaches.

From a methodological point of view, the vulner-

able rules definition implicitly suggests some tasks

a modeler can execute to determine the possible

presence of starvation risks: analyze the model,

looking for cyclical returns to states characterized

by the same predicate over the states; if so, the

modeler must check if it is driven by conditions

whose truth value depends on some risky function;

in this case, the corresponding updates must be

studied for investigating their effects. Some of these

activities could be supported by automatic tools,

such as parsers or dependency graph analyzers.

Nevertheless, our approach also presents draw-

backs. As other manual techniques, since it is hu-

man-based, it is error-prone and requires expertise

in order to find an appropriate abstraction of the

system to be verified. In other words, any analysis

is as good as the model is. Furthermore, because of

decidability issues, it cannot be completely automa-

tized, even if, as previously mentioned, automatic

tools can support it.

The research will continue with the aim to gener-

alize the finding of the present paper and to formal-

ly prove the necessary conditions that enable starva-

tion inside ASMs. In order to achieve this goal, we

will deepen into the relationship between the syn-

tactic notion of starvation-freedom inside ASMs

and the semantic notion of starvation in literature.

REFERENCES:

[1] E. Kindler, “Safety and Liveness Properties: A

Survey”, EATCS Bulletin, 53, 1994, pp. 268-

272.

[2] R. David and H. Alla, “Discrete, Continuous

and Hybrid Petri Nets”, Springer-Verlag, 2005.

[3] Y. Gurevich, “Sequential Abstract State Ma-

chines Capture Sequential Algorithms”, ACM

Transactions on Computational Logic, 1(1),

2000, pp. 77-111.

[4] B. Alpern and F.B. Schneider, “Defining

Liveness”, Information Processing Letters,

21(4), 1985, pp. 181-185.

[5] C.E. Perkins, E.M. Belding-Royer and S.R.

Das, “Ad hoc On-Demand Distance Vector

(AODV) Routing”, RFC 3561, 2003,

http://tools.ietf.org/html/rfc3561.

[6] D.P. Agrawal and Q.A. Zeng, “Introduction to

Wireless and Mobile Systems”, Thomson

Brooks/Cole, 2003.

[7] E. Börger and R. Stärk, “Abstract State Ma-

chines: A Method for High-Level System De-

sign and Analysis”, Springer-Verlag, 2003.

[8] W. Gabrisch and W. Zimmermann, “A Hoare-

Style Verification Calculus for Control State

ASMs”, Proceedings of the 5th Balkan Confer-

ence on Informatics, 2012, pp. 205-210.

[9] R.F. Stärk and S. Nanchen, “A Logic for Ab-

stract State Machines”, Journal of Universal

Computer Science, 7(11), 2001, pp. 981-1006.

[10] G. Del Castillo and K. Winter, “Model Check-

ing Support for the ASM High-Level Lan-

guage”, Proceedings of the 6th International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2000, pp.

331-346.

[11] P. Arcaini, A. Gargantini and E. Riccobene,

“AsmetaSMV: A Way to Link High-Level

ASM Models to Low-Level NuSMV Specifica-

tions”, Proceedings of the 2nd International

Conference on Abstract State Machines, Alloy,

B and Z, 2010, pp. 61-74.

[12] M. Spielmann, “Automatic Verification of Ab-

stract State Machines”, Proceedings of the 11th

International Conference on Computer Aided

Verification, 1999, pp. 431-442.

[13] Y. Gurevich, “A New Thesis”, American Math-

ematical Society Abstracts, 1985, p. 317.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

[14] W. Reisig, “The Expressive Power of Abstract

State Machines”, Computing and Informatics,

22, 2003, pp. 209-219.

[15] N. Dershowitz, “The Generic Model of Compu-

tation”, Electronic Proceedings of Theoretical

Computer Science, 2013.

[16] A. Blass and Y. Gurevich, “Abstract State Ma-

chines Capture Parallel Algorithms”, ACM

Transactions on Computational Logic, 4(4),

2003, pp. 578-651.

[17] A. Glausch and W. Reisig, “An ASM-

Characterization of a Class of Distributed Algo-

rithms”, in J.R. Abrial and U. Glässer, eds.,

Rigorous Methods for Software Construction

and Analysis, 2009, pp. 50-64.

[18] R. Farahbod, V. Gervasi and U. Glässer,

“CoreASM: An Extensible ASM Execution En-

gine”, Fundamenta Informaticae, 77(1-2), 2007,

pp. 71-103.

[19] A. Benczur, U. Glässer and T. Lukovskzi,

“Formal Description of a Distributed Location

Service for Mobile Ad-hoc Networks”, in E.

Börger, A. Gargantini and E. Riccobene, eds.,

Abstract State Machines 2003 – Advances in

Theory and Applications, 2003, pp. 204-217.

[20] A. Bianchi, S. Pizzutilo and G. Vessio, “Prelim-

inary Description of NACK-based Ad-hoc On-

demand Distance Vector Routing Protocol for

MANETs”, Proceedings of the 9th Internation-

al Conference on Software Engineering and

Applications, 2014, pp. 500-505.

[21] A. Bianchi, S. Pizzutilo and G. Vessio, “Suita-

bility of Abstract State Machines for Discussing

Mobile Ad-hoc Networks”, Global Journal of

Advanced Software Engineering, 1, 2014, pp.

29-38.

[22] A. Bianchi, S. Pizzutilo and G. Vessio, “Apply-

ing Predicate Abstraction to Abstract State Ma-

chines”, Enterprise, Business-Process and In-

formation Systems Modeling, LNBIP 214,

Springer, 2015, pp. 283-292.

[23] Y.N. Lien, H.C. Jang and T.C. Tsai, “A MA-

NET Based Emergency Communication and In-

formation System for Catastrophic Natural Dis-

asters”, Proceedings of the 29th International-

Conference on Distributed Computing Systems

Workshops, 2009, pp. 412-417.

