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Abstract 

The uniqueness and existence of a solution to the combined t d c  assignrnentlsignal 

control problem is investigated, particularly with respect to the cost functions used. 

The two cost functions investigated are the polynomial BPR function and Webste12s two 

term cost function. Properties of three well-known signal control policies are 

investigated, and a number of new policies are developed, which guarantee a unique 

solution to the combined problem. The comparative performance of these policies is 

tested with respect to uniqueness of the resulting green times and total network travel 

times at the solution. To this end a streamlined version of the iterative assignment 

control procedure is developed and applied to three networks. It is found that potential 

theoretical uniqueness and existence problems do not necessarily occur in practical 

tests, and that enforcement of theoretical properties on signal control policies renders 

them rather inefficient. 



CONTENTS 

Page 

Properties of control policies that ensure an equilibrium 

Properties of policies with the BPR cost function 

Properties of policies with Webster's cost function 

Properties of policies with Davidson's cost function 

A new pragmatic power policy 

Tests on a simple network 

Tests with the BPR cost function 

Tests with Webster's cost function 

Tests on more realistic networks 

Introduction 

An adaptation of Webster's cost function 

A green time control algorithm 

Implementation aspects of the iterative 

assignment control procedure 

Results for the TGA network 

Results with the BPR cost function 

Results with Webster's cost function 

Conclusions TGA network 

Results for the Weetwood network 

Results with the BPR cost function 

Results with Webster's cost function 

A more dynamic example 

Conclusions for the Weetwood network 

10. References 

APPENDIX 1: Monotonicity with BPR delay function 

APPENDIX 2: Monotonicity with Webster's cost definition 

APPENDIX 3: Monotonicity with Davidson's cost function 

APPENDIX 4: Polynomial cost implementation 

APPENDIX 5: Webster's adapted cost function implementation 



2 

1 Pro~erties of control ~olicies that ensure an eauilibrium 

In Smith (1981b) the following expression for Wardrop equilibrium assignment is 

introduced: 

"more costly routes carry no flow" (1) 

Just like routes consist of sets of links that can be traversed consecutively, we can 

envisage signal stages to consist of sets of links that may be given green time 

simultaneously. We can now define stage pressures Pj for all stages, which are 

made up of the sum of the relevant link pressures pi, just like route costs are 

made up of the sum of the relevant link costs, 

The link pressures pi are determined by the control policy employed; they are a 

function of fi and & so that 

and, following the same argument as in (1) we can express signal control policies as 

follows, subject to minimum green constraints (Smith et al., 1987): 

"less pressurised stages receive no green" (4) 

Link pressures would be si4 for Po and fiadja& for delay minimisation. These stage 

pressures are determined by a summation over all links that have green during that 

stage, as in (2). The exception is Webster's policy, in which the summation over 

links is replaced by a determination of the maximum pressurised link i in the stage; 

the link pressure in that case is m s i  . 

The condition the flow pattern f must satisfy, at equilibrium, may be written as 

(Smith, 1979131 

-t(P , h) is normal, at P, to D (5)  

where D is the set of demand-fessible flows. 



Using the same arguments for a given control policy, to satisfy (4), green times 

should follow: 

p(f , h*) is normal, at h*, to E (6) 

where E is the set of allowable green times. 

The combined problem, which we investigate here, and in which we look for a set of 

flows and green times that satisfy (5) and (6) simultaneously, will be solved if 

(-t(f , h) , p(f , 1)) is normal, at (f , h) to DxE (7) 

This condition (7) now enables us to investigate properties of existing control 

policies, but more importantly, to develop new control policies with advantageous 

properties, e.g. policies that ensure convergence of the iterative assignment control 

algorithm to a unique mutual equilibrium. 

A straightforward condition on the control policy, that ensures convergence and 

uniqueness of the resulting equilibrium is: 

(t , -p) is the gradient of a convex function V (8) 

so that each (t, , -pi) must be the gradient of a convex function Vi; and V = & Vi . (ti 
, -pi) is the gradient of Vi if 

and 

avph = -pi 

If Vi is smooth then 

aVi/af,dh, = dTA&afi 

and therefore 



Now we can express pi as follows: 

This opens a world of control policies with different characteristics. The simplest 

policy is the policy with = 0, so that 

The policy that gives rise to this pressure definition is equivalent to an 

approximation to the NDP as suggested by Poorzahedy and Turnquist (1982). We 

will call this policy an integrable policy P,. 

Although the policy P, gives rise to pressure definitions that are gradients of a 

function Vi, it is not certain that this function Vi is convex. However, if we allow a 

@Xh) as in (13), 

we can define 4:s that render Vi convex, and thus ensure convergence of the 

iterative assignment control procedure. To ensure convexity of Vi, the vector pair (f 

, -pi) must be monotone, so that its symmetrized Jacobian is positive semi-definite, 

and @, must be chosen to ensure this. 

The need for the introduction of a "correction term" Qi and the actual form of it 
depends on the cost assumptions in the delay curve. This will be discussed in the 

next Sections; we will call such adapted policies (which contain an appropriate 

correction term @i) PMr as they are both integrable and monotone. 

2 Prouerties of policies with the BPR cost function 

The so-called BPR cost function is extensively used in the USA, and has the 

following general form for signal-controlled links: 
..- 



consisting of a free flow travel time to and a delay element at0(5k#. 

It is shown in Appendix 1 that for this cost function, Webster's policy and Po are 

policies that are not monotone, so that a unique solution to the combined signal 

control/assignment problem is not guaranteed. 

Furthermore, the integrable policy PI turns out to be monotone; no correction term 

is needed and the policy P, is therefore of no relevance. For this cost function 

delay minimisation turns out to be equivalent to PI (apart from a constant factor) 

and is therefore monotone too. 

Table 1 shows the pressure dekitions for each of the policies in conjunction with 

the BPR cost function. 

Table 1 Pressure definitions for various control policies and the BPR cost 

function 

Policy 

3 Proverties of volicies with Webster's cost function 

Pressure 

Webster 

delay minimisation 

Po 
PI 

For signal-controlled networks Webster's delay function is probably most appropriate. 

This function consists of two parts; the first part is due to the start-stop behaviour 

of traffic at signals, whilst the second stems fmm queueing theory: 

fXis 

-a t, P P ' / (~~+ 's~  

a t, P/(hPsP-I) 

a t, (plp+l)P1/(hP+lsP) 

To develop policy PI we can look at each part separately. As Appendix 2 shows the - 
resulting pressure for this policy? 



is not monotone. To ensure monotonicity a correction term is needed, and policy P, 

arises, with pressure definition: 

Neither of these policies is attractive through simplicity; in Smith and Van Vuren 

(1990) an alternative policy is developed, called P,, which has the following simple 

pressure definition, but which still possesses the advantageous monotonicity 

property: 

In Heydecker (1983) the fad that neither Webster's policy, delay minimisation, nor 

Po are monotone in combination with Webster's delay function, was already 

established. 

Table 2 Pressure definitions for various control policies and Webster's cost 

definition 

In Table 2 all pressure definitions for the various policies in conjunction with 

Webster's cost definition are summarized. From now on we will call the policies Po, 

PI, Pm, and P, capacity maximising, following Smith and Van Vuren (1990). 

Policy 

Webster 

delay minimisation 

Po 

PI 

pnd 

PM 

Pressure 

in8 

E(1-h)/(l-US) + fd(hs-f)l -1Ih29 

~C(l-h)~l(l-U~) + d(h-f) - l/h 
-2~C(l-h)log(l-U~) + d(h-0 - U(h2s) - l/h 
-2~c(i-h){log(l-~~) - 2) + s/(h-0 - U(k2s) 

sC(1-h) + d(h-0 
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4 Pro~erties of ~olicies with Davidson's cost function 

Like Webster's delay function, Davidson's expression for delays tends to infinity 

when flows reach capacity; though this curve is also based on queueing theory, its 

form is slightly different from Websteis second term: 

The policy PI that follows from this cost definition is characterised by the following 

pressure: 

and this policy turns out to be monotone, so that no correction term 41 is needed to 

ensure convergence of the iterative assignment control procedure to a single point. 

Further calculations in Appendix 3 show again that neither Po, Webster's policy, nor 

delay minimisation are monotone with these cost assumptions. 

In Table 3 all pressure definitions for the various policies in conjunction with 

Davidson's cost definition are summarized. 

Table 3 Pressure definitions for various control policies and Davidson's cost 

definition 

Policy 

Pressure 

Webster 

delay minimisation 

5 A new  ragm ma tic power aolicy 

A simplified expression for delay at a signalised junction is (following closely to 

Davidson's delay formula): 



which, of course, is too simple to be used in real-life, but which has the property 

that delays tend to infinity when flows approach capacity. 

For this delay expression the three original policies can be expressed as follows: 

Webster's Eq m s  = Eq Uhs-0 for small flow f 

Delmin Min Z f.d = Eq f ddlah 
= Eq fs/(hs-fy = Eq fiY2/(hs-0 

and so, for appropriate values of k, all three policies can be expressed as 

Tests described in Van Vuren et al. (1987) and Van Vuren et al. (1990) indicated 

that 

a. Webster's policy performs well under low congestion: either mutual 

equilibrium has lower average travel time than Pds stable point. 

b. Delay minimisation performs reasonable throughout a range of low to 
medium congestion. 

c. P,'s capacity maximising property is most useful when congestion is 

considerable. 

Thus, if the power k in (27) is related to congestion, this policy can adapt itself to 
mimic the behaviour of each of the three policies in the most appropriate range of 

conditions. 

The value of k should be close to 1 if junction congestion is low, and close to 0 if 

congestion is high. An appropriate expression for k is: 

with an upper limit of 1. Note that this power policy can only be readily applied -. 
in combination with cost functioiis -that assume finite capacity for links, as the sign 



of (Is-f) may change if flows are allowed to exceed capacity. Also, no monotonicity 

properties can be established for this policy: it is based on pragmatism and rather 

strong delay assumptions and should be tested thoroughly in a range of 

circumstances. 

6 Tests on a Bimale network 

The characteristics of the existing and newly developed policies will here be tested 

on a simple two-link network. This test network, as shown in Figure 0, consists of 

only four links, that make up two routes. The first route is fast, but with a limited 

capacity, e.g. through a town centre. The second route is longer, but wider, e.g. a 

bypass. Both routes meet at the end of the town at a signalised junction. 

The saturation flow at the junction for the bypass = 4000 pculh, whilst the narrow 

town route has a lower saturation flow of 2000 pcu/h. The bypass is 150111 longer, 

so that at a free flow travel speed of 50 km/h its free flow travel time is 10.8 secs 

longer than that of the town route. 

The following assumptions are further made: 

- cycle time = 60 see; 

- no intergreen times; 
- two stages, one for each road; 
- minimum and maximum green times of 0.5 sec and 59.5 sec respectively. 

Firmre 0: Test network 

First I will discuss test results with the BPR cost function, and three control policies 

Po, Webster and Delmin (remember that with this cost function the PI policy is 

equivalent to delay minimisation, and monotone). Then I will investigate the 

behaviour of these three original policies plus the capacity maximising PI, P, and 

P, policies under Webster's cost assumptions for signalised junctions; also the 

pragmatic power policy will be t5ted. No comparisons with Davidson's cosc function 

will be made. 



In these tests the iterative assignment control procedure is started from both edges 

of the feasible green time region, to investigate uniqueness of the resulting 

equilibrium, and the policies' abilities to move away from poor initial settings. In 

this two-link case the feasible region is straight-forward to determine, and the 

feasible boundary is determined by the minimum green time constraint. When 

applying the BPR cost function capacities are unlimited; with Webster's cost 

function, however, links are capacitated and the feasible green time region is 

directly dependent on total demand. 

6.1 Tests with the BPR cost function 

Figures 1, 2 and 3 show information about green time and flow distribution at the 

mutual equilibrium plus associated excess travel times, related to total network 

demand and initial green times, using the BPR cost function (16). A comparison is 

given for the three policies and optimum NDP settings. 

First note that, although monotonicity could not be established for either Po or 

Webster's policy, both give rise to single mutually consistent points. 

The resemblance for this cost definition between the behaviour of Po and Delmin is 

striking. However, Po re-distributes traffic and green time to the wide route earlier, 

and resulting green times and flows are closer to the optimum. At low and high 

flow levels both policies give identical (and optimum) results, as expected. 

With this polynomial delay function the Webster policy does not achieve any re- 

distribution to the wide route at all, regardless of the total flow or the initial green 

time. This can be checked analytically as follows: 

Signal control step (Webster's policy) 

flhl~l = fdb,  
User equilibrium assignment step 

t 1 
- - t, (t = 1 + d) 

11 > 4 (free flow travel time) 

dl < d, by shifting f 
l,a[(fl-bf)h,s,lfl < &a[(f2+AD&s,In 

Signal control step 

(reduce h, to compensate for loss of flow; increase &) 
.- 

(fl-Af)/(h,-Ah)sl = (&+Af)l(h2+Ah)s2 



Assignment step 

(reduce fl to compensate for loss of green; increase f.J 
lla[(f,-M-A1~/(~-~)sl]8 < &a[(f2+Af+A1f)/(&+Ah)sJn 

etc. 

In words: flow and green time are persistently re-distributed to the narrow, shorter 

route until a feasible (minimum green time) boundary is met. 

The performance consequence is represented in the average excess travel times in 

Figure 3. Up to a demand flow of approximately 1500 pcdh, some 75% of the 

narrow route's saturation flow, all 3 policies give rise to optimum mutual equilibria, 

whilst when approaching the wide route's saturation flow first Po and then Delmin 

again perform optimally. The comparative performance of Webster's policy 

deteriorates when the demand exceeds the narrow route's capacity, because no re- 

distribution of flow and green time to the wide route is achieved by this policy. 

In the intermediate region Po performs about 20% better than Delmin, because of 

the early green timelflow re-distribution. An optimum, however, is not achieved - or 

even approximated - by application of any of the tested policies in that region. 

6.2 Tests with Webster's cost function 

Now capacities are finite; also the PI policy and Delmin are distinct. Both policies 

are also non-monotone with these cost assumptions. In addition to the three policies 

tested with the polynomial BPR cost functions four extra policies (PI, P,, P, and the 

power policy) will now be tested. Therefore, Figures 4, 5 and 6 are more 

complicated than the corresponding Figures 1 to 3. First note in Figure 4, which 
depicts the green time distribution at equilibrium as a function of total demand, 

that because of the capacitated links an infeasible green time region exists. 

Webster's policy and delay minimisation show virtually identical behaviour, ending 

up at one of the feasible boundaries; when demand exceeds the capacity of the 

narrow route (2000 pcuh) the lower limiting state will actually be unfeasible and 

therefore give rise to infinite delays and travel times. This limiting state ceases to 

exist at a total demand of approximately 2700 pcuh. 

Po performs very much like the case described in Van Vuren et al. (1987) jn which 

the sheared dely formula is applied, re-distributing flow and green time so as to 



always give rise to feasible mutually consistent points. 

Of the newly developed policies PI starts re-distributing flow and green time first. 

As the policy is not monotone with Webster's cost function two equilibria emerge, a 

higher one and a lower one. Both follow closely the Webster and Delmin curves, 

but PI always gives rise to feasible solutions, because of its capacity-maximising 

properties. At a flow level of approximately 2400 pculh, when excess travel time 

starts rising rapidly, the lower limiting state merges with the upper solution and 

ceases to exist. - 

P,, the monotone adaptation of P ,  shows a rather rigid behaviour, just like the 

other monotone policy, P,. Particularly striking is the rigid green time curve at low 

flow levels for the P, policy, caused by the first term of its pressure definition: 

sC(1-h). As s, = 2s,, h,lb must be close to 2 to satisfy the equal pressure condition 

when the second term is small. Both policies give rise to unique and feasible 

solutions. 

Of all new policies the power policy shows the most promising behaviour, closely 

following the optimum settings. A unique flowlgreen time pattern at mutual 

equilibrium exists, which at low flow levels supports the narrow route. When the 

capacity of that route is approached, however, a complete swap-over to the wide 

route of both green time and flow takes place; note that this swap-over takes place 

later than for the optimum settings. 

The final performance comparison is given by the excess travel times in Figure 6. 

As observed before with sheared delay assumptions, the two conventional policies 

may end up in the very adverse situation in which only half the possible amount of 

t d c  can be served. These curves go together with low excess travel times at low 

demand levels, which steeply increase when the capacity of the narrow route is 

approached. 

On the other hand, because of the two limiting states, if the starting point for the 

iterative process could be favourably chosen, these policies achieve near-optimum 

travel times at mutual equilibrium. The integrable policy P, follows the same 

pattern, but less extreme. 

Po and the two monotone policies P, and P, show a similar behaviour. Of these 

three P, performs best at low congestion levels, but rather poorly when demand 
- - 

increases, because of the late re-distribution of flow and the proximity to the 



infeasible boundary of resulting green times. Of Po and P, the first performs better 

and less rigidly, reacting to flows as well as saturation flows, giving rise to lower 

excess travel times in low and high congestion. Generally all monotone policies are 

rather insensitive to existing delays; for a considerable range of demand flows green 

time is split over both routes, even though all flow is assigned to just one of these. 

Resulting inefficiencies are the price we pay for theoretical uniqueness and existence 

of the mutually consistent points. 

Overall, the power policy performs best, always ending up at a feasible point but, 

unlike the three capacity maximising policies, with green times optimally fitted to 

the flows. This gives rise to optimum behaviour, apart from the demand region 

between approximately 1860 and 1930 pc*, even there average excess travel time 

is lower than for most other policies. 

7.1 Introduction 

Performance of policies on simple networks is not necessary representative of their 

behaviour in reality. Tests on larger scale networks are needed for a better 

understanding and they will be presented next. They consist of: 

(a) a network as used by Tan, Gershwin and Athans (1979) in their study of 

optimal signal control, here called the TGA network; 

(b) the network of Weetwwd, a suburb of Leeds. 

With these larger scale networks, simple calculations that sufficed for the two-link 

case have to make way for more sophisticated algorithms. For the equilibrium 

assignment the assignment subprogram of SATURN (Van Vliet, 1982) was used. 

Two adaptations to the program had to be made. Firstly the ability to control 

signals had to be introduced; secondly cost definitions had to be modified. For the 

polynomial BPR function this is a straightforward exercise and described in 

Appendix 4; the infeasibility of link flows above capacity with Webster's cost 

function, however, is incompatible with the requirements of the Frank-Wolfe 

algorithm that SATURN employs. An adaptation of Webster's cost function has 

been devised in order to comply with these requirements. This adaptation will be 

introduced in Section 7.2. Subsequently in Section 7.3, I will describe the green 
- - 

time control algorithm adopted and in Section 7.4 implementation of the iterative 



assignment control procedure in the model. After this the results for both networks 

will be presented. I will discuss convergence of the algorithm, uniqueness of the 

resulting green times, and the quality of the mutually consistent points in terms of 

total network travel times at those points. 

7.2 An ada~tation of Webster's cost function 

Webster's cost function has two properties that are incompatible with the Frank- 

Wolfe algorithm: - 

(1) links are capacitated 

(2) link costs approach infinity when the link flow nears capacity, and they are 

undefined when the flow exceeds capacity. 

The Frank-Wolfe algorithm, as a series of all-or-nothing assignments, needs link 

costs to be finite and defined throughout the whole flow region, also above capacity. 

The following adaptation of Webster's cost function is therefore developed. 

Given a simulation period T (usually between 30 and 120 mins) the "kink" flow level 

is determined at which the derivative of Webster's cost function equals the 

deterministic queueing slope: 

For flow levels above this value the continuation of Webster's curve is replaced by 

deterministic queueing, thus ensuring existence of a cost definition throughout the 

whole flow region, though at substantial cost close to or over capacity; and also 

ensuring a continuous first order derivative. Figure 7 shows Webster's cost function 

and its approximation; in the applications described next resulting flows that are 

higher than the kink flow are considered to be infeasible. Appendix 5 presents the 

relevant mathematical expressions. 

7.3 A preen time control aleorithm 

In Smith et al. (1987) the green time optimisation problem was introduced as an 

assignment problem; see also Section 1. This observation enables us to use a 

standard assignment algorithm to solve the green time optimisation step in the .-. 
iterative assignment control loop. 



Pressures, as defined by the control policy employed are analogous to costs: link 
pressures correspond to link costs and stage pressures, as a summation over 

constituent links, correspond to route costs. An equilibration of stage pressures 

can now be sought by swapping green time from less pressurised to more 

pressurised stages (like an equilibration of route costs is sought by swapping flow 

h m  higher cost routes to cheaper ones), As the number of stages at a junction is 

limited (and known in advance) an algorithm that needs stage enumeration can 

easily be applied. The algorithm employed here is based on that described by 

Dafermos and Sparrow (1969) and it works as follows. 

For each junction: 

(1) determine link pressures (based on flow and green time); 

(2) determine stage pressures (by summing over constituent links as determined 

by the stage matrix); 

(3) determine minimum and maximum pressurised stages; 

(4) determine an optimum swap of green time from the minimum to maximum 

pressurised stage, subject to feasibility constraints; 

(5) unless convergence is achieved, go to step 1. 

This algorithm will determine a set of green splits consistent with a fixed set of 

flows, as in (6). A number of observations with respect to this algorithm must be 

made: 

- for most control policies a stage pressure is defined in step 2. by a 

summation over constituting link pressures; for Webster's control policy, 

however, a stage pressure is determined by the maximum of constituent link 

pressures; 
- determination of an optimum amount of green time to be swapped from the 

minimum to the maximum pressurised stage is carried out by a golden 

section search; 

- with a polynomial BPR cost function feasibility constraints consist of 

minimum green times. When employing Webster's cost definition an extra 

feasibility constraint is introduced, related to link capacities as determined by 

the hs-value. The feasible boundary for green time reduction of the minimum 

pressurised stage is set at h = 0.999 fls, so that a link cannot become 

oversaturated by green - time re-distribution; maximum allowed degree of 

saturation is in effect 99.9%; 



- convergence can be monitored via the step size determined for the optimum 

green swap. 

7.4 Im~lementation asoeds of the iterative assienment control orocedure 

In Smith and Van Vuren (1990) a variant of the iterative assignment control 

procedure is introduced, which might reduce its computational burden. Instead of 

carrying out the assignment step till convergence, we might suffice with a single 

iteration in the assignment, consisting of a direction search via an all-or-nothing 

load and a subsequent optimum step size search. Even though the assignment 

objective function would not be minimised in each step, it would definitely be 

decreased, and the large number of assignment-control iterations should ensure that 

a mutual equilibrium will be reached in the long run, independent of the actual 

algorithm employed. 

Two implementations have been tested, namely the full implementation that 

converges each assignment sub-step, and the streamlined version that allows only 

one new route per assignment. The two implementations were tested on the 

Weetwood network, with a maximum number of assignment-control iterations of 200, 

the observed OD-matrix and the delay minimising control policy. Resulting 

computation times with both polynomial delay assumptions and Webster's cost 

funcion are shown in Table 4 

Table 4 Computation times for two implementations of the iterative assignment 

control procedure and two different cost functions. Weetwood, 1.0 x 

OD, 200 iterations. 

full implementation streamlined version 

polynomial costs (BPR) 28.21 sec 26.41 sec 

Webster's costs 72.92 sec 63.60 sec 

First note in Table 4 the difference in computation times between polynomial cost 

assumptions and Webster's costs; compared with these the computational savings of 

the streamlined algorithm are limited. This is related to the convergence 

performance of the iterative assignment control procedure, which is not unlike that 

of the Frank-Wolfe algorithm. As a rule only in the first few steps of the iterative 

assignment control procedure a relatively large number of iterations is reguired to 
.< 

achieve convergence in the assignment, as shown in Figure 8. In later steps signal 



green time changes and consequent flow changes are so small that single route 

changes suffice for convergence, governed by the size of the step length h and the 

uncertainty in the objective function. This also means that savings in computation 

time by the streamlined algorithm will be of an absolute, rather than relative 

nature, as they are achieved in the first few iterations only. The streamlined 

algorithm has been implemented and used in the test runs described next. 

8 Results for the TGA network 

The network introduced by Tan et al. (1982) consists of 8 uni-directional links, 6 

nodes and 4 OD-pairs. Although still small in size, the network presents a much 

more realistic situation than the simple network used before; four OD pairs exist 

and each of the OD pairs has 2 or 3 routes available that do not necessarily pass 

the signal-controlled junction. 

The network is shown in Figure 9; node 3 is signal-controlled. All links have 

saturation flows of 1500 pcuh, apart from the link between nodes 4 and 5 which 

has a capacity of 3000 pculh. Link lengths are given in the Figure and the h e  

flow speed is assumed to be 40 k d .  

Some differences with the approach of Tan et al. must be noted: 

(1) Tan et a1 apply the BPR cost function to all links in the network; in addition 

they apply Webster's cost definition to those links that are signal controlled. 

I have chosen to apply Webster's cost definition only to links at signalised 

junctions, whereas links at non-signalised junctions have their cost calculated 

according to the sheared delay curve; in effect this will make non-signalised 

junctions generally less attractive than in the network used by Tan et al. 

(2) Cycle times are 60s and 75s respectively for Tan et a1 and my TGA network. 

These differences will explain why the results &om the two studies differ, 

even though the conclusions that are drawn h m  them are very similar. 

Tan et al. investigated the behaviour of the iterative assignment control method for 

the following demand levels: 



which I will call demand levels 1 and 2. 

to 

from 

1 

2 

I will reproduce these tests for the two cost functions and control policies I described 

before; and like Tan et al. I will compare the performance of each of these policies 

with the user optimum. (NB As this network contains only one signal-controlled 

node with 2 stages the user optimum can be found via a simple one directional 

search method). In addition I will investigate the following demand patterns: 

and I will call these demand levels 3 and 4. 

5 6 to 

from 

800 800 1 

800 800 2 

8.1 Results with the BPR cost hnction 

5 6 

1200 1200 

800 800 

Results for iterative assignment control with the polynomial BPR cost dehition and 

the three relevant control policies are given in Table 5. 

Table 5: Resulting green times and total travel times for three policies and 

varying demand levels, compared with optimum settings; polynomial 

cost definition 

demand demand demand demand 
level 1 level 2 level 3 level 4 
T T T G  T T T G  T T T G  T T T G  

Webster 773 0.16 1057 0.26 357 0.35 1075 0.03 

Delmin 776 0.20 1059 0.29 357 0.35 1075 0.03 

Po 777 0.21 1060 0.30 357 0.36 1075 0.03 

optimum 771 0.11 1057 0.25 357 0.35 1075 0.03 

TTT = total network travel time in veh h r h  .*. - 

G = green split for link 1-3 



Resulting green times turn out not to depend on the initial split and therefore only 

a single green split and associated total travel time is shown for each policy in 

Tables 5 to 10. As in the two-link case the behaviour of the three policies is very 

similar and also very close to the optimum. Of the three policies Webster's gives 

rise to the most uneven split, generally favouring the in-link from node 2. This can 

be explained by the observation that the free flow link cost of the alternative route 

from this node (2-5) is much higher than the route via the signalised junction, 

certainly compared with the route alternatives that exist for t&c originating at 

node 1. Whilst for the relations 2-5 and 2-6 this difference is 2.5 miles (360 sec) 

and 3.5 miles (504 sec), for the relation 1-6 the difference is only 0.5 miles (72 see). 

Therefore, with the polynomial cost definition traffic will re-route quicker to the 

alternative on relations from 1 and Webster's policy (to equalise degrees of 

saturation) will favour the larger traffic stream from node 2. The extreme behaviour 

of Webster's policy in the two-link case is not reproduced here, however. 

The attempts of Po to reroute t d c  from 2 away from the signalised junction fail 

because of the large extra length of the alternative and the comparatively shallow 

fom of the BPR cost fundion. 

This also results in actual oversaturation at the signalised junction for all but the 

lowest demand levels, irrespective of the control policy used. 

This behaviour is further illustrated by Table 6 which shows resulting green splits 

and total travel times for demand level 2 and a shortened bypass from node 2 to 

node 5 of 6.25 miles instead of 8 miles. Now Po does manage to redistribute traffic 

away from the signalised junction, resulting in an improved behaviour over 

Webster's policy and delay minimisation. Again, however, the signal-controlled 

junction is oversaturated, but to a lesser extent, due to the use of a polynomial cost 

function. 



Table 6: Resulting green times and total travel times for three policies and 

demand level 2; shortened bypass and polynomial cost definition 

Webster 1030 0.30 

Delmin 1024 0.35 

Po 1023 0.36 

TTI' = total network travel time in veh h r h  

G = green split for link 1-3 

8.2 Results with Webster's cost function 

With Websteis cost hnction I investigate the behaviour of 7 policies; the base case 

is demand level 1 with 800 pcdh on each OD-relation. Table 7 shows the results; 

note that these are again unique, independent of the initial green split (even though 

monotonicity could not be established for five policies). 

Table 7: Resulting green times and total travel times for seven policies and 

Webster's cost function, demand level 1 

Webster 

Delmin 

Po 

PI 

p, 

PM 
Power 

optimum 

TTT = total network travel time in veh hr/hr 

G = green split for link 1-3 



The Table c o n b s  the findings of Tan et al., that iterative assignment control does 

not find a user optimum for this configuration. Even more, this is irrespective of the 

policy employed. A full allocation of green time to the in-link from 2 takes place, 

forcing most traffic from origin 1 to take the alternative route that avoids the 

signalised junction. Application of Webster's cost function ensures, however, that all 

link flows are within capacity, mainly by routing nearly all flow from origin 1 to 

link 1-4. 

When the demand level for relations from, origin 1 is increased to 1200, however, my 

findings are rather different from Tan et al. (demand level 2; Table 8). Again the 

iterative assignment control procedure cannot find the optimum settings according to 

network design; with these demands, however, the capacity maximising policies 

perform better. These policies give more green to the in-link from 1, thus forcing 

traffic from 2 to re-assign to the bypass; the signal-controlled junction is still 

undersaturated. 

Table 8: Resulting green times and total travel times for seven policies and 

Webster's cost function, demand level 2 

Webster 

Delmin 

Po 

pz 

pm 

PM 
Power 

optimum 

?TT = total network travel time in veh hrhr  

G = green split for link 1-3 

Based on these results Tan et al. reject the iterative assignment control procedure. 

However, not only do my results show that the use of different control policies can 

improve its performance, but in addition it is rather limited to base such judgements 

on just two demand cases. - 



Therefore I investigate two more demand levels: a low demand level with only 400 

pcdh on each OD relation (demand level 3) and a demand level with increased 

flows on all relations from origin 2 (demand level 4). Table 9 shows the results for 

demand level 3. 

Table 9: Resulting green times and total travel times for seven policies and 

Websteis cost function, demand level 3 

Webster 

Delmin 

Po 

PI 

PM 

p, 
Power 

optimum 

TTT = total network travel time in veh hr/hr 

G = green split for link 1-3 

For this demand level all policies perform well, particularly the non-monotone 

policies that follow and accept flow levels as they are, without attempting flow re- 

distribution. Again, none of the policies finds exactly the user optimum, but 

differences are now very small indeed. 

The final test is with a similar demand level to the second case, but with a reversed 

emphasis on origins 1 and 2; shown in Table 10. 



Table 10: Resulting green times and total travel times for seven policies and 

Webster's cost function, demand level 4 

Webster 

Delmin 

Po 

PI 

p* 

PM 
Power 

optimum 

TTT = total network travel time in veh hr/hr 
G = green split for link 1-3 

Again all policies end up at a mutually consistent point at the minimum green time 

boundary for link 1-3, caused by the weight of the OD-flows from origin 2. As 

before, this is not the user optimum (differences in total travel times exceed lo%), 

but link flows remain within capacity. 

8.3 Conclusions TGA network 

Summarising, although the iterative assignment control procedure for this network 
and the demand levels tested never finds optimum signal splits, it does not perform 

as bad as Tan et al. claim. I do not claim that the procedure is an actual heuristic 

for the network design problem; it is a practical tool for use in large scale networks, 

allowing a realistic network description and complex cost functions. The procedure 

in this case gives rise to sensible signal splits and its extreme behaviour in two of 

the cases is strongly determined by the network layout. It would be just as easy to 
construct a network on which the iterative assignment control procedure performs 

well in conjunction with d l  or particular policies, and in my view final conclusions 

should be based on more tests with realistic networks. 

Despite the lack of theoretical uniqueness of the resulting mutual equilibrium for a 

number of policies, the iterative assignment . control procedure gives rise Lo unique 

settings for d l  policies on this network. What is shown clearly, and what should 



matter to the practitioner, is the influence of the control policy employed and the 

cost assumptions on resulting green splits and accompanying travel times. 

Of the control policies investigated the capacity maximising policies probably 

perform best; the performance, however, is strongly influenced by the quality of the 

available route alternatives. Of these four policies (Po, P,, P, and P,), Po performs 

best and has the added advantage that it can be applied independently of the cost 

function employed. The power policy performs promisingly, but needs testing on a 

larger scale network. Finally, Webster's policy performs most extremely, particularly 

under Webster's cost definition. 

The cost function employed influences the results of the iterative assignment control 

procedure in two important ways: 

(1) It iniluences the performance of each of the policies, with respect to the 

quality of the mutual equilibrium reached. 

(2) It influences resulting green times, not only for each of the policies, but also 
the optimum settings. A comparison of green times in Table 5 and those in 

Tables 6 to 10 will back this up. The question is, of course, which green 

splits are optimal in reality. 

9 Results for the Weetwood network 

The Weetwood network is of a much larger size than any of the previous networks 

tested. It consists of 70 zones, 105 nodes and 442 directional links. Of the nodes, 

17 are signal controlled with 42 stages in total. The network is depicted in Figure 

10; the modelled situation is the AM Peak with strong North-South flows. 

As before, this network is tested with: 

(a) different cost assumptions 

(b) different demand levels 

(c) different control policies 

(d) different initial green time splits. 

Because of the complicated network structure, it is now infeasible to determine 

optimum settings. It is therefo? impossible to state how close to the actual 

network optimum resulting green timehlow combinations for each of the policies are. 



9.1 Results with the BPR cost hnction 

With the polynomial cost function three demand levels have been investigated. The 

base case is the observed trip matrix, giving rise to an average network speed of 35- 

40 km/h (dependent on initial green time splits). To allow for a considerable 

increase in congestion, and because of the shallow form of the cost function, the two 

other demand levels investigated are for a doubled and trebled OD-matrix, giving 

rise to speeds of approximately 20 k d h  and 10 k m h  respectively. Results for these 

tests are shown in Table 11; as before, three control policies (Webster, Delmin and 

Po are tested in interaction with user equilibrium assignment. 

The iterative assignment control procedure has been started h m  two different 

initial green splits. The Table shows resulting total network travel times at the two 

mutually consistent points found and the average and maximum differences between 

resulting green times at those points; cycle time is 100s. 

Table 11: Results for the Weetwood network; polynomial cost assumptions 

ODxl 
Webster 2007 0.001 0.008 2007 0.001 0.003 0.05 0.5 
Delmin 2005 0.001 0.003 2005 0.001 0.005 0.06 0.4 
Po 2005 0.001 0.000 2005 0.001 0.000 0.05 0.2 

ODx2 
Webster 5280 0.018 0.000 5280 0.020 0.000 0.06 0.2 
Delmin 5248 0.015 0.000 5249 0.017 0.010 0.06 0.2 
Po 5258 0.018 0.000 5259 0.018 0.000 0.12 0.5 

ODx3 
Webster 14944 0.036 0.003 14945 0.035 0.000 0.03 0.1 
Delmin 14276 0.043 01003 14276 0.041 0.000 0.09 0.4 
Po 14297 0.050 0.008 14292 0.040 0.000 0.10 0.4 

TIT1 = total network travel time in veh.hr/hr; start green 1 
TIT2 = total network travel time in veh.hr/hr; start green 2 
Sf = excess travel costs over minimum costs in % 
Sg = average absolute change in green times in last iteration in sec. 
AG = average difference in resulting green times in sec. 

AG,, = maximum difference in resulting green times in sec. 

The 6f and Sg columns indicate the level of convergence for the iterative assignment 

control procedure for the link flows . and green times respectively; 6f de~otes the 

excess travel costs: 



total network travel costs with current flow pattern 
total networks costs via minimum routes 

and this is a measure how far we are from an equilibrium, in which case the value 

of 6 = 0. They show how well the procedure has converged, with excess travel costs 

never more than 0.05% and an absolute average change in green times in the final 

control iteration of less than 0.01 sec. 

As in previous tests with this cost assumption, the results of all three policies in the 

iterative assignment control procedure are very similar. The maximum difference in 

travel times between delay minimisation and Po is limited to tenths of a percent, 

and the maximum difference with Webster's policy is less than 5%. Also the 

resulting green split patterns are virtually independent of the initial splits (even 

though monotonicity could not be established for either Po or Webster's policy). The 

small differences in green splits resulting from each of the starting points are most 

likely due to computational inaccuracies. 

A closer look at the resulting green splits also reveals that the final splits do not 

necessarily depend very much on the control policy employed, as Table 12 shows. 

Although average differences in resulting green splits may run up to some 8 sec 

between Webster's policy and the two other policies and maximum differences up to 

27 sec, particularly striking is the similarity of final green splits for Delmin and P,,. 
Differences in resulting network travel times are always less than 0.1% and the 

maximum difference in final green times is 2.0 sec in the 1.0 case and 6.4 sec in the 

3.0 case (average differences are 0.7 sec and 1.6 sec respectively), almost the same 

order of magnitude as the differences resulting h m  different start greens. 

Table 12: Differences in final green times between the three policies; 

start green 1 

ODxl 
- 

ODx3 
- 

AG AG,, AG AG- 
Webster-Delmin 3.3 9.4 6.2 21.3 

Webster-Po 3.9 10.9 7.6 27.1 

Delmin-Po 0.7 2.0 1.6 6.4 

- 
AG = average difference in resulting green times in sec. 

AG,, = maximum difference in-resulting green times in sec. 



9.2 Results with Webster's cost function 

As links are capacitated with Webster's cost function congestion builds up much 

more rapidly than with polynomial delay assumptions. This is demonstrated by the 

steeper rising total network travel times in Table 13; in fact no feasible flowlgreen 

time pattern (where feasibility is defined as: "with all signal-controlled links below 

artificial capacity as defined by the "kink" flow in paragraph 7.2") could be found by 

any of the policies for demand levels higher than 1.2 x observed demand. 

N.B. In effect, this is not really a feasibility problem. An appropriately large 

choice of simulation time T would: 

(a) shiR the kink flow to the right, as the slope of the over-capacity delays 

increases; 

(b) ensure sufficiently high delays near capacity to re-distribute tr&c away @om 

signalized junctions. 

Extremely large T s  and steep slopes in the cost functions, however, introduce 

instabilities in both assignment and signal control, and therefore a limited 

value of 9999 min. was applied to determine the over-capacity slopes of 

delays at signalized junctions, and 30 min. at all other junctions. 

Comparing total network travel times, we can first observe the rather good 

behaviour of Webster's policy at lower congestion (though never better than Delmin) 

and the rather poor behaviour when network capacity is approached (OD x 1.2); 

then total travel times are up to 19% higher than for Delmin. Delay minimisation 

perf01111s very well and consistently; Po is as consistent, though resulting travel 

times are 2-3% higher than those for Delmin. PI generally performs slightly better 

than Delmin. 

Of the two monotone policies P, performs very disappointingly, with travel times up 

to 13% higher than Delmin; P, performs better, though generally slightly worse 

than P,. The power policy again performs encouragingly, with total travel times 

similar to or lower than Delmin. 



Table 13: Results for Weetwood network; Webster's cost assumptions 

TTTl Sfl Sgl 

ODxl.0 
Webster 2392 0.056 0.005 
Delmin 2349 0.013 0.000 
Po 2416 0.057 0.008 
PI 2343 0.022 0.008 
pm 2475 0.105 0.005 
PM 2421 0.037 0.000 
Power 2366 0.019 0.003 

0Dxl.l 
Webster 2867 0.027 0.010 2874 0.046 0.005 0.11 0.7 
Delmin 2817 0.058 0.000 2819 0.057 0.003 0.12 0.7 
Po 2885 0.026 0.005 2884 0.030 0.003 0.05 0.2 
PI 2787 0.036 0.000 2795 0.070 0.010 2.23 23.4 
PIN 3014 0.416 0.005 3017 0.037 0.008 0.05 0.2 
PM 2894 0.056 0.013 2893 0.029 0.023 0.05 0.2 
Power 2807 0.049 0.008 2765 0.073 0.000 3.48 27.3 

ODx1.2 
Webster 3853 2.346 0.035 4156 2.479 0.010 1.62 9.1 
Delmin 3485 0.199 0.013 3443 0.310 0.008 2.15 16.4 
Po 3520 0.372 0.000 3521 0.376 0.023 0.10 0.4 
PI 3370 0.125 0.003 3360 0.106 0.013 0.09 0.5 
PIN 3869 0.014 0.000 3901 0.018 0.008 0.09 0.3 
PM 3559 0.072 0.000 3558 0.057 0.000 0.10 0.4 
Power 3417 0.110 0.010 3376 0.202 0.005 2.10 16.3 

TTTl = total network travel time in veh.hrb, start green 1 
TTT2 = total network travel time in veh.hr/hr; start green 2 
6f = excess travel costs over minimum costs in % 
6g = average absolute change in green times in last iteration in sec. 
AG = average difference in resulting green times in sec. 

AGm, = maximum difference in resulting green times in sec. 

Again the convergence of the iterative assignment control procedure has been 

monitored via excess travel costs 6f and the absolute average change in green times 

in the final iteration Sg. It is important here to note that no stop criterion was 

applied to the procedure, apart from the maximum number of 500 iterations. 

Apart from Webster's policy in the highly congested case the convergence of the 

assignment process is excellent, indicated by final excess travel costs for all other 

policies of less than 0.4%. This level of convergence is backed up by the average 

absolute final change in green times, which in this case is always less than 0.03 sec. 

Note how the convergence is negatively influenced by an increase in congestion. 

An interesting picture is painted by the stability of the seven policies, expxessed in 
- 
AG and AG,,. First note that, not surprisingly, stability tends to decrease with an 



increase in congestion; this is much more so than with polynomial cost assumptions 

(Table 11). Least stable in resulting green splits is the power policy, with an 

average difference of up to 3.5 sec and a maximum difference of up to 27.3 sec in 

green splits resulting from different starting points, even though this does not 

express itself in widely differing total travel times. The same argument, but to a 

lesser extent, is valid for P;s behaviour and delay minimisation; Webster shows 

considerable differences in total travel times, as well as in resulting green times 

when congestion is high. Po and the two monotone policies P, and P, are most 

stable; particularly striking is the similarity in performance and stability between Po 
and P,. 

A vital element of the power policy, the power k, deserves more attention here. I 

am particularly interested in: 

(a) development of k-values during the iterative process and 

(b) stability of its final values. 

Table 14: Final values for power k dependent on initial green splits; Weetwwd 

network; OD x 1.1 

value k value k 
node start green 1 start green 2 

Figures 11 and 12 show the development of k-values per junction through the 

iterative process in the OD x 1.1 case, which gave rise to most unstable green times 

for the policy (see Table 13). - These graphs show that the k-values chapge to a 

certain extent during the process, but settle down to a stable value towards the end 



of the iterative procedure. Their final value, however, depends on the initial green 

time settings as Table 14 shows more clearly, as initial timing influences the final 

flow and green time pattern. 

9.3 A more dvnamic examale 

Up to now all numeric examples had a fured level of demand, for which signals were 

adjusted according to a chosen control policy. The iterative assignment control 

procedure can, however, be used to represent: 

(a) regular updating of fixed time signal plans after traf6c has re-adjusted to 

changed conditions 

(b) performance of vehicle-actuated control over time. 

In both cases drivers need time to experience changing conditions and to adjust 

their route choice accordingly. The assumption of fixed demand is rather restricted, 

given the current tmffk growth of some 2.5% per year. Therefore, in this example, 

a dynamic adjustment of travel demand is allowed after each signal control step, to 

represent traffic growth. This traffic growth is set to 0.05% per step; in case (a) 

this would represent an update of the signal plan every week (maybe rather 

unrealistically); in case (b) this would represent a learning period for drivers of 

approximately 1 week. 

The iterative assignment control procedure was started for the Weetwood network 

with a demand level of 1.1 x observed OD flows and again the two different initial 

green splits. Table 15 shows per policy resulting demand levels at which the 

flowlgreen time pattern becomes infeasible; Webster's delay formula was employed. 

Table 15: Maximum demand levels that give rise to feasible flowlgreen time 

combinations; Weetwood network; Webster's cost function 

control 
policy 

Webster 
Delmin 
Po 
PI 
p, 
PM 
Power 

maximum maximum 
demand level; demand level; 
start green 1 start green 2 



Of all control policies Webster's definitely performs worst: the maximum demand 

level that still gives rise to feasible flowlgreen time combinations is only slightly 

more than 1.2 x observed demand and for one set of start green splits the policy 

actually never settles down to a feasible solution. The capacity maximising policies 

(Po, P,, P, and P,) all perform better than delay minimisation, in that they indeed 

allow a higher demand level to be processed by the network, but there is a clear 

influence of initial settings. Also all capacity maximising policies should 

theoretically give rise to equal maximum demand levels, as in the two-link example. 

The adaptation of Webster's cost function will play a role here. Particularly 

impressive in their performance are PI and P,, but it is the power policy that is 

really surprising. It outperforms all other policies, even the capacity maximising 

ones and gives rise to highest feasible demand levels. 

Another view on these results is given by Figure 13, which depicts total network 

travel time per policy against the increasing demand level, for the case with start 

greens 1. 

With Webster's policy the iterative assignment control procedure does not settle 

down to a feasible solution until a demand level of approximately 1.17 x observed 

OD flows and at a level just above 1.20 x observed demand at least one of the 

signal controlled link flows becomes infeasible. During this short feasible region 

network travel times are higher than for any other policy. 

The poor behaviour of the P, policy, that already emerged from Table 13, is again 

illustrated. Delay minimisation gives rise to very advantageous settings at lower 

demand but travel times increase rapidly and infeasibility occurs at a demand of 

1.23 x observed OD-flows. 

It was observed before that Po and P, show a very similar behaviour, which is 

confirmed by the graph; P, maintains feasibility longer than P,,. Finally, PI and the 

power policy perform very alike, apart from the highest feasible demand levels 

where the power policy gives rise to lower total travel times; in addition this policy 

maintains feasibility longest. 

9.4 Conclusions for the Weetwood network 

The tests on the Weetwood network have shown some interesting, though not 

surprising characteristics of the iterative assignment control procedure in conjunction 

with different cost assumptions and . different control policies. - 



In the first place the streamlined version of the iterative assignment control 

procedure converges extremely well in virtually all cases, as indicated by the values 

of Sf and Sg. 

Secondly none of the policies shows as extreme a behaviour as in the two-link 

example, or even the TGA network. A feasible boundary of the flowlgreen time 

space is seldom reached, so that delay minimisation in general shows the best 

behaviour of all policies, despite potential theoretical problems. 

The monotone policies are most stable, as expected, but 2-13% less efficient than 

Delmin. The need for capacity-maximising properties is not apparent in this 

network; of all four capacity-maximising policies Po is preferred. It generally 

outperforms the other policies and is applicable with all cost functions. 

Of the remaining policies Webster expresses the most unstable behaviour, 

particularly at high congestion. The pragmatic power policy's performance is very 

promising in terms of total network travel times, but rather unstable in resulting 

green splits; it seldom improves on Delmin. 

The cost function employed has at least as important an effect on results as the 

choice of control policy. With polynomial cost assumptions all three policies tested 

behave in a very similar way, giving rise to virtually identical network travel times. 

When employing Webster's cost function the network capacity is limited and the 

influence of the control policy used on network performance and stability of green 

splits is much more pronounced. 

The influence of the cost assumptions on the results is best illustrated by a 

comparison of resulting green splits and total network travel times per policy &er 

application of the iterative assignment control procedure with each of the two cost 

functions, as shown in Table 16. 



Table 16: 

Webster 

Delmin 

Po 

Differences in results with Webster's and polynomial cost assumptions; 

Weetwood network, OD x 1.0, start green 1 

- 
TTT-BPR ?rr'-WEB AG AG- 

= total network travel time in veh.hr/hr; BPR cost function 

= total network travel time in veh.hr/hr; Webster's cost function 

= average difference in resulting green times in sec. 

= maximum difference in resulting green times in sec. 

Because of the congestion characteristics of the two cost functions only the observed 

case (OD x 1.0) can be compared. Not surprisingly, total network travel times are 
some 20% higher with Webster's cost definition than under the BPR assumptions, 

although in fact the shape of the polynomial delay function should be calibrated via 

the parameters a and 13. More importantly, and less dependent on such a 

calibration, the resulting green times are totally dissimilar under the two cost 

definitions, as average and maximum green time differences illustrate. This 

indicates the limited value of modelled green splits for real-life use, unless a very 
realistic cost definition is applied. This will be the subject of the next Chapter. 
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35 - . 
Fimre 1 Green time at mutual equilibrium for four policies; 2-link test network; 

BPR cost function 
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Fimre 2 Flows on bypass at mutual equilibrium for four policies; 2-link test 

network; BPR cost function 



Fieure 3 Excess travel time at mutual equilibrium for four policies; 2-link test 

network; BPR cost function 



Fimre 4 Green time at mutual equilibrium for seven policies; 2-link test 

network; Webster's cost function 



Figure 5 Flows on bypass at mutual equilibrium for seven policies; 2-link test 
network Webster's cost function 



Fieure 6 Excess travel time at mutual equilibrium for seven policies; 2-link test 
network; Webste9s cost function 
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Figure 7 Webster's cost function and its approximation 



Fieure 8 Convergence characteristics of the assignment sub-step in the iterative 

assignment control procedure; original implementation 
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Fimre 9 TGA network (Source: Tan et al. 1982) 



44 

Firmre 10 Weetwood network 



Figure 11 Development of power k in the iterative assignment control procedure; 

Weetwood network; OD x 1.1; initial settings 1 



Fipure.12 Development of power k in the iterative assignment control procedure; 

Weetwood network; OD x 1.1; initial settings 2 
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Firrue 13 Total network travel time versus travel demand; dynamic loading; 

Weetwood network; initial settings 1 
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APPENDIX 1: Monotonicitv with BPR delav function 

For a solution to the combined assignment signal control problem to exist and to be 

unique the vector (t,-p) should be the gradient of a convex function V. 

(t,-p) is the gradient of function V if 

av/af = t and av/ah = -p 

If V is smooth, and thus 

we can express p as follows: 

V is convex iff the gradient (t,-p) is monotone so that the Jacobian of this vector is 

positive semi-definite. The Jacobian is 

Even if (t,-p) is not a gradient monotonicity of (t,-p) is a desirable property, because 

then a convex set of equilibria is guaranteed to exist; which may be unique in that 

it may consist of a single point (Smith, 1982). 

(t,-p) is monotone iff IImll 2 0 ; (Smith, 1985). 
2 

This is clearly a slightly weaker condition than that mentioned above; here the 

symmetrized Jacobian must be positive semi-definite. 

t = at. P/hBsP 

v = j t(x)dx = at. u(p+i) P'~ILPSP 
0 

p = -3VAA = at, P/(P+l) P1lhP+'sP for policy PI 



so that PI is monotone 

Delmin: p = f at/ah 

so (t,-p) is monotone for delay minimisation 

thus Po not monotone with BPR cost definition. 
- 



Webster 

and so Webster's policy is not monotone with BPR cost definition either. 
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APPENDIX 2: Monotonicity with Webster's cost definition 

Apart from the factor 112, this expression can be divided into 2 terms 

First term (t1) 

PI = -3VIah = -2sC(1-h)log(l-US) for policy PI 

llM1l = C(1-h)'I(l - Us)' . (-2C log(1 - Us) - 4C) 
2 

Thus, the Jacobian is not positive semi-definite and the fmt term of policy PI is not 

monotone. To ensure montonocity a correction term must be introduced in policy 

P Properties of this correction term include: 

- I$I is function of h only 
- aI$I/ah = 4sC (as -2C log(1 - Us's) 2 0) 

Thus p, = -2sC(1-h)log(l-Us) + 4sC(1-h) for policy P,, 

- 



at,/af, atl/ah, ap,/af as before 
ap,/ax = ~ S C  ~O~(I-US'S) - ~ S C  

and thus the first term of P, is monotone 

Second term (t,) 

Pa = -dV/ah = d(hs-f) - m2s - llh for policy PI 

= l/h2 [ (1-2f i ) / (h~-D~ - l/h2s21 
= 1h2 {(hs-f)Y[(hs-f)2h2s21 - P~h2sYhs-f)21 - l lh2~2) 

= -PJh4s2(hs-f)21 < 0 thus second term of PI not monotone 



Correction term @ must be function of h only, so no @ emerges naturally from the 

above. However, if we try @ = ILL (to compensate the integration constant): 

and so the second term of P, is monotone too 

PM Policv 

This policy is characterised by the following pressure definition: 

This pressure consists of two elements, each one associated with part of Webster's 

cost function. The term sC(1-h) is associated with Webster's first term; note the 

similarity with policy P;s first term. The term sl(hs-f) resembles the second term of 

PI and is associated with the second part of Webster's cost function. The resulting 

vector (t,-p) is not a gradient for this pressure, but monotonicity can be established. 

Monotonicity for P, can again be tested for each part separately. 



First term 

so first term of P, is monotone 

Second term 

and thus second term of P, also monotone 
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APPENDIX 3: Monotonicity with Davidson's cost function 

Here we concentrate on delay term (hs/(hs-f) - 1) 

= -hs log (As-f) - f + hs lodhs) 

p = -aVAh = hs2/(hs-f) + s log(b-f) - s 10g(hs) - s 
= -s lodhsl(hs-f)] + fsl(hs-f) for policy PI 

Thus policy PI is monotone with Davidson's cost function. 

Therefore, delay minimisation with Davidson's cost assumptions is not monotone. 
-. - - 



And thus the P, policy is not monotone either. 

Webster 

so that Webster's policy not monotone either with Davidson's delay function. 
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APPENDIX 4: Polynomial cost imvlementation 



58 - .  

APPENDIX 5: Webster's adapted cost function implementation 

t(D = C(1 - + 1 - 1 f < kinkf 
Z(l-Us) 2hs-f & 

f ,  kinkf 

where kinkf = kink flow as defined in Chapter 7.2. 

z - - - [Cs(l-a) lodl-Us) + lodl-%) + Vhsl f < kinkf 

- - - Cs(1-A) log (1-kinWs) (a) 

+ C(1-hXf-kinkf) (b) 

+ iI/(as-kinkf) - lAsl(f-kinkf) (c) 

[lodl-kinkUh) + kink%] (dl 

+ (f-kinkf) =Th (e) 
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