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Abstract 

Coagulopathy is common in acute sepsis and may range from subclinical activation of 

blood coagulation (hypercoagulability), which may contribute to venous thromboem- 

bolism, to acute disseminated intravascular coagulation, characterized by widespread 

microvascular  thrombosis  and consumption  of platelets  and coagulation proteins, 

eventually causing bleeding. The key event underlying this life-threatening complication is 

the overwhelming inflammatory host response  to the  pathogen leading to the 

overexpression of inflammatory mediators. The latter, along with the microorganism and 

its derivatives drive the major changes responsible for massive thrombin formation and 

fibrin deposition: (1) aberrant expression of tissue factor mainly by monocytes- 

macrophages, (2) impairment of anticoagulant pathways, orchestrated by dysfunction- al 

endothelial cells (ECs), and (3) suppression of fibrinolysis because of the overproduc-tion 

of plasminogen activator inhibitor-1 by ECs and thrombin-mediated activation of 

thrombin-activatable fibrinolysis inhibitor. Neutrophils and other cells, upon activation or 

death, release nuclear materials (neutrophil extracellular traps and/or their compo- nents  

such as histones, DNA, lysosomal enzymes, and High Mobility Group Box-1), which have 

toxic, proinflammatory and prothrombotic properties thus contributing to clotting 

dysregulation. The ensuing microvascular thrombosis–ischemia significantly contributes 

to tissue injury and multiple organ dysfunction syndromes. These insights into the 

pathogenesis of sepsis-associated coagulopathy may have implications for the 

development of new diagnostic and therapeutic tools. 

 

Keywords: infection, coagulation, fibrinolysis, neutrophil extracellular traps, 

microvascular thrombosis  



 

 

Introduction 

Coagulopathy is a common feature of acute sepsis and comprises a wide spectrum of 

hemostatic changes ranging from thrombocytopenia and/or subclinical activation of 

blood coagulation (hypercoagulability) to uncontrolled, systemic clotting activation with 

massive thrombin formation and fibrin deposition in the  microcirculation, eventually 

leading to  consumption of platelets and  proteins of the  hemostatic system   (acute   

disseminated   intravascular   coagulation, DIC).1,2 From  a clinical  standpoint, septic 

patients may  present with localized thrombotic manifestations, as indicated by the  

observation that they  are  at increased risk  for  venous thromboembolism.3,4 

However, the  most common and  dramatic clinical  feature is widespread thrombosis in 

the micro- circulation of different tissues which causes hypoxic-ischemic tissue injury and 

contributes to the altered function of one or 

more organs.1,2 The development of multiple organ dysfunction syndrome (MODS), 

the hallmark of  severe sepsis and septic shock, is a major determinant of the high 

morbidity and mortality in these conditions. Although several closely  inter- linked  

mechanisms  have   been  proposed  to   explain  this dramatic event,5  an  important 

role  of DIC is supported by 

several lines of evidence2,6: (1) thrombosis in small  and mid- size vessels of multiple 

organs and its relationship with organ ischemia   and    dysfunction   has    been   

documented   by 

 

numerous histological studies in septic patients and  in ani- mals with sepsis or 

endotoxemia; (2) in experimental models of sepsis,  amelioration of DIC by various 

interventions improves organ failure and,  in  some cases,  mortality; (3) DIC is an  



 

 

independent predictor of organ dysfunction and mortality in  septic patients.  In  

severe (fulminant) DIC, the progressive consumption of platelets and  coagulation 

pro- teins will result in simultaneous or delayed bleeding of different severity, ranging 

from  oozing at arterial or venous puncture sites to profuse hemorrhage from various 

sites.  DIC is classically associated with Gram-negative bacterial infec- tions but it  can  

also  occur  in  Gram-positive sepsis (with a similar incidence) and  in systemic fungal,  

viral, and  parasitic infections.1,2,7  

The pathophysiology of sepsis-associated DIC is extremely complex and still under 

extensive investigation. The key event is the systemic overwhelming host  inflammatory 

response to the  infectious agent (SIRS, systemic inflammatory response 

syndrome).8  After sensing danger-associated molecular pat- 

terns (DAMPs), including both unique constituents expressed by   the  causative  

microorganism  (PAMPs,  pathogen- associated molecular patterns) and  factors derived 

from damaged host cells (alarmins), through specific receptors (PRRs,  pattern  

recognition receptors,  primarily  the   TLRs, Toll-like  receptors), innate immune and  

other host cells (monocytes-macrophages, neutrophils, platelets, and  endo- thelial 

cells)  synthesize and  release large  amounts of proin- flammatory mediators, mainly 

cytokines and  chemokines (►Fig. 1). The latter, together with other mediators 

generated by the inflammatory cascade, including complement activa- 

tion   products,8 act in concert with the microorganisms and/ 

or their derivatives to trigger inflammation and  coagulation pathways, DIC and  organ 

dysfunction.1,2,6 Enzymes generat- ed during the clotting cascade (thrombin, factor Xa, 

and factor VIIa), in turn, interact with specific cellular receptors (PARs, protease-



 

 

activated receptors) and  elicit  cell  responses that amplify the  inflammatory  

reactions,9,10 creating a  vicious cycle. In addition, evidence accumulated during the 

last years  

indicate that nuclear products released by activated innate immune cells  (mainly 

neutrophils) and/or by dead cells  are endowed with inflammatory,  cytotoxic,  and  

prothrombotic properties and  thus they may  significantly contribute to the initiation 

and  propagation of inflammation and  coagulation pathways, and  to tissue injury and  

organ failure occurring in acute  sepsis.11,12  This  review  will  briefly outline  current 

knowledge  on   the  pathogenesis of  sepsis-associated  DIC and  the  ensuing 

development of  new  potential diagnostic and  therapeutic tools. 

 

Pathogenesis of Sepsis-Associated Coagulopathy  and Thrombus  Formation 

It is widely recognized that the causative agent and especially the  mediators generated 

by the inflammatory response drive thrombus formation by at least three 

simultaneously acting mechanisms: (1) upregulation of procoagulant pathways, (2) 

downregulation of physiological anticoagulants, and (3) sup- 

pression of fibrinolysis.1,2,7 Virtually all cells participating in 

acute systemic inflammation, that is, endothelial cells (ECs), monocytes-macrophages, 

neutrophils, and platelets, variably cooperate to each  of these mechanisms. 

 

Upregulation of Procoagulant Pathways:  The Central Role of Tissue Factor 

Currently, the aberrant in vivo expression of tissue factor  (TF) is thought to  play  a 

pivotal role  in  sepsis-associated blood clotting activation.  This  view  is strongly 



 

 

supported by  the following observations. (1) The impairment of the TF pathway by    

various   means   prevents   coagulation   abnormalities (including fibrin deposition in  

target tissues) and  lethality  in  numerous animal models of sepsis or  

endotoxemia.2,7,13 (2) The plasma levels of TF are increased in septic patients and 

generally associated with raised concentrations of markers of 

clotting activation.2,7,14 

As to the  cellular source of TF in sepsis there is still some debate. In vitro, ECs and  

monocytes-macrophages have  long been known to synthesize TF in response to a wide 

variety of stimulating agents or conditions that are of pathophysiologi- 

cal importance in sepsis,2,15 and, more recently, TF expression 

has  been detected also in human polymorphonuclear leuko- cytes (especially 

neutrophils) upon stimulation by inflamma- tory    agents2,16   and    in   platelets   

activated   by   various 

agonists.2,17,18  It  should be  noted that,  according to  some 

investigators, neutrophils and  platelets do not  synthesize TF but rather they acquire it  

by  binding TF-expressing  micro- particles  (MPs).2,13,19    MPs   are   small-membrane  

vesicles released from  activated or apoptotic cells that can  be trans- ferred to the  

surface of other cells via specific receptors (for instance, PSGL-1 on leukocyte-derived 

MPs and P-selectin on activated platelets or ECs) making the recipient cell capable of 

triggering and  propagating coagulation.2,15 

Although all the aforementioned cells,  being  actively involved in the  systemic 

inflammatory response, might con- tribute to the aberrant in  vivo  expression of  TF, 

available studies point to activated monocytes-macrophages as  the main triggers of 



 

 

blood  coagulation during sepsis.  In animal models of endotoxemia or  sepsis,  TF is 

increased in  target organs where fibrin is often deposited during DIC (i.e., lung, kidney,  

liver,  brain,  and  spleen) and,  at  cellular level,  it  is detected mainly in monocytes 

present in the microcirculation and  macrophages infiltrating the involved tissues; in  

these animals, also blood  monocytes and  macrophages of different origin  express 

strong TF activity.2,13,15,20 In addition, a selective genetic deficiency of TF expression by 

hematopoietic cells as well  as the  deletion of TF gene  in myeloid cells  reduced 

lipopolysaccharide-induced coagulation,  inflammation,  and mortality in  mice.13,21 

Increased  expression  of  monocyte-macrophage TF has  been also documented in 

healthy volun- teers after the  administration of  low-dose endotoxin,22 in septic or 

endotoxemic patients, in whom TF was  associated with clotting activation,  MODS and  

lethal outcome, and  in patients with peritonitis or  acute respiratory distress syn- 

drome.2,15,20 Moreover, increased numbers of circulating TF-positive  MPs  of  

monocyte  origin   have   been  detected  in patients with meningococcal sepsis and  in 

human low-dose endotoxemia,2,23 and levels of MP TF activity were correlated 

with coagulation activation in endotoxemic mice.24  Surprisingly, and in contrast with 

the abundant in vitro evidence, ECs were negative for TF in most animal studies, with 

very  few exceptions.2,13,19,20 Notably, the deletion of the TF gene in ECs had no 

significant effect on clotting activation in endotoxemic mice,13,21 ruling out a major 

involvement of EC-derived TF. ECs,  however,  may   contribute  to   clotting  activation  

and thrombus formation by other mechanisms. These  cells  play a critical role in 

orchestrating the host  response to sepsis and are the target of DAMPs and  

inflammatory mediators.25 As a consequence, ECs become activated and  adopt a 



 

 

proinflammatory phenotype that initiates the recruitment and  activation of innate 

immune cells (mainly monocytes and neutrophils) through the expression of adhesion 

molecules. P-selectin is of particular importance in this context because, 

as mentioned above,  it binds TF-positive MPs via PSGL-1.2,13 

Interestingly, MPs taken up by ECs are internalized and the TF moiety is recycled to the 

cell surface thus inducing a substan- tial increase in the  cell procoagulant potential.26 In 

addition, activated ECs are  known to secrete von  Willebrand factor (VWF)  in  its highly 

platelet-agglutinating  form  (i.e.,  ultra- large VWF multimers) from Weibel–Palade 

bodies, eventually resulting in platelet activation and platelet-mediated clotting 

stimulation.25 As a matter of fact, increased plasma levels  of VWF have been reported in 

systemic inflammation including sepsis.27 In parallel, decreased plasma levels  of the  

VWF- cleaving protease ADAMTS13 (a disintegrin and  metallopro-tease with 

thrombospondin motif) are  seen,  likely  due  to downregulation at transcriptional 

level, proteolytic degrada- tion,   and   consumption.27   In  some  studies  the  levels   of 

ADAMTS13 and  VWF correlated with disease severity, organ dysfunction, and/or 

outcome27,28 suggesting that  these parameters might be useful  for the  diagnosis 

and  the  therapeutic monitoring of septic patients. 

Similar  to ECs, the role  of neutrophils and  platelets as a direct source of TF in vivo 

during sepsis remains controver- sial.2,13,21,29   These   cells,  however,  may   participate 

in  the activation of coagulation and  thrombus formation by other mechanisms,  

besides  the  binding  of  TF-positive  MPs.2,13 

During  sepsis platelets are  activated by DAMPs and  other inflammatory mediators (e.g., 

platelet-activating factor, PAF), by adhesion to damaged endothelium and VWF (see 



 

 

above) or by  thrombin.  The  expression  of  P-selectin mediates the binding of 

platelets to monocytes and  enhances the  production of TF by these cells.6  Platelet 

activation also  provides a suitable phospholipid surface (anionic phospholipids, mainly 

phosphatidylserine) that catalyzes the  coagulation reactions several folds and renders 

clotting enzymes less susceptible to fluid phase protease inhibitors. Moreover, 

activated platelets and  platelet-derived MPs  may  induce thrombin generation 

independently of TF via activation of factor  XII (FXII). There is now  ample evidence that 

the  platelet-derived surface acti- vating FXII is provided by  soluble polyphosphates 

(poly-P) that are  composed of 60–100 linear linked phosphate  sub- units and  are  

released from  platelet dense granules upon activation.30 The mechanism whereby 

neutrophils contribute to dysregulation of coagulation in sepsis is discussed below. 

Pawlinski et al13,21  have  shown that the selective inhi- bition of TF expressed by 

nonhematopoietic cells  reduces the  clotting activation in  endotoxemic  mice   

suggesting other unknown cellular sources of TF. In endotoxemic and septic animals, 

TF expression is increased not  only  in monocytes-macrophages but  also in tissue 

cells, for exam- ple,   lung   and   kidney  epithelial  cells,   and   brain  astro- 

cytes.2,13,20 Therefore,  considering  also  that the role   of 

ECs and  vascular smooth muscle cells21  remains uncertain, it  is  likely  that TF 

upregulation in  parenchymal cells  of target organs may contribute to clotting 

coagulation during sepsis.  Moreover, the obvious increase in vascular perme- ability    

and    vascular  damage  occurring  during  severe 



 

 

 

infl ammation will allow  the exposure of extravascular (e.g., 

fibroblast-associated) TF to blood. 

Concerning the  relative role  of the main endogenous proinflammatory mediators in  

the in vivo  induction of TF- induced clotting activation associated with sepsis or  

endo- toxemia, the  neutralization studies with specific antibodies against individual 

cytokines and  with inhibitors of comple- ment activation would suggest a major role  

of interleukin-6 (IL-6),  IL-1β  (albeit to a  lesser extent),  and   complement- 

derived mediators.31,32 

 

Downregulation of Physiological  Anticoagulant Mechanisms 

Among  the  various components of the anticoagulant path- ways  physiologically 

expressed by ECs, namely, thrombomo- dulin (TM), endothelial protein C receptor 

(EPCR), protein S (PS), tissue factor  pathway inhibitor (TFPI) and  the  heparin- like   

proteoglycan heparan  sulfate,  those  involved in  the protein C (PC) pathway have  

been most extensively investi- gated in sepsis.  In cultured ECs, inflammatory 

mediators consistently reduced the  expression of  TM and  EPCR, and 

the   PS  secretion.2,7,33,34  Although  animal  studies  on  the 

expression of TM and  EPCR by ECs produced rather contro- versial results,2,7,33,34 the  

rise in plasma levels  of soluble TM and   EPCR observed in  endotoxemic  animals 

suggests that endothelial activation/damage by DAMPs and  inflammatory mediators 

does  occur  in vivo.2,33,34  The central role of the PC pathway in sepsis-associated DIC is 

definitely demonstrated by the observation that compromising the PC system resulted 

in a marked worsening of DIC and in increased morbidity and mortality in different 



 

 

animal models, whereas restoring an adequate activated protein C (APC) function (e.g., 

treatment with APC) prevented the coagulopathy and  improved organ 

failure and survival.6,33 Interestingly, mice with heterozygous 

PC deficiency had  more severe DIC and  a higher mortality than the wild-type controls 

and mice homozygous for a point mutation  of  the   TM  gene   that  deletes the  

anticoagulant activity  of  the  protein  exhibited 10-   to   30-fold  greater amounts of 

fibrin in  the  microcirculation of several organs 

than the  wild-type mice.1,2 

Studies  in  human sepsis have  in  general confirmed the dysfunction of the PC 

pathway. The plasma levels  of soluble TM  and   EPCR were  increased and   TM  levels   

were often 

correlated  with  disease severity and   poor   outcome.2,33,35 

Moreover, septic patients have  low  levels  of PC and  PS, due to  impaired liver  synthesis 

and/or consumption,  and   low levels  of free  PS, due  to  increased C4b-binding  

protein.7,33 

Acquired   severe  PC  deficiency  is   associated  with  early death.36 Notably,  the 

expression of TM and  EPCR on morpho- logically  intact ECs of dermal vessels was  

reduced in biopsy 

specimens of purpuric lesions from  children with meningo- coccal  sepsis,  as  compared 

with control skin-biopsy speci- mens.35 Plasma levels  of APC remained low in some of 

these patients even  after treatment with PC concentrates, confirm- 

ing downregulation of TM in vivo and impaired PC activation. APC plasma  levels   were  

found to  vary   markedly  among patients with severe sepsis and  were significantly 

higher in survivors than in nonsurvivors (28-day mortality), suggesting 



 

 

that endogenous APC serves as protective functions.37  As a matter of fact, apart from 

its anticoagulant and profibrinolytic activities, APC is  endowed with several anti-

inflammatory effects,  including downregulation of cytokines and  TF in activated 

leukocytes, antioxidant and antiapoptotic activities, 

and  preservation of endothelial barrier function.38 

During  sepsis,  an impairment of the heparan-sulfate-anti- thrombin (AT) axis  has  also  

been reported.  Indeed,  inflam- matory stimuli are  able  to downregulate the 

expression of 

heparan sulfate in cultured ECs,7,33 and  plasma levels  of AT 

are generally decreased in septic patients because of con- sumption, the lowest levels  

being  associated with increased mortality.7 

With  respect to TFPI, a decreased expression was found in ECs of several organs in  

animal models of endotoxemia or sepsis.33,39 In addition, anti-TFPI antibodies  

increased  fibrin 

accumulation in the lungs  of septic baboon,39 suggesting that 

TFPI underexpression, coupled with TF upregulation, might augment the local  

procoagulant potential,  thus promoting fibrin formation in tissues. Despite these 

findings, the role of TFPI in the  regulation of sepsis-associated coagulation acti- vation 

still remains incompletely understood, particularly in humans. 

Downregulation of the anticoagulant pathways in vivo has been attributed mainly to  

tumor necrosis factor-α (TNF-α), IL-1 and  complement-derived mediators, as evidenced 

by neutralization   studies   in   animal   models   of   sepsis   or 

endotoxemia.31,32 



 

 

 

Suppression of Fibrinolysis 

One  of  the main mechanisms responsible for  sepsis- associated hypofibrinolysis is an 

increased production of plasminogen activator inhibitor-1 (PAI-1) by ECs, as consis- 

tently demonstrated by several in vitro studies on  cultured ECs challenged with 

endotoxin or  inflammatory mediators and  in vivo experiments in animal models of 

endotoxemia or 

sepsis.6,33,40  In  general,  a  simultaneous increase in  tissue- 

type plasminogen activator (t-PA) does  occur,  but the net result is almost invariably a 

fibrinolytic shutdown because of the  large  amounts of PAI-1.1,2,40  It should be  noted 

that, in some models of endotoxemia or cytokinemia, hypofibrinol- 

ysis and fibrin deposition in adrenals and/or kidneys are most dependent on  a  

decrease in  PAs.1,41  Therefore,  the impairment of fibrinolysis mediated by  PAI-1 

increase and other tissue- and   species-specific alterations,  such   as  de- 

creased PAs in some models, appears to be essential for fibrin deposition in tissue 

vasculature. This view is supported by the observation that, when challenged with 

endotoxin, mice deficient in PAs have  more extensive fibrin deposition in tissues, 

whereas PAI-1 knockout mice,  in  contrast to  wild- 

type  controls, have   no  microvascular  thrombosis.1,41  The 

increase in endothelium-derived PAI-1 in animal models of sepsis or endotoxemia 

appears to be due  primarily to TNF-α, IL-1, and  complement-derived mediators.31,32 

In human sepsis,  a sustained increase in plasma PAI-1 has been consistently reported 

by numerous studies and, in some of them, PAI-1 appears to have  a prognostic 

value.7,41 Again, 



 

 

plasma t-PA is also elevated,7,41 but the net effect is definitely 

 

antifibrinolytic. The role of PAI-1 is supported by the finding that a 4G/5G polymorphism 

in the PAI-1 promoter influenc- ing PAI-1 expression is associated with the clinical 

outcome of 

severe sepsis.7,41 Moreover, in a multicenter clinical trial, the 

fibrinolytic shutdown in septic patients was  confirmed by a plasma clot lysis assay,  

which showed that fibrinolytic resis- tance increased with the  severity of  sepsis and   

predicted shock  and  kidney failure (Colucci et al, in preparation). 

More  recent evidence indicates that other thrombin- dependent mechanisms 

might contribute to hypofibrinolysis during sepsis.   Thrombin  is  known to cause   

resistance to fibrinolysis by  forming more compact and  less  permeable 

clots42   and   by  activating thrombin-activatable  fibrinolysis 

inhibitor (TAFI), a  plasma procarboxypeptidase that,  once activated (TAFIa), removes 

the  C-terminal  lysines from  par- tially degraded  fibrin,  thereby  reducing  plasmin 

genera- 

tion.43   Enhanced   thrombin  generation,   the  hallmark of 

sepsis,  might influence the  fibrin structure as suggested by the  following 

observations. ECs stimulated by inflammatory cytokines to express TF cause  the 

production of abnormally dense, fibrinolysis-resistant fibrin networks.44  In  addition, 

activated platelets, commonly found in sepsis,    increase fibrinolytic resistance either 

by altering the fibrin structure via the direct interaction between fibrin and  αIIbβ3  

integrin44  and  via the  release of inorganic poly-P,45 or by promoting  TAFI activation.46  



 

 

Finally,  activated human monocytes were shown to inhibit fibrinolysis through a  TF-

mediated enhancement of TAFI activation.47 

In animal models of endotoxemia or sepsis,  TAFI levels  are usually reduced, likely  

because of activation and  consump- tion.41 In addition, blocking TAFIa with synthetic 

inhibitors or inhibiting thrombin-TM-dependent TAFI activation enhances the rate  of 

fibrin degradation and reduces fibrin deposition in target tissues.41 In human studies, 

TAFI levels are consistently decreased in septic patients and  in healthy volunteers with 

low-grade endotoxemia.41  Of note, in severe meningococcal infection,48 the levels of 

TAFI activation markers are increased in  patients with DIC as  compared with those 

without,  are significantly higher in  nonsurvivors than in  survivors and strongly 

correlated with severity scores of the disease. There- 

fore, TAFI activation seems to occur  in severe sepsis and  the measurement of TAFI 

activation markers may  be  clinically useful.  The role of TAFI is further supported by the 

fact that a single  nucleotide polymorphism in the TAFI gene  that causes the  

substitution of Thr325Ile and  produces increased TAFIa stability/activity is associated 

with a poor  outcome in menin- 

gococcal  sepsis.41 

 

 

The Role of Nuclear Products in Sepsis- 



 

 

filaments made up  of histones and  DNA strands, decorated with proteins and  

lysosomal enzymes (myeloperoxidase, elastase, and  cathepsin G among others) and  

are  released by neutrophils upon exposure to a variety of stimuli such  as major types 

of microorganisms (bacteria, fungi, protozoa, viruses) and  their products, 

inflammatory mediators and reactive oxygen species (ROS). Noteworthily, activated 

plate- lets are potent inducers of NET formation as a consequence of 

their interaction with neutrophils.50 Extracellular traps (ETs) 

can  be actively extruded also  by other innate immune cells, such  as mast cells, 

eosinophils, and  mononuclear phagocytes upon activation.49 Individual components 

(histones and DNA, 

mainly as nucleosomes) can  be  passively released by dying cells.51 NET formation 

involves the unwinding of nuclear DNA fibers and the breakdown of the nuclear 

membrane before the final  active discharge in the extracellular milieu. This process is 

mediated by  nuclear factor  kappa B (NF-kB) signaling,52 peptidylarginine deiminase 4 

(PAD4), and neutrophil elastase (NE), which cooperate to modify histones and  enable 

DNA 

decondensation, and  ROS via NADPH oxidase, although ROS may  not  be needed in the 

presence of some neutrophil stimuli.12,49 

Since the  characterization of NETs as a major innate immunity mechanism to trap, 

restrain, and  eventually neu- tralize invading microorganisms,49 numerous studies 

under- 

score  the  role  of  NETs as  a  new  interface between inflammation and  the hemostatic 

system. As shown for the first time by Fuchs  et  al,53  NETs per  se are  able  to  promote 



 

 

thrombosis as they may provide a three-dimensional scaffold for  recruitment of 

platelets and  red  blood  cells  (RBCs), and adsorb several proteins involved in thrombus 

formation such 

as VWF, fibronectin, fibrinogen, and  even  cell-derived TF.54 

NETs co-localize with fibrin and  likely  they  interact closely with fibrin strands in the 

thrombus,  thus potentially influ- encing thrombus organization and  stability.53 

Mechanistically, NET’s constituents are  primarily respon- sible  for  thrombus 

formation as  they display a  variety  of prothrombotic activities (►Fig. 2). Histones, the 

most abun- dant proteins in  NETs, induce platelet activation (adhesion and  spreading, 

fibrinogen binding, platelet aggregation, VWF release, P-selectin expression, and  the  

formation of platelet– 

leukocyte aggregates) either directly55 or indirectly (via the 

binding of VWF or  fibrinogen). Histones promote thrombin formation through 

different pathways: (1)  they   make red blood   cells  procoagulant through the 

exposure of  anionic 

phospholipids56; (2) via a TLR4- and TLR2-dependent platelet 

activation pathway,  they  induce the  release of poly-P  from platelets, which trigger 

coagulation independently of FXII57; (3) enhance the  expression of platelet 

procoagulant proper- 

55 



 

 

Associated Thrombus Formation ties (anionic phospholipids and factor V/Va); and (4) 

impair 

Over  the  last  few  years,  new  players have  been found to importantly contribute to  the  

pathological derangement  of coagulation and  thrombus formation during sepsis.   

These novel  thrombogenic agents are represented by nuclear prod- ucts, exposed to the 

extracellular space either in isolated form or arranged in complex structures called 

neutrophil extracel- 

lular    traps  (NETs).49   NETs  are   networks  of   chromatin TM-mediated  protein   C  

activation.58   Histones  are   also 

endowed with general cytotoxic effects; of particular rele- vance, in the context of this 

discussion, is the histone-induced injury  of  ECs  which  will   result  in  the   exposure  of  

the 

thrombogenic subendothelial surface.11 Most of these effects 

are  attributable to histone H3 and,  especially, to H4. The importance of histones is 

supported by in vivo experiments showing that,  when administered to animals at  

low  doses, they cause  thrombocytopenia and stimulate thrombin gener- ation,12 

whereas at high  doses they  are lethal and  mimic the manifestations of sepsis, including 

microvascular thrombosis, organ failure,  and  death.11 Interestingly, neutralization of 

histones  by  non-anticoagulant  heparin-derived  com- pounds59  or   by  antibodies  

specifically targeting  histone H411  protects mice  in different models of endotoxemia 

and sepsis. It should also be noted that recombinant APC degrades 

histones thus lowering their  toxicity toward  ECs in  vitro, abolishing their ability to 

activate platelets and RBCs57,58 and preventing lethality in histone-treated  animals.11 



 

 

Similar  to the  inorganic poly-P  released by activated platelets, double- stranded DNA 

serves as a suitable negatively charged surface that initiates the intrinsic pathway of 

coagulation by favoring 

the  auto-activation of FXII and  potentiating FXI activation by thrombin.60  Among  

proteins and  enzymes hosted in  NETs, elastase cleaves the  major physiological 

anticoagulants TFPI, 

AT, and  TM, and  thus allows the  coagulation reactions to proceed 

uncontrolled6,12,41; myeloperoxidase oxidizes and inactivates TM, and  cathepsin G 

further augments platelet activation on  the   NET surface.61  Finally,  NETs can  harbor 

neutrophil or blood-derived TF which initiates the  extrinsic coagulation pathway.54 

It is worth mentioning that, in infections, the microvascu- lar thrombosis triggered by 

the innate immune cells activated by  contact with blood-borne microorganisms, 

through the elease of NETs (neutrophils) and  through the  expression of TF 

(monocytes), has been proposed to act as an antimicrobial mechanism that protects 

the host against pathogens. This process, called  immunothrombosis, also involves 

activated platelets and  ECs that promote both local  accumulation  of 

innate immune cells and thrombus formation.62 Of course, in 

acute sepsis,  the situation is completely different. The wide- spread dissemination of 

the pathogen and its derivatives into the   circulation and   the   ensuing SIRS with its  

plethora  of inflammatory  mediators  will   cause   massive  recruitment and  activation 

of innate immune cells  eventually leading to excessive NET release and  TF expression, 

and  DIC. The latter, therefore, may  be considered a form  of uncontrolled immu- 

nothrombosis.62  Excessive activation  of  inflammation and 

unrestricted formation of  thrombi in  microvasculature are further worsened by the 



 

 

ability  of both processes to potenti- ate  each  other.  NETs are  abundant in  venous and  

arterial 

thrombi from  animals and  patients12 as well  as in microvas- 

cular  thrombi63 and,  in some models, inhibiting NET forma- tion prevents 

thrombosis,12 indicating their importance for thrombus formation. 

Similar  to DNA and  histones, another nuclear product, namely HMGB-1, can  be  

actively secreted by stimulated immune cells  or  passively released by  necrotic cells;  

upon translocation to  the extracellular milieu it acts  as  a  lethal 

mediator of systemic inflammation.64 In both animal models 

 

and  human sepsis,  HMGB-1 levels  rise  into  the  circulation, and  targeting HMGB-1  with 

antibodies confers protection against lethal endotoxemia and  sepsis.64 HMGB-1 is 

signifi- 

cantly involved in sepsis-associated microvascular thrombo- sis by stimulating TF 

expression in monocytes and ECs and by reducing the  activity of thrombin-TM complex 

with conse- 

quent reduction in  protein C activation.65,66  Interestingly, 

platelet-derived HMGB-1 promotes the extrusion of NETs in a process that involves the  

HMGB-1 receptor RAGE (receptor for advanced glycation end  products).67 

Acute sepsis is considered to be the  most relevant clinical disorder in  which necrosis 

and  apoptosis occur,  and,  as  a matter of fact, a marked increase in apoptosis has  

been observed in septic patients compared with nonseptic, criti- 

cally ill patients and  healthy controls.68 Because  of a massive 



 

 

apoptosis-necrosis overwhelming the clearance mechanisms, extracellular 

nucleosomes, DNA, histones, and  HMGB-1 released during the late  stages of sepsis can 

amplify inflam- mation, coagulation, and  cell death and  thus importantly contribute to  

MODS. This  is  supported by  the increase in the levels of free histones, DNA, 

nucleosomes, and HMGB-1 in septic patients and,  more importantly, by their direct 

corre- 

lation with disease severity and  mortality,69–71 which sup- 

ports the potential use of these markers as useful  prognostic factors.developed based 

on  the insights into the pathogenetic mechanisms responsible for microthrombosis in 

sepsis.  TF inhibitors would be the most logical  treatment considering the   pivotal role  

of  TF in  clotting activation during sepsis. However, a phase III clinical  trial with 

recombinant TFPI did 

not   show an   overall survival benefit  in  septic  patients.6 

Likewise,  treatment with AT concentrates, despite several reported beneficial effects 

(improvement of laboratory parameters, shortening of DIC duration, and  amelioration 

of organ function), failed to significantly reduce the mortality of 

septic patients in  a large-scale clinical  trial.6 Based  on  the 

notion that the  depression of the  PC system significantly contributes to the 

pathophysiology of DIC, supplementation of APC might be  of benefit, also  considering 

that this drug, besides restoring the PC anticoagulant pathway,  has  well- 

known anti-inflammatory action34,38 and  is able  to degrade 

histones.11 In fact, recombinant human (rh)-APC was found to reduce mortality of 

patients with severe sepsis at high  risk of death7 and,  until recently,  it has  been 



 

 

approved for  use  in these patients. However, after  the failure of the most recent 

randomized controlled trial, PROWESS-SHOCK,76 rhAPC was withdrawn from  the world 

market and  its role  in the treat- 

ment of  severe sepsis appears to have  subsided, although controversies 

remain.77,78 TM would represent another ther- apeutic option.  Besides  favoring PC 

activation,  TM can  also neutralize  circulating histones79  and   aid  thrombin in  the 

80 

Conclusion and Perspectives 

 

As  briefly  summarized  earlier,  considerable progress has been made over  the last 

few  years  in regard to  our  under- standing of the  complex events involved in the 

pathological derangement of the hemostatic process that leads  to DIC and contributes 

to MODS in  acute sepsis.  Whether the  current knowledge will  prove useful   for  the 

development of  new diagnostic and  therapeutic tools  remains to  be  established. 

Although numerous laboratory tests are  available, including 

global  assays and  markers of endothelial  activation,72,73 the 

diagnosis of DIC is still based on the combination of a typical underlying disease, such  as  

sepsis,  with simple laboratory markers, including platelet  count,  prothrombin  time, 

activated partial thromboplastin time, fibrinogen concentra- tion,  and   a  fibrin-

related marker,  reflecting intravascular fibrin formation,  such  as  D-dimer,  all of 

which are  used in 

the   DIC scores.72  Some  new   parameters that could   be  of 

clinical  utility are  currently being  investigated. For instance, elevated plasma levels  of 



 

 

nucleosomes, and/or cell-free DNA have   been reported in  septic patients that 

paralleled the 

disease severity,69,71,74 and  single  histones H3 and  H4 were 

increased in patients  with severe sepsis.70 Moreover, circu- lating HMGB-1 is 

consistently augmented in septic patients, being  significantly higher in nonsurvivors 

than in survivors, and its plasma concentration has been proposed as a possible 

prognostic  marker  of   DIC  and   organ   failure.75   Nuclear 

proteins, therefore, might be new  sensitive biomarkers of disease  progression  and   

useful   predictors  of  outcome  in sepsis. 

As regard the supportive treatment for sepsis-associated hemostatic  

abnormalities,  different  strategies  have   been  associated  with  reduced  in-

hospital  mortality  in   adult 

patients with sepsis-induced DIC78 and  a phase III study is being  conducted in 

subjects with severe sepsis and coagulopathy. 

Considering the emerging role  of NETs and/or their constit- uents in dysregulation of 

coagulation and  formation of micro- thrombi associated with acute sepsis,  active 

regulation or neutralization of these compounds could be a novel  therapeutic strategy. 

Inhibitors of the enzymes PAD4 and  NADPH-oxidase, and of the transcription factor NF-kB, 

all of which are involved in NETs formation, are possible candidates for active  regulation of 

NETs. Actually, an  NADPH oxidase inhibitor ameliorated the influenza A virus-induced lung 

inflammation in which excessive 

NETs were involved.81 Dismantling of NETs by deoxyribonucle- 

ase  (DNase)   1  could   be  another  potential strategy for  the treatment  of   sepsis-



 

 

associated  coagulopathy,   as   suggested from  animal studies of deep venous 

thrombosis that   DNase1 administration suppresses thrombosis through  reduced NET 

formation.12  Of note,  impaired DNase1-mediated degradation 

of NETs has  recently been shown to be  associated with acute thrombotic 

microangiopathies.82 Since histones, the  most toxic NET components,  along   with HMGB-

1,  seem to be  critical 

mediators of organ dysfunction and  death in  septic patients, an attractive approach to 

treat MODS and prevent death could be the development of effective histone and HMGB-1 

antagonists,11 

which might prove therapeutic without the bleeding complica- tions that can result from  

APC therapy. 
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