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Statins are recommended as first-line therapy for patients with hypercholesterolaemia. A sizable proportion of patients, however, does not
reach therapeutic goals, is statin intolerant, or, despite optimal statin therapy, is at high risk of ischaemic events. Proprotein convertase sub-
tilisin/kexin type 9 (PCSK9) plays a major role in lipid metabolism and several comorbidities. Monoclonal antibodies targeting PCSK9 are a new
lipid-lowering approach with the potential to improve clinical outcomes in patients with dyslipidaemia. In this review, we discuss current ex-
perimental and clinical evidence of the role of PCSK9 and its inhibition on lipid metabolism and several pathologic conditions with a focus on
clinical outcomes. A state-of-the-art analysis of current clinical evidence and future directions on PCSK9 and its inhibition is provided.
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Introduction
Coronary artery disease (CAD) caused by obstructive atheroscler-
osis remains the most frequent cause of morbidity and mortality
worldwide.1,2 Lipid-lowering therapy represents the cornerstone
of treatment of patients with atherosclerotic cardiovascular disease.
For years statins have been regarded as a key intervention to lower
lipids and improve clinical outcomes.3 However, despite statin ther-
apy at maximally tolerated doses, many patients do not achieve their
lipid goals and are burdened by a residual ischemic risk of developing
cardiovascular events. Human monoclonal antibodies against pro-
protein convertase subtilisin/kexin type 9 (PCSK9) administered
subcutaneously have been identified as an innovative lipid-lowering
strategy. Several Phase III studies in different settings showed that
the administration of PCSK9 antibodies combined with statins pro-
vided additional benefits in terms of reducing atherogenic lipid frac-
tions in patients with hyperlipidaemia when compared with the sole
statin therapy.4,5

In this article, we address the role of PCSK9 in regulation of lipid
metabolism and associated diseases, as well as its increasingly recog-
nized effects beyond lipid metabolism, the clinical implications of a
pharmacological inhibition of PCSK9, and its future therapeutic
directions.

Regulation of low-density
lipoprotein metabolism
Since the discovery of PCSK9 over a decade ago, when gain-
of-function mutations of PCSK9 were linked to high values of low-
density lipoprotein cholesterol (LDL-C) in patients with familial
hypercholesterolaemia, the enzyme was found to interfere with
various lipid metabolism pathways.6 –8

The main clearance route of circulating LDL-C from the blood
occurs via hepatocyte endocytosis—a process mediated by binding
of LDL-C to low-density lipoprotein receptors (LDL-R) on the
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hepatocyte cell membrane.9 The PCSK9 enzyme, a serine protease
mainly expressed in the liver and the intestine, acts by promoting the
degradation of LDL-R molecules expressed on the cell surface and
reducing in turn the amount of LDL-R in hepatocytes (Figure 1). Low
intracellular levels of cholesterol or gain-of-function mutations pro-
mote PCSK9 transcription and translation; the molecule’s enzymatic
activity permits its intracellular maturation, which is then followed
by secretion. Circulating PCSK9 binds to the LDL-C and LDL-R
complex on the cell surface and is subsequently cointernalized.
This bond promotes the degradation of the receptor in the lyso-
some, rather than its recycling to the plasma membrane; PCSK9
can also bind the LDL-R intracellularly. Thus, since PCSK9 plays a
major role in degradation of LDL-R, it has emerged as a key target
to treat hypercholesterolaemia and coronary heart disease.

Inflammation
Several properties have been discovered for PCSK9 in addition to its
known effects on lipid metabolism. Experimental data show that
PCSK9 is markedly induced by diverse inflammatory stimuli, such
as lipopolysaccharides, zymosan, and turpentine, resulting in a sig-
nificant increase in LDL-C levels.10,11 Proprotein convertase subtili-
sin/kexin type 9 can directly act as trigger of inflammatory response.
Proprotein convertase subtilisin/kexin type 9 administration was
found indeed to enhance ox-LDL uptake and vascular cell adhesion

protein-1 expression in smooth muscle cells, which is a key event
in the development of the inflammatory cascade that links choles-
terol accumulation to the chronic inflammatory process of athero-
sclerosis12 (Figure 1). On the other hand, PCSK9 inhibition is
associated with reduced monocyte recruitment and attenuated
ox-LDL-induced expression of pro-inflammatory chemokine
synthesis and secretion. Additionally, reduced PCSK9 function is
associated with increased pathogen lipid clearance via the LDL-R,
a decreased inflammatory response, and improved outcome during
septic shock.13

Atherosclerosis and lipoprotein (a)
The expression of plasma PCSK9, due to its systemic pro-
inflammatory action and the effect on lipid metabolism, is directly
related to severity of atherosclerotic phenotype.14 In atherosclerot-
ic lesions, PCSK9 exerts a multifactorial action. By inhibiting LDL-R
activity in macrophages, it impairs cholesterol efflux, eventually pro-
moting lipid retention within macrophages and foam cell forma-
tion15 (Figure 1). Denis et al.16 demonstrated higher cholesterol
accumulation and severe aortic lesions in transgenic PCSK9 mice
compared with wild-type controls. In contrast, PCSK9-knockout
mice accumulated four-fold less aortic cholesterol than the wild-
type controls did. Proprotein convertase subtilisin/kexin type 9
has been found to promote the inflammatory response and the

Figure 1 Multifactorial effect of proprotein convertase subtilisin/kexin type 9 on different pathways. CAD, coronary artery disease; LDLR, LDL
receptor; HbA1c, glycated haemoglobin; HOMA-IR, homeostatic model assessment insulin resistance; OxLDL, oxidized low-density lipoprotein;
Lp(a), lipoprotein (a); LPS, lipopolysaccharide; PCSK9, proprotein convertase subtilisin/kexin type 9; TNFa, tumour necrosis factor alpha.
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accumulation of oxLDL in the subendothelial space. Notably, in ath-
erosclerotic lesions, PCSK9 is secreted by vascular smooth muscle
cells, as well, suggesting also an intraplaque modulation of the ath-
erosclerotic process.

A consistent and independent direct association with cardiovas-
cular disease risk was observed for lipoprotein (a) [Lp(a)], which
acts as a pro-inflammatory mediator that augments lesion formation
in atherosclerotic plaques. Proprotein convertase subtilisin/kexin
type 9 inhibition has been found associated with reduction of
Lp(a) concentrations by �20%.17 So far, no recommended medical
treatment for high Lp(a) has been developed to target the increased
residual risk of cardiovascular patients; thus, PCSK9 antibodies may
find an application in this clinical scenario, as well.

Blood pressure
Some reports documented that PCSK9 promotes degradation of
epithelial Na(+) channels, which regulate blood pressure by influ-
encing epithelial sodium reabsorption in the collecting ducts;18 the
hypothesis of its effect on blood pressure regulation is corroborated
by an observational study reporting a correlation between blood
pressure and PCSK9 level.19 Further studies are needed to evaluate
the impact of PCSK9 antibodies in patients with different blood
pressure levels and their impact on blood pressure itself.

Chronic kidney disease
Limited data are available with regard to the relationship between
PCSK9 and chronic kidney disease (CKD). A recent study showed
that circulating PCSK9 levels are negatively correlated with renal
function.20 After kidney transplantation or haemodialysis, PCSK9
is decreased and retains a positive correlation with LDL-C, suggest-
ing that PCSK9 may remain a significant determinant of LDL-C in
CKD subjects.21 These data suggest that the regulation of LDL-C
by PCSK9 remains intact in CKD patients subject to haemodialysis.

Current proprotein convertase
subtilisin/kexin type 9 antibody
approval status and approved
regimens
The Food and Drug Administration (FDA) approved Praluent (alir-
ocumab at dose 75–150 mg every 2 weeks, 24 July 2015) and
Repatha (evolocumab, at dose 140 mg every 2 weeks or 420 mg
once a month, 27 August 2015) in addition to diet and maximally
tolerated statin therapy for treatment of adults with heterozygous
familial hypercholesterolaemia (HeFH) and homozygous familial
hypercholesterolaemia (HoFH, Repatha only) or patients with clin-
ical atherosclerotic cardiovascular disease such as heart attacks and
strokes, who require additional lowering of LDL cholesterol.22,23

The European Medicines Agency approved Repatha (22 May
2015) and Praluent (24 July 2015) in patients with primary hyper-
cholesterolaemia (heterozygous familial and non-familial) or mixed
dyslipidaemia, who are unable to reach LDL-C goals with maximum
tolerated statin therapy, either alone or in combination with a statin

or other lipid-lowering therapies.24,25 Additionally Repatha is indi-
cated in patients with HoFH aged 12 years and older, in combination
with other lipid-lowering therapies. Praluent was tested in 10 rando-
mized placebo-controlled trials (RCTs) enrolling almost 5300 pa-
tients, and Repatha was evaluated in nine RCTs including �5500
patients with HeFH and mixed dyslipidaemia; two studies specifically
included participants with HoFH,26,27 leading to the drug approval
for homozygous patients with higher LDL-C level and at greater
risk for cardiovascular events. The decision to indicate the new
drug for HoFH in these young patients when still no trial in this
population was conducted is motivated by the lack of other treat-
ment options. However, patients who are statin intolerant without
established clinical atherosclerotic cardiovascular disease (CVD)
are at the moment left out of the indications. A third PCSK9 inhibi-
tor named bococizumab is currently evaluated in phase III rando-
mized controlled trials by Pfizer and is expected to be approved
in the near future.

Clinical settings

Proprotein convertase subtilisin/kexin
type 9 inhibition and familial
hypercholesterolaemia
Familial hypercholesterolaemia is a disorder characterized by genet-
ic LDL receptor malfunction that significantly increases risk of CAD.
Patients with HeFH usually have at least one normal LDL receptor
allele; conversely in those with HoFH, both LDL receptor alleles are
usually abnormal. Individuals affected by homozygous FH already
develop significant atherosclerotic lesions in the first decade of
life, which frequently leads to fatal myocardial infarction before
reaching adulthood.28 Owing to the reduced LDL-C liver clearance
and lack of response to high-dose statin therapy, they reach total
cholesterol levels of up to 19 mmol/L.29 Heterozygous patients
(prevalence �1 : 200, one of the most frequent monogenetic dis-
eases30,31) experience first cardiovascular events in their third or
fourth decade of life, which accounts not only from the increased
LDL-C levels (however, lower than in homozygotes) but also
from time to exposure to the high cholesterol levels. The clinical se-
quelae are tendon xanthomas, premature CAD and, in HoFH, valvu-
lar or supravalvular aortic stenosis. Despite the effectiveness of
cholesterol-lowering therapies, most patients with FH cannot
achieve plasma LDL-C targets recommended to prevent cardiovas-
cular events. In TESLA Part B, 50 patients with homozygous hyper-
cholesterolaemia were randomly assigned to receive monthly
injections of evolocumab 420 mg or placebo.26 Of the 49 patients
who received their assigned treatment and completed the trial, 45
(94%) were homozygous for LDL receptor mutations—22 for the
same mutations (true homozygotes) and 23 for different mutations
(compound heterozygotes). Compared with placebo, evolocumab
achieved an overall mean reduction in plasma LDL-C of 30.9% abso-
lute reduction (2.4 mmol/L). Patients with defective mutations in
one or both LDL receptor alleles responded better to treatment
than did those with at least one null mutation. The homozygous pa-
tient with two null LDL receptor mutations and the patient with
autosomal recessive hypercholesterolaemia did not respond to evo-
locumab. Remarkably, the response of LDL-C to active treatment
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varied, even in people with the same LDL receptor mutation. In the
RUTHERFORD-2 trial, the authors assessed the efficacy of evolocu-
mab 140 mg administered subcutaneously every 2 weeks, or 420 mg
every month, vs. placebo in lowering plasma LDL-C in 331 partici-
pants with heterozygous FH.32 The two drug regimens had similar
efficacy, with �60% reduction in plasma LDL-C from a baseline
of 4 mmol/L, relative to placebo (P , 0.0001); .60% of patients at-
tained an LDL-C concentration ,1.8 mmol/L, a target rarely achiev-
able with best available therapy.

At variance with the homozygous form of the disorder, the
LDL-C responses did not depend on the genetic variant in the
LDL receptor, which suggests that investigation of the molecular de-
fect might be not necessary for prescription of PCSK9 monoclonal
antibodies to patients with heterozygous FH. In the recent two ran-
domized, double-blind studies (ODYSSEY FH I, n ¼ 486; FH II,
n ¼ 249), patients were randomized 2 : 1 to alirocumab 75 mg or
placebo every 2 weeks.33 Alirocumab dose was increased at
Week 12 to 150 mg Q2W if week LDL-C was ≥1.8 mmol/L
(70 mg/dL). Primary endpoint (both studies) was percentage change
in calculated LDL-C from baseline to week 24. Mean LDL-C levels
decreased from 3.7 mmol/L at baseline to 1.8 mmol/L (257.9% vs.
placebo) at week 24 in patients randomized to alirocumab in FH I
and from 3.5 to 1.8 mmol/L (251.4% vs. placebo) in FH II. These re-
ductions were maintained through Week 78 and suggest that also in
patients with HeFH and inadequate LDL-C control at baseline des-
pite maximally tolerated statin dose, alirocumab treatment resulted
in a significant LDL-C lowering, greater achievement of LDL-C tar-
get levels, and was well tolerated. To evaluate the effect of LDL-C
reduction in preventing early cardiovascular events and decreasing
residual risk to population risk of the same age, the HAUSER-RCT
study was initiated for children and adolescents with heterozygous
familial hypercholesterolaemia—with results, however, not yet
available.34 Proprotein convertase subtilisin/kexin type 9 levels are
associated with serum LDL-C levels and lipid metabolism even in
neonates, with the correlation maintained through lifetime. How-
ever, the enzyme seems to have a multifactorial effect. The muta-
tions that prevent secretion of PCSK9 are associated with a 30–
40% reduction in LDL-C and remarkably with a 88% reduction in
clinical events associated with CAD over a 15-year follow-up
period.35

Coronary artery disease
Healthy adults do not express a correlation between PCSK9 con-
centration, carotid intima media thickness, and cardiovascular event
occurrence; however, the body mass index, insulin, LDL-C, and tri-
glycerides are already independent predictors of PCSK9 levels.36

Those correlations change with CAD progression (Table 1). Several
reports showed that CAD patients have higher PCSK9 levels than
the control group,37 which in turn present a correlation of small
density LDL-C with PCSK9 and becomes significant in patients
with dyslipidaemia and stable CAD, but not in non-CAD group.38

Higher PCSK9 concentrations were additionally associated with fe-
male gender, hypertension, statin treatment, C-reactive protein,
HbA1c, and insulin level.39

Proprotein convertase subtilisin/kexin type 9 levels are also cor-
related with the severity of CAD assessed by the use of a Gensini
angiographic score system; among patients assigned to groups based

on angiographic score, those with the most severe coronary sten-
osis also had the highest serum PCSK9 levels.40 By logistic regres-
sion analysis, PCSK9 levels were associated with an increased
CAD risk.37 In another independent recent analysis from the Emory
Cardiology Biobank study, plasma PCSK9 levels were elevated in pa-
tients with CAD by angiography (385.0+146.9 ng/mL) compared
with controls (340.4+ 125.2 ng/mL, P , 0.001). By multivariate
analysis, plasma PCSK9 levels resulted an independent predictor
of CAD. Of note, alirocumab was found to exhibit anti-atherogenic
potential and dose-dependently decreased atherosclerotic lesion
size and severity. These effects appear to be enhanced by adding
atorvastatin. Similarly, monocyte recruitment was reduced and
plaque composition improved its stability with increased content
of smooth muscle cells and collagen, whereas macrophage and
necrotic core content decreased.41

Impact of proprotein convertase subtilisin/
kexin type 9 antibodies on cardiovascular
outcomes
The first and most comprehensive evidence of cumulative effects on
cardiovascular clinical outcomes with PCSK9 antibodies was ob-
served in a large meta-analysis that included 24 trials with 10 159 pa-
tients and found reduced mortality in patients treated with PCSK9
antibodies.42 The odds reduction in mortality with PCSK9 anti-
bodies was .50% (Figure 2). The finding, although preliminary, is en-
couraging and is further corroborated by a similar direction of
reduction in the odds of cardiovascular mortality and myocardial in-
farction. Of note, no signal for heterogeneity was present across
trials in the analysis of all-cause and cardiovascular mortality, and
there was stability of the direction and magnitude of results in the
sensitivity analyses. Moreover, the sensitivity analyses for type and
dose of PCSK9 antibody, and the subgroup analyses stratified by
placebo or ezetimibe as the control arm and by background statin
therapy, all suggest that the overall effect is robust and justified.

Given the finding from cholesterol-lowering trials that each
1 mmol/L reduction of LDL-C translates to a 22% reduction in ma-
jor cardiovascular events, the antibodies are expected to result in
�40% reduction in major cardiovascular events.3 Notably, since
PCSK9 inhibition seems to have an additional, beyond LDL-C effect,
its inhibition could result in even higher risk reductions. These
favourable results are also confirmed in two publications of
large-scale trials including subjects with hypercholesterolaemia. In
the combined analysis from OSLER-1 and OSLER-2 studies, which
evaluated long-term effects of evolocumab as an extension of the
open-label, randomized controlled trials and included 4465 patients.
Eligible patients had completed either of the trials without suffering
any adverse events that required discontinuation of study drug. Par-
ticipating patients were re-randomized to the PCSK9 inhibitor plus
standard therapy vs. standard therapy alone without placebo con-
trol.43 Throughout the 48- to 56-week trial period, no safety issues
emerged during the follow-up period. Baseline LDL-C was 120 mg/
dL before the initial randomization into the parent studies and was
reduced by 61% to a mean of 48 mg/dL. Importantly, a composite
cardiovascular event rate including death, myocardial infarction, un-
stable angina requiring hospitalization, coronary revascularization,
stroke, transient ischaemic attack, and heart failure requiring
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Table 1 Correlations of proprotein convertase subtilisin/kexin type 9 levels across different populations

Setting Study PCSK9 level

Neonates Araki et al.63 The PCSK9 concentration in male newborns was significantly lower than that in females
Circulating serum PCSK9 levels were positively correlated with total cholesterol and

LDL-C
No correlations between PCSK9 levels and birth weight, gestational age, or SGA
Circulating PCSK9 levels and gestational age were independent predictors of the serum

LDL-C levels

Children and adolescents Baass et al.45 PCSK9 levels were significantly positively associated with fasting glucose, insulin, and
HOMA-IR

In multivariable analysis, a 10% higher fasting insulin was associated with a 1–2% higher
PCSK9 in both sexes. There were also positive associations between PCSK9 and total
cholesterol, LDL-C, and triglycerides, as well as with HDL-C and apolipoproteins A1 and B

Sex modified the association between age and PCSK9 in youth. Differences between sexes
and during pubertal development suggest an influence of sex hormones on plasma
PCSK9 concentrations

There were no sex differences in PCSK9 concentrations in young adults, whereas significant
differences were observed in youth

Middle-aged men enrolled in the FATE
study, free of vascular disease

Zhu et al.36 Multivariate linear regression analyses indicated that body mass index, insulin, low-density
lipoprotein cholesterol, and triglycerides were independent predictors of PCSK9

Further modelling revealed no correlation between PCSK9 concentration and carotid
intima media thickness, flow-mediated dilation, or reactive hyperaemic velocity time
integral

Analyses indicated no significant association between PCSK9 concentrations and
cardiovascular event occurrences

Chinese population Cui et al.19 Serum PCSK9 levels were slightly higher in women than in men
Compared with premenopausal women, postmenopausal women had significantly higher

PCSK9 levels
Serum PCSK9 levels were correlated with multiple metabolic variables including age, body

mass index, total cholesterol, LDL cholesterol, triglycerides, fasting blood glucose,
systolic blood pressure, and diastolic blood pressure

After stepwise regression analysis, there was a significant positive association between
serum PCSK9 levels and total cholesterol, triglycerides, and SP in men

In women, there was a positive correlation between PCSK9 levels and total cholesterol, age,
and DP

Indian Asian populations not taking
statin therapy

Walton et al.64 PCSK9 levels were weakly correlated with male gender and number of diabetes years, and
inversely with log10 of lipoprotein (a) concentration

Gensini score was associated with age, established angina, duration of diabetes, low HDL-C,
lipoprotein (a), creatinine, C-reactive protein, and PCSK9 concentrations

PCSK9 concentrations are correlated with atheroma burden

Multi-ethnic population Lakoski et al.65 PCSK9 levels were significantly higher in women than in men
PCSK9 levels were significantly higher in postmenopausal women compared with

premenopausal women, irrespective of oestrogen status
Plasma levels of PCSK9 correlated with plasma levels of LDL-C and plasma levels of

triglycerides, insulin, and glucose

JUPITER trial participants Awan et al.66 At baseline, median PCSK9 concentrations were higher in women than in men
During 1 year, there was no change in PCSK9 concentrations in the placebo arm, suggesting

stability in time. In contrast, rosuvastatin increased PCSK9 by 35% in women and 28% in
men

Rosuvastatin increased plasma concentration of PCSK9 in proportion to the magnitude of
LDL-C reduction; the LDL-C response to statin could not be inferred by PCSK9
concentrations

CAD and non-CAD patients Li et al.37 The CAD group had higher PCSK9 levels than the control group when adjusting for the
confounding factors

PCSK9 levels were associated with the severity of CAD assessed by the Gensini score
system

Logistic regression analysis showed that PCSK9 levels were associated with an increased
CAD risk

Mediator analysis indicated that the effects of PCSK9 levels on severity of CAD were
mediated by lipid and inflammation

Continued
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hospitalization was halved in patients receiving evolocumab com-
pared with the standard-therapy group.44 These cardiovascular
events occurred in a 1% of the evolocumab group vs. 2% of the stand-
ard-therapy group events.

Those results were in line with the evidence obtained from the
randomized, double-blind, placebo-controlled trial, ODYSSEY
LONG TERM trial, evaluating alirocumab administered for 78
weeks,5 which enrolled 2341 high-risk patients with HeFH, known

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

Setting Study PCSK9 level

Stable CAD and non-CAD patients Zhang et al.38 The positive correlation of sdLDL-C with PCSK9 was only significant in patients with
dyslipidaemia and stable CAD

In a model adjusting for traditional risk factors including dyslipidaemia, PCSK9 was an
independent predictor of high sdLDL-C in CAD group but not in non-CAD group

Stable CAD Werner et al.39 Serum concentrations of PCSK9 predicted CV outcomes, the association was reduced after
adjustment for fasting TG

Higher PCSK9 concentrations were associated with female gender, hypertension, statin
treatment, C-reactive protein, HbA1c, insulin, total cholesterol, and fasting triglycerides,
but not with LDL-C or HDL-C

Ischaemic heart disease Benn et al.67 46L allele carriers had a 12% (0.43 mmol/L) reduction in LDL-C and a 28% reduction in risk
of ischaemic heart disease

The observed 12% reduction in LDL-C theoretically predicted an only 5% reduction in risk
of ischaemic heart disease

Cerebral ischaemic stroke Han et al.68 Both rs1711503 and rs2479408 of PCSK9 genes were associated with cerebral ischaemic
stroke

CAD, coronary artery disease; HDL-C, high density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; PCSK9, proprotein convertase subtilisin kexin 9; SP,
systolic pressure; DP, diastolic pressure; sdLDL-C, small, dense low density lipoprotein cholesterol.

Figure 2 Mortality reduction with proprotein convertase subtilisin/kexin type 9 inhibitors—meta-analysis of randomized controlled trials.
Adapted from Navarese et al.42
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CAD, or CAD risk equivalent. Eligible patients had LDL-C levels
above 70 mg/dL and were currently taking either high-dose statins
or maximum tolerated dosages. In a post hoc analysis that assessed
the pre-specified primary endpoint from the ongoing ODYSSEY
Outcomes trial (a composite of death from coronary heart disease,
nonfatal myocardial infarction, fatal or nonfatal ischaemic stroke, or
unstable angina requiring hospitalization), a lower rate of adjudi-
cated major adverse cardiovascular events was observed in the alir-
ocumab (1.7%) compared with the placebo group (3.3%). In both
trials, the cumulative incidence curves diverged progressively with
time to exposure to the treatment. This evidence is especially en-
couraging, since to-date no single trial was yet powered to detect
the effect of anti-PCSK9 on cardiovascular outcomes.

Proprotein convertase subtilisin/kexin
type 9 and glucose homeostasis
Available human data concerning the effect of PCSK9 on glucose
homeostasis are limited. A study by Baass et al.45 interestingly
showed that PCSK9 seems to have a negative impact on glucose
metabolism even at early age. In children there was significant
correlation between increased PCSK9 levels and fasting glucose, in-
sulin, and Homeostatic Model Assessment of Insulin Resistance
(HOMA-IR), to the extent that a 1–2% higher PCSK9 was asso-
ciated with a 10% higher fasting insulin in both sexes (Figure 1). Add-
itionally, the differences between sexes and during pubertal
development suggest an influence of sex hormones on plasma
PCSK9 concentrations. Another study in healthy and type 2 diabetic
youth found that only hypercaloric high-fructose diet, neither high-
fat or high-fat/high-protein diet, influenced plasma PCSK9 concen-
trations, which increased by 28% in healthy volunteers and by
34% in offsprings with diabetes.46 On the other hand, physical exer-
cise47 as well as fasting48 markedly decreased plasma PCSK9 con-
centrations. The enzyme level declined steadily during the fasting
period, reaching a nadir at 36 h that was significantly �58% lower
than levels measured in the fed state.

Further data suggest PCSK9 to be secreted in insulin-dependent
fashion.49 Costet et al.50 suggested that hepatic PCSK9 expression
could be regulated by insulin via the sterol regulatory element-
binding protein 1c, thereby providing a molecular connection be-
tween PCSK9 and insulin metabolism. Plasma PCSK9 levels were
associated with the most detrimental lipoprotein-lipid profile in-
cluding lower LDL particle size and higher apolipoprotein C-III levels
and also higher HOMA-IR indices, additionally suggesting associ-
ation with the insulin sensitivity index. Indeed, participants in the
top PCSK9 levels tertile have �40% lower insulin sensitivity indices
compared with participants in the bottom tertile.51 This may hold
further consequences on the lipid metabolism. On the other
hand, carriage loss-of-function PCSK9 p.R46L was associated with in-
sulin resistance, assessed indirectly through increased HOMA-IR,
but only in those with the apolipoprotein E3/E2 genotype and in
one report only;52 a study by Bonnefond et al.53 failed to detect
any significant association between p.R46L and markers of glucose
homeostasis (fasting plasma glucose, HbA1c, fasting plasma insulin,
HOMA-B, and HOMA-IR) and showed that p.R46L carriers did not
have an increased incidence of type 2 diabetes over a 9-year follow-
up, risk of type 2 diabetes in the case–control study, or in a total of

42 590 European participants in the DIAGRAM consortium. Con-
sistent with those results, there was no increased risk of type 2 dia-
betes in subjects with PCSK9 loss-of-function variants in other
cohorts.35,54

Recently presented findings indicate safety of the PCSK9 anti-
bodies administration in patients with metabolic disorders. A yearly
treatment with evolocumab 420 mg monthly or placebo revealed in
the interim, a post hoc analysis from DESCARTES that anti-PCSK9
agent was effective and well tolerated with no adverse signal for
glycaemic control (including HbA1c, fasting plasma glucose, insulin,
or HOMA measurements) in patients with pre-existing dysglycae-
mia or metabolic syndrome.55 The incidence of new onset type 2
diabetes (HbA1c ≥ 6.5% at any post-baseline visit) was similar in
evolocumab and placebo groups (4.6 vs. 5.4%, respectively). Evolo-
cumab reduced LDL-C by .50%, with similar reductions as in non-
diabetic patients. A supportive results for evolocumab are derived
from a pooled analysis of four Phase III studies: MENDEL-2,
LAPLACE-2, RUTHERFORD-2, and GAUSS-2.56 The LDL-C lower-
ing potential with evolocumab was comparable in patients without
type 2 diabetes (61%, two-weekly regimen and 62%, monthly regi-
men) and with type 2 diabetes (57 and 60%, respectively) with al-
most 90% of diabetic patients reached the ,70 mg/dL LDL-C
goal; the benefit was observed across all subgroups, regardless of
insulin requirement, controlled HbA1c levels, renal function, and
intensity of statin therapy.

The treatment with alirocumab was also proven to be as effective
in patients with diabetes as in those without in a post hoc analysis of
ODYSSEY LONG TERM, which included 2341 high cardiovascular
risk patients, on maximally tolerated statin with or without other
lipid-lowering therapy not reaching LDL-C target.57 Over a third
of patients had diabetes at baseline. Similarly to the OSLER patients,
the magnitude of LDL-C reduction was comparable in patients with
and without diabetes (59 and 63%, respectively), followed by
changes in other lipid parameters, including Lp(a), triglycerides,
and high-density lipoprotein cholesterol. No specific safety signals
were observed in either group during 78 weeks of therapy. The fre-
quency and profile of adverse events was similar in patients with and
without diabetes (81.5 vs. 80.7%), when compared with the overall
study population (81.0%); nasopharyngitis, upper respiratory infec-
tion, and urinary tract infection reported in ≥5% of individuals in all
subgroups, while injection-site reaction and myalgia were reported
two-fold less frequently in patients with diabetes (3.4 vs. 7.2% and
3.1 vs. 6.7%, respectively) compared with non-diabetic group. Fur-
thermore, a reduction in major cardiovascular events was also simi-
lar in patients with diabetes [hazard ratio (HR): 0.41; 95%
confidence interval (95% CI): 0.18–0.96] and without diabetes
(HR: 0.51; 95% CI: 0.23–1.13).

Ongoing clinical studies
The ODYSSEY Outcomes trial, which has just completed enrol-
ment of 18 000 post-acute coronary syndrome subjects, examines
the effects of alirocumab on the incidence of major cardiovascular
events (composite primary endpoint of coronary heart disease
death, non-fatal myocardial infarction, fatal and non-fatal ischaemic
stroke, and unstable angina requiring hospitalization).58 The results
of observations derived from a minimum 36 000 patient-years of
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follow-up are expected by 2017. In similar time frames, the results of
the FOURIER trial will be available.59 The trial has completed
enrolment of 27 000 patients at high risk for a recurrent cardiovas-
cular event and is evaluating 5-year evolocumab administration
for the reduction of the major cardiovascular composite endpoint
(cardiovascular death, myocardial infarction, hospitalization for un-
stable angina, stroke, or coronary revascularization). SPIRE-1 and
SPIRE-2 are two other long-term outcome trials to test not yet
FDA-approved PCSK9 monoclonal antibody bococizumab vs. pla-
cebo for the reduction of major cardiovascular events in high-risk
patients at the background of lipid-lowering therapy.60,61 The results
from that large database will provide further evidence of PCSK9
antibodies role in several subsets of patients at higher risk than those
from previous trials. Potential broader use of PCSK9 inhibitors, such
as in statin-intolerant patients, also raises questions as the criteria
for statin-intolerance are still not clear, without generally accepted
definition of this condition. Although parenteral application was at
the beginning considered as a potential obstacle, this has not been
confirmed so far in clinical trials. More recently, after the positive re-
sults of Phase II and Phase III trials, both patients and physicians be-
came more open in discussing this treatment strategy.62 However,
the presumed high cost of PCSK9 inhibitors might have an impact
on their use. Nevertheless, similar to what happened with statins
10 years ago, it can be expected that the cost of treatment with
PCSK9 inhibitors will decrease over time with a more extensive
use and expanded labelling of the drug.

Summary
The use of proprotein convertase subtilisin/kexin type 9 (PCSK9)
antibodies is an important novel therapeutic strategy for the man-
agement of patients with high LDL-C levels. Proprotein convertase
subtilisin/kexin type 9 inhibition has the potential to improve clinical
outcomes not only through the antidyslipidaemic effect but also
anti-inflammatory action and potential effect on glucose metabol-
ism. Future studies should address the clinical impact of PCSK9 in-
hibition beyond its lipid reduction. Statins have been the first line of
treatment for patients with high cholesterol since the late 1980s, but
this new class could offer an alternative to statin patients who ex-
perience unpleasant side effects or have insufficiently reduced
LDL-C levels. Future trials are expected and to expand the indica-
tion and labelling of PCSK9 antibodies.
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