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Abstract 6 

In semi-arid environments vegetation density and distribution is of considerable importance for the hydrological water 7 

balance. A number of hydrological models exploit Leaf Area Index (LAI) maps retrieved by remote sensing as a 8 

measure of the vegetation cover, in order to enhance the evaluation of evapotranspiration and interception losses. 9 

On the other hand, actual evapotranspiration and vegetation development can be derived through crop growth 10 

models, such as AquaCrop, developed by FAO (Food and Agricultural Organization), which allows the simulation of the 11 

canopy development of the main field crops. We used MODIS LAI images to calibrate AquaCrop according to the 12 

canopy cover development of winter wheat. With this aim we exploited an empirical relationship between LAI and 13 

canopy cover. In detail Aquacrop was calibrated with MODIS LAI maps collected between 2008 and 2011, and 14 

validated with reference to MODIS LAI maps of 2013-2014 in Rocchetta Sant'Antonio and Sant'Agata, two test sites in 15 

the Carapelle watershed, Southern Italy. Results, in terms of evaluation of canopy cover, provided improvements. For 16 

example, for Rocchetta Sant’Antonio, the statistical indexes varyfrom r = 0.40, ER = 0.22, RMSE = 17.28 and KGE =0.31 17 

(using the model without calibration) , to r = 0.86, ER = 0.08, RMSE = 6.01 and KGE 0.85 (after calibration). 18 

1. Introduction 19 

Hydrological processes within the Mediterranean area are highly variable both in space and time due to rainy regime, 20 

topography, soil conditions and land use (Moussa et al., 2007). In this context, hydrologic distributed models play a 21 

key role due to the increasing use of physical information provided by remote sensed data (e.g. Iacobellis et al. 2013). 22 

Particularly variables that quantify the development of vegetation cover are useful to estimate evapotranspiration and 23 

interception losses as well as in the assessment of soil erosion (van der Knijff et al., 2000; Kamaludin et al., 2013). 24 

In this field, the use of crop growth models is crucial in order to optimize agricultural practices and, even more 25 

important, in order to model the vegetal cover variations at a yearly scale. Nevertheless their use at regional scale is 26 

limited by the need of intensive ground-based datasets that are necessary for calibration and testing. Among many 27 
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growth models available in literature, that present a large number of variables not easily to compute (Raes et al., 28 

2012), in this study we used the FAO AquaCrop model. With its reduced number of parameters AquaCrop is 29 

characterized by a better balance between simplicity, accuracy and robustness, than other crop models (Steduto et 30 

al., 2008). AquaCrop has been extensively tested across different regions in the world and different crops (e.g. 31 

Ahmadi et al. 2015). Nevertheless, without specific calibration of main parameters it still shows large uncertainties in 32 

the evaluation of important outputs such as actual evapotranspiration, soil moisture and crop yield. In this work we 33 

try to enhance the use of AquaCrop at regional scale exploiting the availability of a well established remote sensing 34 

product such as the MODIS-LAI images.   35 

Remote or proximal sensing techniques that use spectral approaches can provide a rapid identification of water stress 36 

through many vegetation indices (Rinaldi et al, 2014). Particularly, Leaf Area Index (LAI) and Canopy Cover (CC) 37 

assume considerable relevance in the definition of crop development models and ecological processes analysis (Griffin 38 

et.al., 2008). 39 

LAI is a dimensionless variable defined as the ratio between the total leaf surface and the leaf surface projected on the 40 

ground (Ross, 1981). This dynamic index is related to photosynthesis, transpiration surface of forest cover 41 

(Jonckheere et al., 2004), rainfall interception and energy exchange between vegetation and the atmosphere 42 

(Leuschner et al., 2006). Accordingly, LAI was also implemented in hydrological modelling, e.g. DREAM model 43 

(Manfreda et al., 2005). Remote sensing provides the only reliable option for mapping LAI continuously over the globe 44 

(Tarantino et al., 2015). LAI retrieval from passive remotely sensed data has been evaluated through semi empirical-45 

statistical approach or with Radiative Transfer Model (RTM) inversion of leaf canopy reflected energy (Zheng and 46 

Moskal, 2009). In the first mentioned approach LAI is estimated through vegetation indices (e.g. Clevers, 1989; Rouse 47 

et al., 1974; Stenberg et al., 2004) while the second one require an inversion of physical based models (e.g. 48 

Darvishzadeh et al., 2008; Fei et al., 2012; Houborg et al., 2015).  49 

In this study LAI maps derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), particularly the 50 

MCD15A2 level-4 product were used. The MODIS instrument was designed and developed following the science 51 

community objective to collect high temporal resolution global data useful for short/long term environmental studies 52 

(Xiong and Barnes, 2006). Modis is part of the payload of the National Aeronautics and Space Administration (NASA) 53 

Terra and Aqua satellites respectively known also as  Earth Observation System (EOS) AM-1 and EOS PM-1. The 54 

MCD15A2 level-4 product is available at 1 km spatial resolution and at time-steps of 8-16 days. The algorithm 55 

implements a land cover classification where six biome types (respectively grasslands and cereals, shrubs, arable 56 



broadleaf, wooded meadows, broadleaf forest and coniferous woodland) are distinguished (Altobelli et al., 2007). 57 

Each biome represents a pattern of the architecture of an individual tree  and the entire canopy  as well as patterns of 58 

spectral reflectance and transmittance of vegetation elements (Knyazikhin et al., 1998; Weiss et al., 2000). 59 

CC is defined as the ground fraction covered by the vertical projection of the trees (Nilson and Kuusk, 2004), and is 60 

commonly expressed in percentage terms (canopy cover percentage, or its inverse, canopy openness percentage). CC 61 

is a parameter useful in forest ecology and is used to study the potential risk of fire, watershed, erosion and illegal 62 

logging (Chopping et al., 2008; Ozdemir, 2014). Both the United Nation of Food and Agriculture (FAO) and the 63 

National Land Cover Database (NLCD) used CC to identify tree covered areas (FAO, 2010; Homer et al., 2007).  64 

LAI and CC are estimated also by growth models. Particularly interesting is the integration of remote sensing data into 65 

crop growth models with the aim of improving the accuracy of model simulation (Dente et al., 2008; Huang et al., 66 

2015; Jongschaap, 2006; Mo et al., 2005). Maas, 1993 compared the results of calibrating a crop simulation model on 67 

winter wheat using LAI observation from field and remote sensing. Moulin et al., 1998 in a review paper described the 68 

relations between crop state variables and satellite observations. Weiss et al., 2001 described the process of coupling 69 

the STICS model (Brisson et al., 1998) with the SAIL RTM (Verhoef, 1984) and then performed a sensitivity analysis to 70 

select crop model parameters that mostly influenced the radiometric signal. Bach et al., 2001 combined the PROMET-71 

V (Schneider and Mauser, 2001) and the SAIL with good results in the estimation of LAI, canopy ehight and dry 72 

biomass. Doraiswamy et al., 2004 investigasted the usefulness of MODIS data both to assess crop condition and in 73 

crop simulation model. LAI maps derived both from active and passive sensor were assimilated in Dente et al., 2008 in 74 

order to improve the wheat yield prediction accuracy usimg the CERES-Wheat model. Fang et al., 2008 developed a 75 

procedure to predict regional  crop yield estimation from MODIS data. Xu et al., 2011 implemeted the phenology 76 

information derived from the MODIS LAI product in  the SWAP model (Van Dam et al., 1997) for winter wheat 77 

estimation at regional scale. The MODIS LAI product was also used by Fang et al., 2011 to estimate the corn yeld with 78 

the  CSM–CERES–Maize model model coupled with the MCRM model (Kuusk, 1998). Huang et al., 2015 implemented 79 

whithin the WOFOST model LAI derived from MODIS and LANDSAT TM data to predict winter wheat yield at regional 80 

scale. 81 

The aim of this paper is to assess the AquaCrop model performances by exploiting the LAI - CC variability of winter 82 

durum wheat, which is the predominant type of vegetation in a study area within the Carapelle's catchment, in 83 

Southern Italy, using the MODIS images for model calibration and validation. For this purpose, the LAI - CC empirical 84 

relationship found by Nielsen et al. (2012) was used. 85 



Calibration and validation were carried out separately using MODIS low-resolution images: the calibration was 86 

developed in 2009-2010 in Rocchetta and between 2008 and 2010 in Sant’Agata, while the validation was carried out 87 

in 2013-2014 for both sites. 88 

2. Materials and methods 89 

2.1 Study area 90 

The test sites are close to the towns of Rocchetta Sant'Antonio and Sant'Agata di Puglia respectively, both in the 91 

Carapelle river-basin. Furthermore the Lacedonia weather station, located close to the previous ones, was considered 92 

in case of missing data. The main stream of Carapelle originates in the Campanian Apennine, from La Forma 93 

Mountain, and flows into the Adriatic Sea. The catchment has a watershed area of 982.6 km
2
 (table 1, figure 1 and 94 

figure 2). 95 

 96 

Fig. 1. Study area: the Carapelle watershed. 97 

Table 1. Main characteristics of the Carapelle watershed  98 

The river regime is torrential, with streamflow generally high in November and December, dry in July and August. The 99 

climate is typically Mediterranean with moderately rainy winters, warm and dry summers. The rainfall range is from 100 

477 to 815 mm/year and the average temperatures range from 10 to 16 °C/year. The main cultivations are durum 101 

wheat (85% of total basin area), different types of vegetables and olives groves, localized in low hilly and plain areas, 102 

while forests and pasture are present in the higher slopes (Milella et al., 2012). The size of the two study sites is 103 

approximately 1 km
2
 (figure 2). 104 

  105 

Fig. 2 Position of two work field and LAI-MODIS image of 05/01/2014. 106 

2.2 Model description 107 

AquaCrop (http://www.fao.org/nr/water/aquacrop.html) is a software system developed by the Land and Water 108 

Division of FAO in order to increase water efficiency practices in agricultural production (Araya et al. 2010). AquaCrop 109 

uses the first Doorenbos and Kassam (1979) equation for the biomass calculation and, finally, the crop yield, 110 

proportional to the biomass according to a "harvestable part". The software simulates Biomass B and Yields Y 111 



production of agricultural crops, focusing on water stress conditions (Steduto et al., 2009). The model is based on the 112 

water resource used in transpiration, which results in biomass using a crop-specific conservative parameter (Geerts et 113 

al., 2009). 114 

The Stress Coefficients play a key role in the model. They describe the different stress conditions, detected in the crop 115 

biomass production (wheat, vegetables). These coefficients “continuously adjust” the computed quantities in each 116 

calculation step. They vary between 1 (no stress) and 0 (max stress) (figure 3). 117 

 118 

Fig. 3. The stress coefficient (Ks) for various degrees of stress and 119 

for different shapes of the Ks curve (Raes et al., 2012). 120 

The stress coefficients account for soil water, air temperature, soil fertility and salinity. They affect the canopy 121 

expansion processes, stomata control of transpiration, canopy senescence and Harvest Index HI. 122 

The soil water balance, the green canopy cover, the crop transpiration, the above ground biomass and yield form the 123 

software calculation scheme. In the calculation scheme, different parameters operate among the variables above: 124 

crop coefficient (kc), Water Productivity (WP) and, finally, Harvest Index (HI). Among these parameters HI plays a key 125 

role by partitioning Biomass (B) into Yield (Y). HI grows up linearly in time after a lag phase, up to physiological 126 

maturity (Raes et al., 2012). 127 

The canopy cover is a crucial feature in AquaCrop, because through its expansion, ageing, conductance and 128 

senescence, it determines the amount of water transpired (Tr), which in turns determines the amount of biomass 129 

produced (B) and the final yield (Y) (Raes et al., 2012).  130 

Reference Evapotranspiration is preliminarily evaluated to calculate Transpiration using the FAO ET0 calculator. The 131 

Penman-Monteith formula is used (equation 1): 132 

    
              

   

     
         

             
          1  133 

where ET0 is the reference evapotranspiration [mm day
-1

], Rn net radiation at the crop surface [MJ m
-2

 day
-1

], G soil 134 

heat flux density [MJ m
-2

 day
-1

], T mean daily air temperature at 2 m height [°C], u2 wind speed at 2 m height [m s
-1

], es 135 

saturation vapour pressure [kPa], ea actual vapour pressure [kPa], es-ea saturation vapour pressure deficit [kPa], D 136 

slope vapour pressure curve [kPa °C
-1
],   psychrometric constant [kPa °C

-1
]. ET0 is related to the actual vegetation 137 



cover through the crop coefficient kc, which depends on crop type, sowing or planting period, duration of crop 138 

development stages and growing period under prevailing climatic conditions (Semaika and Rady, 1987). 139 

The software comprises four separate workplaces: Environment and Crop, Simulation, Project, Field Data. The data 140 

are contained in specific files, including climate, crop, soil and management (irrigation), initial soil water condition 141 

(Raes et al., 2009). The basic measurement unit for simulations follows a thermal approach in °C at temporal daily 142 

scale, the GDD (Growing Degree Days). 143 

AquaCrop uses a relatively small number of explicit and very intuitive parameters trying to balance simplicity, accuracy 144 

and robustness (Andarzian et al, 2011). Raes et al. (2009) describe the software operation in detail. Moreover a 145 

complete model description is provided by Steduto et al. (2009). 146 

2.3 Data acquisition 147 

The Aquacrop crop growth software requires detailed physical, land use and climate data. GeoEye high-resolution 148 

(2m) (Aquilino et al., 2014) and MODIS low resolution (1km) remote sensing data were used to calibrate and validate 149 

the model. 150 

The climate inputs are rainfall, air temperature and wind speed. Time series of rainfall, temperature and wind speed, 151 

recorded by the Civil Protection Agency of Regione Puglia, are available. For this study, daily data on rainfall, minimum 152 

and maximum temperature from Sant’Agata and Rocchetta stations, and mean daily wind speed from anemometric 153 

Biccari station were used. The use of thermometer and rain gauge stations was assessed by using the Thiessen 154 

weighting procedure. 155 

In case of missing data, regression formulas between the main station of Rocchetta and that of Lacedonia, located 156 

very close one to the other, were used. The results showed a strong correlation in terms of rainfall and minimum and 157 

maximum temperature of the two sites (figure 4 a, b, c). Good correlation exists also between Sant’Agata and 158 

Lacedonia for rainfall (figure 4 d). 159 

 160 

Fig. 4. Rocchetta-Lacedonia a), b), c), Sant'Agata-Lacedonia regression d). 161 

The reference evapotranspiration was estimated by the Penman-Monteith equation, which requires the measures of 162 

temperature, humidity of air, solar radiation and wind speed. These climatic quantities, not directly available, were 163 

derived from temperature and wind speed, as described in Allen et al.(1998). 164 

 



Land use and vegetal coverage were obtained from the Puglia Information System SIT, at the website 165 

http://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/Download/Cartografie, at 1:5000 scale.  166 

Soil parameters such as the textural classes, saturated hydraulic conductivity, soil depths and porosity were extracted 167 

from the ACLA2 project (scale 1:100,000), a research program funded by the Puglia region and aimed at agro-168 

ecological characterization of the region on the basis of laboratory tests, field observation and photo interpretation of 169 

aerial photograph and satellite images (Caliandro et al., 2005).  170 

The texture classes were found using the USDA textural triangle. The hydraulic soil properties (the volumetric soil 171 

moisture contents at saturation (θmax), wilting point (θwp) and field capacity (θFC), hydraulic conductivity at saturation 172 

(ks)) were estimated using the Saxton and Rawls (Saxton and Rawls, 1986, 2006) pedotransfer functions, which are 173 

implemented in a calculator at the website http://hrsl.ba.ars.usda.gov/soilwater/Index.htm. The second level Saxton 174 

and Rawls algorithm (according to the classification of Ungaro and Calzolari, 2001) starts from clay (C) and sand (S) 175 

weight percentages, and from organic matter (OM), which is related to organic carbon content (OC) when direct 176 

measurements are not available. These quantities are freely available on the website 177 

http://eusoils.jrc.ec.europa.eu/ESDB_Archive/octop/octop_data.html, at a resolution of 1 km. 178 

The Organic Matter is related to Organic Carbon with equation (2) 179 

                       2 180 

The MODIS images (MODerate resolution Imaging Spectroradiometer) are freely available on the NASA website 181 

(https://lpdaac.usgs.gov/products/modis_products_table).  The MODIS images (hdf-eos format) are processed by the 182 

Reprojection MODIS tool, freely available on the USGS EROS Data Center website 183 

(https://lpdaac.usgs.gov/tools/modis_reprojection_tool).  184 

High-resolution GeoEye images were acquired for the 13/05/2009 scene in Sant'Agata and for the 29/04/2010 scene 185 

for both Rocchetta and Sant'Agata. Previous studies demonstrated  the compatibility of LAI retrieved though very high 186 

spatial resolution satellite data with MODIS LAI data (Aquilino et al., 2014; Tarantino et al., 2015).  187 

2.4 LAI-Canopy Cover relationships 188 

The leaf area index (LAI) and the canopy cover percentage are two expressions of the vegetation cover and become 189 

relevant in the crop development models and the ecological processes analysis (Griffin et.al., 2008). 190 

LAI is a positive variable and its values depend on several factors, such as climate, water availability and development 191 

stages. A LAI value equal to zero represents the bare soil, while high values account for a dense vegetation cover. 192 

http://www.sit.puglia.it/portal/portale_cartografie_tecniche_tematiche/Download/Cartografie
http://eusoils.jrc.ec.europa.eu/ESDB_Archive/octop/octop_data.html
https://lpdaac.usgs.gov/products/modis_products_table


LAI values are obtained by MODIS and GeoEye images while AquaCrop evaluates the Green Canopy Cover.  193 

For this reason, a relationship between these two variables which depend onthe crop/vegetation types,the water 194 

supply type (irrigation or not), the crop density and the management practices, the seasonal and inter-annual 195 

variability, is needed.  196 

Many authors proposed several conversion equations for specific crop/vegetation and relative canopy architecture, 197 

(Buckley et al., 1999,; Wang et al., 2005;  Hsiao et al., 2009, Nielsen et al., 2012)  198 

In this study, the empirical relationship (3) proposed by  Nielsen et al., (2012) was applied as it is referred to a winter 199 

wheat crop: 200 

                                        3 201 

with R
2
=0.957 202 

2.5 Calibration/Validation process 203 

Any model should be carefully parameterized, calibrated and validated before its practical use (Addiscott et al., 1995; 204 

Nain and Kerebaum, 2007, Biondi et al., 2012). During parameterization and calibration, the model’s parameters and 205 

even the code may be changed in order to obtain accurate simulated values versus the observed data. In contrast, 206 

during validation, the model is run without any modification of the model's parameters or code, which is compared to 207 

independent experimental data (Nain and Kersebaum, 2007; Salazar et al., 2009). 208 

AquaCrop is designed to be widely applied under different climatic and soil conditions, without particular crop 209 

parameterizations (Hsiao et al., 2012). The parameters used in the model are subdivided into conservative 210 

parameters, constant according to the boundary conditions, and parameters based on location, crop cultivars and 211 

management practices. However many of the conservative parameters are obtained from modern high-yielding 212 

cultivars grown with optimal soil fertility without limitations from any mineral nutrient, particularly nitrogen (Hsiao et 213 

al., 2012). Moreover, there are also parameters of cultivar-specific type, i.e. parameters similar to the conservative 214 

ones, which present slight variations within the same crop species, due to different cultivar classes. During calibration 215 

the available calibrated parameters are used as a starting point and are adjusted by means of local measurements. 216 

The Canopy Cover time series is used to calibrate the model. By its expansion, development and senescence, the 217 

transpired water quantity is obtained, which subsequently determines the Biomass production. 218 

Hence the simulated CCs are compared to the corresponding observed values. The parameters affecting the CC 219 

development are: plant density, initial canopy cover (CCo), time from sowing to emergence, time from sowing to 220 



senescence, time from sowing to maturity, maximum canopy cover (CCx), canopy growth coefficient (CGC), canopy 221 

decline coefficient (CDC) and maximum effective rooting depth (Zx). 222 

Canopy development is simulated by two equations: 223 

Equation 1 (exponential growth) is valid when CC ≤ CCx/2 224 

       
    _            4 225 

Equation 2 (exponential decay) is valid when CC > CCx/2 226 

            
      

   
                5 227 

where t is the time, (Raes et al., 2012). 228 

We started from the parameter values available in scientific literature about the wheat grown in the Carapelle basin 229 

to determine the phenological phases, while with regard to the other parameters the default values of the crop 230 

calibrated within the software were used as the starting point. The calibration was carried out following a trial and 231 

error technique, varying the calibration parameters and evaluating the differences between simulation and MODIS-232 

observation data. 233 

The soil water content at the beginning of the simulation was chosen as the minimum value reached after the summer 234 

dry season and was assumed to be equal to the permanent wilting point, PWP. 235 

2.6 Performance metrics 236 

We used several statistical indices for model calibration and validation, such as the root mean square error (RMSE), 237 

relative error (ER), linear correlation coefficient (r), relative variability, relative bias and Kling-Gupta Efficiency (KGE).  238 

The root mean square error is given by (6): 239 
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where Oi and Pi are the observed and predicted values (MODIS measures and simulated respectively), and n the 241 

number of observations. A disadvantage of RMSE lies in that the residual errors are calculated as squared values, 242 

which means that higher values in a time series are given greater weight than lower values (Legates and McCabe, 243 

1999). 244 

The relative error (ER%) (equation 7): 245 
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Gupta et al. (2009) highlighted some critical points related to the performance metrics most used in hydrology, i.e. 247 

the NSE and RMSE. They showed that NSE (Nash and Sutcliffe, 1970) can be broken down into three distinctive 248 

components and namely: the linear correlation (r) between simulations and observations, the bias normalized by the 249 

standard deviation in the observed values and a measure of relative variability in the simulated and observed values 250 

(α). Gupta et al. (2009) proposed the Kling–Gupta efficiency defined as (8, 9, 10): 251 

α  
  

  
             8 252 

  
  

  
             9 253 

               α                    10 254 

where   is the standard deviation and µ is the mean value (with subscript “s” for simulations and “o” for 255 

observations), α is the relative variability and   is the relative bias. 256 

3 Results and discussion 257 

3.1 Calibration 258 

In the table 2 the the soil properties and the hydraulic soil properties used to run the model are reported for 259 

Rocchetta Sant'Antonio and Sant'Agata di Puglia. 260 

Table 2. Soil properities of Rocchetta Sant’Antonio and Sant’Agata di Puglia. 261 

In table 3 the values assigned to specific model parameters are reported both for Rocchetta Sant'Antonio and 262 

Sant'Agata di Puglia.  263 

Table 3 Values assigned to specific model parameters to simulate the responses of winter wheat in Rocchetta Sant'Antonio and Sant'Agata di Puglia. 264 
L means that the value has been taken as default or from literature; C if it comes from calibration. 265 

Figure 5 shows the CC values simulated by Aquacrop after calibration and those obtained from the MODIS images in 266 

2009-2010 where the model simulates accurately the CC behavior. 267 

The calibration of Sant'Agata was more accurate inasmuch as there are two years of observations. Moreover, in 2008-268 

2009 the CC values are lower than in 2009-2010 as shown in Figure 6 and 7, where both the CC simulated values and 269 

those obtained from the MODIS images are reported. In the same figures the data obtained from the high resolution 270 

GeoEye sensor data are reported. These images refer to April 29 2010 both for Rocchetta and Sant’Agata and to May 271 



13 2009 for Sant’Agata. The model seems to provide an almost systematic overestimation in 2008-2009 simulations 272 

and is more in line for the years 2009-2010.  273 

In the entire investigation period, the average CC values of Rocchetta were found to be higher than those in 274 

Sant'Agata, probably due to the different topographical exposure conditions of the two sites. 275 

A good fit was observed in all the simulations, but after the flowering stage we noticed that senescence was slightly 276 

faster compared to simulations, in agreement with the comments by Andarzian et al., 2011. The reason for this 277 

behaviour may be due to the effect of high-temperature stress on CC, which is not considered in the model 278 

(Andarzian et al.,2011). 279 

 280 

 281 

 282 

Fig. 5. Simulated and Observed CC of winter wheat in Rocchetta Sant'Antonio 2009-2010. 283 

 284 

Fig. 6. Simulated and Observed CC of winter wheat in Sant'Agata di Puglia 2008-2009. 285 

 286 

Fig. 7. Simulated and Observed CC of winter wheat in Sant'Agata di Puglia 2009-2010. 287 

The statistical indices are reported in table 4: 288 

Table 4. Statistical parameters of calibrated and validated points. 289 

 290 

The production of Biomass (B) and Yield (Y) seems overestimated with respect to the amounts usually obtained in 291 

these areas (table 5), which, according to local producers, range between 3.5 and 5 ton/ha (Quaranta et al.2015). 292 

Table 5. Biomass and Yield of calibrated and validated points. 293 

Statistical indexes are good in all simulations, particularly for Sant'Agata 2009-2010, in which all the efficiency indices 294 

achieve excellent values, as for example, RMSE which achieves the average value of 9 % (table 4 and figures 8, 9, and 295 

10). In figures 8, 9 and 10 the relative error referred to each MODIS image is reported, while table  4 shows the mean 296 

relative error referred to all the simulation. 297 



 298 

Fig. 8. Relative Error in calibration Rocchetta Sant'Antonio 2009-2010. 299 

 300 

Fig. 9. Relative Error in calibration Sant'Agata di Puglia 2008-2009. 301 

 302 

Fig. 10. Relative Error in calibration Sant'Agata di Puglia 2009-2010. 303 

3.2 Validation 304 

The validation step was carried out with reference to the period 2013-2014. In order to assess the improvements 305 

made through the previous calibration phase, the model results were compared with those obtained with model runs 306 

in which default values for the winter wheat in AquaCrop were used. The simulation runs with default values for 307 

Rocchetta are indicated with ValenzanoP1 while those for Sant’Agata with ValenzanoP2. The results are shown in 308 

Figures 11 and 12. 309 

By analyzing time series graphics and statistical indices (table 4) we observe that significant improvements are 310 

provided by calibration in both sites. The relative error decreases from 0.22 to 0.08 for Rocchetta and from 0.38 30 to 311 

0. 19 for Sant'Agata. The RMSE also shows a decrement from 17.28 to 6.01 for Rocchetta, and from 30.29 to 12.27 for 312 

Sant'Agata. A better performance was noticed even when looking at α and   values. 313 

 314 

Fig. 11. Comparison between Simulated and Observed CC of winter wheat of Rocchetta Sant'Antonio a), b) and ValenzanoP1 c), d) in 2014 315 

(validation). 316 

 317 

Fig. 12. Comparison between Simulated and Observed CC of winter wheat of Sant'Agata di Puglia a), b) and ValenzanoP2 c), d) in 2014 (validation). 318 

When observing the relative error time series, average improvements of about 20% are recorded for both study sites 319 

(figures 13a), b)). 320 

The default winter wheat within AquaCrop leads to an overestimation of the CC performance (Figure 13 c), d)) in 321 

agreement with Hsiao et al., 2012. 322 

 323 



Fig. 13. Simulated, Measured, Valenzano for Rocchetta Sant'Antonio a) and Sant'Agata di Puglia b). Comparison of Relative Error in validation 324 

between Rocchetta c) and Sant'Agata d) with ValenzanoP1 and ValenzanoP2. 325 

Finally, Biomass and Yield (table 5) show lower values using calibration than the default AquaCrop cultivation, so they 326 

are closer to the quantities obtained for the 2014 yield, which is approximately 4.5 ton/ha based on information 327 

collected in the areas under study and according to what reported by Quaranta et al.(2015). Also in this case the 328 

highest yields are due to the Hsiao et al. 2012 conditions and the highest trends of CC, which are reflected firstly in B 329 

and secondly in Y (equations 11, 12): 330 

                          11 331 

                     12 332 

where the Transpiration Tr is directly proportional to CC development. 333 

4 Conclusions 334 

Remote sensing images are a useful support to model applications, as they allow qualitative and quantitative 335 

investigation of objects placed on the earth. In this study the satellite images were used as a support tool for crop 336 

phenological cycle calibration. In detail, satellite LAI MODIS data, converted into canopy cover, were compared both in 337 

calibration and in validation with AquaCrop model outputs. It is worth mentioning that such comparison involves the 338 

use of a relationship between LAI and CC. With this purpose we used an empirical LAI-CC relationship and noticed that 339 

few studies are available on this field which deserves further investigation. 340 

The results show that the AquaCrop model gives good estimations of the canopy cover development of winter wheat 341 

in two locations in Southern Italy. Remote sensing has provided an important tool to perform calibration, and the 342 

convergence of LAI values from high-resolution GeoEye images with the low resolution MODIS images effectively 343 

checked the reliability of information obtained by MODIS images. 344 

A local calibration of the parameters within the model, which is possible and made easier by the low number of 345 

parameters required in the model, is therefore recommended. 346 

Furthermore a model calibrated based on CC, shows also yield results consistent with real winter wheat productivity 347 

in the study area.  348 

Finally, as positive feedback, the use of calibration techniques based on remote sensing may improve the integrated 349 

use of models like AquaCrop together with distributed models at basin scale. 350 



Such an integrated approach may lead to important improvements in the evaluation of wheat yield at the regional 351 

scale. Also, a combined use of crop growth models with hydrological distributed models could be useful in order to 352 

improve the phenomenology description and to obtain acceptable estimates of each hydrologic balance component, 353 

such as, for example, a space and temporal variability of soil moisture. 354 
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