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Resumo

Neste estudo pretende propor-se um novo sistema que melhore tanto a eficiência como a eficá-
cia na determinação de compatibilidade entre faixas musicais dentro de um dataset. Os modelos
existentes apresentam algumas limitações em termos de eficácia, não só porque os métodos são
principalmente focados no ritmo, mas também porque os métodos que levam em consideração a
harmonia não assumem o seu carácter como variável. Para além disso, ao eliminar a necessidade
de processar uma música inteira, o custo computacional da determinação da Compatibilidade Har-
mónica diminui e o processo é significativamente mais rápido, o que significa que a tecnologia está
estaria mais próxima de uma aplicação em tempo e contexto reais. Ao abordar os problemas ante-
riores, visamos, em última análise, a aplicação de métodos computacionais para compatibilidade
harmónica em cenários de aplicação da vida real. Para completar o estudo, pretendemos avaliar
se é possível determinar a compatibilidade harmónica a partir de uma janela temporal menor e
determinar ainda sua localização ideal numa faixa.

É essencial determinar uma ground truth para os dados utilizados em testes, o que revela
a importância do teste de escuta. Ademais, este teste também permite determinar qual métrica
(distância euclidiana, distância de cossenos ou entropia) se alinha melhor a classificação de quão
agradável o resultado de uma mashup é.

Em relação aos resultados do trabalho, que serão detalhados neste documento, a distância
euclidiana mostrou-se novamente como a melhor métrica para avaliação. Para aém disso, os mel-
hores resultados foram obtidos para a análise de toda a música quando comparados a outras duas
janelas de tempo em locais diferentes.

Keywords: harmonic mixing, tonal interval space, mashup, compatibilidade, mir.
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Abstract

In this study we aim to propose a new system which improves the efficiency and efficacy in re-
trieving compatible musical audio tracks from a predefined dataset. Existing systems present some
limitations in terms of efficacy, not only because the methods are mainly focused on rhythm but
also because the methods that take into consideration the harmony don’t account for its variation.
Moreover, by eliminating the need of processing an entire song, the computational cost of the Har-
monic Compatibility determination decreases and the process is significantly faster, which means
that this technology is a step closer to a real-time application. In tackling the former problems, we
ultimately target the application of computational methods for harmonic compatibility in real-life
application scenarios. In order to complete the study, we aim to evaluate whether it is possible to
determine HC from a shorter time window and its optimal location.

It is essential determining a ground truth for the data, which means that the perceptual listening
test was very important. Moreover, this test also allows us to determine which metric (Euclidean
distance, cosine distance and entropy) aligns better with human enjoyment.

Regarding the results of the work, which will be fully detailed in this document, it is fair to
say that the Euclidean distance proved to be the best metric for evaluation. Also, the best results
were obtained for the analysis of the whole song when compared to other two time windows in
different locations.

Keywords: harmonic mixing, tonal interval space, mashup, compatibility, mir.
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Chapter 1

Introduction

1.1 Context

Musical mashup creation is the process that combines musical audio tracks to create a new work

and it is widely associated with DJ practice and electronic music. The search for compatible

tracks to be mashup has been pursued computationally to aid musicians browsing and navigating

personal or public musical audio data sets. The search for musical compatible audio considers

many sound characteristics. This process is essential to the DJ practice, and it has been an active

field of research within the Sound and Music Computing and creative Music Information Retrieval

communities for some years, particularly in what has to do with harmonic compatibility measures.

In order to better understand harmonic compatibility, its many components and its computa-

tional methods, we shall detail the Tonal Interval Space, a space where state-of-the-art harmonic

compatibility metrics have been proposed. Using this space, we can not only describe the harmonic

content of musical audio with some degree of perceptual awareness, but also infer the harmonic

compatibility of musical audio tracks as distances in the space, which is one of the objectives of

the dissertation.

1.2 Motivation

In existing state-of-the-art methods many problems have been identified, in particular, the defini-

tion of the minimal temporal analysis windows and harmonic features resolution with good accu-

racy and reduced computational cost. Furthermore, it is crucial for the method used to manage to

detect tuning deviations.

Even though there is a wide collection of audio files available, free of composer rights, ready

to be used for DJ practice, the lack of annotation makes it very difficult to combine with other

tracks, making it very difficult for music production. To solve that problem, it is important to

develop a method that gives a value of compatibility whilst not analyzing a file, which would have

a high computational demand.
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2 Introduction

Another central point of this dissertation has to do with the database used for testing. It is

important to have a wide range of samples and challenging examples so that the work will prove

to have a real-world application.

1.3 Objectives

To achieve novel methods for computational mashup creation with greater efficiency and efficacy

in relation the to the state-of-the-art, the following four objectives will be pursued:

1. To define harmonic (i.e., audio signal representations) and distance metrics for capturing the

harmonic compatibility;

2. To determine the optimal temporal location of musical audio track (e.g., beginning, mid-

dle and end time locations) to assess musical audio compatibility, aiming to increase the

efficiency of the methods at scale.

3. To assess the minimal temporal resolution that assures high accuracy in capturing mashup

compatibility

4. To validate the proposed model(s) by a perceptual evaluation.

1.4 Methodology

This dissertation aims to develop a method that computes the harmonic compatibility of two or

more musical audio files.

To conduct objective 1, to define harmonic descriptors and distance metrics to further compute

harmonic similarity of different musical audio, the tonal interval space will be adopted to infer en-

tropy measures which can compute the complexity of the signal at the harmonic and rhythmic

domains. Different metrics from the literature will be assessed (e.g, Euclidean and cosine dis-

tances).

To conduct objectives 2 and 3, to determine the optimal location of a musical of musical audio

track and its minimal temporal resolution, we must first build a small data set of full musical audio

tracks with challenging examples for compatibility computation. Then, we will study different

segmentation strategies (blind and structurally-informed) to study the minimal temporal resolution

that ensures a good model of harmonic and rhythmic compatibility between two or more musical

audio tracks. In greater detail, we aim to understand whether it is possible to compute the HC

value on very short segments of time of a sample, for example, 5 seconds, as a representation of

the full track compatibility. Having this analysis taken down to a minimum, the computational cost

will drastically decrease, which would imply that this approach could be used almost in real time

mixing for DJ practice. Furthermore, we will assess which location of a musical sample is better

prone to indicate the track compatibility. Given the analysis in different parts of the musical audio



1.5 Document Structure 3

– the beginning, the middle or the end –, it will be possible to determine where in the temporal

dimension the compatibility metric best approximates perceptual judgments.

To conduct objective 4, an online survey will be conducted in which users will be asked to

either choose from a scale the likability of a mashup or their preference between two different

mashups.

1.5 Document Structure

This document aims to present the literature review for the the masters dissertation, as well its

developments and its results. The first chapter is the introduction, embracing the context, moti-

vation and methodology. Chapter 2 represents the literature review per se, presenting techniques

to calculate harmonic compatibility and methods to evaluate the final project. Chapter 3 consists

of the work done, detailing some specifics of the algorithm and the evaluation metrics. Chapter 4

outlines the evaluation procedure and its results. Chapter 5 sums up the conclusions of the work

and provides some insight on possible development of future work and current limitation of the

purposed model.
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Chapter 2

Computer-aided Mashup creation:
State-of-the-art

The result of harmonic mixing tends to be very dependent on the harmonic similarity and com-

patibility of two different audio samples. In order to be able to compute a degree of similarity, an

effective way to compare samples is through their representation using distance metrics. So, we

relate harmonic compatibility to different forms of distance.

According to the objectives defined for the dissertation, it is important to separate harmonic,

timbral and rhythmic compatibility so that all the different approaches to combining melody can

be taken into account.

2.1 Tonality and Harmony

Tonality within Western music relates to the concept of an equal tempered tuning, which divides

the musical space in 12 notes, or pitch classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B), and the

spacing between each of those notes corresponds to half steps. Its base, the tonal system, includes

tonal structures that arrange sounds according to their temporal and spacial structures, such as

keys, chords and melody [1]. Dividing them in two large groups, there is harmony, which relates

to vertical pitch structures, and melody, which relates to horizontal pitch structures [2]. In other

words, harmony relates to the synchronous structures and melody relates to the sequential ones.

2.2 Computational tonal features

This section presents several concepts and methods relevant for the work that describe the tonal

dimension of an audio signal.

5



6 Computer-aided Mashup creation: State-of-the-art

2.2.1 Chroma Vector

Chroma vectors are widely used to describe the tonal content of musical audio as they represent

the sum of the energy of each pitch class[1]. These vectors can then be used to compare different

melodies using different computing methods, all of them calculating pitch distances.

In the figure presented bellow, there is an example of a C major scale in four different rep-

resentations. There is its musical form in (a), and its audio recording in (c). Both (b) and (d)

represent chromagrams, (b) having been originated from symbolic representation and (d) from an

audio file. In fact, the first chromagram shows an ideal representation, being very clean, whereas

the second one, (d), counts with both the major scale, represented in red as it has the most energy,

and some harmonics residue, which can be seen in orange and in yellow.

Figure 2.1: (a) Musical score of a C-major scale. (b) Chromagram obtained from the
score. (c) Audio recording of the C-major scale played on a piano. (d) Chromagram ob-
tained from the audio recording. Reproduced from Meinard Mueller’s original image at
"https://en.wikipedia.org/wiki/Chroma feature".

2.2.2 Tonal Interval Space

Chroma vectors have been shown to provide poor indicators in comparing their relatedness. So,

as a result, another approach was developed, and that is why the Tonal Interval Space (TIS) ac-

counts for its limitations [1] [3] []. TISs does not only consider pitch distances reflecting human
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perception of pitch, but it also gives a tonal pitch consonance indicator.

Different musical properties, such as pitch classes, intervals, chords and keys can be repre-

sented in the TIS through Tonal Interval Vectors (TIV), T(k), making use of the Discrete Fourier

Transform (DFT), as shown in Equation 2.1. The DFT components are originated from an L1

normalized chroma vector and are weighted by w(k) = {2,11,17,16,19,7}, as shown in Equa-

tion 2.2. There are many different parameters in the equation, being n the dimension, reach-

ing N = 12 as it is the total number of pitch classes, the chroma vector pitch class index, k,

w(k) = {2,11,17,16,19,7} and c̄(n) normalized chroma vector.

The result of this operation is a 12-dimensional Tonal Interval Vector (TIV), having each

dimension of such vector a direct relation to a music interval. In Figure 2.2 it is possible to

observe 6 of the 12 TIV of a TIS computation, in this case a C Major chord [1].

T (k) = w(k)
N−1

∑
n=0

c(n)e−
j2πkn

N ,k ∈ Z (2.1)

c(n) =
c(n)

∑
N−1
n=0 c(n)

(2.2)

Figure 2.2: Visualisation of 6 of the 12 the TIV as six circles organized according to complemen-
tary intervals.
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2.3 Harmonic Compatibility

Harmonic compatibility is typically defined as the resulting perceptual enjoyment between the

harmonic content of two (or more) musical excerpts, when played together (i.e., overlapped)[4].

Recently, some studies have been expanding the concept to equally address the harmonic compati-

bility between temporal sequences (i.e., horizontal compatibility) in addition to the more tradition

overlapping compatibility (i.e., vertical compatibility). In this work, we will mostly address ver-

tical compatibility when referring to harmonic compatibility, unless it is explicitly referred as

sequential compatibility. [2]

To compute harmonic compatibility many strategies have been proposed in the literature, and

the main three will be detailed in the next subsections. Key affinity is a method that determines

HC and it is the most used technology. Both chroma matching and the tonal interval space have to

do with spectral similarity, and these are the best options when it comes to technicalities. Finally,

the psycho-acoustic dissonance methods give a perceptual data, as they have a user classifying

measures of consonance and dissonance.

2.3.1 Key Affinity

In a musical context, the perception of distance takes into consideration intervals between keys,

relating major and minor keys, respectively, to what is called a minor relative. Also, the number

of alterations needed to go from one key to another is related to their distance in the circle. A

visual way to show this relation is the Circle of Fifths, presented in figure 2.3, having its major

keys represented in red with their respective minor relatives represented in green. In here, it is

possible to organize all twelve pitch classes as a sequence of perfect fifths (the interval between a

pitch class must be exactly three steps and one-half step). According to this representation, it is

very straightforward to get from a major model to a minor one and to get fifth intervals, but other

intervals are poorly represented, which means the Harmonic Compatibility representation is very

limited [5].

Within the DJ community, this is also referred to as the Camelot Wheel.

In a commercial environment, there are tools like Mixed In Key’s Mashup2 [6] which is the

best state-of-the-art software in key notation [4] and Traktor [7], a DJ software mostly used for

live performing and streaming, which used techniques such as time stretching and pitch shifting.

2.3.2 Chroma Matching

Chroma matching, or chroma vector similarity, inspects the cosine distance between chroma vector

representations of different pitch shifted versions of two different audio tracks. Because this is

usually computed in a beat-level, it provides a small-scale alignment [1].

Some of the technologies developed so far are loop-based, like Mixmash[8] or Automashupper

[9], developed in a more academic setting, both having a generative upbringing, which can lead to

scaling barriers.
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Figure 2.3: Circle of Fifths. Represents relations between keys.

2.3.3 Psycho-acoustic Dissonance Methods

Another approach to Harmonic Compatibility relies on a more subjective method, which is related

to consonance and dissonance. As it is widely known in the music community, two consonant

sounds tend to be more appealing to the human hearing than two dissonant ones [10].

There have already been developed different methods that represent this perception, them be-

ing pure dyads and roughness [10]. In music theory, a dyad consists of a chord of two notes that

are played simultaneously, being a pure dyad a chord of two pure notes. In this context, roughness

consists of a sound not being perceived as a pure note.

2.4 Rhythmic and Timbre Compatibility

The first models that were developed for mashup creation were mainly focused on the rhythmic

part of audio samples [3], and this is still currently used in commercial softwares, such as Traktor

[7] or Mixxx [11].

Another approach, developed by Lee et al. [2], consisted on stretching the beats through a

phase vocoder so that they would fit the tempo of the input file. Davies et al. [9] used downbeat

tracking for track alignment based on onset detection functions.

The most popular approach to tackle rhythmic representation is onset detection, but there

are other methods such as the auto-correlation function or even the beat spectrum. While all

techniques reveal periodicity, the type of information each one represents can vary from local

maximums in onsets to limited copies of a signal with auto-correlation. The Fluctuation Patterns

as presented by Pohle et al. [12] depict in a semi-step space a pattern based on onsets. As a result,

there is a matrix called onset patterns.
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Even though timbre perception is still poorly understood and understudied by the Sound and

Music community, it is thought to be every aspect of sound that is neither related to harmony nor

rhythm, commonly having associated attributes like rightness, roughness, density, and fullness

[13] [14], these being independent from pitch and loudness.



Chapter 3

Computational Harmonic
Compatibility

This Chapter will present the metrics adopted to compute Harmonic Compatibility (HC), along

with their computational implementation, used to calculate the HC between two songs. Further-

more, in the following sections, two methods will be presented: 1) a basic TIV-basic metric and a

2) newly proposed TIV entropy metric.

All the developed software is available online at the following GitHub repository: https://

github.com/matematicadesaramago/HC-model. It includes Python scripts, the database

used for the listening test and also a brief introduction to the work. The software has multiple

dependencies, such as numpy [15] and scipy [16], and three representative libraries for signal

processing: Librosa [17], TIV[1] and Essentia [18].

3.1 HC Method Pipeline

In this section, an overview of the method for computing the HC from basic TIV metrics will be

presented. Figure 3.1 shows the architecture of the proposed method.

Figure 3.1: Diagram of the HC model

The method assumes two musical audio songs as input, defined by a file path. Using both

Librosa and TIV, the sound file is loaded. Regarding the audio processing restrictions, it is possible

to define a sample rate directly using the sr variable - when there is no specification, the sample

rate assumes its native value. The libraries also allow as an input different audio formats, such as

11
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WAV, FLAC, OGG and MAT, as long as they are supported by SoundFile [19]. As a result, some

formats such as mp3 are not supported. In the context of this work, all files had a sample rate of

44.1 KHz and their format was WAV.

The first step in the method is to represent each song as a TIV from their chroma vector

and then compute their combined TIV, i.e., the TIV of the resulting mashup, using TIV library.

This computation uses the Harmonic Pitch Class Profiles (HPCP) [20] by Essentia [18], and it

is possible to define many parameters such as the window type or size. The resulting mashup of

the two song’s TIVs is done by combining their TIV weighted by their energy. To illustrate this

process the visualization of the individual songs TIVs and their combinations is shown in Figure

3.2.

Figure 3.2: Example of combination of two songs: song 1 and song 2. Representation of song 1
TIS in blue, song2 TIS in yellow and its combination in red.

The previous TIV combination is done iteratively in twelve steps to account for the possible

twelve pitch shifts of an input song. In other words, twelve combinations of the resulting mashups

are created, each of them with one of the songs in a different key, by transposing the musical

audio signal by all twelve possible pitch shifts. This process is transposing a given song to assess

the best HC in all possible keys within the original mode (i.e., major or minor). As transposing
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musical audio signals typically introduce some residual artifacts in the signal, it was assumed that

this shifting would happen in the interval [-6, 5], to minimize distortions in the signal other than

the pitch shift. In Table 3.1 is an example of a starting note, C, and its outcome after different pitch

shift values.

Original Note Shift Shifted Note
C -6 F#
C -5 G
C -4 G#
C -3 A
C -2 A#
C -1 B
C 0 C
C 1 C#
C 2 D
C 3 D#
C 4 E
C 5 F

Table 3.1: Pitch Shift Example centered in C

3.2 Harmonic Compatibility Metrics

Based on the TIVs of the songs and their resulting mashup, in this section we detail the metrics

adopted to compute the HC value. We propose three different metrics. The first two are the

common Euclidean and cosine distances between the songs TIVs and the third is the Shannon

entropy of the mashup TIV.

3.2.1 Euclidean distance

The Euclidean distance, one of the most common distance metrics, between two TIVs, T1(k) and

T2(k), is mathematically defined in Equation 3.1. In the context of this work, Euclidean distance

is used to determine the relatedness of two songs given their TIVs, namely capturing the distance

between their interval and pitch class content [1].

dEuclidean⟨T1(k),T2(k)⟩=

√
M

∑
k=1

(T1(k)−T2(k))2 (3.1)

The rational behind this metric is that smaller Euclidean distances correspond to better mashups,

meaning the higher the value of the Euclidean distance the higher the HC also is.
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3.2.2 Cosine distance

The cosine distance, also referred to as angular distance, between two given TIVs, T1(k) and T2(k),

is mathematically defined in Equation 3.2. This metric is used as an indicator of how well pitches

relate to each other, almost classifying proximity between tonalities [1], as it computes the number

of common pitch classes between the two song TIVs.

dcosine⟨T1(k),T2(k)⟩= 1− T1(k) ·T2(k)
||T1(k)||2||T2(k)||2

(3.2)

The rational behind this metric is that smaller cosine distances correspond to better mashups,

which typically are within the same key and enforce the same pitch classes.

3.2.3 Entropy

A different metric was introduced to calculate HC, the Shannon Entropy, as it captures the most

commonly used harmonic objects [21] [22]. By using the TIS, which derives from Fourier coef-

ficients as explained before 2, there is a higher-level music meaning than there was with pitches

or beats. According to Amiot, there is a relation between the Fourier magnitude values and the

degree of musical complexity. The Fourier entropy H⟨Tc(k)⟩ is calculated using previously calcu-

lated combined songs, as shown in Equation 3.3. PTc(k) is the set of normalized Fourier coefficient

magnitudes of Tc(k).

If the entropy is maximum, it means that the interval distribution is flat, whereas a null value of

entropy means every coefficient is different. In a music context, having a low entropy translates in

having a very complex sample and a high entropy means there are not many different elements in

the same sample, having its maximum value corresponding to one pitch class, meaning one note.

H⟨Tc(k)⟩=−
M−1

∑
k=1

−pTc(k)logpTc(k) (3.3)



Chapter 4

Evaluation

This chapter details the evaluation of the multiple metrics presented in our method to calculate the

HC value of two given musical audio songs. To this end, a perceptual test was conducted to assess

the perceptual judgments of human listening when exposed to two-song mashups with different

criteria. The collected data is then adopted as the perceptual estimate to inspect the following

threefold criteria in the computational method:

1. Determine which is the best metric to calculate HC compatibility;

2. Define the minimal temporal window that captures, with high accuracy, the compatibility

between two songs;

3. Determine the best location in a song, in a temporal scale, that captures HC given a temporal

resolution.

With that in mind, comparing the perceptual test with the results obtained from the algorithm

with different inputs will shed some light on whether it is possible or not to compute HC with a

reduced computational cost. Having a shorter time period being analysed means that determining

the HC value will either take less resources or less time, and it is crucial to infer if the methods’

results align with human perception.

4.1 Perceptual Test

A standard approach to evaluated the "enjoyment" of a mashup is through user studies, namely a

listening test, i.e., having a person evaluating the quality of the mashup according to subjective

parameters [23, 9]. In this context, in order to perceptually assess the music mashups, a listening

test was conducted online and its objective was to determine the enjoyment of a mashup.

4.1.1 Mashup stimuli

One of the important points to tackle in the design of the listening test is the definition of the

stimuli. It is very important to have as few as possible confounding variables so, because of that,

15
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it was only used one genre, songs with similar tempos and also similar instruments in order to

eliminate eventual different timbral influences. This method allows the test to only evaluate the

HC degree between two different songs and eliminates other possible variables.

Moreover, the stimuli should mimic as closely as possible the ones that could be used in real

world contexts, making the result of this work useful. Because this work is mainly focused on

Electronic Dance Music (EDM), the results will be obtained using this genre of music.

Last, one of the challenges regarding the stimuli definition lies in choosing the part of the track

to be analysed so that the system can compute its compatibility score with another track. In other

words, in order to reduce as much as possible the computational cost, it is crucial to reduce the

analysis of the total duration of a track to a shorter part of it - it is yet to be determined which part,

if the beginning, the middle or the end of the track.

As a starting point for the stimuli, there was a collection of 8 different songs, all focused on

EDM with similar tempos and without many variations regarding instruments. This collection of

audio samples was handpicked from different royalty free sources, namely free stock music [24].

With the 8 different songs, 4 combinations of two songs were generated and then each pair is

used to create three different mashups variations - maximum (Max) HC, minimum (Min) HC and

random (R) HC. The result is 12 combinations, as represented in Table 4.1. Regarding the stimuli

duration, they all last between 1 and 3 minutes.

It is necessary to provide some details for the generation of the different mashups variations.

As detailed previously in 3, there are twelve possible combinations for the two input songs and

twelve different mashups are created as a result and their compatibility assessed using the get

maximum compatibility function from the TIV library [1], developed by Bernardes et al. This

function uses the Euclidean distance to determine the compatibility value as, at the moment, it is

the literature’s reference metric. Given the best compatibility value, the maximum HC combina-

tion is defined. The same process is completed for the minimum compatibility, being the lowest

value of maximum compatibility, which generates the minimum HC. The pitch shift values of the

maximum and minimum HC are collected and, in order to determine the medium HC mashups, a

random value within the interval that the previously pitch shift values account for is chosen. That

is how the medium HC mashups are created. This process was developed so as not to force a

specific pitch shift, thus avoiding a tendency in the results.
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Song 1 Song 2 HC Reference
A B Max 1
A B R 2
A B Min 3
C D Max 4
C D R 5
C D Min 6
E F Max 7
E F R 8
E F Min 9
G H Max 10
G H R 11
G H Min 12

Table 4.1: Example of samples used to the listening test

4.1.2 Procedure

Prior to the beginning of the listening test, conducted online using Lime Survey, the participants

are explained how the test should be conducted and what is expected of them, i.e. listening to

the whole music mashup before answering or listening to every mashup. Participants are asked to

adjust the loudness of the playback using an audio excerpt, and they are told how long the test will

take, that there are twelve different mashups and that no personal data will be collected.

Figure 4.1: Example of a question from the listening test

After the above introduction, participants were asked to evaluate, on a five-point Likert scale,

from 1 to 5, their enjoyment while listening to 12 different mashups. Each mashup is evaluated

independently. After listening to the entire mashup, participants must assess their enjoyment. In

Figure 4.1 there is an example of the playback interface of the online listening test for a mashup

track and the respective evaluation scale. After this listening part, subjects were asked some socio-

demographic information. While this questions were not mandatory, it was requested information

concerning their age, gender, and music expertise. The test was made available in Portuguese and

English.
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4.1.3 Listening Experiment - Details

When preparing the listening test there were many details taken into consideration and this section

serves the purpose of detailing them.

4.1.3.1 Random order of display

There are several reasons why music mashups stimuli should be presented in a random way. Start-

ing with the tiring nature of the test due to its repetitiveness, the order in which music mashups

stimuli are presented should not be the same for every participant. As the test goes by, the atten-

tion span of the participants starts to decrease, which could have an implication on the results as

studied by Diemo Shwarz [25]. Moreover, it should be considered that, at first, the participants do

not know what to expect. As they answer the questions, participants get to listen to more music

mashups stimuli, and the ones that they have previously listened to could influence the classifica-

tion they would otherwise give. So, in order to avoid order effects and balance out the results, the

music mashups are presented in a random order.

4.1.3.2 Rhythm and structure

One of the main concerns while selecting the songs for the mashups was its rhythmic alignment.

Although it was fairly easy to obtain songs with the same tempo, defined as beats per minute

(BPM), it was not as easy to find songs with that perfect alignment in terms of phrasing, sections,

or structure.

In order to minimize the impact of rhythm as a confounding variable for the results along

with all remaining timbre and stylistic attributes, the stimuli were developed so that each group of

mashups with different HC were originated from the same two original songs. Therefore, three

stimuli will have the same elements concerning all structural aspect other then the harmony.

4.1.3.3 Energy levels

To balance the energy levels of the stimuli, which largely correlates with the perceived intensity

or loudness of the songs, we first normalized each song individually using Audacity [26]. Some

manual adjustments were applied to ensure that there was not a predominance of one song over

the other.

4.1.3.4 Duration

Finding songs with the exact same duration was not trivial. In order to overcome that problem, the

shortest song was taken as a reference and, using an additional software, Audacity [26], a temporal

point of the longest song was chosen so that the end point of that song would perceptually make

sense and it would not be perceived as an abrupt ending.
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4.1.3.5 Participants Data

The participants socio-demographic data collected is as follows:

• Age: numerical data inserted by the participant (mandatory);

• Gender: selection between male, female, other;

• Musical training: selection between none, amateur, professional, no answer.

.

By collecting this data it is possible to determine if the collection is varied enough, specially

when it comes to age and musical training. This information might help when analysing the

answers or help explaining some trends, namely if musical training has some influence over the

perception of the mashups enjoyment.

4.2 Results

4.2.1 Listening test

Regarding the listening test, it was completed by 94 participants of various ages and music training

background, 41 being amateurs, 6 being professionals and 44 having no experience. Due to the

lack of an expressive number of trained musicians, the analysis will not differentiate groups and

treat all participants uniformly. The results divided by question are presented in Figures 4.2, 4.3,

4.4 and 4.5. In Figures 4.2, 4.3, 4.4 and 4.5, the plot displayed on the left corresponds to the

maximum HC of two songs, the middle plot corresponds to a random value of pitch shift, meaning

a random medium value of HC, and the plot on the right corresponds to the minimum HC of the

same two songs.

Figure 4.2: Perceptual test results example 1 for three different mashups regarding the threefold
levels high, mid and low HC for the same base songs, respectively. A classification of 5 means the
participant found the mashup very pleasant and 1 not pleasant.
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Figure 4.3: Perceptual test results example 2 for three different mashups regarding the threefold
levels high, mid and low HC for the same base songs, respectively. A classification of 5 means the
participant found the mashup very pleasant and 1 not pleasant.

Figure 4.4: Perceptual test results example 3 for three different mashups regarding the threefold
levels high, mid and low HC for the same base songs, respectively. A classification of 5 means the
participant found the mashup very pleasant and 1 not pleasant.

Figure 4.5: Perceptual test results example 4 for three different mashups regarding the threefold
levels high, mid and low HC for the same base songs, respectively. A classification of 5 means the
participant found the mashup very pleasant and 1 not pleasant.

In Figure 4.6 some descriptive statistics were applied to provide a more intuitive compari-

son of the data. The same data is now presented in a different way, having the average and the

standard deviation for each mashup depicted in the plot. Focusing on the result’s average, with

an exception on the third group of mashups, the average decreases as HC decreases. Please note

that black represents the maximum HC, the darkest gray represents the medium random HC and

the lightest gray represents the minimum HC. This, once more, proves that, generally speaking,

higher perceptual pleasantness is associated with higher HC. The exception of the third group was

then analysed and it was hypothesized that the unexpected outcome of the listening test could be

a result of the two base songs for the mashups being more different from each other than in the

other groups. The rhythmic component of the mashups having a more inadequate compatibility

could also have influenced the results.
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Figure 4.6: Average and Standard deviation for the results of each mashup regarding the partici-
pant’s enjoyment in a scale from 1 to 5 (represented by the variable value in the vertical axis). The
black represents the mashups with a high HC, the darkest shade of gray represents the medium
value of HC and the lightest shade of gray represents the lowest value of HC for each group of two
songs (represented in 1, 2, 3 and 4 in the horizontal axis).

4.2.2 Assessing the Objective Computational Metrics

To assess the objective computational metrics proposed in the HC method in Section 3, namely

the Euclidean distance, cosine distance and entropy, at different time scales and within different

structural location of the resulting mashups, we defined structural points and duration for the

analysis. Concerning the time scale of analysis, we opted for intervals and time locations, namely

1) the entire duration, 2) 5 seconds and 3) 20 seconds. Assuming the case where only an interval

is analysed, the metrics were calculated at the beginning, middle and end of each entire song.

In Figures 4.11, 4.8 and 4.9, the tables present the results of the three different metrics adopted,

Euclidean distance, cosine distance and entropy, for the whole song and different time windows,

respectively. When a time window is applied, its location is specified. In 4.10 there is an example

of one iteration of the data collection process, having a clip of the first 20s of two songs being

analysed.
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Figure 4.7: Results of the Euclidean distance, cosine distance and entropy when the entire mashup
is analysed.

Figure 4.8: Results of the Euclidean distance, cosine distance and entropy when a time window
of 20 seconds is analysed at different time locations. The first column is refers to the results of
the time window being applied at the beginning, the second column to the middle and the third
column to the end of the songs.

Figure 4.9: Results of the Euclidean distance, cosine distance and entropy when a time window
of 5 seconds is analysed at different time locations. The first column is refers to the results of
the time window being applied at the beginning, the second column to the middle and the third
column to the end of the songs.
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Figure 4.10: Example of an algorithm run with inputs of 20 seconds of song 1 and song 3 taken
from the beginning of each song.

The Pearson correlation coefficient was adopted to infer the objective HC metric that captures

best the perceptual enjoyment of the listening test mashups. The Pearson correlation coefficient

is a statistical method that inspects the relationship between two different variables and assesses

their linear correlation. It can be computed as shown in Equation 4.1. The coefficient results in a

value within the interval [-1, 1]. x and y are the values being correlated, x and y their respective

mean [27]. The PCC presents a perfect linear correlation if its absolute value is one. On the other

hand, if the value equals 0 there is no correlation. Table 4.2 present the PCC values guidelines.

cx,y =
∑(x− x)(y− y)√

∑(x−mx)2 ∑(y−my)2
(4.1)

The plots in Figures 4.11, 4.12 and 4.13 represent the relation between the average results

for each mashup and the three different adopted metrics. In the x axis, the average value from

the perceptual test is used and then compared with a different variation of either the Euclidean
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PCC value Strength
1 Perfect

[0.5;1[ Strong
[0.3;0.5[ Moderate
]0;0.3[ Weak

0 None
]-0.3; 0[ Weak

]-0.5; -0.3] Moderate
]1; -0.5] Strong

-1 Perfect
Table 4.2: PCC classification according to its numerical value.

distance, cosine distance or entropy of different time intervals and locations. In Figure 4.11 there

are presented three plots of the relations between the previously detailed metrics and listening test

for the whole duration of every mashup. In Figure 4.12 the same analysis is made, but for a time

window of 20s. Each column of three plots represents that analysis at a different time location,

being the first column related to the beginning, the second column the middle of the mashups and

the third column to the end of the mashups. The same goes for Figure 4.13, where each column

represents a different time location, but for a time window of 5s.

Moving on to some consideration taken from the results in Tables 4.3, it is obvious that in each

combination of mashups - in the first column as 1, 2, 3 and 4 - the values for the Euclidean and

cosine distances generally decrease as the HC decreases whereas the entropy increases, which was

expected.

As far as the results for each music mashup group, given all the results provided by the plots

of Figures 4.2, 4.3, 4.4 and 4.5, a brief observation shows that group 2 and group 4 had the closest

results to what was expected. However, as shown in Figure 4.6, the spread range of results does not

show less agreement in the enjoyment of some stimuli groups more than in others stimuli groups

given that the standard deviation is very similar in all groups. Following the above observation,

in Figure 4.11, it was also visible that the precision of each linear approximation had its most

approximate result when analysing the whole song, as expected. However, even with visible

dispersion, the results for the cosine distance and its PCC were significantly superior in the 5s

samples rather than in the 20s samples, as one would suspect. That could be a result of 5s not

being enough time for a phrase of a song to go from the beginning to the end, not to mention its

addition to another song which phrases could not be perfectly aligned.
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Duration Location Metric PCC
whole - Euclidean -0.12
whole - Cosine 0.59
whole - Entropy 0.14

20s Beginning Euclidean -0.01
20s Beginning Cosine 0.10
20s Beginning Entropy -0.26
20s Middle Euclidean 0.09
20s Middle Cosine 0.29
20s Middle Entropy 0.32
20s End Euclidean 0.20
20s End Cosine 0.10
20s End Entropy -0.32
5s Beginning Euclidean 0.44
5s Beginning Cosine 0.0.23
5s Beginning Entropy 0.28
5s Middle Euclidean 0.15
5s Middle Cosine 0.37
5s Middle Entropy 0.07
5s End Euclidean 0.68
5s End Cosine 0.73
5s End Entropy 0.25

Table 4.3: PCC betweeen the average results of the listening test and the different metrics of the
whole mashups, 20s and 5s exerts.

Figure 4.11: Relation between the listening test and metrics results for the whole duration (Eu-
clidean distance, cosine distance and entropy, respectively), resulting in a linear regression.
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Figure 4.12: Relation between the listening test and metrics results for ta time window of 20s
(Euclidean distance, cosine distance and entropy, respectively), resulting in a linear approximation.
The first column shows the results for the time window applied at the beginning, the second column
shows the results applied for the same time window applied at the middle and the third column
showed the results of the time window when applied at the end of the songs.
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Figure 4.13: Relation between the listening test and metrics results for ta time window of 5s
(Euclidean distance, cosine distance and entropy, respectively), resulting in a linear approximation.
The first column shows the results for the time window applied at the beginning, the second column
shows the results applied for the same time window applied at the middle and the third column
showed the results of the time window when applied at the end of the songs.

A summary of the PCC is presented in Table 4.3.One can conclude, from all data presented

before in this section, that the developed HC method did not find a suitable time window to cal-

culate HC. Within the time intervals analysed, of 20s and 5s, the result did not fully capture HC.

Moving on to the values’ analysis, according to Table 4.2, a strong value of PCC is observed when

using the cosine distance metric applied at the whole mashup, the PCC being 0.59. Also, using a

time window of 5s located at the end of a mashup, both the Euclidean and cosine distances PCC

values are considered strong, 0.68 and 0.73 respectively. A moderate correlation is observed in the

excerpt of 20s from the middle of the mashups when using entropy as a metric, being the respec-

tive PCC value -0.32. The PCC value also corresponds to a moderate correlation in the case of a

5s time window and Euclidean distance at the beginning of the mashups, PCC value being 0.44,

and for the same time window but located at the middle of the mashups, this time regarding the

cosine distance, having a PCC of 0.37. Even though these results seem promising, having a good

result in an excerpt of 5s would imply also having a good, or even better, result for an excerpt

of 20s, which can not be confirmed. This could be explained, in the first case, by the fact that

the beginning of songs is usually less complex and the music components could have a sparser

presence, thus less content being analysed. As far as the middle of the mashup is concerned, it

could be the case that the excerpt was randomly taken from an interval in which the music phrases

align better as a coincidence or there is some kind of harmonic plateau. So, as a consequence, the

temporal location for that window could not be determined either for the same reason. To sum up,
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the best results were associated with the entire mashups.

Regarding the metrics, entropy did not capture the HC as expected and it did not provide

an improvement to the results when comparing to existing metrics as the Euclidean and cosine

distances.



Chapter 5

Conclusion

This chapter serves the purpose of reviewing the objectives stated at the beginning of the document,

and also the purpose of summing up some general ideas and takeaways from the developed work.

The main purpose of this dissertation was to determine whether it is possible or not to deter-

mine a value for HC given a different time window and its location in a temporal scale. Given

the results of the previous section 4, the algorithm did not excel, but there might be some external

circumstances that had something to do with it, for instance the rhythmic dimension.

The comparison between each metric in each time interval and location proved that the Eu-

clidean distance is still the most stable metric when analysing HC, meaning that neither the cosine

distance nor the entropy proved to have better results. Entropy not being a better metric when

compared to the Euclidean distance could be a consequence of harmony being more constant dur-

ing a time interval, whereas rhythm "typically" has greater changes across a musical structure,

which could indicate that applying entropy to the horizontal dimension of a mashup as a metric

might have a better outcome.

The results of the listening test were essential to obtain the data’s ground truth. Even though

the results generally aligned to what was expected, its comparison with the metrics’ results showed

some incoherence, i.e. having a time window of 5s presenting good metrics’ values when the

perceptual test showed a not so good evaluation (despite being evaluated in different scales).

The study of a possible time window showed that, according to this method, it is not possible

to reduce the time period being analysed, contrasting to what was initially thought. Even though

the results appear to more satisfying in the middle of a mashup, the PCC showed that they were not

statically significant. To determine a time location was not possible either as a result of a temporal

window not having been defined either.

5.1 Limitations and Future Work

One of the main limitations of this work was directly related to the rhythmic dimension of a song,

which ended up not being explored. Even though the initial work and method both accounted for

29
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it as far as an algorithm is concerned, building the listening test proved to be much more com-

plicated than predicted - finding two different songs which phrases are perfectly aligned for their

whole duration was not possible. In order to fully assess and compare the perceptual evaluation

and the metrics, it had been planed to conduct a listening test in which the mashups would have the

maximum Harmonic Compatibility value and the rhythmic alignment would be tested as perfectly

aligned (phrases should always coincide), medium aligned (same tempo) and not aligned (com-

pletely disregard the rhythm). Finding the perfect samples proved to be very complicated because

of the phrase’s alignment. Adding this component to the method could have a major impact on the

entropy results.
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