
 

Linear Rank 
Quantitative 
Types 
 

Fábio Daniel Martins Reis 
Mestrado em Ciência de Computadores 
Departamento de Ciência de Computadores 
2022 
 
Orientador  
Mário Florido, Professor Associado, 
Faculdade de Ciências da Universidade do Porto 
 
Coorientador 
Sandra Alves, Professor Auxiliar, 
Faculdade de Ciências da Universidade do Porto 
 

!	∩	





 





Declaração de Honra 

Eu, Fábio Daniel Martins Reis, inscrito no Mestrado em Ciência de Computadores da 

Faculdade de Ciências da Universidade do Porto declaro, nos termos do disposto na 

alínea a) do artigo 14.º do Código Ético de Conduta Académica da U.Porto, que o 

conteúdo da presente dissertação reflete as perspetivas, o trabalho de investigação e 

as minhas interpretações no momento da sua entrega.  

Ao entregar esta dissertação, declaro, ainda, que a mesma é resultado do meu próprio 

trabalho de investigação e contém contributos que não foram utilizados previamente 

noutros trabalhos apresentados a esta ou outra instituição. 

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as 

regras da atribuição, encontrando-se devidamente citadas no corpo do texto e 

identificadas na secção de referências bibliográficas. Não são divulgados na presente 

dissertação quaisquer conteúdos cuja reprodução esteja vedada por direitos de autor. 

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito 

académico. 

 

Fábio Reis 

Porto, 29/07/2022  





Acknowledgments

Throughout the execution of this exciting and challenging work, during both the greatest and
the toughest moments, I could always count on my family, who did everything to provide me
with the best possible conditions to achieve success, which I share with them. Special thanks to
my parents, Daniel and Jacinta, my brother, Diogo, and my aunts, Arminda and Conceição, for
their constant support and care.

I would also like to thank all my amazing friends, the ones I met outside the academic context
and the university colleagues who quickly became my great friends. The mutual support and
companionship within our group were essential, and I could not have asked for better partners to
share this journey with.

Last but not least, I want to thank all my Professors, especially my supervisors, Professor
Mário Florido and Professor Sandra Alves, with whom I have worked for the last three years.
Their clear passion for teaching and researching was very motivating and made this journey a
truly exciting and enjoyable experience. They were incredibly supportive, always available to
guide me and help improve my work. I have learned immensely from them, and this work would
certainly not have the quality I believe it has without all their help and effort. For all of that, I
am beyond grateful.

i





Abstract

Non-idempotent intersection types provide quantitative information about typed programs,
and have been used to obtain time and space complexity measures. Intersection type systems
characterize termination, so restrictions need to be made in order to make typability decidable.
One such restriction consists in using a notion of finite rank for the idempotent intersection
types. In this work, we define a new notion of rank for the non-idempotent intersection types.
We then define a novel type system and a type inference algorithm for the λ-calculus, using
the new notion of rank 2. In the second part of this work, we extend the type system and the
type inference algorithm to use the quantitative properties of the non-idempotent intersection
types to infer quantitative information related to resource usage. In the last part of this work,
as a complement to the theoretical results, we implement (in Haskell) the newly defined type
inference algorithms.

Keywords: lambda-calculus,intersection types,quantitative types,tight typings.

iii





Resumo

Tipos com interseções não-idempotentes podem ser usados para fornecer informação quantitativa
sobre os programas tipados, e têm sido usados para obter medidas de complexidade. Sistemas de
tipos com interseções caracterizam terminação, por isso é necessário fazer restrições de modo a
tornar o problema de typability decidível. Uma possível restrição consiste em usar uma noção de
rank finito para os tipos com interseções idempotentes. Neste trabalho, definimos uma noção nova
de rank para os tipos com interseções não-idempotentes. Definimos então um novo sistema de
tipos e um algoritmo de inferência de tipos para o λ-calculus, usando a nova definição de rank 2.
Na segunda parte deste trabalho, estendemos o sistema de tipos e o algoritmo de inferência
para usar as propriedades quantitativas dos tipos com interseções não-idempotentes para inferir
informação quantitativa relacionada com o uso de recursos. Na ultima parte deste trabalho, como
complemento aos resultados teóricos, implementamos (em Haskell) os algoritmos de inferência de
tipos que definimos.

Palavras-chave: lambda-calculus,tipos com interseções,tipos quantitativos,tipagens tight.

v





Contents

Acknowledgments i

Abstract iii

Resumo v

Contents viii

1 Introduction 1

1.1 Quantitative Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Linear Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Counting Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Simple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Intersection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Finite Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Quantitative Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Linear Rank Intersection Types 17

3.1 Linear Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



3.3 Type Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Resource Inference 61

4.1 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Type Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Implementation and Experimental Results 95

5.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusions and Future Work 99

Bibliography 101

A Haskell Implementation 105

A.1 Lambda Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Linear Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.3 Linear Rank 2 Quantitative Types . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.4 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.5 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



Chapter 1

Introduction

The ability to determine upper bounds for the number of execution steps of a program in
compilation time is a relevant problem, since it allows us to know in advance the computational
resources needed to run the program.

Type systems are a powerful and successful tool of static program analysis that are used,
for example, to detect errors in programs before running them. Quantitative type systems,
besides helping on the detection of errors, can also provide quantitative information related to
computational properties.

1.1 Quantitative Types

Intersection types, defined by the grammar σ ::= α | σ1 ∩ · · · ∩ σn → σ (where α is a type variable
and n ≥ 1), are used in several type systems for the λ-calculus [7, 8, 19, 28] and allow λ-terms
to have more than one type. For instance, in an intersection type system, it is possible to assign
the type ((α1 ⊸ α2) ∩ α1) → α2 to the λ-term λx.xx – essentially, the first occurrence of x has
the type α1 ⊸ α2 and the second occurrence has the type α1. Note that this term is not typable
in a system like the Curry Type System [9, 10] that uses simple types.

Non-idempotent intersection types [3, 13, 16, 21], also known as quantitative types, are a
flavour of intersection types in which the type constructor ∩ is non-idempotent, and provide
more than just qualitative information about programs. They are particularly useful in contexts
where we are interested in measuring the use of resources, as they are related to the consumption
of time and space in programs.

Type systems based on non-idempotent intersection types, use non-idempotence to count the
number of evaluation steps and the size of the result. For instance, in [1], the authors define
several quantitative type systems, corresponding to different evaluation strategies, for which they
are able to measure the number of steps taken by that strategy to reduce a term to its normal
form, and the size of the term’s normal form.

1



2 Chapter 1. Introduction

1.2 Linear Rank

Typability is undecidable for intersection type systems, because they characterize termination –
a λ-term is strongly-normalizable if and only if it is typable in an intersection type system.

One way to get around this is to restrict intersection types to finite ranks, a notion defined
by Daniel Leivant in [23] that makes typability decidable [20]. Type systems that use finite-rank
intersection types are still very powerful and useful. For instance, rank 2 intersection type
systems [12, 19, 27] are more powerful, in the sense that they can type strictly more terms, than
popular systems like the ML type system [11].

In Chapter 3, we present a new definition of rank for the quantitative types, which we call
linear rank and differs from the classical one in the base case – instead of simple types, linear
rank 0 intersection types are the linear types. In a non-idempotent intersection type system,
every linear term is typable with a simple type (in fact, in many of those systems, only the linear
terms are), which is the motivation to use linear types for the base case. The relation between
non-idempotent intersection types and linearity has already been studied by Kfoury [21], de
Carvalho [13], Philippa Gardner [16] and Florido and Damas [15].

Our motivation to redefine rank in the first place, has to do with our interest in using
non-idempotent intersection types to estimate the number of evaluation steps of a λ-term to
normal form while inferring its type, and the realization that there is a way to define rank which
is more suitable for the quantitative types.

Further in Chapter 3, we define a new intersection type system for the λ-calculus, restricted
to linear rank 2 non-idempotent intersection types, and a new type inference algorithm (based
on Trevor Jim’s [19]), which we prove to be sound and complete with respect to the type system.

1.3 Counting Reductions

One of the main goals in this work is to have a type system and a type inference algorithm capable
of giving quantitative information related to resource usage. So in Chapter 4, we extend the type
system and inference algorithm presented in Chapter 3, to use the quantitative properties of the
linear rank 2 non-idempotent intersection types to infer not only the type of a λ-term, but also
the number of evaluation steps of the term to its normal form.

The new type system is the result of a merge between our Linear Rank 2 Intersection Type
System from Chapter 3 and the system for the leftmost-outermost evaluation strategy presented
in [1]. We prove that the system gives the correct number of evaluation steps for a kind of
derivation.



1.4. Contributions 3

As for the new type inference algorithm, we show that it is sound and complete with respect
to the type system for the inferred types, and conjecture that the inferred measures correspond
to the ones given by the type system (i.e., correspond to the number of evaluation steps of the
term to its normal form, when using the leftmost-outermost evaluation strategy).

In order to test the new algorithm, we also implement it in Haskell, as well as other type
inference algorithms and procedures to evaluate terms to normal form.

1.4 Contributions

The main contributions of this work are the following:

• A new definition of rank for non-idempotent intersection types, which we call linear rank
(Chapter 3);

• A Linear Rank 2 Intersection Type System for the λ-calculus (Chapter 3);

• A type inference algorithm that is sound and complete with respect to the Linear Rank 2
Intersection Type System (Chapter 3);

• A Linear Rank 2 Quantitative Type System for the λ-calculus that derives a measure
related to the number of evaluation steps for the leftmost-outermost strategy (Chapter 4);

• A type inference algorithm that is sound and complete with respect to the Linear Rank 2
Quantitative Type System, for the inferred types, and gives a measure that we conjecture to
correspond to the number of evaluation steps of the typed term for the leftmost-outermost
strategy (Chapter 4);

• Implementation of the newly defined type inference algorithms (Chapter 5).

Part of the work from Chapter 3 and Chapter 4 was presented before by us at the TYPES 2022
conference [25].





Chapter 2

Background

In this chapter we present the basic concepts and existing work that underlie our thesis, including
definitions and notations that will be used in subsequent chapters.

2.1 λ-Calculus

The λ-calculus was introduced by Alonzo Church [4] in the 1930s as part of a system intended
as a foundation for mathematics. That system was shown to be logically inconsistent in 1935
by Kleene and Rosser [22]. So in 1936, Church separately published the consistent part of the
system [5], which we now call the type-free λ-calculus. This, along with its typed versions, has
been playing, since then, an instrumental role in computer science, in the theory of programming
languages, as well as in many areas of mathematics, philosophy, linguistics and category theory.

For a more complete view into the λ-calculus, please refer to [14]. Some of the definitions in
this section can be found in [2, 18].

Notation 2.1.1. We use x, y to range over a countable infinite set V of variables and M, N to
range over the set Λ of λ-terms. In both cases, we may use or not single quotes and/or number
subscripts.

Definition 2.1.1 (Type-free λ-calculus). The terms of the type-free λ-calculus are defined by
the following grammar:

M ::= x | (MM) | (λxM)

where a term of the form:

x is called a term variable;
(M1M2) is called an application;
(λxM) is called an abstraction.

5



6 Chapter 2. Background

Example 2.1.1. Some examples of λ-terms are:

x;
(x1x2);

(λx1(x1x2));
((λx1(x1x2))x3);

((λx3((λx1(x1x2))x3))x4).

An application (M1M2) can be seen as a function M1 being applied to an argument M2, and
an abstraction (λxM) is a function definition and can be interpreted as ‘the function that assigns
to x the value M ’.

Notation 2.1.2. We use the following convention that lets us omit parentheses:

– outermost parentheses are not written;

– applications are left-associative: M1M2 . . . Mn stands for (. . . ((M1M2)M3) . . . Mn);

– λx1x2 . . . xn.M stands for (λx1(λx2(. . . (λxn(M)) . . . ))).

Example 2.1.2. Using this convention, the terms in Example 2.1.1 may be written as follows:

x;
x1x2;

λx1.x1x2;
(λx1.x1x2)x3;

(λx3.(λx1.x1x2)x3)x4.

Definition 2.1.2 (Free and bound variables). Every occurrence of a variable in a λ-term is
either free or bound. In λx.M , every occurrence of x in M is said to be bound. An occurrence of
a variable is free if it is not bound.

The set FV(M) of free variables of M is defined inductively as follows:

FV(x) = {x};
FV(M1M2) = FV(M1) ∪ FV(M2);
FV(λx.M) = FV(M) \ {x}.

M is said to be a closed λ-term if it does not contain free variables (FV(M) = ∅).

Example 2.1.3. In the λ-term (λx1x2.x1x2x3)x4, x3 and x4 occur as free variables, x1 and x2

occur as bound variables and FV((λx1x2.x1x2x3)x4) = {x3, x4}.

In the λ-term λx1x2.x1x2x2, x1 and x2 occur both as bound variables and FV(λx1x2.x1x2x2) =
∅, so this term is closed.



2.1. λ-Calculus 7

In the λ-term x1(λx1x2.x1x2x3), x1 and x3 occur as free variables, x1 and x2 occur as bound
variables and FV(x1(λx1x2.x1x2x3)) = {x1, x3}. In this case, x1 occurs both as a free variable
(first occurrence) and as a bound variable (second occurrence). With the use of the convention
below, a case like this one will never happen.

Convention 2.1.1 (Barendregt’s Variable Convention). If M, M1, M2, . . . , N, N1, N2, . . . occur
in a certain context (definition, proof, example, etc), then all bound variables are chosen to be
different from the free variables.

Computing in the λ-calculus is performed using three conversion rules (α-conversion, β-
reduction, η-reduction), which are term-rewriting procedures. We only focus on β-reduction
since it is the one we will consider later on for counting evaluation steps of a program, where we
can disregard α-conversions since we are using the variable convention described above.

Definition 2.1.3 (Substitution). We call substitution to

S = [N/x].

S(M) = M [N/x] is the result of substituting the term N for each free occurrence of x in the
term M and can be inductively defined as follows:

x[N/x] = N ;
x1[N/x2] = x1, if x1 ̸= x2;

(M1M2)[N/x] = (M1[N/x])(M2[N/x]);
(λx.M)[N/x] = λx.M ;

(λx1.M)[N/x2] = λx1.(M [N/x2]), if x1 ̸= x2.

Example 2.1.4. If we apply the substitution [x5/x3] to the first term in Example 2.1.3, we
have:

((λx1x2.x1x2x3)x4)[x5/x3] = ((λx1x2.x1x2x3)[x5/x3])(x4[x5/x3])
= (λx1.((λx2.x1x2x3)[x5/x3]))x4

= (λx1x2.((x1x2x3)[x5/x3]))x4

= (λx1x2.((x1x2)[x5/x3])(x3[x5/x3]))x4

= (λx1x2.(x1[x5/x3])(x2[x5/x3])x5)x4

= (λx1x2.x1x2x5)x4

Notation 2.1.3. We write M [M1/x1, M2/x2, . . . , Mn/xn] for (. . . ((M [M1/x1])[M2/x2]) . . . )[Mn/xn].

Composing two substitutions S1 and S2 results in a substitution S2 ◦ S1 that when applied,
has the same effect as applying S1 followed by S2.

Definition 2.1.4 (Composition). The composition of two substitutions S1 = [N1/x1] and
S2 = [N2/x2], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1(M) = M [N1/x1, N2/x2].



8 Chapter 2. Background

Also, we assume that the operation is right-associative:

S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn = S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn) . . . ).

Definition 2.1.5 (β-reduction). β-reduction captures the notion of function application and
the rule states that a term of the form (λx.M)N (called a β-redex) β-reduces to M [N/x] (its
contractum), notation:

(λx.M)N −→β M [N/x].

Definition 2.1.6 (β-normal form). A term is said to be in β-normal form if it cannot be further
reduced by the application of the β-reduction rule to its subterms. In other words, if a term
does not contain any β-redex, it is said to be in β-normal form.

Example 2.1.5. The term x1((λx2.x2x3)x4) is not in normal form since it contains the β-redex
(λx2.x2x3)x4. If we apply the β-reduction rule to that β-redex, we get

(λx2.x2x3)x4 −→β (x2x3)[x4/x2] = x4x3,

and so x1((λx2.x2x3)x4) reduces to x1(x4x3).

The term x1(x4x3) is in β-normal form, since it does not contain any β-redex.

2.2 Simple Types

The simply typed λ-calculus is a typed interpretation of the λ-calculus, introduced by Alonzo
Church in [6] and by Haskell Curry and Robert Feys in [10].

There are two main approaches for introducing types into the λ-calculus: ‘à la Curry’ (implicit
typing paradigm) and ‘à la Church’ (explicit typing paradigm). We will be focusing on the Curry
Type System, which was first introduced in [9] for the theory of combinators, and then modified
for the λ-calculus in [10].

Notation 2.2.1. We use α to range over a countable infinite set V of type variables and τ to
range over the set T0 of simple types. In both cases, we may use or not single quotes and/or
number subscripts.

Definition 2.2.1 (Simple types). Simple types τ, τ1, τ2, . . . ∈ T0 are defined by the following
grammar:

τ ::= α | (τ → τ)

where a type of the form:

α is called a type variable;
(τ1 → τ2) is called a functional type.



2.2. Simple Types 9

Notation 2.2.2. Outermost parentheses are not written; by convention, ‘→’ associates to the
right:

τ1 → τ2 → · · · → τn stands for (τ1 → (τ2 → · · · → (τn−1 → τn) . . . )).

Example 2.2.1. Some examples of simple types are:

α;
α1 → α2;

α1 → α1 → α2;
(α1 → α1 → α2) → α3.

Definition 2.2.2.

• A statement is an expression of the form M : τ , where the type τ is called the predicate,
and the term M is called the subject of the statement.

• A declaration is a statement where the subject is a term variable.

• An environment Γ is a set of declarations where all subjects are distinct.

Definition 2.2.3. If Γ = {x1 : τ1, . . . , xn : τn} is an environment, then

• Γ is a partial function, with domain dom(Γ) = {x1, . . . , xn}, and Γ(xi) = τi;

• We define Γx as Γ \ {x : τ}.

Definition 2.2.4 (Curry Type System). In the Curry Type System, we say that M has type τ

given the environment Γ, and write
Γ ⊢C M : τ,

if Γ ⊢C M : τ can be obtained from the following derivation rules:

Γ ∪ {x : τ} ⊢C x : τ (Axiom)

Γ ∪ {x : τ1} ⊢C M : τ2
Γ ⊢C λx.M : τ1 → τ2

(→ Intro)

Γ ⊢C M1 : τ1 → τ2 Γ ⊢C M2 : τ1
Γ ⊢C M1M2 : τ2

(→ Elim)

Example 2.2.2. For the λ-term λx1x2.x1 the following derivation is obtained:
{x1 : τ1, x2 : τ2} ⊢C x1 : τ1

{x1 : τ1} ⊢C λx2.x1 : τ2 → τ1
⊢C λx1x2.x1 : τ1 → τ2 → τ1

And for the λ-term (λx1.x1)x2 we obtain:

{x1 : τ2, x2 : τ2} ⊢C x1 : τ2
{x2 : τ2} ⊢C λx1.x1 : τ2 → τ2 {x2 : τ2} ⊢C x2 : τ2

{x2 : τ2} ⊢C (λx1.x1)x2 : τ2



10 Chapter 2. Background

Definition 2.2.5 (Type-substitution). We call type-substitution to

S = [τ1/α1, . . . , τn/αn]

where α1, . . . , αn are distinct type variables in V and τ1, . . . , τn are types in T0. For any τ in
T0, S(τ) = τ [τ1/α1, . . . , τn/αn] is the type obtained by simultaneously substituting αi by τi in τ ,
with 1 ≤ i ≤ n.

The type S(τ) is called an instance of the type τ .

The notion of type-substitution can be extended to environments in the following way:

S(Γ) = {x1 : S(τ1), . . . , xn : S(τn)} if Γ = {x1 : τ1, . . . , xn : τn}

The environment S(Γ) is called an instance of the environment Γ.

Example 2.2.3. For Γ = {x1 : α1 → α2, x2 : α1 → α2 → α1, x3 : α3 → α2} and S =
[α4/α1, α1 → α1/α3], we have:

S(Γ) = {x1 : S(α1 → α2), x2 : S(α1 → α2 → α1), x3 : S(α3 → α2)}
= {x1 : α4 → α2, x2 : α4 → α2 → α4, x3 : (α1 → α1) → α2}

Definition 2.2.6 (Principal pair). A principal pair for a term M is a pair (Γ, τ) such that:

1. Γ ⊢C M : τ ;

2. If Γ′ ⊢C M : τ ′, then ∃S. (S(Γ) ⊆ Γ′ and S(τ) = τ ′).

This definition is generalized for all type systems. A type system is said to have the principal
typing property if for every term there exists a principal pair.

In the Curry Type System (and in other type systems), the decision problem of typability
is: ‘given a term M , decide whether there exists an environment Γ and a type τ such that
Γ ⊢C M : τ ’. This problem is decidable and there exists an algorithm that given a term M ,
returns its principal pair (the Curry Type System has principal typings). Such an algorithm
is called a type inference algorithm and for the Curry Type System there is the Milner’s Type
Inference Algorithm, presented in [24].

2.3 Intersection Types

Even though typability in the Curry Type System is decidable and there is an algorithm that
given a term, returns its principal pair, the system has some disadvantages when comparing to
others, one of them being the large number of terms that cannot be typed. For example, in the
Curry Type System we cannot assign a type to the λ-term λx.xx. This term, on the other hand,



2.3. Intersection Types 11

can be typed in systems that use intersection types, which allow terms to have more than one
type. Such a system is the Coppo-Dezani Type System [7], which was one of the first to use
intersection types, and a basis for subsequent systems.

Definition 2.3.1 (Intersection types). Intersection types σ, σ1, σ2, . . . ∈ T are defined by the
following grammar, where n ≥ 1:

σ ::= α | σ1 ∩ · · · ∩ σn → σ.

and σ1 ∩ · · · ∩ σn is called a sequence of types.

Note that intersections arise in different systems in different scopes. Here we follow several
previous presentations where intersections are only allowed directly on the left-hand side of arrow
types and sequences are non-empty [7, 8, 19, 28].

Notation 2.3.1. The intersection type constructor ∩ binds stronger than →: α1 ∩ α2 → α3

stands for (α1 ∩ α2) → α3.

Example 2.3.1. Some examples of intersection types are:

α;
α1 → α2;

α1 ∩ α2 → α3;
(α1 ∩ α2 → α3) → α4;
α1 ∩ (α1 → α2) → α3.

Definition 2.3.2 (Coppo-Dezani Type System). In the Coppo-Dezani Type System, we say
that M has type σ given the environment Γ (where the predicates of declarations are sequences),
and write

Γ ⊢CD M : σ,

if Γ ⊢CD M : σ can be obtained from the following derivation rules, where 1 ≤ i ≤ n:

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD x : σi (Axiom)

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD M : σ

Γ ⊢CD λx.M : σ1 ∩ · · · ∩ σn → σ
(→ Intro)

Γ ⊢CD M1 : σ1 ∩ · · · ∩ σn → σ Γ ⊢CD M2 : σ1 · · · Γ ⊢CD M2 : σn

Γ ⊢CD M1M2 : σ
(→ Elim)

Example 2.3.2. For the λ-term λx.xx the following derivation is obtained:
{x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1 → σ2 {x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1

{x : σ1 ∩ (σ1 → σ2)} ⊢CD xx : σ2
⊢CD λx.xx : σ1 ∩ (σ1 → σ2) → σ2

This system is a true extension of the Curry Type System, allowing term variables to have
more than one type in the (→ Intro) derivation rule and the right-hand term to also have more
than one type in the (→ Elim) derivation rule.



12 Chapter 2. Background

2.3.1 Finite Rank

Intersection type systems, like the Coppo-Dezani Type System, characterize termination, in the
sense that a λ-term is strongly-normalizable if and only if it is typable in an intersection type
system. Thus, typability is undecidable for these systems.

To get around this, some current intersection type systems are restricted to types of finite
rank [12, 19, 20, 27] using a notion of rank first defined by Daniel Leivant in [23]. This restriction
makes typability decidable [20]. Despite using finite-rank intersection types, these systems are
still very powerful and useful. For instance, rank 2 intersection type systems [12, 19, 27] are
more powerful, in the sense that they can type strictly more terms, than popular systems like
the ML type system [11].

The rank of an intersection type is related to the depth of the nested intersections and it can
be easily determined by examining the type in tree form: a type is of rank k if no path from the
root of the type to an intersection type constructor ∩ passes to the left of k arrows.

Example 2.3.3. The intersection type α1 ∩ (α1 → α2) → α2 (tree on the left) is a rank 2 type
and (α1 ∩ α2 → α3) → α4 (tree on the right) is a rank 3 type:

→

∩

α1 →

α1 α2

α2

→

→

∩

α1 α2

α3

α4

Definition 2.3.3 (Rank of intersection types). Let T0 be the set of simple types and T1 =
{τ1∩· · ·∩τm | τ1, . . . , τm ∈ T0, m ≥ 1} the set of sequences of simple types (written as τ⃗ , τ⃗1, τ⃗2, . . .).
The set Tk, of rank k intersection types (for k ≥ 2), can be defined recursively in the following
way (n ≥ 3, m ≥ 1):

T2 = T0 ∪ {τ⃗ → σ | τ⃗ ∈ T1, σ ∈ T2}

Tn = Tn−1 ∪ {τ⃗1 ∩ · · · ∩ τ⃗m → σ | τ⃗1, . . . , τ⃗m ∈ Tn−1, σ ∈ Tn}

Notation 2.3.2. We consider the intersection type constructor ∩ to be associative, commutative
and non-idempotent (meaning that α ∩ α is not equivalent to α).

We are particularly interested in non-idempotent intersection types, also known as quantitative
types, because they provide more quantitative information than the idempotent ones.



2.4. Quantitative Types 13

2.4 Quantitative Types

Quantitative types [3, 13, 16, 21] provide more than just qualitative information about programs
and are particularly useful in contexts where we are interested in measuring the use of resources,
as they are related to the consumption of time and space in programs. These systems are based
on non-idempotent intersection types, where non-idempotence has been used to count the number
of evaluation steps and the size of the result.

An intuitive example where we can see the adequacy of the non-idempotent intersection types
over the idempotent ones, regarding quantitative information, is the following: while with non-
idempotent intersection types, the term λfx.f(fx) is typed by ((α → α) ∩ (α → α)) → α → α,
in an idempotent system that type corresponds to (α → α) → α → α, which is the same result
as we would obtain with simple types. Although both typings are correct, the type obtained
with non-idempotent intersection types gives us the additional information that f occurs twice,
while in the idempotent one, that information is lost.

There is previous work that makes use of the non-idempotent intersection types with unlimited
rank, to obtain quantitative information through type derivations. Namely, in [1], the authors
define typing rules for several type systems, corresponding to different evaluation strategies, for
which they are able to measure the number of steps taken by that strategy and the size of the
term’s normal form. They use a notion related to minimal typings named tightness, where rank 0
types include tight constants.

We now present the type system for the leftmost-outermost evaluation strategy in [1], as we
will define a new type system in Chapter 4, based on that system, with the ultimate goal of
creating a new type inference algorithm capable of inferring the number of evaluations steps of a
term to its normal form.

The type system makes use of the predicates normal, neutral and abs. The predicates normal
and neutral defining, respectively, the leftmost-outermost normal terms and neutral terms, are
in Definition 2.4.1. The predicate abs(M) is true if and only if M is an abstraction; normal(M)
means that M is in normal form; and neutral(M) means that M is in normal form and can never
behave as an abstraction, i.e., it does not create a redex when applied to an argument.

Definition 2.4.1 (Leftmost-outermost normal forms).

neutral(x)
neutral(M) normal(N)

neutral(MN)
neutral(M)
normal(M)

normal(M)
normal(λx.M)

Definition 2.4.2 (Leftmost-outermost evaluation strategy).

(λx.M)N −→ M [N/x]
M −→ M ′

λx.M −→ λx.M ′
M −→ M ′ ¬abs(M)

MN −→ M ′N

neutral(N) M −→ M ′

NM −→ NM ′



14 Chapter 2. Background

Definition 2.4.3 (Leftmost-outermost size of terms). The leftmost-outermost size |M | of a term
M is defined as follows:

|x| = 0
|λx.M | = |M | + 1

|M1M2| = |M1| + |M2| + 1

Definition 2.4.4 (Multi-types). The types σ, σ1, σ2, . . . of the system (called multi-types) are
defined by the following grammar:

tight ::= Neutral | Abs (Tight constants)
σ ::= tight | α | µ → σ (Multi-types)
µ ::= [σ1, . . . , σn] (n ≥ 0) (Multisets)

Note that this definition is similar to the classical definition of intersection types (Defini-
tion 2.3.1). The only differences are that here, a sequence is represented by a (possibly empty)
multiset, and a type can also be a tight constant (Neutral or Abs).

Definition 2.4.5.

• Here, an environment Γ is a map from variables to finite multisets µ of types such that
only finitely many variables are not mapped to the empty multiset [ ];

• dom(Γ) = {x | Γ(x) ̸= [ ]};

• Γx is defined by Γx(x) = [ ] and Γx(y) = Γ(y) if y ̸= x;

• The environment Γ1 + Γ2 is defined as (Γ1 + Γ2)(x) = Γ1(x)⊎Γ2(x), where ⊎ is the multiset
sum.

• We use the notation Tight for multisets with only types of the form tight. Moreover, we
write tight(σ) if σ is of the form tight, tight(µ) if µ is of the form Tight, and tight(Γ) if
tight(Γ(x)) for all x, in which case we also say that Γ is tight.

Definition 2.4.6. In the type system for the leftmost-outermost evaluation presented in [1], we
say that M has type σ given the environment Γ, with indices (b, r), and write

Γ ⊢(b,r) M : σ

if it can be obtained from the following derivation rules:

{x : [σ]} ⊢(0,0) x : σ (ax)

Γ ⊢(b,r) M : σ

Γx ⊢(b+1,r) λx.M : Γ(x) → σ
(funb)



2.4. Quantitative Types 15

Γ ⊢(b,r) M : tight tight(Γ(x))
Γx ⊢(b,r+1) λx.M : Abs

(funr)

Γ1 ⊢(b1,r1) M1 : µ → σ Γ2 ⊢(b2,r2) M2 : µ

Γ1 + Γ2 ⊢(b1+b2+1,r1+r2) M1M2 : σ
(appb)

Γ1 ⊢(b1,r1) M1 : Neutral Γ2 ⊢(b2,r2) M2 : tight
Γ1 + Γ2 ⊢(b1+b2,r1+r2+1) M1M2 : Neutral

(appr)

Γ1 ⊢(b1,r1) M : σ1 · · · Γn ⊢(bn,rn) M : σn∑n
i=1 Γi ⊢(b1+···+bn,r1+···+rn) M : [σ1, . . . , σn]

(many)

Definition 2.4.7 (Tight derivations). A derivation ending with Γ ⊢(b,r) M : σ is tight if tight(σ)
and tight(Γ).

In [1], it has been proved that whenever a term is tightly typable with indices (b, r), then b is
exactly the double of the number of evaluations steps to leftmost-outermost normal form and r

is exactly the size of the leftmost-outermost normal form. Moreover, every leftmost-outermost
normalising term has a tight derivation in the system. These two properties are formalized in
Theorem 2.4.1 and Theorem 2.4.2.

The following example of derivation is adapted from [1].

Example 2.4.1. Let M = (λx1.(λx2.x2x1)x1)I, where I is the identity function λy.y.

Let us first consider the leftmost-outermost evaluation of M to normal form:

(λx1.(λx2.x2x1)x1)I −→ (λx2.x2I)I −→ II −→ I

So the evaluation sequence has length 3 and the leftmost-outermost normal form has size 1.

Let us write −−→
Abs for the type [Abs] → Abs. Then for the λ-term M , the following tight

derivation is obtained:

{x2 : [−−→Abs]} ⊢(0,0) x2 : −−→
Abs

{x1 : [Abs]} ⊢(0,0) x1 : Abs
{x1 : [Abs]} ⊢(0,0) x1 : [Abs]

{x2 : [−−→Abs], x1 : [Abs]} ⊢(1,0) x2x1 : Abs
{x1 : [Abs]} ⊢(2,0) λx2.x2x1 : [−−→Abs] → Abs

{x1 : [−−→Abs]} ⊢(0,0) x1 : −−→
Abs

{x1 : [−−→Abs]} ⊢(0,0) x1 : [−−→Abs]
{x1 : [Abs,

−−→
Abs]} ⊢(3,0) (λx2.x2x1)x1 : Abs

{ } ⊢(4,0) λx1.(λx2.x2x1)x1 : [Abs,
−−→
Abs] → Abs

...

{ } ⊢(1,1) I : [Abs,
−−→
Abs]

{ } ⊢(6,1) (λx1.(λx2.x2x1)x1)I : Abs

So indeed, the indices (6, 1) represent 6/2 = 3 evaluation steps to leftmost-outermost normal
form and a leftmost-outermost normal form of size 1.

Theorem 2.4.1 (Tight correctness). If there is a tight derivation ending with Γ ⊢(b,r) M : σ,
then there exists N such that M −→b/2 N , normal(N) and |N | = r. Moreover, if σ = Neutral,
then neutral(N).



16 Chapter 2. Background

Theorem 2.4.2 (Tight completeness). Let M −→k N , with normal(N).

Then there exists a tight derivation ending with Γ ⊢(2k,|N |) M : σ. Moreover, if neutral(N)
then σ = Neutral, and if abs(N) then σ = Abs.

For the proofs of these and other properties of this system (and other type systems for
different evaluation strategies), please refer to [1].



Chapter 3

Linear Rank Intersection Types

In the previous chapter, we mentioned several intersection type systems in which intersection is
idempotent and types are rank-restricted. We followed by presenting quantitative type systems
that, on the other hand, make use of non-idempotent intersection types, for which there is no
specific definition of rank.

The generalization of ranking for non-idempotent intersection types is not trivial and raises
interesting questions that we will address in this chapter, along with a definition of a new
non-idempotent intersection type system and a type inference algorithm.

This and the following chapters cover original work that we presented at the TYPES 2022
conference [25].

3.1 Linear Rank

We noticed that the set of terms typed using idempotent rank 2 intersection types and non-
idempotent rank 2 intersection types is not the same. For instance, the term (λx.xx)(λfx.f(fx))
is typable with a simple type when using idempotent intersection types, but not when using
non-idempotent intersection types. This comes from the two different occurrences of f in
λfx.f(fx), which even if typed with the same type, are not contractible because intersection is
non-idempotent. Note that this is strongly related to the linearity features of terms. A λ-term
M is called a linear term if and only if, for each subterm of the form λx.N in M , x occurs free
in N exactly once, and if each free variable of M has just one occurrence free in M . So the
term (λx.xx)(λfx.f(fx)) is not typable with a non-idempotent rank 2 intersection type precisely
because the term λfx.f(fx) is not linear.

Note that in a non-idempotent intersection type system, every linear term is typable with a
simple type (in fact, in many of those systems, only the linear terms are). This motivated us to
come up with a new notion of rank for non-idempotent intersection types, based on linear types
(the ones derived in a linear type system – a substructural type system in which each assumption

17



18 Chapter 3. Linear Rank Intersection Types

must be used exactly once, corresponding to the implicational fragment of linear logic [17]).

The relation between non-idempotent intersection types and linearity was first introduced by
Kfoury [21] and further explored by de Carvalho [13], who established its relation with linear
logic.

Here we propose a new definition of rank for intersection types, which we call linear rank and
differs from the classical one in the base case – instead of simple types, linear rank 0 intersection
types are the linear types – and in the introduction of the functional type constructor ‘linear
arrow’ ⊸.

Definition 3.1.1 (Linear rank of intersection types). Let TL0 = V ∪ {τ1 ⊸ τ2 | τ1, τ2 ∈ TL0} be
the set of linear types and TL1 = {τ1 ∩ · · · ∩ τm | τ1, . . . , τm ∈ TL0, m ≥ 1} the set of sequences
of linear types. The set TLk, of linear rank k intersection types (for k ≥ 2), can be defined
recursively in the following way (n ≥ 3, m ≥ 2):

TL2 = TL0 ∪ {τ ⊸ σ | τ ∈ TL0, σ ∈ TL2}

∪ {τ1 ∩ · · · ∩ τm → σ | τ1, . . . , τm ∈ TL0, σ ∈ TL2}

TLn = TLn−1 ∪ {τ⃗ ⊸ σ | τ⃗ ∈ TLn−1, σ ∈ TLn}

∪ {τ⃗1 ∩ · · · ∩ τ⃗m → σ | τ⃗1, . . . , τ⃗m ∈ TLn−1, σ ∈ TLn}

Initially, the idea for the change arose from our interest in using rank-restricted intersection
types to estimate the number of evaluation steps of a λ-term while inferring its type. While
defining the intersection type system to obtain quantitative information, we realized that the
ranks could be potentially more useful for that purpose if the base case was changed to types
that give more quantitative information in comparison to simple types, which is the case for
linear types – for instance, if a term is typed with a linear rank 2 intersection type, one knows
that its arguments are linear, meaning that they will be used exactly once.

It is not clear, and most likely non-trivial, the relation between the standard definition of
rank and our definition of linear rank. Note that the set of terms typed using standard rank 2
intersection types [19, 27] and linear rank 2 intersection types is not the same. For instance, again,
the term (λx.xx)(λfx.f(fx)), typable with a simple type in the standard Rank 2 Intersection
Type System, is not typable in the Linear Rank 2 Intersection Type System, because, as the
term (λfx.f(fx)) is not linear and intersection is not idempotent, by Definition 3.1.1, the type
of (λx.xx)(λfx.f(fx)) is now (linear) rank 3. This relation between rank and linear rank is an
interesting question that will not be covered here, but one that we would like to explore in the
future.



3.2. Type System 19

3.2 Type System

We now define a new type system for the λ-calculus with linear rank 2 non-idempotent intersection
types.

Note that some of the definitions presented in this section and the next, were already
introduced in Chapter 2, but will now be recalled and adapted.

Notation 3.2.1. From now on, we will use α to range over a countable infinite set V of type
variables, τ to range over the set TL0 of linear types, τ⃗ to range over the set TL1 of linear type
sequences and σ to range over the set TL2 of linear rank 2 intersection types. In all cases, we
may use or not single quotes and/or number subscripts.

Convention 3.2.1. We consider types equal up to renaming of variables.

Definition 3.2.1.

• A statement is an expression of the form M : τ⃗ , where τ⃗ is called the predicate, and the
term M is called the subject of the statement.

• A declaration is a statement where the subject is a term variable.

• The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.

• A finite list of declarations is consistent if and only if the term variables are all distinct.

• We call environment to a consistent finite list of declarations which predicates are sequences
of linear types (i.e., elements of TL1) and we use Γ (possibly with single quotes and/or
number subscripts) to range over environments.

• If Γ = [x1 : τ⃗1, . . . , xn : τ⃗n] is an environment, then Γ is a partial function, with domain
dom(Γ) = {x1, . . . , xn}, and Γ(xi) = τ⃗i.

• We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).

• We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the declarations.

• If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:

for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
Γ1(x) ∩ Γ2(x) otherwise

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2) \ dom(Γ1),
by the order they appear in Γ2.



20 Chapter 3. Linear Rank Intersection Types

Definition 3.2.2 (Linear Rank 2 Intersection Type System). In the Linear Rank 2 Intersection
Type System, we say that M has type σ given the environment Γ, and write

Γ ⊢2 M : σ

if it can be obtained from the following derivation rules:

[x : τ ] ⊢2 x : τ (Axiom)

Γ1, x : τ⃗1, y : τ⃗2, Γ2 ⊢2 M : σ

Γ1, y : τ⃗2, x : τ⃗1, Γ2 ⊢2 M : σ
(Exchange)

Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M : σ

Γ1, x : τ⃗1 ∩ τ⃗2, Γ2 ⊢2 M [x/x1, x/x2] : σ
(Contraction)

Γ, x : τ1 ∩ · · · ∩ τn ⊢2 M : σ n ≥ 2
Γ ⊢2 λx.M : τ1 ∩ · · · ∩ τn → σ

(→ Intro)

Γ ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ Γ1 ⊢2 M2 : τ1 · · · Γn ⊢2 M2 : τn n ≥ 2
Γ,

∑n
i=1 Γi ⊢2 M1M2 : σ

(→ Elim)

Γ, x : τ ⊢2 M : σ

Γ ⊢2 λx.M : τ ⊸ σ
(⊸ Intro)

Γ1 ⊢2 M1 : τ ⊸ σ Γ2 ⊢2 M2 : τ
Γ1, Γ2 ⊢2 M1M2 : σ

(⊸ Elim)

Example 3.2.1. Let us write ⊸α for the type (α ⊸ α). For the λ-term (λx.xx)(λy.y), the
following derivation is obtained:

[x1 : ⊸α⊸⊸α ] ⊢2 x1 : ⊸α⊸⊸α [x2 : ⊸α ] ⊢2 x2 : ⊸α

[x1 : ⊸α⊸⊸α, x2 : ⊸α ] ⊢2 x1x2 : ⊸α

[x : (⊸α⊸⊸α) ∩ ⊸α ] ⊢2 xx : ⊸α

[ ] ⊢2 λx.xx : (⊸α⊸⊸α) ∩ ⊸α→⊸α

[y : ⊸α ] ⊢2 y : ⊸α

[ ] ⊢2 λy.y : ⊸α⊸⊸α

[y : α] ⊢2 y : α

[ ] ⊢2 λy.y : ⊸α

[ ] ⊢2 (λx.xx)(λy.y) : ⊸α

3.3 Type Inference Algorithm

In this section we define a new type inference algorithm for the λ-calculus (Definition 3.3.7),
which is sound (Theorem 3.3.5) and complete (Theorem 3.3.8) with respect to the Linear Rank 2
Intersection Type System.

Our algorithm is based on Trevor Jim’s type inference algorithm [19] for a Rank 2 Intersection
Type System that was introduced by Daniel Leivant in [23], where the algorithm was briefly



3.3. Type Inference Algorithm 21

covered. Different versions of the algorithm were later defined by Steffen van Bakel in [27] and
by Trevor Jim in [19].

Part of the definitions, properties and proofs here presented are also adapted from [19].

Definition 3.3.1 (Type-substitution). We call type-substitution to

S = [τ1/α1, . . . , τn/αn]

where α1, . . . , αn are distinct type variables in V and τ1, . . . , τn are types in TL0. For any τ in
TL0, S(τ) = τ [τ1/α1, . . . , τn/αn] is the type obtained by simultaneously substituting αi by τi in
τ , with 1 ≤ i ≤ n.

The type S(τ) is called an instance of the type τ .

The notion of type-substitution can be extended to environments in the following way:

S(Γ) = [x1 : S(τ⃗1), . . . , xn : S(τ⃗n)] if Γ = [x1 : τ⃗1, . . . , xn : τ⃗n]

The environment S(Γ) is called an instance of the environment Γ.

If S1 = [τ1/α1, . . . , τn/αn] and S2 = [τ ′
1/α′

1, . . . , τ ′
n/α′

n] are type-substitutions such that the
variables α1, . . . , αn, α′

1, . . . , α′
n are all distinct, then the type-substitution S1 ∪ S2 is defined as

S1 ∪ S2 = [τ1/α1, . . . , τn/αn, τ ′
1/α′

1, . . . , τ ′
n/α′

n].

3.3.1 Unification

Definition 3.3.2 (Unification problem). A unification problem is a finite set of equations
P = {τ1 = τ ′

1, . . . , τn = τ ′
n}. A unifier (or solution) is a substitution S, such that S(τi) = S(τ ′

i),
for 1 ≤ i ≤ n. We call S(τi) (or S(τ ′

i)) a common instance of τi and τ ′
i . P is unifiable if it has at

least one unifier. U(P ) is the set of unifiers of P .

Example 3.3.1. The types α1 ⊸ α2 ⊸ α1 and (α3 ⊸ α3) ⊸ α4 are unifiable. For the
type-substitution S = [(α3 ⊸ α3)/α1, (α2 ⊸ (α3 ⊸ α3))/α4], the common instance is (α3 ⊸

α3) ⊸ α2 ⊸ (α3 ⊸ α3).

Definition 3.3.3 (Most general unifier). A substitution S is a most general unifier (MGU) of P

if S is a least element of U(P ). That is,

S ∈ U(P ) and ∀S1 ∈ U(P ). ∃S2.S1 = S2 ◦ S.

Example 3.3.2. Consider the types τ1 = (α1 ⊸ α1) and τ2 = (α2 ⊸ α3).

The type-substitution S′ = [(α4 ⊸ α5)/α1, (α4 ⊸ α5)/α2, (α4 ⊸ α5)/α3] is a unifier of τ1

and τ2, but it is not the MGU.

The MGU of τ1 and τ2 is S = [α3/α1, α3/α2]. The common instance of τ1 and τ2 by S′,
(α4 ⊸ α5) ⊸ (α4 ⊸ α5), is an instance of (α3 ⊸ α3), the common instance by S.



22 Chapter 3. Linear Rank Intersection Types

Definition 3.3.4 (Solved form). A unification problem P = {α1 = τ1, . . . , αn = τn} is in solved
form if α1, . . . , αn are all pairwise distinct variables that do not occur in any of the τi. In this
case, we define SP = [τ1/α1, . . . , τn/αn].

Definition 3.3.5 (Type unification). We define the following relation ⇒ on type unification
problems (for types in TL0):

{τ = τ} ∪ P ⇒ P

{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P

{τ1 ⊸ τ2 = α} ∪ P ⇒ {α = τ1 ⊸ τ2} ∪ P

{α = τ} ∪ P ⇒ {α = τ} ∪ P [τ/α] if α ∈ fv(P ) \ fv(τ)
{α = τ} ∪ P ⇒ FAIL if α ∈ fv(τ) and α ̸= τ

where P [τ/α] corresponds to the notion of type-substitution extended to type unification problems.
If P = {τ1 = τ ′

1, . . . , τn = τ ′
n}, then P [τ/α] = {τ1[τ/α] = τ ′

1[τ/α], . . . , τn[τ/α] = τ ′
n[τ/α]}. And

fv(P ) and fv(τ) are the sets of free type variables in P and τ , respectively. Since in our system
all occurrences of type variables are free, fv(P ) and fv(τ) are the sets of type variables in P and
τ , respectively.

Definition 3.3.6 (Unification algorithm). Let P be a unification problem (with types in TL0).
The unification function UNIFY(P ) that decides whether P has a solution and, if so, returns the
MGU of P (see [26]), is defined as:

function UNIFY(P )
while P ⇒ P ′ do

P := P ′;
if P is in solved form then

return SP ;
else

FAIL;

Example 3.3.3. Consider again the types α1 ⊸ α1 and α2 ⊸ α3 in Example 3.3.2. For
the unification problem P = {α1 ⊸ α1 = α2 ⊸ α3}, UNIFY(P ) performs the following
transformations over P :

{α1 ⊸ α1 = α2 ⊸ α3} ⇒ {α1 = α2, α1 = α3} ∪ { } = {α1 = α2, α1 = α3}

⇒ {α1 = α2} ∪ {α1 = α3}[α2/α1] = {α1 = α2, α2 = α3}

⇒ {α2 = α3} ∪ {α1 = α2}[α3/α2] = {α1 = α3, α2 = α3}

and, since {α1 = α3, α2 = α3} is in solved form, it returns the type-substitution [α3/α1, α3/α2].



3.3. Type Inference Algorithm 23

3.3.2 Type Inference

Definition 3.3.7 (Type inference algorithm). Let Γ be an environment, M a λ-term, σ a linear
rank 2 intersection type and UNIFY the function in Definition 3.3.6. The function T(M) = (Γ, σ)
defines a type inference algorithm for the λ-calculus in the Linear Rank 2 Intersection Type
System, in the following way:

1. If M = x, then Γ = [x : α] and σ = α, where α is a new variable;

2. If M = λx.M1 and T(M1) = (Γ1, σ1) then:

(a) if x /∈ dom(Γ1), then FAIL;

(b) if (x : τ) ∈ Γ1, then T(M) = (Γ1x, τ ⊸ σ1);

(c) if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then T(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1).

3. If M = M1M2, then:

(a) if T(M1) = (Γ1, α1) and T(M2) = (Γ2, τ2),
then T(M) = (S(Γ1 + Γ2),S(α3)),
where S = UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

(b) if T(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
T(M2) = (Γi, τi),
then T(M) = (S(Γ′

1 + ∑n
i=1 Γi),S(σ′

1)),
where S = UNIFY({τi = τ ′

i | 1 ≤ i ≤ n});

(c) if T(M1) = (Γ1, τ ⊸ σ1) and T(M2) = (Γ2, τ2),
then T(M) = (S(Γ1 + Γ2),S(σ1)),
where S = UNIFY({τ2 = τ});

(d) otherwise FAIL.

Example 3.3.4. Let us show the type inference process for the λ-term λx.xx.

• By rule 1., T(x) = ([x : α1], α1).

• By rule 1., again, T(x) = ([x : α2], α2).

• Then by rule 3.(a), T(xx) = (S([x : α1] + [x : α2]),S(α4)) = (S([x : α1 ∩ α2]),S(α4)),

where S = UNIFY({α1 = α3 ⊸ α4, α2 = α3}) = [α3 ⊸ α4/α1, α3/α2].

So T(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4).

• Finally, by rule 2.(c), T(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4).



24 Chapter 3. Linear Rank Intersection Types

Example 3.3.5. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

• From the previous example, we have T(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4).

• By rules 1. and 2.(b), for the identity, the algorithm gives T(λy.y) = ([ ], α1 ⊸ α1).

• By rules 1. and 2.(b), again, for the identity, T(λy.y) = ([ ], α2 ⊸ α2).

• Then by rule 3.(b), T((λx.xx)(λy.y)) = (S([ ] + [ ] + [ ]), S(α4)) = ([ ], S(α4)),

where S = UNIFY({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}), calculated by performing the
following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}

⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}

⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}

⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}

⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]

and T((λx.xx)(λy.y)) = ([ ], α2 ⊸ α2).

Now we show several properties of our type system and type inference algorithm, in order to
prove the soundness and completeness of the algorithm with respect to the system.

Notation 3.3.1. We write Φ ▷ Γ ⊢2 M : σ if Φ is a derivation tree ending with Γ ⊢2 M : σ. In
this case, |Φ| is the length of the derivation tree Φ.

Lemma 3.3.1 (Substitution). If Φ ▷ Γ ⊢2 M : σ, then S(Γ) ⊢2 M : S(σ) for any substitution S.

Proof. By induction on |Φ|.

1. (Axiom): Then Γ = [x : τ ], M = x and σ = τ .

So S(Γ) = [x : S(τ)] and S(σ) = S(τ),

and by rule (Axiom) we have S(Γ) ⊢2 x : S(σ).

2. (Exchange): Then Γ = (Γ1, y : τ⃗2, x : τ⃗1, Γ2), M = M1, σ = σ1, and assuming that the
premise Γ1, x : τ⃗1, y : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

By the induction hypothesis, for any substitution S, S(Γ1, x : τ⃗1, y : τ⃗2, Γ2) ⊢2 M1 : S(σ1),

which is the same as S(Γ1), x : S(τ⃗1), y : S(τ⃗2),S(Γ2) ⊢2 M1 : S(σ1).



3.3. Type Inference Algorithm 25

By rule (Exchange) we get S(Γ1), y : S(τ⃗2), x : S(τ⃗1),S(Γ2) ⊢2 M1 : S(σ1),

which is the same as S(Γ1, y : τ⃗2, x : τ⃗1, Γ2) ⊢2 M1 : S(σ1), i.e., S(Γ) ⊢2 M : S(σ).

3. (Contraction): Then Γ = (Γ1, x : τ⃗1 ∩ τ⃗2, Γ2), M = M1[x/x1, x/x2], σ = σ1, and assuming
that the premise Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

By the induction hypothesis, for any substitution S, S(Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2) ⊢2 M1 : S(σ1),

which is the same as S(Γ1), x1 : S(τ⃗1), x2 : S(τ⃗2), S(Γ2) ⊢2 M1 : S(σ1).

By rule (Contraction) we get S(Γ1), x : S(τ⃗1) ∩ S(τ⃗2), S(Γ2) ⊢2 M1[x/x1, x/x2] : S(σ1),

which is the same as S(Γ1, x : τ⃗1 ∩ τ⃗2, Γ2) ⊢2 M1[x/x1, x/x2] : S(σ1), i.e., S(Γ) ⊢2 M : S(σ).

4. (→ Intro): Then Γ = Γ1, M = λx.M1, σ = τ1 ∩ · · · ∩ τn → σ1, and assuming that the
premise Γ1, x : τ1 ∩ · · · ∩ τn ⊢2 M1 : σ1 (with n ≥ 2) holds.

By the induction hypothesis, for any substitution S, S(Γ1, x : τ1 ∩ · · · ∩ τn) ⊢2 M1 : S(σ1),

which is the same as S(Γ1), x : S(τ1) ∩ · · · ∩ S(τn) ⊢2 M1 : S(σ1).

By rule (→ Intro) we get S(Γ1) ⊢2 λx.M1 : S(τ1) ∩ · · · ∩ S(τn) → S(σ1),

which is the same as S(Γ1) ⊢2 λx.M1 : S(τ1 ∩ · · · ∩ τn → σ1), i.e., S(Γ) ⊢2 M : S(σ).

5. (→ Elim): Then Γ = (Γ0,
∑n

i=1 Γi), M = M1M2, σ = σ1, and assuming that the premises
Γ0 ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ1 and Γi ⊢2 M2 : τi, for 1 ≤ i ≤ n (with n ≥ 2), hold.

By the induction hypothesis, for any substitution S:

• S(Γ0) ⊢2 M1 : S(τ1 ∩ · · · ∩ τn → σ1),
which is the same as S(Γ0) ⊢2 M1 : S(τ1) ∩ · · · ∩ S(τn) → S(σ1);

• S(Γi) ⊢2 M2 : S(τi), for 1 ≤ i ≤ n.

By rule (→ Elim) we get S(Γ0), ∑n
i=1 S(Γi) ⊢2 M1M2 : S(σ1),

which is the same as S(Γ0,
∑n

i=1 Γi) ⊢2 M1M2 : S(σ1), i.e., S(Γ) ⊢2 M : S(σ).

6. (⊸ Intro): Then Γ = Γ1, M = λx.M1, σ = τ ⊸ σ1, and assuming that the premise
Γ1, x : τ ⊢2 M1 : σ1 holds.

By the induction hypothesis, for any substitution S, S(Γ1, x : τ) ⊢2 M1 : S(σ1),



26 Chapter 3. Linear Rank Intersection Types

which is the same as S(Γ1), x : S(τ) ⊢2 M1 : S(σ1).

By rule (⊸ Intro) we get S(Γ1) ⊢2 λx.M1 : S(τ) ⊸ S(σ1),

which is the same as S(Γ1) ⊢2 λx.M1 : S(τ ⊸ σ1), i.e., S(Γ) ⊢2 M : S(σ).

7. (⊸ Elim): Then Γ = (Γ1, Γ2), M = M1M2, σ = σ1, and assuming that the premises
Γ1 ⊢2 M1 : τ ⊸ σ1 and Γ2 ⊢2 M2 : τ hold.

By the induction hypothesis, for any substitution S:

• S(Γ1) ⊢2 M1 : S(τ ⊸ σ1), which is the same as S(Γ1) ⊢2 M1 : S(τ) ⊸ S(σ1);

• S(Γ2) ⊢2 M2 : S(τ).

By rule (⊸ Elim) we get S(Γ1), S(Γ2) ⊢2 M1M2 : S(σ1),

which is the same as S(Γ1, Γ2) ⊢2 M1M2 : S(σ1), i.e., S(Γ) ⊢2 M : S(σ).

Lemma 3.3.2 (Relevance). If Φ ▷ Γ ⊢2 M : σ, then x ∈ dom(Γ) if and only if x ∈ FV(M).

Proof. Easy induction on |Φ|.

Lemma 3.3.3. If T(M) = (Γ, σ), then x ∈ dom(Γ) if and only if x ∈ FV(M).

Proof. Easy induction on the definition of T(M).

Corollary 3.3.3.1. From Lemma 3.3.2 and Lemma 3.3.3, it follows that if T(M) = (Γ, σ) and
Γ′ ⊢2 M : σ′, then dom(Γ) = dom(Γ′).

Lemma 3.3.4. If Φ1 ▷ Γ ⊢2 M : σ, x ∈ FV(M) and y does not occur in M , then Φ2 ▷ Γ[y/x] ⊢2

M [y/x] : σ and |Φ1| = |Φ2|.

Proof. By induction on |Φ1|.

(We will only prove the first part of the lemma, since the second (|Φ1| = |Φ2|) can be shown
with a trivial induction proof.)

Let x be a variable that occurs free in M and y a new variable not occurring in M .

1. (Axiom): Then Γ = [x1 : τ ], M = x1, σ = τ and x = x1.

By rule (Axiom) we have [y : τ ] ⊢2 y : τ ,



3.3. Type Inference Algorithm 27

which is the same as Γ[y/x] ⊢2 M [y/x] : σ.

2. (Exchange): Then Γ = (Γ1, y1 : τ⃗2, x1 : τ⃗1, Γ2), M = M1, σ = σ1, and assuming that the
premise Γ1, x1 : τ⃗1, y1 : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

Since x ∈ FV(M1) and y does not occur in M1,

by induction, (Γ1, x1 : τ⃗1, y1 : τ⃗2, Γ2)[y/x] ⊢2 M1[y/x] : σ1,

which is the same as (Γ1[y/x]), x1[y/x] : τ⃗1, y1[y/x] : τ⃗2, (Γ2[y/x]) ⊢2 M1[y/x] : σ1.

Then by rule (Exchange), (Γ1[y/x]), y1[y/x] : τ⃗2, x1[y/x] : τ⃗1, (Γ2[y/x]) ⊢2 M1[y/x] : σ1,

which is the same as Γ[y/x] ⊢2 M [y/x] : σ.

3. (Contraction): Then Γ = (Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2), M = M1[x′/x1, x′/x2], σ = σ1, and assuming
that the premise Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

There are two possible cases regarding x:

(a) x = x′:

Since y does not occur in M , y /∈ FV(M), so by Lemma 3.3.2, y /∈ dom(Γ). So
y /∈ dom(Γ1) and y /∈ dom(Γ2).

Then we can apply the rule (Contraction) to Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1 : σ1

and get Γ1, y : τ⃗1 ∩ τ⃗2, Γ2 ⊢2 M1[y/x1, y/x2] : σ1,
which is equivalent to (Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x′] ⊢2 (M1[x′/x1, x′/x2])[y/x′] : σ1

and the same as (Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x] ⊢2 (M1[x′/x1, x′/x2])[y/x] : σ1.

So Γ[y/x] ⊢2 M [y/x] : σ.

(b) x ̸= x′ (and so x ∈ FV(M1)):

There are three possible cases regarding y:

i. y ̸= x1 and y ̸= x2:

Since x ∈ FV(M1) and y does not occur in M1,
by induction, (Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2)[y/x] ⊢2 M1[y/x] : σ1,
which is the same as (Γ1[y/x]), x1[y/x] : τ⃗1, x2[y/x] : τ⃗2, (Γ2[y/x]) ⊢2 M1[y/x] : σ1.



28 Chapter 3. Linear Rank Intersection Types

Then by rule (Contraction),
(Γ1[y/x]), x′ : τ⃗1 ∩ τ⃗2, (Γ2[y/x]) ⊢2 (M1[y/x])[x′/(x1[y/x]), x′/(x2[y/x])] : σ1.

Since x ̸= x′, x′ = x′[y/x].
So (Γ1[y/x]), x′ : τ⃗1 ∩ τ⃗2, (Γ2[y/x]) = (Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x] = Γ[y/x].

And x1[y/x] = x1, x2[y/x] = x2 because x ̸= x1, x ̸= x2 (otherwise it would
contradict the assumption that x ∈ FV(M)),
so (M1[y/x])[x′/(x1[y/x]), x′/(x2[y/x])] = (M1[y/x])[x′/x1, x′/x2].

And since x ̸= x1, x ̸= x2, y ̸= x1, y ̸= x2 and x ̸= x′,
then (M1[y/x])[x′/x1, x′/x2] = (M1[x′/x1, x′/x2])[y/x] = M [y/x].

So Γ[y/x] ⊢2 M [y/x] : σ.

ii. y = x1:

So the premise can be written as Γ1, y : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1 : σ1.
Let y′ be a fresh variable not occurring in any of the terms and environments
mentioned.

Then by induction, we have (Γ1, y : τ⃗1, x2 : τ⃗2, Γ2)[y′/y] ⊢2 M1[y′/y] : σ1,
which is the same as Γ1, y′ : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1[y′/y] : σ1.

As x ∈ FV(M), by Lemma 3.3.2, x ∈ dom(Γ).
And since x ̸= x′, then either x ∈ dom(Γ1) or x ∈ dom(Γ2).
This means that x ∈ dom(Γ1, y′ : τ⃗1, x2 : τ⃗2, Γ2), and so by Lemma 3.3.2,
x ∈ FV(M1[y′/y]).

And y does not occur in M1[y′/y].

So we can then apply the induction hypothesis to the derivation ending with
Γ1, y′ : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1[y′/y] : σ1

and get (Γ1, y′ : τ⃗1, x2 : τ⃗2, Γ2)[y/x] ⊢2 (M1[y′/y])[y/x] : σ1,
which is equivalent to Γ1[y/x], y′ : τ⃗1, x2 : τ⃗2, Γ2[y/x] ⊢2 (M1[y′/y])[y/x] : σ1.

Then by rule (Contraction),
Γ1[y/x], x′ : τ⃗1 ∩ τ⃗2, Γ2[y/x] ⊢2 ((M1[y′/y])[y/x])[x′/y′, x′/x2] : σ1,
which is the same as
(Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x] ⊢2 ((M1[y′/x1])[y/x])[x′/y′, x′/x2] : σ1.



3.3. Type Inference Algorithm 29

This is equivalent to
(Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x] ⊢2 ((M1[y′/x1])[x′/y′, x′/x2])[y/x] : σ1,
which is the equivalent to
(Γ1, x′ : τ⃗1 ∩ τ⃗2, Γ2)[y/x] ⊢2 ((M1[x′/x1, x′/x2])[y/x] : σ1.

So Γ[y/x] ⊢2 M [y/x] : σ.

iii. y = x2:

Analogous to the case where y = x1.

4. (→ Intro): Then Γ = Γ1, M = λx1.M1, σ = τ1 ∩ · · · ∩ τn → σ1, and assuming that the
premise Γ1, x1 : τ1 ∩ · · · ∩ τn ⊢2 M1 : σ1 (with n ≥ 2) holds.

Since x ∈ FV(M1) and y does not occur in M1,

by induction, (Γ1, x1 : τ1 ∩ · · · ∩ τn)[y/x] ⊢2 M1[y/x] : σ1,

which is the same as (Γ1[y/x]), x1[y/x] : τ1 ∩ · · · ∩ τn ⊢2 M1[y/x] : σ1.

Then by rule (→ Intro), Γ1[y/x] ⊢2 λ(x1[y/x]).M1[y/x] : τ1 ∩ · · · ∩ τn → σ1.

Since x ̸= x1 (otherwise it would contradict the assumption that x ∈ FV(M)), x1[y/x] = x1

and λx1.M1[y/x] = (λx1.M1)[y/x].

So we have Γ1[y/x] ⊢2 (λx1.M1)[y/x] : τ1 ∩ · · · ∩ τn → σ1,

which is the same as Γ[y/x] ⊢2 M [y/x] : σ.

5. (→ Elim): Then Γ = (Γ′,
∑n

i=1 Γi), M = M1M2, σ = σ1, and assuming that the premises
Γ′ ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ1 and Γi ⊢2 M2 : τi, for 1 ≤ i ≤ n (with n ≥ 2), hold.

Since x ∈ FV(M) and y does not occur in M , then y does not occur in M1 nor in M2 and
there are three possible cases regarding x:

(a) x ∈ FV(M1) and x ∈ FV(M2):

Then by induction, Γ′[y/x] ⊢2 M1[y/x] : τ1 ∩ · · · ∩ τn → σ1 and, for 1 ≤ i ≤ n,
Γi[y/x] ⊢2 M2[y/x] : τi.



30 Chapter 3. Linear Rank Intersection Types

So by rule (→ Elim), Γ′[y/x], ∑n
i=1 Γi[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,

which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

(b) x ∈ FV(M1) and x /∈ FV(M2):

Then M2[y/x] = M2 and Γi[y/x] = Γi, for 1 ≤ i ≤ n.
So Γi[y/x] ⊢2 M2[y/x] : τi is equivalent to Γi ⊢2 M2 : τi, for 1 ≤ i ≤ n.

By induction, Γ′[y/x] ⊢2 M1[y/x] : τ1 ∩ · · · ∩ τn → σ1.

So by rule (→ Elim), Γ′[y/x], ∑n
i=1 Γi[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,

which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

(c) x /∈ FV(M1) and x ∈ FV(M2):

Then M1[y/x] = M1 and Γ′[y/x] = Γ′.
So Γ′[y/x] ⊢2 M1[y/x] : τ1 ∩· · ·∩τn → σ1 is equivalent to Γ′ ⊢2 M1 : τ1 ∩· · ·∩τn → σ1.

By induction, Γi[y/x] ⊢2 M2[y/x] : τi, for 1 ≤ i ≤ n.

So by rule (→ Elim), Γ′[y/x], ∑n
i=1 Γi[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,

which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

6. (⊸ Intro): Then Γ = Γ1, M = λx1.M1, σ = τ ⊸ σ1, and assuming that the premise
Γ1, x1 : τ ⊢2 M1 : σ1 holds.

Since x ∈ FV(M1) and y does not occur in M1,

by induction, (Γ1, x1 : τ)[y/x] ⊢2 M1[y/x] : σ1,

which is the same as (Γ1[y/x]), x1[y/x] : τ ⊢2 M1[y/x] : σ1.

Then by rule (⊸ Intro), Γ1[y/x] ⊢2 λ(x1[y/x]).M1[y/x] : τ ⊸ σ1.

Since x ̸= x1 (otherwise it would contradict the assumption that x ∈ FV(M)), x1[y/x] = x1

and λx1.M1[y/x] = (λx1.M1)[y/x].

So we have Γ1[y/x] ⊢2 (λx1.M1)[y/x] : τ ⊸ σ1, which is the same as Γ[y/x] ⊢2 M [y/x] : σ.



3.3. Type Inference Algorithm 31

7. (⊸ Elim): Then Γ = (Γ1, Γ2), M = M1M2, σ = σ1, and assuming that the premises
Γ1 ⊢2 M1 : τ ⊸ σ1 and Γ2 ⊢2 M2 : τ hold.

Since x ∈ FV(M) and y does not occur in M , then y does not occur in M1 nor in M2 and
there are three possible cases regarding x:

(a) x ∈ FV(M1) and x ∈ FV(M2):

Then by induction, Γ1[y/x] ⊢2 M1[y/x] : τ ⊸ σ1 and Γ2[y/x] ⊢2 M2[y/x] : τ .

So by rule (⊸ Elim), Γ1[y/x], Γ2[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,
which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

(b) x ∈ FV(M1) and x /∈ FV(M2):

Then M2[y/x] = M2 and Γ2[y/x] = Γ2.
So Γ2[y/x] ⊢2 M2[y/x] : τ is equivalent to Γ2 ⊢2 M2 : τ .

By induction, Γ1[y/x] ⊢2 M1[y/x] : τ ⊸ σ1.

So by rule (⊸ Elim), Γ1[y/x], Γ2[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,
which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

(c) x /∈ FV(M1) and x ∈ FV(M2):

Then M1[y/x] = M1 and Γ1[y/x] = Γ1.
So Γ1[y/x] ⊢2 M1[y/x] : τ ⊸ σ1 is equivalent to Γ1 ⊢2 M1 : τ ⊸ σ1.

By induction, Γ2[y/x] ⊢2 M2[y/x] : τ .

So by rule (⊸ Elim), Γ1[y/x], Γ2[y/x] ⊢2 (M1[y/x])(M2[y/x]) : σ1,
which is equivalent to Γ[y/x] ⊢2 M [y/x] : σ.

Corollary 3.3.4.1. From Lemma 3.3.4, it follows that if Γ ⊢2 M : σ, {x1, . . . , xn} ⊆ FV(M)
and y1, . . . , yn are all different variables not occurring in M , then Γ[y1/x1, . . . , yn/xn] ⊢2

M [y1/x1, . . . , yn/xn] : σ.



32 Chapter 3. Linear Rank Intersection Types

Theorem 3.3.5 (Soundness). If T(M) = (Γ, σ), then Γ ⊢2 M : σ.

Proof. By induction on the definition of T(M).

1. If M = x, then (Γ, σ) = ([x : α], α), and we have Γ ⊢2 x : σ by rule (Axiom).

2. If M = λx.M1, we have the following cases:

(a) x ∈ FV(M1) and (Γ, σ) = (Γ1x, Γ1(x) ⊸ σ1), where T(M1) = (Γ1, σ1) and Γ1(x) =
τ ∈ TL0.

By induction, Γ1 ⊢2 M1 : σ1, and by Lemma 3.3.3, x ∈ dom(Γ1).

So by applying the rule (Exchange) zero or more times successively, we obtain
Γ1x, x : τ ⊢2 M1 : σ1.

So Γ ⊢2 λx.M1 : σ by rule (⊸ Intro).

(b) x ∈ FV(M1) and (Γ, σ) = (Γ1x, Γ1(x) → σ1), where T(M1) = (Γ1, σ1) and Γ1(x) =
τ1 ∩ · · · ∩ τn, with n ≥ 2.

By induction, Γ1 ⊢2 M1 : σ1, and by Lemma 3.3.3, x ∈ dom(Γ1).

So by applying the rule (Exchange) zero or more times successively, we obtain
Γ1x, x : τ1 ∩ · · · ∩ τn ⊢2 M1 : σ1.

So Γ ⊢2 λx.M1 : σ by rule (→ Intro).

3. If M = M1M2, we have the following cases:

(a) (Γ, σ) = (S(Γ1 + Γ2),S(α3)), where T(M1) = (Γ1, α1), T(M2) = (Γ2, τ2), S =
UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 do not occur in Γ1, Γ2, α1, τ2.

By induction, Γ1 ⊢2 M1 : α1 and Γ2 ⊢2 M2 : τ2.

Let S1 = [y1/x1, . . . , yn/xn] and S2 = [z1/x1, . . . , zn/xn], where dom(Γ1) ∩ dom(Γ2) =
{x1, . . . , xn} (which by Lemma 3.3.2, occur free in M1 and M2) and y1, . . . , yn, z1, . . . , zn

are all distinct fresh term variables, not occurring in M1 nor in M2 (and consequently,
by Lemma 3.3.2, not occurring in Γ1 nor in Γ2).



3.3. Type Inference Algorithm 33

By Corollary 3.3.4.1, S1(Γ1) ⊢2 S1(M1) : α1 and S2(Γ2) ⊢2 S2(M2) : τ2.

By Lemma 3.3.1, S(S1(Γ1)) ⊢2 S1(M1) : S(α1) and S(S2(Γ2)) ⊢2 S2(M2) : S(τ2).

Since S(τ2) = S(α2), S(α1) = S(α2) ⊸ S(α3) and (S1(Γ1), S2(Γ2)) is consistent,
by rule (⊸ Elim) we have (S(S1(Γ1)), S(S2(Γ2))) ⊢2 (S1(M1))(S2(M2)) : S(α3),
which is the same as S(S1(Γ1), S2(Γ2)) ⊢2 (S1(M1))(S2(M2)) : S(α3).

For each pair (yi : τ⃗i, zi : τ⃗ ′
i) (for 1 ≤ i ≤ n) in the environment S(S1(Γ1), S2(Γ2)) in

the previous derivation, let us apply the rule (Contraction) to obtain the environment
with xi : τ⃗i ∩ τ⃗ ′

i instead (and applying the rule (Exchange) as necessary).

After these applications of the rules (Contraction) and (Exchange) (and consequent
applications of (Exchange), if necessary), and by looking at the definition of (+), we
end up with S(Γ1 + Γ2) ⊢2 M1M2 : S(α3).

(b) (Γ, σ) = (S(Γ′ + ∑n
i=1 Γi), S(σ′

1)), where T(M1) = (Γ′, τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1), with n ≥ 2,

T(M2) = (Γi, τi) for 1 ≤ i ≤ n, and S = UNIFY({τi = τ ′
i | 1 ≤ i ≤ n}).

By induction, Γ′ ⊢2 M1 : τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1

and Γi ⊢2 M2 : τi (for 1 ≤ i ≤ n).
Note that dom(Γ1) = dom(Γ2) = · · · = dom(Γn−1) = dom(Γn).

Let S1 = [y1/x1, . . . , yn/xn] and S2 = [z1/x1, . . . , zn/xn], where dom(Γ′) ∩ dom(Γ1) =
{x1, . . . , xn} (which by Lemma 3.3.2, occur free in M1 and in M2) and y1, . . . , yn, z1, . . . , zn

are all distinct fresh term variables, not occurring in M1 nor in M2 (and consequently,
by Lemma 3.3.2, not occurring in Γ′ nor in Γi, for all 1 ≤ i ≤ n).

By Corollary 3.3.4.1, S1(Γ′) ⊢2 S1(M1) : τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1

and S2(Γi) ⊢2 S2(M2) : τi (for 1 ≤ i ≤ n).

By Lemma 3.3.1, S(S1(Γ′)) ⊢2 S1(M1) : S(τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1)

and S(S2(Γi)) ⊢2 S2(M2) : S(τi) (for 1 ≤ i ≤ n).

Since S(τi) = S(τ ′
i) for all 1 ≤ i ≤ n and (S1(Γ′), (S2(Γ1) + · · · + S2(Γn))) is consistent,

by rule (→ Elim) we have (S(S1(Γ′)), (S(S2(Γ1))+· · ·+S(S2(Γn)))) ⊢2 (S1(M1))(S2(M2)) :
S(σ′

1),
which is the same as S(S1(Γ′), (S2(Γ1) + · · · + S2(Γn))) ⊢2 (S1(M1))(S2(M2)) : S(σ′

1).



34 Chapter 3. Linear Rank Intersection Types

For each pair (yi : τ⃗i, zi : τ⃗ ′
i) (for 1 ≤ i ≤ n) in the environment S(S1(Γ′), (S2(Γ1)+· · ·+

S2(Γn))) in the previous derivation, let us apply the rule (Contraction) to obtain the
environment with xi : τ⃗i ∩ τ⃗ ′

i instead (and applying the rule (Exchange) as necessary).

After these applications of the rules (Contraction) and (Exchange) (and consequent
applications of (Exchange), if necessary), and by looking at the definition of (+), we
end up with S(Γ′ + ∑n

i=1 Γi) ⊢2 M1M2 : S(σ′
1).

(c) (Γ, σ) = (S(Γ1 + Γ2),S(σ1)), where T(M1) = (Γ1, τ ⊸ σ1), T(M2) = (Γ2, τ2) and
S = UNIFY({τ2 = τ}).

By induction, Γ1 ⊢2 M1 : τ ⊸ σ1 and Γ2 ⊢2 M2 : τ2.

Let S1 = [y1/x1, . . . , yn/xn] and S2 = [z1/x1, . . . , zn/xn], where dom(Γ1) ∩ dom(Γ2) =
{x1, . . . , xn} (which by Lemma 3.3.2, occur free in M1 and M2) and y1, . . . , yn, z1, . . . , zn

are all distinct fresh term variables, not occurring in M1 nor in M2 (and consequently,
by Lemma 3.3.2, not occurring in Γ1 nor in Γ2).

By Corollary 3.3.4.1, S1(Γ1) ⊢2 S1(M1) : τ ⊸ σ1 and S2(Γ2) ⊢2 S2(M2) : τ2.

By Lemma 3.3.1, S(S1(Γ1)) ⊢2 S1(M1) : S(τ ⊸ σ1) and S(S2(Γ2)) ⊢2 S2(M2) : S(τ2).

Since S(τ2) = S(τ) and (S1(Γ1), S2(Γ2)) is consistent,
by rule (⊸ Elim) we have (S(S1(Γ1)), S(S2(Γ2))) ⊢2 (S1(M1))(S2(M2)) : S(σ1),
which is the same as S(S1(Γ1), S2(Γ2)) ⊢2 (S1(M1))(S2(M2)) : S(σ1).

For each pair (yi : τ⃗i, zi : τ⃗ ′
i) (for 1 ≤ i ≤ n) in the environment S(S1(Γ1), S2(Γ2)) in

the previous derivation, let us apply the rule (Contraction) to obtain the environment
with xi : τ⃗i ∩ τ⃗ ′

i instead (and applying the rule (Exchange) as necessary).

After these applications of the rules (Contraction) and (Exchange) (and consequent
applications of (Exchange), if necessary), and by looking at the definition of (+), we
end up with S(Γ1 + Γ2) ⊢2 M1M2 : S(σ1).

For any other possible case, the algorithm fails (by rules 2.(a) and 3.(d)), thus making the
left side of the implication (T(M) = (Γ, σ)) false, which makes the statement true.



3.3. Type Inference Algorithm 35

Lemma 3.3.6. If T(M) = (Γ, σ), x ∈ FV(M) and y does not occur in M , then T(M [y/x]) =
(Γ[y/x], σ).

Proof. By induction on the definition of T(M).

1. If M = x1 and let x = x1 and y ̸= x1, then (Γ, σ) = ([x1 : α], α)

and T(M [y/x]) = T(M [y/x1]) = T(y) = ([y : α], α) = (Γ[y/x], σ).

(Note that we can choose the same type variable α from T(M) in T(y) as these are
independent, so α is fresh in T(y).)

2. If M = λx1.M1 and let x be a variable that occurs free in M and y a new variable not
occurring in M , we have the following cases:

(a) (Γ, σ) = (Γ1x1 , Γ1(x1) ⊸ σ1), where T(M1) = (Γ1, σ1) and Γ1(x1) = τ ∈ TL0.

Since x ∈ FV(M1) and y does not occur in M1 (otherwise it would contradict the
assumption that x ∈ FV(M) and y does not occur in M),
by induction, T(M1[y/x]) = (Γ1[y/x], σ1).

And (Γ1[y/x])(x1) = Γ1(x1) = τ ∈ TL0.

So by rule 2.(b) of the inference algorithm, T(λx1.(M1[y/x])) = ((Γ1[y/x])x1
, τ ⊸ σ1).

And M [y/x] = (λx1.M1)[y/x] = λx1.(M1[y/x]), so

T(M [y/x]) = T(λx1.(M1[y/x]))
= ((Γ1[y/x])x1

, τ ⊸ σ1)
= (Γ1x1 [y/x], Γ1(x1) ⊸ σ1)
= (Γ[y/x], σ).

(b) (Γ, σ) = (Γ1x1 , Γ1(x1) → σ1), where T(M1) = (Γ1, σ1) and Γ1(x1) = τ1 ∩ · · · ∩ τn, with
n ≥ 2.

Since x ∈ FV(M1) and y does not occur in M1, by induction, T(M1[y/x]) =
(Γ1[y/x], σ1).

And (Γ1[y/x])(x1) = Γ1(x1) = τ1 ∩ · · · ∩ τn.



36 Chapter 3. Linear Rank Intersection Types

So by rule 2.(c) of the inference algorithm, T(λx1.(M1[y/x])) = ((Γ1[y/x])x1
, τ1 ∩ · · · ∩

τn → σ1).

And M [y/x] = (λx1.M1)[y/x] = λx1.(M1[y/x]), so

T(M [y/x]) = T(λx1.(M1[y/x]))
= ((Γ1[y/x])x1

, τ1 ∩ · · · ∩ τn → σ1)
= (Γ1x1 [y/x], Γ1(x1) → σ1)
= (Γ[y/x], σ).

3. If M = M1M2 and let x be a variable that occurs free in M and y a new variable not
occurring in M , we have the following cases:

(a) (Γ, σ) = (S(Γ1 + Γ2),S(α3)), where T(M1) = (Γ1, α1), T(M2) = (Γ2, τ2), S =
UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 do not occur in Γ1, Γ2, α1, τ2.

Since x ∈ FV(M) and y does not occur in M , then y does not occur in M1 nor in M2

and there are three possible cases regarding x:

i. x ∈ FV(M1) and x ∈ FV(M2):

Then by induction, T(M1[y/x]) = (Γ1[y/x], α1) and T(M2[y/x]) = (Γ2[y/x], τ2).

So by rule 3.(a) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])),S(α3)).

(As before, as well as in the following cases, note that we can choose the same
type variables α2, α3 (and, consequently, the same S) in T((M1[y/x])(M2[y/x]))
because they are fresh in this inference and, since they do not occur in Γ1 and Γ2,
they also do not occur in Γ1[y/x] and Γ2[y/x] (nor in α1, τ2).)

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])), S(α3))
= (S((Γ1 + Γ2)[y/x]),S(α3))
= ((S(Γ1 + Γ2))[y/x],S(α3))
= (Γ[y/x], σ).

ii. x ∈ FV(M1) and x /∈ FV(M2):

Then M2[y/x] = M2 and Γ2[y/x] = Γ2.



3.3. Type Inference Algorithm 37

So T(M2[y/x]) = T(M2) = (Γ2, τ2) = (Γ2[y/x], τ2).

By induction, T(M1[y/x]) = (Γ1[y/x], α1).

So by rule 3.(a) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])),S(α3)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])),S(α3))
= (S((Γ1 + Γ2)[y/x]), S(α3))
= ((S(Γ1 + Γ2))[y/x], S(α3))
= (Γ[y/x], σ).

iii. x /∈ FV(M1) and x ∈ FV(M2):

Then M1[y/x] = M1 and Γ1[y/x] = Γ1.
So T(M1[y/x]) = T(M1) = (Γ1, α1) = (Γ1[y/x], α1).

By induction, T(M2[y/x]) = (Γ2[y/x], τ2).

So by rule 3.(a) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])), S(α3)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])),S(α3))
= (S((Γ1 + Γ2)[y/x]), S(α3))
= ((S(Γ1 + Γ2))[y/x], S(α3))
= (Γ[y/x], σ).

(b) (Γ, σ) = (S(Γ′ + ∑n
i=1 Γi), S(σ′

1)), where T(M1) = (Γ′, τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1), with n ≥ 2,

T(M2) = (Γi, τi) for 1 ≤ i ≤ n, and S = UNIFY({τi = τ ′
i | 1 ≤ i ≤ n}).

Since x ∈ FV(M) and y does not occur in M , then y does not occur in M1 nor in M2

and there are three possible cases regarding x:

i. x ∈ FV(M1) and x ∈ FV(M2):

Then by induction, T(M1[y/x]) = (Γ′[y/x], τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1)



38 Chapter 3. Linear Rank Intersection Types

and T(M2[y/x]) = (Γi[y/x], τi), for all 1 ≤ i ≤ n.

So by rule 3.(b) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ′[y/x]) + ∑n

i=1(Γi[y/x])), S(σ′
1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))

= (S((Γ′[y/x]) +
n∑

i=1
(Γi[y/x])),S(σ′

1))

= (S((Γ′ +
n∑

i=1
Γi)[y/x]), S(σ′

1))

= ((S(Γ′ +
n∑

i=1
Γi))[y/x], S(σ′

1))

= (Γ[y/x], σ).

ii. x ∈ FV(M1) and x /∈ FV(M2):

Then M2[y/x] = M2 and Γi[y/x] = Γi, for all 1 ≤ i ≤ n.
So T(M2[y/x]) = T(M2) = (Γi, τi) = (Γi[y/x], τi), for all 1 ≤ i ≤ n.

By induction, T(M1[y/x]) = (Γ′[y/x], τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1).

So by rule 3.(b) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ′[y/x]) + ∑n

i=1(Γi[y/x])), S(σ′
1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))

= (S((Γ′[y/x]) +
n∑

i=1
(Γi[y/x])),S(σ′

1))

= (S((Γ′ +
n∑

i=1
Γi)[y/x]), S(σ′

1))

= ((S(Γ′ +
n∑

i=1
Γi))[y/x], S(σ′

1))

= (Γ[y/x], σ).

iii. x /∈ FV(M1) and x ∈ FV(M2):

Then M1[y/x] = M1 and Γ′[y/x] = Γ′.
So T(M1[y/x]) = T(M1) = (Γ′, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1) = (Γ′[y/x], τ ′
1 ∩ · · · ∩ τ ′

n → σ′
1).



3.3. Type Inference Algorithm 39

By induction, T(M2[y/x]) = (Γi[y/x], τi), for all 1 ≤ i ≤ n.

So by rule 3.(b) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ′[y/x]) + ∑n

i=1(Γi[y/x])), S(σ′
1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))

= (S((Γ′[y/x]) +
n∑

i=1
(Γi[y/x])),S(σ′

1))

= (S((Γ′ +
n∑

i=1
Γi)[y/x]), S(σ′

1))

= ((S(Γ′ +
n∑

i=1
Γi))[y/x], S(σ′

1))

= (Γ[y/x], σ).

(c) (Γ, σ) = (S(Γ1 + Γ2),S(σ1)), where T(M1) = (Γ1, τ ⊸ σ1), T(M2) = (Γ2, τ2) and
S = UNIFY({τ2 = τ}).

Since x ∈ FV(M) and y does not occur in M , then y does not occur in M1 nor in M2

and there are three possible cases regarding x:
i. x ∈ FV(M1) and x ∈ FV(M2):

Then by induction, T(M1[y/x]) = (Γ1[y/x], τ ⊸ σ1) and T(M2[y/x]) = (Γ2[y/x], τ2).

So by rule 3.(c) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])),S(σ1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])),S(σ1))
= (S((Γ1 + Γ2)[y/x]), S(σ1))
= ((S(Γ1 + Γ2))[y/x], S(σ1))
= (Γ[y/x], σ).

ii. x ∈ FV(M1) and x /∈ FV(M2):

Then M2[y/x] = M2 and Γ2[y/x] = Γ2.
So T(M2[y/x]) = T(M2) = (Γ2, τ2) = (Γ2[y/x], τ2).

By induction, T(M1[y/x]) = (Γ1[y/x], τ ⊸ σ1).



40 Chapter 3. Linear Rank Intersection Types

So by rule 3.(c) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])),S(σ1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])),S(σ1))
= (S((Γ1 + Γ2)[y/x]), S(σ1))
= ((S(Γ1 + Γ2))[y/x], S(σ1))
= (Γ[y/x], σ).

iii. x /∈ FV(M1) and x ∈ FV(M2):

Then M1[y/x] = M1 and Γ1[y/x] = Γ1.
So T(M1[y/x]) = T(M1) = (Γ1, τ ⊸ σ1) = (Γ1[y/x], τ ⊸ σ1).

By induction, T(M2[y/x]) = (Γ2[y/x], τ2).

So by rule 3.(c) of the inference algorithm,
T((M1[y/x])(M2[y/x])) = (S((Γ1[y/x]) + (Γ2[y/x])), S(σ1)).

And M [y/x] = (M1[y/x])(M2[y/x]), so

T(M [y/x]) = T((M1[y/x])(M2[y/x]))
= (S((Γ1[y/x]) + (Γ2[y/x])), S(σ1))
= (S((Γ1 + Γ2)[y/x]),S(σ1))
= ((S(Γ1 + Γ2))[y/x],S(σ1))
= (Γ[y/x], σ).

Any other possible case makes the left side of the implication (T(M) = (Γ, σ), x ∈ FV(M)
and y does not occur in M) false, which makes the statement true.

Lemma 3.3.7. If T(M) = (Γ, σ), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), and y does not occur in M , then
T(M [y/y1, y/y2]) = (Γ′′, σ), with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Proof. By induction on the definition of T(M).

1. If M = λx1.M1 and let y be a new variable not occurring in M , we have the following
cases:

(a) (Γ, σ) = (Γ1x1 , Γ1(x1) ⊸ σ1), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), where T(M1) = (Γ1, σ1)
and Γ1(x1) = τ ∈ TL0.



3.3. Type Inference Algorithm 41

Since Γ1x1 ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), then Γ1 ≡ (Γ′, x1 : τ, y1 : τ⃗1, y2 : τ⃗2).

And since y does not occur in M1 (otherwise it would contradict the assumption that
y does not occur in M),
by induction, T(M1[y/y1, y/y2]) = (Γ′

1, σ1),
with Γ′

1 ≡ (Γ′, x1 : τ, y : τ⃗1 ∩ τ⃗2).

So by rule 2.(b) of the inference algorithm,
T(λx1.(M1[y/y1, y/y2])) = (Γ′

1x1
, τ ⊸ σ1).

And Γ′
1x1

≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = Γ′
1x1

.

Also, M [y/y1, y/y2] = λx1.(M1[y/y1, y/y2]), so

T(M [y/y1, y/y2]) = T(λx1.(M1[y/y1, y/y2]))
= (Γ′′, τ ⊸ σ1)
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

(b) (Γ, σ) = (Γ1x1 , Γ1(x1) → σ1), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), where T(M1) = (Γ1, σ1)
and Γ1(x1) = τ1 ∩ · · · ∩ τn, with n ≥ 2.

Since Γ1x1 ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), then Γ1 ≡ (Γ′, x1 : τ1 ∩ · · · ∩ τn, y1 : τ⃗1, y2 : τ⃗2).

And since y does not occur in M1 (otherwise it would contradict the assumption that
y does not occur in M),
by induction, T(M1[y/y1, y/y2]) = (Γ′

1, σ1),
with Γ′

1 ≡ (Γ′, x1 : τ1 ∩ · · · ∩ τn, y : τ⃗1 ∩ τ⃗2).

So by rule 2.(c) of the inference algorithm,
T(λx1.(M1[y/y1, y/y2])) = (Γ′

1x1
, τ1 ∩ · · · ∩ τn → σ1).

And Γ′
1x1

≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = Γ′
1x1

.



42 Chapter 3. Linear Rank Intersection Types

Also, M [y/y1, y/y2] = λx1.(M1[y/y1, y/y2]), so

T(M [y/y1, y/y2]) = T(λx1.(M1[y/y1, y/y2]))
= (Γ′′, τ1 ∩ · · · ∩ τn → σ1)
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

2. If M = M1M2 and let y be a new variable not occurring in M , we have the following cases:

(a) (Γ, σ) = (S(Γ1 + Γ2), S(α3)), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), where T(M1) = (Γ1, α1),
T(M2) = (Γ2, τ2), S = UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 do not occur in
Γ1, Γ2, α1, τ2.

Because y does not occur in M , then y does not occur in M1 nor in M2.

Since S(Γ1 + Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and M1 is a term variable (otherwise its type
given by the algorithm would not be a type variable), then there are five possible
cases regarding the presence of y1 and y2 in dom(Γ1) and dom(Γ2):

i. y1, y2 /∈ dom(Γ1) and y1, y2 ∈ dom(Γ2):

So Γ2 ≡ (Γ′
2, y1 : τ⃗3, y2 : τ⃗4) (for some τ⃗3, τ⃗4 such that S(τ⃗3) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,
T(M2[y/y1, y/y2]) = (Γ′′

2, τ ⊸ τ2), (1)

with Γ′′
2 ≡ (Γ′

2, y : τ⃗3 ∩ τ⃗4).

And since y1, y2 /∈ dom(Γ1), by Lemma 3.3.3, y1, y2 /∈ FV(M1),
so M1[y/y1, y/y2] = M1

and then
T(M1[y/y1, y/y2]) = T(M1) = (Γ1, α1). (2)

So by rule 3.(a) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ1 + Γ′′

2), S(α3)).

(Note that we can choose the same type variables α2, α3 (and, consequently,
the same S) in T(M1[y/y1, y/y2]M2[y/y1, y/y2]) because they are fresh in this
inference and, since they do not occur in Γ2, they also do not occur in Γ′′

2 (nor in
Γ1, α1, τ2). For analogous reasons, the same can and will be done in the following
cases.)



3.3. Type Inference Algorithm 43

Since Γ′′
2 ≡ (Γ′

2, y : τ⃗3 ∩ τ⃗4), Γ2 ≡ (Γ′
2, y1 : τ⃗3, y2 : τ⃗4) and S(Γ1 + Γ2) ≡ (Γ′, y1 :

τ⃗1, y2 : τ⃗2),
we have S(Γ1 + Γ′′

2) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ1 + Γ′′
2).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(α3))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

ii. y1, y2 ∈ dom(Γ2), y1 ∈ dom(Γ1) and y2 /∈ dom(Γ1):

So Γ2 ≡ (Γ′
2, y1 : τ⃗3, y2 : τ⃗4) and Γ1 ≡ (Γ′

1, y1 : τ⃗ ′
3) (for some τ⃗3, τ⃗4, τ⃗ ′

3 such that
S(τ⃗ ′

3 ∩ τ⃗3) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,
T(M2[y/y1, y/y2]) = (Γ′′

2, τ2), (1)

with Γ′′
2 ≡ (Γ′

2, y : τ⃗3 ∩ τ⃗4).

Since y1 ∈ dom(Γ1), by Lemma 3.3.3, y1 ∈ FV(M1).
So by Lemma 3.3.6, we have T(M1[y/y1]) = (Γ1[y/y1], α1).

And since y2 /∈ dom(Γ1), by Lemma 3.3.3, y2 /∈ FV(M1),
so M1[y/y1, y/y2] = M1[y/y1]
and then

T(M1[y/y1, y/y2]) = T(M1[y/y1]) = (Γ1[y/y1], α1). (2)

So by rule 3.(a) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ1[y/y1] + Γ′′

2),S(α3)).

Since Γ′′
2 ≡ (Γ′

2, y : τ⃗3 ∩ τ⃗4), Γ2 ≡ (Γ′
2, y1 : τ⃗3, y2 : τ⃗4), Γ1[y/y1] ≡ (Γ′

1, y : τ⃗ ′
3),

Γ1 ≡ (Γ′
1, y1 : τ⃗ ′

3), S(Γ1 +Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and τ⃗ ′
3 ∩(τ⃗3 ∩ τ⃗4) = (τ⃗ ′

3 ∩ τ⃗3)∩ τ⃗4,
we have S(Γ1[y/y1] + Γ′′

2) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ1[y/y1] + Γ′′
2).



44 Chapter 3. Linear Rank Intersection Types

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(α3))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

iii. y1, y2 ∈ dom(Γ2), y1 /∈ dom(Γ1) and y2 ∈ dom(Γ1):

Analogous to the previous case.

iv. y1 ∈ dom(Γ1), y2 /∈ dom(Γ1), y1 /∈ dom(Γ2) and y2 ∈ dom(Γ2):

Since y1 ∈ dom(Γ1), by Lemma 3.3.3, y1 ∈ FV(M1).
So by Lemma 3.3.6, we have T(M1[y/y1]) = (Γ1[y/y1], α1).

And since y2 /∈ dom(Γ1), by Lemma 3.3.3, y2 /∈ FV(M1),
so M1[y/y1, y/y2] = M1[y/y1]
and then

T(M1[y/y1, y/y2]) = T(M1[y/y1]) = (Γ1[y/y1], α1). (1)

Since y2 ∈ dom(Γ2), by Lemma 3.3.3, y2 ∈ FV(M2).
So by Lemma 3.3.6, we have T(M2[y/y2]) = (Γ2[y/y2], τ2).

And since y1 /∈ dom(Γ2), by Lemma 3.3.3, y1 /∈ FV(M2),
so M2[y/y1, y/y2] = M2[y/y2]
and then

T(M2[y/y1, y/y2]) = T(M2[y/y2]) = (Γ2[y/y2], τ2). (2)

So by rule 3.(a) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ1[y/y1] + Γ2[y/y2]), S(α3)).

Since S(Γ1 + Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2),
we have S(Γ1[y/y1] + Γ2[y/y2]) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ1[y/y1] + Γ2[y/y2]).



3.3. Type Inference Algorithm 45

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(α3))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

v. y1 /∈ dom(Γ1), y2 ∈ dom(Γ1), y1 ∈ dom(Γ2) and y2 /∈ dom(Γ2):

Analogous to the previous case.

(b) (Γ, σ) = (S(Γ′
1 + ∑n

i=1 Γi),S(σ′
1)), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), where T(M1) =

(Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1), with n ≥ 2, T(M2) = (Γi, τi) for 1 ≤ i ≤ n, and
S = UNIFY({τi = τ ′

i | 1 ≤ i ≤ n}).

Because y does not occur in M , then y does not occur in M1 nor in M2.

Since S(Γ′
1+∑n

i=1 Γi) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), then there are nine possible cases regarding
the presence of y1 and y2 in dom(Γ′

1) and dom(Γi) (for all 1 ≤ i ≤ n):

i. y1, y2 ∈ dom(Γ′
1) and y1, y2 /∈ dom(Γi):

So Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4) (for some τ⃗3, τ⃗4 such that S(τ⃗3) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,

T(M1[y/y1, y/y2]) = (Γ′′′
1 , τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1), (1)

with Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4).

And since y1, y2 /∈ dom(Γi), by Lemma 3.3.3, y1, y2 /∈ FV(M2),
so M2[y/y1, y/y2] = M2

and then
T(M2[y/y1, y/y2]) = T(M2) = (Γi, τi). (2)

So by rule 3.(b) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′′

1 + ∑n
i=1 Γi), S(σ′

1)).

Since Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4), Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4) and S(Γ′
1 + ∑n

i=1 Γi) ≡
(Γ′, y1 : τ⃗1, y2 : τ⃗2),
we have S(Γ′′′

1 + ∑n
i=1 Γi) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).



46 Chapter 3. Linear Rank Intersection Types

Let Γ′′ = S(Γ′′′
1 + ∑n

i=1 Γi).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ′

1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

ii. y1, y2 /∈ dom(Γ′
1) and y1, y2 ∈ dom(Γi):

Analogous to the previous case.

iii. y1, y2 ∈ dom(Γ′
1) and y1, y2 ∈ dom(Γi):

So Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4) and Γi ≡ (Γ′
i, y1 : τ⃗3i , y2 : τ⃗4i) (for some τ⃗3, τ⃗4, τ⃗3i , τ⃗4i

such that S(τ⃗3 ∩ τ⃗31 ∩ · · · ∩ τ⃗3n) = τ⃗1 and S(τ⃗4 ∩ τ⃗41 ∩ · · · ∩ τ⃗4n) = τ⃗2).

By induction,

T(M1[y/y1, y/y2]) = (Γ′′′
1 , τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1), (1)

with Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4);

T(M2[y/y1, y/y2]) = (Γ′′
i , τi), (2)

with Γ′′
i ≡ (Γ′

i, y : τ⃗3i ∩ τ⃗4i).

So by rule 3.(b) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′′

1 + ∑n
i=1 Γ′′

i ), S(σ′
1)).

Since Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4), Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4), Γ′′
i ≡ (Γ′

i, y : τ⃗3i ∩ τ⃗4i),
Γi ≡ (Γ′

i, y1 : τ⃗3i , y2 : τ⃗4i), S(Γ′
1 + ∑n

i=1 Γi) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and (τ⃗3 ∩ τ⃗4) ∩
(τ⃗31 ∩ τ⃗41) ∩ · · · ∩ (τ⃗3n ∩ τ⃗4n) = (τ⃗3 ∩ τ⃗31 ∩ · · · ∩ τ⃗3n) ∩ (τ⃗4 ∩ τ⃗41 ∩ · · · ∩ τ⃗4n),
we have S(Γ′′′

1 + ∑n
i=1 Γ′′

i ) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′′′
1 + ∑n

i=1 Γ′′
i ).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ′

1))
= (Γ′′, σ),



3.3. Type Inference Algorithm 47

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

iv. y1, y2 ∈ dom(Γ′
1), y1 ∈ dom(Γi) and y2 /∈ dom(Γi):

So Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4) and Γi ≡ (Γ′
i, y1 : τ⃗3i) (for some τ⃗3, τ⃗4, τ⃗3i such that

S(τ⃗3 ∩ τ⃗31 ∩ · · · ∩ τ⃗3n) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,

T(M1[y/y1, y/y2]) = (Γ′′′
1 , τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1), (1)

with Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4).

Since y1 ∈ dom(Γi), by Lemma 3.3.3, y1 ∈ FV(M2).
So by Lemma 3.3.6, we have T(M2[y/y1]) = (Γi[y/y1], τi).

And since y2 /∈ dom(Γi), by Lemma 3.3.3, y2 /∈ FV(M2),
so M2[y/y1, y/y2] = M2[y/y1]
and then

T(M2[y/y1, y/y2]) = T(M2[y/y1]) = (Γi[y/y1], τi). (2)

So by rule 3.(b) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′′

1 + ∑n
i=1 Γi[y/y1]),S(σ′

1)).

Since Γ′′′
1 ≡ (Γ′′

1, y : τ⃗3 ∩ τ⃗4), Γ′
1 ≡ (Γ′′

1, y1 : τ⃗3, y2 : τ⃗4), Γi[y/y1] ≡ (Γ′
i, y : τ⃗3i),

Γi ≡ (Γ′
i, y1 : τ⃗3i), S(Γ′

1 + ∑n
i=1 Γi) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and (τ⃗3 ∩ τ⃗4) ∩ τ⃗31 ∩ · · · ∩

τ⃗3n = (τ⃗3 ∩ τ⃗31 ∩ · · · ∩ τ⃗3n) ∩ τ⃗4,
we have S(Γ′′′

1 + ∑n
i=1 Γi[y/y1]) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′′′
1 + ∑n

i=1 Γi[y/y1]).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ′

1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

v. y1, y2 ∈ dom(Γ′
1), y1 /∈ dom(Γi) and y2 ∈ dom(Γi):

Analogous to the previous case.



48 Chapter 3. Linear Rank Intersection Types

vi. y1, y2 ∈ dom(Γi), y1 ∈ dom(Γ′
1) and y2 /∈ dom(Γ′

1):

Analogous to the previous case.

vii. y1, y2 ∈ dom(Γi), y1 /∈ dom(Γ′
1) and y2 ∈ dom(Γ′

1):

Analogous to the previous case.

viii. y1 ∈ dom(Γ′
1), y2 /∈ dom(Γ′

1), y1 /∈ dom(Γi) and y2 ∈ dom(Γi):

Since y1 ∈ dom(Γ′
1), by Lemma 3.3.3, y1 ∈ FV(M1).

So by Lemma 3.3.6, we have T(M1[y/y1]) = (Γ′
1[y/y1], τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1).

And since y2 /∈ dom(Γ′
1), by Lemma 3.3.3, y2 /∈ FV(M1),

so M1[y/y1, y/y2] = M1[y/y1]
and then

T(M1[y/y1, y/y2]) = T(M1[y/y1]) = (Γ′
1[y/y1], τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1). (1)

Since y2 ∈ dom(Γi), by Lemma 3.3.3, y2 ∈ FV(M2).
So by Lemma 3.3.6, we have T(M2[y/y2]) = (Γi[y/y2], τi).

And since y1 /∈ dom(Γi), by Lemma 3.3.3, y1 /∈ FV(M2),
so M2[y/y1, y/y2] = M2[y/y2]
and then

T(M2[y/y1, y/y2]) = T(M2[y/y2]) = (Γi[y/y2], τi). (2)

So by rule 3.(b) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′

1[y/y1] + ∑n
i=1 Γi[y/y2]), S(σ′

1)).

Since S(Γ′
1 + ∑n

i=1 Γi) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2),
we have S(Γ′

1[y/y1] + ∑n
i=1 Γi[y/y2]) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′
1[y/y1] + ∑n

i=1 Γi[y/y2]).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ′

1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).



3.3. Type Inference Algorithm 49

ix. y1 /∈ dom(Γ′
1), y2 ∈ dom(Γ′

1), y1 ∈ dom(Γi) and y2 /∈ dom(Γi):

Analogous to the previous case.

(c) (Γ, σ) = (S(Γ1+Γ2),S(σ1)), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), where T(M1) = (Γ1, τ ⊸ σ1),
T(M2) = (Γ2, τ2) and S = UNIFY({τ2 = τ}).

Because y does not occur in M , then y does not occur in M1 nor in M2.

Since S(Γ1 + Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), then there are nine possible cases regarding
the presence of y1 and y2 in dom(Γ1) and dom(Γ2):

i. y1, y2 ∈ dom(Γ1) and y1, y2 /∈ dom(Γ2):

So Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4) (for some τ⃗3, τ⃗4 such that S(τ⃗3) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,
T(M1[y/y1, y/y2]) = (Γ′′

1, τ ⊸ σ1), (1)

with Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4).

And since y1, y2 /∈ dom(Γ2), by Lemma 3.3.3, y1, y2 /∈ FV(M2),
so M2[y/y1, y/y2] = M2

and then
T(M2[y/y1, y/y2]) = T(M2) = (Γ2, τ2). (2)

So by rule 3.(c) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′

1 + Γ2), S(σ1)).

Since Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4), Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4) and S(Γ1 + Γ2) ≡ (Γ′, y1 :

τ⃗1, y2 : τ⃗2),
we have S(Γ′′

1 + Γ2) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′′
1 + Γ2).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).



50 Chapter 3. Linear Rank Intersection Types

ii. y1, y2 /∈ dom(Γ1) and y1, y2 ∈ dom(Γ2):

Analogous to the previous case.

iii. y1, y2 ∈ dom(Γ1) and y1, y2 ∈ dom(Γ2):

So Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4) and Γ2 ≡ (Γ′

2, y1 : τ⃗ ′
3, y2 : τ⃗ ′

4) (for some τ⃗3, τ⃗4, τ⃗ ′
3, τ⃗ ′

4
such that S(τ⃗3 ∩ τ⃗ ′

3) = τ⃗1 and S(τ⃗4 ∩ τ⃗ ′
4) = τ⃗2).

By induction,
T(M1[y/y1, y/y2]) = (Γ′′

1, τ ⊸ σ1), (1)

with Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4);

T(M2[y/y1, y/y2]) = (Γ′′
2, τ2), (2)

with Γ′′
2 ≡ (Γ′

2, y : τ⃗ ′
3 ∩ τ⃗ ′

4).

So by rule 3.(c) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′

1 + Γ′′
2), S(σ1)).

Since Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4), Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4), Γ′′

2 ≡ (Γ′
2, y : τ⃗ ′

3 ∩ τ⃗ ′
4),

Γ2 ≡ (Γ′
2, y1 : τ⃗ ′

3, y2 : τ⃗ ′
4), S(Γ1 +Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and (τ⃗3 ∩ τ⃗4)∩(τ⃗ ′

3 ∩ τ⃗ ′
4) =

(τ⃗3 ∩ τ⃗ ′
3) ∩ (τ⃗4 ∩ τ⃗ ′

4),
we have S(Γ′′

1 + Γ′′
2) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′′
1 + Γ′′

2).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

iv. y1, y2 ∈ dom(Γ1), y1 ∈ dom(Γ2) and y2 /∈ dom(Γ2):

So Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4) and Γ2 ≡ (Γ′

2, y1 : τ⃗ ′
3) (for some τ⃗3, τ⃗4, τ⃗ ′

3 such that
S(τ⃗3 ∩ τ⃗ ′

3) = τ⃗1 and S(τ⃗4) = τ⃗2).

By induction,
T(M1[y/y1, y/y2]) = (Γ′′

1, τ ⊸ σ1), (1)



3.3. Type Inference Algorithm 51

with Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4).

Since y1 ∈ dom(Γ2), by Lemma 3.3.3, y1 ∈ FV(M2).
So by Lemma 3.3.6, we have T(M2[y/y1]) = (Γ2[y/y1], τ2).

And since y2 /∈ dom(Γ2), by Lemma 3.3.3, y2 /∈ FV(M2),
so M2[y/y1, y/y2] = M2[y/y1]
and then

T(M2[y/y1, y/y2]) = T(M2[y/y1]) = (Γ2[y/y1], τ2). (2)

So by rule 3.(c) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ′′

1 + Γ2[y/y1]),S(σ1)).

Since Γ′′
1 ≡ (Γ′

1, y : τ⃗3 ∩ τ⃗4), Γ1 ≡ (Γ′
1, y1 : τ⃗3, y2 : τ⃗4), Γ2[y/y1] ≡ (Γ′

2, y : τ⃗ ′
3),

Γ2 ≡ (Γ′
2, y1 : τ⃗ ′

3), S(Γ1 +Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2) and (τ⃗3 ∩ τ⃗4)∩ τ⃗ ′
3 = (τ⃗3 ∩ τ⃗ ′

3)∩ τ⃗4,
we have S(Γ′′

1 + Γ2[y/y1]) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ′′
1 + Γ2[y/y1]).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

v. y1, y2 ∈ dom(Γ1), y1 /∈ dom(Γ2) and y2 ∈ dom(Γ2):

Analogous to the previous case.

vi. y1, y2 ∈ dom(Γ2), y1 ∈ dom(Γ1) and y2 /∈ dom(Γ1):

Analogous to the previous case.

vii. y1, y2 ∈ dom(Γ2), y1 /∈ dom(Γ1) and y2 ∈ dom(Γ1):

Analogous to the previous case.

viii. y1 ∈ dom(Γ1), y2 /∈ dom(Γ1), y1 /∈ dom(Γ2) and y2 ∈ dom(Γ2):

Since y1 ∈ dom(Γ1), by Lemma 3.3.3, y1 ∈ FV(M1).



52 Chapter 3. Linear Rank Intersection Types

So by Lemma 3.3.6, we have T(M1[y/y1]) = (Γ1[y/y1], τ ⊸ σ1).

And since y2 /∈ dom(Γ1), by Lemma 3.3.3, y2 /∈ FV(M1),
so M1[y/y1, y/y2] = M1[y/y1]
and then

T(M1[y/y1, y/y2]) = T(M1[y/y1]) = (Γ1[y/y1], τ ⊸ σ1). (1)

Since y2 ∈ dom(Γ2), by Lemma 3.3.3, y2 ∈ FV(M2).
So by Lemma 3.3.6, we have T(M2[y/y2]) = (Γ2[y/y2], τ2).

And since y1 /∈ dom(Γ2), by Lemma 3.3.3, y1 /∈ FV(M2),
so M2[y/y1, y/y2] = M2[y/y2]
and then

T(M2[y/y1, y/y2]) = T(M2[y/y2]) = (Γ2[y/y2], τ2). (2)

So by rule 3.(c) of the inference algorithm (and (1), (2)),
T(M1[y/y1, y/y2]M2[y/y1, y/y2]) = (S(Γ1[y/y1] + Γ2[y/y2]), S(σ1)).

Since S(Γ1 + Γ2) ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2),
we have S(Γ1[y/y1] + Γ2[y/y2]) ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

Let Γ′′ = S(Γ1[y/y1] + Γ2[y/y2]).

Also, M [y/y1, y/y2] = M1[y/y1, y/y2]M2[y/y1, y/y2], so

T(M [y/y1, y/y2]) = T(M1[y/y1, y/y2]M2[y/y1, y/y2])
= (Γ′′, S(σ1))
= (Γ′′, σ),

with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

ix. y1 /∈ dom(Γ1), y2 ∈ dom(Γ1), y1 ∈ dom(Γ2) and y2 /∈ dom(Γ2):

Analogous to the previous case.

Any other possible case makes the left side of the implication (T(M) = (Γ, σ), with Γ ≡
(Γ′, y1 : τ⃗1, y2 : τ⃗2), and y does not occur in M) false, which makes the statement true.



3.3. Type Inference Algorithm 53

Theorem 3.3.8 (Completeness). If Φ▷Γ ⊢2 M : σ, then T(M) = (Γ′, σ′) (for some environment
Γ′ and type σ′) and there is a substitution S such that S(σ′) = σ and S(Γ′) ≡ Γ.

Proof. By induction on |Φ|.

1. (Axiom): Then Γ = [x : τ ], M = x and σ = τ .

T(M) = ([x : α], α) and let S = [τ/α].

Then S(σ′) = S(α) = α[τ/α] = τ = σ

and S(Γ′) = S([x : α]) = [x : α[τ/α]] = [x : τ ] = Γ ≡ Γ.

2. (Exchange): Then Γ = (Γ1, y : τ⃗2, x : τ⃗1, Γ2), M = M1, σ = σ1, and assuming that the
premise Γ1, x : τ⃗1, y : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

By the induction hypothesis, T(M1) = (Γ′′, σ′′)

and there is a substitution S′ such that S′(σ′′) = σ1 and S′(Γ′′) ≡ (Γ1, x : τ⃗1, y : τ⃗2, Γ2).

By definition, (Γ1, x : τ⃗1, y : τ⃗2, Γ2) ≡ (Γ1, y : τ⃗2, x : τ⃗1, Γ2).

So S′(Γ′′) ≡ (Γ1, x : τ⃗1, y : τ⃗2, Γ2) ≡ (Γ1, y : τ⃗2, x : τ⃗1, Γ2) = Γ.

And T(M) = T(M1) and S′(σ′′) = σ1 = σ.

So for Γ′ = Γ′′, σ′ = σ′′ and S = S′,

we have T(M) = (Γ′, σ′), S(σ′) = σ and S(Γ′) ≡ Γ.

3. (Contraction): Then Γ = (Γ1, x : τ⃗1 ∩ τ⃗2, Γ2), M = M1[x/x1, x/x2], σ = σ1, and assuming
that the premise Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M1 : σ1 holds.

By the induction hypothesis, T(M1) = (Γ′′, σ′′)

and there is a substitution S′ such that S′(σ′′) = σ1 and S′(Γ′′) ≡ (Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2).

Because S′(Γ′′) ≡ (Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2), then dom(Γ′′) = dom(Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2).

So Γ′′ ≡ (Γ3, x1 : τ⃗ ′
1, x2 : τ⃗ ′

2) for some environment Γ3 and types τ⃗ ′
1, τ⃗ ′

2 such that S′(τ⃗ ′
1) = τ⃗1,

S′(τ⃗ ′
2) = τ⃗2 and S′(Γ3) ≡ (Γ1, Γ2).



54 Chapter 3. Linear Rank Intersection Types

Then by Lemma 3.3.7 (x does not occur in M1),

T(M1[x/x1, x/x2]) = (Γ′′
1, σ′′), with Γ′′

1 ≡ (Γ3, x : τ⃗ ′
1 ∩ τ⃗ ′

2).

And S′(Γ3, x : τ⃗ ′
1 ∩ τ⃗ ′

2) ≡ (Γ1, Γ2, x : τ⃗1 ∩ τ⃗2) ≡ (Γ1, x : τ⃗1 ∩ τ⃗2, Γ2) = Γ.

Also, M = M1[x/x1, x/x2], so T(M) = T(M1[x/x1, x/x2]) = (Γ′′
1, σ′′).

So for Γ′ = Γ′′
1, σ′ = σ′′ and S = S′, we have T(M) = (Γ′, σ′), S(σ′) = σ and S(Γ′) ≡ Γ.

4. (→ Intro): Then Γ = Γ1, M = λx.M1, σ = τ1 ∩ · · · ∩ τn → σ1, and assuming that the
premise Γ1, x : τ1 ∩ · · · ∩ τn ⊢2 M1 : σ1 (with n ≥ 2) holds.

By the induction hypothesis, T(M1) = (Γ′′, σ′′)

and there is a substitution S′ such that S′(σ′′) = σ1 and S′(Γ′′) ≡ (Γ1, x : τ1 ∩ · · · ∩ τn).

There is only one possible case for T(M):

• (x : τ ′
1 ∩ · · · ∩ τ ′

m) ∈ Γ′′ (with m ≥ 2). Then T(M) = (Γ′′
x, τ ′

1 ∩ · · · ∩ τ ′
m → σ′′).

By S′(Γ′′) ≡ (Γ1, x : τ1 ∩ · · · ∩ τn) and the assumption that (x : τ ′
1 ∩ · · · ∩ τ ′

m) ∈ Γ′′,
we have S′(τ ′

1 ∩ · · · ∩ τ ′
m) = τ1 ∩ · · · ∩ τn.

Then by that and by S′(σ′′) = σ1,
we have S′(τ ′

1 ∩ · · · ∩ τ ′
m → σ′′) = τ1 ∩ · · · ∩ τn → σ1.

By S′(Γ′′) ≡ (Γ1, x : τ1 ∩ · · · ∩ τn) and the definition of environment, S′(Γ′′
x) ≡ Γ1.

So for Γ′ = Γ′′
x, σ′ = τ ′

1 ∩ · · · ∩ τ ′
m → σ′′ and S = S′, we have T(M) = (Γ′, σ′),

S(σ′) = σ and S(Γ′) ≡ Γ.

Note that there is not the case where x /∈ dom(Γ′′) because by Γ1, x : τ1 ∩· · ·∩τn ⊢2 M1 : σ1

(with n ≥ 2) and Corollary 3.3.3.1, x ∈ dom(Γ′′).

There is also not the case where (x : τ) ∈ Γ′′, as the substitution S′ could not exist (because
there is no substitution S′ such that S′(τ) = τ1 ∩ · · · ∩ τn).

5. (→ Elim): Then Γ = (Γ0,
∑n

i=1 Γi), M = M1M2, σ = σ1, and assuming that the premises
Γ0 ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ1 and Γi ⊢2 M2 : τi, for 1 ≤ i ≤ n (with n ≥ 2), hold.

By the induction hypothesis,



3.3. Type Inference Algorithm 55

• T(M1) = (Γ′
0, σ′

0) and there is a substitution S′
0 such that S′

0(σ′
0) = τ1 ∩ · · · ∩ τn → σ1

and S′
0(Γ′

0) ≡ Γ0;
• T(M2) = (Γ′

i, σ′
i) and there are substitutions S′

i such that S′
i(σ′

i) = τi and S′
i(Γ′

i) ≡ Γi,
for 1 ≤ i ≤ n.

There is only one possible case for T(M):

• σ′
0 = τ ′

1 ∩ · · · ∩ τ ′
n → σ3 and, for each 1 ≤ i ≤ n, σ′

i = τ ′′
i :

Let P = {τ ′
i = τ ′′

i | 1 ≤ i ≤ n}.

Let us assume, without loss of generality, that Γ′
0, σ′

0, S′
0 and all Γ′

i, σ′
i,S′

i do not have
type variables in common (if they did, we could simply rename the type variables in
each of the Γ′

i, σ′
i, S′

i to fresh type variables and we would have the same result, as we
consider types equal up to renaming of variables).

We have S′
i(σ′

i) = τi and σ′
i = τ ′′

i , so S′
i(τ ′′

i ) = τi, for each 1 ≤ i ≤ n.

And S′
0(σ′

0) = τ1 ∩ · · · ∩ τn → σ1 and σ′
0 = τ ′

1 ∩ · · · ∩ τ ′
n → σ3,

so S′
0(τ ′

1 ∩ · · · ∩ τ ′
n → σ3) = τ1 ∩ · · · ∩ τn → σ1.

Equivalently, S′
0(τ ′

1) ∩ · · · ∩ S′
0(τ ′

n) → S′
0(σ3) = τ1 ∩ · · · ∩ τn → σ1.

So S′
0(σ3) = σ1 and S′

0(τ ′
i) = τi, for each 1 ≤ i ≤ n.

Then S3 = S′
0 ∪ S′

1 ∪ · · · ∪ S′
n is a solution to P :

for all 1 ≤ i ≤ n, S3(τ ′
i) = S′

0(τ ′
i) = τi = S′

i(τ ′′
i ) = S3(τ ′′

i ).

Let S′ = UNIFY(P ).
Then we have T(M) = (S′(Γ′

0 + ∑n
i=1 Γ′

i),S′(σ3)), given by the algorithm.

By Definition 3.3.3 of most general unifier, there exists an S such that

(S(S′(Γ′
0 +

n∑
i=1

Γ′
i)), S(S′(σ3))) = (S3(Γ′

0 +
n∑

i=1
Γ′

i),S3(σ3)). (1)

And (S(S′(Γ′
0 + ∑n

i=1 Γ′
i)),S(S′(σ3))) is also a solution to T(M).

We have dom(Γ0) ∩ dom(Γi) = ∅, for all 1 ≤ i ≤ n (otherwise Γ = Γ0,
∑n

i=1 Γi would
be inconsistent),
so Γ0,

∑n
i=1 Γi ≡ Γ0 + ∑n

i=1 Γi.

Because of that and our initial assumption that Γ′
0, σ′

0, S′
0 and all Γ′

i, σ′
i, S′

i do not have
type variables in common, we have S′

0(Γ′
0) + ∑n

i=1 S′
i(Γ′

i) ≡ Γ0,
∑n

i=1 Γi.



56 Chapter 3. Linear Rank Intersection Types

And S3(Γ′
0 + ∑n

i=1 Γ′
i) = S′

0(Γ′
0) + ∑n

i=1 S′
i(Γ′

i),
so S3(Γ′

0 + ∑n
i=1 Γ′

i) ≡ Γ0,
∑n

i=1 Γi,
which, by (1), is equivalent to S(S′(Γ′

0 + ∑n
i=1 Γ′

i)) ≡ Γ0,
∑n

i=1 Γi.

Finally, we have S3(σ3) = S′
0(σ3) and S′

0(σ3) = σ1,
so S3(σ3) = σ1,
which, by (1), is equivalent to S(S′(σ3)) = σ1.

So for Γ′ = S′(Γ′
0 + ∑n

i=1 Γ′
i) and σ′ = S′(σ3), we have T(M) = (Γ′, σ′) and there is an

S such that S(σ′) = σ and S(Γ′) ≡ Γ.

Note that there is not the case where σ′
0 = τ ′

1∩· · ·∩τ ′
m → σ3 with m ̸= n, as the substitution

S′
0 could not exist (because there is no substitution S′

0 such that S′
0(τ ′

1 ∩ · · · ∩ τ ′
m → σ3) =

τ1 ∩ · · · ∩ τn → σ1, for m ̸= n).

There is also not the case where σ′
0 = τ ′ ⊸ σ3 nor the case where σ′

0 = α as the substitution
S′

0 (such that S′
0(σ′

0) = τ1 ∩ · · · ∩ τn → σ1) could not exist.

6. (⊸ Intro): Then Γ = Γ1, M = λx.M1, σ = τ ⊸ σ1, and assuming that the premise
Γ1, x : τ ⊢2 M1 : σ1 holds.

By the induction hypothesis, T(M1) = (Γ′′, σ′′)

and there is a substitution S′ such that S′(σ′′) = σ1 and S′(Γ′′) ≡ (Γ1, x : τ).

There is only one possible case for T(M):

• (x : τ ′) ∈ Γ′′. Then T(M) = (Γ′′
x, τ ′ ⊸ σ′′).

By S′(Γ′′) ≡ (Γ1, x : τ) and the assumption that (x : τ ′) ∈ Γ′′,
we have S′(τ ′) = τ .

Then by that and by S′(σ′′) = σ1,
we have S′(τ ′ ⊸ σ′′) = τ ⊸ σ1.

By S′(Γ′′) ≡ (Γ1, x : τ) and the definition of environment, S′(Γ′′
x) ≡ Γ1.

So for Γ′ = Γ′′
x, σ′ = τ ′ ⊸ σ′′ and S = S′, we have T(M) = (Γ′, σ′), S(σ′) = σ and

S(Γ′) ≡ Γ.

Note that there is not the case where x /∈ dom(Γ′′) because by Γ1, x : τ ⊢2 M1 : σ1 and
Corollary 3.3.3.1, x ∈ dom(Γ′′).



3.3. Type Inference Algorithm 57

There is also not the case where (x : τ1 ∩ · · · ∩ τn) ∈ Γ′′, as the substitution S′ could not
exist (because there is no substitution S′ such that S′(τ1 ∩ · · · ∩ τn) = τ).

7. (⊸ Elim): Then Γ = (Γ1, Γ2), M = M1M2, σ = σ1, and assuming that the premises
Γ1 ⊢2 M1 : τ ⊸ σ1 and Γ2 ⊢2 M2 : τ hold.

By the induction hypothesis,

• T(M1) = (Γ′
1, σ′

1) and there is a substitution S′
1 such that S′

1(σ′
1) = τ ⊸ σ1 and

S′
1(Γ′

1) ≡ Γ1;

• T(M2) = (Γ′
2, σ′

2) and there is a substitution S′
2 such that S′

2(σ′
2) = τ and S′

2(Γ′
2) ≡ Γ2.

There are two possible cases for T(M):

• σ′
1 = α1 and σ′

2 = τ2:

Let P = {α1 = α2 ⊸ α3, τ2 = α2}, where α2, α3 are fresh variables.

Let us assume, without loss of generality, that Γ′
1, σ′

1,S′
1 and Γ′

2, σ′
2,S′

2 do not have
type variables in common (if they did, we could simply rename the type variables in
Γ′

2, σ′
2, S′

2 to fresh type variables and we would have the same result, as we consider
types equal up to renaming of variables).

We have S′
2(σ′

2) = τ and σ′
2 = τ2, so S′

2(τ2) = τ .

And S′
1(σ′

1) = τ ⊸ σ1 and σ′
1 = α1, so S′

1(α1) = τ ⊸ σ1.

Then S3 = S′
1 ∪ S′

2 ∪ [τ/α2, σ1/α3] is a solution to P :

– S3(α1) = S′
1(α1) = τ ⊸ σ1 = (α2 ⊸ α3)[τ/α2, σ1/α3] = S3(α2 ⊸ α3);

– S3(τ2) = S′
2(τ2) = τ = α2[τ/α2, σ1/α3] = S3(α2).

Let S′ = UNIFY(P ).
Then we have T(M) = (S′(Γ′

1 + Γ′
2),S′(α3)), given by the algorithm.

By Definition 3.3.3 of most general unifier, there exists an S such that

(S(S′(Γ′
1 + Γ′

2)), S(S′(α3))) = (S3(Γ′
1 + Γ′

2),S3(α3)). (1)

And (S(S′(Γ′
1 + Γ′

2)), S(S′(α3))) is also a solution to T(M).



58 Chapter 3. Linear Rank Intersection Types

We have dom(Γ1) ∩ dom(Γ2) = ∅ (otherwise Γ = Γ1, Γ2 would be inconsistent),
so Γ1, Γ2 ≡ Γ1 + Γ2.

Because of that and our initial assumption that Γ′
1, σ′

1,S′
1 and Γ′

2, σ′
2,S′

2 do not have
type variables in common, we have S′

1(Γ′
1) + S′

2(Γ′
2) ≡ Γ1, Γ2.

And S3(Γ′
1 + Γ′

2) = S′
1(Γ′

1) + S′
2(Γ′

2),
so S3(Γ′

1 + Γ′
2) ≡ Γ1, Γ2,

which, by (1), is equivalent to S(S′(Γ′
1 + Γ′

2)) ≡ Γ1, Γ2.

Finally, we have S3(α3) = σ1,
which, by (1), is equivalent to S(S′(α3)) = σ1.

So for Γ′ = S′(Γ′
1 + Γ′

2) and σ′ = S′(α3), we have T(M) = (Γ′, σ′) and there is an S
such that S(σ′) = σ and S(Γ′) ≡ Γ.

• σ′
1 = τ ′ ⊸ σ3 and σ′

2 = τ2:

Let P = {τ2 = τ ′}.

Let us assume, without loss of generality, that Γ′
1, σ′

1,S′
1 and Γ′

2, σ′
2,S′

2 do not have
type variables in common (if they did, we could simply rename the type variables in
Γ′

2, σ′
2, S′

2 to fresh type variables and we would have the same result, as we consider
types equal up to renaming of variables).

We have S′
2(σ′

2) = τ and σ′
2 = τ2, so S′

2(τ2) = τ .

And S′
1(σ′

1) = τ ⊸ σ1 and σ′
1 = τ ′ ⊸ σ3,

so S′
1(τ ′ ⊸ σ3) = τ ⊸ σ1.

Equivalently, (S′
1(τ ′)) ⊸ (S′

1(σ3)) = τ ⊸ σ1.
So S′

1(τ ′) = τ and S′
1(σ3) = σ1.

Then S3 = S′
1 ∪ S′

2 is a solution to P :
S3(τ2) = S′

2(τ2) = τ = S′
1(τ ′) = S3(τ ′).

Let S′ = UNIFY(P ).
Then we have T(M) = (S′(Γ′

1 + Γ′
2),S′(σ3)), given by the algorithm.

By Definition 3.3.3 of most general unifier, there exists an S such that

(S(S′(Γ′
1 + Γ′

2)), S(S′(σ3))) = (S3(Γ′
1 + Γ′

2),S3(σ3)). (1)



3.4. Final Remarks 59

And (S(S′(Γ′
1 + Γ′

2)),S(S′(σ3))) is also a solution to T(M).

We have dom(Γ1) ∩ dom(Γ2) = ∅ (otherwise Γ = Γ1, Γ2 would be inconsistent),
so Γ1, Γ2 ≡ Γ1 + Γ2.

Because of that and our initial assumption that Γ′
1, σ′

1,S′
1 and Γ′

2, σ′
2,S′

2 do not have
type variables in common, we have S′

1(Γ′
1) + S′

2(Γ′
2) ≡ Γ1, Γ2.

And S3(Γ′
1 + Γ′

2) = S′
1(Γ′

1) + S′
2(Γ′

2),
so S3(Γ′

1 + Γ′
2) ≡ Γ1, Γ2,

which, by (1), is equivalent to S(S′(Γ′
1 + Γ′

2)) ≡ Γ1, Γ2.

Finally, we have S3(σ3) = S′
1(σ3) and S′

1(σ3) = σ1,
so S3(σ3) = σ1,
which, by (1), is equivalent to S(S′(σ3)) = σ1.

So for Γ′ = S′(Γ′
1 + Γ′

2) and σ′ = S′(σ3), we have T(M) = (Γ′, σ′) and there is an S
such that S(σ′) = σ and S(Γ′) ≡ Γ.

Note that there is not the case where σ′
1 = τ ′

1 ∩ · · · ∩ τ ′
n → σ3, as the substitution S′

1 could
not exist (because there is no substitution S′

1 such that S′
1(τ ′

1 ∩ · · · ∩ τ ′
n → σ3) = τ ⊸ σ1).

Hence, we end up with a sound and complete type inference algorithm for the Linear Rank 2
Intersection Type System.

3.4 Final Remarks

A λ-term M is called a λI-term if and only if, for each subterm of the form λx.N in M , x occurs
free in N at least once. Note that our type system and type inference algorithm only type
λI-terms, but we could have extended them for the affine terms – a λ-term M is affine if and
only if, for each subterm of the form λx.N in M , x occurs free in N at most once, and if each
free variable of M has just one occurrence free in M .

There is no unique and final way of typing affine terms. For instance, in the systems in [1],
arguments that do not occur in the body of the function get the empty type [ ]. Since we do not
allow the empty sequence in our definition and adding it would make the system more complex,
we decided to only work with λI-terms.



60 Chapter 3. Linear Rank Intersection Types

Regarding our choice of defining environments as lists and having the rules (Exchange) and
(Contraction) in the type system, instead of defining environments as sets and using the (+)
operation for concatenation, that decision had to do with the fact that, this way, the system is
closer to a linear type system. In the Linear Rank 2 Intersection Type System, a term is linear
until we need to contract variables, so using these definitions makes us have more control over
linearity and non-linearity. Also, it makes the system more easily extensible for other algebraic
properties of intersection. We could also have rewritten the rule (→ Elim) in order not to use
the (+) operation, which is something we might do in the future.

The downside of choosing these definitions is that it makes the proofs (in Chapter 3 and
Chapter 4) more complex, as they are not syntax directed because of the rules (Exchange) and
(Contraction).



Chapter 4

Resource Inference

Given the quantitative properties of the linear rank 2 intersection types, we now aim to redefine
the type system and the type inference algorithm, in order to infer not only the type of a λ-term,
but also parameters related to resource usage. In this case, we are interested in obtaining the
number of evaluation steps of the λ-term to its normal form, for the leftmost-outermost strategy.

4.1 Type System

The new type system defined in this chapter results from an adaptation and merge between our
Linear Rank 2 Intersection Type System (Definition 3.2.2) and the one we presented in Chapter 2
(Definition 2.4.6) from [1], as that system is able to derive a measure related to the number of
evaluation steps for the leftmost-outermost strategy. We then begin by recalling and adapting
some definitions that were already introduced in Chapter 2 and Chapter 3.

The predicates normal and neutral defining, respectively, the leftmost-outermost normal terms
and neutral terms, are recalled in Definition 4.1.1. The predicate abs(M) is true if and only if M

is an abstraction; normal(M) means that M is in normal form; and neutral(M) means that M is
in normal form and can never behave as an abstraction, i.e., it does not create a redex when
applied to an argument.

Definition 4.1.1 (Leftmost-outermost normal forms).

neutral(x)
neutral(M) normal(N)

neutral(MN)
neutral(M)
normal(M)

normal(M)
normal(λx.M)

Definition 4.1.2 (Leftmost-outermost evaluation strategy).

(λx.M)N −→ M [N/x]
M −→ M ′

λx.M −→ λx.M ′
M −→ M ′ ¬abs(M)

MN −→ M ′N

neutral(N) M −→ M ′

NM −→ NM ′

61



62 Chapter 4. Resource Inference

Definition 4.1.3 (Finite rank multi-types). We define the finite rank multi-types by the following
grammar:

tight ::= Neutral | Abs (Tight constants)
t ::= tight | α | t ⊸ t (Rank 0 multi-types)
t⃗ ::= t | t⃗ ∩ t⃗ (Rank 1 multi-types)
s ::= t | t⃗ → s (Rank 2 multi-types)

Definition 4.1.4.

• Here, a statement is an expression of the form M : (τ⃗ , t⃗), where the pair (τ⃗ , t⃗) is called the
predicate, and the term M is called the subject of the statement.

• A declaration is a statement where the subject is a term variable.

• The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.

• A finite list of declarations is consistent if and only if the term variables are all distinct.

• We call environment to a consistent finite list of declarations which predicates are pairs
with a sequence from TL1 as the first element and a rank 1 multi-type as the second element
of the pair (i.e., the declarations are of the form x : (τ⃗ , t⃗)), and we use Γ (possibly with
single quotes and/or number subscripts) to range over environments.

• If Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] is an environment, then Γ is a partial function, with
domain dom(Γ) = {x1, . . . , xn}, and Γ(xi) = (τ⃗i, t⃗i).

• We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).

• We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the declarations.

• If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:

for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
(τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2) if Γ1(x) = (τ⃗1, t⃗1) and Γ2(x) = (τ⃗2, t⃗2)

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2) \ dom(Γ1),
by the order they appear in Γ2.

• We write tight(s) if s is of the form tight and tight(t1 ∩ · · · ∩ tn) if tight(ti) for all 1 ≤ i ≤ n.

For Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)], we write tight(Γ) if tight(⃗ti) for all 1 ≤ i ≤ n, in
which case we also say that Γ is tight.



4.1. Type System 63

Definition 4.1.5 (Linear Rank 2 Quantitative Type System). In the Linear Rank 2 Quantitative
Type System, we say that M has type σ and multi-type s given the environment Γ, with index b,
and write

Γ ⊢b M : (σ, s)

if it can be obtained from the following derivation rules:

[x : (τ, t)] ⊢0 x : (τ, t) (Axiom)

Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, y : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ2 ⊢b M : (σ, s)

(Exchange)

Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ2 ⊢b M [x/x1, x/x2] : (σ, s)

(Contraction)

Γ, x : (τ, t) ⊢b M : (σ, s)
Γ ⊢b+1 λx.M : (τ ⊸ σ, t ⊸ s)

(⊸ Intro)

Γ, x : (τ, tight) ⊢b M : (σ, tight)
Γ ⊢b λx.M : (τ ⊸ σ, Abs)

(⊸ Introt)

Γ, x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ⊢b M : (σ, s) n ≥ 2
Γ ⊢b+1 λx.M : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)

(→ Intro)

Γ, x : (τ1 ∩ · · · ∩ τn, t⃗) ⊢b M : (σ, tight) tight(⃗t) n ≥ 2
Γ ⊢b λx.M : (τ1 ∩ · · · ∩ τn → σ, Abs)

(→ Introt)

Γ1 ⊢b1 M1 : (τ ⊸ σ, t ⊸ s) Γ2 ⊢b2 M2 : (τ, t)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, s)

(⊸ Elim)

Γ1 ⊢b1 M1 : (τ ⊸ σ, Neutral) Γ2 ⊢b2 M2 : (τ, tight)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, Neutral)

(⊸ Elimt)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)
Γ1 ⊢b1 M2 : (τ1, t1) · · · Γn ⊢bn M2 : (τn, tn) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, s)
(→ Elim)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, Neutral)
Γ1 ⊢b1 M2 : (τ1, tight) · · · Γn ⊢bn M2 : (τn, tight) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, Neutral)
(→ Elimt)



64 Chapter 4. Resource Inference

The tight rules (the t-indexed ones) are used to introduce the tight constants Neutral and
Abs, and they are related to minimal typings. Note that the index is only incremented in rules
(⊸ Intro) and (→ Intro), as these are used to type abstractions that will be applied, contrary to
the abstractions typed with the constant Abs.

Notation 4.1.1. We write Φ▷Γ ⊢b M : (σ, s) if Φ is a derivation tree ending with Γ ⊢b M : (σ, s).
In this case, |Φ| is the length of the derivation tree Φ.

Definition 4.1.6 (Tight derivations). A derivation Φ ▷ Γ ⊢b M : (σ, s) is tight if tight(s) and
tight(Γ).

Similarly to what has been done in [1] for the type system we presented in Chapter 2, in this
section we prove that, in the Linear Rank 2 Quantitative Type System, whenever a term is tightly
typable with index b, then b is exactly the number of evaluations steps to leftmost-outermost
normal form.

Example 4.1.1. Let M = (λx1.(λx2.x2x1)x1)I, where I is the identity function λy.y.

Let us first consider the leftmost-outermost evaluation of M to normal form:

(λx1.(λx2.x2x1)x1)I −→ (λx2.x2I)I −→ II −→ I

So the evaluation sequence has length 3.

Let us write ⊸α for the type (α ⊸ α) and
−−◦
Abs for the type Abs ⊸ Abs.

To make the derivation tree easier to read, let us first get the following derivation Φ for the
term λx1.(λx2.x2x1)x1:

[x2 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢0 x2 : (⊸α⊸⊸α,

−−◦
Abs) [x3 : (⊸α, Abs)] ⊢0 x3 : (⊸α, Abs)

[x2 : (⊸α⊸⊸α,
−−◦
Abs), x3 : (⊸α, Abs)] ⊢0 x2x3 : (⊸α, Abs)

[x3 : (⊸α, Abs)] ⊢1 λx2.x2x3 : ((⊸α⊸⊸α) ⊸ ⊸α,
−−◦
Abs⊸ Abs) [x4 : (⊸α⊸⊸α,

−−◦
Abs)] ⊢0 x4 : (⊸α⊸⊸α,

−−◦
Abs))

[x3 : (⊸α, Abs), x4 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢1 (λx2.x2x3)x4 : (⊸α, Abs)

[x1 : (⊸α ∩ (⊸α⊸⊸α), Abs ∩
−−◦
Abs)] ⊢1 (λx2.x2x1)x1 : (⊸α, Abs)

[ ] ⊢2 λx1.(λx2.x2x1)x1 : ((⊸α ∩ (⊸α⊸⊸α)) → ⊸α, (Abs ∩
−−◦
Abs) → Abs)

Then for the λ-term M , the following tight derivation is obtained:

Φ
[y : (α, Neutral)] ⊢0 y : (α, Neutral)

[ ] ⊢0 I : (⊸α, Abs)

[y : (⊸α, Abs)] ⊢0 y : (⊸α, Abs)

[ ] ⊢1 I : (⊸α⊸⊸α,
−−◦
Abs)

[ ] ⊢3 (λx1.(λx2.x2x1)x1)I : (⊸α, Abs)

So indeed, the index 3 represents the number of evaluation steps to leftmost-outermost normal
form.

We now show several properties of the type system, adapted from [1], in order to prove the
tight correctness (Theorem 4.1.7).



4.1. Type System 65

Lemma 4.1.1 (Tight spreading on neutral terms). If M is a term such that neutral(M) and
Φ ▷ Γ ⊢b M : (σ, s) is a typing derivation such that tight(Γ), then tight(s).

Proof. By induction on |Φ|.

Note that the last rule in Φ cannot be any of the ⊸ and → intro ones, because M = λx.M1

is not neutral.

1. (Axiom): Then Γ = [x : (τ, t)], M = x and s = t.

Since by hypothesis tight(Γ), then t is tight. So tight(s).

2. (Exchange): Then Γ = (Γ1, y : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ2), M = M1, s = s1, and assuming that
the premise Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2 ⊢b M1 : (σ, s1) holds.

Since by hypothesis tight(Γ), and (Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2) ≡ Γ, then tight(Γ1, x :
(τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2). And since neutral(M) and M = M1, then neutral(M1).

So by induction we get tight(s1). And because s = s1, we have tight(s).

3. (Contraction): Then Γ = (Γ1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ2), M = M1[x/x1, x/x2], s = s1, and
assuming that the premise Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2 ⊢b M1 : (σ, s1) holds.

Since by hypothesis tight(Γ), and all types in (Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2) appear in Γ,
then tight(Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2). And neutral(M1) because neutral(M1[x/x1, x/x2]).

So by induction we get tight(s1). And because s = s1, we have tight(s).

4. (⊸ Elim): Then Γ = (Γ1, Γ2), M = M1M2, s = s1, and assuming that the premises
Γ1 ⊢b1 M1 : (τ ⊸ σ, t ⊸ s1) and Γ2 ⊢b2 M2 : (τ, t) hold.

Since by hypothesis neutral(M1M2), then neutral(M1) and normal(M2)

All types in Γ1 appear in Γ. Then since by hypothesis tight(Γ), we have tight(Γ1).

Then we could apply the induction hypothesis to obtain tight(t ⊸ s1), which is false.

So (⊸ Elim) cannot be the last rule in Φ.



66 Chapter 4. Resource Inference

5. (→ Elim): Similarly to (⊸ Elim), here we would obtain tight(t1 ∩ · · · ∩ tn → s1), so
(→ Elim) also cannot be the last rule in Φ.

6. (⊸ Elimt): Then Γ = (Γ1, Γ2), M = M1M2 and s = Neutral.

Since s = Neutral, we already have tight(s).

7. (→ Elimt): Then Γ = (Γ,
∑n

i=1 Γi), M = M1M2 and s = Neutral.

Since s = Neutral, we already have tight(s).

Lemma 4.1.2 (Properties of tight typings for normal forms). Let M be such that normal(M)
and Φ ▷ Γ ⊢b M : (σ, s) be a typing derivation.

(i) Tightness: if Φ is tight, then b = 0.

(ii) Neutrality: if s = Neutral then neutral(M).

Proof. By induction on |Φ|.

1. (Axiom): Then Γ = [x : (τ, t)], M = x, b = 0 and s = t.

Clearly, both properties of the statement are verified in this case.

2. (Exchange): Then Γ = (Γ1, y : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ2), M = M1, b = b1, s = s1, and
assuming Φ1 ▷ Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2 ⊢b1 M1 : (σ, s1).

Since by hypothesis normal(M) and M = M1, then normal(M1).

(i) Tightness: if Φ is tight, then Φ1 is tight and by induction, b = b1 = 0.

(ii) Neutrality: if s = Neutral, since s = s1, s1 = Neutral and by induction, neutral(M1).
So since M = M1, neutral(M).

3. (Contraction): Then Γ = (Γ1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ2), M = M1[x/x1, x/x2], b = b1, s = s1,
and assuming Φ1 ▷ Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2 ⊢b1 M1 : (σ, s1).

Since by hypothesis normal(M) and M = M1[x/x1, x/x2], then normal(M1).



4.1. Type System 67

(i) Tightness: if Φ is tight, then Φ1 is tight and by induction, b = b1 = 0.

(ii) Neutrality: if s = Neutral, since s = s1, s1 = Neutral and by induction, neutral(M1).
So since M = M1[x/x1, x/x2], neutral(M).

4. (⊸ Intro): Then Γ = Γ1, M = λx.M1, b = b1 + 1, s = t ⊸ s1, and assuming
Φ1 ▷ Γ1, x : (τ, t) ⊢b1 M1 : (σ, s1).

Since by hypothesis normal(M) and M = λx.M1, then normal(M1).

(i) Tightness: Φ is not tight, so the statement trivially holds.

(ii) Neutrality: s ̸= Neutral, so the statement trivially holds.

5. (→ Intro): Then Γ = Γ1, M = λx.M1, b = b1 + 1, s = t1 ∩ · · · ∩ tn → s1, and assuming
Φ1 ▷ Γ1, x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ⊢b1 M1 : (σ, s1), with n ≥ 2.

Since by hypothesis normal(M) and M = λx.M1, then normal(M1).

(i) Tightness: Φ is not tight, so the statement trivially holds.

(ii) Neutrality: s ̸= Neutral, so the statement trivially holds.

6. (⊸ Introt): Then Γ = Γ1, M = λx.M1, b = b1, s = Abs, and assuming Φ1 ▷ Γ1, x :
(τ, tight) ⊢b1 M1 : (σ, tight).

Since by hypothesis normal(M) and M = λx.M1, then normal(M1).

(i) Tightness: if Φ is tight, then Φ1 is tight and by induction, b = b1 = 0.

(ii) Neutrality: s ̸= Neutral, so the statement trivially holds.

7. (→ Introt): Then Γ = Γ1, M = λx.M1, b = b1, s = Abs, and assuming Φ1 ▷ Γ1, x :
(τ1 ∩ · · · ∩ τn, t⃗) ⊢b1 M1 : (σ, tight), with tight(⃗t) and n ≥ 2.

Since by hypothesis normal(M) and M = λx.M1, then normal(M1).

(i) Tightness: if Φ is tight, then Φ1 is tight and by induction, b = b1 = 0.

(ii) Neutrality: s ̸= Neutral, so the statement trivially holds.



68 Chapter 4. Resource Inference

8. (⊸ Elim): Then Γ = (Γ1, Γ2), M = M1M2, b = b1 + b2, s = s1, and assuming
Φ1 ▷ Γ1 ⊢b1 M1 : (τ ⊸ σ, t ⊸ s1) and Φ2 ▷ Γ2 ⊢b2 M2 : (τ, t).

Since by hypothesis normal(M) and M = M1M2, then neutral(M1M2). So neutral(M1)
(and then normal(M1)) and normal(M2).

(i) Tightness: this case is impossible. If Φ is tight, then Γ = (Γ1, Γ2) is tight, and so is
Γ1. And since neutral(M1), Lemma 4.1.1 implies that the type of M1 in Φ1 has to be
tight, which is absurd.

(ii) Neutrality: neutral(M) holds by hypothesis.

9. (→ Elim): Then Γ = (Γ′,
∑n

i=1 Γi), M = M1M2, b = b′ +b1 + · · ·+bn, s = s1, and assuming
Φ′ ▷ Γ′ ⊢b′

M1 : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s1) and Φi ▷ Γi ⊢bi M2 : (τi, ti), for
1 ≤ i ≤ n, with n ≥ 2.

Since by hypothesis normal(M) and M = M1M2, then neutral(M1M2). So neutral(M1)
(and then normal(M1)) and normal(M2).

(i) Tightness: this case is impossible. If Φ is tight, then Γ = (Γ′,
∑n

i=1 Γi) is tight, and so
is Γ′. And since neutral(M1), Lemma 4.1.1 implies that the type of M1 in Φ′ has to
be tight, which is absurd.

(ii) Neutrality: neutral(M) holds by hypothesis.

10. (⊸ Elimt): Then Γ = (Γ1, Γ2), M = M1M2, b = b1 + b2, s = Neutral, and assuming
Φ1 ▷ Γ1 ⊢b1 M1 : (τ ⊸ σ, Neutral) and Φ2 ▷ Γ2 ⊢b2 M2 : (τ, tight).

Since by hypothesis normal(M) and M = M1M2, then neutral(M1M2). So neutral(M1)
(and then normal(M1)) and normal(M2).

(i) Tightness: if Φ is tight, then Φ1 and Φ2 are tight and by induction, b1 = 0 and b2 = 0.
So b = b1 + b2 = 0.

(ii) Neutrality: neutral(M) holds by hypothesis.

11. (→ Elimt): Then Γ = (Γ′,
∑n

i=1 Γi), M = M1M2, b = b′ + b1 + · · · + bn, s = Neutral, and
assuming Φ′ ▷ Γ′ ⊢b′

M1 : (τ1 ∩ · · · ∩ τn → σ, Neutral) and Φi ▷ Γi ⊢bi M2 : (τi, tight), for
1 ≤ i ≤ n, with n ≥ 2.

Since by hypothesis normal(M) and M = M1M2, then neutral(M1M2). So neutral(M1)
(and then normal(M1)) and normal(M2).



4.1. Type System 69

(i) Tightness: if Φ is tight, then Φ′ and Φi (for all 1 ≤ i ≤ n) are tight and by induction,
b′ = 0 and bi = 0 (for all 1 ≤ i ≤ n). So b = b′ + b1 + · · · + bn = 0.

(ii) Neutrality: neutral(M) holds by hypothesis.

Lemma 4.1.3 (Relevance). If Φ ▷ Γ ⊢b M : (σ, s), then x ∈ dom(Γ) if and only if x ∈ FV(M).

Proof. Easy induction on |Φ|.

Lemma 4.1.4 (Substitution and typings). Let Φ ▷ Γ ⊢b M1 : (σ, s) be a derivation with
x ∈ dom(Γ) and Γ(x) = (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn), for n ≥ 1. And, for each 1 ≤ i ≤ n, let
Φi ▷ Γi ⊢bi M2 : (τi, ti).

Then there exists a derivation Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s). Moreover, if
the derivations Φ, Φ1, . . . , Φn are tight, then so is the derivation Φ′.

Proof. The proof follows by induction on |Φ|.

Without loss of generality, we assume that FV(M1) ∩ FV(M2) = ∅, so that Γx,
∑n

i=1 Γi is
consistent. Otherwise, we could simply rename the free variables in M1 to get M ′

1 (and the same
derivation Φ, with the variables renamed) such that FV(M ′

1) ∩ FV(M2) = ∅. Then, by a weaker
form of the lemma (for M1, M2 such that FV(M1) ∩ FV(M2) = ∅), we would get the derivation Φ′

(with the renamed variables) and finally we could apply the rule (Contraction) (and (Exchange),
when necessary) to the variables that were renamed in M1, in order to end up with the proper
derivation Φ′.

1. (Axiom):

Then we have
Φ ▷ [x : (τ1, t1)] ⊢0 x : (τ1, t1).

So Γ = [x : (τ1, t1)], Γx = [ ], M1 = x, b = 0, σ = τ1 and s = t1.

By hypothesis we also have:
Φ1 ▷ Γ1 ⊢b1 M2 : (τ1, t1)

Given that (Γx, Γ1) = ([ ], Γ1) = Γ1, M1[M2/x] = x[M2/x] = M2, b + b1 = 0 + b1 = b1,
σ = τ1 and s = t1, then we already have the derivation Φ′ = Φ1, as we wanted.



70 Chapter 4. Resource Inference

2. (Exchange):

Then we have
Φ ▷ Γ′

1, y2 : (τ⃗2, t⃗2), y1 : (τ⃗1, t⃗1), Γ′
2 ⊢b M1 : (σ, s),

which follows from Φ′
1 ▷ Γ′

1, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2 ⊢b M1 : (σ, s).

And there are three different cases depending on x:

(a) x ̸= y1 and x ̸= y2:

So Γ = (Γ′
1, y2 : (τ⃗2, t⃗2), y1 : (τ⃗1, t⃗1), Γ′

2) and Γx = (Γ′
1x, y2 : (τ⃗2, t⃗2), y1 : (τ⃗1, t⃗1), Γ′

2x).

Since x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ, then either that declaration is in Γ′
1 or in Γ′

2,
and x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ (Γ′

1, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2).

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γ′
1x, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′

2x,
n∑

i=1
Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

By rule (Exchange), we get the final judgment we wanted:

Γ′
1x, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′

2x,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s)
Γ′

1x, y2 : (τ⃗2, t⃗2), y1 : (τ⃗1, t⃗1), Γ′
2x,

∑n
i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s)

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

(b) x = y1:

So Γ = (Γ′
1, y2 : (τ⃗2, t⃗2), y1 : (τ⃗1, t⃗1), Γ′

2) = (Γ′
1, y2 : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ′

2) and
Γx = (Γ′

1, y2 : (τ⃗2, t⃗2), Γ′
2).

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.



4.1. Type System 71

Given Φ′
1 ▷ Γ′

1, x : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2 ⊢b M1 : (σ, s) and Φi, by the induction

hypothesis, there is a derivation

Φ′ ▷ Γ′
1, y2 : (τ⃗2, t⃗2), Γ′

2,
n∑

i=1
Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s),

which is the derivation we wanted.

(c) x = y2:

Analogous to the case where x = y1.

3. (Contraction):

Then we have

Φ ▷ Γ′
1, y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2 ⊢b M ′
1[y/y1, y/y2] : (σ, s),

which follows from Φ′
1 ▷ Γ′

1, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2 ⊢b M ′

1 : (σ, s).

And there are two different cases depending on x:

(a) x ̸= y:

So Γ = (Γ′
1, y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2), Γx = (Γ′
1x, y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2x), M1 =
M ′

1[y/y1, y/y2], x ̸= y1 and x ̸= y2.

Since x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ, then either that declaration is in Γ′
1 or in Γ′

2,
and x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ (Γ′

1, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2).

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γ′
1x, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′

2x,
n∑

i=1
Γi ⊢b+b1+···+bn M ′

1[M2/x] : (σ, s).

Note that this implies that y1 and y2 do not occur free in M2, otherwise, by
Lemma 4.1.3, y1, y2 ∈ dom(Γi) and so Γ′

1x, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′
2x,

∑n
i=1 Γi

would not be consistent.

By rule (Contraction), we get the final judgment we wanted:



72 Chapter 4. Resource Inference

Γ′
1x, y1 : (τ⃗1, t⃗1), y2 : (τ⃗2, t⃗2), Γ′

2x,
∑n

i=1 Γi ⊢b+b1+···+bn M ′
1[M2/x] : (σ, s)

Γ′
1x, y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2x,
∑n

i=1 Γi ⊢b+b1+···+bn (M ′
1[M2/x])[y/y1, y/y2] : (σ, s)

Since x ̸= y1, x ̸= y2, x ̸= y and y1, y2 do not occur free in M2,
then (M ′

1[M2/x])[y/y1, y/y2] = (M ′
1[y/y1, y/y2])[M2/x].

And as M1 = M ′
1[y/y1, y/y2], we have (M ′

1[y/y1, y/y2])[M2/x] = M1[M2/x].

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

(b) x = y:

So Γ = (Γ′
1, y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2) = (Γ′
1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ′

2), Γx = (Γ′
1, Γ′

2),
M1 = M ′

1[y/y1, y/y2] = M ′
1[x/y1, x/y2] and x ̸= y1 and x ̸= y2 (assuming that y ̸= y1

and y ̸= y2, without loss of generality). Let us also assume, without loss of generality,
that y1, y2 do not occur in M2.

By hypothesis we have x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ and y : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2) ∈ Γ.
So since x = y, we have τ1 ∩ · · · ∩ τn = τ⃗1 ∩ τ⃗2 and t1 ∩ · · · ∩ tn = t⃗1 ∩ t⃗2.
So for some 1 ≤ k < n, we have τ⃗1 = τ1 ∩ · · · ∩ τk, τ⃗2 = τk+1 ∩ · · · ∩ τn, t⃗1 = t1 ∩ · · · ∩ tk

and t⃗2 = tk+1 ∩ · · · ∩ tn.

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 ▷Γ′

1, y1 : (τ1 ∩ · · · ∩ τk, t1 ∩ · · · ∩ tk), y2 : (τk+1 ∩ · · · ∩ τn, tk+1 ∩ · · · ∩ tn), Γ′
2 ⊢b

M ′
1 : (σ, s) and Φj for 1 ≤ j ≤ k, by the induction hypothesis, there is a derivation

ending with

Γ′
1, y2 : (τk+1 ∩ · · · ∩ τn, tk+1 ∩ · · · ∩ tn), Γ′

2,
k∑

j=1
Γj ⊢b+b1+···+bk M ′

1[M2/y1] : (σ, s).

Now given that derivation and Φj for k + 1 ≤ j ≤ n, by the induction hypothesis,
there is a derivation

Φ′ ▷ Γ′
1, Γ′

2,
n∑

j=k+1
Γj ⊢b+b1+···+bk+bk+1+···+bn (M ′

1[M2/y1])[M2/y2] : (σ, s),

which is the derivation we wanted.



4.1. Type System 73

Since x ̸= y1, x ≠ y2, y1 ̸= y2 and y1, y2, x do not occur in M2 and x does not occur
free in M ′

1, then:

(M ′
1[M2/y1])[M2/y2] = ((M ′

1[x/y1])[M2/x])[M2/y2]
= (((M ′

1[x/y1])[M2/x])[x/y2])[M2/x]
= ((M ′

1[x/y1])[x/y2])[M2/x]
= (M ′

1[x/y1, x/y2])[M2/x]

And as M1 = M ′
1[x/y1, x/y2], we have (M ′

1[M2/y1])[M2/y2] = M1[M2/x].

Also (Γ′
1, Γ′

2) = Γx and b + b1 + · · · + bk + bk+1 + · · · + bn = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

4. (⊸ Intro):

Then we have
Φ ▷ Γ ⊢b′+1 λy.M : (τ ⊸ σ′, t ⊸ s′),

which follows from Φ′
1 ▷ Γ, y : (τ, t) ⊢b′

M : (σ′, s′).

So M1 = λy.M , b = b′ + 1, σ = τ ⊸ σ′, s = t ⊸ s′ and x ̸= y.

Since x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ, then x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ (Γ, y : (τ, t)).

By hypothesis we also have:
Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γx, y : (τ, t),
n∑

i=1
Γi ⊢b′+b1+···+bn M [M2/x] : (σ′, s′).

We can now perform consecutive applications of (Exchange) in order to get

Γx,
n∑

i=1
Γi, y : (τ, t) ⊢b′+b1+···+bn M [M2/x] : (σ′, s′).

Finally, by rule (⊸ Intro), we get the final judgment we wanted:

Γx,
∑n

i=1 Γi, y : (τ, t) ⊢b′+b1+···+bn M [M2/x] : (σ′, s′)
Γx,

∑n
i=1 Γi ⊢b′+b1+···+bn+1 λy.(M [M2/x]) : (τ ⊸ σ′, t ⊸ s′)



74 Chapter 4. Resource Inference

Since M1 = λy.M and x ̸= y, then λy.(M [M2/x]) = (λy.M)[M2/x] = M1[M2/x].

Also b = b′ + 1, so b′ + b1 + · · · + bn + 1 = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

5. (→ Intro):

Similar to the previous case.

6. (⊸ Introt):

Then we have
Φ ▷ Γ ⊢b′

λy.M : (τ ⊸ σ′, Abs),

which follows from Φ′
1 ▷ Γ, y : (τ, tight) ⊢b′

M : (σ′, tight).

So M1 = λy.M , b = b′, σ = τ ⊸ σ′, s = Abs and x ̸= y.

Since x : (τ1 ∩· · ·∩τn, t1 ∩· · ·∩tn) ∈ Γ, then x : (τ1 ∩· · ·∩τn, t1 ∩· · ·∩tn) ∈ (Γ, y : (τ, tight)).

By hypothesis we also have:
Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γx, y : (τ, tight),
n∑

i=1
Γi ⊢b′+b1+···+bn M [M2/x] : (σ′, tight).

We can now perform consecutive applications of (Exchange) in order to get

Γx,
n∑

i=1
Γi, y : (τ, tight) ⊢b′+b1+···+bn M [M2/x] : (σ′, tight).

Finally, by rule (⊸ Introt), we get the final judgment we wanted:

Γx,
∑n

i=1 Γi, y : (τ, tight) ⊢b′+b1+···+bn M [M2/x] : (σ′, tight)
Γx,

∑n
i=1 Γi ⊢b′+b1+···+bn λy.(M [M2/x]) : (τ ⊸ σ′, Abs)

Since M1 = λy.M and x ̸= y, then λy.(M [M2/x]) = (λy.M)[M2/x] = M1[M2/x].

Also b = b′, so b′ + b1 + · · · + bn = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).



4.1. Type System 75

7. (→ Introt):

Similar to the previous case.

8. (⊸ Elim):

Then we have
Φ ▷ Γ′

1, Γ′
2 ⊢b′

1+b′
2 N1N2 : (σ, s),

which follows from Φ′
1 ▷ Γ′

1 ⊢b′
1 N1 : (τ ⊸ σ, t ⊸ s) and Φ′

2 ▷ Γ′
2 ⊢b′

2 N2 : (τ, t).

Since x ∈ dom(Γ) and Γ = (Γ′
1, Γ′

2), either x ∈ dom(Γ′
1) (and x ∈ FV(N1), by Lemma 4.1.3)

or x ∈ dom(Γ′
2) (and x ∈ FV(N2), by Lemma 4.1.3). Note that there is not the case where

x ∈ dom(Γ′
1) and x ∈ dom(Γ′

2) simultaneously, otherwise (Γ′
1, Γ′

2) would be inconsistent.

So there are two different cases depending on x:

(a) x ∈ dom(Γ′
1) and x /∈ dom(Γ′

2):

So Γ = (Γ′
1, Γ′

2), Γx = (Γ′
1x, Γ′

2), M1 = N1N2 and b = b′
1 + b′

2.

And x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ′
1.

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γ′
1x,

n∑
i=1

Γi ⊢b′
1+b1+···+bn N1[M2/x] : (τ ⊸ σ, t ⊸ s).

By rule (⊸ Elim), with Γ′
2 ⊢b′

2 N2 : (τ, t) from Φ′
2, we get:

Γ′
1x,

∑n
i=1 Γi ⊢b′

1+b1+···+bn N1[M2/x] : (τ ⊸ σ, t ⊸ s) Γ′
2 ⊢b′

2 N2 : (τ, t)
Γ′

1x,
∑n

i=1 Γi, Γ′
2 ⊢b′

1+b1+···+bn+b′
2 (N1[M2/x])N2 : (σ, s)

Note that (Γ′
1x,

∑n
i=1 Γi, Γ′

2) is consistent because of our initial assumption that
FV(M1) ∩ FV(M2) = ∅.

We can now perform consecutive applications of (Exchange) in order to get the final
judgment we wanted:

Γ′
1x, Γ′

2,
n∑

i=1
Γi ⊢b′

1+b1+···+bn+b′
2 (N1[M2/x])N2 : (σ, s)



76 Chapter 4. Resource Inference

Since M1 = N1N2 and x /∈ FV(N2) (by Lemma 4.1.3, since x /∈ dom(Γ′
2)), then

(N1[M2/x])N2 = (N1[M2/x])(N2[M2/x]) = (N1N2)[M2/x] = M1[M2/x].
Also b = b′

1 + b′
2, so b′

1 + b1 + · · · + bn + b′
2 = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

(b) x ∈ dom(Γ′
2) and x /∈ dom(Γ′

1):

So Γ = (Γ′
1, Γ′

2), Γx = (Γ′
1, Γ′

2x), M1 = N1N2 and b = b′
1 + b′

2.

And x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ′
2.

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′
2 and Φi, by the induction hypothesis, there is a derivation ending with

Γ′
2x,

n∑
i=1

Γi ⊢b′
2+b1+···+bn N2[M2/x] : (τ, t).

By rule (⊸ Elim), with Γ′
1 ⊢b′

1 N1 : (τ ⊸ σ, t ⊸ s) from Φ′
1, we get the final judgment

we wanted:

Γ′
1 ⊢b′

1 N1 : (τ ⊸ σ, t ⊸ s) Γ′
2x,

∑n
i=1 Γi ⊢b′

2+b1+···+bn N2[M2/x] : (τ, t)
Γ′

1, Γ′
2x,

∑n
i=1 Γi ⊢b′

1+b′
2+b1+···+bn N1(N2[M2/x]) : (σ, s)

Note that (Γ′
1, Γ′

2x,
∑n

i=1 Γi) is consistent because of our initial assumption that
FV(M1) ∩ FV(M2) = ∅.

Since M1 = N1N2 and x /∈ FV(N1) (by Lemma 4.1.3, since x /∈ dom(Γ′
1)), then

N1(N2[M2/x]) = (N1[M2/x])(N2[M2/x]) = (N1N2)[M2/x] = M1[M2/x].
Also b = b′

1 + b′
2, so b′

1 + b′
2 + b1 + · · · + bn = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

9. (⊸ Elimt):

Similar to the previous case.



4.1. Type System 77

10. (→ Elim):

Then we have
Φ ▷ Γ′,

m∑
j=1

Γ′
j ⊢b′+b′

1+···+b′
m N1N2 : (σ, s)

which follows from Φ′′
1 ▷ Γ′ ⊢b′

N1 : (τ ′
1 ∩ · · · ∩ τ ′

m → σ, t′
1 ∩ · · · ∩ t′

m → s),

Φ′
1 ▷ Γ′

1 ⊢b′
1 N2 : (τ ′

1, t′
1), . . . , Φ′

m ▷ Γ′
m ⊢b′

m N2 : (τ ′
m, t′

m) and m ≥ 2.

Since x ∈ dom(Γ) and Γ = (Γ′,
∑m

j=1 Γ′
j), either x ∈ dom(Γ′) (and x ∈ FV(N1), by

Lemma 4.1.3) or x ∈ dom(Γ′
j), for 1 ≤ j ≤ m (and x ∈ FV(N2), by Lemma 4.1.3).

Note that there is not the case where x ∈ dom(Γ′) and x ∈ dom(Γ′
j) (for 1 ≤ j ≤ m)

simultaneously, otherwise (Γ′,
∑m

j=1 Γ′
j) would be inconsistent.

So there are two different cases depending on x:

(a) x ∈ dom(Γ′) and x /∈ dom(Γ′
j), for 1 ≤ j ≤ m:

So Γ = (Γ′,
∑m

j=1 Γ′
j), Γx = (Γ′

x,
∑m

j=1 Γ′
j), M1 = N1N2 and b = b′ + b′

1 + · · · + b′
m.

And x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈ Γ′.

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

Given Φ′′
1 and Φi, by the induction hypothesis, there is a derivation ending with

Γ′
x,

n∑
i=1

Γi ⊢b′+b1+···+bn N1[M2/x] : (τ ′
1 ∩ · · · ∩ τ ′

m → σ, t′
1 ∩ · · · ∩ t′

m → s).

By rule (→ Elim), with Γ′
1 ⊢b′

1 N2 : (τ ′
1, t′

1), . . . , Γ′
m ⊢b′

m N2 : (τ ′
m, t′

m) from Φ′
1, . . . ,

Φ′
m, respectively, we get:

Γ′
x,

∑n
i=1 Γi ⊢b′+b1+···+bn N1[M2/x] : (τ ′

1 ∩ · · · ∩ τ ′
m → σ, t′

1 ∩ · · · ∩ t′
m → s)

Γ′
1 ⊢b′

1 N2 : (τ ′
1, t′

1) · · · Γ′
m ⊢b′

m N2 : (τ ′
m, t′

m)
Γ′

x,
∑n

i=1 Γi,
∑m

j=1 Γ′
j ⊢b′+b1+···+bn+b′

1+···+b′
m (N1[M2/x])N2 : (σ, s)

Note that (Γ′
x,

∑n
i=1 Γi,

∑m
j=1 Γ′

j) is consistent because of our initial assumption that
FV(M1) ∩ FV(M2) = ∅.

We can now perform consecutive applications of (Exchange) in order to get the final
judgment we wanted:

Γ′
x,

m∑
j=1

Γ′
j ,

n∑
i=1

Γi ⊢b′+b1+···+bn+b′
1+···+b′

m (N1[M2/x])N2 : (σ, s)



78 Chapter 4. Resource Inference

Since M1 = N1N2 and x /∈ FV(N2) (by Lemma 4.1.3, since x /∈ dom(Γ′
j) for 1 ≤ j ≤ m),

then (N1[M2/x])N2 = (N1[M2/x])(N2[M2/x]) = (N1N2)[M2/x] = M1[M2/x].
Also b = b′ + b′

1 + · · · + b′
m, so b′ + b1 + · · · + bn + b′

1 + · · · + b′
m = b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

(b) x ∈ dom(Γ′
j), for 1 ≤ j ≤ m, and x /∈ dom(Γ′):

So Γ = (Γ′,
∑m

j=1 Γ′
j), Γx = (Γ′,

∑m
j=1 Γ′

jx
), M1 = N1N2 and b = b′ + b′

1 + · · · + b′
m.

And x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ∈
∑m

j=1 Γ′
j , which means that the sequences

(τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) can be split between the environments Γ′
1, . . . , Γ′

m. Also,
note that this implies n ≥ m (because by Lemma 4.1.3, x ∈ dom(Γ′

j) for all 1 ≤ j ≤ m).

Then for 1 = k1 < · · · < km < km+1 = n + 1 and 1 ≤ j ≤ m,
let x : (τkj

∩ · · · ∩ τk(j+1)−1, tkj
∩ · · · ∩ tk(j+1)−1) ∈ Γ′

j .

By hypothesis we also have:

Φi ▷ Γi ⊢bi M2 : (τi, ti)

for 1 ≤ i ≤ n.

So for each 1 ≤ j ≤ m, given Φ′
j and Φkj

, . . . , Φk(j+1)−1, by the induction hypothesis,
there is a derivation ending with

Γ′
jx

,

k(j+1)−1∑
i=kj

Γi ⊢b′
j+bkj

+···+bk(j+1)−1 N2[M2/x] : (τ ′
j , t′

j).

By rule (→ Elim), with Γ′ ⊢b′
N1 : (τ ′

1 ∩ · · · ∩ τ ′
m → σ, t′

1 ∩ · · · ∩ t′
m → s) from Φ′′

1, we
get the final judgment we wanted:

Γ′ ⊢b′
N1 : (τ ′

1 ∩ · · · ∩ τ ′
m → σ, t′

1 ∩ · · · ∩ t′
m → s)

Γ′
1x,

∑k2−1
i=1 Γi ⊢b′

1+b1+···+bk2−1 N2[M2/x] : (τ ′
1, t′

1) · · · Γ′
mx,

∑n
i=km

Γi ⊢b′
m+bkm +···+bn N2[M2/x] : (τ ′

m, t′
m)

Γ′, ((Γ′
1x,

∑k2−1
i=1 Γi) + · · · + (Γ′

mx,
∑n

i=km
Γi)) ⊢b′′

N1(N2[M2/x]) : (σ, s)

where b′′ = b′ + (b′
1 + b1 + · · · + bk2−1) + · · · + (b′

m + bkm + · · · + bn).

By our initial assumption that FV(M1)∩FV(M2) = ∅, by Lemma 4.1.3, and by looking



4.1. Type System 79

at the definition of (+), we have:

Γ′, ((Γ′
1x,

k2−1∑
i=1

Γi) + · · · + (Γ′
mx,

n∑
i=km

Γi))

= Γ′, ((Γ′
1x + · · · + Γ′

mx), (
k2−1∑
i=1

Γi + · · · +
n∑

i=km

Γi))

= Γ′, (
m∑

j=1
Γ′

jx
,

n∑
i=1

Γi)

= (Γ′,
m∑

j=1
Γ′

jx
),

n∑
i=1

Γi

= Γx,
n∑

i=1
Γi.

Since M1 = N1N2 and x /∈ FV(N1) (by Lemma 4.1.3, since x /∈ dom(Γ′)), then
N1(N2[M2/x]) = (N1[M2/x])(N2[M2/x]) = (N1N2)[M2/x] = M1[M2/x].

Also since b = b′ + b′
1 + · · · + b′

m, we have:

b′′ = b′ + (b′
1 + b1 + · · · + bk2−1) + · · · + (b′

m + bkm + · · · + bn)
= b′ + (b′

1 + · · · + b′
m) + (b1 + · · · + bk2−1 + · · · + bkm + · · · + bn)

= b′ + (b′
1 + · · · + b′

m) + (b1 + · · · + bn)
= b + b1 + · · · + bn.

So there is indeed Φ′ ▷ Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s).

11. (→ Elimt):

Similar to the previous case.

We now show an important property that relates contracted terms with their linear counterpart.
Basically, it says that the following diagram commutes (under the described conditions):

M N

M ′ N ′

β

S(M ′)

β

S(N ′)



80 Chapter 4. Resource Inference

Lemma 4.1.5. Let M −→ N and M = S(M ′) for some substitution S = [x/x1, x/x2] where
x1, x2 occur free in M ′ and x does not occur in M ′. Then there exists a term N ′ such that
N = S(N ′) and M ′ −→ N ′.

Proof. This trivially holds because S simply renames free variables – suppose that in M we
annotate each occurrence of x with the variable it substituted (so that each occurrence is either
xx1 or xx2). Then M is equal to M ′, up to renaming of variables.

Convention 4.1.1. Without loss of generality, we assume that, in a derivation tree, all contracted
variables (i.e., variables that, at some point in the derivation tree, disappear from the term and
environment by an application of the (Contraction) rule) are different from any other variable in
the derivation tree.
We also assume that when applying (Contraction), the new variables that substitute the contracted
ones are also different from any other variable in the derivation tree.

Lemma 4.1.6 (Quantitative subject reduction). If Φ ▷ Γ ⊢b M : (σ, s) is tight and M −→ N ,
then b ≥ 1 and there exists a tight derivation Φ′ such that Φ′ ▷ Γ ⊢b−1 N : (σ, s).

Proof. We prove the following stronger statement:

Assume M −→ N , Φ ▷ Γ ⊢b M : (σ, s), tight(Γ), and either tight(s) or ¬abs(M).

Then there exists a derivation Φ′ ▷ Γ ⊢b−1 N : (σ, s).

We prove this statement by induction on M −→ N .

1. Rule (λx.M1)N1 −→ M1[N1/x] :

Assume Φ ▷ Γ ⊢b (λx.M1)N1 : (σ, s) and tight(Γ).

So at some point in the derivation Φ, either the rule (⊸ Elim) or (→ Elim) is applied
(not (⊸ Elimt) nor (→ Elimt) because it is not possible to derive the type Neutral for
an abstraction) and is then followed by zero or more applications of the rules (Exchange)
and/or (Contraction).

Case where the last rule different from (Exchange) and (Contraction) applied in Φ is:

(a) (⊸ Elim):
Then at some point in Φ we have:

Φ1 ▷ Γ1 ⊢b1 (λx.M ′
1) : (τ ⊸ σ, t ⊸ s) Φ2 ▷ Γ2 ⊢b2 N ′

1 : (τ, t)
Γ1, Γ2 ⊢b1+b2 (λx.M ′

1)N ′
1 : (σ, s)



4.1. Type System 81

Assume that after the application of this rule, the rule (Contraction) was applied n

times (with n ≥ 0) and (Exchange) zero or more times, and let S = [yn/xn, yn/x′
n] ◦

[yn−1/xn−1, yn−1/x′
n−1] ◦ · · · ◦ [y1/x1, y1/x′

1] be the substitution that reflects the n

applications of the rule (Contraction). Then we have:

• M1 = S(M ′
1);

• N1 = S(N ′
1);

• b = b1 + b2.

Since Φ1 ▷ Γ1 ⊢b1 (λx.M ′
1) : (τ ⊸ σ, t ⊸ s), at some point in the derivation Φ1, the

rule (⊸ Intro) is applied, followed by zero or more applications of the rules (Exchange)
and/or (Contraction). So at some point in Φ1 we have:

Φ′
1 ▷ Γ′

1, x : (τ, t) ⊢b′
1 M ′′

1 : (σ, s)
Γ′

1 ⊢b′
1+1 λx.M ′′

1 : (τ ⊸ σ, t ⊸ s)

Assume that after the application of this rule, the rule (Contraction) was applied m

times (with m ≥ 0) and (Exchange) zero or more times, and let S1 = [y′
n/zm, y′

n/z′
m] ◦

[y′
m−1/zm−1, y′

m−1/z′
m−1] ◦ · · · ◦ [y′

1/z1, y′
1/z′

1] be the substitution that reflects the m

applications of the rule (Contraction). Then we have:

• M ′
1 = S1(M ′′

1 );
• b1 = b′

1 + 1.

We can then apply Lemma 4.1.4 for the derivations Φ′
1 ▷ Γ′

1, x : (τ, t) ⊢b′
1 M ′′

1 : (σ, s)
and Φ2 ▷ Γ2 ⊢b2 N ′

1 : (τ, t) to obtain

Φ′′ ▷ Γ′
1, Γ2 ⊢b′

1+b2 M ′′
1 [N ′

1/x] : (σ, s).

Note that we can assume Γ′
1, Γ2 to be consistent by Convention 4.1.1 and the fact

that Γ1, Γ2 is consistent.

If we perform the m applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ1 after
the application of (⊸ Intro), i.e., over the variables z1, z′

1, z2, z′
2, . . . , zm, z′

m, we can
obtain:

Γ′
3 ⊢b′

1+b2 S1(M ′′
1 [N ′

1/x]) : (σ, s)

where Γ′
3 ≡ (Γ1, Γ2). (By Convention 4.1.1, the variables in Γ2 are not substituted.)

If we now perform the n applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ after
the application of (⊸ Elim), i.e., over the variables x1, x′

1, x2, x′
2, . . . , xn, x′

n, we can
obtain:

Γ3 ⊢b′
1+b2 S(S1(M ′′

1 [N ′
1/x])) : (σ, s)



82 Chapter 4. Resource Inference

where Γ3 ≡ Γ.

Finally, since Γ3 ≡ Γ, we can apply (Exchange) as many times as needed to get the
final judgment we wanted:

Γ ⊢b′
1+b2 S(S1(M ′′

1 [N ′
1/x])) : (σ, s)

Since b = b1 + b2 and b1 = b′
1 + 1, then

b′
1 + b2 = b1 − 1 + b2

= b − 1.

By Convention 4.1.1, we have S1(M ′′
1 [N ′

1/x]) = (S1(M ′′
1 ))[N ′

1/x].
Also, M ′

1 = S1(M ′′
1 ), so

S1(M ′′
1 [N ′

1/x]) = (S1(M ′′
1 ))[N ′

1/x]
= M ′

1[N ′
1/x]. (1)

Because x cannot be in S, then S(M ′
1[N ′

1/x]) = (S(M ′
1))[S(N ′

1)/x].
And since M1 = S(M ′

1) and N1 = S(N ′
1), we have (S(M ′

1))[S(N ′
1)/x] = M1[N1/x], so

S(M ′
1[N ′

1/x]) = (S(M ′
1))[S(N ′

1)/x]
= M1[N1/x]. (2)

Then, by (1) and (2) we have:

S(S1(M ′′
1 [N ′

1/x])) = S(M ′
1[N ′

1/x])
= M1[N1/x].

So there is indeed Φ′ ▷ Γ ⊢b−1 M1[N1/x] : (σ, s).

(b) (→ Elim):
Then at some point in Φ we have:

Φ′
1 ▷ Γ′

1 ⊢b′
1 (λx.M ′

1) : (τ1 ∩ · · · ∩ τk → σ, t1 ∩ · · · ∩ tk → s)
Φ1 ▷ Γ1 ⊢b1 N ′

1 : (τ1, t1) · · · Φk ▷ Γk ⊢bk N ′
1 : (τk, tk) k ≥ 2

Γ′
1,

∑k
i=1 Γi ⊢b′

1+b1+···+bk (λx.M ′
1)N ′

1 : (σ, s)

Assume that after the application of this rule, the rule (Contraction) was applied n

times (with n ≥ 0) and (Exchange) zero or more times, and let S = [yn/xn, yn/x′
n] ◦

[yn−1/xn−1, yn−1/x′
n−1] ◦ · · · ◦ [y1/x1, y1/x′

1] be the substitution that reflects the n

applications of the rule (Contraction). Then we have:



4.1. Type System 83

• M1 = S(M ′
1);

• N1 = S(N ′
1);

• b = b′
1 + b1 + · · · + bk.

Since Φ′
1 ▷ Γ′

1 ⊢b′
1 (λx.M ′

1) : (τ1 ∩ · · · ∩ τk → σ, t1 ∩ · · · ∩ tk → s), at some point in the
derivation Φ′

1, the rule (→ Intro) is applied, followed by zero or more applications of
the rules (Exchange) and/or (Contraction). So at some point in Φ′

1 we have:

Φ′′
1 ▷ Γ′′

1, x : (τ1 ∩ · · · ∩ τk, t1 ∩ · · · ∩ tk) ⊢b′′
1 M ′′

1 : (σ, s) k ≥ 2
Γ′′

1 ⊢b′′
1 +1 λx.M ′′

1 : (τ1 ∩ · · · ∩ τk → σ, t1 ∩ · · · ∩ tk → s)

Assume that after the application of this rule, the rule (Contraction) was applied m

times (with m ≥ 0) and (Exchange) zero or more times, and let S1 = [y′
n/zm, y′

n/z′
m] ◦

[y′
m−1/zm−1, y′

m−1/z′
m−1] ◦ · · · ◦ [y′

1/z1, y′
1/z′

1] be the substitution that reflects the m

applications of the rule (Contraction). Then we have:

• M ′
1 = S1(M ′′

1 );
• b′

1 = b′′
1 + 1.

We can then apply Lemma 4.1.4 for the derivations Φ′′
1 ▷Γ′′

1, x : (τ1 ∩ · · · ∩ τk, t1 ∩ · · · ∩
tk) ⊢b′′

1 M ′′
1 : (σ, s) and Φ1 ▷Γ1 ⊢b1 N ′

1 : (τ1, t1), . . . , Φk ▷Γk ⊢bk N ′
1 : (τk, tk) to obtain

Φ′′ ▷ Γ′′
1,

k∑
i=1

Γi ⊢b′′
1 +b1+···+bk M ′′

1 [N ′
1/x] : (σ, s).

Note that we can assume Γ′′
1,

∑k
i=1 Γi to be consistent by Convention 4.1.1 and the

fact that Γ′
1,

∑k
i=1 Γi is consistent.

If we perform the m applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ′

1 after
the application of (→ Intro), i.e., over the variables z1, z′

1, z2, z′
2, . . . , zm, z′

m, we can
obtain:

Γ′′ ⊢b′′
1 +b1+···+bk S1(M ′′

1 [N ′
1/x]) : (σ, s)

where Γ′′ ≡ (Γ′
1,

∑k
i=1 Γi). (By Convention 4.1.1, the variables in ∑k

i=1 Γi are not
substituted.)

If we now perform the n applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ after
the application of (→ Elim), i.e., over the variables x1, x′

1, x2, x′
2, . . . , xn, x′

n, we can
obtain:

Γ′ ⊢b′′
1 +b1+···+bk S(S1(M ′′

1 [N ′
1/x])) : (σ, s)



84 Chapter 4. Resource Inference

where Γ′ ≡ Γ.

Finally, since Γ′ ≡ Γ, we can apply (Exchange) as many times as needed to get the
final judgment we wanted:

Γ ⊢b′′
1 +b1+···+bk S(S1(M ′′

1 [N ′
1/x])) : (σ, s)

Since b = b′
1 + b1 + · · · + bk and b′

1 = b′′
1 + 1, then

b′′
1 + b1 + · · · + bk = b′

1 − 1 + b1 + · · · + bk

= b − 1.

By Convention 4.1.1, we have S1(M ′′
1 [N ′

1/x]) = (S1(M ′′
1 ))[N ′

1/x].
Also, M ′

1 = S1(M ′′
1 ), so

S1(M ′′
1 [N ′

1/x]) = (S1(M ′′
1 ))[N ′

1/x]
= M ′

1[N ′
1/x]. (1)

Because x cannot be in S, then S(M ′
1[N ′

1/x]) = (S(M ′
1))[S(N ′

1)/x].
And since M1 = S(M ′

1) and N1 = S(N ′
1), we have (S(M ′

1))[S(N ′
1)/x] = M1[N1/x], so

S(M ′
1[N ′

1/x]) = (S(M ′
1))[S(N ′

1)/x]
= M1[N1/x]. (2)

Then, by (1) and (2) we have:

S(S1(M ′′
1 [N ′

1/x])) = S(M ′
1[N ′

1/x])
= M1[N1/x].

So there is indeed Φ′ ▷ Γ ⊢b−1 M1[N1/x] : (σ, s).

2. Rule M1 −→ M2
λx.M1 −→ λx.M2

:

Assume Φ ▷ Γ ⊢b λx.M1 : (σ, s), tight(Γ) and the premise M1 −→ M2.

Since abs(λx.M1), we must have hypothesis tight(s).

So at some point in the derivation Φ, either the rule (⊸ Introt) or (→ Introt) is applied and
is then followed by zero or more applications of the rules (Exchange) and/or (Contraction).



4.1. Type System 85

As the two cases are similar, we will only show the case in which the last rule different
from (Exchange) and (Contraction) applied in Φ is (⊸ Introt):

Then at some point in Φ we have:

Φ1 ▷ Γ′, x : (τ, tight) ⊢b′
M ′

1 : (σ1, tight)
Γ′ ⊢b′

λx.M ′
1 : (τ ⊸ σ1, Abs)

where σ = τ ⊸ σ1 and s = Abs.

Assume that after the application of this rule, the rule (Contraction) was applied n

times (with n ≥ 0) and (Exchange) zero or more times, and let S = [yn/xn, yn/x′
n] ◦

[yn−1/xn−1, yn−1/x′
n−1] ◦ · · · ◦ [y1/x1, y1/x′

1] be the substitution that reflects the n applica-
tions of the rule (Contraction). Then we have:

• M1 = S(M ′
1);

• b = b′.

Since tight(Γ), we have tight(Γ′, x : (τ, tight)).

Since M1 −→ M2 and M1 = S(M ′
1), by applying Lemma 4.1.5 n times for the substitutions

resulting from the n contractions, we get a term M ′
2 such that M2 = S(M ′

2) and M ′
1 −→ M ′

2.

Then we can apply the induction hypothesis on Φ1 and get a derivation ending with

Γ′, x : (τ, tight) ⊢b′−1 M ′
2 : (σ1, tight).

By rule (⊸ Introt), we have:

Γ′, x : (τ, tight) ⊢b′−1 M ′
2 : (σ1, tight)

Γ′ ⊢b′−1 λx.M ′
2 : (τ ⊸ σ1, Abs)

If we now perform the n applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ after the
application of (⊸ Introt), i.e., over the variables x1, x′

1, x2, x′
2, . . . , xn, x′

n, we can obtain:

Γ2 ⊢b′−1 S(λx.M ′
2) : (τ ⊸ σ1, Abs)

where Γ2 ≡ Γ.

Finally, since Γ2 ≡ Γ, we can apply (Exchange) as many times as needed to get the final
judgment we wanted:

Γ ⊢b′−1 S(λx.M ′
2) : (τ ⊸ σ1, Abs)



86 Chapter 4. Resource Inference

Since b = b′, then b′ − 1 = b − 1.

And since M2 = S(M ′
2) and x cannot be in S, we have S(λx.M ′

2) = λx.M2.

So there is indeed Φ′ ▷ Γ ⊢b−1 λx.M2 : (σ, s).

3. Rule M1 −→ M2 ¬abs(M1)
M1N1 −→ M2N1

:

Assume Φ ▷ Γ ⊢b M1N1 : (σ, s), tight(Γ) and the premises M1 −→ M2 and ¬abs(M1).

So at some point in the derivation Φ, either the rule (⊸ Elim), or (⊸ Elimt), or (→ Elim),
or (→ Elimt) is applied and is then followed by zero or more applications of the rules
(Exchange) and/or (Contraction).

As the four cases are similar, we will only show the case in which the last rule different
from (Exchange) and (Contraction) applied in Φ is (⊸ Elim):

Then at some point in Φ we have:

Φ1 ▷ Γ1 ⊢b1 M ′
1 : (τ ⊸ σ, t ⊸ s) Φ2 ▷ Γ2 ⊢b2 N ′

1 : (τ, t)
Γ1, Γ2 ⊢b1+b2 M ′

1N ′
1 : (σ, s)

Assume that after the application of this rule, the rule (Contraction) was applied n

times (with n ≥ 0) and (Exchange) zero or more times, and let S = [yn/xn, yn/x′
n] ◦

[yn−1/xn−1, yn−1/x′
n−1] ◦ · · · ◦ [y1/x1, y1/x′

1] be the substitution that reflects the n applica-
tions of the rule (Contraction). Then we have:

• M1 = S(M ′
1);

• N1 = S(N ′
1);

• b = b1 + b2.

Since tight(Γ), we have tight(Γ1). And also, as ¬abs(M1), then ¬abs(M ′
1) (S simply renames

free variables).

Since M1 −→ M2 and M1 = S(M ′
1), by applying Lemma 4.1.5 n times for the substitutions

resulting from the n contractions, we get a term M ′
2 such that M2 = S(M ′

2) and M ′
1 −→ M ′

2.

Then we can apply the induction hypothesis on Φ1 and get a derivation ending with

Γ1 ⊢b1−1 M ′
2 : (τ ⊸ σ, t ⊸ s).

By rule (⊸ Elim), with Γ2 ⊢b2 N ′
1 : (τ, t) from Φ2, we have:



4.1. Type System 87

Γ1 ⊢b1−1 M ′
2 : (τ ⊸ σ, t ⊸ s) Γ2 ⊢b2 N ′

1 : (τ, t)
Γ1, Γ2 ⊢b1+b2−1 M ′

2N ′
1 : (σ, s)

If we now perform the n applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ after the
application of (⊸ Elim), i.e., over the variables x1, x′

1, x2, x′
2, . . . , xn, x′

n, we can obtain:

Γ3 ⊢b1+b2−1 S(M ′
2N ′

1) : (σ, s)

where Γ3 ≡ Γ.

Finally, since Γ3 ≡ Γ, we can apply (Exchange) as many times as needed to get the final
judgment we wanted:

Γ ⊢b1+b2−1 S(M ′
2N ′

1) : (σ, s)

Since b = b1 + b2, then b1 + b2 − 1 = b − 1.

And since M2 = S(M ′
2) and N1 = S(N ′

1), we have S(M ′
2N ′

1) = M2N1.

So there is indeed Φ′ ▷ Γ ⊢b−1 M2N1 : (σ, s).

4. Rule neutral(N1) M1 −→ M2
N1M1 −→ N1M2

:

Assume Φ ▷ Γ ⊢b N1M1 : (σ, s), tight(Γ) and the premises neutral(N1) and M1 −→ M2.

So at some point in the derivation Φ, either the rule (⊸ Elim), or (⊸ Elimt), or (→ Elim),
or (→ Elimt) is applied, giving Γ′ ⊢b N ′

1M ′
1 : (σ, s), and is then followed by zero or more

applications of the rules (Exchange) and/or (Contraction).

Assume that the rule (Contraction) is applied n times (with n ≥ 0) and (Exchange) zero
or more times, and let S = [yn/xn, yn/x′

n] ◦ [yn−1/xn−1, yn−1/x′
n−1] ◦ · · · ◦ [y1/x1, y1/x′

1] be
the substitution that reflects the n applications of the rule (Contraction). Then we have:

• N1 = S(N ′
1);

• M1 = S(M ′
1).

Then as a premise for any of those four rules, we have a derivation for N ′
1 of the form:

Φ1 ▷ Γ1 ⊢b1 N ′
1 : (σ′, s′)

Since neutral(N1), we have neutral(N ′
1) (S simply renames free variables).



88 Chapter 4. Resource Inference

Also, since tight(Γ), independently from the elimination rule that was applied, we have
tight(Γ1).

Then by Lemma 4.1.1, we have tight(s′).

So this means that actually, the last rule different from (Exchange) and (Contraction)
applied in Φ must be either (⊸ Elimt) or (→ Elimt), and not (⊸ Elim) nor (→ Elim).

And as the two cases are similar, we will only show the case in which the last rule different
from (Exchange) and (Contraction) applied in Φ is (⊸ Elimt):

Then, before the n applications of the rule (Contraction) and possible applications of
(Exchange) what we have is:

Φ1 ▷ Γ1 ⊢b1 N ′
1 : (τ ⊸ σ, Neutral) Φ2 ▷ Γ2 ⊢b2 M ′

1 : (τ, tight)
Γ1, Γ2 ⊢b1+b2 N ′

1M ′
1 : (σ, Neutral)

and

• s = Neutral;

• N1 = S(N ′
1);

• M1 = S(M ′
1);

• b = b1 + b2.

Since tight(Γ), we have tight(Γ2).

Since M1 −→ M2 and M1 = S(M ′
1), by applying Lemma 4.1.5 n times for the substitutions

resulting from the n contractions, we get a term M ′
2 such that M2 = S(M ′

2) and M ′
1 −→ M ′

2.

Then we can apply the induction hypothesis on Φ2 and get a derivation ending with

Γ2 ⊢b2−1 M ′
2 : (τ, tight).

By rule (⊸ Elimt), with Γ1 ⊢b1 N ′
1 : (τ ⊸ σ, Neutral) from Φ1, we have:

Γ1 ⊢b1 N ′
1 : (τ ⊸ σ, Neutral) Γ2 ⊢b2−1 M ′

2 : (τ, tight)
Γ1, Γ2 ⊢b1+b2−1 N ′

1M ′
2 : (σ, Neutral)

If we now perform the n applications of (Contraction) (and the necessary applications
of (Exchange)) over the same variables over which they were performed in Φ after the
application of (⊸ Elimt), i.e., over the variables x1, x′

1, x2, x′
2, . . . , xn, x′

n, we can obtain:

Γ3 ⊢b1+b2−1 S(N ′
1M ′

2) : (σ, Neutral)

where Γ3 ≡ Γ.



4.2. Type Inference Algorithm 89

Finally, since Γ3 ≡ Γ, we can apply (Exchange) as many times as needed to get the final
judgment we wanted:

Γ ⊢b1+b2−1 S(N ′
1M ′

2) : (σ, Neutral)

Since b = b1 + b2, then b1 + b2 − 1 = b − 1.

Also, s = Neutral.

And since N1 = S(N ′
1) and M2 = S(M ′

2), we have S(N ′
1M ′

2) = N1M2.

So there is indeed Φ′ ▷ Γ ⊢b−1 N1M2 : (σ, s).

Theorem 4.1.7 (Tight correctness). If Φ▷Γ ⊢b M : (σ, s) is a tight derivation, then there exists
N such that M −→b N and normal(N). Moreover, if s = Neutral then neutral(N).

Proof. By induction on the evaluation length of M −→k N .

If M is a (leftmost-outermost) normal form, then by taking N = M and k = 0, the statement
follows from the tightness property of tight typings of normal forms (Lemma 4.1.2(i)). The
moreover part follows from the neutrality property (Lemma 4.1.2(ii)).

Otherwise, M −→ M ′ and by quantitative subject reduction (Lemma 4.1.6) there exists
a derivation Φ′ ▷ Γ ⊢b−1 M ′ : (σ, s). By induction, there exists N such that normal(N) and
M ′ −→b−1 N . Note that M −→ M ′ −→b−1 N , that is, M −→b N .

4.2 Type Inference Algorithm

We now extend the type inference algorithm defined in Chapter 3 (Definition 3.3.7) to also
infer the number of reduction steps of the typed term to its normal form, when using the
leftmost-outermost evaluation strategy.

This is done by slightly modifying the unification algorithm in Definition 3.3.6 and the
algorithm in Definition 3.3.7, which will now carry and update a measure b that relates to the
number of reduction steps.



90 Chapter 4. Resource Inference

First, recall the following definition, presented in Chapter 3:

Definition 4.2.1 (Type unification). We define the following relation ⇒ on type unification
problems (for types in TL0):

{τ = τ} ∪ P ⇒ P

{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P

{τ1 ⊸ τ2 = α} ∪ P ⇒ {α = τ1 ⊸ τ2} ∪ P

{α = τ} ∪ P ⇒ {α = τ} ∪ P [τ/α] if α ∈ fv(P ) \ fv(τ)
{α = τ} ∪ P ⇒ FAIL if α ∈ fv(τ) and α ̸= τ

where P [τ/α] corresponds to the notion of type-substitution extended to type unification problems.
If P = {τ1 = τ ′

1, . . . , τn = τ ′
n}, then P [τ/α] = {τ1[τ/α] = τ ′

1[τ/α], . . . , τn[τ/α] = τ ′
n[τ/α]}. And

fv(P ) and fv(τ) are the sets of free type variables in P and τ , respectively. Since in our system
all occurrences of type variables are free, fv(P ) and fv(τ) are the sets of type variables in P and
τ , respectively.

Definition 4.2.2 (Quantitative Unification Algorithm). Let P be a unification problem (with
types in TL0). The new unification function UNIFYQ(P ), which decides whether P has a solution
and, if so, returns the MGU of P and an integer b used for counting purposes in the inference
algorithm, is defined as:

function UNIFYQ(P )
b := 0;
while P ⇒ P ′ do

if P = {τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P1 and P ′ = {τ1 = τ3, τ2 = τ4} ∪ P1 then
b := b + 1;

P := P ′;
if P is in solved form then

return (SP , b);
else

FAIL;

Let us call TL1-environment to an environment as defined in Chapter 3, i.e., just like the
definition we use in the current chapter, but the predicates are only the first element of the pair
(i.e., a sequence from TL1).

Definition 4.2.3 (Quantitative Type Inference Algorithm). Let Γ be a TL1-environment, M a
λ-term, σ a linear rank 2 intersection type, b a quantitative measure and UNIFYQ the function
in Definition 4.2.2. The function TQ(M) = (Γ, σ, b) defines a new type inference algorithm that
gives a quantitative measure for the λ-calculus in the Linear Rank 2 Quantitative Type System,
in the following way:

1. If M = x, then Γ = [x : α], σ = α and b = 0, where α is a new variable;



4.2. Type Inference Algorithm 91

2. If M = λx.M1 and TQ(M1) = (Γ1, σ1, b1) then:

(a) if x /∈ dom(Γ1), then FAIL;

(b) if (x : τ) ∈ Γ1, then TQ(M) = (Γ1x, τ ⊸ σ1, b1);

(c) if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then TQ(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1, b1).

3. If M = M1M2, then:

(a) if TQ(M1) = (Γ1, α1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2), S(α3), b1 + b2),
where (S, _) = UNIFYQ({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

(b) if TQ(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1, b1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
TQ(M2) = (Γi, τi, bi),
then TQ(M) = (S(Γ′

1 + ∑n
i=1 Γi), S(σ′

1), b1 + ∑n
i=1 bi + b3 + 1),

where (S, b3) = UNIFYQ({τi = τ ′
i | 1 ≤ i ≤ n});

(c) if TQ(M1) = (Γ1, τ ⊸ σ1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2), S(σ1), b1 + b2 + b3 + 1),
where (S, b3) = UNIFYQ({τ2 = τ});

(d) otherwise FAIL.

Note that b is only increased by 1 and added the quantity given by UNIFYQ in rules 3.(b)
and 3.(c), since these are the only cases in which the term M is a redex.

Example 4.2.1. Let us show the type inference process for the λ-term λx.xx.

• By rule 1., TQ(x) = ([x : α1], α1, 0).

• By rule 1., again, TQ(x) = ([x : α2], α2, 0).

• Then by rule 3.(a), TQ(xx) = (S([x : α1]+[x : α2]), S(α4), 0+0) = (S([x : α1∩α2]), S(α4), 0),

where (S, _) = UNIFYQ({α1 = α3 ⊸ α4, α2 = α3}) = ([α3 ⊸ α4/α1, α3/α2], 0).

So TQ(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4, 0).

• Finally, by rule 2.(c), TQ(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4, 0).

Example 4.2.2. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

• From the previous example, we have TQ(λx.xx) = ([ ], (α3 ⊸ α4) ∩ α3 → α4, 0).

• By rules 1. and 2.(b), for the identity, the algorithm gives TQ(λy.y) = ([ ], α1 ⊸ α1, 0).

• By rules 1. and 2.(b), again, for the identity, TQ(λy.y) = ([ ], α2 ⊸ α2, 0).



92 Chapter 4. Resource Inference

• Then by rule 3.(b), TQ((λx.xx)(λy.y)) = (S([ ] + [ ] + [ ]),S(α4), 0 + 0 + 0 + b3 + 1) =
([ ], S(α4), b3 + 1),

where (S, b3) = UNIFYQ({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}), calculated by performing
the following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}

⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}

⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}

⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}

⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]

and b3 = 1 because there was performed one transformation (the first) of the form
{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P .

And then, TQ((λx.xx)(λy.y)) = ([ ], α2 ⊸ α2, 1 + 1) = ([ ], α2 ⊸ α2, 2).

Since the Quantitative Type Inference Algorithm only differs from the algorithm in Chapter 3
on the addition of the quantitative measure, and only infers a linear rank 2 intersection type and
not a multi-type, the typing soundness (Theorem 4.2.1) and completeness (Theorem 4.2.2) are
formalized in a similar way.

Theorem 4.2.1 (Typing soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then [x1 :
(τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′

M : (σ, s) (for some measure b′ and multi-types s, t⃗1, . . . , t⃗n).

Proof. The proof follows as in Theorem 3.3.5 (only the non-t-indexed rules are necessary).

Theorem 4.2.2 (Typing completeness). If Φ ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b M : (σ, s),
then TQ(M) = (Γ′, σ′, b′) (for some TL1-environment Γ′, type σ′ and measure b′) and there is a
substitution S such that S(σ′) = σ and S(Γ′) ≡ [x1 : τ⃗1, . . . , xn : τ⃗n].

Proof. The proof follows similarly to the proof of Theorem 3.3.8 (note that even when t-indexed
rules are used in the derivation, the resulting linear rank 2 intersection type is the same as when
the correspondent non-t-indexed rules are used).

As for the quantitative measure given by the algorithm, we conjecture that it corresponds
to the number of evaluation steps of the typed term to normal form, when using the leftmost-
outermost evaluation strategy. We strongly believe the conjecture holds, based on the attempted
proofs so far and because it holds for every experimental results obtained by our implementation.
We have not yet proven this property, which we formalize, in part, in the second point of the
strong soundness:



4.2. Type Inference Algorithm 93

Conjecture 4.2.1 (Strong soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then:

1. There is a derivation Φ ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′
M : (σ, s) (for some measure b′

and multi-types s, t⃗1, . . . , t⃗n);

2. If Φ is a tight derivation, then b = b′.

Note that the second point implies, by Theorem 4.1.7, that there exists N such that M −→b N

and normal(N), which is what we conjecture.

We believe that proving this conjecture is not a trivial task. A first approach could be to
try to use induction on the definition of TQ(M). However, this does not work because the
subderivations within a tight derivation are not necessarily tight. For that same reason, it is
also not trivial to construct a tight derivation from the result given by the algorithm or from a
non-tight derivation.

Thus, in order to prove this conjecture, it will be necessary to establish a relation between
the algorithm and tight derivations, a result that we do not have yet and for which we think
that we would need a technical development that goes beyond the scope of this thesis.





Chapter 5

Implementation and Experimental
Results

Here, we briefly describe the implementation (in Haskell) of the previously defined systems.

5.1 Implementation Overview

Besides the theoretical work presented in the previous chapters, we implemented the Quantitative
Type Inference Algorithm in Haskell, as well as Milner’s type inference algorithm for simple types
[24], Trevor Jim’s algorithm for rank 2 intersection types [19] and functions to evaluate terms
to normal form for different evaluation strategies. This way, we were able to experimentally
compare and verify the correctness of the empirical results.

Our final software package, in addition to the type inference algorithms, which are a tool
of semantic analysis, is also composed of a lexer and a parser that were made with the parser
generator Happy. As shown in the scheme below, it first performs a lexical and a syntactical
analysis on the input, which generate an Abstract Syntax Tree that is the input of the type
inference algorithms, which then perform the semantic analysis.

Lexer Tokens Parser AST
Type

Inference

The full Haskell implementation, along with input examples, can be found in
https://github.com/toko18/LinearRankIntersectionTypes-MastersThesis.

95

https://github.com/toko18/LinearRankIntersectionTypes-MastersThesis


96 Chapter 5. Implementation and Experimental Results

In Appendix A, we include the code for the main modules of the project, which are organized
in the following way:

• LambdaCalculus (A.1) defines λ-terms;

• LinearTypes (A.2) defines linear types and includes the implementation unifyQ of the
Quantitative Unification Algorithm UNIFYQ;

• LinearRank2QuantitativeTypes (A.3) defines linear rank 1 and 2 intersection types
and includes the implementation quantR2typeInf of the Quantitative Type Inference
Algorithm TQ;

• Reductions (A.4) defines the functions maximal, normal and applicative that are
called by the reduce function to reduce terms to normal form using the maximal, normal
and applicative evaluation strategies, respectively;

• parser.y (A.5) is the description of the parser to be generated with Happy.



5.2. Experimental Results 97

5.2 Experimental Results

We tested the Quantitative Type Inference Algorithm for several λ-terms in order to access
the correctness of the inferred measure. The table below shows some of those results, which
we obtained by running the implemented type inference algorithm and the reduction functions
for the leftmost-outermost strategy (also known as normal order) and the leftmost-innermost
strategy (also known as applicative order).

λ-Term Environment, Type Count
Steps Steps

(normal) (applicative)

(xy)y [(x, α2 ⊸ α5 ⊸ α6), (y, α5 ∩ α2)], α6 0 0 0
λx.xx [ ], (α2 ∩ (α2 ⊸ α3)) → α3 0 0 0

λfx.f(fx) [ ], ((α3 ⊸ α5) ∩ (α5 ⊸ α6)) → (α3 ⊸ α6) 0 0 0
(λfx.f(fx))(λx.x) [ ], α6 ⊸ α6 3 3 3

(λfx.f(fx))((λx.xx)y) [(y, (α15 ⊸ α5 ⊸ α6) ∩ α15 ∩ (α9 ⊸ α3 ⊸ α5) ∩ α9)], α3 ⊸ α6 3 3 2
(λx.xx)(λy.y) [ ], α4 ⊸ α4 2 2 2

(λx.xxx)(λy.y) [ ], α7 ⊸ α7 3 3 3
(λx.xxx)(λy.y)(λfx.fx) [ ], (α12 ⊸ α13) ⊸ α12 ⊸ α13 4 4 4
(λx.xxx)(λfx.fx)(λy.y) [ ], α10 ⊸ α10 7 7 7
(λfx.f(f(fx)))(λfx.fx) [ ], (α12 ⊸ α13) ⊸ α12 ⊸ α13 6 6 6

(λx.x(x(xx)))(λy.y) [ ], α10 ⊸ α10 4 4 4
(λy.(λx.xxx)y)(λx.x) [ ], α12 ⊸ α12 4 4 4

(λx.xxx)y [(y, (α2 ⊸ α5 ⊸ α6) ∩ α2 ∩ α5)], α6 1 1 1
(λx.xxx)((λx.x)y) [(y, (α2 ⊸ α5 ⊸ α6) ∩ α2 ∩ α5)], α6 4 4 2

(λx.xxxx)((λx.x)y) [(y, (α2 ⊸ α5 ⊸ α8 ⊸ α9) ∩ α2 ∩ α5 ∩ α8)], α9 5 5 2
(λx.x)((λx.x)(λx.x)) [ ], α2 ⊸ α2 2 2 2

(λx.x)((λx.x)(λx.x))(λx.x) [ ], α3 ⊸ α3 3 3 3
(λy.y(λx.x))(λx.x) [ ], α1 ⊸ α1 2 2 2

(λxyz.xz(yz))(λx.x) [ ], (α6 ⊸ α8) ⊸ ((α6 ∩ (α8 ⊸ α9)) → α9) 2 2 2
(λx.(λy.yx)x)(λx.x) [ ], α6 ⊸ α6 3 3 3

Table 5.1: Environment, type and quantitative measure (Count) given by the inference algorithm,
and number of reduction steps to normal form when using normal order (leftmost-outermost
strategy) and applicative order (leftmost-innermost strategy), for each λ-term tested.

As shown in these results, as expected, the algorithm correctly gives the number of evaluation
steps of the terms to normal form, for the leftmost-outermost evaluation strategy. Although we
still need to prove the correctness of the quantities inferred, the results obtained are promising.





Chapter 6

Conclusions and Future Work

Quantitative type systems are a powerful tool for static program analysis, but in addition to the
qualitative information, they also provide quantitative information about program evaluations
that can be used to estimate their time and space complexities in compile time, which allows us
to know in advance the computational resources that will be required to run the program.

Intersection type systems characterize termination so, in order to make typability decidable,
one can restrict the intersection types by using the notion of finite rank introduced by Daniel
Leivant [23]. When developing a non-idempotent intersection type system capable of obtaining
quantitative information about a λ-term while inferring its type, we realized that the classical
notion of rank was not a proper fit for non-idempotent intersection types, and that the ranks could
be quantitatively more useful if the base case was changed to types that give more quantitative
information in comparison to simple types, which is the case for linear types. We then came up
with a new definition of rank for intersection types based on linear types, which we call linear
rank [25].

Based on the notion of linear rank, we defined a new intersection type system for the λ-
calculus, restricted to linear rank 2 non-idempotent intersection types, and a new type inference
algorithm (based on Trevor Jim’s [19]), which we proved to be sound and complete with respect
to the type system.

We then merged that intersection type system with the system for the leftmost-outermost
evaluation strategy presented in [1] in order to use the linear rank 2 non-idempotent intersection
types to obtain quantitative information about the typed terms, and we proved that the resulting
type system gives the correct number of evaluation steps for a kind of derivations. We also
extended the type inference algorithm we had defined, in order to also give that measure, and
showed that it is sound and complete with respect to the type system for the inferred types, and
conjectured that the inferred measures correspond to the ones given by the type system.

Finally, in order to test the new inference algorithm, we implemented it in Haskell, as well as
other type inference algorithms and procedures to evaluate terms to normal form for different
evaluation strategies.

99



100 Chapter 6. Conclusions and Future Work

Although we left unproven the correctness of the quantities inferred by the Quantitative
Type Inference Algorithm, the goals of this work were fulfilled, and we believe that it comprises
a fair contribution to the area. We argue that our Quantitative Type Inference Algorithm is a
first step towards the automatic inference of truly quantitative types, and we also believe that
the Linear Rank 2 Intersection Type System alone can have interesting properties that can be
used in other topics, such as linearity.

Regarding the proofs we presented, we believe that many of them would be much simpler if
we had defined environments as sets and used solely the (+) operation for concatenation, instead
of defining environments as lists and having the rules (Exchange) and (Contraction) in the type
systems. But that was the price we had to pay in order to have a system that is closer to a linear
type system, makes us have more control over linearity and non-linearity, and is more easily
extensible for other algebraic properties of intersection.

In the future, we would like to:

• prove Conjecture 4.2.1;

• further explore the relation between our definition of linear rank and the classical definition
of rank;

• extend the type systems and the type inference algorithms for the affine terms;

• adapt the Linear Rank 2 Quantitative Type System and the Quantitative Type Inference
Algorithm for other evaluation strategies;

• extend them for a simple programming language like Core Haskell (the intermediate
language used by the Haskell compiler GHC).



Bibliography

[1] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and
split bounds. Proc. ACM Program. Lang., 2(ICFP), jul 2018. doi:10.1145/3236789.

[2] H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science
(Vol. 2): Background: Computational Structures, page 117–309. Oxford University Press,
Inc., 1993. ISBN: 0198537611.

[3] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types
for the lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017.

[4] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33
(2):346–366, 1932. ISSN: 0003486X.

[5] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58(2):345–363, 1936. ISSN: 00029327, 10806377.

[6] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5(2):56–68, 1940. ISSN: 00224812.

[7] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory
for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 10 1980.
doi:10.1305/ndjfl/1093883253.

[8] Mario Coppo. An extended polymorphic type system for applicative languages. In
Piotr Dembinski, editor, Mathematical Foundations of Computer Science 1980 (MFCS’80),
Proceedings of the 9th Symposium, Rydzyna, Poland, September 1-5, 1980, volume 88 of
Lecture Notes in Computer Science, pages 194–204. Springer, 1980.

[9] H. B. Curry. Functionality in combinatory logic*. Proceedings of the National Academy of
Sciences, 20(11):584–590, 1934. doi:10.1073/pnas.20.11.584.

[10] Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin.
Combinatory logic, volume 1. North-Holland Amsterdam, 1958.

[11] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

101

http://dx.doi.org/10.1145/3236789
http://dx.doi.org/10.1145/3236789
http://www.jstor.org/stable/1968337
http://www.jstor.org/stable/2371045
http://www.jstor.org/stable/2266170
http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1305/ndjfl/1093883253
http://dx.doi.org/10.1073/pnas.20.11.584
http://dx.doi.org/10.1145/582153.582176


102 Bibliography

POPL ’82, page 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
ISBN: 0897910656. doi:10.1145/582153.582176.

[12] Ferruccio Damiani. Rank 2 intersection for recursive definitions. Fundamenta Informaticae,
77(4):451–488, 2007.

[13] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Phd thesis,
Université Aix-Marseille II, 2007.

[14] E. Engeler. H. p. barendregt. the lambda calculus. its syntax and semantics. studies in logic
and foundations of mathematics, vol. 103. north-holland publishing company, amsterdam,
new york, and oxford, 1981, xiv 615 pp. Journal of Symbolic Logic, 49(1):301–303, 1984.
doi:10.2307/2274112.

[15] Mário Florido and Luís Damas. Linearization of the lambda-calculus and its re-
lation with intersection type systems. J. Funct. Program., 14(5):519–546, 2004.
doi:10.1017/S0956796803004970.

[16] Philippa Gardner. Discovering needed reductions using type theory. In TACS, volume 789
of LNCS, pages 555–574. Springer, 1994.

[17] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/0304-
3975(87)90045-4.

[18] J. Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1997. doi:10.1017/CBO9780511608865.

[19] Trevor Jim. Rank 2 type systems and recursive definitions. Massachusetts Institute of
Technology, Cambridge, MA, 1995.

[20] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank
intersection types. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 161–174. ACM, 1999.

[21] Assaf Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic
and Computation, 10(3):411–436, 2000.

[22] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals of
Mathematics, 36(3):630–636, 1935. ISSN: 0003486X.

[23] Daniel Leivant. Polymorphic type inference. In Proceedings of the 10th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 88–98,
1983.

[24] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, December 1978. ISSN: 0022-0000. doi:10.1016/0022-
0000(78)90014-4.

http://dx.doi.org/10.2307/2274112
http://dx.doi.org/10.2307/2274112
http://dx.doi.org/10.2307/2274112
http://dx.doi.org/10.1017/S0956796803004970
http://dx.doi.org/10.1017/S0956796803004970
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1017/CBO9780511608865
http://www.jstor.org/stable/1968646
http://dx.doi.org/10.1016/0022-0000(78)90014-4


Bibliography 103

[25] Fábio Reis, Sandra Alves, and Mário Florido. Linear rank intersection types. In 28th
International Conference on Types for Proofs and Programs (TYPES 2022), 2022.

[26] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):
23–41, jan 1965. ISSN: 0004-5411. doi:10.1145/321250.321253.

[27] Steffen van Bakel. Intersection type disciplines in lambda calculus and applicative term
rewriting systems. Phd thesis, Mathematisch Centrum, Katholieke Universiteit Nijmegen,
1993.

[28] Steffen van Bakel. Rank 2 intersection type assignment in term rewriting systems. Fundam.
Informaticae, 26(2):141–166, 1996.

https://types22.inria.fr/files/2022/06/TYPES_2022_paper_33.pdf
http://dx.doi.org/10.1145/321250.321253




Appendix A

Haskell Implementation

A.1 Lambda Calculus

� �
module LambdaCalculus where

data Term = Var TeVar
| Abs TeVar Term
| App Term Term

deriving Eq

data TeVar = TeVar String

deriving Eq

instance Show Term where

show ( Var x ) = show x
show ( Abs x m) = ( ’ ( ’ : ’ \ \ ’ : show x ) ++ ( ’ . ’ : show m) ++ [ ’ ) ’ ]
show (App m1 m2) = ( ’ ( ’ : show m1) ++ ( ’ ’ : show m2) ++ [ ’ ) ’ ]

instance Show TeVar where

show ( TeVar x ) = id x� �

105



106 Appendix A. Haskell Implementation

A.2 Linear Types

� �
module LinearTypes where

import LambdaCalculus

−− L i n e a r rank 0 i n t e r s e c t i o n t y p e s ( l i n e a r t y p e s ) .
data TLinearRank0 = TVar TyVar | TAp TLinearRank0 TLinearRank0

deriving Eq

data TyVar = TyVar String

deriving Eq

type EqSet = [ ( TLinearRank0 , TLinearRank0 ) ]

type Sub = ( TyVar , TLinearRank0 )

type Subst = [ Sub ]

data U n i f i e r = Uni Subst | FAIL
deriving ( Eq , Show )

instance Show TLinearRank0 where

show ( TVar a ) = show a
show (TAp t1 t2 ) = ( ’ ( ’ : show t1 ) ++ ( ’ ’ : ’ − ’ : ’ o ’ : ’ ’ : show t2 ) ++ [ ’ ) ’ ]

instance Show TyVar where

show ( TyVar a ) = id a

−−−−−−−Type U n i f i c a t i o n −−−−−−−

−− Given a Sub s =(a , t ) and a l i n e a r t y p e t0 , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e t 0 w i t h t y p e t .
s u b s t : : Sub −> TLinearRank0 −> TLinearRank0
s u b s t ( a1 , t ) (TVar a2 ) | a1 == a2 = t

| otherwise = TVar a2
s u b s t s (TAp t1 t2 ) = TAp ( s u b s t s t1 ) ( s u b s t s t2 )

−− Given a Sub s =(a , t ) and an s e t o f e q u a t i o n s e q s e t , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e s i n e q s e t w i t h t y p e t .
substE : : Sub −> EqSet −> EqSet
substE _ [ ] = [ ]
substE s ( ( t1 , t2 ) : t s ) = ( t1 ’ , t2 ’ ) : ts ’

where t1 ’ = s u b s t s t1
t2 ’ = s u b s t s t2
ts ’ = substE s t s

−− Given a Sub s =(a , t ) and an a t y p e s u b s t i t u t i o n s u b s t , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e s i n s u b s t w i t h t y p e t .
substS : : Sub −> Subst −> Subst
substS _ [ ] = [ ]
substS s ( ( t1 , t2 ) : t s ) = ( t1 ’ , t2 ’ ) : ts ’

where TVar t1 ’ = s u b s t s ( TVar t1 )
t2 ’ = s u b s t s t2
ts ’ = substS s t s

−− Checks i f a t y p e v a r i a b l e o c c u r s ( f r e e ) i n a l i n e a r t y p e .
isFVType : : TyVar −> TLinearRank0 −> Bool

isFVType a1 ( TVar a2 ) = a1 == a2
isFVType a (TAp t1 t2 ) = isFVType a t1 | | isFVType a t2

−− Checks i f a t y p e v a r i a b l e o c c u r s ( f r e e ) i n an e q u a t i o n s e t .
isFVTypeE : : TyVar −> EqSet −> Bool

isFVTypeE _ [ ] = False

isFVTypeE a ( ( t1 , t2 ) : t s ) = isFVType a t1 | | isFVType a t2 | | isFVTypeE a t s

−− Checks i f a t y p e v a r i a b l e o c c u r s ( f r e e ) i n a t y p e s u b s t i t u t i o n .
isFVTypeS : : TyVar −> Subst −> Bool

isFVTypeS _ [ ] = False

isFVTypeS a ( ( t1 , t2 ) : t s ) = isFVType a ( TVar t1 ) | | isFVType a t2 | | isFVTypeS a t s

−− U n i f i c a t i o n a l g o r i t h m w i t h c o u n t i n g o f q u a n t i t a t i v e i n f o r m a t i o n .
−− ( The t h i r d e l e m e n t o f t h e t u p l e s i s t h e c o u n t e r o f t h e q u a n t i t a t i v e i n f o r m a t i o n . )
unifyQ : : ( EqSet , U n i f i e r , Int ) −> ( EqSet , U n i f i e r , Int )
unifyQ ( [ ] , u , count ) = ( [ ] , u , count )
unifyQ ( ( t1 , t2 ) : ts , u , count ) | t1 == t2 = unifyQ ( ts , u , count )
unifyQ ( (TAp t1 t2 , TAp t1 ’ t2 ’ ) : ts , u , count ) = unifyQ ( ( t1 , t1 ’ ) : ( t2 , t2 ’ ) : ts , u , count +1)



A.2. Linear Types 107

unifyQ ( (TAp t1 t2 , TVar a ) : ts , u , count ) = unifyQ ( ( TVar a , TAp t1 t2 ) : ts , u , count )
unifyQ ( ( TVar a , t ) : ts , Uni s , count )

| isFVType a t = error ( "FAIL − t r y i n g to u n i f y : " ++ show ( ( TVar a ,
↪→ t ) : ts , Uni s ) ) −− ( [ ] , FAIL )

| isFVTypeE a t s | | isFVTypeS a s = let ts ’ = substE ( a , t ) t s
s ’ = substS ( a , t ) s
in unifyQ ( ts ’ , Uni ( ( a , t ) : s ’ ) , count )

| otherwise = unifyQ ( ts , Uni ( ( a , t ) : s ) , count )� �



108 Appendix A. Haskell Implementation

A.3 Linear Rank 2 Quantitative Types

� �
module LinearRank2QuantitativeTypes where

import LambdaCalculus
import LinearTypes

−− L i n e a r rank 1 i n t e r s e c t i o n t y p e s .
data TLinearRank1 = T1_0 TLinearRank0 | I n t e r s TLinearRank1 TLinearRank1

deriving Eq

−− L i n e a r rank 2 i n t e r s e c t i o n t y p e s .
data TLinearRank2 = T2_0 TLinearRank0 | T2ApL TLinearRank0 TLinearRank2 | T2Ap TLinearRank1

↪→ TLinearRank2
deriving Eq

−− Environments .
type LEnv = [ ( TeVar , TLinearRank1 ) ]

instance Show TLinearRank1 where

show (T1_0 t0 ) = show t0
show ( I n t e r s t1 t2 ) = ( ’ ( ’ : show t1 ) ++ ( ’ / ’ : ’ \ \ ’ : show t2 ) ++ [ ’ ) ’ ]

instance Show TLinearRank2 where

show (T2_0 t ) = show t
show (T2ApL t0 t2 ) = ( ’ ( ’ : show t0 ) ++ ( ’ ’ : ’ − ’ : ’ o ’ : ’ ’ : show t2 ) ++ [ ’ ) ’ ]
show (T2Ap t1 t2 ) = ( ’ ( ’ : show t1 ) ++ ( ’ ’ : ’ − ’ : ’ > ’ : ’ ’ : show t2 ) ++ [ ’ ) ’ ]

−− Note : e v e r y I n t a p p e a r i n g i n t h e l a s t p o s i t i o n o f a r e t u r n i n g t u p l e or
−− as t h e l a s t argument o f a f u n c t i o n , i s f o r g e n e r a t i n g new t y p e v a r i a b l e s ( a1 , a2 , a3 , . . . ) .

−−−−−−−Q u a n t i t a t i v e Type I n f e r e n c e Algori thm −−−−−−−

−− Given a l i s t o f l i n e a r rank 1 i n t e r s e c t i o n t y p e s , r e t u r n s a s i n g l e t y p e
−− c o n s i s t i n g o f t h e i n t e r s e c t i o n o f t h e t y p e s i n t h e g i v e n l i s t .
l i s t T o I n t e r s : : [ TLinearRank1 ] −> TLinearRank1
l i s t T o I n t e r s [ t1 ] = t1
l i s t T o I n t e r s ( t1 : t s ) = I n t e r s ( l i s t T o I n t e r s t s ) t1

−− Checks i f a l i n e a r rank 1 t y p e i s a l s o a l i n e a r rank 0 t y p e ( i . e . , i f i t does not have
↪→ i n t e r s e c t i o n s ) .

t 1 i s T0 : : TLinearRank1 −> Bool

t 1 i s T0 (T1_0 _) = True

t 1 i s T0 _ = False

−− C o n v e r t s a l i n e a r rank 1 t y p e t t o a l i n e a r rank 0 type , i f t i s a l s o a l i n e a r rank 0 t y p e
↪→ ( i . e . , i f

−− i t does not have i n t e r s e c t i o n s ) ; o t h e r w i s e , f a i l s .
t1toT0 : : TLinearRank1 −> TLinearRank0
t1toT0 (T1_0 t0 ) = t0
t1toT0 t1 = error ( "FAIL − t1toT0 e r r o r : the type " ++ show t1 ++ " i s not a l i n e a r rank 0

↪→ type . \ n " )

−− C o n v e r t s a l i n e a r rank 2 t y p e t t o a l i n e a r rank 0 type , i f t i s a l s o a l i n e a r rank 0 t y p e
↪→ ( i . e . , i f

−− i t does not have any i n t e r s e c t i o n s ) ; o t h e r w i s e , f a i l s .
t2toT0 : : TLinearRank2 −> TLinearRank0
t2toT0 (T2_0 t0 ) = t0
t2toT0 (T2ApL t0 t2 ) = TAp t0 ( t2toT0 t2 )
t2toT0 (T2Ap t1 t2 ) = error ( "FAIL − t2toT0 e r r o r : the type " ++ show (T2Ap t1 t2 ) ++ " i s not a

↪→ l i n e a r rank 0 type . \ n " )

−− Given a Sub s =(a , t ) and a l i n e a r rank 1 i n t e r s e c t i o n t y p e t1 , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e t 1 w i t h t y p e t .
subst1 : : Sub −> TLinearRank1 −> TLinearRank1
subst1 s (T1_0 t0 ) = T1_0 ( s u b s t s t0 )
subst1 s ( I n t e r s t1 t1 ’ ) = I n t e r s ( subst1 s t1 ) ( subst1 s t1 ’ )

−− Given a Sub s =(a , t ) and a l i n e a r rank 2 i n t e r s e c t i o n t y p e t2 , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e t 2 w i t h t y p e t .
subst2 : : Sub −> TLinearRank2 −> TLinearRank2
subst2 s (T2_0 t0 ) = T2_0 ( s u b s t s t0 )
subst2 s (T2ApL t0 t2 ) = T2ApL ( s u b s t s t0 ) ( subst2 s t2 )
subst2 s (T2Ap t1 t2 ) = T2Ap ( subst1 s t1 ) ( subst2 s t2 )

−− A p p l i e s a s u b s t i t u t i o n t o a l i n e a r rank 2 i n t e r s e c t i o n t y p e .



A.3. Linear Rank 2 Quantitative Types 109

s u b s t t y 2 : : Subst −> TLinearRank2 −> TLinearRank2
s u b s t t y 2 [ ] t2 = t2
s u b s t t y 2 ( s : t s ) t2 = s u b s t t y 2 t s ( subst2 s t2 )

−− Given a Sub s =(a , t ) and an environment env , r e p l a c e s a l l f r e e
−− o c c u r r e n c e s o f t h e t y p e v a r i a b l e a i n t h e t y p e s i n env w i t h t y p e t .
substEn : : Sub −> LEnv −> LEnv
substEn _ [ ] = [ ]
substEn s ( ( x , t ) : e s ) = ( x , subst1 s t ) : substEn s e s

−− A p p l i e s a s u b s t i t u t i o n t o an environment .
substEnv : : Subst −> LEnv −> LEnv
substEnv [ ] e = e
substEnv ( s : t s ) e = substEnv t s ( substEn s e )

−− Checks w h e t h e r or not a term v a r i a b l e i s i n an environment .
i sInEnv : : TeVar −> LEnv −> Bool

i sInEnv _ [ ] = False

i sInEnv x1 ( ( x2 , _) : e s ) = x1 == x2 | | isInEnv x1 e s

−− Given a term v a r i a b l e x and an environment env ,
−− r e t u r n s a l i s t w i t h a l l t y p e s o f x i n env .
f i n d A l l I n E n v : : TeVar −> LEnv −> [ TLinearRank1 ]
f i n d A l l I n E n v _ [ ] = [ ]
f i n d A l l I n E n v x1 ( ( x2 , t ) : e s ) | x1 == x2 = t : f i n d A l l I n E n v x1 e s

| otherwise = f i n d A l l I n E n v x1 e s

−− Given a term v a r i a b l e x and an environment env ,
−− r e t u r n s t h e t y p e o f x i n env .
−− ( I t i s g u a r a n t e e d t h a t t h e f u n c t i o n w i l l o n l y be c a l l e d when
−− t h e r e i s one and o n l y one o c c u r r e n c e o f x i n env . )
f indInEnv : : TeVar −> LEnv −> TLinearRank1
findInEnv x1 ( ( x2 , t ) : e s ) | x1 == x2 = t

| otherwise = findInEnv x1 e s

−− Removes a l l o c c u r r e n c e s o f a term v a r i a b l e from an environment .
rmFromEnv : : TeVar −> LEnv −> LEnv
rmFromEnv _ [ ] = [ ]
rmFromEnv x1 ( ( x2 , t ) : e s ) | x1 == x2 = rmFromEnv x1 e s

| otherwise = ( x2 , t ) : rmFromEnv x1 e s

−− Given an environment , r e p l a c e s a l l p a i r s ( x , t 1 ) , ( x , t 2 ) , . . . w i t h a same
−− term v a r i a b l e x w i t h a s i n g l e p a i r ( x , t ) where t =( t 1 /\ t 2 / \ . . . ) , ie ,
−− t h e i n t e r s e c t i o n t y p e o f t1 , t2 , . . . .
mergeEnv : : LEnv −> LEnv
mergeEnv [ ] = [ ]
mergeEnv ( ( x , t1 ) : e s ) = ( x , l i s t T o I n t e r s ( f i n d A l l I n E n v x ( ( x , t1 ) : e s ) ) ) : mergeEnv (rmFromEnv x e s )

−− A u x i l i a r o f t h e t y p e i n f e r e n c e a l g o r i t h m , p e r f o r m s as many t y p e i n f e r e n c e s f o r t h e g i v e n term
−− as t h e number o f l i n e a r t y p e s o f t h e g i v e n l i n e a r rank 1 sequence , and r e t u r n s t h e environment
−− and t h e g e n e r a t e d e q u a t i o n s d e s c r i b e d i n t h e a l g o r i t h m .
−− ( The t h i r d e l e m e n t o f t h e r e t u r n i n g t u p l e i s t h e c o u n t e r o f t h e q u a n t i t a t i v e i n f o r m a t i o n . )
genEqs : : TLinearRank1 −> Term −> Int −> (LEnv , EqSet , Int , Int )
genEqs (T1_0 tau ) m n0 = ( env , [ ( t2toT0 t , tau ) ] , b , n1 ) −− f a i l s i f M has a l i n e a r

↪→ rank 2 t y p e
where ( env , t , b , n1 ) = quantR2typeInf m n0

genEqs ( I n t e r s t s e q 1 t s e q 2 ) m n0 = ( mergeEnv ( envs1++envs2 ) , eqs1++eqs2 , bs1+bs2 , n2 )
where ( envs1 , eqs1 , bs1 , n1 ) = genEqs t s e q 1 m n0

( envs2 , eqs2 , bs2 , n2 ) = genEqs t s e q 2 m n1

−− Type i n f e r e n c e a l g o r i t h m f o r l i n e a r rank 2 i n t e r s e c t i o n t y p e s w i t h c o u n t i n g o f q u a n t i t a t i v e
↪→ i n f o r m a t i o n .

−− ( The t h i r d e l e m e n t o f t h e r e t u r n i n g t u p l e i s t h e c o u n t e r o f t h e q u a n t i t a t i v e i n f o r m a t i o n . )
quantR2typeInf : : Term −> Int −> (LEnv , TLinearRank2 , Int , Int )
quantR2typeInf ( Var x ) n0 = let a = TVar ( TyVar ( ’ a ’ : ( show n0 ) ) ) in

( [ ( x , T1_0 a ) ] , T2_0 a , 0 , n0+1)
↪→
↪→ −− Rule 1 .

quantR2typeInf ( Abs x m1) n0 = let ( env1 , s i g 1 , b1 , n1 ) = quantR2typeInf m1 n0 in

if ( isInEnv x env1 )
then let t1 = findInEnv x env1

env1x = rmFromEnv x env1
in if ( t 1 i s T 0 t1 )

then ( env1x , T2ApL ( t1toT0 t1 ) s i g 1 , b1 , n1 )
↪→
↪→ −− Rule 2 . b

else ( env1x , T2Ap t1 s i g 1 , b1 , n1 )
↪→
↪→ −− Rule 2 . c



110 Appendix A. Haskell Implementation

else error ( "FAIL − Rule 2 . ( a ) : " ++ show x ++ " not i n " ++
↪→ show env1 ++ " \n " ) −− Rule 2 . a

quantR2typeInf (App m1 m2) n0 = let ( env1 , s i g 1 , b1 , n1 ) = quantR2typeInf m1 n0 in

case s i g 1 of

T2_0 ( TVar a1 ) −> ( substEnv s env , s u b s t t y 2 s (T2_0
↪→ a3 ) , b1+b2 , n2+2) −− Rule
↪→ 3 . a

where ( env2 , tau2 , b2 , n2 ) =
↪→ quantR2typeInf m2 n1

env = mergeEnv
↪→ ( env1++env2 )

a2 = TVar
↪→ ( TyVar ( ’ a ’ : ( show n2 ) ) )

a3 = TVar
↪→ ( TyVar ( ’ a ’ : ( show ( n2+1) ) ) )

eqs = [ ( TVar a1 ,
↪→ TAp a2 a3 ) , ( t2toT0 tau2 ,
↪→ a2 ) ]

( [ ] , Uni s , _) = unifyQ
↪→ ( eqs , Uni [ ] , 0)

T2Ap t s e q s i g 1 ’ −> ( substEnv s env , s u b s t t y 2 s s i g 1 ’ ,
↪→ b1+bs+b3+1, n2 ) −− Rule 3 . b

where ( envs , eqs , bs , n2 ) = genEqs
↪→ t s e q m2 n1

env = mergeEnv
↪→ ( env1++envs )

( [ ] , Uni s , b3 ) = unifyQ
↪→ ( eqs , Uni [ ] , 0)

T2ApL tau s i g −> ( substEnv s env , s u b s t t y 2 s s i g ,
↪→ b1+b2+b3+1, n2 ) −− Rule
↪→ 3 . c

where ( env2 , tau2 , b2 , n2 ) =
↪→ quantR2typeInf m2 n1

env = mergeEnv
↪→ ( env1++env2 )

eqs = [ ( t2toT0
↪→ tau2 , tau ) ]

( [ ] , Uni s , b3 ) = unifyQ
↪→ ( eqs , Uni [ ] , 0)

T2_0 (TAp tau s i g ) −> ( substEnv s env , s u b s t t y 2 s (T2_0
↪→ s i g ) , b1+b2+b3+1, n2 ) −− Rule
↪→ 3 . c

where ( env2 , tau2 , b2 , n2 ) =
↪→ quantR2typeInf m2 n1

env = mergeEnv
↪→ ( env1++env2 )

eqs = [ ( t2toT0
↪→ tau2 , tau ) ]

( [ ] , Uni s , b3 ) = unifyQ
↪→ ( eqs , Uni [ ] , 0)� �



A.4. Reductions 111

A.4 Reductions

� �
module Reductions where

import LambdaCalculus
import Data . List

type Sub = ( TeVar , Term)

removeAll : : Eq a => a −> [ a ] −> [ a ]
removeAll x = filter (/= x )

i n t e r s e c t i o n : : Eq a => [ a ] −> [ a ] −> [ a ]
i n t e r s e c t i o n l 1 l 2 = nub ( intersect l 1 l 2 )

inBetaNF : : Term −> Bool

inBetaNF ( Var _) = True

inBetaNF (App ( Abs _ _) _) = False

inBetaNF ( Abs _ m) = inBetaNF m
inBetaNF (App m1 m2) = inBetaNF m1 && inBetaNF m2

renameFree1 : : Term −> TeVar −> Term
renameFree1 ( Var ( TeVar x ) ) y | ( TeVar x ) == y = Var ( TeVar ( x++" ’ " ) )

| otherwise = Var ( TeVar x )
renameFree1 ( Abs x m) y | x == y = Abs x m

| otherwise = Abs x ( renameFree1 m y )
renameFree1 (App m1 m2) y = App ( renameFree1 m1 y ) ( renameFree1 m2 y )

renameBV : : Term −> [ TeVar ] −> Term
renameBV ( Var x ) _ = Var x
renameBV ( Abs ( TeVar x ) m) xs | elem ( TeVar x ) xs = Abs ( TeVar ( x++" ’ " ) ) ( renameBV ( renameFree1 m

↪→ ( TeVar x ) ) xs )
| otherwise = Abs ( TeVar x ) ( renameBV m xs )

renameBV (App m1 m2) xs = App ( renameBV m1 xs ) ( renameBV m2 xs )

s u b s t i t u t e : : Sub −> Term −> Term
s u b s t i t u t e ( TeVar x1 , m1) m2 | length ( i n t e r ) > 0 = s u b s t i t u t e ( TeVar x1 , m1) m2’

where i n t e r = i n t e r s e c t i o n ( boundVars m2) ( f r e e V a r s m1)
m2’ = renameBV m2 i n t e r

s u b s t i t u t e ( x1 , m) ( Var x2 ) | x1 == x2 = m
| otherwise = Var x2

s u b s t i t u t e ( x1 , m1) ( Abs x2 m2) | x1 == x2 = Abs x2 m2
| otherwise = Abs x2 ( s u b s t i t u t e ( x1 , m1) m2)

s u b s t i t u t e s (App m1 m2) = App ( s u b s t i t u t e s m1) ( s u b s t i t u t e s m2)

boundVars : : Term −> [ TeVar ]
boundVars ( Var _) = [ ]
boundVars ( Abs x m) = x : boundVars m
boundVars (App m1 m2) = boundVars m1 ++ boundVars m2

f r e e V a r s : : Term −> [ TeVar ]
f r e e V a r s ( Var x ) = [ x ]
f r e e V a r s ( Abs x m) = removeAll x ( f r e e V a r s m)
f r e e V a r s (App m1 m2) = f r e e V a r s m1 ++ f r e e V a r s m2

isFV : : TeVar −> Term −> Bool

isFV x t = elem x ( f r e e V a r s t )

−−−−−−−Maximal Beta−r e d u c t i o n S t r a t e g y ( b a s e d on Def . 3 . 2 1 ( Cap . 3 . 5 ) from ’ P e r p e t u a l R e d u c t i o n s
↪→ i n Lambda−C a l c u l u s ’−−−−−−−

isXParrow : : Term −> Bool

isXParrow ( Var x ) = True

isXParrow (App m1 m2) = inBetaNF m2 && isXParrow m1
isXParrow _ = False

maximal : : Term −> (Term , Int )
maximal m | inBetaNF m = (m, 0)
maximal ( Abs x m) = let (m’ , n ) = maximal m

in ( Abs x m’ , n )
maximal (App ( Abs x m1) m2)

| isFV x m1 | | inBetaNF m2 = ( s u b s t i t u t e ( x , m2) m1, 1)
| otherwise = let (m2’ , n ) = maximal m2

in (App ( Abs x m1) m2’ , n )
maximal (App m1 m2) −− Rule 1

| not ( inBetaNF m2) && isXParrow m1 = let (m2’ , n ) = maximal m2
in (App m1 m2’ , n )



112 Appendix A. Haskell Implementation

maximal (App m1 m2) = let (m1’ , n ) = maximal m1
in (App m1’ m2, n )

−−−−−−−Normal Order Beta−r e d u c t i o n S t r a t e g y −−−−−−−

normal : : Term −> (Term , Int )
normal m | inBetaNF m = (m, 0)
normal ( Abs x m) = let (m’ , n ) = normal m in ( Abs x m’ , n )
normal (App ( Abs x m1) m2) = ( s u b s t i t u t e ( x , m2) m1, 1)
normal (App m1 m2) | not ( inBetaNF m1) = let (m1’ , n ) = normal m1 in (App m1’ m2, n )

| otherwise = let (m2’ , n ) = normal m2 in (App m1 m2’ , n )

−−−−−−−A p p l i c a t i v e Order Beta−r e d u c t i o n S t r a t e g y −−−−−−−

a p p l i c a t i v e : : Term −> (Term , Int )
a p p l i c a t i v e m | inBetaNF m = (m, 0)
a p p l i c a t i v e ( Abs x m) = let (m’ , n ) = a p p l i c a t i v e m in ( Abs x m’ , n )
a p p l i c a t i v e (App ( Abs x m1) m2) | not ( inBetaNF m2) = let (m2’ , n ) = a p p l i c a t i v e m2 in (App ( Abs

↪→ x m1) m2’ , n )
| not ( inBetaNF m1) = let (m1’ , n ) = a p p l i c a t i v e m1 in (App ( Abs

↪→ x m1’ ) m2, n )
| otherwise = ( s u b s t i t u t e ( x , m2) m1, 1)

a p p l i c a t i v e (App m1 m2) | not ( inBetaNF m1) = let (m1’ , n ) = a p p l i c a t i v e m1 in (App m1’
↪→ m2, n )

| otherwise = let (m2’ , n ) = a p p l i c a t i v e m2 in (App m1
↪→ m2’ , n )

maxSteps : : Int

maxSteps = 1000

reduce : : (Term −> (Term , Int ) ) −> [ Term ] −> Int −> ( [ Term ] , Int )
reduce s t r a t (m: ms) n0 | n0 > maxSteps = ( ( ( Var ( TeVar ( " Limit Exceeded . Current term : " ++ show

↪→ m) ) ) : ms) , n0 )
| inBetaNF m = ( (m: ms) , n0 )
| otherwise = reduce s t r a t (m’ :m: ms) ( n0+n1 )

where (m’ , n1 ) = s t r a t m� �



A.5. Parser 113

A.5 Parser

� �
{
module Main where

import Data . Char
import LambdaCalculus
import Reductions
import SimpleTypes
import Rank2Intersect ionTypes
import LinearTypes
import LinearRank2QuantitativeTypes
}

%name p a r s e
%tokentype { Token }
%error { p a r s e E r r o r }

%token
’\\ ’ { TokenLambda }
’ . ’ { TokenPoint }
’ ’ { TokenSpace }
var { TokenVar $$ }
’ ( ’ { TokenOB }
’ ) ’ { TokenCB }
t y p e i n f 0 { TokenInf0 }
t y p e i n f 2 { TokenInf2 }
q t y p e i n f 2 { TokenQInf2 }
reduceMax { TokenReduceMax }
reduceNorm { TokenReduceNorm }
reduceApp { TokenReduceApp }
s t e p s { TokenSteps }
count { TokenCount }

%l e f t ’ . ’
%l e f t ’ ’

%%

Exp : TyInf { TyInf $1 }
| Term { Term $1 }
| Reduction { Reduction $1 }

Term : var { Var ( TeVar $1 ) }
| Abs { $1 }
| App { $1 }
| ’ ( ’ Term ’ ) ’ { $2 }

Abs : ’\\ ’ var ’ . ’ Term { Abs ( TeVar $2 ) $4 }

App : Term ’ ’ Term { App $1 $3 }

TyInf : t y p e i n f 0 ’ ’ ’ ( ’ Term ’ ) ’ { TyInf0 $4 ( s impleTypeInf $4 0) }
| t y p e i n f 2 ’ ’ ’ ( ’ Term ’ ) ’ { TyInf2 $4 ( r 2 t y p e I n f $4 0) }
| q t y p e i n f 2 ’ ’ ’ ( ’ Term ’ ) ’ { QTyInf2 $4 ( quantR2typeInf $4 0) D e f a u l t }
| q t y p e i n f 2 ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ count { QTyInf2 $4 ( quantR2typeInf $4 0) Count }

Reduction : reduceMax ’ ’ ’ ( ’ Term ’ ) ’ { Reduct " maximal s t r a t e g y " $4 ( reduce maximal
↪→ [ $4 ] 0) D e f a u l t }

| reduceNorm ’ ’ ’ ( ’ Term ’ ) ’ { Reduct " normal s t r a t e g y " $4 ( reduce normal
↪→ [ $4 ] 0) D e f a u l t }

| reduceApp ’ ’ ’ ( ’ Term ’ ) ’ { Reduct " a p p l i c a t i v e s t r a t e g y " $4 ( reduce
↪→ a p p l i c a t i v e [ $4 ] 0) D e f a u l t }

| reduceMax ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ s t e p s { Reduct " maximal s t r a t e g y " $4 ( reduce maximal
↪→ [ $4 ] 0) Steps }

| reduceNorm ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ s t e p s { Reduct " normal s t r a t e g y " $4 ( reduce normal
↪→ [ $4 ] 0) Steps }

| reduceApp ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ s t e p s { Reduct " a p p l i c a t i v e s t r a t e g y " $4 ( reduce
↪→ a p p l i c a t i v e [ $4 ] 0) Steps }

| reduceMax ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ count { Reduct " maximal s t r a t e g y " $4 ( reduce maximal
↪→ [ $4 ] 0) Count }

| reduceNorm ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ count { Reduct " normal s t r a t e g y " $4 ( reduce normal
↪→ [ $4 ] 0) Count }

| reduceApp ’ ’ ’ ( ’ Term ’ ) ’ ’ ’ count { Reduct " a p p l i c a t i v e s t r a t e g y " $4 ( reduce
↪→ a p p l i c a t i v e [ $4 ] 0) Count }

{
p a r s e E r r o r : : [ Token ] −> a



114 Appendix A. Haskell Implementation

p a r s e E r r o r _ = error " Parse e r r o r "

data Exp
= TyInf TyInf
| Reduction Reduction
| Term Term

data TyInf
= TyInf0 Term ( Basis , Type0 , Int )
| TyInf2 Term (Env , Type2 , Int )
| QTyInf2 Term (LEnv , TLinearRank2 , Int , Int ) Mode

data Reduction −− Reduct R e d u c t i o n _ s t r a t e g y Term I n i t i a l _ t e r m ( R e v e r s e _ l i s t _ o f _ r e d u c t i o n s ,
↪→ Number_reductions ) Mode_of_printing

= Reduct String Term ( [ Term ] , Int ) Mode

data Mode
= D e f a u l t −− shows e v e r y t h i n g ( e x c e p t r e d u c t i o n s t e p s , i n t h e c a s e o f Reduct )
| Count −− o n l y shows t h e c o u n t e r s
| Steps −− ( o n l y f o r Reduct ) shows e v e r y t h i n g , w i t h r e d u c t i o n s t e p s

instance Show Exp where

show ( TyInf x ) = show x
show ( Reduction x ) = show x
show (Term x ) = "Term : " ++ show x ++ [ ’ \ n ’ ]

instance Show TyInf where

show ( TyInf0 term ( b a s i s , t0 , _) ) = " \ t[−−− I n f e r e n c e ( s i m p l e types ) −−−]" ++
↪→ " \n\tTerm = " ++ show term ++ " \n\ t B a s i s = " ++ show b a s i s ++ " \n\tType
↪→ = " ++ show t0 ++ [ ’ \ n ’ ]

show ( TyInf2 term ( env , t0 , _) ) = " \ t[−−− I n f e r e n c e ( rank 2 i n t e r s e c t i o n types )
↪→ −−−]" ++ " \n\tTerm = " ++ show term ++ " \n\ tEnvironment = " ++ show env ++
↪→ " \n\tType = " ++ show t0 ++ [ ’ \ n ’ ]

show ( QTyInf2 term ( env , t2 , c , _) D e f a u l t ) = " \ t[−−− I n f e r e n c e ( l i n e a r rank 2 q u a n t i t a t i v e
↪→ types ) −−−]" ++ " \n\tTerm = " ++ show term ++ " \n\ tEnvironment = " ++ show env
↪→ ++ " \n\tType = " ++ show t2 ++ " \n\tCount = " ++ show c ++ [ ’ \ n ’ ]

show ( QTyInf2 term ( env , t2 , c , _) Count ) = " \ t[−−− I n f e r e n c e ( l i n e a r rank 2 q u a n t i t a t i v e
↪→ types ) −−−]" ++ " \n\tTerm = " ++ show term ++ " \n\tCount = " ++ show c ++
↪→ [ ’ \ n ’ ]

instance Show Reduction where

show ( Reduct s t r a t term ( terms , c ) D e f a u l t ) = " \ t[−−− Reduction ( " ++ s t r a t ++ " ) −−−]" ++
↪→ " \n\tTerm = " ++ show term ++ " \n\tNormal form = " ++ show ( head terms ) ++
↪→ " \n\tCount = " ++ show c ++ [ ’ \ n ’ ]

show ( Reduct s t r a t term ( terms , c ) Steps ) = " \ t[−−− Reduction ( " ++ s t r a t ++ " ) −−−]" ++
↪→ " \n\tTerm = " ++ show term ++ " \n\tNormal form = " ++ show ( head terms ) ++
↪→ " \n\tCount = " ++ show c ++ " \n\ tReduct ions : " ++ show ( head ( reverse terms ) )
↪→ ++ " \n " ++ concat ( map (\ x −> " \ t −> " ++ show x ++ " \n " ) ( tail ( reverse
↪→ terms ) ) )

show ( Reduct s t r a t term ( terms , c ) Count ) = " \ t[−−− Reduction ( " ++ s t r a t ++ " ) −−−]" ++
↪→ " \n\tTerm = " ++ show term ++ " \n\tCount = " ++ show c ++ [ ’ \ n ’ ]

data Token
= TokenLambda
| TokenPoint
| TokenSpace
| TokenVar String

| TokenOB
| TokenCB
| TokenInf0
| TokenInf2
| TokenQInf2
| TokenReduceMax
| TokenReduceNorm
| TokenReduceApp
| TokenSteps
| TokenCount
deriving Show

l e x e r : : String −> [ Token ]
l e x e r [ ] = [ ]
l e x e r ( c : c s )

| isAlphaNum c = lexVar ( c : c s )
l e x e r ( ’ \ \ ’ : c s ) = TokenLambda : l e x e r c s
l e x e r ( ’ . ’ : c s ) = TokenPoint : l e x e r c s
l e x e r ( ’ ’ : c s ) = TokenSpace : l e x e r c s
l e x e r ( ’ ( ’ : c s ) = TokenOB : l e x e r c s
l e x e r ( ’ ) ’ : c s ) = TokenCB : l e x e r c s

lexVar c s =



A.5. Parser 115

case span isAlphaNum c s of

( " t i 0 " , r e s t ) −> TokenInf0 : l e x e r r e s t
( " t i 2 " , r e s t ) −> TokenInf2 : l e x e r r e s t
( " q t i 2 " , r e s t ) −> TokenQInf2 : l e x e r r e s t
( " reduceMax " , r e s t ) −> TokenReduceMax : l e x e r r e s t
( " reduceNorm " , r e s t ) −> TokenReduceNorm : l e x e r r e s t
( " reduceApp " , r e s t ) −> TokenReduceApp : l e x e r r e s t
( " s t e p s " , r e s t ) −> TokenSteps : l e x e r r e s t
( " count " , r e s t ) −> TokenCount : l e x e r r e s t
( var , r e s t ) −> TokenVar var : l e x e r r e s t

main = do l i n e <− getLine

let a c t i o n | all isSpace l i n e | | l i n e ! ! 0 == ’’ = main| line!!0 == ’-’ = putStrLn (tail line)| otherwise =
(print . parse . lexer) lineactionmain� �


	Acknowledgments
	Abstract
	Resumo
	Contents
	1 Introduction
	1.1 Quantitative Types
	1.2 Linear Rank
	1.3 Counting Reductions
	1.4 Contributions

	2 Background
	2.1 Lambda-Calculus
	2.2 Simple Types
	2.3 Intersection Types
	2.3.1 Finite Rank

	2.4 Quantitative Types

	3 Linear Rank Intersection Types
	3.1 Linear Rank
	3.2 Type System
	3.3 Type Inference Algorithm
	3.3.1 Unification
	3.3.2 Type Inference

	3.4 Final Remarks

	4 Resource Inference
	4.1 Type System
	4.2 Type Inference Algorithm

	5 Implementation and Experimental Results
	5.1 Implementation Overview
	5.2 Experimental Results

	6 Conclusions and Future Work
	Bibliography
	A Haskell Implementation
	A.1 Lambda Calculus
	A.2 Linear Types
	A.3 Linear Rank 2 Quantitative Types
	A.4 Reductions
	A.5 Parser


