
S-matrix Bootstrap:
Towards Inelasticity
José Manuel da Silva Rainha Pereira
Mestrado em Física
Departamento de Física e Astronomia
2022

Orientador
Miguel Sousa da Costa, Centro de Física do Porto

Coorientador
António Leite Antunes, Centro de Física do Porto





Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /





Declaração de Honra 

Eu, José Manuel da Silva Rainha Pereira, inscrito no Mestrado em Física da Faculdade 

de Ciências da Universidade do Porto declaro, nos termos do disposto na alínea a) do 

artigo 14.º do Código Ético de Conduta Académica da U.Porto, que o conteúdo da 

presente dissertação reflete as perspetivas, o trabalho de investigação e as minhas 

interpretações no momento da sua entrega.  

Ao entregar esta dissertação, declaro, ainda, que a mesma é resultado do meu próprio 

trabalho de investigação e contém contributos que não foram utilizados previamente 

noutros trabalhos apresentados a esta ou outra instituição. 

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as 

regras da atribuição, encontrando-se devidamente citadas no corpo do texto e 

identificadas na secção de referências bibliográficas. Não são divulgados na presente 

dissertação quaisquer conteúdos cuja reprodução esteja vedada por direitos de autor. 

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito 

académico. 

 

José Manuel da Silva Rainha Pereira 

Porto, 11 de outubro de 2022 





UNIVERSIDADE DO PORTO

MASTERS THESIS

S-matrix Bootstrap: Towards Inelasticity

Author:
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S-matrix Bootstrap: Towards Inelasticity

by José PEREIRA

This thesis focuses on the principles that make up the S-matrix Bootstrap philosophy

and their application to simple but instructive QFTs of massive neutral scalar particles. In

addition, it explores the introduction of particle production in unitarity conditions, where

several new results are obtained.

Firstly, we present an historical background of the S-matrix Bootstrap and of how its

techniques developed. This is proceeded by an analysis of the main properties of the

S-matrix, the central object of study, with special emphasis on Analiticity, Crossing sym-

metry and Unitarity, following [1, 2]. Then, we move on to Dispersion Relations and,

finally, to the Partial-wave expansion, essential for the Bootstrap of higher dimensions

QFTs.

In the second chapter, which follows [3], we start by studying massive neutral scalar

fields in two-dimensional Lorentzian space, where the two main approaches to the Boot-

strap, the primal and the dual, are presented and extensively worked on. In the context

of 2 → 2 collisions, the most general QFTs whose mass spectrum assumes a bound state

is studied. Using the previously mentioned techniques, the cubic coupling of the lighter

masses to the bound state is maximized, which, combined with a given analytic structure,

eventually leads to the sine-Gordon S-matrix. Moreover, we obtain the space of allowed

theories which admit two and even three bound states. Finally, other quantities are maxi-

mized in the absence of a cubic coupling, and then the dual method is applied.

Subsequently, we proceed with the same optimization scheme for higher dimensions,

in particular in 4D. In addition to maximizing the cubic coupling, another historically

relevant quantity, the effective quartic coupling, is analysed.
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Before presenting the conclusions, we move to the main chapter of the thesis: the im-

plementation of particle production in the maximization of chosen physical observables.

As before, we start by analysing QFTs in two dimensions, where the cubic coupling is

yet again maximized. However, particle production is introduced as a special constraint,

which yields new interesting results. Some modifications to the usual Ansatz are sug-

gested, so as to improve said results. Finally, this is carried out in higher dimensions,

where the SDPB [4] program is the main technical tool to solving all the problems. As

such, generalizations of the previous constraints are introduced, whether directly on the

S-matrix partial-waves or on the imaginary part of the amplitude in the forward limit, via

the optical theorem.

Finally, an overview of the thesis is given, as well as future directions and open prob-

lems which this work generates.

In the appendices, several derivations and generalizations are presented, so as to make

the rest of the thesis easier to follow.
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S-matrix Bootstrap

por José PEREIRA

Esta tese foca-se nos princı́cpios que estableceram a filosofia do ”S-matrix Bootstrap”e

na sua aplicação a casos simples e pedagógicos de teorias quânticas de campo (TQCs)

massivas, escalares e sem carga. Para além disso, exploramos a introdução de inelastici-

dade nas condições de unitariedade, obtendo, assim, novos resultados.

Numa primeira fase, fazemos uma introdução histórica, que visa expôr o surgimento

e o desenvolvimento da técnica de ”S-matrix Bootstrap”. Segue-se uma análise das princi-

pais caracterı́sticas da ”S-matrix”, o objeto principal de estudo, com ênfase nas proprieda-

des de Analiticidade, ”Crossing symmetry”e Unitariedade, seguindo de perto [1, 2]. Por

fim, prosseguimos com o assunto de relações de dispersão e, finalmente, a expansão em

ondas parciais, essencial para o método de ”Bootstrap”em TQCs de maiores dimensões.

No segundo capı́tulo, que segue [3], começamos por estudar campos massivos, esca-

lares e sem carga num espaço Lorentziano dois-dimensional, introduzindo assim as duas

principais abordagens ao ”Bootstrap”, o ”primal”e o ”dual”, extensivamente estudadas.

No contexto de colisão de 2→ 2, consideramos a TQC mais geral cujo espectro de massa

assume um estado ligado. Usando as técnicas previamente indicadas, o acoplamento

cúbico das massas mais leves ao estado ligado é maximizado, o que, combinado com uma

estrutura analı́tica bem especificada, eventualmente dá origem à solução da ”S-matrix”de

”sine-Gordon”. Para além disso, obtemos o espaço de teorias permitidas que assumem

dois ou mais estados ligados. Por fim, outras quantidades são maximizadas na ausência

do acoplamento cúbico, e, depois, o método ”dual”é aplicado.

De seguida, procedemos com o mesmo esquema de otimização em maiores dimensões,

em particular em quatro dimensões. Não só maximizamos o acoplamento cúbico como

mailto:up201703601@edu.fc.up.pt


também introduzimos outra quantidade fı́sica historicamente relevante, o acoplamento

quártico, que é de igual modo analisado.

Antes de apresentarmos as conclusões, seguimos para o capı́tulo de maior relevo

na tese: a implementação da produção de partı́culas na maximização de observáveis

fı́sicas. Tal como antes, começamos por analisar as TQCs em duas dimensões, onde

se maximiza o acoplamento cúbico. No entanto, introduz-se a produção de partı́culas

como uma condição adicional, que dá origem a resultados novos e interessantes. Algu-

mas modificações ao ”Ansatz”são sugeridas, de modo a melhorar os resultados. Final-

mente, efetuamos este processo para maiores dimensões, onde o programa SDPB [4] é a

peça principal na resolução dos problemas de otimização. Como tal, foram introduzidas

generalizações às condições previamente utilizadas, quer diretamente nas ondas parci-

ais da ”S-matrix”ou na parte imaginária da amplitude no limite de colisão frontal, via

teorema ótico.

Por fim, fazemos um resumo dos principais resultados da tese e discutimos eventuais

direções a tomar.

Nos apêndices, encontram-se as demonstrações e generalizações utilizadas, apresen-

tadas de modo que o leitor consiga seguir mais facilmente a tese.



Contents

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1
1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 S-matrix properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Analyticity, Crossing-symmetry and Unitarity . . . . . . . . . . . . . 2
1.2.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Partial-wave expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 2D Scattering: massive scalar particles 13
2.1 Primal approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Primal philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Initial setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Numerical Ansatz via dispersion relations . . . . . . . . . . . . . . . 16
2.1.4 Maximization of the cubic coupling with dispersion Ansatz . . . . . 18
2.1.5 Double ρ expansion: a new map, a new hope . . . . . . . . . . . . . . 21
2.1.6 CDD factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.7 Two and three bound-states . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.8 S(2) vs. g21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.9 S(2) vs S′′(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Dual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Dual philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Maximization of the cubic coupling . . . . . . . . . . . . . . . . . . . 42

xi



xii S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

3 4D Scattering: massive scalar particles 45
3.1 Introduction to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Search for a numerical Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Maximization of the cubic coupling . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Quartic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Inelastic scattering: massive scalar particles 59
4.1 2D Inelastic scattering, primal . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Introduction and numerical Ansatz . . . . . . . . . . . . . . . . . . . 59
4.1.2 Maximization of the cubic coupling . . . . . . . . . . . . . . . . . . . 61
4.1.3 S(2) vs. α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.4 Ansatz modification: ρ16 addition . . . . . . . . . . . . . . . . . . . . 64

4.2 2D Inelastic scattering, dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 4D Inelastic scattering, primal . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 4D inelasticity formulation, SDP maximization of the quartic coupling 72
4.3.1.1 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1.2 Lower bound on cross-section . . . . . . . . . . . . . . . . . 75
4.3.1.3 Introducing a lower bound on the total cross-section . . . . 77
4.3.1.4 Imposing bounds on fℓ . . . . . . . . . . . . . . . . . . . . . 79
4.3.1.5 Introducing ρ16 terms . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1.6 Comparison between the different approaches . . . . . . . 85

4.3.2 Analysis of ImT (s, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Maximization of ImT (s, 0) . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conclusions and Further Work 93

A Dual from dispersion relations 97

B Positive semidefinite constraints 101
B.1 Positive semidefinite matrices and partial-wave inequality . . . . . . . . . . 101
B.2 Partial-wave inequality generalization . . . . . . . . . . . . . . . . . . . . . . 103

C Bounds on the threshold pole coefficient 105

D Inelastic dual 107

Bibliography 109



List of Figures

1.1 Integration contour γ in the s-plane . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 2→ 2 scattering in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Analytical structure of S(s) for the 2→ 2 scattering . . . . . . . . . . . . . . 15
2.3 Spline of the distribution ρ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 g21 maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Convergence of g21 with M , primal dispersion . . . . . . . . . . . . . . . . . . 20
2.6 s-plane to ρ unit disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Surviving coefficients in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 g2ρ maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Numerical S-matrix components vs. sine-Gordon . . . . . . . . . . . . . . . 24
2.10 Convergence of g21 with M , primal ρ . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 θ 7→ s map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.12 CDD-pole vs. CDD-zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 Possible configurations of two bound-states . . . . . . . . . . . . . . . . . . . 28
2.14 Behaviour of CDD-zero function . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.15 g21 maximization, 2 bound-states (dispersion Ansatz) . . . . . . . . . . . . . . 30
2.16 g21 maximization, 3 bound-states (dispersion Ansatz) . . . . . . . . . . . . . . 31
2.17 g21 maximization, 2 bound-states (ρ Ansatz) . . . . . . . . . . . . . . . . . . . 31
2.18 g21 maximization, 3 bound-states (ρ Ansatz) . . . . . . . . . . . . . . . . . . . 32
2.19 S(2) vs. g21 , 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.20 S-matrix components of free bosons and Majorana fermions . . . . . . . . . 33
2.21 S-matrices for maxS(2) and minS(2) and g1 = gmax

1 . . . . . . . . . . . . . . 34
2.22 S(2m2) vs. S(2)(2m2), 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.23 Comparison between our data and that from [28] . . . . . . . . . . . . . . . . 36
2.24 Various known models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.25 S(4)(2) pancake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.26 g21 maximization, dual approach . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.27 S-matrix components, dual approach . . . . . . . . . . . . . . . . . . . . . . . 44
2.28 Convergence of the dual objective with Nmax . . . . . . . . . . . . . . . . . . 44

3.1 Surviving coefficients in 4D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 g21 maximization, 4D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 g21 maximization near 4m2, 4D . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 First quartic coupling maximization, 4D . . . . . . . . . . . . . . . . . . . . . 54
3.5 Quartic coupling maximization with threshold pole, 4D . . . . . . . . . . . . 55
3.6 Threshold pole coefficient convergence, 4D . . . . . . . . . . . . . . . . . . . 56
3.7 S-matrix of s partial-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiii



xiv S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

3.8 S12 components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Quartic coupling minimization, 4D . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Relative errors, 2D inelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Analytical solution vs numerical data, 2D inelastic . . . . . . . . . . . . . . . 62
4.3 S-matrix components, primal 2D inelastic . . . . . . . . . . . . . . . . . . . . 63
4.4 S(2) vs. α, 2D inelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 S(2) vs. α, 2D inelastic close up . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Relative errors, 2D inelastic with ρ16 . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Analytical solution vs numerical data, 2D inelastic with ρ16 . . . . . . . . . . 66
4.8 S-matrix components, 2D primal with ρ16 . . . . . . . . . . . . . . . . . . . . 67
4.9 Convergence of D vs Nmax, β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10 Convergence of D vs Nmax, β2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Numerical data vs. analytical, 2D inelastic dual . . . . . . . . . . . . . . . . . 71
4.12 1/Nmax vs. D, 2D inelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.13 Relative errors, 2D dual inelastic . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.14 1/Nmax vs. D, 2D inelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.15 Quartic coupling maximization, 4D with positivity . . . . . . . . . . . . . . . 74
4.16 Quartic coupling maximization, 4D inelastic with ”

√
s(s− 4)σtotal” . . . . . 76

4.17 Quartic coupling maximization, 4D inelastic with ”
√
s(s− 4)σtotal” . . . . . 77

4.18 Quartic coupling maximization, 4D inelastic with σRM . . . . . . . . . . . . 78
4.19 Quartic coupling maximization, 4D inelastic with restricted partial-waves . 80
4.20 Quartic coupling maximization, 4D inelastic with restricted partial-waves . 80
4.21 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.8 . . . . . . 82
4.22 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.2 . . . . . . 82
4.23 Quartic coupling maximization, 4D inelastic S-matrix components, α = 0.8 83
4.24 Quartic coupling maximization, 4D inelastic S-matrix components, α = 0.2 83
4.25 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.8 . . . . . . 83
4.26 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.2 . . . . . . 84
4.27 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.01 . . . . . 84
4.28 Quartic coupling maximization, 4D inelastic with ρ16 and α = 0.01 . . . . . 85
4.29 Quartic coupling maximization, 4D inelastic S-matrix components, α = 0.01 85
4.30 Comparison of various plots, ”σtotal” . . . . . . . . . . . . . . . . . . . . . . . 88
4.31 Comparison of various plots, fℓ . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.32 Maximization of ImT (s, 0) vs. Froissart bound . . . . . . . . . . . . . . . . . 92



List of Tables

3.1 Values of λ at the plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Extrapolation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Values of λ at the plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xv





Glossary

CDD Castillejo-Dalitz-Dyson

LHS Left Hand Side

PSD Positive Semidefinite

QCD Quantum Chromodynamics

QFT Quantum Field Theory

RHS Right Hand Side

xvii





Chapter 1

Introduction to S-matrix Bootstrap

1.1 Historical background

Around the 1930s and 1940s, quantum field theory, QFT, had been plagued by a plethora

of technical and experimental issues [5, 6]. Whereas many individuals such as Stueck-

elberg, Feynman and Tomonaga focused on improving such QFTs [6], Heisenberg was

motivated to find a theory based on concepts which would not be affected by eventual

developments in the theory of elementary particles [6], hence reintroducing a previously

studied object by John Wheeler [7] named the S-matrix.

In particular, there was an attempt to describe the strong interaction which, at the

time, had not been possible with QFT [6]. With the advent of the S-matrix came the boot-

strap program, which consisted in solving a determined theory based on self-consistent

conditions [5, 8], and which proved useful in regards to the previous issue. The S-matrix

bootstrap became the relevant technique which was highly developed throughout those

years. However, this approach posed many mathematical challenges, which later led to

its abandonment [5]. The main contributor was the fact that, between the 1970s and 1980s,

there had been some developments in the quantum field theory community, namely the

adoption of the quantum chromodynamics (QCD) approach [5].

Eventually, the S-matrix formalism gave rise to the duality program, which also had

some connection to the Regge program [5]. In studying this subject, Veneziano proposed

an analytical model, in 1968, featuring what became known as the Veneziano amplitude,

which became the basis for a workable bootstrap program [9]. This marked the beginning

of String Theory.

1



2 S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

The S-matrix topic remained practically dormant until the revival of conformal boot-

strap [10]. Recent developments in technology, together with newer formulations, make

the bootstrap approach - S-matrix bootstrap in this context - more relevant than ever. So

as to understand how S-matrix bootstrap is done nowadays, we start by reviewing the

literature on the S-matrix and its properties.

1.2 S-matrix properties

In view of the historical importance of the S-matrix, it is relevant to understand in what

principles it is based on. The key points necessary for the remainder of the dissertation are

Analyticity, Crossing-symmetry and Unitarity. Some formulations also require knowledge

about Dispersion relations and Partial-wave expansion, which will be briefly discussed. There

are a multitude of properties which will not be explored, as there are complete textbooks

dedicated to that matter. In case there are relevant topics - but not necessary to follow this

thesis - the appropriate literature will be referenced.

The main references used in this introductions are [1, 2, 8, 11].

1.2.1 Analyticity, Crossing-symmetry and Unitarity

In the present context, the S-matrix will be used to describe the scattering of particles. So

as to build a tool consistent with physical observations and considerations, the S-matrix

must satisfy the following properties [1]:

1. The superposition principle of quantum mechanics: if |ψa⟩ and |ψb⟩ are physical

states, then so is |ψc⟩ = a|ψa⟩+ b|ψb⟩, a, b ∈ C;

2. The short-range character of the interaction: it is known from nuclear physics that

the strong force has a range shorter than 10−15 m [11];

3. Conservation of probability (regarding transitions);

4. The requirements from Special Relativity. In particular, the S-matrix must be invari-

ant under Lorentz transformations;

5. Causality and the existence of macroscopic time.

Due to requirement (2), both the initial and the final states (asymptotically in the past

and future, respectively) are composed exclusively of free particles, and hence the Hilbert

space is the Fock space of free particles [8].
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Physically speaking, (5) is one of the most important requirements in the list. How-

ever, its mathematical consequences are hard to derive, and as such it is often relaxed to

the condition that causality requires the transition amplitudes to be real-boundary valued

functions of more general functions of complex variables [1]. Thus, (5) is replaced by

• Transition amplitudes are the boundary values of analytical functions in the real

axis.

In [1], section 1.1, it is shown the connection between this requirement and causality, using

a simple example of the scattering of a wave packet.

With these fundamental features in mind, we focus on the mathematical aspect of the

matter. The initial and final states (states of free particles) will be labelled by discrete

symbols, even though they correspond to continuous states of momenta, spins and other

quantum numbers. In this setting, we can define the scattering operator [11], Ŝ, such that

the probability of transitioning from state |i⟩ to |f⟩ is given by

Pfi =
∣∣∣⟨f |Ŝ|i⟩∣∣∣2 (1.1)

Let |m⟩, m = 1, 2, ... be a basis of complete, normalized and orthogonal states,

⟨m|n⟩ = δm,n,
∑
m

|m⟩⟨m| = 1. (1.2)

Since probability is conserved (condition (3)), for an arbitrary normalized initial state |i⟩ =∑
m am|m⟩ and |f⟩ = |n⟩, Equation 1.1 implies that

1 =
∑
f

∣∣∣⟨f |Ŝ|i⟩∣∣∣2
=

∑
n,m,m′

a∗mam′ ⟨m|Ŝ†|n⟩⟨n|Ŝ|m′⟩

=
∑
m,m′

a∗mam′ ⟨m|Ŝ†Ŝ|m′⟩

(1.3)

where Ŝ† is the hermitian conjugate of the operator Ŝ. Since the initial state is normalized,∑
m |am|2 = 1. For the above equation to hold for any coefficient am, it is necessary that

⟨m|Ŝ†Ŝ|m′⟩, or rather Ŝ†Ŝ, be the identity operator,

Ŝ†Ŝ = 1̂. (1.4)



4 S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

Doing the same for an arbitrary final state, we come to the conclusion that

ŜŜ† = 1̂. (1.5)

which means Ŝ is a unitary operator.

As a consequence of Lorentz invariance, in the case of spinless particles it is required

that the matrix element ⟨m|Ŝ|n⟩ be independent of the chosen Lorentz frame. Let p =

(Ep⃗, p⃗) be the four-momenta of a single particle of mass m, with energy Ep⃗ =
√
m2 + p⃗2

((+,-,-,-) signature, and admit that the space of states consists in an n-particle Fock space,

where each particle is defined by its momentum, |p1, p2, ..., pn⟩. For 2 → 2 scattering,

⟨p3, p4|Ŝ|p1, p2⟩ can be written as a function of the Mandelstam invariants s, t and u

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p1 − p4)2 (1.6)

which means that s+ t+ u = 4m2.

In any scattering process, particles being collided can either interact or not. So as to

capture this behaviour, it is usual to write [1, 11]

Ŝ = 1̂ + iT̂ (1.7)

where T̂ is the amplitude operator and contains all the information for processes where

particles collide. In terms of this operator, the unitarity condition reads

T̂ − T̂ † = iT̂ †T̂ = iT̂ T̂ † (1.8)

For 2→ 2 scattering,

⟨p3, p4|T̂ |p1, p2⟩ − ⟨p3, p4|T̂ †|p1, p2⟩ = i⟨p3, p4|T̂ †T̂ |p1, p2⟩ = i⟨p3, p4|T̂ T̂ †|p1, p2⟩ (1.9)

Using Lorentz symmetry, the previous equation can be written as [1]

2 Im ⟨p3, p4|T̂ |p1, p2⟩ =
∑
n

⟨n|T̂ |p3, p4⟩∗⟨n|T̂ |p1, p2⟩

=
∑
n

⟨p3, p4|T̂ |n⟩⟨p1, p2|T̂ |n⟩∗
(1.10)

where |n⟩ correspond to intermediate states allowed by conservation of energy and mo-

mentum. In case n > 2, then |p1, ..., pn⟩ is a state with more than 2 particles: if there is

enough energy, such states become available, which introduces particle production. The

energy at which particle production becomes possible is known as the inelastic threshold.
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For total energies below this threshold, Equation 1.10 can be written as [1]

2 Im ⟨p3, p4|T |p1, p2⟩ = (2π)−2

∫
d4k1d

4k2 δ
(+)(k21 −m2)δ(+)(k22 −m2)

× δ(4)(p1 + p2 − k1 − k2)⟨p3, p4|T |k1, k2⟩

× ⟨p1, p2|T |k1, k2⟩∗

(1.11)

where the appropriate conventions [1] have been taken and T is the amplitude, related to

the amplitude operator T̂ by

⟨p3, p4|T̂ |p1, p2⟩ = (2π)4δ(4)(p1 + p2 − p3 − p4)T (1.12)

The main takeaway is the following: when relaxing Equation 1.11 so as to include states

above the inelastic threshold, new terms, related to new particle states, must be added

in the RHS. However, that means a sudden change in the LHS of the same equation, at

the precise location where energy allows for new states: a discontinuity is encountered.

This analysis is true at each energy allowing for the production of higher particles states,

which introduces a multitude of similar singularities at each energy threshold.

Up until now, T is being considered as a function of the invariant variable s defined

in 1.6, and t remains fixed (for now, assuming 4D space). The aforementioned singular

points can be shown to be branch-points [1], which introduce cuts starting at said points

s ∈ {4m2, 9m2, 16m2, ...} (where m is the mass of the colliding particles), running along the

real axis. These points are called normal thresholds, where s = 4m2 is the lowest threshold

which corresponds to the two-particles state. Mathematically, branch-cuts isolate what are

called Riemann surfaces, in which the amplitude must be single valued. By convention,

the first sheet of these Riemann surfaces is named the physical sheet, where the physical

scattering amplitude is just the boundary value of the complex function T at the real axis.

Other sheets can be accessed by crossing a branch-cut: we name them unphysical sheets,

and they are of little importance for this thesis.

Nonetheless, cuts are not the only singular structures in theories. Physically, it is pos-

sible that the two-particle state gives rise to one-particle state [1]. It can be shown that

such case indeed exists and corresponds to the unphysical value*). Moreover, it can be

shown (using either unitarity and causality or perturbation theory) that such singularity

*The minimum physical energy associated with two particle scattering is s = 4m2. Lower energies than
the previous value are, therefore, unphysical.
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corresponds to a pole, instead of a branch-cut [1, 11]. These poles correspond to bound-

states of the theory. For the purposes of this dissertation, both poles and branch-cuts are

the sole singularities admitted in the S-matrix theory.

With this in mind, we can proceed with several considerations. For two particle scat-

tering, the elastic T is a function of Lorentz invariants, s, t and u (cf. Equation 1.6). How-

ever, in 4D (the usual case), T is function of only two independent variables, s and t [1],

⟨p3, p4|T̂ |p1, p2⟩ = (2π)4δ(4)(p1 + p2 − p3 − p4)T (s, t) (1.13)

So as to mathematically describe what the physical amplitude should be like, we must

decide which side of the branch-cut to choose, before taking the limit towards the real

line. According to perturbation theory [1, 2, 11], physical amplitudes are given by the

limit

T (s, t) = lim
ϵ→0

T (s+ iϵ, t) (1.14)

where s > 4m2 and t, u < 0 are considered to be real variables. This is the result of taking

the so-called iϵ-prescription [1], developed by Feynman. Equation 1.14 is the starting point

to considering the rest of the analyticity results we will discuss. Before discussing such

results, there is another useful feature we must consider, often called Real analyticity or

Hermitian analyticity, which consist in the fact that

T (s∗, t∗) = T ∗(s, t) (1.15)

which can be obtained using the Schwarz reflection principle [1, 11], for instance, or

within axiomatic QFT in [12].

Regarding analyticity, we chose to mainly follow [2] rather than usual textbooks [1,

11], since all the sequential developments are better condensed rather than spread across

several chapters. In view of this, we simply reiterate the conclusions of said paper. These

results concern neutral scalar particles.

Firstly, it has been shown [13, 14] that, for the π0π0 → π0π0 case (which are neutral

scalar particles), T (s, t) is an analytic function of s with cuts for s > 4m2 and u > 4m2, for

−28m2 < t ≤ 0, in the s-channel.

Secondly, progress has been made regarding the analytic properties of T (s, t) for com-

plex t and fixed energy s > 4m2, thanks to Lehmann [15]. Lehmann was able to prove

that T (s, cos θ) is analytic inside an ellipse, the small Lehman ellipse, with foci at cos θ = ±1
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and semi-major axis cos θsL > 1 - whose exact value is greatly dependent on the the-

ory, energy, mass of the particles, to name a few. Moreover, he showed as well that the

DiscsT (s, cos θ) is analytic for a larger ellipse, the large Lehmann ellipse, with a semi-major

axis cos θLL = 2 cos2 θsL − 1.

For s and t simultaneously complex, Bros, Epstein and Glaser proved that there is a

region around any (s, cos θ) point where T (s, t) is analytical [16].

Finally, A. Martin was able to demonstrate that T (s, t) is analytic for |t| < R and the s

plane with the cut [17]. For the scattering of similar particles, R = 4m2 [2].

In practice, an extended notion of analyticity will be considered, extended analyticity,

which is not yet rigorously proven but seems consistent with some results [2]. Extended

analyticity is the belief that the amplitude T (s, t) is an analytical function of the variables,

s and t, except for some pole singularities in the region s ∈ [0, 4m2] and a cut starting at

s = 4m2, as well as the image of said singularities under crossing. These are the sole

singularities imposed by unitarity.

The last missing piece is crossing-symmetry. In this regard, using the LSZ reduction

formula it has been shown in QFT [18], for 2→ 2 scattering, that

T (s, t) = T (t, s) = T (u, t) (1.16)

As such, there is only one important complex function, the amplitude, which describes

the scattering in different channels by taking the appropriate limits and bounds.

For a more elaborate reading about the S-matrix properties, some textbooks such as

the ones referenced already ([1, 11]) are suggested.

1.2.2 Dispersion relations

Other useful tools in the S-matrix toolkit are the dispersion relations, which consist in the

representation of the S-matrix/amplitude in terms of the Cauchy’s integral formula [11].

To that matter, we fix the spectrum so as to include one bound-state (and its image under

crossing). Let us choose a contour γ such as the one represented in Figure 1.1, inside

which T (s, t), for fixed u, must be an analytic function. According to Cauchy’s integral

formula (any dependence on other variables apart from s are omitted)

T (s) =
1

2πi

∮
γ
ds′

T (s′)

s′ − s
(1.17)
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FIGURE 1.1: Integration contour γ of Equation 1.17 in the s-plane. The dark points cor-
respond to a bound-state in the s-channel and its image under crossing- symmetry. The
lines running to the left and right correspond to the branch-cuts starting at the normal

thresholds, in the s-channel (right) and in the t-channel (left).

Let us assume that T (s) decays fast enough in the infinity, i.e. T (s) → 0, |s| → ∞.

It does not have to be the case: if the function is polynomially bounded in sn, one must

introduce subtractions. In most cases in this dissertation this shall not be needed, which is

why we do not further develop the topic (see [1, 11]). Thus, when blowing up the contour

from Figure 1.1, the arcs will tend do 0 as the contour approaches infinity. We are just

left with the segments on either side of the branch cuts and smaller contours around each

pole (which we denote by γ1 and γ2). Mathematically,

T (s) =
1

2πi

[
−
∮
γ1

−
∮
γ2

]
ds′

T (s′)

s′ − s
+

1

2πi

∫ ∞

−u0

ds′
Tt(s

′)

s′ − s
+

1

2πi

∫ ∞

4m2

ds′
Ts(s

′)

s′ − s
(1.18)

where Ts and Tt are the discontinuities of T (s) across the cuts in the s-channel and t-

channel, respectively. The minus sign in the integrals around the poles account for the

fact that, originally, γ1 and γ2 are contours in the clockwise direction. These integrals can

be simplified using the Residue Theorem, which gives

1

2πi

[
−
∮
γ1

−
∮
γ2

]
ds′

T (s′)

s′ − s
= −

[
Res

T (s′)

s′ − s

∣∣∣∣
s′=4m2−m2

1−u0

+ Res
T (s′)

s′ − s

∣∣∣∣
s′=m2

1

]

≡ − g2t
s− (4m2 −m2

1 − u0)
− g2s
s−m2

1

(1.19)
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where, by definition, g2t ≡ − ResT (s′)
∣∣
s′=4m2−m2

1−u0
and g2s ≡ − ResT (s′)

∣∣
s′=m2

1
. Thus,

Equation 1.17 reads

T (s) = − g2t
s− (4m2 −m2

1 − u0)
− g2s
s−m2

1

+
1

2πi

∫ ∞

−u0

ds′
Tt(s

′)

s′ − s
+

1

2πi

∫ ∞

4m2

ds′
Ts(s

′)

s′ − s

= − g2t
t(s)−m2

1

− g2s
s−m2

1

+
1

2πi

∫ ∞

−u0

ds′
Tt(s

′)

s′ − s
+

1

2πi

∫ ∞

4m2

ds′
Ts(s

′)

s′ − s

(1.20)

This is the final form of the dispersion relation. Further simplifications can (and will) be

made. For a more elaborate derivation of such results, consult Appendix A.

Another known dispersion relation is the one proposed by Mandelstam, where, in-

stead of using just the one discontinuity, double discontinuities are considered. The ad-

vantage is that it is generalized for all s, t and u, but requires more careful treatment. For

a more detailed discussion, check [1].

1.2.3 Partial-wave expansion

The unitarity condition, as was introduced in subsection 1.2.1, is of quadratic form. In

some cases, like in higher dimensions (cfe. Chapter 3), it attains a complicated form which

is not always easily solvable. To circumvent this problem, it is often required to diago-

nalize the expressions. To do so, we must look for the natural eigenbasis: this is where

the partial-wave expansion shines the most. All of the following results can be found in

[2, 19].

Let us consider the scattering in d+ 1 spacetime dimensions, and center our attention

in the 2→ 2 scattering of two identical real scalar massive particles of massm - the lightest

in the theory. Any 2→ 2 S-matrix element can be written as

⟨p3, p4|Ŝ|p1, p2⟩ = 1+ i(2π)d+1δ(d+1)(p1 + p2 − p3 − p4)T (s, t, u) (1.21)

with

1 = (2π)2d4Ep1
Ep2

{
δ(d)(p1 − p3)δ

(d)(p2 − p4)− (3↔ 4)
}

(1.22)

The channel under assumption is the s-channel, for which physical energies correspond to

s ≥ 4m2, t ≤ 0 and u ≤ 0. As stated before, there are only two independent Mandelstam

variables - s and t - meaning that T (s, t, u) ≡ T (s, t, 4− s− t) (which will often be referred
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to as T (s, t) by abuse of language). The scattering angle can be written as

x = cos(θ) = 1 +
2t

s− 4
= −1− 2u

s− 4
(1.23)

As is shown in [2], Elastic Unitarity, which is a regime in which energy allows only for

the production of two particles, i.e. 4m2 < s < 16m2, takes the form

2Ts(s, t) =
1

2

∫
ddq′

(2π)d(2Eq′)

∫
ddq′′

(2π)d(2Eq′′)
(2π)d+1δ(d+1)(p1 + p2 − q′ − q′′)×

× T (+)(s, t′)T (−)(s, t′′),

(1.24)

where

T (±) ≡ lim
ϵ→0

T (s± iϵ, t), Ts(s, t) = DiscsT (s, t) ≡
1

2π

(
T (+)(s, t)− T (−)(s, t)

)
(1.25)

and t′ = −(p1 − q′)2, t′′ = −(q′′ − p4)2 (real analiticity was used). This intricate expression

can be greatly simplified if the right change of basis is introduced - as one might have

guessed, is the change of basis to that which transform in the irreducible representations

of the SO(1, d) group. The easiest route is to expand the amplitude T (s, t) in terms of

partial-wave coefficients fℓ(s)

T (s, t) =
∞∑
ℓ=0

n
(d)
ℓ fℓ(s)P

(d)
ℓ (cos(θ)) (1.26)

where the sum runs over even ℓ (odd ℓ yield 0), n(d+1)
ℓ are normalization factors

n
(d)
ℓ =

(4π)
d+1
2 (d+ 2ℓ− 2)Γ(d+ ℓ− 2)

π Γ
(
d−1
2

)
Γ(ℓ+ 1)

(1.27)

and P
(d+1)
ℓ (cos(θ)) are hypergeometric polynomials - the Legendre polynomials in d + 1

dimensions. Following [2], one arrives at the simple expression

fℓ(s) =
Nd

2

∫ 1

−1
dx (1− x2)

d−3
2 P

(d)
ℓ (x)T (s, t(x)) (1.28)

where, by definition and Equation 1.23,

P
(3)
ℓ (x) = Pℓ(x), Nd =

(16π)
1−d
2

Γ
(
d−1
2

) , t(x) =
1

2
(s− 4)(x− 1) (1.29)
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and Pℓ(x) are the Legendre polynomials normalized to Pℓ(1) = 1. In turn, we can use

Equation 1.28 to write

Sℓ(s) ≡ 1 + i
(s− 4)

d−2
2

√
s

fℓ(s)

= 1 + i
(s− 4)

d−2
2

√
s

Nd

2

∫ 1

−1
dx (1− x2)

d−3
2 P

(d)
ℓ (x)T (s, t(x))

(1.30)

Since we treat the scattering of identical particles, Bose symmetry must apply. In turn,

this implies that Sℓ(s) = 1 for odd ℓ: the integral is over a odd function, and therefore must

be 0 - which explains why the partial-wave expansion in Equation 1.26 only admitted even

ℓ.

To sum up, in the present context of scattering of massive scalar particles, the total

angular momentum is conserved. As such, the natural basis for the expansion of the

unitarity condition is that which has such quantities as eigenstates. Using this machinery,

the bootstrap equations yield simpler expressions which only need to be evaluated for an

array of s values, as well as ℓ.





Chapter 2

2D Scattering: massive scalar

particles

2.1 Primal approach

2.1.1 Primal philosophy

The S-matrix bootstrap program can be carried out in a plethora of ways, depending on

the given setup. There are two main approaches that have been widely considered: the

primal and the dual. Each one of them has different advantages and mechanisms, which

will be thoroughly discussed.

To first understand each formulation, one must recall that, so as to study strongly

coupled field theories, one should look at S-matrices. Briefly, from the previous section:

• The mass spectrum is connected to the position of (pole) singularities in the S-

matrix;

• The interaction strength between stable particles, i.e., couplings correspond to the

magnitude of the residues at each singularity.

Intuitively, couplings should be bounded: for a fixed mass spectrum, increasing the

interaction between the particles would result either in new bound-states or lower the

mass enough to surpass that of the lightest particle, which violates spectral assumptions.

Therefore, they comes as a natural quantity to put an upper bound on, as was done in [3].

13
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With these remarks, the primal formulation can be better understood: it is a process

in which one constructs a feasible scattering amplitude, i.e., consistent with a set of con-

straints and/or axioms like unitarity, crossing symmetry and analyticity, in addition to

a specific mass spectrum. Given this spectrum and space of allowed amplitudes, one

proceeds with optimizing a physical quantity such as the coupling.

As final remark, we note that the 2D case is particularly easier to bootstrap than in

higher dimensions, due to the fact that no scattering angles exist and, as such, only one

Mandelstam variable is independent. The work in the following subsections is inspired

and based on [3].

2.1.2 Initial setup

So as to simplify the proceeding analysis, only the elastic 2 → 2 scattering S-matrix ele-

ments of a 2D relativistic quantum field theory will be considered; the scattering involves

chargeless and identical particles of mass m. Furthermore, we assume that these are the

lightest particles of the mass spectrum.

In two dimensions, there are yet other kinematical simplifications. Firstly, u = 0 for

identical particles, which means s is the only independent Mandelstam invariant. Ac-

cording to Figure 2.1,

FIGURE 2.1: Time runs from left to right. In 2D, u = 0 which means s is the only inde-
pendent Mandelstam variable (m2 = 1). Therefore, S(s, t, u) 2D

= S(s).

Secondly, other simplifications arise due to the same support in the connected and

disconnected parts. Let us consider the operator equation

Ŝ = 1̂ + i T̂ (2.1)

After sandwiching the previous expression between two particles states,
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⟨i|Ŝ|f⟩ = (2π)2 4E1E2

[
δ (p⃗1 − p⃗3) δ (p⃗2 − p⃗4) + p⃗1 ←→ p⃗3

]
+ i(2π)2δ(2)

(
P⃗
)
T

= 2 (2π)2
√
s
(
s− 4m2

)
δ(2)

(
P⃗
)
×

1 + i
T (s)

2
√
s
(
s− 4m2

)


≡ ⟨i|1̂|f⟩ × S(s)

(2.2)

where P⃗ ≡ p⃗1 + p⃗2 − p⃗3 − p⃗4 and

S(s) ≡ 1 + i
T (s)

2
√
s
(
s− 4m2

) . (2.3)

In what follows, S(s) will be the main focus of our attention. In this setup, crossing

symmetry translates to

S(s) = S(4m2 − s), (2.4)

while unitarity states that, for physical energies *,

∣∣S(s)∣∣2 ≤ 1, s ≥ 4m2. (2.5)

Regarding the analytical structure, S(s) admits cuts - a region for which there is par-

ticle production in the s/t-channel - or poles - where bound-states appear. Figure 2.2

summarizes these properties neatly.

FIGURE 2.2: Analytical structure of S(s) for the scattering of the lightest particles in the
mass spectrum. The right s-channel cut starts at s = 4m2 (two-particle production) and
runs to infinity; it represents the physical region where particle production is allowed.
The other cut, the t-channel cut, is simply the crossing symmetric counterpart of the
previous one, allowed by 2.4. bound-states are represented by poles in the region s ∈
]0, 4m2[, whether they are s- or t- channel poles (distinguished by the sign of the residue

at each pole). Adapted from [3].

*s+ iϵ, s ≥ 4m2
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Our interest resides in studying the bound-states (b.s.) - resulting from single-particle

outer states - which will be simply referred to as particles. Due to 2.4, these b.s. should

come in pairs as

S(s) ≃ −Ji×
g2i

s−m2
i

, S(s) ≃ −Ji×
g2i

4m2 − s−m2
i

,

Ji ≡ m4

2mi

√
4m2 −m2

i

 (2.6)

where the first is an s-pole and the second a t-pole. The Ji factor normalizes g2i to be

the residue in the matrix element T rather than S. Taking into account that g2i should be

positive for a unitarity theory, s-poles have negative residue while t-poles have positive

residue.

These considerations allow for a simple setup, where the input is an arbitrary mass

spectrum, the objective is ”maximize the coupling to the lightest exchanged particle, g1,

compatible with such spectrum” and the result is an S-matrix which satisfies all the afore-

mentioned axioms. Some final details:

• By definition, the mass spectrum m1 < m2 < ... < mN of N masses should satisfy

mj < 2m;

• m1 might have the same value as m, depending whether Z2 symmetry is considered

or not.

2.1.3 Numerical Ansatz via dispersion relations

Having all the analytical background brushed up, the next step is to proceed with nu-

merical considerations. A natural step would be proposing an Ansatz for the S(s) matrix

element; however, our intuition is not yet prepared for such a big leap. The second best

option is to make use of what is already known from previous sections, namely dispersion

relations.

One starts with the Cauchy integral formula

S(s)− S∞ =

∮
γ

dx

2πi

S(x)− S∞
x− s

, (2.7)

where γ is a closed anti-clockwise contour enclosing the s point, such that S(s) − S∞ is

holomorphic inside and on it. Assuming that S∞ is bounded by a constant at infinity - it

need not be this way, in which case subtractions would have to be introduced - we can



2. 2D SCATTERING 17

blow up the contour to capture every singular behaviour of S(s). Dropping the contribu-

tion of the line integral at infinity, only the poles and cuts are accounted for. This gives for

a simple expression of the form

S(s) = S∞−
∑
i

Ji×

(
g2i

s−m2
i

+
g2i

4m2 − s−m2
i

)
+

∫ ∞

4m2

dx ρ(x)

(
1

x− s
+

1

x− 4m2 − s

)
,

(2.8)

where we have defined the distribution ρ(x) as the discontinuity of the S(s) element,

2πi ρ(s) ≡ S(s + i0+) − S(s − i0+). To obtain Equation 2.8 from Equation 2.7, one must

write the discontinuity along the t-channel cut in terms of the s-channel one:

(...) =

∫ 0

−∞
dx

S(x+ i0+)− S∞
x− s

+

∫ −∞

0
dx

S(x− i0+)− S∞
x− s

=

∫ 0

−∞
dx

[
S(x+ i0+)− S∞

x− s
− S(x− i0+)− S∞

x− s

]

=

∫ 0

−∞
dx

S(x+ i0+)− S(x− i0+)
x− s

x→4m2−x
=

∫ ∞

4m2

dx
S(4m2 − x+ i0+)− S(4m2 − x− i0+)

4m2 − x− s

=

∫ ∞

4m2

dx
S
(
4m2 −

[
x+ i0+

])
− S

(
4m2 −

[
x− i0+

])
x− 4m2 + s

=

∫ ∞

4m2

dx
S(x+ i0+)− S(x− i0+)

x− 4m2 + s

(2.9)

where from next-to-last to the last step we used Equation 2.4. With this particular expres-

sion in mind, the maximization of the target variable g1 comes down to an optimization

problem in the space of variables {S∞, g2i , ρ(x)}.

In order to proceed with the optimization challenge, some numerical adaptations are

needed: so as to take advantage of some numerical approaches, it is convenient to dis-

cretize the continuous distribution ρ(x). To that end, ρ(x) shall be evaluated in a grid of

points xn ∈ [4,∞[ (m2 = 1 from now on) such that it can be approximated by a linear

spline connecting the points (xn, ρ(xn) ≡ ρn), as is illustrated in Figure 2.3.

For example, for x ∈ [xn, xn+1] the spline

ρ(x) ≃ ρn + (ρn+1 − ρn)×
(

x− xn
xn+1 − xn

)
. (2.10)

As it stands, this approximation does not yield a finite integral result, unless one as-

sumes that it is only valid up to a cutoff, which we define as xM . After said cutoff, the



18 S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

FIGURE 2.3: Example of the discretization of a generic distribution vs. its corresponding
spline. The red dashed line represents some random distribution ρ(x), while the grey
represents the approximation taken by connecting the points from the discretization grid.

Adapted from [3].

distribution is assumed to decay as ρ(x) ∼ 1/x: for x > xM , ρ(x) ≃ ρMxM/x. After choos-

ing a grid of points {x0, x1, ..., xM} such that x0 = 4, the integrals in Equation 2.8 can be

performed to yield the simple expression

S(s) ≈ S∞ −
∑
i

Ji ×

(
g2i

s−m2
i

+
g2i

4− s−m2
i

)
+

M∑
n=1

ρnKn(s). (2.11)

By standard integration procedures,

Kn(s) =

(
s− xn−1

xn−1 − xn

)
× log(xn−1 − s) +

(
s− xn+1

xn − xn+1

)
× log(xn+1 − s)

− (xn−1 − xn+1)(s− xn)
(xn−1 − xn)(xn − xn+1)

× log(xn − s) + (s→ 4− s)
(2.12)

with n = 1, ...,M − 1 while for n =M

KM (s) =

(
s− xM−1

xM−1 − xM

)
× log(xM−1 − s)−

xM
s
× log(xM )

+
(xM−1 − xM − s)(s− xM )

s(xM−1 − xM )
× log(xM − s) + 1 + (s→ 4− s)

(2.13)

In practice, Equation 2.11 needs to be evaluated, together with Equation 2.5, for some

values of s0 > 4m2, which simply produces quadratic constraints in the aforestated space

of variables. Thus, the space of solutions to the maximization problem must belong to the

intersection of all the regions traced out by the constraints, for all {s0}, simultaneously.

The following step is implementing the developed machinery and obtaining some results.

2.1.4 Maximization of the cubic coupling with dispersion Ansatz

Most of the previous section was devoted to developing a numerical approach to the

given optimization problem. Now, what is left is to apply it. For that purpose, a more
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concrete optimization algorithm is needed. Fortunately, Mathematica’s built-in func-

tion FindMaximum can easily carry out the maximization problem: however, a set of

constraints and an objective are needed. As for the objective, it is clear that one wished to

maximize g21 ; the constraint part will require a bit more work. According to the developed

method, it is necessary to choose a grid where Equations 2.5 and 2.11 can be evaluated.

As it turns out, the most convenient choice is to take {s0} as precisely the grid used in the

discretization of ρ(x), so as to make use of the identity

Im S(xn + i0+) = −πρn (2.14)

All in all, we get a set of M constraintsS∞ −∑
i

Ji

(
g2i

xm −m2
i

+
g2i

4m2 − xm −m2
i

)
+

M∑
n=1

Re[Kn(xm)]ρn

2

+ (πρm)2 ≤ 1

(2.15)

for m = 1, ...,M . Note that Re
[
Kn(xa)

]
can be easily computed using the substitution

log(...)→ log
(∣∣(...)∣∣)where applicable.

To illustrate, let us consider the S-matrix with a bound-state (i.e., an s-channel pole) of

mass m1, coupled to the lightest mass of the spectrum, m, with coupling strength g21 . The

result is in Figure 2.4.

1.5 2.0 2.5 3.0 3.5 4.0

m1
2/m2

2

4

6

10

8

-2

Log (g1max
2)

FIGURE 2.4: Result of maximizing the cubic coupling g21 between masses m and m1, for
the S-matrix element of the scattering of two m particles with only one bound-state. In
red, we present the numerical data; the curve which they rest upon is the residue of
the sine-Gordon S-matrix element or its negative counterpart. The blue shaded region

consists of the allowed space of solutions consistent with our assumptions.

In order to plot the preceding figure, an Ansatz with M = 10 was used; unitarity was

imposed in a grid si(n) = 4 + 100 ×
(

i
n

)4
, i ∈ {1, 2, ..., n} [20] and n = 200 points. Such

values yielded good results, as it is evident in Figure 2.5.
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2 4 6 8 10 12 14
M

18.5

19.0

19.5

g1
2

FIGURE 2.5: Convergence of g21 vs. M . For M = 10, the objective has already attained its
optimal value. For M ≥ 12, the plateau is lost: numerical instability kicks in and n must

be increased.

The most careful reader might have noticed that an analytical solution - the sine-

Gordon S-matrix - was introduced for comparison, with no previous reason; this will

become clearer in later subsections. Unfortunately, it was not possible to reproduce Fig-

ure 5 in [3], which presents the numerical S-matrix components versus the sine-Gordon

S-matrix, since the components of the S-matrix had still not converged. This problem will

be mitigated in upcoming subsections, when another Ansatz is developed.

In the meantime, some comments regarding the results are due. First and foremost,

the most outstanding feature of Figure 2.4 is the fact that the numerical data seems to

precisely coincide with the sine-Gordon S-matrix solution: this was not imposed a priori.

Secondly, a divergence stands out, for m2
1 = 2m2, with a rather simple explanation:

when m2
1 = 2m2, the s-channel pole coincides with the t-channel pole; since they have

the same ”strength” but opposite sign (both decay as∼ 1/s), it results in mutual annihila-

tion and the residue is left unbounded. Moreover, there seems to be a symmetry around

m2
1 = 2m2, i.e, g21max

(m2
1) = g21max

(4m2 −m2
1): at the S-matrix expression level, choosing a

solution for m2
1 > 2m2 amounts to multiplying the expression by−1, effectively changing

what the s- and t- channel poles are. This is later corroborated by Figure 2.9.

Lastly, for weakly coupled particles (i.e., for m1 ≈ 2m), we expect the coupling mag-

nitude to be small; this is what has been observed, since the logarithm tends to −∞.

Even though the S-matrix element components have yet to stabilize, we can say with

confidence that the data in Figure 2.4 has practically converged. Nonetheless, a striking
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resemblance between these components and those of the sine-Gordon S-matrix [20–22],

SSG(s) =

√
s(4m2 − s) +

√
m2

1(4m
2 −m2

1)√
s(4m2 − s)−

√
m2

1(4m
2 −m2

1)
, (2.16)

(where the same mass convention as above is used) became increasingly evident. It would

be more reasonable and insightful to determine an Ansatz that performed better, however.

In this spirit, a new numerical Ansatz may be introduced that solves the preceding con-

vergence predicament.

2.1.5 Double ρ expansion: a new map, a new hope

The problem with using a spline is, among others, the fact that only an approximation

to the real ρ(x) distribution is being used. The discretization of a continuous distribution

allows for some loss of precision; the accumulation of such errors can lead to noticeable

discrepancies compared to the analytical case. Therefore, the previous method should be

avoided.

Let us consider the same setup as previously: an S-matrix corresponding to 2 → 2

scattering of the lightest particles of the spectrum, m, which also allows for a bound-state

of massm1. The coupling strength is g21 , which we try to maximize. To tackle this problem,

we start with a useful change of variables [19, 20, 23] to the unit disk ρs

s 7→ ρs =

√
4m2 − s0 −

√
4m2 − s√

4m2 − s0 +
√
4m2 − s

, s =
s0(1− ρs)2 + 16m2ρs

(1 + ρs)2
(2.17)

where s0 < 4m2 is a free parameter indicating the centre of the map. This mapping can be

better visualized in Figure 2.6. For convenience, we fix s0 = 2m2 so as to map the crossing

symmetric point s = t = 2m2 to the centre of the disk ρs.

FIGURE 2.6: Illustration of the mapping 2.17. Adapted from [19].

The top and bottom parts of the cut are mapped to the top and bottom part of the disk;

the region where poles appear, s ∈ [0, 4m2], is mapped to the region ρs ∈ [2
√
2− 3, 1].
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Regarding the S-matrix, the condition that its element must only depend on one inde-

pendent Mandelstam variable, in 2D, is relaxed. Thus, S(s) is thought of as a function of

two (not actually) independent variables, s and t; in addition, it has a cut for s > 4m2 and

another for t > 4m2, simultaneously, as well as s- and t-channel poles.

A useful feature of the ρ map is the fact that it maps to a unit disk: this means that any

holomorphic function has a well-defined Taylor Expansion. Admitting that the analytical

structure is as simple as considering two crossing symmetric poles and a mapping of the

rest of the s-plane and t-plane, one can suggest an Ansatz for S(ρs, ρt) [19], analytic for

both ρs and ρt inside the disk,

S(s, t) = −Jρ ×

[
g2ρ

ρ(s)− ρ(m2
1)

+
g2ρ

ρ(t)− ρ(m2
1)

]
+

∞∑
a,b=0

cab ρ
a
sρ

b
t (2.18)

where Jρ =

√
4m2−m2

1

(√
2m2+

√
4m2−m2

1

)2

√
2

accounts for the fact that g2ρ is the amplitude

coupling in the ρ variable. So as to be crossing symmetric, one must impose that cab be

symmetric in its indexes, cab = cba; regarding further symmetries, it is now possible to

impose the Mandelstam relation s+ t+ u = 4m2 which, in the ρ variables, has the form

ρs + ρt + 4ρsρt + ρ2sρt + ρsρ
2
t = 0 (2.19)

If ρ(a, b) = ρasρ
b
t + ρbsρ

a
t is a symmetric polynomial, then Equation 2.19 becomes

ρ(1, 0) + ρ(1, 1) + ρ(2, 0) = 0 (2.20)

The previous expression adds redundancy to Equation 2.18, which means many cab

can be re-written as the sum of other coefficients: this amounts to set a particular set of

constants to 0. To decide which coefficients get ruled out, one only needs to successively

multiply the symmetrized expression 2.20 by other symmetric polynomials, which yields

new conditions. A full set of terms which can be eliminated is illustrated in Figure 2.7:

Thus, we set a numerical cutoff for each coefficient, a ≤ M and b ≤ M . Regarding

unitarity, Equation 2.5 is evaluated in the same s-grid as was used in the previous section.

Implementing the new Ansatz yields results which are illustrated in Figures 2.8 and 2.9.

As anticipated, numerical data fit perfectly with the sine-Gordon S-matrix solution! How-

ever, contrary to preceding results, the numerical S-matrix components seem to converge

exceptionally better with the new Ansatz 2.18. For these plots, unitarity was evaluated

*Only the number of terms which survive is considered, even though one could mix the order of the
coefficients. In this case, the coefficients are ordered using ReverseSort in Mathematica.
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c1,0
c2,0 c1,1
c3,0 c2,1
c4,0 c3,1 c2,2
c5,0 c4,1 c3,2
c6,0 c5,1 c4,2 c3,3
c7,0 c6,1 c5,2 c4,3
c8,0 c7,1 c6,2 c5,3 c4,4
c9,0 c8,1 c7,2 c6,3 c5,4
c10,0 c9,1 c8,2 c7,3 c6,4 c5,5
c11,0 c10,1 c9,2 c8,3 c7,4 c6,5

FIGURE 2.7: Independent coefficients (in blue) of 2.18. The coefficients in red are set to
0. At each level (N starts at 1), the number of terms which survive* is equal to the total
number of symmetric polynomials in two variables, of degreeN , minus the total number
of constraints for each case, which is the total number of polynomials of degree (N − 3):⌊

N
2

⌋
−
⌊
N−3
2

⌋
. Adapted from [19].

in an s-grid with n = 100 points and with M = 5. Other parameters can be used, but

the presented ones achieve a good balance in terms of accuracy vs. numerical complexity.

Figure 2.10 shows that, for M = 5, the primal objective has already converged.

1.5 2.0 2.5 3.0 3.5 4.0
m1

2/m2

-2

2

4

6

8

10

Log (g1max
2)

FIGURE 2.8: Result of maximizing g2ρ (red dots) vs. the sine-Gordon S-matrix (blue curve).
As in the previous method, the data beautifully agrees with the proposed curve.

According to Figure 2.9, the numerical solution seems to saturate unitarity for all s >

4m2, which has immediate consequences. Using the conservation of probability for the

2→ n scattering

1 =
∑
n

|S2→n|2 , s > 4m2

= |S2→2|2 +
∑
n>2

|S2→n|2

⇔
∣∣S2→2(s)

∣∣2 = 1−
∑
n>2

∣∣S2→n(s)
∣∣2

(2.21)
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(A) m1 = m.

5 10 15 20 25 30
s

-1.0

-0.5

0.5

1.0

Re Im Abs

(B) m1 =
√
3m.

FIGURE 2.9: Numerical S-matrix components for (A) m1 = m and (B) m1 =
√
3m vs.

sine-Gordon. The red dashed lines are the Real, Imaginary parts and Absolute value of
the sine-Gordon S-matrix. Whereas, in the first case, numerical data seem to suggest that
the S-matrix which maximizes g1 is−SSG, in the second case that matrix is precisely SSG.
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FIGURE 2.10: Convergence of g21 with M for m1 =
√
3m. For M = 5, it seems that the

objective is already stable. For higher values of M , it seems that numerical instabilities
kick in.

For this to happen, it is necessary that
∣∣S2→n(s)

∣∣2 be 0: it is just the statement that there

should not be particle production. The absence of particle production is closely related

to integrable models [24, 25], in the context of integrable bootstrap theories. The important

aspect is that such kind of theories feature S-matrices that can be obtained analytically:

when m1 >
√
2m, the S-matrix which saturates unitarity ∀ s > 4m2 and has a single

s-channel pole at s = m2
1 is the sine-Gordon S-matrix (which, in its original context, de-

scribes the scattering of the lightest breathers of the theory).

The upcoming subsection will give the final and definite proof of the connection be-

tween residue maximization and unitarity saturation for physical energies, which opens

a new door for analytical solutions of S-matrices with more than one b.s..
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2.1.6 CDD factors

In order to consider mass spectra with more than one bound-state, it is important to un-

derstand the underlying theory of the sine-Gordon S-matrix and its nature. As seen, pre-

vious solutions started to step into the realm of unitary integrable theories. Therefore, we

should be able use part of, if not almost all, of developed theory therein to find analytic

expressions for the maximal g21 coupling of S-matrices with more than one bound-state.

To begin with, one changes variables from the Mandelstam variable s to the hyperbolic

rapidity θ using the map s = 4m2 cosh2(θ/2). This mapping maps the entirety of the

physical s-plane plus the cuts into a region called the physical strip, Im(θ) ∈ [0, π], as is

illustrated in Figure 2.11.

FIGURE 2.11: Map from the s-plane to the θ-plane. Adapted from [3].

In this variable, Equations 2.4 and 2.5 (crossing and unitarity, respectively) take the

form

S(θ) = S(iπ − θ), S(θ + i0+)S(−θ + i0+) = f(θ) (2.22)

where f(θ) ∈ [0, 1], θ ∈ R might encode some of the inelasticity (particle production).

Following [3, 26],

S(θ) = SCDD(θ)× exp

(
−
∫ +∞

−∞

dθ′

2πi

log f(θ′)

sinh(θ − θ′ + i0+)

)
(2.23)

where SCDD(θ) is the solution to 2.22 when f(θ) = 1 while the exponential is known as

the minimal solution (a particular solution) to 2.22. All the singular behaviour (poles) is

condensed in the former.

As a side note, one is able to explain why the previous maximization process leads

naturally to unitary S-matrices. Since f(θ) is an even function, the integral can be sym-

metrized to yield

S(it) = SCDD(it)× exp

∫ +∞

−∞

dθ′

2π

sin(t) cosh(θ′)∣∣sinh(it− θ′)∣∣2 × log f(θ′)

 (2.24)
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where t ∈ [0, π]. Since f(θ′) ≤ 1 =⇒ log f(θ′) ≤ 0 and sin(t) cosh(θ′)

|sinh(it−θ′)|2
≥ 0 in [0, π],

we conclude that the minimal solution can only decrease with t; in order to maximize the

potential value of S(it), one must then choose f(θ) = 1: this is precisely the statement that

|S(s)|2 must be 1. Hence, the previous argument must be true whatever form SCDD(θ)

might take. This argument proves why unitarity is to be expected when maximizing the

residue of S(s) and why it should hold up for any given number of b.s..

Up until now, we have only paid attention to the analytical part of the solutions. How-

ever, the real physics is at the singular region, where all the poles appear. In this spirit,

the CDD term is introduced. It simultaneously solves

SCDD(θ) = SCDD(iπ − θ), S(θ)CDDS(−θ)CDD = 1 (2.25)

as proposed. The solution to these equations is found to be the product of the so-called

CDD factors [27],

SCDD(θ) = ±
∏
j

[αj ], [α] =
sinh(θ) + i sinh(α)

sinh(θ)− i sinh(α)
(2.26)

Depending on what value α takes, the CDD factor may be categorized as:

• CDD-pole: Re[α] ∈ [0, π]. The CDD factor has a pole at θ = iα in the physical strip

(in the s-plane, s ∈ [0, 4m2]). Due to locality constraints, α ∈ [0, π];

• CDD-zero: Re[α] ∈ [−π, 0]. The CDD has a pole outside the physical strip (i.e., on

another Riemann sheet other than the first). In this case, α ∈ [−π, 0] and the CDD

factor has a zero at θ = −iα inside the physical strip;

• CDD-resonance: Re[α] ∈ [−π, 0]. α may be a complex number; however, its value

must comply with the other axioms.

Relevant to our purposes are the first two CDD factors. In order to gain intuition,

Figure 2.12 depicts some examples.

• CDD-pole: the factor changes sign at each pole (s- and t-channel poles). The tails

are always negative;

• CDD-zero: the factor changes sign at each zero.

Given Figure 2.12, one might assume that the S-matrix which maximizes g1 and is

compatible with the mass spectrum {m1/m,m2/m, ...} is merely given by the product
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FIGURE 2.12: Difference between a (A) CDD-pole and a (B) CDD-zero. Both functions
change signs at either (A) s-/t-channel pole or at (B) a zero. However, the amplitude of
CDD-poles is always greater than 1, contrary to CDD-zeros. This will be important when

constructing S-matrices from the product of CDD-factors. Adapted from [3].

of CDD-poles corresponding to each b.s.. However, this assumption is erroneous: one

must not forget that the sign of a s-channel (t-channel) pole is negative (positive) in the s

variable (in the θ variable, one can show* that it is actually the opposite); when taking the

product of CDD-poles, this is not generally the case.

A solution to a generic mass spectrum can be obtained [19]. Nonetheless, it is rather

cumbersome and serves us little purpose; for that reason, we decide to focus on the case

of a two and three b.s. spectrum.

2.1.7 Two and three bound-states

As seen in section 2.1.5, the case of a single bound-state of mass m1 < 2m has solution

S(s) = ± [α1], where α1 is to be fixed by the relation m2
1 = 4m2 cosh2(iα1/2); the sign

should be fixed later, in order to make the residue of the s-channel positive†.

The second case is that of a mass spectrum with two particles, m1 < m2 < 2m and

will be studied extensively; the optimization problem is that of maximizing the coupling

pertaining to the process m+m→ m1, i.e., g1. According to the same logic as before, one

expects four distinct regions, since both m1 and m2 can be greater or lesser then
√
2m‡:

• Region A: m1 < m2 <
√
2m;

• Region B: m1 <
√
2m < m2 (but 4m2 −m2

1 < m2
2);

• Region C: m1 <
√
2m < m2 (but 4m2 −m2

1 > m2
2);

*Near the s-channel pole, S(s) ≈ −Ji
g2i

s−m2
i

. Using the s 7→ θ map and Series in Mathematica for θ

near the corresponding θm2
i

value, S(θ) ≈ +i γ2

θ−θ
m2

i

, where γ2 is a real, positive number that depends on g2i

and Ji through some Jacobians. The same process applies to the t-channel pole.
†Henceforth, otherwise stated, the sign residue convention used is that of the θ variable.
‡According to Figures 2.8 and 2.9, this seems to be the most natural ”inflection point” for the residue sign.

Also corroborated by plots of the residue of the sine-Gordon vs. the position of the b.s..
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• Region D:
√
2m < m1 < m2.

At first sight, it may seem rather confusing when considering these regions as they are,

which is why Figure 2.13 may facilitate the analysis. We start by trying to guess the

solution for Region B and C: intuitively, it should be rather easier since s- and t-channel

poles alternate. Taking into account that the residue of s-channel poles has symmetric sign

to that of t-channel ones (by definition) and making use of Figure 2.12 (A), one concludes

that the solution is given by S = ± [α1] [α2]. Regarding the overall sign, it must be fixed a

posteriori*.

FIGURE 2.13: Position of the s- and t-channel poles for each of the masses m1 and m2

(m1 < m2 < 2m), according to the regions defined in subsection 2.1.7. Black (white) dots
represent s-channel (t-channel) poles. The horizontal axis represents the value of α in the

CDD-factor convention [α]. Heavily adapted from [19].

Cases A and D are not so simple: s- and t-channel poles lie side by side, making

it impossible for the residue to have the correct sign (CDD-poles alternate signs when

passing through poles). As such, one must introduce a CDD-zero [−β1] between the s-

channel poles α2 < β1 < α2 (which, by crossing symmetry, has a t-channel CDD-zero

between the two t-channel poles); the value of β1, i.e., the position of the CDD-zero is

fixed by the requirement that g21 be maximum. According to Figure 2.14, this amounts

to pushing β1 as far away as possible from α1, eventually colliding with α2: this means

that the bound-state m2
1 is no longer coupled to the lightest particle. Thus, the optimal

S-matrix must be S = ± [α1]! Once more, the overall sign must be fixed a posteriori: for

case A, one should include the sign (−1) - again, because of the tails of CDD-zeros; for D,

that is no longer required. Hence, SA = − [α1] and SD = + [α1].

*According to [19], the sign of the residue closest to iπ has the form (−1)N×(positive), where N is the
number of bound-states in the spectrum. If N = 2, for region B the closest pole is t-channel and thus one
should include an overall sign (-1) (since the tails of both CDD-factors are negative, (−1) × (−1) × (−1) =
(−1), as intended). For C, it is the opposite.
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FIGURE 2.14: Amplitude of the CDD-zero [−β1] such that α2 < β1 < α2. As we move
β1 successively closer to α2, the amplitude of the CDD-zero increases. Then, in order to
maximize the residue at θ = iα1, one must push β1 as far away as possible, colliding it

with the CDD-pole [α2]. Adapted from [19].

When it comes to three b.s., the thought process is essentially the same, with the added

difficulty of having to manage one more mass. In this case, we consider the simple ex-

ample where m1 has the same mass as the lightest particle, such that our bound-state

spectrum is {m,m2,m3} (m2 < m3). Apart from this, everything remains the same: the

objective is still to maximize the coupling of m to m1 = m. Since it is a bit cumbersome

to derive each S-matrix, we proceed with enumerating each zone and the respective S-

matrix:

• Region A: m2 < m3 <
√
2m −→ SA = − [α1];

• Region B: m2 <
√
2m < m3 (with 4m2 −m2

2 > m2
3) −→ SB = [α1] [α3];

• Region C: m2 <
√
2m < m3 (with 4m2 −m2

2 < m2
3) −→ SC = − [α1] [α2] [α3];

• Region D:
√
2m < m2 < m3 −→ SD = [α1] [α3];

• Region E: m2 <
√
2m <

√
3m < m3 −→ SE = − [α1] [α3];

• Region F:
√
2m < m2 <

√
3m < m3 −→ SF = [α1] [α2] [α3];

• Region G:
√
3m < m2 < m3 −→ SG = − [α1] [α2].

The last step in this section is to compare the numerical data with the analytical pre-

dictions. For that reason, we use both Ansatz 2.8 and 2.18 and apply the proper algorithm

for each of them. The results are in Figures 2.15, 2.16, 2.17 and 2.18.
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Computationally-wise, the dispersion Ansatz performs much faster than the ρAnsatz.

Regarding the latter, using the FindMaximum tool as it is was not enough: it was nec-

essary to increase its parameters PrecisionGoal and AccuracyGoal to 9; moreover,

MaxIterationswas set to 1800, while using the InteriorPointmethod for the search

of the maximum. In contrast, the parameters PrecisionGoal and AccuracyGoal were

set to 9 and MaxIterations to 1000, for the former case. It was this big discrepancy

that made up for the large difference in computational time. Nonetheless, both Ansätze

delightfully agree with the proposed analytical solution, making it clear that the two ap-

proaches are robust. Note that the proposed parameters were not enough to obtain the

figures bellow: in some cases, convergence was so slow that it became necessary to in-

crease either n, M , MaxIterations or a combination of these. For the spectrum with

three bound-states, using the ρ Ansatz, it takes too long to obtain satisfactory results,

hence fewer points were plotted.
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FIGURE 2.15: Maximization of g21 subject to the mass spectrum {m1,m2} and the usual
conditions (dispersion Ansatz). Numerical data is in blue dots, while the analytical re-
sults correspond to the orange surfaces. M = 10 (numerical cutoff) and n = 60 (number

of points where unitarity is imposed) were used.

Up until now, we have only been concerned with determining the QFT whose S-matrix

had the greatest possible value for the coupling of its lightest particle to the mass of the

b.s.. However, many other theories reside in the ”inner region” (i.e., allowed region of

QFTs; check the blue region in Figure 2.8, for example) which we have not addressed. For

that reason, we briefly study, in the next subsection, how the value of the S-matrix at the

crossing symmetric point evolves with the value of g21 .
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FIGURE 2.16: Maximization of g21 subject to the mass spectrum {m,m2,m3} and the usual
condition (dispersion Ansatz). Numerical data is in blue dots, while the analytical results
correspond to the orange surfaces. M = 10 (numerical cutoff) and n = 60 (number of

points where unitarity is imposed), were used.
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FIGURE 2.17: Maximization of g21 subject to the mass spectrum {m1,m2} and the usual
conditions (ρ Ansatz). Numerical data is in blue dots, while the analytical results cor-
respond to the orange surfaces. Using M = 5 (numerical cutoff) and n = 200 (number
of points where unitarity is imposed), we can already see an almost perfect agreement

between all the data.
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FIGURE 2.18: Maximization of g21 subject to the mass spectrum {m,m2,m3} and the usual
conditions (ρ Ansatz). Numerical data is in blue dots, while the analytical results corre-
spond to the orange surfaces. Using M = 5 (numerical cutoff) and n = 200 (number
of points where unitarity is imposed), we can already see an almost perfect agreement

between all the data.

2.1.8 S(2) vs. g21

The aim of this subsection is very simple: we consider the same QFT as in subsections

2.1.4 and 2.1.5, where there is only one bound-state of mass m1 (apart from the light-

est mass, m) coupled to m by an interaction strength g1; the objective is to vary g1 ∈[
0, gmax

1

]
and maximize/minimize S(2) subject to that coupling (using the FindMaximum

and FindMinimum tools). This quantity, S(2), comes as a natural extension of the quar-

tic coupling in higher dimensions, S(s∗, t∗, u∗) = S
(
4/3, 4/3, 4/3

)
(which is of historical

importance), in that both are calculated at the crossing symmetric point - in 2D, for the

former case. Even though this is region of unphysical energies, it is one in which the S-

matrix attains real values. The upcoming results are a novelty, and hence do not follow

any paper - to our knowledge.

Without loss of generality, the Ansatz in the ρ variable will be used, although the other

one would be correct as well. Also, we set the mass of the lightest particle to 1, m = 1.

Figure 2.19 illustrates the maximum and minimum allowed values of S(2) as function of

g1.

There are some features in the previous figure that may be worth discussing. The most

striking aspect is the fact that the minimum and maximum values of S(2) (s = 2m2, but

we set m = 1) seem to converge as g1 approaches gmax
1 : this means that there is only

one theory, for m1 =
√
3, whose S-matrix has a coupling gmax

1 . If somehow there was
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FIGURE 2.19: Plot of g1 vs. S(2) for m1 =
√
3. The blue curve represents the maximum

value of S(2) for a given g1; the orange represents the minimum. The blue shaded region
contains all allowed values. As g1 approaches its maximum value, there should only be
one solution for both maximum and minimum values: SSG(2). The solutions to g1 = 0

are free bosons (S(2) = +1) and free Majorana fermions (S(2) = −1) [28].

any questions regarding the fact that there might be another S-matrix whose interaction

strength was as great as possible, this makes it transparent: only the sine-Gordon S-matrix

is allowed.

As g1 gets smaller, the max
[
S(2)

]
and min

[
S(2)

]
curves open up, delimiting the light

blue region in Figure 2.19: it consists of the space of all the allowed values of S(2) for each

g1.

Eventually, g1 reaches the origin and the max/min curves attain curious values: ±1,

respectively. This comes as no surprise: on account of S(s) = 1 + i × T , if
∣∣S(2)∣∣ = 1 it

means that there is no connected part, i.e., it must be a free particle! In this case, S(2) = +1

coincides with the S-matrix for free bosons, whereas S(2) = −1 represents that of free

Majorana fermions [28].

Lastly, the S-matrix components pertaining to each solution are plotted. Of relevance

to us are the S-matrices for g1 = 0 and g1 = gmax
1 , which were discussed previously. The

result is in Figure 2.20 and 2.21
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FIGURE 2.20: Plot of the S-matrix components for the case (A) S(2) = +1 (free bosons)
and (B) S(2) = −1 (free Majorana fermions). As predicted previously, these S-matrices

are purely real.
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FIGURE 2.21: Resulting S-matrix components of the solutions to (A) maxS(2) and (B)
minS(2) when g1 = gmax

1 . The red dashed plots correspond to the Real, Imaginary part
and Absolute value of the sine-Gordon S-matrix. Clearly, both solutions agree perfectly

with the integrable QFT.

In particular, Figure 2.21 corroborates our assumption that the S-matrix that minimizes

and maximizes, simultaneously, S(2) for g1 = gmax
1 is unique!

With this short subsection, we end the discussion of maximization of cubic couplings

using the primal approach. Before closing this section, though, there is yet another aspect

that can be explored. According to Figure 2.20, when g1 = 0 the S-matrix at s = 2m2 is

bounded by
∣∣S(2m2)

∣∣ = 1; however, any value in-between is also an allowed QFT. With

that in mind, we set to explore yet another quantity of the S-matrix, its second derivative

at s = 2m2 vs. S(2m2) which, as we will see, is closely related to [28].

2.1.9 S(2) vs S ′′(2)

In the absence of bound-states, relevant quantities to study are S(2m2) and its derivatives,

S(n)(2m2), n > 1. This can be better understood in the optics of Effective Field Theory,

EFT. At low energies, in 2D, for weakly coupled and massless theories, one can dismiss

Feynman diagrams that are not tree-level-like. In this context, the amplitude admits a low

EFT expansion [29]

Tlow(s, t) = −g2
[
1

s
+

1

t

]
− λ+ g2(s

2 + t2) + g4(s
2 + t2)2 + ... (2.27)

which can be obtained from a Lagrangian density

Llow(s) = −
1

2
(∂µϕ)

2 − g

3!
ϕ3 − λ

4!
ϕ4 +

g2
2
[(∂µϕ)

2]2 + ... (2.28)

Specifically, in the absence of a cubic coupling, g2 = 0. Thus, Equation 2.27 simply be-

comes

Tlow(s) = −λ+ c2s
2 + c4s

4 + ... (2.29)
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where {ci} are just a redefinition in terms of {gi}. Effectively speaking, it is a Taylor

expansion around s = 0. Therefore, the study of S(2m2) simply relates to the latter by a

modification of the point around which we choose to Taylor expand: instead of s = 0, one

chooses s = 2m2.

Since unitarity and crossing symmetry are required, it is evident that S(2m2) is a local

extremum of S(s): s = 2m2 is a symmetric point, which means that S(2m2 + i × ϵ) =

S(2m2 − i × ϵ), and thus it can only be a local maximum or minimum. This section will

closely follow the philosophy of [28]: given S(2m2) in the allowed range, we extremize

S(2)(2m2). The relation between our results and that of [28] will become clearer once the

appropriate change of basis is introduced; in the meantime, we present the result of the

suggested problem in Figure 2.22
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FIGURE 2.22: Plot of S(2)(2) vs S(2) (m = 1).

To make contact with [28], we make use of some definitions therein proposed,

Λ ≡ − lim
s→2m2

T (s), Λ(n) ≡ lim
s→2m2

∂ns T (s) (2.30)

where T (s) is the same as defined in subsection 2.1.2. Using the definition of S(s), we get

the simple result (we set m = 1)

S(2) = 1 + i× T (2)

2
√
2(2− 4)

= 1 + i× −Λ
4i

⇔ Λ = 4
(
1− S(2)

)
(2.31)
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and

Λ(2) = lim
s→2

∂2sT (s)

= lim
s→2

∂2s

[
2
√
s(s− 4)

(
S(s)− 1

i

)]

= lim
s→2

{
2∂2s
√
s(s− 4)

(
S(s)− 1

i

)

+2
√
s(s− 4)∂2s

(
S(s)

i

)
+ 4∂s

[√
s(s− 4)

]
∂sS(s)

}
= 1− S(2) + 4S(2)(2)

(2.32)

All that is left is to check whether our numerical data coincides with Figure 1 in the

article. Since we do not have the data used in said plot, we proceeded with the second

best solution: using a specialized piece of software such as plotdigitizer, we were

able to get a sample of points from the image in question and plot it against our own. The

final result is illustrated in Figure 2.23
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2.0

m2Λ(2)

FIGURE 2.23: Data from [28] (blue dashed curve) vs. our numerical data (red points),
after the proper coordinate change. Our data matches that of the paper perfectly. Thus,
only the latter will be used. The shaded region is that of the allowed QFTs. Heavily

adapted from [28].

Visibly, the analytical solution in red splendidly agrees with our data. The most inter-

esting part of this shape is that in its boundaries reside known theories. For example, the

sinh-Gordon model (very similar to the sine-Gordon model; however, this model does

not admit bound-states, since its poles are outside the physical sheet) can be shown to

correspond to the parameter

Λ = 8m2

(
1− 1

1 + sin γ

)
, γ ∈ [0, π/2] (2.33)

https://plotdigitizer.com/app
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where m is the mass of the lightest particle in the theory and Λ ∈ [0, 4m2]. In turn, the

S-matrix can be written as

S(θ) = 1 +
2iΛ

(Λ− 8m2) sinh θ − iΛ
(2.34)

where θ is the rapidity. Using Equations 2.31 and 2.32, it is straightforward to determine

the corresponding (Λ,Λ(2)) coordinates.

On the other hand, if γ is analytically continued, the Staircase Model [30] is obtained.

In this case, γ = π
2 + iθ0 which, in practical terms, means that the Staircase model is given

precisely by Equation 2.34 but with Λ ∈ [4m2, 8m2].

Finally, two known points can be identified

Sf.b.(s) = +1 =⇒ (Λ,Λ(2)) = (0, 0); Sf.M.f.(s) = −1 =⇒ (Λ,Λ(2)) = (8, 2) (2.35)

for a free boson and a free Majorana fermion, respectively. These models are carefully

identified in Figure 2.24, together with the analytical curve of Figure 2.23.
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FIGURE 2.24: Known models vs. points from Figure 2.23.

Unfortunately, we do not know what theories lie on the upper part of this region.

Moreover, there was an attempt to plot a known deformation, the TT̄ deformation: how-

ever, instead of lying only on the boundary, it pierced the inner region. Thus, we have

decided not to plot it altogether.

As a bonus, we can also study the space of parameters S(2) vs. S(2)(2) vs. S(4)(2): for

each S(2), there is a maximum/minimum value that S(2)(2) can take; spanning the values

between these points, one can now maximize/minimize S(4)(2), obtaining what we call

the S(4)(2) pancake. This procedure results in Figure 2.25
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(A)
(B)

FIGURE 2.25: Result of maximizing and minimizing S(4)(2) in the allowed region for
S(2) and S(2)(2).

2.2 Dual approach

So far, only the primal approach was invoked whenever optimization routines took place.

In subsection 2.1.1, however, another was mentioned: the dual approach. It is the aim

of this section to explore this formalism and understand its advantages when compared

with the primal method. All of the results can be found in [31, 32], which will be closely

followed.

2.2.1 Dual philosophy

In the cases thus far seen, the primal strategy seemed to yield accurate and stable results

- for suitable choices of Nmax. Even in these cases, increasing this parameter beyond the

optimal parameter results in instabilities. With these instabilities, our target variables do

not improve monotonically, as expected, with the increase in the parameter space. Be

as it may, it is not always the case: when carried out in higher dimensions, the same

optimization problem analysed in past sections yields unstable results for certain regions

ofm2
1, [19] (the instability issue is also observed in other contexts, [33]). This raises several

questions, to name a few: how can one improve the results? Is the data ever going to

converge? For the first case, it may just be a matter of choosing an adequate Ansatz,

which is ofttimes complex; regarding the second case, it is not very clear.

To solve some of these issues, the dual problem is introduced: instead of building

the space of the allowed S-matrices, we can rule out unphysical theories and carve out the

appropriate S-matrix region. This strategy was proposed back in the 70’s, so it comes as no

surprise that, with technological advances, it is brought to life once more. Hence, we can
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approach the boundaries of the S-matrices space from two sides - with both approaches

combined - and constrain the true sought after value. To make matters clearer, we start

by reviewing the primal approach systematically.

Let us consider the same problem as before: in a 2D theory with a single stable particle

of mass m and a bound-state m1, what is the maximum value of the cubic coupling g1

consistent with 2 → 2 scattering amplitude T (s) and the usual axioms? Schematically,

this corresponds to the optimization problem

maximize
{T (s), g21}

g21 (2.36)

subject to the constraints

A(s) ≡ T (s)−

(
T∞ −

g21
s−m2

1

+

∫ ∞

4m2

dz

π

ImT (z)

s− z + i0+
+ (s↔ 4m2 − s)

)
= 0, s ≥ 4m2

(2.37)

U(s) ≡ 2 ImT (s)− |T (s)|2

2
√
s(s− 4m2)

≥ 0, s ≥ 4m2 (2.38)

where the same conventions as in subsection 2.1.3 were used, and the maximization is

over the space of amplitudes T (s) and couplings g1 (which are the symmetric of the

residues of T (s) at s = m2
1). These constraints are already known to us: Equation 2.37 im-

poses, simultaneously, crossing symmetry and an analytical structure - poles correspond

to bound-states, whereas cuts correspond to multi-particle, physical regions of scattering;

Equation 2.38 is just unitarity written as a function of T (s) instead of S(s). T (s) is said to

be feasible if it satisfies both equations.

Constraints 2.37 and 2.38 are affine and convex, respectively. Moreover, the quantity

which is being maximized is a linear map in the space of analytical functions; thus, this

optimization problem is an infinite dimensional convex optimization, which can be solved

analytically using the Maximus Modulus Principle ([3, 26]) or with the primal approach.

Anyhow, as previously stated, the last strategy suffers from some problems. In this

case, there are two shortcomings that particularly stand out. On the one hand, as dis-

cussed, it may be complicated to come up with a proper Ansatz: some may converge

faster than others, but there is no a priori technique to figure this out. On the other hand,

one may need to impose further constraints or variables - be it higher point unitarity con-

straints or higher point amplitudes. This seemingly inoffensive action may cause some

undesirable effects: a previously allowed solution of the original problem of parameters

may be excluded from the final set of solutions in the extended space. As in conformal
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bootstrap, it would be more favourable if bounds on more general spaces remained valid

upon imposing the full set of QFT constraints. In the end, it turns out that the dual for-

mulation solves both shortcomings. As such, we present the simple example of [32].

Let us consider the Lagrangian density

L(T, ω, λ) = g21 +

∫ ∞

4m2

ds ω(s)A(s) + λ(s)U(s) (2.39)

where λ(s) ≥ 0 and ω(s) are the dual variables to {T (s), g21}, and define the dual function

d(ω, λ) = sup
{T,g21}

L(T, ω, λ) (2.40)

It is important to note that the supremum is taken over the unconstrained space of

amplitudes T (s). With this new object, some observations can be made. Firstly, we note

that since

inf
{λ≥0,ω}

L(T, ω, λ) =


g21 , ifT is feasible

−∞ , otherwise
(2.41)

then it is true that

g21,∗ = sup
{T,g21}

[
inf

{λ≥0,ω}
L(T, ω, λ)

]
(2.42)

since, ideally, A(s) = 0 and U(s) ≥ 0. With this is mind, Equation 2.40 implies that

d(ω, λ) = sup
{T,g21}

L(T, ω, λ) ≥ inf
{ω,λ}

 sup
{T,g21}

L(T, ω, λ)


≥ sup

{T,g21}

[
inf

{ω,λ}
L(T, ω, λ)

]
2.42
= g21,∗ ,

(2.43)

where the Max-min inequality was used. This inequality is often referred to as the Weak

Duality, which differs from the Strong Duality by the inequality sign. This partially solves

the first of the presented shortcomings: by exploring the space of parameters {ω, λ} it is

possible to exclude some regions and put bounds on the maximum value allowed for the

primal solution. Thus, it serves as an indicator of how well a particular Ansatz may be

performing. The equivalent to the primal approach is, then,

minimize
{λ(s), ω(s)}

d(ω, λ) (2.44)

subject to the constraint

λ(s) ≥ 0 (2.45)
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What we have been describing so far is a procedure commonly used in optimization

problems in Mathematics; however, in this context, there are other assumptions which

can further simplify the problem at hand. To begin with, the analyticity of amplitude T (s)

can be captured by the dual variable ω(s) by simply defining a dual scattering function,

W (s), odd under crossing and whose absorptive part corresponds to ω(s) [32]:

W (s) ≡ − 1

π

∫ ∞

4m2

dz ω(z)

(
1

s− z + i0+
− 1

s− 4 + z + i0+

)
, ImW (s) = ω(s) (2.46)

In Appendix A, it is shown how W (s) emerges naturally from 2.39 and the Sokhot-

ski–Plemelj theorem. It is also shown that Equation 2.39 reads

L(T, ω, λ) = g21

[
1 + π ReW (m2

1)
]
+

∫ ∞

4m2

ds Im
[
W (s)T (s)

]
+ λ(s)U(s) (2.47)

It is clear from this expression that L(T, ω, λ) is now local in T , which previously was

not the case. This will become important in the next step, which will enable us to perform

both the maximization over T and the minimization over λ simultaneously (cf. Equations

2.40 and 2.44). Firstly, though, one should note that, because L is linear in g21 ,

d(W,λ) = +∞ unless ReW (m2
1) = −

1

π
(2.48)

Since that the optimization problem is undefined unless the constraint 2.48 is satisfied,

we restrict ourselves to the space of W (s) which satisfies it. Secondly, due to locality, one

can take the Euler-Lagrange equations of 2.47 (treating ReT (s) and ImT (s) as indepen-

dent variables, which is valid in this context) varying T (s) to show that

Tc(s) =

[
ImW (s)

λ(s)
+ i

(
2 +

ReW (s)

λ(s)

)]
1

2ρ211(s)
(2.49)

where ρ−2
11 (s) ≡ 2

√
s(s− 4m2) (this solution can be shown to correspond to a maximum,

so long as λ > 0). Substituting Equation 2.49 and assuming that Equation 2.48 is satisfied,

d(W,λ) should read

d(W,λ) =

∫ ∞

4m2

ds

[
|W (s)|2

4λ(s)
+ ReW (s) + λ(s)

]
1

ρ211(s)
(2.50)
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Now, all that is left is to minimize in the dual variable space of parameters {λ(s),W (s)}.

If D(W ) ≡ inf
{λ}

d(W,λ), then

D(W ) =

∫ ∞

4m2

ds
[
|W (s)|+ ReW (s)

] 1

ρ211(s)
(2.51)

since the positive solution λ(s) = |W (s)|
2 was used. This means that Equation 2.49 yields

Tc(s) =
i

ρ211(s)

(
1 +

W ∗(s)

|W (s)|

)
(2.52)

which will be later verified in the plots.

Thus, the dual optimization problem simplifies to

minimize
{W (s)}

D(W ) =

∫ ∞

4m2

ds
[
|W (s)|+ ReW (s)

] 1

ρ211(s)
(2.53)

subject to the condition that

W (m2
1) = −

1

π
(2.54)

The described problem can be solved numerically, similarly as the primal problem, us-

ing functions such as FindMinimum of Mathematica instead of FindMaximum. How-

ever, to proceed, we must suggest a truncated Ansatz. Using, for example, the same

foliation ρ as before,

ρ(s) =

√
2m2 −

√
4m2 − s√

2m2 +
√
4m2 − s

(2.55)

and the Ansatz suggested in [32],

W (s) =
1

s(4m2 − s)

Nmax∑
n=1

an(ρ(s)
n − ρ(t)n) (2.56)

one is able to carry out the maximization of g21 (actually, the minimization of D(W )) in

the space of an’s. In the next subsection, we proceed to do so - and the results will agree

perfectly with the predictions.

2.2.2 Maximization of the cubic coupling

In the previous section, the dual approach was introduced as well as a possible numerical

pseudo-algorithm to implement it. The context is the following: consider the 2D scat-

tering of identical particles of mass m, whose mass spectrum allows for a bound-state of

mass m2
1 and whose coupling to the lightest particle of the theory is g21 . The objective is

to maximize said quantity. According to preceding calculations, it corresponds simply
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to minimizing the functional 2.53 subject to the dual constraint 2.54. At best, we expect

the solution to agree with the sine-Gordon QTF (cf. subsection 2.1.6), in which case the

absolute value of the S-matrix should saturate unitarity.

Figure 2.26 shows the result of carrying out the optimization. Numerically speaking,

we used Nmax = 5 for the cutoff and Lagrange interpolation to determine the integral

(since the referred integral depends on unknowns, no tool was available to determine it

promptly); the interpolation made use of 150 points on a Chebyshev grid*, determined

with high precision. Regarding the FindMinimum function, the standard parameters

yielded accurate results, so no further changes were due.

As expected, the dual function does an incredible job at finding the maximum value

for the desired coupling. Moreover, even with a substantially large set of positions to

maximize in, the algorithm took around 1,5 minutes to finish, which is considerably fast

(the ρ algorithm was appreciably slower even with a smaller size of samples, for example;

is may be as fast as with using the dispersion Ansatz, with the added bonus of always

being rigorous).
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FIGURE 2.26: Result of maximizing the cubic coupling g21 between the masses m and m1,
for the S-matrix element of the scattering of two m particles with only one bound-state.
In red, we present the numerical data; the curve which they rest upon is the residue of
the sine-Gordon S-matrix element. The blue shaded region consists of the allowed space

of solutions consistent with our assumptions.

Another aspect which we commented on were the S-matrix components of each solu-

tion vs. the sine-Gordon model. To that end, Figure 2.27 is presented. Once more, one can

notice a remarkable agreement between the numerical data and the exact solution.

Lastly, it remains to be checked if, in fact, the algorithm has already converged or if

one needs to adjust some parameters. Figure 2.28 clearly proves that, even for Nmax as

*Roots of the Chebyshev polynomials of the first kind. Given by xk = cos
(

2k−1
2n

π
)
, k = 1, ..., n.
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FIGURE 2.27: S-matrix components vs. sine-Gordon for (A) m1 = m and (B) m1 =
√
3m.

The same phenomenon as in Figure 2.9 occurs with the dual approach. These plots were
obtained according to Equation 2.52.

low as 5, the algorithm has attained its optimal value, rendering all of the above analysis

valid.

5 10 15 20
Nmax

20.786

20.788

20.790

20.792

D

FIGURE 2.28: Convergence of the dual objective, D, as a function of Nmax and for m1 =√
3m. For Nmax = 5, D seems to reach its minimum optimal value. Since higher Nmax

would only prove computationally heavier, the former value was chosen.

With this method, it should be possible to reproduce the two and three b.s. case nu-

merically. However, this proved to be harder than expected, and thus it is not presented.

Regarding the quartic coupling (S(2) while g2i = 0, i.e., no b.s.), a study was carried

out in order to generalize the procedure of subsection 2.2.1 for when g2i = 0 and S(2) is the

new objective. Despite our best efforts, it was impossible to obtain the analytical value.

Hereupon, we reach the end of the study in 2D. The next natural step is to generalize

most (if not all) the previous results for higher dimensions, specifically for 4D. However

simple it may seem to add extra dimensions, the reality is that it will be necessary to

review the base assumptions of unitarity and crossing, which, in higher dimensions, take

a rather overwhelming form if not treated carefully.



Chapter 3

4D Scattering: massive scalar

particles

3.1 Introduction to higher dimensions

In the two dimensional case, two aspects made the bootstrap formalism rather accessible

and straightforward: the fact that there was only one independent Mandelstam variable

(s was the common choice) and the useful coincidence that the connected part had the

same support as the disconnected part. Both played a vital role in simplifying unitarity

and crossing symmetry requirements alike.

Unfortunately, such ease is not to be expected for higher dimensions: in 4D, for ex-

ample, the number of independent Mandelstam variables is two rather than one. This

means, for instance, that scattering angles are relevant, immediately destroying the same-

support argument. However, it is not the most concerning issue: unitarity, which so far

was described by the simple Equation 2.5, takes a more complex form, which is not easily

solvable, at least as it is. It turns out that this is a long solved issue in the literature [1, 11],

and still commonly used [19]: one must consider a partial-wave expansion of the amplitude.

Before diving right into the mathematical aspects, it may be fruitful to understand the

physical intuition behind the partial-wave approach. All throughout this chapter, scalar,

spinless particles will be considered: only the relative orbital momentum between both

particles (we will simply study the 2 → 2 scattering) matters. Since the collision be-

tween the particles happens with no external influence (i.e., closed system), total angular

momentum is a conserved quantity: thus, it is convenient to consider the projection of

45
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the scattering amplitude for each angular-momentum state separately. However, the ini-

tial state is usually a superposition of many possible angular-momentum eigenstates, and

therefore it makes more sense (and is actually necessary) to considered the total scattering

amplitude as a sum over all the composing partial-waves amplitudes.

Let us recall some important results developed in Chapter 1. Therein, the scattering

angle is written in Equation 1.23 as

x = cos(θ) = 1 +
2t

s− 4
= −1− 2u

s− 4
(3.1)

and the amplitude T (s, t) is expanded as in Equation 1.26

T (s, t) =

∞∑
ℓ=0

n
(d)
ℓ fℓ(s)P

(d)
ℓ (cos(θ)) (3.2)

where fℓ(s) are the partial-wave coefficients, the sum runs over even ℓ (odd ℓ yield 0),

n
(d+1)
ℓ are normalization factors in Equation 1.27. According to Equation 1.28,

fℓ(s) =
Nd

2

∫ 1

−1
dx (1− x2)

d−3
2 P

(d)
ℓ (x)T (s, t(x)) (3.3)

This leads to the most important result, Equation 1.30

Sℓ(s) = 1 + i
(s− 4)

d−2
2

√
s

Nd

2

∫ 1

−1
dx (1− x2)

d−3
2 P

(d)
ℓ (x)T (s, t(x)) (3.4)

Lastly, there are a couple of conditions further assumed for the amplitude function

T (s, t, u):

• Crossing Symmetry: for the scattering of identical particles,

T (s, t) = T (t, s) = T (u, t) (3.5)

The first equality can be obtained from the analysis of the LSZ method [18, 34, 35];

the second, t↔ u, originates from Bose symmetry.

• Real and Extended Analyticity: regarding real analyticity, we assume that

T (s∗, t∗) = T ∗(s, t) (3.6)

All the analyticity results which shall be considered can be revised in section 1.2.1.

When it comes to extended analyticity, it is important to stress that it is yet to be

rigorously and axiomatically proven. However, there is a great agreement between
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the results with extended analyticity and those obtained (without it) in older litera-

ture. That being said, it consists in the assumption that T (s, t) is an analytic function

for complex s and t, except for potential poles in 0 < s < 4m2 and a cut starting at

s = 4m2, as well as the image of said singularities under crossing.

In other words, it is considered that the S-matrix has the exact singularities predicted

by unitarity and that is is analytic everywhere else as a complex function of two

variables, s and t.

• Unitarity: From Ŝ†Ŝ = 1̂ we conclude that:

1 = ⟨i|S†Ŝ|i⟩

=
∑
m

⟨i|S†|m⟩⟨m|Ŝ|i⟩

=
∑

ℓ, even

S∗
ℓ (s)Sℓ(s)

= |S2→2
ℓ (s)|2 +

∑
ℓ>2, even

|S2→n
ℓ (s)|2

⇔ |S2→2
ℓ (s)|2 = 1−

∑
ℓ>2, even

|S2→n
ℓ (s)|2

⇔ |S2→2
ℓ (s)|2 ≤ 1

(3.7)

where the partial-wave projection was used from the second to third lines. Hence,

using the notation of Equation 1.30, elastic unitarity yields the condition that

|Sℓ(s)|2 ≤ 1 (3.8)

for s ≥ 4m2 and even ℓ. Considering that in Z2 even theories four-particle produc-

tion occurs for s ≥ 16m2, then it is clear that Equation 3.8 is actually saturated in

that region.

With the formalism out of the way, it is time to apply the S-matrix bootstrap program

and put bounds on interesting quantities. Consequently, numerical considerations must

be taken and an Ansatz will be needed. Such is the work carried out in the next section.

All of the proceeding sections will be carried out in a 4 dimensional spacetime (d = 3).
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3.2 Search for a numerical Ansatz

This problem seems all too familiar to us. Back in subsection 2.1.5, we were tasked with

finding an Ansatz for T (s), which in the end resulted in taking the extended function

T (s, t) and using the maps in 2.17. Unsurprisingly, the same map still applies to the prob-

lem at hand, so one had better review it. Let m2 = 1.

Firstly, the condition that s + t + u = 4 is relaxed, which consists in the extension of

T (s, t) to T (s, t, u) as a function of three independent variables. Similarly as in subsection

2.1.5, we proceed with using the map

s 7→ ρs =

√
4m2 − s0 −

√
4m2 − s√

4m2 − s0 +
√
4m2 − s

, s =
s0(1− ρs)2 + 16m2ρs

(1 + ρs)2
(3.9)

(exactly the same as the aforementioned equation). The slight nuance regarding previous

sections is that s0 = 4/3, which corresponds to the crossing symmetric point s = t = u =

4/3 when ρs = ρt = ρu = 0 (recall that d = 3). With this map, we go from (s, t, u) 7→

(ρs, ρt, ρu). The final region to consider is that made up of three independent maps, ρs, ρt

and ρu, all of which map the ”x”-plane apart from the cut starting at x > 4 to the inside

its respective unit disk: thus, all the cuts remain outside each of the unit disk. Said region

must be a conjugation of the three separate ones, which form the ∆3 polydisk defined by

|ρs| < 1 ∪ |ρt| < 1 ∪ |ρu| < 1. Lastly, only the poles corresponding to bound states remain.

Similarly to subsection 2.1.5 we can then write the natural Ansatz

T (s, t, u) = − g21
ρ(s)− ρ(m2

1)
− g21
ρ(t)− ρ(m2

1)
− g21
ρ(u)− ρ(m2

1)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u (3.10)

where the triple ρ series is convergent inside the polydisk andm1 is the bound-state whose

interaction strength to the lightest particle is given by the coupling g21 . The following step

is to impose the rest of the constraints considered in the previous section. When imposing

crossing symmetry, one must ensure that the coefficients are symmetric in their indices.

Furthermore, one must restrict the final solution to the region s + t + u = 4, which has

the effect that Equation 3.10 automatically obeys to the analytic and crossing symmetric

structure previously imposed.

As with all numerical approaches, Equation 3.10 must be truncated. Following [19],

the chosen truncation scheme is such that a+b+c ≤ Nmax; further restricting to the region

s + t + u = 4, has, in practice, the known effect of reducing the number of degrees of

freedom in the Ansatz. Using the logic of the symmetric polynomials used in subsection
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2.1.5 with the new equation

ρ2sρ
2
tρu + ρ2sρ

2
uρt + ρ2tρ

2
u + (lower degree terms) = 0 (3.11)

one can set to 0 some coefficients, as is presented in Figure 3.1.

α1,0,0

α2,0,0 α1,1,0

α3,0,0 α2,1,0 α1,1,1

α4,0,0 α3,1,0 α2,2,0 α2,1,1

α5,0,0 α4,1,0 α3,2,0 α3,1,1 α2,2,1

α6,0,0 α5,1,0 α4,2,0 α3,3,0 α4,1,1 α3,2,1 α2,2,2

α7,0,0 α6,1,0 α5,2,0 α4,3,0 α5,1,1 α4,2,1 α3,3,1 α3,2,2

α8,0,0 α7,1,0 α6,2,0 α5,3,0 α4,4,0 α6,1,1 α5,2,1 α4,3,1 α4,2,2 α3,3,2

α9,0,0 α8,1,0 α7,2,0 α6,3,0 α5,4,0 α7,1,1 α6,2,1 α5,3,1 α4,4,1 α5,2,2 α4,3,2 α3,3,3

α10,0,0 α9,1,0 α8,2,0 α7,3,0 α6,4,0 α5,5,0 α8,1,1 α7,2,1 α6,3,1 α5,4,1 α6,2,2 α5,3,2 α4,4,2 α4,3,3

α11,0,0 α10,1,0 α9,2,0 α8,3,0 α7,4,0 α6,5,0 α9,1,1 α8,2,1 α7,3,1 α6,4,1 α7,2,2 α5,5,1 α6,3,2 α5,4,2 α5,3,3 α4,4,3

FIGURE 3.1: Independent coefficients (in blue) of the Ansatz 3.10. The coefficients in red
are set to 0. At each level (N starts at 1), the number of terms which survive is equal to the
total number of symmetric polynomials in three variables, of degree N, minus the total
number of constraints for each case, which is the total number of polynomials of degree

(N- 5):
⌊
(N+3)2+6

12

⌋
−
⌊
(N−2)2+6

12

⌋
. Adapted from [19].

All that remains are the coefficients αabc which, together with g21 , make up for a space

of parameters in which one can optimize certain quantities numerically. As in previous

cases, we wish to push Nmax as high possible, for only then can we truly determine an

accurate bound for the objective at hand.

That being said, we proceed to the optimization program. In the next section, we try

to bound the familiar term g21 subject to unitarity and crossing symmetry constraints.

3.3 Maximization of the cubic coupling

Before delving too deep in the optimization scheme, we had better simplify some of the

more general expressions introduced in section 3.1, since we wish to focus on 4D scatter-

ing (d = 3). For d = 3, Equation 1.30 reads

Sℓ(s) ≡ 1 + i
(s− 4)

d−2
2

√
s

fℓ(s)

d=3
= 1 + i

√
s− 4

s

N3

2

∫ 1

−1
dxP

(3)
ℓ (x)T (s, t(x))

= 1 +
i

32π

√
s− 4

s

∫ 1

−1
dxPℓ(x)T (s, t(x))

(3.12)

When imposing unitarity, then, Equation 3.12 must be evaluated according to Equation

3.8 for a chosen s-grid and a selection of ℓs.
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The objective of this section is to determine the maximum value of g21 in Equation 3.10,

as a function ofm2
1, allowed by unitarity and using said equation as the Ansatz. All the el-

ements point to using the same maximization scheme as before, i.e., using Mathematica’s

built-in function FindMaximum. However, this proved more difficult than anticipated:

for one, the integral in Equation 3.12 needed to be determined either analytically or nu-

merical with very high accuracy and precision; then, unitarity should be evaluated in a

series of s-grid points and for various ℓs. To solve part of the issues, we evaluated said

integrals, for 200 uniformly distributed ρ-grid points (which was translated into an s-

grid using Equation 2.17), numerically with NIntegrate and with 200 effective digits in

WorkingPrecision. However, upon imposing the constraints for ℓ ≥ ℓmax = 20, we

came to the conclusion that FindMaximum was not suitable for the work at hand, be it for

how it is implemented or for the fact that it was rather slow.

So as to solve this last issue, a very common optimization program was used instead:

the SDP approach, a mathematical procedure which deals with semidefinite positive ma-

trices and affine constraints. These types of problems have seen some implementations,

which the SDPB software is an example of. The SDPB program [4, 36] is a rather known

optimization routine used in CFT bootstrap, but with implementations in the S-matrix

bootstrap field [19, 37, 38] (to name a few). The only inconvenience of using said pro-

gram is the fact that constraints need to be put into a positive semidefinite matrix form,

which means that one should do the same with 3.12. In essence, such matrix must have

non-negative eigenvalues, among some common aspects. Fortunately, it can be achieved

using the matrix inequality (Appendix F of [19])1− Im a
2 Re a

Re a 2 Im a

 ⪰ 0 (3.13)

where a ≡
√

s−4
s fℓ(s). This matrix inequality simultaneously imposes that Im a ≤ 2,

Im a ≥ 0 and that 2 Im a ≥ Im2 a+ Re2 a. All of these conditions are neatly satisfied, as it

is explained in detail in Appendix B.1.

Proceeding with the optimization as proposed, Figure 3.2 was obtained. These plots

reveal ”new” information which we will comment upon next; a more intricate and de-

tailed analysis of the numerical aspects of this maximization routine can be found in [19].

First and foremost, there is a striking resemblance between Figure 3.2 and that of the

maximization of the cubic coupling for lower dimensions. However, there are crucial
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FIGURE 3.2: Maximization of g21 as a function of m2
1/m

2, in 4D, for various numerical
cutoffsNmax. Unitarity was imposed along a uniform ρ-grid of 200 values, for ℓ ≤ ℓmax =

20.

details which differ in both cases. The most obvious feature is the contrasting behaviour

of the convergence withNmax before and after the peak. Form2
1 > 2m2, |g1| seems to attain

an optimal and stable behaviour with the increase of Nmax, whereas it keeps growing for

m2
1 < 2m2. There does not seem to be an obvious reason for this disparity, rather than the

fact that it may have to do with some of the discussed shortcomings of the primal method.

Secondly, there is a crest for m2
1 ≈ 2m2, a behaviour previously observed in 2D. Re-

garding the latter, the peak was the result of the collision of the s- and t- poles for m2
1 =

2m2, which left g21 virtually unbounded and resulted in a divergence. However, it is not

the case for 4D: by extrapolation (using, for example, the function Fit in Mathematica)

it is possible to show that the peak stabilizes to a finite value rather than infinite. This is

better understood when taking into account that constraints stemming from Equation 3.12

are being considered: T (s, t(x)) has, naturally, both a s- and t- pole for each bound-state;

however, the latter is being integrated against Legendre polynomials (while the former is

not), which means that its ”strength” (which previously was ∝ (t −m2
1)

−1) decreases. In

the end, both singularities have different ”strengths”, which does not result in cancella-

tion and, thus, g21 can still be bounded.

According to [19], near m2
1 ∼ 4m2, g21 must behave like g21 ∼ 256π

√
2−m1/m, which

can be shown following the argument in [19]. Near s = 4m2, we can think of the scattering

process as the scattering of a particle of mass m which interacts with a similar one by the

virtual exchanged particle of mass mb = 2m− ϵ, where ϵ is seen as a small binding energy
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parameter. In this region [19]

Mpole =
m5−dg2

s−m2
b

∼ m5−dg2/ϵ

4m(E/ϵ+ 1)
(3.14)

where E is the kinetic energy of the system in the centre of mass, which is taken to be

small - just as ϵ. For S0(s) (s partial wave) it is shown that [19]

23−dm(mϵ)1−d/2S
pole
0 (E/ϵ) ∼ 21−2dπ1−d/2

Γ(d/2)

m5−dg2/ϵ

4m(E/ϵ+ 1)
(3.15)

where we focused on the s = (2m2 − ϵ)2 pole region. Thus, the non-relativistic version of

the residue reads

g2 → 24+dπd/2−1Γ(d/2)g2NR(ϵ/m)2−d/2 (3.16)

For d = 3, one can show [19] that it should happen that g2NR < 22. Thus,

g23+1 ≤ 28π
√
ϵ−m = 256π

√
2−mb/m (3.17)

as proposed.

To check this claim, we went ahead and did the same optimization process as for other

masses. However, this seemingly simple assignment turned out to be more arduous than

expected, since the algorithm had a hard time converging to the expected solution: with

the increase in Nmax, there was still improvement in the target variable, for all of the

tested parameters. The problem may have to do with singularities at the boundary which

are not being accounted for (later introduced as threshold singularity), which are a greatly

impediment for the fast convergence of the algorithm. To tackle this issue, it was cleverly

suggested in [19] that the center of the s 7→ ρs map was changed, in that the bound-state

always maps to the center of the ρ disk. Re-calculating the predetermined integrals of

the partial-wave amplitudes so that they took this into account, we were successful in

showing a great agreement between the numerical data and the analytical solution, as

observed in Figure 3.3. Incredibly, for parameters as low as Nmax = 2 and ℓmax = 4, an

astonishing agreement is already visible, corroborating both the analytical result and the

modification of the algorithm.

With this figure, we end the analysis of the cubic coupling maximization in 4D. In the

preceding section, we shift our focus to another interesting target variable: the quartic

coupling.
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FIGURE 3.3: Maximization of g21 as a function ofm2
1/m

2 near 4m2 vs. the analytical result
g21 ∼ 256π

√
2−m1/m. For the plot, Nmax = 2 and ℓmax = 4 were used.

3.4 Quartic coupling

3.4.1 Maximization

Our second and final target variable is commonly known as quartic coupling and, histor-

ically, it has been attributed to the coupling strength of the π0π0 scattering [39]. Mathe-

matically, it conventionally corresponds to the value of the amplitude T (s, t, u) (with no

bound-states) at the crossing symmetric point s = t = u = 4/3 (mπ = 1), apart from a

normalization constant stemming from our notation,

λ ≡ 1

32π
T

(
4

3
,
4

3
,
4

3

)
(3.18)

The constraints on this coupling have been suffering constant changes since the 60’s

[19, 39–43], where [19] achieves the best results so far. In order to bracket the numerical

solution, we consider the results from [39], obtained only axiomatically by Lopez and

Mennessier, which impose that −8.2 < λ < 2.75. On the other hand, previous analytical

works (using slightly different methods) [42] determine a lower but still rigorous bound

on the amplitude, λ < 2.62, effectively introducing a region in which we must search the

upper bound solution in, λ ∈ [2.62, 2.75]. Since these results were obtained from axiomatic

conditions such as analyticity (not extended), crossing and unitarity, we do not expect to

find a quartic coupling greater than what has been already found. It that is the case, then

we know something went wrong.

Regarding the numerical routine, the Ansatz 3.10 can still be used, remembering that

there are no bound-states and, therefore, g21 should be set automatically to 0. We proceed

with maximizing the new objective λ, subject to the unitarity condition 3.8.
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FIGURE 3.4: Maximization of λ as a function of Nmax. Even for Nmax as high as 20 and
ℓmax = 14, the quartic coupling does not converge. The dashed lines illustrate the bounds

λ = 2.62 (orange) and λ = 2.75 (red) found in [42] and [39], respectively.

The result of carrying out this process results in Figure 3.4, which clearly shows that

the objective is far from converging to an optimal value. On the account of the fact that

the ρ expansion is analytic inside the unit disk, the previous result suggest the presence of

a singularity right in (or near) the circumference. In fact, according to [44], if T (s, t) is to

be maximized inside the Mandelstam triangle, it is necessary for its value to be maximal

at the physical energy threshold, s = 4m2. Such behaviour is reproduced by imposing a

threshold ”bound-state”, as if it were a pole. In practical terms, these statements imply

that a new term of the form

α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
(3.19)

should be added to the Ansatz in order the amplitude at T
(
4
3 ,

4
3 ,

4
3

)
. With the addition

of this new term, the maximization routine takes place in the extended space {α, {αabc}},

which should be taken into account when using SDPB. One way to check whether α at-

tains a correct value after the optimization is to impose that [19]

|S0(s)| < 1 =⇒ ReS0(s) < 1 (3.20)

In Appendix C, we show that this condition results in the much more simple requirement

that

− 32
√
6π ≤ α ≤ 0. (3.21)

Other partial-waves impose conditions which do not conflict with Equation 3.21. Thus,

upon executing the optimization routine, one will probe whether α satisfies such inequal-

ities. Numerically, unitarity is imposed on a uniform ρ grid of 200 points.
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Figure 3.5 clearly shows that introducing the threshold pole greatly expedites the con-

vergence of λ. The values that λ takes in the plateau, as a function of ℓmax, are represented

in Table 3.1: the results correspond to the mean taken over points with Nmax = 7 until

Nmax = 11 (inner points in the plateau), while the error corresponds to the standard de-

viation of such points.
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FIGURE 3.5: Maximization of λ as a function of Nmax, for the modified Ansatz. Numer-
ical data are presented by points; the red and green dashed lines represent the analytic
boundaries. The quartic coupling stabilizes for Nmax ≥ 6, independently of ℓmax. For
Nmax ≥ 13, the plateau is lost again (there needs to be a balance between Nmax and
ℓmax which need to happen for the algorithm to work; such balance is lost when Nmax is

greater than ℓmax).

ℓmax = 10 ℓmax = 12 ℓmax = 14

λ 2.661317± 0.000006 2.661316± 0.000006 2.661314± 0.000008

TABLE 3.1: Values of λ at the plateau. Each value corresponds to the mean of the values
from Nmax = 7 to Nmax = 11, whereas the error is the standard deviation of such points.

Regarding the value of λ, it is clear from both the table and the figure that it falls in

the interval [2.62, 2.75], as predicted. Finally, we analyse the behaviour of the threshold

pole coefficient, α, which is represented in Figure 3.6. As Nmax increases, α saturates the

lower bound previously imposed when analysing unitarity, −32π
√
6. If, however, the

lower bound is saturated, it means that S0(s) (at the threshold) should saturate unitarity

as well! In order to check if this is true, we plot the components of the S0 partial-wave,

which results in Figure 3.7. In fact, according to Figure 3.7 (B), it seems that unitarity is

saturated for almost every value of s: upon a closer inspection of 3.7 (A), we conclude

that this is only true in the limit where ℓmax and Nmax are high. The crucial aspect is

that the region where unitarity is not saturated is pushed further into the high energies

realm, which seems to be the case. Some of our results presented slight but measurable

differences in regards to the original ones from [19] due to the numerical computation of
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the integrals. Even though, for our purposes, such results suffice, precise measurements

should only be obtained if the integrals are determined analytically.
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FIGURE 3.6: Evolution of the threshold pole coefficient as a function of Nmax and ℓmax.
The dots correspond to numerical data, while the red dashed line is the lowest allowed
value for α. For Nmax ≥ 4, this coefficient attains a constant value which saturates the

lower theoretical bound. This plateau seems to be independent of ℓmax.
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FIGURE 3.7: (A) The absolute value of S0 for several Nmax vs. (B) the S-matrix compo-
nents of S0 for Nmax = 12, as function of ϕ (such that ρ = ei×ϕ).

Lastly, we would like to show that using such a small number of partial-waves yields

an accurate result, in massive theories, when compared to massless theories where the

partial waves go as far as ℓmax = 90 or even ℓmax = 220 [45, 46]. That being said, let

us recall the Yukawa model for interaction. For nonrelativistic scattering, the S-matrix

elements can be written in terms of the Yukawa potential function [47],

⟨p′|iT |p⟩ = −iṼ (q)(2π)δ(Ep′ − Ep), q = p′ − p (3.22)

where

Ṽ (q) =
1

V

∫
d3xV (r)e−iq·r = ⟨p′|V (r)|p⟩ (3.23)

Since

Ṽ (q) = − g2

|q|2 +m2
ϕ

(3.24)
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for a ϕ fermion field, then

V (r) = − g
2

4π

1

r
e−mϕr (3.25)

When the fermion is a spinless scalar, one can think of the angular momentum as the sole

momentum relevant to the system. In the classical limit, l⃗ = r⃗× p⃗, which means ℓ = b× p,

where b is the impact parameter between both particles. Using this result, we can re-write

Equation 3.25 as

V (r) = − g
2

4π

1

r
e−mϕr

≈ − g
2

4π

1

r
e
−mϕ

ℓ
Ep

(3.26)

which means that the potential decays with ℓ. Thus, for increasing ℓ, the S-matrix ele-

ment should become increasingly irrelevant. In other words, only low spin partial-waves

contribute should contribute to the expansion! For ℓ = 12, the imaginary part of the

partial-wave component S12 is practically negligible, as can be checked in Figure 3.8
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FIGURE 3.8: Components of the S-matrix partial-wave S12. The real part saturates uni-
tarity, while the imaginary part is zero for all ρ = ei×ϕ.

With these comments, we close the subsection on the maximization of the quartic cou-

pling. In regards to the minimum of the quartic coupling, there are still analytical results

which can be verified. Thus, it would be interesting to check whether, numerically, this

bounds are satisfied and if a better one can be found. Such will be the task of the next and

final subsection of 4D elastic scattering.

3.4.2 Minimization

Instead of maximizing λ, we wish to find its lower bound. However, the SDPB program

maximizes objectives; hence, one should be careful and set the objective to −λ and plot

whichever result obtained and multiply it by (−1).
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One must exert some caution: the objective to maximize is ∝ −T
(
4
3 ,

4
3 ,

4
3

)
, which,

using the threshold pole term, results in

−T
(
4

3
,
4

3
,
4

3

)
= 3α−

∑
a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u

∣∣∣
s= 4

3
, t= 4

3
, u= 4

3

= 3α− α000

(3.27)

To achieve the highest possible value would mean to force α > 0, which is impossible due

to Equation 3.21. Hence, such term should be discarded.

As it is, the algorithm does not converge well, as is clear from Figure 3.9, even for

higher spin partial-waves. The solution would be to identify relevant singular behaviours

slowing down the convergence. However, up until now and to our knowledge, no such

behaviour was found. Even if the values seem far from reaching a plateau, so far they

seem to be right within the expected lower bound.
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FIGURE 3.9: Minimization of λ as a function ofNmax. The red dashed line corresponds to
the analytic lower bound,−8.2. Convergence seems difficult even for higher spin partial-

waves.

This ends the study of the scattering of massive, spinless particles in 2D and 4D.

Throughout the previous chapters, no particle production was considered. What would

change in all the preceding results if, say, some inelastic profile was considered? This is

the premise of the following chapters, where various original results will be presented.



Chapter 4

Inelastic scattering: massive scalar

particles

4.1 2D Inelastic scattering, primal

4.1.1 Introduction and numerical Ansatz

So far, we have been avoiding particle production. This has the more immediate con-

sequence that unitarity is simply written as |S(s)|2 ≤ 1 or |Sℓ(s)|2 ≤ 1, for 2D and 4D

respectively. If allowing for particle production, the previous expressions still apply, but

we can do better: stronger conditions must be imposed. It can be done in a plethora of

ways, c.f. Equation 3.7, in particular it may as well be probed by 2 → n (in particular

2 → 4) amplitude functions, which is usually harder to analyse. The objective of his sec-

tion is to implement such conditions by hand, imposing specific inelastic profiles, which

is a more direct approach. As far as we know, this is the first time such approaches are

being presented.

To start our journey into inelasticity, we specialize in the 2D scattering of massive,

spinless and identical particles of massm. This scattering allows for the creation of bound-

states of mass mi {m < m1 < ... < mN} and particle production for s > 16m2, assuming

that the lightest particles are Z2 odd. Without loss of generality, m = 1.

The S-matrix describing this process must be crossing symmetric, as usual

S(s) = S(4− s) (4.1)

59
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It is still possible to define S(s) = 1 + i T (s)

2
√

s(s−4m2)
, which means that unitarity takes the

form

|S(s)|2 ≤ β(s), β(s) ≥ 0; β(s) =


1, 4 ≤ s ≤ 16

profile(s) s > 16

(4.2)

where the profile is yet to be chosen. Other aspects pertaining to real analiticity and the

analytical structure of the amplitude function remain unaltered from subsection 2.1.2, and

thus an Ansatz can start to be envisioned.

Proven to be more versatile, the double ρ expansion Ansatz 2.18 shall be used, here

for reference

S(s, t) = −Jρ ×

[
g2ρ

ρ(s)− ρ(m2
1)

+
g2ρ

ρ(t)− ρ(m2
1)

]
+

∞∑
a,b=0

cab ρ
a
sρ

b
t (4.3)

where

s 7→ ρs =

√
4− s0 −

√
4− s√

4− s0 +
√
4− s

, s =
s0(1− ρs)2 + 16ρs

(1 + ρs)2
(4.4)

and s0 = 2. At the same time, we impose a numerical cutoff a ≤ Nmax and b ≤ Nmax.

Furthermore, unitarity is evaluated at the grid s(n)i = 4+100×
(

i
n

)2
, i ∈ {1, 2, ..., n} for

n = 100 points.

Throughout this chapter, only two β(s) profiles will be considered:

β1(s) =


1, 4 ≤ s ≤ 16

1− α s > 16

(4.5)

and

β2(s)* =


1, 4 ≤ s ≤ 16

e−
√
s−16×α s > 16

(4.6)

where 0 < α ≤ 1 is a constant. While the first profile is a bit more pedagogical than phys-

ical, the second one tries to recreate the creation of a black holes by means of scattering

of particles (in this case, a toy model is being considered, since gravitons are massless

particles with spin).

Before proceeding with the numerical analysis, there is the question of the analytical

solution that need to be addressed. For that matter, [3, 26, 48] provide several ways of

*This profile, with the square root, would actually corresponds to the 3D case. In 4D, the exponential
profile linear in the energy s is troublesome, seeing as the analytical expression is not well defined. The 2D
profile is ill-defined.
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checking out our solutions, of which [48] is the one which suits us best:

S(s) = Selastic(s) e
−

∫∞
4

ds′
2πi

log(β(s))

√
s(s−4)

s′(s′−4)

(
1

s′−s
+ 1

s′−(4−s)

)
(4.7)

and |Selastic(s)| = 1 is a purely elastic S-matrix which is the product of CDD factors, as

seen in subsection 2.1.6.

With this, we are prepared to start producing results.

4.1.2 Maximization of the cubic coupling

The maximization routine is extremely similar to that of the elastic 2D case. First, a study

of the convergence of g21 withNmax was made, in order to determine what the best param-

eters were. At the same time, convergence plots were made for various quantities such

that ReS(6), ReS(14), ReS(17) and ReS(30), so as to understand if the S-matrix compo-

nents converged as well. What was concluded was that while the coupling converged

pretty well and corresponded to the analytical value, the components struggled to stabi-

lize. Nonetheless, the best parameters found in these conditions were Nmax = 5 for both

profiles β1(s) and β2(s).

Instead of the usual logarithmic plot of g21 vs m2
1, the relative error between the an-

alytical and the numerical solutions is of more use, since the change in the curves for

different values of α is rather imperceptible. Figures 4.1 and 4.2 provide some insightful

key features which may be worth exploring.
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FIGURE 4.1: Relative error of the numerical data vs. the analytical solution 4.7, for the
(A) β1 profile and (B) β2 profile. In both cases, Nmax = 5.

The main feature that stands out in Figure 4.1 is the striking difference in the conver-

gence for m2
1 < 2 and m2

1 > 2: in the former case, convergence seems tougher. Although
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FIGURE 4.2: Direct comparison between (A) profile β1 or (B) profile β2 and the analytical
results. The bound-state mass is fixed, m2

1 = 3.

we have not yet understood why this is the case, some investigation showed that it is

found in other contexts [19, 33], as well as in section 3.3 in this dissertation.

Another key detail is the fact that, according to both figures, the increase in α results

in the increase of the relative error. Intuitively, this may be attributed to the fact that the

discontinuity in s = 16 is stronger the higher the value of α is: in turn, it is expected that

a simple Ansatz with no singular behaviour in that region has an increasing difficulty in

converging.

Lastly, the relative errors seem higher in profile β2 rather than in β1. In fact, in Figure

4.2, numerical data is above the analytical, which leads us to believe that either the algo-

rithm is highly unstable or that the chosen Ansatz is not the most appropriate one for the

problem at hand.

In order to corroborate the last point, we propose to plot the S-matrix components for,

for instance, α = 0.5. Usually, one would not show such inaccurate and unstable plots,

but this time it may be beneficial in order to understand how improve the Ansatz. To that

matter, Figure 4.3 shows the comparison between the numerical S-matrix components and

the analytical ones. An obvious issue is that, even though the cubic coupling may have

converged already, the S-matrix components are still very far from stabilizing. Moreover,

one of the more important features is missing in both plots: the discontinuities in the

s = 16m2 region.

These comments close our brief study of the maximization of the cubic coupling sub-

ject to inelasticity. As anticipated, the Ansatz did not perform well: it was expected, since

it does not have the appropriate discontinuities at s = 16m2. This was predominantly

visible in the S-matrix components, where there it is clear that said region is the more
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FIGURE 4.3: S-matrix components for the inelastic profiles (A) β1 and (B) β2, when α =
0.5 and Nmax = 5 (best parameter) vs. the analytical results in red dashes lines.

problematic for the algorithm. However, before trying to solve this issue, we probe how

far this simple Ansatz can go by exploring, for instance, maxS(2) and maxS(2) vs. α.

4.1.3 S(2) vs. α

The aim of this section is to understand how S(2) behaves when α is changed, for the case

when g21 = 0. For α = 0, we must get that Smax(2) = +1 whereas Smin(2) = −1, as seen

previously on Figure 2.19.

This is a rather straightforward optimization problem, with the only change that the

new objective is to maximize and minimize S(2). In order to do so, FindMinimum and

FindMaximum from Mathematica are used, which results in Figures 4.4 and 4.5
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FIGURE 4.4: max S(2) and min S(2) vs. α vs. the analytical solution 4.7 (red dashed
lines), for the (A) β1 profile and (B) β2 profile. In both cases, Nmax = 5.

For small values of α, the numerical data closely follow the trend set by the analytical

solution. For the profile β1, however, increasing α results in successively larger disparities

when compared with theoretical results, which can be clearly checked in Figure 4.5 (A).

On the contrary, in the second case, the discrepancies remain almost negligible (cfe. Figure
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FIGURE 4.5: max S(2) and min S(2) vs. α vs. the analytical solution 4.7 (red dashed
lines), for the (A) β1 profile and (B) β2 profile and near α = 1. In both cases, Nmax = 5.

4.5 (B)). In the limit where α→ 1, β1 → 0 and S(2)→ 0. On the other hand, β2 → 1 implies

that S(2)→ 0.76521, approximately. The numerical data seems to agree with such values,

which can be easily confirmed by taking the value of the last evaluated point in both

numerical curves (maximum and minimum curves).

It is fairly clear by now that our results suffer from setbacks due to the Ansatz 4.3. All

things considered, in the next section we try to adapt this Ansatz to the new behaviours,

in search of better agreements between our data and the proposed solutions.

4.1.4 Ansatz modification: ρ16 addition

As the title suggests, the simplest approach one can take to introduce discontinuities is to

expand the basis used in the Ansatz formulation, so as to capture the singular behaviour.

In this case, we aim to reproduce a sharp discontinuity at s = 16m2, precisely, without

compromising analyticity. This last requirement is harder to fulfil, which is why we must

recall the analytical structure so far imposed. Let m2 = 1.

When describing the analyticity of the amplitude function, extended analyticity was

considered. In this regard, only simple poles - corresponding to bound-states - and cuts -

corresponding to the physical energy region - were considered. Since the discontinuities

are located in the region s > 4m2, it seems more natural to look for terms which introduce

cuts. Since we wish to impose the singularity at s = 16m2, the obvious choice is to modify

the definition of ρs so the cut starts at said position instead of s = 4m2: this is what was

named the ρ16 term, completely new to the literature. In practice, several such terms will

be considered similarly to the ρs × ρt expansion previously made.
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To start with, we construct the explicit form of ρ16. The requirements are that it intro-

duces a cut in the s- and t-plane for s > 16 and t > 16 and, by choice, that it is 0 when

s = 2 = t. The last requirement will become clear shortly. Both conditions are met by the

map

ρ16,s(s) ≡
√
16− s0 −

√
16− s√

16− s0 +
√
16− s

, s =
2(1 + 30ρ16,s + ρ216,s)

(1 + ρ16,s)2
(4.8)

with s0 = 2. It can be checked that s maps to a unit disk, where s = 2 corresponds to

ρ = 0, as demanded.

Thus, our new Ansatz should read

S(s, t) = −Jρ×

[
g2ρ

ρ(s)− ρ(m2
1)

+
g2ρ

ρ(t)− ρ(m2
1)

]
+

∞∑
a,b=0

cab ρ
a
sρ

b
t +

∞∑
a,b=0

dab ρ
a
16,sρ

b
16,t

* (4.9)

However, there are still terms which are redundant, since S(s, t) must still satisfy crossing

symmetry. This symmetry is imposed directly in the coefficients dab, such that dab = dba.

In turn, it means that some coefficients can be set to 0, like in subsection 2.1.5. It is now

clear why we imposed that s0 = 2 in Equation 4.8: using the inverse map, s(ρ16,s) it can

be checked that s+ t = 4 (u = 0 in 2D) corresponds to

ρ16,s + ρ16,t + 4ρ16,sρ16,t + ρ216,sρ16,t + ρ16,sρ
2
16,t = 0 (4.10)

which is mathematically equivalent to Equation 2.19. This means that the coefficients

therein eliminated are can be discarded as well here. Apart from this, no other mathemat-

ical consideration needs to be done. Regarding the numerical aspect, the usual problem of

the maximization of the cubic coupling subject to unitarity and crossing symmetry is con-

sidered. To do so, we impose two numerical cutoffs, N c
max and Nd

max, which correspond

to the terms with cab and dab coefficients, respectively. Unitarity is imposed for n = 50

points using the grid s(n)i = 4 + 100 ×
(

i
n

)2
, i ∈ {1, 2, ..., n} and only the profile β1 is

considered.

Upon using Mathematica’s FindMaximum tool with InteriorPoint as the search

Method, for 2000 MaxIterations, we proceeded with the study of the best parameters

of convergence, starting with N c
max near the best value for the case when N c

max did not

exist. As such, forN c
max = 5,Nd

max = 2 was found to be the best parameter, choosing d00 =

0. Apart from being redundant, seeing as c00 is a constant as well, when included, the d00

*Strictly speaking, when these sums are infinite, the cab and dab coefficients are not independent: ρ16
can be expressed as a sum of infinite ρ terms. Since, numerically, cutoffs are introduced in both sums, this
ambiguity disappears.



66 S-MATRIX BOOTSTRAP: TOWARDS INELASTICITY

term greatly destabilized the final results. This choice of parameters yielded Figures 4.6

and 4.7. Astonishingly, for the β1 profile, the relative error noticed small yet noticeable

improvement! With such an improvement in the target variable, one would anticipate

some progress in the S-matrix components. To check so, the S-matrix components - for

the same set o parameters as before - are plotted in Figure 4.8. Even though the high

energy behaviour leaves much to be desired, the discontinuity seems better described

than before - a clear progress.
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FIGURE 4.6: Relative error of the numerical data vs. the analytical solution 4.7, for the β1
profile. Here, the parameters used were N c

max = 5 and Nd
max = 2.
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FIGURE 4.7: Direct comparison between the profile β1 and the analytical results. The
bound-state mass is fixed, m2

1 = 3, N c
max = 5 and Nd

max = 2.

We end this section with some comments. Most of the results obtained previously

used an optimization tool which, in all fairness, is like a ”black box”, in that we do not

fully understand, from the mathematical point of view, what is happening during the

optimization process. That is perhaps one of the main reasons why the primal method,

as was done here, is not adequate for the task at hand. In the future, we would certainly

like to carry out this section using the SDPB approach: it is expected that the results see a

great improvement over those in this section.
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FIGURE 4.8: S-matrix components for the inelastic profile β1 and with the new Ansatz
4.9. In red are the components of the analytical solution. Here, the parameters used were

m2
1 = 3, N c

max = 5 and Nd
max = 2 and α = 0.5.

However, this is not the end of the line. There is still another method one can use: the

dual approach. In the next section, we explore this well-known method.
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4.2 2D Inelastic scattering, dual

The previous section focused on building up a theory from the ground, using axiomatic

constraints and, eventually, different Ansatz which provided for a better space of func-

tionals and, consequently, a better solution. However, we already used another method

which ruled out potential functions: the dual approach. It may be more fruitful to carry

out that same approach in this case, were an adequate Ansatz for the primal method was

hard to find.

Although this formalism is more intricate and complicated than the primal method, it

was already carried out once in section 2.2 with great success. Hence, we try to follow the

same steps therein taken. Firstly, we recall that unitarity takes the form of Equation 4.2.

Thus, the primal optimization problem is

maximize
{T (s), g21}

g21 (4.11)

subject to the constraints

A(s) ≡ T (s)−

(
T∞ −

g21
s−m2

1

+

∫ ∞

4m2

dz

π

ImT (z)

s− z + i0+
+ (s↔ 4m2 − s)

)
= 0, s ≥ 4m2

(4.12)

and the new unitarity condition, which is showed in Appendix D to be

U(s) ≡ 2
√
s(s− 4)

(
1− β(s)

)
+ 2 ImT (s)− 1

2
√
s(s− 4)

|T (s)|2 ≥ 0 (4.13)

The second step is to build the Lagrangian density L(T, ω, λ),

L(T, ω, λ) = g21 +

∫ ∞

4m2

dsω(s)A(s) + λ(s)U(s) (4.14)

where λ ≥ 0. Using the Weak Duality principle and the same definition for W (s), which

does not depend on the form of the unitarity condition, we arrive at the expression

L(T, ω, λ) =
∫ ∞

4m2

ds Im
[
W (s)T (s)

]
+ λ(s)U(s) (4.15)

provided that ReW (m2
1) = − 1

π . Taking the remaining steps as was done in the afore-

mentioned section, we show in Appendix D that the correct dual optimization problem

is

minimize
{W (s)}

D(W ) =

∫ ∞

4m2

ds
[
|W (s)|β(s) + ReW (s)

] 1

ρ211(s)
(4.16)
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subject to the condition that

W (m2
1) = −

1

π
(4.17)

where β(s) are the profiles used in subsection 4.1.1.

Lastly, it is necessary to propose an Ansatz to carry out numerical procedures. FindMinimum

can still be used, as well as the ρ(s) foliation

ρ(s) =

√
2m2 −

√
4m2 − s√

2m2 +
√
4m2 − s

(4.18)

and the same Ansatz as before

W (s) =
1

s(4m2 − s)

Nmax∑
n=1

an(ρ(s)
n − ρ(t)n) (4.19)

where Nmax is the numerical cutoff. The fact that the same Ansatz was used even though

the S-matrix are not the same as before may seem a bit strange. However, the dual ob-

jective function encodes a discontinuity through β(s), which takes care of said problem.

Moreover, the results we are about to show corroborate that the Ansatz is appropriate.

Before proceeding with the final results, it is necessary to perform a convergence study.

We found out that the study of the convergence of D with Nmax sufficed, which is plotted

in Figures 4.9 and 4.10, for both profiles and different values of α.
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FIGURE 4.9: Convergence of D vs Nmax, for the β1 profile and (A) α = 0.3 or (B) α = 0.7.
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FIGURE 4.10: Convergence ofD vsNmax, for the β2 profile and (A) α = 0.3 or (B) α = 0.7.
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It is painfully evident that the dual objective is still far from converging. In fact, it

was verified that it only fully converged for α = 0, which is the maximization prob-

lem of of section 2.2. However, all of the curves appear to tend to a finite value, which

could justify extrapolation. Based on this, we proceeded in two manners: both Fit and

NonlinearModelFit are used to fit the data for an array of α ∈ {0.3, 0.5, 0.7}, for both

profiles β1 and β2. To this estimates we add an error which is determined in a similar

fashion to what is done in Appendix H of [45]: let

(
χ(n)

)2
=

1

m

m∑
j=1

(
fit(n)(estimatej)− data pointj

)2
(4.20)

where m is the number of points used for each fit and fit(n) corresponds to a determined

fit, for fixed α. Since Fit and NonlinearModelFit yielded similar results, we pro-

ceeded with using only the latter with a basis {{a + b/x}, {a + b/x + c/x2}, {a + b/x +

c/x2 + d/x3}, {a+ b/x+ c/x2 + d/x3 + e/x4}, {a+ b/xβ}}. Considering that

σestimate =

∑
n a

(n)/
(
χ(n)

)2
∑

n 1/
(
χ(n)

)2 (4.21)

and

σ2 =

∑
n

(
a(n) − σestimate

)2
/
(
χ(n)

)2
∑

n 1/
(
χ(n)

)2 (4.22)

where in both equations a(n) is the value of the parameter a for each of the fits f (n). All in

all, the final values are presented in the Table 4.1,

α = 0.3 α = 0.5 α = 0.7

β1 20.4959± 0.0002 20.2267± 0.0005 19.8230± 0.0016

β2 19.42± 0.01 18.57± 0.03 17.79± 0.02

TABLE 4.1: Results of conducting the extrapolation method for both profiles.

Graphically, Figure 4.11 shows the comparison between the numerical data, with the

corresponding error bars, and the analytical values. Moreover, Figure 4.12 shows, for

both profiles, a more comprehensive understanding of where the extrapolation result

falls, when compared to the analytical one, for α = 0.5, as an example.

At this point, only the figures similar to 4.6 and 4.8 are missing. To solve this, we start

by presenting Figure 4.13

Compared with Figure 4.6, Figure 4.13 (A) seems to perform considerably better, which

was to be expected considering that the dual approach seems fairly more stable.
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FIGURE 4.11: Comparison between the analytical via Equation 4.7 vs. the data in Table
4.1 for (A) β1 and (B) β2.
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FIGURE 4.12: 1/Nmax vs. D, with the analytical and extrapolation values for profiles (A)
β1 and (B) β2, when α = 0.5.
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FIGURE 4.13: Relative error of the numerical data vs. the analytical solution, for the (A)
β1 profile and (B) β2 profile. In both cases, Nmax = 40.

Lastly, we plot the S-matrix components for fixed m2
1. To do so, we propose the modi-

fication to Equation 2.52, which should take the form

T ∗
c (s) =

i

ρ211(s)

(
1 +

W ∗(s)

|W (s)|
√
β(s)

)
(4.23)

With this, Figure 4.14 is presented. Although some oscillations still occur, the overall
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FIGURE 4.14: S-matrix components for the inelastic profile (A) β1 and (B) β2 for the dual
approach vs. the analytical components, red dashed curves. m2

1 = 3, Nmax = 40 and
α = 0.5 were used.

result is much better than those obtained from the primal approach, even with the ρ16

addition. Thus, both the dual and the primal approach seem to close the duality gap,

hence yielding similar results. However, we can with confidence conclude that the dual

approach is much more robust.

Unfortunately, the dual for the S(2) maximization/minimization problem could not

be found, hence the best results we have to show are those of the primal method. With this

last comment we close the exploration of inelasticity in 2D, and proceed with the natural

generalization for 4D.

4.3 4D Inelastic scattering, primal

As the title suggests, the aim of this section is to delve into the realm of 4D inelastic scat-

tering. Much like the previous sections, particle production will be implemented directly

using some profiles, but, since SDPB is used, these new unitarity constraints must be cast

in a more elaborate manner, as opposed to simple inequalities. In this section, m = 1.

4.3.1 4D inelasticity formulation, SDP maximization of the quartic coupling

At a first glance, using Mathematica’s tools - FindMaximum and FindMinimum - seems

the most direct method, which would eliminate the need for more intricate ways of im-

posing inelasticity as in the SDP approach. However, this comes with a great downfall:

the fact that computation take enormous amounts of time to run, which is impractical in
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the context of this dissertation. Furthermore, we are subject to a ”black box”, whose opti-

mization procedures we cannot fully understand nor control. For these reasons, it is well

worth our time to develop the SDPB program for our purposes.

That being said, there is still the question of how to impose inelasticity. In the optics

of this dissertation, two distinct paths will be taken, either using the optical theorem or by

imposing inelasticity directly on the partial waves - in a similar spirit to Appendix B.1.

Starting by the usual axioms, we focus on the maximization/minimization of the quar-

tic coupling for the scattering of massive, spinless and identical particles in 4D. All of

what was introduced in section 3.1 still applies in this case, in particular crossing sym-

metry, real and extended analyticity and (part of) the unitarity conditions, as well as the

Ansatz adopted. As such, the usual expansion is considered, with the new condition that

there are no bound-states,

T (s, t, u) = α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u (4.24)

and

s 7→ ρs =

√
4− s0 −

√
4− s√

4− s0 +
√
4− s

, s =
s0(1− ρs)2 + 16ρs

(1 + ρs)2
(4.25)

The s + t + u = 4 condition eliminates part of the redundancy just as it did previously.

Thus, the only palpable difference is in the extra or new unitarity conditions which we

proceed to analyse.

We focus solely on describing and presenting the results, and only after will the esti-

mates for the values of the optimization process will be presented, in a dedicated subsec-

tion - subsection 4.3.1.6.

4.3.1.1 Positivity

Although not quite an inelasticity one, the first natural condition that occurred to us was

the weaker condition of positivity, which stems from the optical theorem. According to

[2, 49], said theorem can be cast in the form

ImT (s, 0) =
√
s(s− 4)σtotal (4.26)
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where σtotal is the total cross-section. Positivity is just the observation that Equation 4.26

satisfies ImT (s, 0) > 0, which is can be written as the positive semidefinite conditionImT (s, 0) 0

0 1

 ⪰ 0 (4.27)

So, the constraints consist in the usual unitarity conditions |Sℓ(s)| ≤ 1 - as per demon-

strated in Appendix B.1 - for even ℓ up to ℓmax and a uniform ρ grid, plus the positivity

condition 4.27.

Using the SDPB program, Figure 4.15 was determined, for the maximization of the

quartic coupling T
(
4
3 ,

4
3 ,

4
3

)
. Firstly, the plateau of convergence originally observed in

section 3.4 is still present; moreover, at first sight, it appears to stabilize at the same value.

Most importantly, though, is the fact that, by introducing the positivity condition, the

plateau is maintained for higher values of Nmax! In addition, this feature is present re-

gardless the value of ℓmax.
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FIGURE 4.15: Maximization of the quartic coupling subject to unitarity conditions 3.13
and 4.27, for several ℓmax. The discrete data (Pos.) correspond to the numerical data,
while the dashed curves (Elastic) represent the solution to the same problem without

positivity 4.27.

In regards to the minimization procedure, no changes were observed at all. Thus, we

will refrain from analysing this objective from now on.

Even though no changes in the value of the plateau have been observed, it is still in-

sightful to discover that positivity works towards stabilizing the algorithm. In practice,

stronger conditions than the previous one shall be imposed in upcoming subsections, so

there will be no need to make use of these results. So as to observe some measurable dif-

ference in the value of the plateau, we proceed with a subtle modification of the unitarity

conditions.
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4.3.1.2 Lower bound on cross-section

In practice, Equation 4.26 cannot be cast as an SDPB condition, since it is not an inequality.

However, let us go back to section 3.1. According to Equation 1.26, the amplitude function

admits the partial-wave expansion (for d = 3)

T (s, t) =
∞∑
ℓ=0

16π(2ℓ+ 1)Pℓ(cos(θ)) (4.28)

where the appropriate normalization has been taken and Pℓ(x) are the Legendre polyno-

mials. Thus, it trivially follows that

ImT (s, 0) =
∞∑
ℓ=0

16π(2ℓ+ 1)Im fℓ(s) (4.29)

The ”trick” which shall be employed, and which gives name to this section, is to bound

Im fℓ(s) and substitute in Equation 4.29, identifying the right hand side term as an ef-

fective ”
√
s(s− 4)σtotal”. Before doing so, it will be helpful to recall what was done in

Appendix B.1. Therein, it was shown that

|a(s)|2

2
≤ Im a(s) ≤ 2 (4.30)

where a ≡
√

s−4
s fℓ(s). The first step is to generalize this result when |Sℓ(s)|2 ≤ β(s)

instead of |Sℓ(s)|2 ≤ 1, which is done in Appendix B.2. The main result is that Equation

4.30 neatly generalizes to

1− β(s)
2

+
|a(s)|2

2
≤ Im a(s) ≤ 1 +

√
β(s) (4.31)

Equation 4.31 puts a lower bound on Im a(s), which we can use to our advantage so as to

modify 4.29. Hence,

ImT (s, 0) =

∞∑
ℓ=0

16π(2ℓ+ 1)Im fℓ(s)

≥
∞∑
ℓ=0

16π(2ℓ+ 1)

[√
s

s− 4

1− β(s)
2

+
s− 4

s

|fℓ(s)|2

2

]

≥
∞∑
ℓ=0

16π(2ℓ+ 1)

[√
s

s− 4

1− β(s)
2

]

≈ ”
√
s(s− 4)σtotal”

(4.32)
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Finally, only establishing the appropriate PSD constraint from the previous expression is

left. That is easily achieved by the conditionImT (s, 0)− ”
√
s(s− 4)σtotal” 0

0 1

 ⪰ 0 (4.33)

which we used together with the the unitarity conditions for each Sℓ(s).

In this dissertation, two profiles have been considered:

β1(s) =


α, ℓ = 0 ∧ s ≥ 16

1, ℓ > 0 ∧ s ≥ 16

(4.34)

and

β2(s) =


α, (ℓ = 0 ∨ ℓ = 2) ∧ s ≥ 16

1, ℓ > 2 ∧ s ≥ 16

(4.35)

which greatly simplify the sum in 4.32. In practice, these profiles try to restrict unitarity

for either the s partial-wave - profile β1(s) - or both s and p partial-wave - profile β2(s).

With these profiles in mind, the maximization of the quartic coupling was carried out.

The results are in Figures 4.16 and 4.17, for different choices of α and for both profiles.
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FIGURE 4.16: Result of maximizing the quartic coupling subject to the new constraint
4.33, for profile β1(s) and (A) α = 0.8 and (B) α = 0.5. The dashed lines correspond to

the solution with unitarity only.

While the data does not see many a difference in Figure 4.16, there is a rather measur-

able difference for Figure 4.17. In both cases, the algorithm forms a plateau on a certain
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FIGURE 4.17: Result of maximizing the quartic coupling subject to the new constraint
4.33, for profile β2(s) and (A) α = 0.8 and (B) α = 0.5. The dashed lines correspond to

the solution with unitarity only.

region around Nmax = 9. The contrasting behaviour between both cases is quite under-

standable: while in the first case the right hand side is of the form

16π × 1×
√

s

s− 4

1− β1(s)
2

(4.36)

the second case yields

16π × 6×
√

s

s− 4

1− β2(s)
2

(4.37)

In other words, 1−β(s)
2 ∼ γ(s), where 0 ≤ γ(s) ≤ 0.5 which sets a low lower bound for

ImT (s, 0). However, the latter case is distinct: 6× 1−β(s)
2 ∼ 6×γ(s), and the new effective

running parameter 6 γ(s) sets higher lower bounds for the imaginary part. For instance,

β(s) = β2(s) and α = 0.5 implies that 6 γ(s) = 1.5, which can never be imposed by any

value of α for β1(s). The results are practically similar to those of the elastic case: this is

mainly due to the fact that the quadratic term, which is greater than the remaining one,

is being discarded, and as such weaker bounds than those of the elastic case are being

imposed.

That being said, there is not much left to analyse. Thus, we proceed with expanding

this section to imposing real bounds directly on the total cross-section, obtained analyti-

cally by Roy and Martin.

4.3.1.3 Introducing a lower bound on the total cross-section

Instead of going through the process of finding a lower bound for the imaginary part of

the amplitude function (in the forward limit) using Equation 4.32, it should be possible
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to simply impose a lower bound on σtotal in Equation 4.26. In this spirit, we searched

known results in the literature and found an interesting result in [50] which states that,

for pion-pion scattering, the inelastic part of the cross-section asymptotically satisfies

σinel(s) >
const
s5/2

Exp

[
−
√
s

4
(N + 5/2) ln s

]
≡ σRM (4.38)

where N = 2 and c is a parameter we will vary between 0 and 1.

Since σtotal(s) = σelastic(s) + σinelastic(s) ≥ σinelastic(s) > σRM , Equation 4.26 yields

ImT (s, 0) =
√
s(s− 4)σtotal >

√
s(s− 4)σRM (4.39)

The constraint 4.39 has a trivial PSD matrix representation, which is similar to 4.33ImT (s, 0)−
√
s(s− 4)σRM 0

0 1

 ⪰ 0 (4.40)

In practice, we shall impose said profile for s > 16m2, even though it is only valid for

large s. As will be seen, however, it has little to no effect on the final result.

Once more, we proceed with the same SDPB program optimization, which results

in almost no effect on the original plateau, as reported by Figure 4.18 In fact, the new
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FIGURE 4.18: Result of maximizing the quartic coupling subject to the new constraint
4.40, for profile 4.38 and (A) c = 0.5 and (B) c = 1. The dashed lines correspond to the

solution with unitarity only.

condition is so weak that changing the value of c from 0.5 to 1 has practically no effect

whatsoever, apart from extending the length of the plateau - like introducing positivity

did. For this reason, combined with the fact that in the upcoming sections it is showed

that the value of the plateau is the same as the original one, we have decided to pursue no
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further studies using this method. In hindsight, this was anticipated, since the RM profile

is exponentially suppressed and is only asymptotic.

Nonetheless, it is not the last approach of imposing particle production we wish to

explore. There is one other that, perhaps, has the most impact of all of the strategies

analysed yet: imposing inelasticity directly on the partial-wave amplitudes.

4.3.1.4 Imposing bounds on fℓ

Rather than restricting the imaginary part of the amplitude function, one could directly

impose constraints on the partial-wave amplitudes. Although both methods seem anal-

ogous, there is, intuitively, a fundamental difference that is to be expected. To better

understand it, recall that

ImT (s, 0) =

∞∑
ℓ=0

16π(2ℓ+ 1)Im fℓ(s) (4.41)

When bounding the imaginary part, effectively a linear combination of the partial-wave

amplitudes is being restricted: either one component only, or various spin amplitudes

at the same time. Moreover, the quadratic term is not being considered, and thus sub-

optimal bounds are being imposed since the elastic component is totally ignored. In

turn, the algorithm is optimizing the final solution as it sees fit, not necessarily restricting

the lower spin amplitudes, for instance. As concluded in previous sections - section 3.4,

specifically - the lower spin amplitudes have a greater impact on the final result. Hence,

it would make sense that directly restricting them causes a greater effect on the quartic

coupling.

So as to implement this, we make use of the generalized inequalities derived in previ-

ous sections, in particular

1− β(s)
2

+
|a(s)|2

2
≤ Im a(s) ≤ 1 +

√
β(s) (4.42)

As shown in Appendix B.2, this can be translated to the PSD condition1− Im a

1+
√

β(s)
Re a

Re a β(s)− 1 +
(
1 +

√
β(s)

)
Im a

 ⪰ 0 (4.43)

which we impose for both β1(s) and β2(s) profiles.

While the optimization for β1(s) yielded satisfying results - cf. Figure 4.19 - the same

can not be said about β2: it is clear from Figure 4.20 that the results are extremely unstable
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- this is expected, since the Ansatz does not account for new discontinuities. This issue is

similar to that of subsection 4.1.2; when α = 0.5, in these conditions, the SDPB program

throws errors which state a mathematical impossibility of solving the problem given the

constraints. Later, we will show that the expansion of the allowed space of functions -

i.e., the addition of new terms to the Ansatz - partially solves this problem. As such, we

suspect that this might be the main issue causing the errors.
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FIGURE 4.19: Result of maximizing the quartic coupling subject to 4.43, for profile β1(s)
and (A) α = 0.8 and (B) α = 0.5. The dashed lines correspond to the solution with

unitarity only.
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FIGURE 4.20: Result of maximizing the quartic coupling subject to 4.43, for profile β2(s)
and α = 0.8. The dashed lines correspond to the solution with unitarity only. The holes

at odd Nmax correspond to solutions with SDPB errors.

For β1(s), the solution displays a shorter plateau below the previous, elastic value.

Furthermore, by eye, it seems that said plateau is even lower when comparing with sub-

section 4.3.1.2: our expectations were met!
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4.3.1.5 Introducing ρ16 terms

The discontinuities introduced for s > 16m2 are not naturally reproduced by the Ansatz

4.24. So as to take into account the inelastic profiles, in subsection 4.1.4 we proposed that

the Ansatz was slightly modified: hence the addition of the ρ16 terms.

In this subsection, we propose a similar strategy. Thus, Equation 4.24 becomes

T (s, t, u) = α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u

+
∑

a,b,c=0

βabc ρ
a
16,sρ

b
16,tρ

c
16,u

(4.44)

where

ρ16,s(s) ≡
√
16− s0 −

√
16− s√

16− s0 +
√
16− s

(4.45)

In this case, s0 = 4/3 and the inverse map is not particularly important, since the integrals

regarding Sℓ(s) are evaluated at the original ρ grid (the s grid is determined by its original

inverse map). Computationally speaking, the Ansatz must be truncated; being as general

as possible, two independent cutoffs are considered: Nmax for the ρ terms and Nmax,16 for

the ρ16 ones.

That being said, a simple step function will be considered for the inelastic profile (m =

1),

β(s) =


α, ℓ = 0 ∧ s ≥ 16

1, ℓ > 0 ∧ s ≥ 16

(4.46)

which can be imposed by the PSD condition 4.43.

Apart from the usual requirement thatNmax be less or as large as ℓmax, we suspect that

Nmax,16 + Nmax should not be too large compared to ℓmax. Thus, we carried out a study

in the three-dimensional parameter space of the variables {α, ρ, ρ16}. In order to simplify

said study, the maximization of the quartic coupling is treated.

Firstly, we fixedNmax = 14 and tried α = 0.8 and α = 0.2. From previous experiences,

the second value should pose more difficulties than the first one, considering that it trans-

lates into a stronger discontinuity. The results are presented in Figures 4.21 and 4.22. For

ℓmax = 14, in both cases, there seems to be a clear plateau for values of Nmax,16 around

Nmax,16 = 5. This is an improvement to the 2D case, since for even a low value of α the

algorithm converges.
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FIGURE 4.21: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.8. For ℓmax = 14, there seems to be a plateau for values of Nmax,16 around

Nmax,16 = 5.

FIGURE 4.22: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.2. For ℓmax = 14, there seems to be a plateau for values of Nmax,16 around

Nmax,16 = 5.

Figures 4.23 and 4.24 can attest to these improvements at the S-matrix components

level. The ρ16 terms have astonishingly positive effects in this aspect: for Nmax,16 in the

vicinity of the plateau, for both cases, the S-matrix components better describe the discon-

tinuity than for the case Nmax,16 = 0.

The best values of Nmax and ℓmax are 14 and 14, giving the region where the plateau

seems more stable. For these values, Figures 4.25 and 4.26 show the plateaus. Even though

they seem unstable, it must be noted that the difference between neighbouring points is

in the third decimal place, which is quite more that what we wish to achieve.
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FIGURE 4.23: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and (A) α = 0.8 with Nmax,16 = 0 and (B) α = 0.8 with Nmax,16 = 5.
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FIGURE 4.24: Result of maximizing the quartic coupling subject to 4.43, for profile β(s),
Nmax = 14, ℓmax = 14 and (A) α = 0.2 with Nmax,16 = 0 and (B) α = 0.2 with Nmax,16 =

9.
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FIGURE 4.25: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.8, ℓmax = 14 and Nmax = 14.
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FIGURE 4.26: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.2 and ℓmax = 14 and Nmax = 14.

More important is to push α as low as possible. In that spirit, the lowest value we

have studied is α = 0.01. For said value, Figures 4.27, 4.28 and 4.29 show the quartic

coupling optimization as well as the S-matrix components. Due to the complexity of

space of parameters, only the Nmax = 10 case was studied. However, it shows promise:

we expect that, increasing {Nmax, Nmax,16, ℓmax}, more stable results can be achieved.

The restriction of the partial-wave amplitudes and the ρ16 term close the subsection

on 4D inelasticity methodology and optimization strategies. So as to better understand

what resulted from each approach, we condensed all the results in the upcoming short

but informative subsection.

FIGURE 4.27: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.01.
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FIGURE 4.28: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.01, fixed Nmax = 10 and ℓmax = 14.

20 40 60 80 100
s

-1.0

-0.5

0.0

0.5

1.0

Re

Im

Abs

α0 = 0.01

FIGURE 4.29: Result of maximizing the quartic coupling subject to 4.43, for profile β(s)
and α = 0.01 with Nmax,16 = 10, Nmax = 10 and ℓmax = 14.

4.3.1.6 Comparison between the different approaches

As the title suggests, this section is aimed at reviewing and summarizing the main results

of each approach to inelasticity. By results we mean the value that the quartic coupling

takes at the plateau, which is determined by considering the mean value of λ in such

region. Seeing that the length of the plateau varies from method to method, a specialized

interval of Nmax must be chosen accordingly. Each choice is taken based on the values

showed previously, and no others. As for the uncertainty in each value, the standard

deviation of the used points was selected.

Table 4.2 is rich and full of numeric information that previously was only available by

eye. Before commenting on the results, we leave a list of Nmax used in each case:

• Original: Nmax ∈ {7, ..., 11};

• Positivity: Nmax ∈ {7, ..., 12};

• ”σtotal”, β1(s) and α = 0.8: Nmax ∈ {9, ..., 12};

• ”σtotal”, β1(s) and α = 0.5: Nmax ∈ {9, ..., 12};
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ℓmax = 10 ℓmax = 12 ℓmax = 14

Original 2.661317± 0.000006 2.661316± 0.000006 2.661314± 0.000008

Positivity 2.661320± 0.000009 2.661319± 0.000007 2.661316± 0.000009

”σtotal”,
β1(s) and
α = 0.8

2.6612± 0.0001 2.6611± 0.0002 2.6611± 0.0002

”σtotal”,
β1(s) and
α = 0.5

2.6608± 0.0003 2.6607± 0.0003 2.6606± 0.0004

”σtotal”,
β2(s) and
α = 0.8

2.655± 0.001 2.655± 0.001 2.655± 0.001

”σtotal”,
β2(s) and
α = 0.5

2.599± 0.005 2.598± 0.005 2.598± 0.005

RM,
c = 0.5

2.661317± 0.00006 2.661316± 0.00006 2.661314± 0.00008

RM,
c = 1.0

2.661317± 0.00006 2.661316± 0.00006 2.661314± 0.00008

fℓ, β1(s)
and

α = 0.8
2.6497± 0.0004 2.6496± 0.0005 2.6492± 0.0009

fℓ, β1(s)
and

α = 0.5
2.627± 0.001 2.626± 0.002 2.625± 0.002

fℓ, ρ16 and
α = 0.8

−−−−−−−−− −−−−−−−−− 2.65397573±
0.00000001

fℓ, ρ16 and
α = 0.2

−−−−−−−−− −−−−−−−−− 2.6129348±
0.0000007

fℓ, ρ16 and
α = 0.01

−−−−−−−−− −−−−−−−−− 2.5133± 0.0002

TABLE 4.2: Value of λ at the plateau for several approaches.

• ”σtotal”, β2(s) and α = 0.8: Nmax ∈ {9, ..., 12};

• ”σtotal”, β2(s) and α = 0.8: Nmax ∈ {9, ..., 12};

• RM, c = 0.5: Nmax ∈ {7, ..., 11};

• RM, c = 1: Nmax ∈ {7, ..., 11};

• fℓ, β1(s) and α = 0.8: Nmax ∈ {10, ..., 12};

• fℓ, β1(s) and α = 0.5: Nmax ∈ {10, ..., 12};

• fℓ, ρ16 and α = 0.8: Nmax,16 ∈ {3, ..., 7} (Nmax = 14, ℓmax = 14);
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• fℓ, ρ16 and α = 0.2: Nmax,16 ∈ {3, ..., 7} (Nmax = 14, ℓmax = 14);

• fℓ, ρ16 and α = 0.01: Nmax,16 ∈ {7, ..., 10} (Nmax = 10, ℓmax = 14);

First and foremost, imposing the Roy and Martin lower bound for the inelastic part of

the total cross-section was utterly ineffective: the values are equal to the original ones.

On the other hand, every other method resulted in a small (yet noticeable) decrease in

the value of the quartic coupling: just as expected! For the first four profiles, decreasing

the value of α has a tendency for decreasing the value of λ. Moreover, using β2(s) instead

o β1(s) results in a more acute reduction from the original value (the difference between

the data for these profiles is ≈ 0.2%− 2.3%).

Finally, when comparing the same profile, it is evident that imposing constraints di-

rectly on the partial-waves has a greater effect than introducing a pseudo total cross-

section, just as anticipated.

For now, the main focus of our analysis was the quartic coupling, being the target

variable. However, looking back, there is still yet another object which can be studied:

ImT (s, 0). Since most of the constraints were imposed directly on this quantity, it would

be interesting to see how it compares to the numerical results.

4.3.2 Analysis of ImT (s, 0)

Even though the main focus of the previous subsection was the quartic coupling, con-

sidering the introduction of new constraints related either to the optical theorem or the

partial-wave amplitudes, there are still insightful results that may have been overlooked.

Be it directly or indirectly, the previously mentioned constraints relate to the optical theo-

rem equation

ImT (s, 0) =
√
s(s− 4)σtotal (4.47)

or

ImT (s, 0) =
∞∑
ℓ=0

16π(2ℓ+ 1)Im fℓ(s) (4.48)

Upon imposing lower bounds to the right hand side of either equations, one is met with

an inequality which states that ImT (s, 0)−RHS ≥ 0. In particular, we are interested in the

question ”does this inequality ever saturate the lower bound?”, which we try to analyse

in this subsection.

At the start of this study is an important issue which has not been addressed yet:

whenever each constraint is imposed, is the inelastic, elastic or total cross-section being
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given? Fortunately for us, in [2] an explicit expression for the 2 → 2 contribution is

obtained, which reads

Ts(s) ≥
(s− 4)

d−3
2

8(4π)d−2
√
s

∫ 1

−1
dz′

∫ 1

−1
dz′′ Pd(1, z′, z′′)T (+)(s, t(z′))T (−)(s, t(z′′))

d→3
=

√
s− 4

s

1

8× 16π2

∫ 1

−1
dz′

∫ 1

−1
dz′′ 2πδ(z′ − z′′)T (+)(s, t(z′))T (−)(s, t(z′′))

=
1

64π

√
s− 4

s

∫ 1

−1
dz
∣∣∣T (+)(s, t(z))

∣∣∣2
(4.49)

where (B.7) in [2] was used and

T (±) ≡ lim
ϵ→0

T (s± iϵ, t), Ts(s, t) = Discs T (s, t) ≡ ImT (s, 0) (4.50)

Thus, plotting the expression above - which we dub elastic expression - against the solu-

tion for ImT (s, 0) and the lower bound which was used, it should be possible to compare

and make the appropriate comments. Furthermore, in some cases, positivity as well as

the sum the elastic expression and the RHS of the optical theorem will be plotted. The

reason for doing this will become clear later.

As examples, only two profiles were selected: ”σtotal”, β1(s) and α = 0.8 and fℓ, β1(s)

and α = 0.8. All the other plots can be obtained in a similar fashion.
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FIGURE 4.30: Comparison between the solution with positivity, LHS, Positivity (LHS,
Pos.), the LHS of the optical theorem for the RHS ”σtotal”, β1(s) and α = 0.8, LHS, Profile
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sion (RHS, Exp.).
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FIGURE 4.31: Comparison between the solution with positivity, LHS, Positivity (LHS,
Pos.), the LHS of the optical theorem for fℓ, β1(s) and α = 0.8, LHS, Profile (LHS, Prof.),
the RHS, Elastic (RHS, El.), the RHS fℓ, β1(s) and α = 0.8, RHS, Expression (RHS, Exp.),

and the sum.

There are quite some details worth exploring in both Figures 4.30 and 4.31 (Nmax = 14

and ℓmax = 14). First, let us make clear what the RHS, Exp. is for both cases. For Figure

4.30, expression 4.36 was used, whereas in the second case the same expression was used

as well! This results from expanding the amplitude function in terms of partial-wave

amplitudes and ignoring the quadratic term in the lower inequality of 4.31.

That being said, we start by analysing Figure 4.30. For all energies, it can be checked

that RHS, El. closely follows the LHS, Prof. solution: thus, it can be said that the positivity

solution naturally saturates the elastic bound, even though it was not imposed. As such,

we anticipate that any given ”inelasticity” - which we do not know if it contains some

elasticity - will only have a measurable effect if it is stronger than the elastic condition.

For low to medium energies, 0 < s < 100 (m2 = 1), LHS, Prof. agrees with LHS, Pos.,

which means that our solution saturates elasticity even though expression 4.36, weaker

than elasticity (RHS, El.), is imposed. When RHS, Exp. intercepts LHS, Pos., this is not the

case: RHS, Exp. becomes comparable and greater than RHS, El., at which point LHS, Prof.

starts following the former rather than the latter. Furthermore, as anticipated, RHS, Exp.

has any influence on ImT (s, 0) when it surpasses the elasticity condition.
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On the other hand, there is Figure 4.31, which requires a different analysis from the

previous one. Interestingly enough, LHS, Pos. no longer seems to agree with RHS, El.,

which means that there is something fundamentally different between this case of study

and the previous one. Moreover, LHS, Prof. does not agree with either LHS, Pos. or RHS,

Exp., but rather with the sum RHS, El. and RHS, Exp.. Even though RHS, Exp. was

used as reference, Im fℓ has, in fact, another lower bound set by 4.31; this lower bound

corresponds to part of RHS, Exp. plus a quadratic term we have discarded. However, the

quadratic term is simply the elastic contribution! Hence, when taking both into account -

their sum - we obtain a profile which follows LHS, Prof. almost perfectly*.

To sum up: while in Figure 4.30 ImT (s, 0) is dominated by the elastic regime until in-

termediate energies and inelastic regime at high energies, in Figure 4.31 the same quantity

is always dominated by the sum of the inelastic and elastic terms.

It is with these remarks that we complete our study of the introduction of inelasticity

in the context of the maximization of the quartic coupling. Regarding inelasticity, per se,

there have not been any further studies by our part. However, there is yet a final topic

we would like to discuss, which originated from the analysis of ImT (s, 0). The main

question we can ask about this object is ”For each s, what is the maximum that ImT (s, 0)

can attain?”. As we will see in the next section, there are reasons for said quantity not to

be bounded.

4.3.3 Maximization of ImT (s, 0)

The final subsection of this chapter concerns the maximization of the imaginary part of

the amplitude, in the forward limit. As discussed previously, this idea stemmed from

the observation that, instead of studying said object as a consequence of maximizing the

quartic coupling, one could directly maximize ImT (s, 0). Unbeknown to us, a somewhat

similar approach had already been taken [51]. Nonetheless, this was only found out later,

and thus our conclusions and results will be presented.†

*In some regions, the points do not quite agree exactly. However, upon plotting these graphs, we came
to the conclusion that then Nmax was increased, LHS, Prof. decreased for high energies. Thus, we suspect
that numerical imprecisions may be at play. For ℓmax = 14 = Nmax, also, λ is barely on the plateau.

†A special mention to Andrea Guerrieri, João Penedones and Pedro Vieira must be made, for only after
discussing with them were our arguments better organized.
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The idea is elementary: to given the Ansatz for T (s, t) and maximize ImT (s, 0). In the

same spirit as Equation 4.24, we started by considering

T (s, t, u) = α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u (4.51)

However, this does not yield that great a result. Thus, we think of terms that can be

added: whichever they may be, they must not break crossing-symmetry nor unitarity,

and analytically with the structure of the S-matrix. To that end, we added two terms:

T (s, t, u) = α1

√
s2 + t2 + u2 + α2

(√
s2 + t2 + u2

)2
+ α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u

(4.52)

The result of maximizing the target objective resulted in Figure 4.32. The additional plot-

ted line corresponds to the Froissart bound, which states that, at high energies,

σtotal(s) ≥
s→∞

const. log2 s (4.53)

where σtotal is the total cross-section. Firstly, we see that, at high energies, this bound

seems to be bellow the numerical data: it is only complied with asymptotically. The over-

all algorithm does not seem to converge, at least for medium/high energies. We suspect

that relevant terms must be missing, which could trigger the same fast convergence as the

threshold pole did.

So as to partially circumvent this issue, we propose another method: instead of max-

imizing the total amplitude, we make use of the expansion in Equation 4.48. Since each

fℓ(s) must be bounded, it must be easier to expand T (s, 0) and successively adding higher

spin terms. Unfortunately, as it can be easily checked, the results were similar to those of

Figure 4.32.

Since two different approaches failed in determining satisfying results, the problem

must lie in the setup itself. For one, the Ansatz 4.52 contains terms which violate unitarity.

More specifically, the square root functions violate unitarity asymptotically, when s→∞:

it is easily checked by writing out the S0(s) component. The reason we did not encounter

any problem with this earlier was the fact that unitarity was being imposed on a finite-

valued grid, which did not consider asymptotic values.

On the other hand, there is a much deeper reason for expecting the maximization of
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FIGURE 4.32: Comparison between the numerical data for the maximization of ImT (s, 0)
for ℓmax = 14 vs. the Froissart bound.

ImT (s, 0) to be troublesome. This quantity is intimately related to the total cross-section

of the scattering process, which can be clearly unbounded. In order to see this, it suffices

to think of the Relativistic Breit–Wigner formula: for a sufficiently short-lived resonance,

the cross-section is proportional to the resonance width times a Dirac-delta distribution.

Thus, in hindsight, it should never have been a feasible bounded quantity.



Chapter 5

Conclusions and Further Work

In this last chapter we provide a concise summary of the results of the thesis, as well as

some comments. Finally, we discuss future directions that may be taken following this

work, in addition to several other topics that might have been studied.

We started off by understanding the relevance of the S-matrix Bootstrap, in compari-

son with other QFT approaches. Having introduced the S-matrix, naturally its properties

were discussed, in particular Analyticity, Crossing-symmetry and Unitarity, followed by

the Dispersion Relations and the Partial-wave Expansion, which was of the utmost im-

portance for Chapters 3 and 4. These sections provided us with the necessary machinery

for tackling all problems that followed.

Having discussed and analysed the entrails of the fundamental properties of the S-

matrix, Chapter 2 begun by introducing to the idea of the primal approach to the Boot-

strap, which is complementary to the later discussed approach of the dual. Firstly, we un-

derstood the reasoning behind this approach, and started by applying it to a simple setup

in a 2D Lorentzian space. The QFT entailed the scattering of identical, massive, scalar and

neutral particles, which allowed for a bound state of mass mb ≥ m. By applying the dis-

cretized version of the dispersion relations to a specific analytic structure of the S-matrix,

we proceeded with the maximization of the cubic coupling of the lightest particles to the

bound state, having found almost perfect agreement with the profile of the sine-Gordon

S-matrix. Following this approach was another, which made use of maps from the s-plane

to the unit disk: it allowed for a more precise method, where the numerical cutoff was the

only numerical approximation. Thus, having discussed both techniques, a generalization

was made, so as to include two and three bound-states. Using the developed methods, we

were able to find great compatibility between the obtained data and the analytic results.

93
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Due to the fact that the case where the cubic coupling is null is also feasible, we im-

mersed ourselves in the study of EFTs. As shown in Chapter 2, these special theories

relate to this case in the sense that both can be represented by Taylor expansions at dif-

ferent points (energies). The most intuitive quantities to study are the S(2) vs. S(2)(2),

the first two coefficients in the expansion. The point s = 2m2 was chosen due to being

crossing invariant. In the end, we obtained a closed space, which can be neatly compared

to data from the paper [28], by simply taking a change of variables. The most interesting

part is that some known theories such as the Free boson and Free Majorana fermion were

identified to lie on the cusps of the determined curves. We proceeded with extending the

space of variables to include S(4)(2), and plotted the obtained results which we dubbed

”S(4)(2) pancake”.

Finally, we presented the dual philosophy, and applied it to the same optimization

challenge previously stated. The results were as precise as before, but the given method

actually converged better, numerically speaking, than the primal approach.

Having developed some intuition and familiarity with the Bootstrap techniques, we

enter Chapter 3, were the same QFT is considered in higher dimensions. The main chal-

lenge of this chapter was the complete shift in the paradigm, in that partial-wave expan-

sions were a must in order to impose unitarity, which otherwise posed terrible problems.

In doing so, we adopted another framework: the use of SDPB [4] in order to solve the

numerical optimization problems. A similar Ansatz to Chapter 2 was used, and results

similar to the followed papers were obtained. In particular, we proceeded with the max-

imization of the cubic coupling, as well of the quartic coupling, an historically relevant

quantity.

Thus enters the holy grail of this thesis: Chapter 4. The introduction of particle pro-

duction - commonly referred to as inelasticity - begun with the 2D case, with the modi-

fication of the unitarity conditions. By introducing a specific set of inelastic profiles, we

determined measurable changes to the perfectly elastic case. Two different Ansätze were

established, yielding different results. So as improve the primal method, we expanded the

original Ansatz to include the ρ16 terms, a new set of maps that imposed cuts at s = 16m2,

which resulted in some improvements. However, they were completely overshadowed

by the dual approach, generalized to include inelasticity.

Naturally, we progressed to higher dimensions, in particular 4D. Some generalizations
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to the provided methods were made, so as to still make use of the SDPB program. How-

ever, imposing inelasticity in higher dimensions proved a different beast than in lower

dimensions, since several approaches came to mind. In this thesis, we have decided to

impose bounds on the partial waves, fℓ, as well as on the imaginary part of the amplitude

in the forward limit, ImT (s, 0). Both yielded different results, which is natural: we expect

that directly restricting the partial-waves results in stricter results than giving both the

Ansatz and SDPB more freedom.

Once more, this called for the introduction of ρ16 terms. In this case in particular, the

usage of said variables proved invaluable in the enhancement of previous data, since we

were able to push inelasticity considerably further. It is our opinion that additional study

must be made regarding these new variables: it seems as though we are in the right track

to find the maximally optimal values for inelasticity. In theory, we must first understand

what other terms, compatible with unitarity, should be introduced.

The last two subsections that make up the main body of the thesis consist in explo-

rations that came up during the analysis of the obtained data. Firstly, we wished to check

whether the optical theorem was being satisfied, when the corresponding constraints

were imposed. The results depend on whether the constraints are directly applied to

the partial-waves or as a total crossing section, having different interpretations in each

case. Finally, we proposed the study of the maximization of ImT (s, 0), as it seemed, at

the time, a good physical observation tied to the total cross-section. However, said study

did not yield relevant data: turns out that this quantity may be highly unstable to the

introduction of resonances.*

As we see it, this thesis serves a stepping stone to a much wider and interesting field of

research that is the inelastic scattering. As a first step, it would maybe prove more fruitful

to come up with complementary terms apart from ρ16, as mentioned above. Other than

this, it may be interesting to search for new ways of imposing the inelastic conditions,

by including higher point scattering functions of the form n → m, n ∈ {2, 3, ...}, m ∈

{2, 3, ...}. For example, let us consider the setup of a QFT with two particles, A and B,

Z2 even and odd, respectively. For a Z2 preserving interaction, we can actually consider

two possible couplings: gAAA and gBBA, which can be maximized studying the scattering

processes AA → BB, AB → AB, BB → BB and AA → AA. In maximizing both

couplings, we can actually get a 2D closed space. In particular, we come to the conclusion

*Moreover, it had already been carried out by a different team of investigators, as we later found out.
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that, for instance, AA → ? is not a completely elastic process, as there are production

of BB pairs. Thus, we can try to inject the information about this additional particle

production of said pairs in the elastic scattering maximization of the single correlator

AA→ AA, as an inelastic profile, and check whether the same bounds as the mutliparticle

system are obtained.*

*We must thank Andrea Guerrieri for this wonderful idea and its subsequent discussion.



Appendix A

Dual from dispersion relations

In section 2.2, the Lagrangian 2.47 is presented, without proof. However, it has a quite

clear origin in the dispersion relations. In what follows, we impose subtractions to allow

for a general behaviour compatible with the Froissart-Gribov bound.

Setting the external particle mass to m = 1, we apply Cauchy’s integral formula

T (s)− T (2) = 1

2πi

∫
Cϵ(s)

dz
T (z)

z − s
− 1

2πi

∫
Cϵ(s)

dz
T (z)

z − 2
(A.1)

where Cϵ(s) is a circular contour of radius ϵ around s. Considering that T (s) has poles for

s ∈ [0, 4] and cuts for s ≥ 4 and s ≤ 0, let us show what happens for T (s), starting by the

physical region:

T (s) =
1

2πi

∫
Cϵ(s)

dz
T (z)

z − s

=
1

2πi

[∫ 0

−∞
dz

T (z + i0+)

z − s+ i0+
+

∫ −∞

0
dz

T (z − i0+)
z − s− i0+

+

∫ 4

+∞
dz

T (z − i0+)
z − s− i0+

+

∫ +∞

4
dz

T (z + i0+)

z − s+ i0+

] (A.2)

Using the change of coordinates z = 4 − z for the first two terms and crossing symmetry

property,
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T (s) =
1

2πi

[∫ +∞

4
dz

T (4− z + i0+)

4− z − s+ i0+
+

∫ 4

+∞
dz

T (4− z − i0+)
4− z − s− i0+

+

∫ 4

+∞
dz

T (z − i0+)
z − s− i0+

+

∫ 4

+∞
dz

T (z + i0+)

z − s+ i0+

]

=
1

2πi

[∫ +∞

4
dz

T (z − i0+)
4− z − s+ i0+

+

∫ +∞

4
dz

T (z + i0+)

4− z − s− i0+

+

∫ 4

+∞
dz

T (z − i0+)
z − s− i0+

+

∫ +∞

4
dz

T (z + i0+)

z − s+ i0+

]

=
1

2πi

[
−2i

∫ +∞

4
dz

ImT (z)

4− z − s
+ 2i

∫ +∞

4
dz

ImT (z)

z − s

]

=
1

π

∫ +∞

4
dz ImT (z)

[
1

z − s
+

1

z − t(s)

]

(A.3)

where ImT (z) ≡ 1
2i

(
T (z + i0+)− T (z − i0+)

)
= 1

2i

(
T (z + i0+)− T ∗(z + i0+)

)
, using

real analiticity of T (z) (note that, in this case, z ∈ R). Doing exactly the same for T (2)

and subtracting T (s)− T (2),

T (s)− T (2) = 1

π

∫ ∞

4
dz ImT (z)

[
1

z − s
− 1

z − 2
+

1

z − t(s)
− 1

z − t(2)

]
=

1

π

∫ ∞

4
dz ImT (z)

[
s− 2

(z − 2)(z − s)
+

t(s)− t(2)
(z − 2)(z − s)

]
=

1

π

∫ ∞

4
dz ImT (z)

[
1

z + s− 4
+

1

z − s
− 2

z − 2

] (A.4)

All that remains are the integrals whose curves are surrounding the poles at 0 < s < 4.

Thus,

T (s) = − 1

2πi

∑
i

∫
Cϵ(m2

i )
dz

T (z)

z − s

= −
∑
i

Res
z=m2

i

T (z)×

[
1

m2
i − s

− 1

4−m2
i − s

]

=
∑
i

g2i ×

[
1

m2
i − s

− 1

t(m2
i )− s

] (A.5)

where the Residue Theorem and the fact that s- and t-channel poles have symmetric

residues were used. Therefore,

T (s)− T (2) =
∑
i

g2i ×

[
1

m2
i − s

− 1

m2
i − 2

− 1

t(m2
i )− s

+
1

t(m2
i )− 2

]

=
∑
i

g2i ×

[
1

m2
i − s

+
1

s+m2
i − 4

− 2

m2
i − 2

] (A.6)
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All in all,

0 = A(s) ≡ T (s)− T (2)−
∑
i

g2i ×

[
1

m2
i − s

+
1

s+m2
i − 4

− 2

m2
i − 2

]

− 1

π

∫ ∞

4
dz ImT (z)

[
1

z + s− 4
+

1

z − s
− 2

z − 2

] (A.7)

In the end, ω(s) must be integrated against A(s) (cf. Equation 2.39). However, there

is a new primal variable that needs to be taken into account, T (2), which, integrated

against ω(s), yields the term T (2)×
∫∞
4 dsω(s). When taking the supremum in the space

of {T (s), T (2), g21}, it must be ensured that there are no divergences; then,
∫∞
4 dsω(s) = 0.

Assuming that the integrals in s and z can be exchanged,

∫ ∞

4
dsω(s)

[
1

z + s− 4
+

1

z − s
− 2

z − 2

]
=

∫ ∞

4
dsω(s)

[
1

z + s− 4
+

1

z − s

]
= −

∫ ∞

4
dsω(s)

[
1

s− z
− 1

s− t(z)

] (A.8)

Before proceeding, some details should be discussed. In the previous expression, s

should be understood as s = s + i0+, so as to make it very clear which ramification is

being considered. Therefore, the integral can be thought of running exlcusively on the

real axis. With this in mind, the previous expressions yields

∫ ∞

4
dsω(s)

[
1

z + s− 4
+

1

z − s

]
=

∫ ∞

4
dsω(s)

[
1

z + s+ i0+ − 4
+

1

z − s− i0+

]
=

∫ ∞

4
dsω(s)

[
iπδ(z − s) + P

[
1

s− z

]
− iπδ(s− t(z)) + P

[
1

z + s− 4

]]

= iπω(s) +

∫ ∞

4
dsω(s)

[
1

z − s
+

1

z + s− 4

]
= iπω(s)−

∫ ∞

4
dsω(s)

[
1

s− z
− 1

s− t(z)

]
≡ iπω(s)− πReW (s)

(A.9)

This result can be obtained using the Sokhotski–Plemelj theorem, considering that ω(s)

has support for s ≥ 4 and defining an anti-crossing symmetric function W (z), holomor-

phic in the complex plane without unitarity cuts,

ReW (z) ≡ 1

π

∫ ∞

4
ds ImW (s)

[
1

s− z
− 1

s− t(z)

]
(A.10)
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such that ImW (s) = ω(s) for s ≥ 4. With this definition, Equation A.7 can be simplified

to give∫ ∞

4
dsω(s)A(s) =

∫ ∞

4
dsω(s)T (s) +

∫ ∞

4
ds ImT (s)× ReW (s)

− i
∫ ∞

4
dsω(s) ImT (s) + π

∑
i

g2i ReW (m2
i )

=

∫ ∞

4
dsReT (s)× ImW (s) +

∫ ∞

4
ds ImT (s)× ReW (s)

+ π
∑
i

g2i ReW (m2
i )

=

∫ ∞

4
ds Im

[
T (s)W (s)

]
+ π

∑
i

g2i ReW (m2
i )

(A.11)

At last, to make contact with Equation 2.46, we use the Sokhotski–Plemelj theorem to

show that it is the same as Equation A.10:

W (s) ≡ − 1

π

∫ ∞

4m2

dz ω(z)

(
1

s− z + i0+
− 1

s− 4 + z + i0+

)
= − 1

π

∫ ∞

4m2

dz ω(z)

(
−iπδ(s− z) + P

[
1

s− z

]
+ iπδ(s− 4 + z)− P

[
1

s− 4 + z

])

= i
(
ω(s) + ω(4− s)

)
+

1

π

∫ ∞

4m2

dz ω(z)

(
1

s− z
− 1

s− 4 + z

)
= iω(s) +

1

π

∫ ∞

4m2

dz ω(z)

(
1

s− z
− 1

s− t(z)

)
(A.12)

where we imposed that ω(s) has support only for s ≥ 4. It is now straightforward to

check that

ImW (s) = ω(s), ReW (s) =
1

π

∫ ∞

4m2

dz ω(z)

(
1

s− z
− 1

s− t(z)

)
(A.13)



Appendix B

Positive semidefinite constraints

B.1 Positive semidefinite matrices and partial-wave inequality

It is often the case that SDPB [4] must be used to perform numerical optimization. So as

to make use of it, one is required to cast every constraint in a positive semidefinite matrix

form: doing so calls for a base knowledge of what semidefinite matrices are.

Let A be a symmetric matrix whose entries are all positive (it may be generalized

for complex matrices, but it is beyond the scope of this section). A is said to be positive

semidefinite, A ⪰ 0, if (the following conditions are all equivalent) [52–54]:

1. All eigenvalues of A are non-negative.

2. A = UTU for some matrix U.

3. xTAx ≥ 0 for every x ∈ Rn.

4. All principal minors of A are non-negative.

In most cases, the first conditions is used. However, for our purposes, the last one is more

useful.

As an example, we check if the matrix constraints used in Section 3.3 are positive

semidefinite. We start by recovering the family of matrices at hand,1− Im a
2 Re a

Re a 2 Im a

 ⪰ 0 (B.1)
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where a ≡
√

s−4
s fℓ(s). For a 2×2 matrix, the principal minors correspond to the diagonal

entries. Thus,

1− Im a

2
≥ 0 ∧ 2 Im a ≥ 0

⇔ Im a ≤ 2 ∧ Im a ≥ 0

(B.2)

In addition, if all the eigenvalues are non-negative, it means that the determinant must be

non-negative as well. Therefore,

2 Im a ≥ Im2 a+ Re2 a (B.3)

All of the conditions above are simply remnants of the unitarity condition, |Sℓ(s)|2 ≤ 1,

and we proceed with proving so. If Sℓ(s) = 1 + i× a, then

|Sℓ(s)|2 ≤ 1, s ≥ 4m2

⇔ S†
ℓSℓ ≤ 1

⇔ (1− i× a†(s))(1 + i× a(s)) ≤ 1

⇔ 1 + i
[
a(s)− a†(s)

]
+ |a(s)|2 ≤ 1

⇔ 2 Im a(s) ≥ |a(s)|2 = Im2 a+ Re2 a

(B.4)

which is precisely Equation B.3. To prove the remaining conditions, we shift our attention

to the inequality |Sℓ(s)| ≤ 1. The previous inequality implies that −1 ≤ ReSℓ(s) ≤ 1 at

most. Developing this idea further,

ReSℓ(s) ≤ 1

⇔ 1− Im a ≤ 1

⇔ Im a ≥ 0

(B.5)

and

−1 ≤ ReSℓ(s)

⇔ −1 ≤ 1− Im a

⇔ Im a ≤ 2

(B.6)

which proves B.2. Hence, we conclude that the given matrix constraint is, in fact, positive

semidefinite as required.
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B.2 Partial-wave inequality generalization

In Appendix B.1, we showed that

|a(s)|2

2
≤ Im a(s) ≤ 2 (B.7)

However, the study of particle production in 4D requires us to slightly modify this equa-

tion so as to impose an inelastic profile directly of the S-matrix partial-waves.

Let us consider that unitarity reads

|Sℓ(s)|2 ≤ β(s), s ≥ 4m2 (B.8)

Developing this expression,

|Sℓ(s)|2 ≤ β(s), s ≥ 4m2

⇔ S†
ℓSℓ ≤ β(s)

⇔ (1− i× a†(s))(1 + i× a†(s)) ≤ β(s)

⇔ 1 + i
[
a(s)− a†(s)

]
+ |a(s)|2 ≤ β(s)

⇔ 2 Im a(s) ≥ |a(s)|2 + 1− β(s)

(B.9)

To get the upper bound, we note that |Sℓ(s)|2 ≤ β(s) implies that −
√
β(s) ≤ ReSℓ(s) ≤√

β(s). Thus,

−
√
β(s) ≤ ReSℓ(s)

⇔ −
√
β(s) ≤ 1− Im a

⇔ Im a ≤ 1 +
√
β(s)

(B.10)

In conclusion,
1− β(s)

2
+
|a(s)|2

2
≤ Im a(s) ≤ 1 +

√
β(s) (B.11)

If one were to impose these inequalities in the SDPB program, it would be needed to

cast Equation B.11 in a positive semidefinite matrix condition. Unfortunately, doing so

proves a bit arduous, and as such we resort to Mathematica. Since it must happen that

Im a(s) ≤ 1+
√
β(s), which is the same as 1− Im a

1+
√

β(s)
≥ 0: this form is already known to

us, and corresponds to the condition that the first entry on a positive semidefinite matrix
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must be non-negative. Therefore, we propose the general matrix 1− Im a

1+
√

β(s)
α1 + α2 Re a+ α3 Im a

α4 + α5 Re a+ α6 Im a α7 + α8 Re a+ α9 Im a

 ⪰ 0 (B.12)

and impose that the determinant is precisely B.9. Doing so gives the matrix condition1− Im a

1+
√

β(s)
Re a

Re a β(s)− 1 +
(
1 +

√
β(s)

)
Im a

 (B.13)

In the limit β(s)→ 1, the matrix B.1 is recovered1− Im a
2 Re a

Re a 2 Im a

 ⪰ 0 (B.14)

which leads us to believe that the family of continuous matrix conditions B.13 is the ap-

propriate one.



Appendix C

Bounds on the threshold pole

coefficient

In section 3.4, the threshold pole was introduced so as to maximize the value of the ampli-

tude at s = t = u = 4/3. However, changing the Ansatz 3.10 has some consequences, es-

pecially when imposing unitarity for each partial-wave. Therefore, such conditions serve

as confirmation whether our optimization results are valid.

We start by recalling Equations 3.10 and 3.12, respectively

T (s, t, u) = α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
+
∑

a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u (C.1)

and

Sℓ(s) = 1 +
i

32π

√
s− 4

s

∫ 1

−1
dxPℓ(x)T (s, t(x)) (C.2)

where, in the first one, the relevant modifications for the problem at hand were already

made. Now, unitarity in the ℓ = 0 partial-wave amplitude entails

|S0(s)| ≤ 1 =⇒ ReS0(s) ≤ 1 (C.3)

For this specific partial-wave, the relevant integral in C.2 is
∫ 1
−1 dxT (s, t(x)), which we

split into the pole term and the triple ρ term. Concerning the former,

∫ 1

−1
dx

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
= −1− 2√

6− 3s
2

+

−1− 4
√

2
3

2 +
√
s

× 2

= −3−
8
√

2
3

2 +
√
s
− 2√

6− 3s
2

(C.4)
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We expand the previous result (multiplied by
√

s−4
s ) in a Taylor series near the threshold

point, s = 4m2. This results in the term

−i
√

2

3
+O(

√
s− 4) (C.5)

For the latter term, doing the same we find that,∫ 1

−1
dx

∑
a,b,c=0

αabc ρ
a
sρ

b
tρ

c
u = 2α0,0,0 + (...)(Real numbers) (C.6)

which near the threshold behaves like

const. +O(
√
s− 4) (C.7)

Thus

S0(s) = 1 +
i

32π

√
s− 4

s

∫ 1

−1
dxPℓ(x)T (s, t(x))

= 1 +
i

32π

iα(−√2

3
+O(s− 4)

)
+ const.


=⇒ ReS0(s) = 1 +

α

32π

√
2

3

=⇒ −1 ≤ 1 +
α

16
√
6π
≤ 1

⇔ −32
√
6π ≤ α ≤ 0

(C.8)

Therefore, when looking for solutions to the optimization problem of the maximiza-

tion of the quartic coupling subject to the usual constraints, α must comply with the con-

ditions −32
√
6π ≤ α ≤ 0.



Appendix D

Inelastic dual

In section 4.2, we introduced the dual objective without clarifying where the expression

came from. Hopefully, in this appendix, we will make it clearer.

Similarly to subsection 2.2.1, we introduce the Lagrangian density function

L(T, ω, λ) = g21 +

∫ ∞

4m2

ds ω(s)A(s) + λ(s)U(s) (D.1)

whereA(s) was related to the dispersive representation of the amplitude function and

U(s) contained the unitarity condition. Since we wish to impose particle production, only

the latter function must be modified accordingly, whereas A(s) still has the form

A(s) ≡ T (s)−

(
T∞ −

g21
s−m2

1

+

∫ ∞

4m2

dz

π

ImT (z)

s− z + i0+
+ (s↔ 4m2 − s)

)
= 0, s ≥ 4m2

(D.2)

To determine the most suitable form for U(s), we start by recalling that

S(s) ≡ 1 + i
T (s)

2
√
s
(
s− 4m2

) (D.3)

According to the new unitarity condition,

|S(s)|2 ≤ β(s), s ≥ 4m2

⇔ S∗(s)S(s) ≤ β(s)

⇔

(
1 + i

T (s)

2
√
s(s− 4)

)(
1− i T ∗(s)

2
√
s(s− 4)

)
≤ β(s)

⇔ 1 + i
1

2
√
s(s− 4)

(
T (s)− T ∗(s)

)
+

1

4s(s− 4)
|T (s)|2 ≤ β(s)

⇔ 2
√
s(s− 4)

(
1− β(s)

)
+ 2 ImT (s)− 1

2
√
s(s− 4)

|T (s)|2 ≥ 0

(D.4)
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To check if Equation D.4 is consistent with Equation 2.38, we set β(s) = 1. Hence, the

previous equation yields

2 ImT (s)− |T (s)|2

2
√
s(s− 4)

≥ 0 (D.5)

which checks out. Thus, we define

U(s) ≡ 2
√
s(s− 4)

(
1− β(s)

)
+ 2 ImT (s)− 1

2
√
s(s− 4)

|T (s)|2 ≥ 0 (D.6)

With this new expression in mind, we carry out the same process as in subsection 2.2.1:

one defines d(ω, λ) = sup
{T,g21}

L(T, ω, λ), which we then try to minimize subject to λ(s) ≥

0. When varying T (s) (in order to maximize the Lagrangian density), Tc(s) remains the

same, since the difference is in terms that are neither ImT (s) nor ReT (s). The only real

difference is in the expression for d(W,λ), which now reads

d(W,λ) =

∫ ∞

4m2

ds

[
|W (s)|2

4λ(s)
+ ReW (s) + β(s)λ(s)

]
1

ρ211
(D.7)

Minimizing over λ(s), we now get the expression

D(W,λ) =

∫ ∞

4m2

ds
[
|W (s)|β(s) + ReW (s)

] 1

ρ211
(D.8)

where λ(s) = |W (s)|
2
√

β(s)
is the chosen solution. Equation D.8 has all the right limits when

β(s) → 1 and corresponds to the expression used for the optimization process in section

4.2.
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