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Resumo

A exploração dos ambientes marítimos, bem como os seus recursos, tem um grande valor
económico cuja existência não segue indetetável nos dias de hoje. Por esse motivo, há atualmente
uma grande aposta na expansão da indústria marítima, em particular em tarefas de operação e
manutenção (O&M) para apoiar a produção de energia renovável em alto mar.

Soluções autónomas, como Veículos Autónomos Subaquáticos (AUVs) e Veículos Autónomos
de Superfície (ASVs), tornam-se tecnologias importantes para realizar atividades de O&M. Por
contribuírem para a análise do ambiente em redor, os sistemas de perceção visual definem os
níveis de autonomia das embarcações, apesar de enfrentarem desafios complexos provenientes dos
fenómenos físicos que ocorrem entre as interações luz e água, que degradam significativamente
os dados adquiridos. No entanto, quando a intervenção é necessária, perceção tridimensional
completa e precisa do ambiente revela-se insuficiente. Manipuladores robóticos, agora muitas
vezes incluídos em veículos autónomos, tornam-se uma extensão da embarcação e possibilitam
a interação com o ambiente, reduzindo drasticamente a necessidade de intervenção humana bem
como consequências de erros inerentes a humanos.

A combinação de um sistema de perceção visual tridimensional com um manipulador robótico
é o principal tema de interesse desta dissertação, em particular numa abordagem Eye-in-Hand.
Esta metodologia é alcançada com a fixação do sistema de perceção no próprio manipulador, de
modo a explorar os seus graus de liberdade adicionais para ajustar, com maior precisão, a distância
entre o sistema de perceção e o alvo a capturar.

Esta dissertação utiliza a configuração Eye-in-Hand para realizar reconstruções 3D de objetos
submersos, através de um sistema de perceção híbrido, formado pelo módulo de perceção ativo,
composto por dois lasers, e pelo módulo de perceção passivo, composto por duas câmaras numa
configuração estéreo. A abordagem desenvolvida consiste num algoritmo de deteção de objetos
para detetar a posição do objeto no meio envolvente, num algoritmo de planeamento e execução
de trajetória do manipulador que calcula pontos de vista interessantes do objeto e, por fim, um
algoritmo de aquisição e processamento de dados que captura pontos tridimensionais nos vários
pontos de vista, através de uma versão simulada do sistema híbrido de perceção, que resulta em
duas nuvens de pontos distintas, em cada reconstrução, com propriedades diferentes.

A análise quantitativa do sistema foi descrita com métricas como distância de Chamfer e per-
centagem de conclusão da point cloud. Os resultados das experiências demonstram que a abor-
dagem que seleciona vários pontos de vista ao redor do alvo atinge uma maior cobertura da super-
fície do objeto. Com esta abordagem, foram obtidas point clouds com distância de Chamfer média
de 0.0107 m e 37.5% de percentagem de conclusão, utilizando o módulo de percepção ativo sem
ruído, bem como distância de Chamfer de 0.0293 m e 59.5% de conclusão de point cloud, usando
o módulo de percepção passivo sem ruído. Embora o módulo passivo atinge maiores percenta-
gens de conclusão de point cloud, o módulo ativo apresenta um erro significativamente menor na
aquisição de informação tridimensional.
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Abstract

The exploitation of the maritime environments, as well as its resources, have a high economic
value whose existence is no longer underestimated in today’s world. For that reason, a big expan-
sion in the field of maritime industry, in particular for Operations and Maintenance (O&M) tasks
to support green energy production in an offshore setting, is ongoing.

Autonomous solutions, such as Autonomous Underwater Vehicles (AUVs) and Autonomous
Surface Vehicles (ASVs), are now becoming important technologies to perform such O&M activ-
ities. Visual perception systems greatly affect these vessels’ autonomy levels, due to their contri-
butions to situational awareness, although facing complex challenges regarding the physical phe-
nomena that occur with light and water interactions which degrade acquired data. However, when
intervention is necessary, a complete and accurate tridimensional perception of the surroundings
is not enough. Robotic manipulators, now often included in autonomous vehicles, can operate as
an extension of the vessel and bring the ability to interact with the environment, thus drastically
reducing human intervention in dangerous settings as well as avoiding consequences of inherent
human errors.

The combination of a tridimensional visual perception system with a robotic manipulator is the
main topic of interest of this research, in particular an Eye-in-Hand approach. This methodology
is achieved by attaching the perception system to the manipulator, in order to explore its additional
degrees-of-freedom for better control of the distance between the perception system and the target.

This dissertation uses the Eye-in-Hand configuration to perform 3D reconstructions of sub-
merged objects, using an hybrid perception system, formed by the active perception module, com-
posed of two lasers, and the passive perception module, composed of two cameras in a stereo
configuration. The developed approach consists of an object detection algorithm to detect the ob-
ject’s position in the surrounding space, a path planning and execution algorithm that controls the
movement of the manipulator in order to achieve interesting viewpoints of the object and, finally,
a data acquisition and processing node that captures tridimensional points from one or multiple
viewpoints, using a simulated version of the hybrid perception system, which results in two distinct
point clouds.

A quantitative analysis of the system’s performance was accomplished through metrics such
as Chamfer distance and point cloud completion. The results of the experiments demonstrate that,
using an approach that selects several viewpoints around the target, it is possible to obtain a greater
object surface coverage. With this approach, the resulting evaluation on point clouds got an aver-
age Chamfer distance of 0.0107 m and point cloud completion of 37.5%, using the noiseless active
perception module, and an average Chamfer distance of 0.0293 m and point cloud completion of
59.5%, using the noiseless passive perception module. Although the passive module allows for
greater point cloud completion, the active module has a significant lower error in acquisition of
three-dimensional information.
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Chapter 1

Introduction

1.1 Context and Motivation

The maritime environment and its resources have recently been garnering quite a lot of at-

tention from several industries. All economic activities related to oceans, seas and coasts can be

grouped into what is called "Blue Economy", though this term varies among organizations. Activi-

ties such as shipping, aquaculture, renewable energy production, ports, shipyards, production, and

research contribute to this massive potential of economic power 1. Particularly, offshore renew-

able energy production is becoming increasingly more important, due to high depletion of natural

reserves of fossil fuels as energy sources, being wind power the most mature and low cost type of

technology. When it comes to onshore and offshore wind power, the latter, being produced in the

ocean or on the offshore islands, is the preferred solution for many countries with coastlines, since

its main advantage is the abundant wind energy resources, though more expensive to build [1].

Innovative robotic solutions for maritime operations go back as early as 1997 with the fully

teleoperated manipulation system, developed under project UNION (UNderwater Intelligent Op-

eration and Navigation) and presented by V. Rigaud et al. [2]. This system, composed by the VOR-

TEX Remotely Operated Vehicle (ROV) with the 7 degrees-of-freedom (DOF) Pa10 robotic arm,

was mainly used to perform tasks that involve underwater manipulation and navigation. With the

increased interest in maritime resources and potential economic value, more industries are invest-

ing in research that promotes more sustainable solutions and increased autonomy levels, specially

for tasks of operations and maintenance (O&M) in offshore infrastructures, such as the DIIUS

project [3] (2021), that aims to improve perceptual capabilities of robotic systems by propos-

ing a distributed perception solution for inspection of aquatic infrastructures, and the ATLANTIS

project [4] (2021), that promotes automatization of offshore operations by providing a pioneer

pilot infrastructure that allows for testing, validation and demonstration of new robotic solutions.

Along the years, technological advances in obstacle avoidance algorithms [5, 6] and docking

approaches [7, 8] improved the performance of Autonomous Surface Vehicles (ASVs) and Au-

tonomous Underwater Vehicles (AUVs) in many sea related missions. These vessels represent

1https://unric.org/en/blue-economy-oceans-as-the-next-great-economic-frontier/
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2 Introduction

a great solution to substitute human labour in tasks that could potentially be dangerous, such as

deep ocean exploration and environmental monitoring, O&M of offshore platforms or ship hull

inspection. In fact, according to X. Chen et al. (2021) [9], AUVs have come quite close to reach a

fully autonomous level in order to completely execute missions without any human intervention,

marking an important positive progress mostly due to the fact that, from 1996 to 2000, most of the

failures of AUVs were direct causes of human errors. The authors reviewed risk analysis research

regarding operations of AUVs and created a complete table identifying human factors that cause

AUV failures, such as the operator’s ability to timely identify errors and critical situations during

missions, human fatigue, communication effectiveness and the level of the operator’s belief in the

autonomous capabilities of the AUV.

According to an article written in the website of the Association for Unmanned Vehicle Sys-

tems International 2 (AUVSI), a "successfully integrated AUV must be adaptable to varying en-

vironmental and internal state changes, with top consideration being accuracy, bias and com-

plexity". To accomplish all the essential aspects that an AUV must follow, a perception system is

inevitable to contribute for situational awareness, one of the human factors that lead to the AUV

failure, and adaptation of the vehicle for different missions and behaviour parameters. The usage

of perception systems in aerial or terrestrial environments has been largely exploited over the last

decades, but not much research has been done with the integration of these systems in an under-

water context. One of the topics of this dissertation refers to the challenges that these systems face

when operating in subsea conditions, mainly absorption and scattering while light propagates in

the water medium, and how to improve the performance of the optical system for more accurate

and precise results. Additionally, to further emulate human’s interaction capability with the sur-

roundings, a manipulator is also often needed to be integrated, particularly when intervention tasks

on underwater structures are required, which is why this dissertation’s proposed approach could

be an interesting solution for applications that require both manipulators and perception systems.

This dissertation proposes an Eye-in-Hand (EiH) configuration approach to perform tridimen-

sional (3D) reconstructions of objects in an underwater context. This type of configuration, ob-

tained by rigidly mounting the perception system on the manipulator, allows to explore the extra

degrees of freedom of the robotic arm, which should result in more complete and faithful re-

constructions of target objects. This methodology has applications on operations such as ocean

exploration, underwater inspection and offshore O&M. The perception system used is MARESye

[10], developed by A. Pinto et al, which is composed by two modules, the photometric stereo

(PS) and multiple laser stripe range (LSR), both equipped with technology that reduces the impact

of underwater imaging challenges. The perception system was attached to the Reach Bravo 7, a

manipulator specially designed for inspection and intervention applications.

The proposed algorithm includes an initial detection of the target’s position followed by a

path planning and execution algorithm that iterates and moves through several viewpoints, where

a scan sweep is performed. During the scan sweep, a 3D data acquisition algorithm is triggered,

which captures point clouds from both PS and LSR modules. These point clouds are compensated

2https://www.auvsi.org/industry-news/industry-news/assured-onboard-autonomy-architecture-auvs
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with the manipulators movement between triggers and combined with point clouds from previous

iterations. This algorithm finishes with point cloud box filtering and an outlier removal process. In

order to evaluate the performance of the reconstruction, an Iterative Closest Point (ICP) algorithm

is used to align the obtained point clouds with a template. For a quantitative analysis, two metrics

are used. The 3D Chamfer distance (CD) defines how different a source and target point cloud are

and is computed using the euclidean distances between matching points. The last metric is point

cloud completion, which is the ratio between total number of matching points in the template’s

point cloud and obtained point clouds, and total number of points in the template’s point cloud.

1.2 Objectives

The dissertation’s main goal is to study the EiH configurations, where a perception system

is attached to a manipulator, allowing to take advantage of the additional degrees-of-freedom to

acquire multimodal information, such as images or point clouds, with a high signal-to-noise ratio.

Therefore, the objectives of the dissertation are as follows:

• Study different state of the art technologies of perception systems and EiH configurations;

• Develop an object detection algorithm that detects the target’s position;

• Develop algorithms to plan a suitable trajectory that ensures different viewpoints and to

perform acquisition of both dense and sparse tridimensional information, using the PS and

LSR modules, respectively;

• Obtain dense and accurate reconstructions of the targets by combining the tridimensional

information acquired in different viewpoints;

• Evaluate the obtained reconstructions by comparing it to a template mesh, using metrics

such as the 3D Chamfer Distance (CD) and point cloud completion.

1.3 Structure

This document is divided in five chapters in which each is divided in a few sections. Chap-

ter 1 is the introduction and it provides the context and motivation to develop this dissertation.

Furthermore, it also states the objectives that should be accomplished with this work. Chapter 2

corresponds to the state of the art. It is divided in four sections that cover topics such as underwa-

ter imaging technologies and challenges in the field of study of this dissertation, using scientific

work as references throughout the text. Chapter 3 presents relevant topics of the developed 3D re-

construction system, such as the setup used for experimentation purposes, alongside the proposed

algorithms for object detection, path planning and execution, and 3D data acquisition. In chap-

ter 4, several evaluation metrics used to perform a quantitative analysis on resulting point clouds

are presented. Finally, in chapter 5, there is a brief overview of the developed work and what was

accomplished, with additional suggestions on ways to improve for future work that could be done.
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Chapter 2

Literature review

The aim of this chapter is to provide the reader with an overview of what underwater perception

encompasses, in addition to applications that benefit from this capability and how the Eye-in-Hand

(EiH) configuration can contribute to an improved efficiency of such approaches.

In the maritime industry, most of the emerging autonomous and remote technologies largely

exploit robotic perception. According to F. Bonin-Font et al. (2015) [11], vision sensors are

regarded as one of the most prominent and powerful types of devices in underwater robotics,

in terms of temporal and spatial resolution capabilities. However, it is important to take into

account the numerous challenges that degrade information retrieved from these visual sensors,

e.g. inherent attributes such as range and resolution or poor illumination conditions [12]. The

underwater environments present even more challenges to these types of sensors that also need to

be tackled. Throughout section 2.1, the phenomena that occur during the interaction between light

and water, along with their impact on the 3D information gathered from the imaging system, are

discussed. Underwater imaging systems are introduced in section 2.2, along with methods often

used with those systems to extract 3D information. Section 2.3 refers to previous research work

that utilizes the EiH approach. Finally, section 2.4 summarizes most of the knowledge resulting

from the literature review, thus presenting as a critical analysis of the whole chapter.

2.1 The Challenges in Underwater Perception

Perception has been an important tool for many undersea applications, in particular for ex-

ploration and intervention tasks, such as maintenance and construction of infrastructures, wreck

retrievals, rescue missions or search and identification of submerged objects [11]. Nevertheless,

optic sensors, despite being powerful and useful, may have performance issues that are aggravated

in an underwater context and that need to be handled. Besides temporal and resolution limitation,

poor visibility conditions and lack of surface textures, two of the most prominent challenges occur

while light travels through water. These phenomena correspond to the absorption and scattering

of light.

5
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Absorption is characterized as the attenuation of light as it propagates through the medium,

since the electromagnetic radiation progressively loses power [13]. The level of absorption is de-

fined by the absorption coefficient, which is heavily related to the refractive index of the medium

and the wavelength of the spectrum of light, as it is portrayed in figure 2.1. The shift in colour

towards blue, in underwater scenes, is a consequence of this phenomenon, since longer wave-

lengths (e.g., red light) are strongly attenuated, in comparison to shorter wavelengths (e.g., blue

light) [13, 14, 15]. This means that warmer coloured lights and infrared (IR) electromagnetic

waves travel shorter distances, which explains why IR technologies are obsolete in an underwater

operational setting.

Figure 2.1: Absorption coefficients of the spectrum of light in the water medium. Extracted from
[14].

There are many solutions used to correct light absorption’s negative effects on resulting im-

ages. These include image processing methods, such as image restoration or image enhancement

techniques, to fix the colour attenuation caused by absorption [13, 14, 16], or the use of artificial

illuminants. The work of I. Vasilescu et al. (2010) [15] proposes an artificial illuminant that is

used for compensation based on the computed light loss given the distance to the imaged object,

and thus not needing any post-processing work on the captured images.

Scattering corresponds to the deviation from the projected straight-line path of light propa-

gation which also hinders underwater visibility. This deflection is wavelength independent and

occurs due to the presence of suspended particles and organisms randomly distributed in the wa-

ter, commonly named as "marine snow". This phenomenon can be further classified into forward-

scattering or backscattering. Forward-scattering occurs when light is deviated from its trajectory

between the scenario and the optical sensor and generally leads to a blurry effect on the image

features, whereas backscattering refers to the reflection of projected light on suspended particles,
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that occurs before it actually reaches the scenario, limiting the contrast of the resulting image [13].

Post-processing techniques are also common and easy solutions to mitigate scattering effects.

The work of A. Khan et al. (2016) [14] proposes a wavelet based fusion of images, where the

colour fading caused by absorption of light can be corrected through histogram stretching, in the

hue-saturation-value (HSV) colour space, and the limitation of contrast caused by scattering can be

enhanced using the contrast limited adaptive histogram equalization (CLAHE) technique. Never-

theless, several works propose a more computationally demanding solution to tackle the scattering

problem that consists of using a range-gated synchronized receiver approach [17, 18, 10]. Visu-

ally represented in figure 2.2, the range-gated approach’s principle begins with the accumulation

of the reflected light source pulsed from a LED or laser system, in the optical sensor, over a spec-

ified time. The camera shutter only opens after a short period of time, when triggering signals

are received [10]. This way, it is possible to differentiate between the backscattered noise and the

light reflected by the target. It is also possible to reduce the amount of light scattered back from

suspended particles by increasing the baseline, which is the distance that separates the light source

and the sensor.

Figure 2.2: Energy values received by the sensor (camera) throughout time portraying the scatter-
ing problem and range-gate solution. Extracted from [17].

The absorption and scatter phenomena can be used as input for the Lambert-Beer empirical

law, for further analysis [13, 10]. Assuming an isotropic and homogenous medium, the irradiance

E at position r can be modelled as:

E(r) = E(0)e−are−br (2.1)

where a and b are inherent properties of the medium and correspond to the absorption and scatter-

ing coefficients, respectively. Considering the image formation model of Jaffe-McGlamery [13],

the total irradiance received by the optical sensor (ET ) can be divided into three components:

the direct component (Ed) that relates to the light being directly reflected by the object, and the

forward-scattered and backscattered components (E f and Eb respectively). Therefore, the total
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irradiance is calculated as follows:

ET = Ed +E f +Eb. (2.2)

The aforementioned solutions for scattering aim to increase the robustness of the image acqui-

sition process by minimizing the influence of E f and Eb.

As it is possible to conclude, the conditions of the surrounding underwater environment have

a direct impact on the issues related to light propagation in water. In order to study that influence,

a proper evaluation of the water’s state is important. There are two concepts which are commonly

used to characterize the underwater surroundings when testing an underwater sensor [18]: turbidity

and attenuation length. By measuring the degree of loss of transparency of water due to the

presence of suspended particles, is possible to obtain the water’s turbidity value. It’s measured

in Nephelometric Turbidity Units (NTU) using a device called nephelometer or turbidimeter. In

lakes, the turbidity can also be measured using a Secchi disk 1. The final metric, attenuation
length of light, is defined as the distance where the intensity of the light beam has dropped to 1

e ,

or about 63% of the light particles have been stopped.

Lastly, another aspect that influences the quality of the data acquired by the perception system

is the type of watertight housing structure that is used to protect the electronics. The enclosure

is responsible for two refractions of the incident light, that occur between the two interfaces (air-

glass-water), following Snell’s law [18, 19, 20]. There are two options for housing types often

used, a flat-shaped or dome-shaped port. As it is shown in the work done by T. Treibitz (2011)

et al. [21], when using a flat surface enclosure, the rays coming from different objects, refracted

by the medium, appear as if they are imagined from different points of view since there is no

alignment between the object point in water, the centre of projection of the camera and the im-

age point, completely negating the assumption of the single viewpoint model [19, 21]. Figure 2.3

(left) demonstrates how the light rays are refracted when a flat surface enclosure is used to house

the optical system. In order to minimize the non-collinearity effect caused by the medium’s re-

fractions, a dome-shaped enclosure should be used with an exact alignment between the camera’s

projection centre and the enclosure’s centre point. With this configuration, there are, theoretically,

no significant refractions, concluding that the interface normal and the incoming rays are closely

aligned, and thus viable to assume a single viewpoint model [18, 20, 21], as it is demonstrated in

figure 2.3 (right).

2.2 Underwater Perception Systems and 3D Reconstruction Tech-
niques

In recent years, an increasing interest in autonomous agents have led to an advancement in

perception systems. These include optical systems, which are a common solution when it is nec-

1Secchi disk is a black and white circular disk that is lowered inside the water to measure the transparency (Secchi
depth), which is related to water turbidity level.
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Figure 2.3: Difference of light rays’ refraction on a flat enclosure (left) and on a dome-shaped
enclosure (right). Extracted from [20].

essary to gather 3D information for reconstruction purposes. Depending on the type of optical

sensor that is integrated, these systems can be separated into two categories: passive and active

(further explained in sections 2.2.1 and 2.2.2 respectively). The combination of both types com-

pose an hybrid approach, presented in section 2.2.3.

2.2.1 Passive Perception Systems

Passive perception systems utilize optical sensors that directly measure natural energy (radia-

tion) that is emitted or reflected by the object or scene being observed. When the imaging is done at

deeper waters, light sources (i.e., spotlights and LEDs) could be necessary for scene illumination.

A. Houge et al. (2007) [22] developed AQUASENSOR, a stereo vision-inertial sensing de-

vice that combines the 3D information obtained using stereo vision with a 3 DOF inertial sensor.

Represented in figure 2.4, the device was designed to be sufficiently portable to be held by a sin-

gle diver and to later be integrated within a visually guided autonomous robot. The authors also

report that AQUASENSOR was used for wreck and coral reef reconstruction, with offline 3D data

processing, and tested operation depths of up to 30 m while sealed within the custom underwater

housing. Later on, in 2014, K. Williams et al. [23], presented the TrigCam stereo system, for

the purpose of capturing biological activity in the underwater environment. The authors designed

the optic system using off-the-shelf cameras and computer components for a low cost solution.

Illumination is chosen in order to be insensitive and unobtrusive to the fish and, thus, the area

is illuminated with a far red light emitting diode (LED) while no life is detected. The particu-

larity of the authors’ approach is a triggering method. The presence of fish switches the far red

light to white illumination, in order to acquire a high-resolution full colour stereo image of the

environment.



10 Literature review

Figure 2.4: The compact and portable AQUASENSOR device with its housing to its right. Ex-
tracted from [22].

Under the MARIS project [24], F. Oleari et al. (2015) [25] developed a stereo rig composed

of two industrial AVT Mako G125C GigE cameras that implements an underwater stereo vision

system. This work system is designed to support object grasping and manipulation from a floating

base, by implementing an underwater 3D object detection solution. A Standard Absolute Differ-

ences (SAD) correlation method was used to evaluate the vision system’s performance to recon-

struct a 1292x964 resolution disparity map, achieving a throughput of 12.5 frames per second. In

research work authored by F. Bonin-Fort et al. (2015) [11], the Fugu-f advanced vision system,

was designed as a flexible visual perception solution for an AUV, formed by two external Bumble-

bee stereo rigs, capable of performing at 250m of depth. The 3D reconstruction performance test

of this system resulted in dense point clouds of the robot’s environment of up to 800.000 points

from one shot. After the merge of successive point clouds, it was stated that it resulted in high

processing times and usage of memory resources, which were resolved with reducing the rate of

the processed stereo pairs to 1 per second and down-sampling the data to only one point per voxel.

The main advantage of this system was its modularity and adaptability, that enabled this system to

integrate two different AUVs: the Girona 500 [26] and Nessie VI [27].

In more recent work, by M. Rossi et al. (2018) [28], a stereo RGB camera rig, composed by

two standard industrial machine vision cameras enclosed in underwater housings, was mounted on

the front of ROVs, as represented in figure 2.5. The cameras produced RGB images with a resolu-

tion of 960x600 pixels at 22 frames per second with the 3D models being built and updated online,

in clear and murky water conditions. The authors adapted the KinectFusion algorithm, which uses

the optical sensor Kinect to acquire 3D information, to the stereo camera setup, presenting and

experimenting the underwater StereoFusion, an algorithm for real time 3D dense reconstruction

and camera tracking.

One of the strong points of passive sensors is the ability to obtain highly dense point clouds

that can be extracted using perception systems that integrate them [29, 30]. Besides that, some
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Figure 2.5: ROV with a stereo camera setup composed by two enclosed cameras and a main
piloting camera. Extracted and adapted from [28].

other benefits include lower required energy consumption to operate such devices, lower cost and

theoretically higher lateral resolution (capability of discerning objects that are lateral to each other)

[18]. The main drawbacks consist of the increased computational power required and dependency

of the target’s texture in order to extract 3D features from the image [29, 30].

2.2.1.1 3D Reconstruction with Passive Perception Systems

3D reconstruction techniques using passive sensors rely on photogrammetry, the science of

making measurements from photographs, since the 3D information is retrieved from overlapping

images captured at different viewpoints [10, 29, 30]. Using these extracted images, point clouds

generation techniques include:

• Stereo Matching Techniques;

• Structure-from-Motion (SfM).

Stereo Matching Techniques

These techniques refer to image acquiring systems that usually include two or more synchro-

nized cameras offset by a fixed distance (baseline), resulting in a large field of view (FoV) overlap.

The stereo 3D reconstruction is based on the triangulation method of corresponding points on the

two views, in the case of two cameras, portrayed in figure 2.6. This requires to find, in both im-

ages, common 2D points and match them (correspondence problem), determining the plane that

contains the 3D point on the object [29]. The work done by G. Huo et al. (2018) [31] consists on

applying a semi-global stereo matching technique on a underwater 3D reconstruction system based

on binocular vision. The authors propose an improved algorithm based on Semi-Global Matching

(SGM), that is described in their article, that is able to provide a time-efficient way of accurately
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calculating disparity maps. The disparity values are later used in the triangulation process for

3D reconstruction of objects. The authors report on an improved accuracy on 3D reconstruction

by using their adapted algorithm, while working within 2 m distance from the target. Resulting

disparity maps and 3D reconstruction are portrayed in figure 2.7.

Figure 2.6: Stereo correspondence based on triangulation for 3D point computation. Extracted
from [29].

Figure 2.7: Disparity map result from the adapted SGM (left); 3D reconstruction result (right).
Extracted and adapted from [31].

With recent developments on deep learning approaches, some researches integrate new devel-

oped algorithms in stereo vision-based systems, for underwater 3D reconstruction. In 2019, K.

Skinner et al. [32] proposed an unsupervised learning method, named UWStereoNet, for under-

water applications. An unsupervised deep neural network (DNN) takes input raw colour underwa-

ter stereo imagery and outputs dense, gray scaled disparity maps and colour corrected images of

underwater environments that enable later triangulation.

Structure-from-Motion

3D reconstruction can also be accomplished using a Structure-from-Motion (SfM) approach,

where several images of an object taken from a monocular camera, in different points of view,

provide information for detecting and matching image features, by overlapping them. The 3D

coordinates of each individual feature can later be computed using triangulation.
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Taking into consideration image degradation and refraction in the underwater setting, X. Qiao

et al. [33] (2019) proposed a systematic SfM pipeline that ends with the 3D reconstruction of the

scene by triangulation methods.

Although the SfM technique is quite simple to implement, it is greatly affected by inaccurate

navigation data. Thus, some published work attempt to solve this problem by estimating the scale

required for the 3D models to accurately represent the targeted scene or object. In 2020, K. Istenič

et al. [34] improved 3D modelling based on structure-from-motion by using laser scalers for

automatic scale estimation. The authors proposed two novel approaches which are suitable for

different laser scaler configurations: a flexible method that enables the use of arbitrary laser setups

and a partially constrained method that reduces the need for calibration. In the real scenario, the

fully flexible and unconstrained approach was able to produce computed values of the model with

a standard deviation of 0.3%. Finally, the proposed approaches were compared with other methods

usable for the tested dataset and it was reported that the consistency of scales obtained using these

approaches is much higher (0.6% compared to 4%).

2.2.2 Active Perception Systems

Optic systems that utilize coherent light (lasers) as a tool to get information from the environ-

ment correspond to active perception systems. These systems integrate optical sensors that mainly

use structured-light, including laser beams, laser beam with a Diffractive Optical Element (DOE)

and projectors which project a pattern or Light Stripe Ranging (LSR) which, by intersecting a pro-

jected plane onto the scene, create an illuminated line [10, 18, 29, 30]. Other technologies that can

also operate as active perception systems are time-of-flight (ToF) based sensors, such as LiDAR,

RADAR and SONAR.

Active techniques have been vastly explored in underwater applications, more particularly

structured-light based optical sensors. An older work done by A. Yamashita et al. (2004) [35]

follows the principle of projecting a laser line that is captured by a charge-coupled device (CCD)

camera. The 3D measurement technique, using triangulation, takes into consideration the refrac-

tion of the light to achieve better accuracy results of about 1 mm for objects located at about 400

mm. Optical systems that have a single line laser would often result in very sparse point-cloud ex-

traction. In order to minimize that effect, multiple lasers started being integrated in the perception

systems in order to acquire richer 3D information from the scene. However, the usage of more

lasers requires increased power consumption, which is a significant downside when applied to

AUVs or any other robotic platform. Recent work done by N. Hansen et al. (2015) [36] developed

a minimalistic two laser line sensors optical system, with one camera, for underwater inspection

by AUVs or any other robotic platforms. 3D data acquisition is based on triangulation of points

extracted from the image using the Hough Transformation. The optical system was evaluated on

both simulated and real OpenROV, with no water turbidity variations, and presented approximately

0.04 m of drift in the measurements. F. Lopes et al. (2015) [37] also took on a similar approach,

with an optical system that includes two line lasers (green and red coloured, with different beam

wavelength for experimentation purposes) and a SXGA Basler camera between them. The devices
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were coupled together in a watertight housing, represented in figure 2.8. The authors also imple-

mented two different structured light system (SLS) calibration techniques. In the experimentation

phase, the optical system was used to gather 3D data from a submerged scallop, which resulted in

2% error on the object’s size using the structured light system line projection (SLS-LP) calibration

method.

Figure 2.8: Optical system composed of two laser beam sensors, laterally placed to a SXGA Basler
camera, inside watertight enclosures. Extracted from [38].

Another approach often used is projecting patterns onto the scene. However, in order to

achieve a balance between power autonomy and point cloud density, this approach can also be

implemented using lasers with a DOE for less energy demanding operations. Both of these meth-

ods are particularly interesting since the projected patterns accentuate surface textures. In 2010,

Q. Zhang et al. [38] developed a 3D shape measurement technique that uses a CCD camera and

a digital projector that illuminates the target with a 2D sinusoidal fringe. Firstly, a phase track-

ing algorithm is used to identify homologous points in phase distributions of the deformed fringe

capture and in the fringe pattern being projected. Secondly, a ray tracing algorithm is responsible

for tracing the propagation path of each ray and to calculate the 3D coordinates of each point on

the target’s surface, so that the shape of the tested object can be later reconstructed. The authors

also state that the main advantages of this approach lay on the simplistic configuration, compared

to scanning devices, that is able to gather data from the whole measured surface simultaneously

and with great speed, with the cost of resulting in lower accuracy results. The authors F. Bruno

et al. [39] (2011) have designed and experimented on a structured light and stereo vision setup

for underwater 3D reconstruction. This system projects a binary pattern onto the target, used to

establish correspondences between projector and projections, and later recovers 3D information

by means of triangulation, using the configuration of camera positioning. Their reported accuracy

is of 0.2 mm at a working distance of 1200 mm. M. Massot-Campos et al. (2014) [40, 41] used

the single laser combined with DOE approach. The authors presented a one-shot sensor for un-
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derwater 3D reconstruction that is composed of a RGB CCD camera and a green laser of 532 nm

wavelength, with a DOE attached to it in order to project a pattern of parallel lines into the scene.

The camera is used to capture the projection of the laser lines on the target, which is then seg-

mented and later used for the process of solving the correspondence problem, where the projected

stripes are matched with the captured stripes. Finally, each 3D point is computed using triangula-

tion (result portrayed in figure 2.9). Their work also states that the DOE refracts the laser beam in

25 parallel lines to provide sufficient data from a single camera frame for 3D reconstruction. This

optical approach was tested in variant water turbidity levels and it was reported that with low to

medium turbidity, a high number of 3D points were successfully extracted to a non-dense point

cloud. However, with high turbidity, most laser lines were completely absorbed in the water and

only the central beam, which had the highest energy, is captured.

Figure 2.9: Input captured image of a pipe with projected parallel lines (left); top view (middle)
and lateral view (right) of resulted 3D reconstruction of the pipe. Extracted from [40].

In order to obtain more faithful 3D representation of reconstructed objects or scenarios, trans-

lation and rotation motions were required to enable lasers lines to swipe through an area and

ultimately increase point-cloud densities. S. Tetlow and J. Spours [42] (1999) report on a laser

stripe scanning system with an automatic threshold setup for the camera, increasing the robust-

ness against pixel saturation if the laser reflection is too intense. The author’s also present a flow

diagram for the whole reconstruction process, which includes the triangulation method used to

compute the distance to the target for each scanner position. The evaluation of the system resulted

in resolutions of up to 5 mm at a 3 m distance from the target. When the vehicles, coupled with

this device, lock onto the work site, it is reported that the reconstruction is done with 1 cm of accu-

racy in turbid water. A laser line scanner was developed by S. Jiang et al. (2017) [43] to perform

underwater 3D reconstruction of objects. The system is composed of a fixed colour camera with

a fish-eye lens and a green line laser that moved at a constant speed on an installed rail on top of

a water tank. Later, the authors compare their 3D reconstruction method to an experiment using

SfM and concluded that, although the latter achieved better edge reconstruction accuracy of the

object, their proposed technique was more detailed. Q. Xue et al. (2021) [44] recently developed

a high-precision rotating line laser 3D scanner optical system, composed of a low illumination

underwater camera and green line laser, in separate watertight enclosures, mounted on top of a

rotating structure, portrayed in figure 2.10. Able to do underwater 3D data acquisition in the range

of field of view of 50◦ vertical and 360◦, this system’s 3D reconstruction error results are reported
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to be less than 0.6 mm with a working distance of 140 mm to 2500 mm.

Figure 2.10: Model of an optical scanner system composed of a camera and line laser, mounted
on top of a rotating structure. Extracted and adapted from [44].

Although rotating and translating structures with the laser sensors attached are capable of cre-

ating a scan motion, some researches took on another approach, that is fit to be deployed on lower

power consumption platforms. In 2016, S. Chi et al. [45] developed a laser line auto-scanning sys-

tem that was designed to perform underwater close-range 3D reconstructions with high accuracy

and resolution. The auto-scan is performed with a laser-galvanometer motion module and is cap-

tured by a CCD industrial-grade low-illumination analog camera, with a resolution of 752x582.

The galvanometer can rotate a mirror in the range of ±20◦ with voltage in the range of ±10V

controlled from a D/A conversion card in the computer. The authors report good accuracy in 3D

reconstructing smaller objects, under ideal laboratory conditions, and acknowledge that the main

source of error is the calibration factor, additionally stating that, in real underwater conditions,

more errors would be introduced that weren’t considered in these trials. A. Palomer et al. (2018)

[46] follow a similar approach, developing a 3D laser scanner (figure 2.11) stored in a watertight

housing with two viewports: one for a unit formed by a laser line projector and a galvanometer

steering a mirror and another for the camera. The galvanometer position and camera are electron-

ically synchronized in a way that in every capture, one single line is projected. Additionally, the

authors also reported that this system can operate from 0.5 m to 5 m depending on turbidity levels

and surface light absorption, at a frame rate of 0.09 Hz at full resolution (equivalent to 0.008◦ of

galvanometer rotation between captures) up to 6 Hz at lower resolution and is able to measure

with errors smaller than 1 mm and 0.1◦.

Overall, this type of systems require complex optic setups, has higher acquisition times when

not using a scan motion, has lower performance under bright sunlight and usually has higher

energy consumption but is an efficient way of reducing the scattering component that appear in

the FoV of cameras or other image acquisition devices, since the beam of light is more focused,

and is not so dependent on the target’s texture.
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Figure 2.11: 3D laser scanner mounted on a tripod (left); resulting point cloud coloured by depth
(right). Extracted from [46].

2.2.2.1 3D Reconstruction with Active Perception Systems

When using active imaging, 3D information can be extracted using methodologies such as:

• Time-of-flight (ToF);

• Pattern Projection.

Time-of-flight

Although less used in underwater settings, since ToF sensors often use IR waves which are

prone to higher attenuation while propagating in the water (explained in section 2.1), these meth-

ods have been quite studied throughout the years. Time-of-flight techniques are based on control-

ling the travel time of a signal, and thus operate by transmitting a light pulse and detecting the

light reflected from the objects within the receiver’s FoV, as it is portrayed in figure 2.12.

Figure 2.12: ToF sensors principle of operation. Extracted from [47].

Range information, d, is computed by measuring the time difference between the transmitted

and received light signal, ∆t, considering the speed of light in the medium, cm, that is calculated

as the quotient between the speed of light in vacuum (c) and the refraction index of the medium

(ηm), according to the following formulas [18]:
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d =
1
2

∆tcm (2.3)

cm =
c

ηm
(2.4)

These methods achieve somewhat long distances, although changes in the water’s properties

must be accounted for. For short distances, small inaccuracies could present big changes in the

time measurements, which could lead to high resulting errors [19]. Ultimately, 3D information

could be interpreted as depth measurements from the sensors that use this methodology. SONAR,

RADAR and LiDAR are some of the sensors that utilize this principle of measurement.

Pattern Projection

These methods refer to optical devices that use structured-light as a means for extraction of 3D

information, such as laser lines, with and without DOE, and projectors. The extraction of highly

precise 3D points is executed by exploiting a known relative pose between camera and laser or

projection emitter, by means of triangulation, as represented in figure 2.13.

Figure 2.13: Triangulation principle on pattern projection methods. Extracted from [48].

2.2.3 Hybrid Perception Systems

An innovative research done by A. Pinto and A. Matos (2020) [10] presents an advanced

underwater imaging system for underwater robotic application with a hybrid approach for 3D data

acquisition, named MARESye. This proposed methodology differentiates itself from previous

mentioned work and other conventional visual sensors by taking into account the photometric

limitations that affect optic systems operating in underwater environments. The imaging system,

represented in figure 2.14 is composed of three modules: a passive module with a photometric

stereo (PS) configuration (two cameras and a high intensity LED illumination unit), an active

module with a light stripe range (LSR) configuration (two laser stripes of red and green colour) and

a range-gated synchronizer, that allows to decrease the signal-to-noise ratio (SNR), by mitigating

the effects of backscattering (refer to section 2.1).
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Figure 2.14: MARESye concept model represented by a watertight enclosure containing the PS
module, composed of 2 cameras and LEDs, and the LSR module, composed of a red and green
coloured laser sensor. Extracted and adapted from [10].

The hybrid approach exploits the combination of both imaging modules through a data-driven

formulation to increase the measurement range and produce high density 3D estimations, making

it a very flexible solution for AUVs or ROVs operating under dynamic or non-dynamic underwater

environments that have varying photometric conditions. The authors stated that the hybrid system

was evaluated under realistic sub-sea conditions, from a low baseline level turbidity, with resulting

3D reconstructions presented in figure 2.15, to high turbidity, and reported perceptual qualities

with structural similarity index measurements (SSIM) above 0.655, while a conventional system

obtained a value of 0.328, with highly accurate and precise reconstruction, since the Euclidean

error was lower than 0.025 m and 0.010 m for the PS and LSR modules, respectively.

Figure 2.15: One of the objects used for laboratory testing (left); resulting 3D reconstruction
using PS module, in low turbidity conditions (middle) and resulting 3D reconstruction using LSR
module, in low turbidity conditions. Extracted from [10].

2.3 Eye-in-Hand Approaches

As it was previously seen, perception systems have a plethora of applications in sub-sea envi-

ronments. In particular, when it comes to O&M tasks in an offshore setting, vision perception is an

important tool for successful operations of inspection and intervention. Thus, it’s inevitable that
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the perception system must be integrated within the vehicle itself, either AUVs or ROVs. How-

ever, most underwater vehicles with a manipulator attached often present a poor configuration that

leads to occlusions produced by the robotic arm. This study intends to present an Eye-in-Hand

approach, where the perception system is attached to the end-effector of the manipulator instead

of the vehicle’s body, in order to avoid these occlusions and to take full advantage of the extra

DOF in which the manipulator is able to operate, so that the image acquisition can be performed

closer to the target and to obtain the maximum level of detail as possible. This configuration has

been vastly used in robotic arms, although it is still quite scarce when it comes to underwater

intervention and inspection scenarios.

The recent work done by S. Aldhaheri et al. (2022) [49] provides a good state-of-art on

projects of underwater vehicles where a robotic manipulator and visual perception are required.

The following section explores the Eye-in-Hand topic, where several research work that benefits

from this configuration is presented.

In 2008, G. Marani et al. [50] developed SAUVIM (Semi Autonomous Underwater Vehicle

for Intervention Mission), an AUV equipped with a 7 DOF robotic manipulator (MARIS 7080),

which has a fully autonomous mode with the aid of a camera unit coupled to the robotic arm

and other perception sensors. In a search and manipulate experiment, a remote user is able to

command the AUV to search a hook when it reaches the target site, prompting the robotic arm

to scan the immediate area. Once the target is detected, the robot attempts to hook the cable to a

known point of the object, in order to bring it to the surface. The detection operation is achieved

through optical feedback from a video camera located on the arm’s wrist, as it is portrayed in figure

2.16. The target is detected based on its geometry, through the following pipeline: image filtering,

edge extraction using Canny filter to the colour image and using the colour contrast gradient and

finally circle extraction, using the line segments found in digital images. Once the target has been

detected, the arm enters a tracking state (visual servoing) and proceeds to grasp the object, while

it is not moving. In terms of accuracy detection, it was reported as under 1 cm for the translational

part, sufficient for the target to be grasped, with a slightly higher error in the orthogonal direction

of the camera view.

In 2010, P. Sanz et al. [51] presented a reconfigurable autonomous underwater vehicle for

survey and intervention purposes, developed during the RAUVI project. The authors present their

I-AUV concept model, Girona 500, for a maximum operating depth of up to 500 m, and the CSIP

Arm5E manipulator, with 4 DOF, represented in figure 2.17. The authors take on the Eye-in-Hand

approach, mounting a high-resolution colour CCD camera, valid up to 100 m underwater, on the

last link of the robot arm, for 2D visual perception.

After the successful first experiments with RAUVI [51], M. Prats et al. (2012) integrated some

aspects of their previous work into the TRIDENT project [52]. The authors report on the integra-

tion of the Girona 500 AUV with the Eye-in-Hand configuration composed of the Arm5E light-

weight manipulator and a stereo system in a watertight enclosing, formed by two high resolution

cameras, for 3D information acquisition of the scene in order to perform survey and intervention

operations. For the object recovery experiment, the visual perception system is pivotal in the sur-
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Figure 2.16: Recovery operation: SAUVIM AUV, with robotic arm and sensory unit attached,
navigating towards the target (left); manipulator detected the object and begins to grasp it (right).
Extracted and adapted from [50].

Figure 2.17: Configuration of the arm, gripper and camera, during development phase. Extracted
and adapted from [51].

vey phase, in which a orthophotomosaic of the seafloor is setup with the imagery gathered. When

the target object is detected in the mosaic, the intervention phase begins, with feedback aid of the

optical system for navigation purposes, where the vehicle is guided towards the neighbourhood of

the target object in order to recover it.

In 2012, M. Prats et al. [53] developed a different setup for 3D reconstruction and grasping

in underwater environments, using the robotic manipulator Arm 5E with an active perception

system, where the structured laser beam is attached to the forearm of the manipulator and a digital

video camera is integrated in the AUV, looking downwards in order to capture laser projections,

in a configuration represented in figure 2.18. The authors incorporated a structured-light based

sensor and a camera to perform triangulation in order to recover the 3D structure of unknown

objects lying on the seafloor. The projected images are segmented, by applying a threshold on the

calculated euclidean distances (in RGB space) of each pixel with a reference, in order to detect

projection pixels and then, by means of triangulation, extract a point cloud. The whole process

is represented in figure 2.19, where after the scanning process, the acquired images of the laser

projections are used for 3D reconstruction of the scenario. The generated point cloud is then used
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to aid in grasp planning of a target object that is executed autonomously by the robot after a simple

user command.

Figure 2.18: Configuration of the arm, laser emitter and camera for object scanning. Extracted
from [53].

Figure 2.19: Laser scanning of an amphora (left); projected image in camera view (middle); side
view of the generated raw point cloud of the amphora scan (right). Extracted from [53].

Under the project titled TRITON [54], in 2013, P. Sanz et al. developed GRASPER, a multi-

sensory based manipulation system for underwater operations, that applies the approach developed

by M. Prats et al. [53], in 2012, but in a different scenario, where the Arm 5E robotic manipulator

is attached to a floating platform for intervention purposes, particularly tested for situations such

as the search and recovery of an object of interest and the intervention of an underwater panel in a

permanent observatory.

Later, in 2015, A. Peñalver et al. [55] changed the approach from previous research work

by attaching both laser stripe emitter and camera to the forearm of the Arm 5E robotic arm, as it

is portrayed in figure 2.20. With this Eye-in-Hand configuration, the authors stated that with the

camera coupled to the manipulator, it was possible to reconstruct the scene from different views,

since the camera was no longer in a fixed position, and from a position that was closer to the target

object, obtaining more precision in the reconstruction. This study also includes a comparison

between the one-view method, where the camera is placed in a fixed position, and the proposed

multi-view, with both resulting reconstructions represented in figure 2.21, clearly showing a more

complete and defined reconstruction with the latter.
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Figure 2.20: Eye-in-Hand configuration, with the camera and laser stripe emitter attached to the
Arm 5E manipulator. Extracted from [55].

Figure 2.21: Skull as the simulated target object for reconstruction (left); result of the reconstruc-
tion using one-view approach (middle); result of the reconstruction using proposed multi-view
approach (right). Extracted from [55].

A similar Eye-in-Hand configuration is applied to recently developed AUVs, in a project

named TWINBOT (2021) [56], for autonomous underwater cooperative transportation. R. Pi et al.

presented a multi-agent system solution, with a group of cooperating I-AUVs, composed by two

Girona 500 lightweight modular I-AUVs, where each vehicle had a ECA 5E manipulator attached.

Additionally, each vehicle also had three cameras, an analog camera attached to the body of the

I-AUV, forward-looking for localization purposes, another analog camera embedded in the custom

end effector to provide visual feedback for grasping purposes, portrayed in figure 2.22, and finally

a high-performance megapixel industrial camera, down-looking, attached to the lower side of the

I-AUV, to get seafloor image updates for navigation purposes. The authors’ article also include

images of a successful pipe pick-up and transportation process.
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Figure 2.22: Custom end-effector with grasping abilities (left) with embedded camera (right).
Extracted from [56].

2.4 Critical Analysis

Perception systems are a pivotal component when it comes to acquiring 3D data from the

surrounding scene, specially for inspection and intervention tasks, often required in offshore O&M

scenarios. These systems enabled surface and underwater vehicles to achieve higher levels of

autonomy and thus, to remove the human factor from the equation, which is often important, not

only to protect lives but also to prevent human prone errors in these operations.

Nevertheless, it is crucial to take into account and develop strategies to mitigate the negative

effects that water, as a medium of propagation, causes on optic systems, including light absorp-

tion and scattering. For light absorption, post-processing image methods are often used for colour

correction. Scattering effects on image acquisition can also be minimized with post-processing

techniques to increase image contrast or with a range-gated approach to filter most of the captured

backscattered component. It is also important to evaluate which type of watertight housing for the

perception system works best, since dome-shaped ports, unlike flat-shaped, minimize the distor-

tion of scenarios, since, in ideal conditions, the refracted light and the interface normal are closely

aligned.

Active and passive optical sensors are the core of perception systems and thus, several of these

have been developed with the variety of sensors that fall under these two categories. When using

natural or artificial lighting to illuminate the scene, stereo-based configuration of two cameras can

achieve a very dense point cloud of the target, though with low accuracy, since these sensors are

highly dependent on the level of texture of the captured object to later extract 3D information. An-

other technique often used to extract 3D information from just cameras is structure-from-motion,

using a single camera to capture the target from different viewpoints. The obvious advantage is

the need of only one camera, making this a more affordable solution, although it is required to

move the camera to another positions in order to extract any 3D information and is highly de-

pendent on navigation data. Systems that incorporate active sensors mainly use structured light

projected onto the scene, such as LSR. From these optical systems, it is possible to extract very

accurate but sparse 3D point clouds. By applying translation or rotational movement with these

techniques, it is possible to fully scan the target and thus obtain more complete and detailed 3D



2.4 Critical Analysis 25

reconstructions. Because structured light is a great cheap alternative and works best in static envi-

ronments, it makes it a great candidate for this dissertation’s scenario, where a 3D reconstruction

of an underwater object is the end goal.

As it was previously mentioned, many of these technologies were adapted to underwater en-

vironments in order to do tasks that involve inspections and interventions. In order to do so,

researchers have attached these optic elements and systems to robotic manipulators. Although

with scarce application to this day, particularly in an underwater context, this method, named Eye-

in-Hand, as proven to be highly efficient by providing a way to avoid possible occlusions that the

robotic arm could cause and to fully explore the extra degrees-of-freedom that the arm enables

to achieve. In the context of this dissertation, this configuration would be an appropriate solution

to get the perception system closer to the target object and achieve interesting points of view in

order to get a richer, more complete and detailed 3D reconstruction of the submerged object, that

could be used either for information on the object’s pose, characteristics or as an important grasp

planning aid.
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Chapter 3

A 3D Reconstruction System for
Submerged Objects

3.1 Introduction

Recent technology advances allowed to exploit the maritime environment in several ways. One

of the most prominent industries that operate in offshore environments is the energy production,

particularly those that pursue green energy sources, such as the wind farm industry. The large in-

frastructures installed at sea for that purpose require constant need for maintenance, which is why

investment in technologies to support inspection and intervention tasks in subsea environments is

at an all time high. For such operations, this dissertation reports on the development of a system

for 3D reconstruction of submerged objects utilizing the Eye-in-Hand configuration.

The following chapter will present a description of the developed system for 3D reconstruction

using the active EiH approach. The proposed architecture, fully depicted in figure 3.1, includes

an object detection node that acquires the 3D position of the target object, a pivotal parameter

to be used to compute several viewpoints of the target, a path planning and execution node, that

computes reachable viewpoints for the manipulator and executes them, and a 3D data acquisition

and processing module, composed of two nodes, one for each perception unit (LSR and PS), that

captures the 3D information, filters and combines it, in a point cloud form. The developed system

also includes an evaluation module that takes these two point clouds as input and utilizes several

metrics to determine the quality of the 3D reconstruction of the object.

3.1.1 Simulation Setup

The simulation environment used to test the proposed 3D reconstruction method was con-

structed using the 3D simulator Gazebo. The scenario, fully represented in figure 3.2, is composed

by a cage with dimensions 2x2x1 m. Besides working as a support for the manipulator, it also lim-

its the space in which the target object to be reconstructed should be located. Additionally, it is

also composed by the manipulator, which is fixed at the top of the cage, along with the coupled

perception system, completing the Eye-in-Hand configuration. Although the maritime conditions

27
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Figure 3.1: Proposed pipeline for the complete 3D reconstruction process.

are not being simulated in this Gazebo setup, the underwater challenges mentioned in 2.1 would

need to be taken into account when testing in real underwater scenarios.

Figure 3.2: Gazebo setup used for simulation.

3.1.2 Manipulator Reach Bravo 7

Part of the EiH configuration is the manipulator, essential for the extra DOF that allows the

perception system to acquire data in different viewpoints and closer to the target. The manipulator

is based on the commercially available Reach Bravo 7 1, represented in figure 3.3. The Reach

Bravo 7 is a fully electric 7-function manipulator, with six revolute joints and an end effector for

grasping purposes, specially designed to support the harsh underwater conditions and to perform

1https://blueprintlab.com/products/manipulators/reach-bravo/



3.1 Introduction 29

advanced inspection and intervention operations. The main properties of this manipulator can be

found in table 3.1.

Figure 3.3: Reach Bravo 7, extracted and adapted from 1 (left), and simulated model in Gazebo
(right), with arrows representing corresponding revolute joints rotations.

Table 3.1: Reach Bravo 7 properties.

Properties Description

DOF 6

Joint Speed 60deg/s nominal

Control Modes Position, Velocity, Cartesian (XYZ)

Depth 300 m

Weight (Air) 9.5kg

Weight (Water) 4.5kg

Max. Reach 0.9 m

To control the movement of the manipulator, the motion planning framework MoveIt! [57] was

used. This motion planning framework uses plug-ins for most of its functionalities, such as motion

planning plug-ins, namely the Open Motion Planning Library - OMPL, collision detection and,

finally, kinematics plug-ins for forward and inverse kinematics. In the scope of this dissertation,

MoveIt! was an essential tool to plan the paths of the manipulator, in order to get the perception

system to relevant viewpoints to perform the 3D reconstructions and to interact with the Gazebo

simulator.

3.1.3 MARESye Perception System

For data acquisition, an updated version of the hybrid MARESye [10] perception system,

developed by A. Pinto et al., which was already covered in section 2.2.3, was utilized. Its simulated

model is represented in figure 3.4.



30 A 3D Reconstruction System for Submerged Objects

Figure 3.4: Simulated model of the MARESye hybrid imaging system in Gazebo.

The active component of the perception system corresponds to the LSR module of the updated

MARESye, which is composed by two lasers, of red and green colour, that project lasers stripes

onto the scene, and was the main source of data acquisition. For simulation purposes, two sonars

were set up to mimic the real laser configuration, with parameters depicted in table 3.2. For

noise simulation purposes, the built in Gaussian model in Gazebo was used in the LSR simulated

sensors, which allows to control the standard deviation of the captured data. Additionally, the

simulated version of the active perception module bypasses the whole process of the images’

projection segmentation and triangulation of 3D information, that would need to be performed in

a real scenario.

Table 3.2: LSR simulation default parameters.

Properties Description

Rate (Hz) 40

Samples 256

FoV (rad) 0.58

The PS module, composed by two cameras in a stereo configuration and high intensity LEDs,

was also used to acquire 3D information, mostly for comparison purposes with the other module.

In order to simulate the operation of this module, a velodyne 3D LiDAR sensor was used, with

default parameters represented in table 3.3. Similarly to the LSR simulated sensors, Gazebo’s

Gaussian model was also used for noise simulation, which allows to introduce standard deviation

to data captured by the PS module. By using a simulated version of the passive perception module,

the process of extracting 3D information from the camera’s captured images was bypassed.

A representation of the operation of the simulated sensors for each perception module is de-

picted in figure 3.5. The figure illustrates the projections of the simulated sensors of LSR and

PS modules, with red and green projection stripes and white dots, respectively, when no object is

present and when a cube shaped object is captured.
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Table 3.3: PS simulation default parameters.

Properties Description

Rate (Hz) 10

Samples 1024

Nº lasers 128

Max. Range (m) 4

Min. Range (m) 0.005

Max. Angle (rad) 0.610865

Min. Angle (rad) -0.610865

Figure 3.5: Operation of the perception system: modules’ projections on the scenario’s floor when
no object is being captured (left); modules’ projection on a cube object (right). White points
correspond to data being captured by the PS module while red and green points correspond to data
being captured by the LSR module.

3.2 3D Reconstruction Methodology

The proposed architecture for 3D reconstruction, fully described throughout the following

section, can be summarized as follows:

1. Object detection - obtains the object’s position by computing the 3D centroid of a point

cloud captured from the target located in any position and orientation inside the cage;

2. Path planning and execution - using the obtained 3D position of the target, computes and

executes the manipulator’s trajectory, composed by several viewpoints where a scan sweep

motion is performed;

3. 3D data acquisition - captures sparse data from the active perception module and dense data

from the passive perception modules, filters and combines it iteratively, in order to output

two point clouds, one from the sparse data and another from the dense data.
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The object detection node utilizes the PS module of the perception system to detect the object

in the surrounding space, since it is a great way to easily obtain a point cloud from just a one-

shot capture that can later be used to detect the object’s position. As it was previously stated in

section 2.2.1, passive systems allow to obtain highly dense point clouds, thus making this module

an appropriate means to detect and compute the 3D position of the target object. The developed

algorithm for object detection requires that, besides the manipulator and perception system, the

target object is the only other element present inside the cage. An overview of the developed

simple detection algorithm is depicted in figure 3.6.

Figure 3.6: Diagram of the object detection algorithm.

Firstly, the object detection node initializes the system by inserting the cage and the perception

system as constraints for obstacle avoidance and to move the manipulator to its initial position,

as represented in figure 3.7. The green box at the base of the manipulator represents the top

of the cage, while the purple box represents the perception system, attached to the manipulator.

These elements’ functionality is to act as an obstacle to be avoided by the MoveIt! planner when

computing the manipulator’s trajectories.

From its initial position, the manipulator’s movement control, throughout the detection pro-

cess, is operated in a joint mode with a fixed set of values of the manipulator’s joints, since this

path is the same for every scenario. The detection path is divided in two parts, as represented in

figure 3.8, where the first part is meant to detect the object closer to the bottom of the cage and the

second part detects objects higher up on the cage.
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Figure 3.7: Manipulator in initial position with cage’s reachable surface and perception system
introduced as collision elements in the surrounding planning scene.

(a) Perception system’s movement, depicted as a
blue arrow, in the detection path’s first part.

(b) Perception system’s movement, depicted as a
blue arrow, in the detection path’s second part.

Figure 3.8: Manipulator’s movement throughout detection path, repeated at every 45◦ increment,
until reaching a complete 270◦ rotation of the manipulators’ base footprint joint.

Throughout the execution of the path, the point cloud obtained from the PS module is box

filtered, so that only points inside the cage space remain. An object is considered detected if

a certain threshold of number of points in the point cloud, determined by experimentations that

require only one execution of the manipulator’s detection trajectory, is captured. After the object

is detected, the execution of the detection path of the manipulator terminates when there is a

significant drop of the number of captured points and the resulting point cloud’s 3D centroid is

calculated, to be outputted to the subsequent path planning node as the target object’s position.

Viewpoints Computation and Execution

The positions from which the object’s 3D data is acquired are important as they have a direct

impact on completeness and quality of the final point clouds. These positions are defined by a set
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of viewpoints, which are composed by a position and orientation from where the data acquisition

is performed. For that effect, the path planning algorithm takes, as input, the previously obtained

3D position of the target. Besides using the object’s 3D position to compute the viewpoints, it is

also used to introduce a box-shaped collision element with dimensions 2x2x2 cm, that represents

the area in which the target object is inserted in completely and to be used as a constraint when

planning the several trajectories for the manipulator. An overview of the developed algorithm for

path planning and execution of the manipulator is depicted in figure 3.9.

Figure 3.9: Overview diagram of the path planning and execution algorithm.

The object’s position is used as a reference to compute position and orientation of the several

viewpoints, in a way that the perception system is looking directly at the target. To calculate

the viewpoints’ orientation, a method was developed based on the commonly named "LookAt"

technique 2. This technique is able to compute a desired camera’s orientation by using a forward

vector, which connects the camera’s position to the target, as represented in figure 3.10. The right,

up and forward vectors correspond to the first, second and third columns of a 3x3 rotation matrix,

from which a normalized quaternion can be computed to be used to represent the viewpoints’

orientation. With this method, it is possible to position the perception system so it looks directly

to the object being reconstructed, in every single computed viewpoint.

For an initial approach on path planning, the scan sweeps were performed in a reachable

viewpoint located on a vertical plane that contained both the z-axis on which the manipulator is

fixed and also the target object’s 3D position, resulting in a single scan sweep of the object. The

other approach consisted in increasing the number of candidate viewpoints to perform scan sweeps

to obtain more 3D information on the target and thus, create more complete 3D reconstructions.

These viewpoints were interpolated from the surface of cylinders, of different radius, centred on
2https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function
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Figure 3.10: Desired forward, right and up vector representations so that the camera directly looks
at a target object.

the object’s 3D position. The cylindrical shape provided a great way to not only get viewpoints

that could surround the target, just like a spherical shape, but also to get more candidate viewpoints

higher in the z-axis, inside the manipulator’s reach area, and with decreased probability of being

filtered out.

In addition to the different surfaces for viewpoint interpolation, another main difference be-

tween these two approaches is the number of viewpoints that are actually selected, being one or

multiple respectively. To select these few, the viewpoints computed from interpolation are filtered

by removing those that are out of the reach of the perception system mounted on the manipulator’s

frame and those that the MoveIt! planner is not able to compute a trajectory to. The first viewpoint

chosen is the first one from the filtered list, and the following ones are always the viewpoints far-

thest from all the previously selected. Figure 3.11 depicts the viewpoints computed for a particular

situation, with the first approach and the second approach, where the desired number of viewpoints

was three. The viewpoints obtained through interpolation are represented as red arrows while the

final selected viewpoints, where the scan sweeps were performed, are represented in green arrows.

After selecting the few viewpoints that have been planned successfully, the algorithm will

iterate through them, making the manipulator move to these points. Whenever the manipulator

reaches a viewpoint, a scan sweep motion begins. While it would be more efficient to perform data

acquisition while moving between viewpoints, the scan sweeps were necessary since there was no

guarantee that the perception system would move between viewpoints at a desired orientation,

preferably looking towards the target, due to the MoveIt! planner. Therefore, the data acquisition

process is triggered only during the scan sweeps and not while the manipulator is moving between

viewpoints.
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Figure 3.11: Interpolated (red) and selected (green) viewpoints from a vertical plane containing
the object’s position and the manipulator’s z-axis (top); interpolated from the surface of 3 cylinders
of increasing radius, centred on the target, with desired number of final viewpoints equal to three
(bottom).

Scan sweeps are characterized by a circle’s arc motion, performed by controlling the ma-

nipulator’s base revolute joint in an interval of −10◦ to +10◦ from the respective viewpoint, as

represented in figure 3.12, taking into consideration the joint limits of the manipulator.

The triggering of the 3D data acquisition system is done in every increment of +0.1◦, which

is the maximum resolution of joint movement and results in a total of 200 acquisitions performed

in a single scan sweep and a higher number of acquired points, particularly relevant for the LSR

module. It is important that the manipulator stops at every increment in the scan sweep, since, in

an underwater scenario, the movement of water affects the visibility of the perception system due

to motion blur, degrading the performance of the 3D data acquisition system.
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Figure 3.12: Scan sweep.

The 3D reconstruction process finishes when all the selected viewpoints have been visited and

the scan sweeps have been performed. The LSR and PS modules output a point cloud each, which

are then further utilized to evaluate the reconstruction performance.

3D Data Acquisition

3D data acquisition occurs whenever the manipulator’s control node enters a scan sweep stage,

after moving to a viewpoint. Both modules are used for 3D information acquisition so that one is

able to compare the performance between the active and passive perception modules. An overview

of the 3D acquisition and processing method is presented in figure 3.13.

Figure 3.13: Overview diagram of the 3D data acquisition & processing algorithm.

At every trigger event by the path execution algorithm, a point cloud is captured from the PS

acquisition module and another point cloud, composed by the data acquired by the left and right

simulated lasers, is captured from the LSR acquisition module.

After acquisition, the point clouds are compensated according to the movement of the manip-

ulator’s joints. Then, the point clouds are combined in an iterative way, with previous point clouds

captured from the same acquisition module. The combined point cloud of each module is then
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filtered, using a box filter centred in the object’s detected position, with the same dimensions as its

corresponding collision box object, as it is portrayed in figure 3.14, and using an outlier removal

algorithm.

Figure 3.14: Captured PS point clouds before being box filtered (left); box filtered PS point cloud
(right).

The PS resulting point cloud is downsampled due to the high number of acquired points in

comparison with the template’s point cloud. This allows to shorten the processing times of this

point cloud in the evaluation segment while still maintaining a dense reconstruction. For down-

sampling, the point clouds run through a voxel grid filter. This algorithm creates a 3D voxel grid,

represented as a set of small cube-shaped cells organized in a grid format, over the input point

cloud. The main parameter of this algorithm is the size of the grid’s cells, named voxels, where

an increased voxel size leads to increased downsampling. All data inside of each element of this

grid is approximated to their centroid, calculated using all the points inside that cell. This method

of downsampling is able to represent the underlying surfaces in a more accurate way while still

performing the desired downsampling.

After receiving a trigger, from the path execution algorithm, that finalizes the reconstruction

process, the operation of the 3D data acquisition node terminates for the current 3D reconstruction.
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Results

In the following chapter, the results obtained in several tests on the developed system are

presented and discussed. Firstly, the metrics used to evaluate the performance of this 3D recon-

struction approach are presented. Secondly, the experiments on the developed work are described,

along with an analysis of the results obtained from the several experiments done, including the

generated point clouds and the resulting polygonal meshes.

4.1 Introduction

To demonstrate the performance of the developed 3D reconstruction system, three objects

with different sizes and shapes were selected as targets. In increasing order of shape complexity,

these were a treasure chest, an anchor and a coral, as represented in figure 4.1. Each object was

reconstructed using both developed approaches for path planning, with 3D data captured using the

LSR and PS perception module.

(a) Treasure Chest target
object, with dimensions
0.11x0.13x0.08 m.

(b) Anchor target ob-
ject, with dimensions
0.13x0.13x0.15 m.

(c) Coral target object, with dimen-
sions 0.16x0.17x0.14 m.

Figure 4.1: Three different target objects selected for 3D reconstruction experimentations.
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The tests described in this section were conducted in the Gazebo simulator, using a device

with the following specifications:

• CPU - AMD Ryzen™ 5 3500U 2.10 GHz;

• GPU - AMD Radeon™ Vega 8 Graphics;

• RAM - 8GB.

4.2 3D Reconstruction Evaluation

The evaluation of the 3D reconstructions can be done using quantitative metrics. For this

purpose, the object’s template mesh is required for comparison purposes. From this mesh, one is

able to extract a point cloud to be used when applying the quantitative metrics.

An important step that needs to be executed, before the 3D evaluation process, is point cloud

alignment. The two point clouds, obtained from the 3D data acquisition unit of the developed

system, are not correctly aligned with the template mesh’s point cloud. In order to perform point

cloud alignment, the Iterative Closest Point (ICP) is used. ICP is a registration method mainly

used to align the acquired point clouds with a fixed reference point cloud, extracted from one

of the models used for experiments. This algorithm iteratively computes a transformation matrix,

composed by a rotation and translation, that further minimizes an error metric, denominated fitness

score, which corresponds to the sum of squared differences between the matched pairs of points

of both point clouds. In order to improve the rate at which the algorithm converges, an initial seed

for the translation element of the transformation was provided, computed as a directional vector

between the 3D centroid of the input point cloud and the point cloud originated from the exper-

iment’s model. An example of the application of ICP algorithm, on one of the experimentation

models, is presented in figure 4.2, where it is possible to observe the alignment process applied,

after the initial seed, to the obtained point cloud, in red, with the object’s template point cloud as

a target, in white.

The obtained ICP’s fitness score is a good indicator on whether or not the application of this

algorithm was successful, since an increased fitness score will directly affect the performance level

of the quantitative metrics. With the point clouds correctly aligned, a quantitative evaluation can

now be performed. For that purpose, two algorithms were used: 3D Chamfer distance and point

cloud completion.

3D Chamfer Distance

3D Chamfer Distance (CD) [58] evaluates how different the output point clouds are when

compared to the desired point clouds. The calculation of this metric, between the sets of points

S1,S2 ⊆ R3, is defined as follows:

dCD(S1,S2) = ∑
x∈S1

min
y∈S2

||x− y||22 + ∑
y∈S2

min
x∈S1

||x− y||22 (4.1)
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(a) Before applying ICP. (b) After applying ICP.

Figure 4.2: ICP alignment effect on a resulting point cloud from the PS module, in red, with
object’s template point cloud, in white, as a target. The aligned point clouds (right) will lead to a
better application of quantitative metrics for 3D reconstruction evaluation.

It is important to clarify that, in order to obtain the CD value, only points that have a corre-

spondence on the other point cloud are used, since the resulting point cloud may not completely

cover the object’s surface. In order to find if there is a correspondence, the CD algorithm finds the

nearest neighbour of each point, with an euclidean distance between each other lower than 0.001

m, in the other set, and cumulatively sums the squared distances between them.

Point Cloud Completion

Another interesting quantitative metric that was applied is the point cloud completion. This

algorithm allows to obtain a value, for each point cloud, that represents the percentage of points

in the template mesh’s point cloud that have a correspondence on the obtained point cloud. The

neighbouring point, defined as a the closest point in a radius less than 0.001 m, that is closest to

the template’s point cloud, is considered a matching point. The point cloud completion metric is

then obtained by dividing the number of points that have a match by the total number of points in

the template’s point cloud.

4.3 Experimental Results

For each target object type, a 3D reconstruction experiment was conducted, with and without

noise considerations. For the object detection segment, experiments were conducted with different

standard deviation values of noise for the PS module. Table 4.1 presents these detection errors with

the three different target objects.
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Table 4.1: Euclidean distance errors of the three detected object’s position in experiments with
three different values for PS noise standard deviation (std) .

Object’s position RMSE detection (m)
Noise std = 0 m Noise std = 0.025 m Noise std = 0.035 m

Treasure Chest 0.0318 0.1911 0.4724

Anchor 0.0236 0.3662 0.7417

Coral 0.0173 0.0364 0.1722

As it is possible to verify, noisy data captured from the PS module greatly affects the perfor-

mance of the object’s detection. In consequence, as the error in the detected position increases,

more 3D data captured during the path execution algorithm will be discarded since there will be

less captured points inside the filtering box, which is represented in figure 3.14. The following sec-

tions present the visual and quantitative results of these experiments, including an analysis on the

resulting point clouds from both LSR and PS modules, with the two different viewpoint computa-

tion approaches, and the reconstruction meshes of the target objects computed from the captured

point clouds. From these experiments, it is expected to verify that, due to the higher errors of the

PS acquisition technique when compared to the LSR technique, the latter should present lower

quantitative error, expressed in the CD metric.

4.3.1 Analysis of Resulting Point Clouds

As it was previously mentioned, two different point clouds, corresponding to the two acqui-

sition modules of the perception system, PS and LSR, are the output of the point cloud acquisi-

tion and processing unit. The following section presents the results of several 3D reconstruction

experiments, including the point clouds, alignments’ fitness scores, and the evaluation metrics ap-

plied to these point clouds, such as 3D Chamfer distance and point cloud completion. For each

object, there are results of the reconstruction done with both developed viewpoint computation

approaches, for comparison purposes. The experiments with the second approach for viewpoint

computation were performed with a maximum of three viewpoints.

The generated viewpoints of each experiment, using both path planning approaches, are rep-

resented in figure 4.3. Each green arrow represents a viewpoint, in which a scan sweep was

performed and the 3D information was captured.
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Figure 4.3: Viewpoints generated in each 3D reconstruction experiment, represented as green
arrows, looking at the object’s detected position.

Figure 4.4 represents the resulting point clouds captured with the active perception module

LSR, with no added noise, from the scan sweeps performed in the viewpoints depicted in figure

4.3.
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Figure 4.4: LSR-obtained point clouds, with no noise, using first approach (left) and second ap-
proach (right) of a treasure chest (top), anchor (middle) and coral (bottom) type objects.

As expected, when comparing the point clouds obtained with the first developed approach

for path planning with one viewpoint only, with the second approach, in which results multiple

viewpoints, one is able to verify that the latter acquired more 3D points from the surface of the

object, since more scan sweeps are performed, to achieve a more faithful representation of the

target object’s geometry.

The overall performance of the LSR module in the developed 3D reconstruction system is

presented in table 4.2. The evaluation metrics mentioned in section 4.2 are applied, in addition to

the point cloud count of each acquired point cloud and the fitness scores after applying the ICP

algorithm.
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Table 4.2: Metrics results on 3D reconstructions of the three different objects, using the LSR ac-
tive perception module and no noise considerations, with first and second viewpoint interpolation
approaches.

Approach Point
Count

ICP Fitness
Score (m)

CD
(m)

PC Com-
pletion

Treasure Chest
1 21169 2.897x10−7 0.00872 41.6%
2 28386 1.309x10−6 0.01238 42.9%

Anchor
1 18421 1.589x10−7 0.0096 36.7%
2 46147 4.676x10−7 0.01123 39.8%

Coral
1 22790 1.343x10−6 0.0113 19.6%
2 37442 6.906x10−7 0.00852 29.7%

From the quantitative analysis of the performance of the LSR acquisition module it is possible

to verify that, when comparing the overall results of the treasure chest with the coral, the 3D

reconstruction system’s performance with the latter is lower, due to the object’s highly complex

geometry. Parallel to what is visually seen with the resulting point clouds, the second approach for

path planning provides higher point count, which also results in an increased number of matching

points between the template mesh’s point cloud and the acquired point cloud, and translates into

an higher point cloud completion percentages.

Additionally, for comparison purposes between both types of perception modules, figure 4.5

presents the resulting point clouds of the three different target objects, captured with noiseless

passive perception module PS and in the viewpoints depicted in figure 4.3.
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Figure 4.5: PS-obtained point clouds, with no noise, using first approach (left) and second ap-
proach (right) of a treasure chest (top), anchor (middle) and coral (bottom) type objects.

Once again, as expected, the path planning approach that computes multiple viewpoints is able

to capture point clouds that are significantly more complete when compared to the first approach.

However, despite the passive module being able to acquire highly dense point clouds, point clouds

acquired with the active module are able to provide more detailed information on the targets’

geometry.

Table 4.3 presents the point clouds’ point counts and ICP’s fitness scores and also the results

using the metrics mentioned in section 4.2, for point clouds acquired using the PS module with no

added noise.
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Table 4.3: Metrics results on 3D reconstructions of the three different objects, using the PS active
perception module and no noise considerations, with first and second viewpoint interpolation ap-
proaches.

Approach Point
Count

ICP Fitness
Score (m)

CD
(m)

PC Com-
pletion

Treasure Chest
1 30723 3.099x10−7 0.01174 57.6%
2 195498 4.737x10−5 0.02161 50.2%

Anchor
1 38689 2.162x10−7 0.01249 50.2%
2 129924 2.389x10−6 0.02943 65.4%

Coral
1 163720 1.837x10−6 0.03681 61.1%
2 252953 6.25x10−6 0.03695 62.9%

From the quantitative analysis of the performance of the PS acquisition module it is possible

to verify that the overall point cloud completion is higher with the second path planning approach,

where multiple viewpoints are used for scan sweeps. Additionally, when comparing the 3D Cham-

fer distances with point cloud captured with the LSR module, presented in table 4.2, it is possible

to verify that, as expected, the LSR module is capable of acquiring data with less error than the PS

module, since the latter has higher CD values in all experiments.

In a real underwater scenario, the 3D reconstruction system would have to deal with noisy data

captured using the perception systems. A simulation of 3D reconstructions, using PS perception

module with noisy data, was also performed. Figure 4.6 presents point clouds of the three different

target objects acquired from the viewpoints depicted in figure 4.3. The points clouds were captured

using the passive perception module PS, following a Gaussian noise model with standard deviation

equal to 0.015 m.
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Figure 4.6: PS-obtained point clouds, with noise considered, using first approach (left) and second
approach (right) of a treasure chest (top), anchor (middle) and coral (bottom) type objects.

Table 4.4 presents the point clouds’ point counts and ICP’s fitness scores and also the results

using the metrics mentioned in section 4.2, for point clouds acquired using the PS module with

Gaussian noise’s standard deviation equal to 0.015 m.
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Table 4.4: Metrics results on 3D reconstructions of the three different objects, using the PS active
perception module and added noise, with first and second viewpoint interpolation approaches.

Approach Point
Count

ICP Fitness
Score (m)

CD
(m)

PC Com-
pletion

Treasure Chest
1 630551 9.607x10−5 0.02949 71.1%
2 854013 1.2526x10−4 0.0322 78.03%

Anchor
1 840391 7.996x10−5 0.04247 81.4%
2 1089444 9.452x10−5 0.0449 85.7%

Coral
1 820676 5.104x10−5 0.0430 79.2%
2 1388916 1.033x10−4 0.0457 84.1%

4.3.2 Reconstructed Meshes

The following section presents the reconstructed surface meshes of the several point clouds

resulting from the developed system. The reconstruction of the polygon meshes was achieved

through a greedy surface triangulation algorithm on the calculated normals of the points clouds, in

order to obtain the triangle mesh based projections of the local neighbourhoods, integrated within

the surface reconstruction module of PCL.

Figure 4.7 represents the surface reconstruction meshes computed from the point clouds cap-

tured by the noiseless LSR active perception module, using both path planning approaches.
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Figure 4.7: Meshes computed from LSR-obtained point clouds, with no noise, using a first path
planning approach (top row) and second path planning approach (bottom row) of a treasure chest
(left), anchor (middle) and coral (right) type objects.

From the resulting surface reconstruction meshes, one is able to conclude that, due to the

sparsity of points that the active perception module captures, some gaps can be seen on the final

mesh. However, the level of detail is significant. It is also worth noticing that the area of missing

surface increases as the complexity of the object’s geometry also increases, particularly visible on

the coral object.

Figure 4.8 represents the surface reconstruction meshes computed from the point clouds cap-

tured by the noiseless PS passive perception module, using both path planning approaches.
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Figure 4.8: Meshes computed from PS-obtained point clouds, with no noise, using a first path
planning approach (top row) and second path planning approach (bottom row) of a treasure chest
(left), anchor (middle) and coral (right) type objects.

By observing the resulting surface meshes, computed from the point clouds acquired by the PS

perception module, it is possible to verify that, due to the higher density of points, when compared

to point clouds acquired by the LSR perception module, less gaps appear on the surface, as the

reconstructions are more complete. However, parallel to the increased CD values of point clouds

captured with the PS module, they present less accuracy when compared to the LSR meshes of

figure 4.7.

4.3.3 Conclusions

The visual representations of point clouds presented throughout this chapter lead to the con-

clusion that, as the object’s geometry complexity increases, from the treasure chest to the coral

object, the ability to obtain higher detail decreases which is translated in missing object’s surface

information. Moreover, when comparing the first and second path planning approaches, it is pos-

sible to verify that the latter achieves a much more detailed and complete point cloud, since the

exploitation of several viewpoints allows to capture more 3D information of the object.

The resulting quantitative analysis performed on the acquired point clouds reveal that the PS

module is able to capture more 3D information than the LSR module, since the latter’s obtained

point clouds’ point count and point completion metric are generally lower. On another hand, an

interesting analysis can be carried using the distances between matching points from the object
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template’s point cloud and the acquired point clouds, which are heavily correlated with the ICP

fitness scores. Figure 4.9 represents these distances of matching points with obtained LSR and PS

point cloud of an anchor, along with the moving average of these distances, represented as a black

dashed line.

Figure 4.9: Matching points’ distances of the template point cloud to the obtained LSR (left) and
PS (right) point clouds using first (top) and second (bottom) path planning approach, of an anchor
type object.

The 3D Chamfer distance uses this information to evaluate how accurate each obtained point

cloud is. From this metric, one is able to conclude that the active perception module is able to

capture 3D data with higher accuracy, with average Chamfer distances of 0.00987 m using the

first path planning approach and 0.0107 m using the second approach, while the average Chamfer

distances with the passive perception module are 0.0203 m and 0.0293 m, using the first and

second path planning approaches, respectively.
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Conclusions and Future Work

Along with a complete study of technologies that compose perception systems and Eye-in-

Hand configurations, this dissertation proposes an approach on 3D reconstruction of submerged

objects through and active Eye-in-Hand perception system, with possible contributions towards

inspection and intervention tasks in the maritime environment. The architecture of the developed

system is composed by three distinct parts, namely the object detection, the path planning and

execution module and the 3D data acquisition and processing module. The object detection phase

is responsible to calculate the 3D position of the target object by calculating the centroid of the

object’s point cloud captured with the PS module of the perception system. After the object is de-

tected, the path planning and execution module takes that information for collision avoidance pur-

poses and also to compute viewpoints oriented towards the object, with two different approaches

where a single viewpoint or multiple viewpoints are used for data acquisition. During the execu-

tion of the computed path, one or many scan sweeps occur, depending on the approach used. The

scan sweep is done whenever the manipulator reaches a viewpoint which then triggers the 3D data

acquisition and processing module several times throughout its sweeping procedure. The 3D data

acquisition and processing unit is composed by two nodes, one for each perception system module

(PS and LSR). Each node takes the information collected by each perception module, filters it and

concatenates the point cloud with the ones obtained in previous instances. From the developed

3D reconstruction system results a point cloud obtained with the PS module and another acquired

with the LSR perception module.

This 3D reconstruction system has been tested in three different scenarios characterized by the

use of a target objects with increasingly higher geometry complexity, namely a treasure chest, an

anchor, and a coral. The object detection’s performance was satisfactory, with an average detection

error of 0.024 m, with a noiseless PS module. However, with PS noise’s standard deviation equal to

0.025 m and 0.035 m, the average detection errors were 0.198 m and 0.462 m, respectively, which

resulted in most points of captured point clouds being discarded when filtered. The path planning

algorithm had worse performance when the object was detected closer to the manipulator’s z-axis,

since, with less filtered viewpoints, viewpoint selection often took a long time or failed altogether.

The path execution algorithm performed successfully, with MoveIt!’s planner aid, which computed

53



54 Conclusions and Future Work

the trajectories between consequent viewpoints. The data acquisition and processing unit was also

tested in every scenario, while the manipulator remained still during the scan sweep process, and

was able to successfully filter and combine several point clouds of each acquisition module.

Concluding, the developed system was able to successfully perform 3D reconstructions, in a

simulated environment, of single objects located inside the manipulator’s cage, resulting in two

separate surface reconstruction meshes, one for each point cloud, captured with the LSR and PS

modules of the utilized perception system. The second path planning approach, which selects

multiple viewpoints to perform scan sweeps, achieved higher coverage of the object’s surface,

for more faithful 3D representations, translated in higher point count and point cloud completion

results. Additionally, a similar conclusion can be drawn when comparing the PS and LSR modules

performance with the second path planning approach, since a noiseless PS module resulted in

higher point cloud completion with an average of 59.5% while a noiseless LSR module achieved an

average point cloud completion of 37.5%. Moreover, point clouds captured using the LSR module

resulted in lower 3D Chamfer distances, with an average of 0.00987 m with the first approach

and 0.0107 m with the second approach, when compared to their PS module counterpart, with an

average of 0.0203 m with the first approach and 0.0293 m with the second approach. From these

results, one is able to conclude that, in fact, the active perception module has higher accuracy,

when compared to the passive perception system, when capturing 3D information.

As future work, to further improve and develop the proposed work, the following is suggested:

• Develop a robust object detection system based on machine learning algorithms that is able

to differentiate and select a target of interest for reconstruction purposes;

• Integrate and test the developed approach in a real maritime environment with a real manip-

ulator and perception system;

• Implement an online path planning algorithm, that uses the acquired 3D information as

feedback to calculate next viewpoint, based on, for example, the Next Best View algorithm.
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