
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Teaching ROS2 with a Minimalistic
Mobile Robot

Alexandre Cruz Miranda

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Armando Jorge Miranda de Sousa

October 10, 2022

© Alexandre Miranda, 2022

i

Gonçalo da Mota Laranjeira Torres Leão collaborated with the supervising team during this
work.

ii

Resumo

Atualmente existe uma vasta quantidade de ferramentas e de informação sobre robótica e Inteligên-
cia Artificial (AI). Contudo, a maioria possui uma dificuldade de aprendizagem relativamente ele-
vada, o que não as torna tarefa fácil para principiantes e difíceis de dominar na sua totalidade. Esta
barreira inicial infelizemente pode causar a perda de interesse por estes temas para os iniciantes.

As instituições universitárias, especialmente as de Engenharia, têm um papel importante no
ensino destas disciplinas, uma vez que os seus alunos provavelmente terão um contacto ainda
maior com sistemas robóticos inteligentes no seus futuros empregos. Tendo isto em mente, é
importante que estas instituições adaptem os seus cursos de forma a proporcionar uma formação
simples e eficaz em robótica e AI. Os recursos disponíveis, tais como o acesso a robôs físicos e a
forma como os cursos são ensinados terão um impacto directo sobre a eficácia das bases essenciais
de robótica e robótica inteligente. No entanto, o número de estudantes que uma instituição possui
exige uma quantidade significativa de robôs, e o custo total pode ser demasiado elevado para estas
o conseguirem suportar.

Esta dissertação tinha o propósito de fazer um pequeno estudo sobre robótica e sobre "Robot
Operating System" (ROS), com o objectivo de compreender a importância e quais os tópicos mais
valiosos destes temas. Tinha também o objectivo de desenvolver um pequeno robô móvel de
baixo custo para ser utilizado no ensino de robótica baseada em ROS. Finalmente, foi criado um
pequeno tutorial para ensinar como começar a utilizar o robô desenvolvido, e também para ensinar
a executar algumas aplicações de demonstração desenvolvidas, que tinham a finalidade de validar
o conceito. Ao mesmo tempo, este guia ajuda a solidificar alguns conceitos e comandos básicos
de ROS2.

Palavras-chave: ROS, Robótica, Educação, Sistemas de Visão

iii

iv

Abstract

Nowadays there is a vast amount of tools and information about robotics and Artificial intelligence
(AI). However, most of them have a relatively high learning difficulty curve, being no easy task
for beginners and difficult to fully master. This initial barrier unfortunately can cause the loss of
interest in these subjects for newcomers.

University institutions, especially those in Engineering, have a major role in teaching these
subjects since their students will probably have an even greater contact with intelligent robotic
systems in their future jobs. Having this in mind, it is important that these institutions adapt their
courses to provide a simple and effective formation in robotics and AI. The available resources,
such as physical robots, and the way the courses are taught will have a direct impact on how
effective the essential bases on robotics and intelligent robotics are settled. However, the number
of students an institution has demands a significant amount of robots, and the total cost might be
too high for them to afford.

This dissertation had the purpose to make a small study regarding robotics and Robot Oper-
ating System (ROS) teaching, with the objective to comprehend the importance and what are the
most valuable topics of these subjects. It also had the objective to develop a small low-cost mobile
robot to be used to teach robotics based on ROS. Finally, a small tutorial to teach how to start
using the developed robot was created, as well as how to run some demo applications developed
as a concept validation and practical examples. At the same time, this guide helps to solidify some
ROS2 basics concepts and commands.

Kewwords: ROS, Robotics, Education, Vision Systems

v

vi

Agradecimentos

Antes de mais, quero agradecer ao meu orientador e co-orientador, Armando Jorge Miranda de
Sousa e Gonçalo da Mota Laranjeira Torres Leão por todo o apoio, transmissão de conhecimentos
e disponibilidade que prestaram ao longo desta Dissertação.

Devo também um agradecimento ao Professor Paulo Costa pelo fornecimento do robo, e ao
meu colega Vítor Ventuzelos por ter fornecido algum material e apoio que me ajudou bastante
para os desenvolvimentos desta Dissertação.

Quero também agradecer à minha família, principalmente ao meu pai, por toda a ajuda e
suporte dado com problemas que foram surgindo no decorrer da Dissertação.

Por fim, e não menos importante, quero deixar o agradecimento a todos os meus amigos não
só pelo apoio e motivação, mas também pela paciência devido às minhas frustações em momentos
mais difíceis.

Alexandre Miranda

vii

viii

“If you set your goals ridiculously high and it’s a failure,
you will fail above everyone else’s success.”

James Cameron

ix

x

Contents

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Document Structure . 2

2 Robot Operating System (ROS) and robotics teaching platforms 3
2.1 Robot Operating System (ROS) . 3

2.1.1 ROS1 teaching material . 4
2.1.2 ROS2 teaching material . 5

2.2 Examples of robots suited for AI Robotics . 5
2.2.1 BulbRobot . 6
2.2.2 Mona . 7
2.2.3 Khepera IV . 7
2.2.4 Thymio . 8
2.2.5 E-puck and e-puck2 . 9
2.2.6 Robobo . 11
2.2.7 Robots Comparison and conclusions . 12

2.3 Summary . 14

3 Questionnaire Results 15
3.1 Classification of experience in ROS use and teaching 15
3.2 Robotics teaching course and academic level . 16
3.3 Is teaching robotics with ROS important? Why? 16
3.4 Is teaching ROS2 relevant? Why? . 17
3.5 Do you consider it important to work with real robots when teaching robotics?

When teaching ROS? Why for robotics and why for ROS? 17
3.6 Between C++ and Python, which one do you consider more important to teach

ROS with? Why? . 18
3.7 Do you consider any topic(s) of the book irrelevant (or less relevant) to a first

introduction to ROS? Which one(s)? . 18
3.8 Classify how important you think the following topics of ROS are for teaching of

ROS at an introductory level. 19
3.9 Besides the topics of the previous question, which topics do you consider the book

is lacking? . 20
3.10 Do you have any suggestions about books, guides or videos for ROS? 21
3.11 Summary . 21

xi

xii CONTENTS

4 The Physical Robot 23
4.1 The Robot and its Hardware . 23

4.1.1 List of Material . 24
4.1.2 Hardware Architecture . 26

4.2 Hardware and Design Modifications . 28
4.2.1 Camera support . 28
4.2.2 The Raspberry Pi upgrade . 31
4.2.3 The Raspberry Pi camera . 32

4.3 Summary . 32

5 The Software 33
5.1 Requirements . 33
5.2 ROS2 and Applications Development . 34

5.2.1 ROS code Migration . 34
5.2.2 ROS2 packages explanation . 35
5.2.3 Applications created . 36

5.3 Arduino Code . 37
5.4 Summary . 38

6 Results and Discussions 39
6.1 Physical robot discussion . 39
6.2 Software and applications development . 40

6.2.1 User controlled robot demo . 40
6.2.2 Distance measure demo . 40
6.2.3 Reactive robot demo . 42
6.2.4 LiDAR . 42

6.3 Summary . 43

7 Conclusions and Future Work 45
7.1 Main contributions . 45
7.2 Future work . 45

7.2.1 Physical platform . 45
7.2.2 Software and program development . 46
7.2.3 Simulator . 46

A Questionnaire Form 47

B Software Installation and Environment Configuration 57
B.1 Operating system installation . 57
B.2 ROS1 Noetic Ninjemys Installation . 58
B.3 ROS2 Foxy Fitzroy installation . 58
B.4 Arduino IDE installation . 59
B.5 Visual Studio Code installation . 59
B.6 Define fixed tty devices . 60

B.6.1 LiDAR device identifier . 60
B.6.2 Arduino device Identifier . 61

CONTENTS xiii

C ROS Migration Guide 63
C.1 Migration of Custom Messages and Services . 63
C.2 Migration of Package.xml files . 64
C.3 Migration of CMakeLists.txt files . 64
C.4 Migration of source files . 65
C.5 Migration of launch files . 66

D Physical Robot Introduction using ROS2 (GitHub ReadMe) 67

References 77

xiv CONTENTS

List of Figures

2.1 The BulbRobot (3D software model) [1] . 6
2.2 The Mona robot10 . 7
2.3 The Khepera IV11 . 8
2.4 The Thymio robot14 . 9
2.5 The e-puck robot with the basic extension board [2] 9
2.6 Examples of e-puck extension boards: an infrared distance scanner(left) and turret

with three linear cameras (right) [2] . 10
2.7 The e-puck218 . 11
2.8 The Robobo robot [3] . 12

3.1 Graphs of the responses of personal classification on experience in using and
teaching ROS1 and 2, where 1 in the scale is no experience and 5 very experi-
enced. 16

3.2 Graphs of the responses classifying the importance to learn some topics in ROS . 20

4.1 Physical robot in its original configuration . 23
4.2 Final robot with all modifications applied . 24
4.3 Schematic of the Hardware Layout . 27
4.4 Hardware layout of the physical robot . 27
4.5 3D model of the robot in its original configuration 28
4.6 3D model of the robot with different versions of a frontal camera support in red -

(a); black - (b); and dark blue - (c) . 29
4.7 3D model of the robot with the final version of the support 30
4.8 Final camera support, in a virtual 3D model - (a); Split in half version for 3D

printing - (b); 3D printed version, with Raspberry and camera installed - (c) . . . 30
4.9 New location of the LiDAR board . 31

5.1 Software and Hardware structure . 33

6.1 Messages received from the Arduino and published by the RPi-Uno communica-
tion package . 41

6.2 Distance to the hand measured by the robot when it is at the same distance but
with the hand in lower position - (a); and upper position - (b) 41

6.3 Distance to the hand measured by the robot when the hand is close - (a); and when
it is far - (b) . 42

6.4 Terminal printed logs of the LiDAR program 43

B.1 Parent device with the vendor and product ID and serial number for the LiDAR . 61
B.2 Parent device with the vendor and product ID and serial number for the Arduino . 61

xv

xvi LIST OF FIGURES

B.3 New names assigned for the devices, written in blue 62

List of Tables

2.1 Mobile robots and their main features . 13

3.1 Average of the classifications gathered for each topic 19

4.1 List of Material of the robot . 25

5.1 Channels and their respective function . 38

xvii

xviii LIST OF TABLES

Abbreviations and Symbols

AI Artificial Intelligence
API Application Programming Interface
BLE Bluetooth Low Energy
CAD Computer-aided Design
CMOS Complementary Metal-Oxide Semiconductor
DC Direct Current
EOL End-of-Life
GDB GNU Debugger
GPS Global Positioning System
I2C Inter-Integrated Circuit
IDE Integrated Development Environment
IMU Inertial Measurement Unit
IO Input/Output
iOS iPhone Operating System
IR Infrared
LED Light-Emitting Diode
LiDAR Light Detection And Ranging
OS Operating System
PCL Point Cloud Library
PLA Polylactic Acid
RAM Random Access Memory
RF Radio Frequency
RGB Red, Green, Blue
RPi Raspberry Pi
ROS Robot Operating System
SD Secure Digital
SDK Software Development Kit
SPI Serial Peripheral Interface
TF Transform
ToF Time of Flight
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
VNC Virtual Network Computing
VPL Visual Programming Language
VSCode Visual Studio Code
Wi-Fi Wireless Fidelity
XML Extensible Markup Language

xix

Chapter 1

Introduction

1.1 Context

The use of robots and intelligent machines is growing exponentially, not only in the number of

possible applications, but in complexity as well. These technologies are proving to be effective in

solving some problems and in improving solutions in the industry such as manufacturing processes

and transportation.

According to K. Afasari and M. Saadeh [4], the increase in Artificial Intelligence (AI) interest

and development will have a significant impact in the future, leading to a substantial rise in the

creation of new jobs related to AI in the near future. To respond to this demand, the education

system needs to adapt in order to form engineers capable of working with AI.

The ever-growing appeal in robotics and AI robotics led to an appearance of a vast set of

tools and an endless quantity of information built by the constantly bigger community. One of the

biggest tools used in robotics is Robot Operating System (ROS) for robot programming. These

tools give access to a vast number of functionalities and have information available to consult.

However, sometimes this excess of information can make the learning process more difficult if not

taken the right progressive steps. Some of these tools are in fact, no easy task to start and difficult

to fully master.

That is why institutions must provide an efficient and effective way to teach how to use these

tools, being able to provide the support and the resources needed, and making the learning of these

subjects easier. Having a way for students to have better bases in robotics and AI robotics will not

only provide a better capability for development and comprehension in more complex problems,

since that is the tendency of evolution in robotics, but also increase the interest in exploring more

of what these tools can create.

One important resource to complement the teaching process in robotics is the use of physical

robots. By using physical robots, students have a closer experience on the interaction between soft-

ware/hardware and machine limitations, like memory and time constraints in the decision making

[5], giving the students a more approximated experience from a real world scenario, something

1

2 Introduction

that would be more difficult to achieve if they are limited to just using simulations. It also creates

an incentive to learn because students want to see what they create working properly [5].

1.2 Objectives

This dissertation had the objective to create a minimalist, low-budget mobile robot by adapting an

already existing mobile platform, meeting the requirements to be a capable machine for robotics

teaching using ROS1 and ROS2 in institutions like Faculty of Engineering of the University of

Porto (FEUP). To achieve this minimalist system, a camera-based robot was chosen. Vision sys-

tems are versatile because it is possible to do sensor virtualization by using image processing algo-

rithms. Using virtual sensors allowed to reduce the number of sensors required for an autonomous

robot, simplifying the electrical and mechanical complexity.

It also focused on the study and evaluation of robotics and ROS teaching. This study had the

purpose to understand how important the teaching of these subjects is and what topics and sections

about ROS are the most important to make the teaching more effective and easier to comprehend.

Finally, it was intended to create a small robot introduction guide to teach how to set up and

configure the environment to be ready to develop applications on the created physical system.

Some application demos were created and introduced in the tutorial as well, not only to validate

the robot’s concept but also to better comprehend the interaction between ROS and the physical

robot when doing the tutorial.

1.3 Document Structure

Chapter 1 introduces the work proposal, clarifying the context and motivation of the dissertation

along with its objectives. Chapter 2 explores the background knowledge required in ROS, and

depicts some robots developed for robotics. In Chapter 3, a detailed analysis of the results gathered

by the robotics and ROS questionnaire is discussed. In Chapter 4, an analysis of the used robot,

with an explanation of the modifications, hardware architecture, and material list, is provided.

Chapter 5, contains the software installation and environment configuration. It also details the

code and applications done for the robot. The Chapter 6 is for results and discussions. Here,

discussions about the physical robot, the programs developed, and the tutorial created for it, are

made. Finally, Chapter 7 summarizes the biggest contributions of the work and presents some

suggestions for possible future work to be made to improve the robot.

Chapter 2

Robot Operating System (ROS) and
robotics teaching platforms

This chapter has the purpose to explore some key concepts of the tools used, in particular, ROS.

It is also listed some existing robots built for research or learning purposes and a comparison

between all these systems is made at the end.

2.1 Robot Operating System (ROS)

As previously mentioned, ROS1, also known as Robot Operating System, is a powerful frame-

work for robotics development. It is an open source software that defines tools, interfaces and

components to construct advanced robots. It helps developers connect the actuators, sensors and

the control system using topics and messages.

In ROS [6], processes that performs computation are called nodes, and a system can contain

multiple nodes. Nodes communicate with each other by publishing messages in a topic. Topics are

buses to exchange messages, and it follows a publisher-subscriber pattern. Messages are the infor-

mation transmitted. Messages can be a standard data type (integer, boolean, etc.) or a composition

of other messages.

Briefly, in the publisher-subscriber pattern exists the ones that sends the information, called

publishers, and the ones that receives the messages, called subscribers. A publisher does not send

the information directly to a subscriber, but makes it available to everyone. The subscribers will

subscribe only to the publishers that their sent messages have interest to the subscriber itself.

In ROS, a node can publish and subscribe to multiple topics, and it iss possible to have multiple

subscribers and publishers for the same topic.

ROS also supports synchronous transactions, in a topology of client-server, called services.

Client-server means that a client node requests the specific information to another node, the server,

and the server then responds.

As for the programming languages, the more common ones are C++ and Python.

1https://www.ros.org/

3

https://www.ros.org/

4 Robot Operating System (ROS) and robotics teaching platforms

ROS organizes the software system into packages2. Packages are directories containing nodes,

independent libraries, configuration files or any other file or folder that constitutes a useful module.

This organization structure provides a piece of software that can be reused easily. It also helps to

partition the ROS software in smaller portions, allowing a better development and organization,

especially in development among multiple collaborators.

This framework also contains some features and tools that facilitate the development of soft-

ware systems.

One of them is the ability of generic logging and playback, called ROS bags. That means that

in ROS, a message stream can be recorded and saved to later be replayed.

Another tool offered by ROS is the roslaunch command. Launching multiple nodes one by one

is not a practical process, being very time-consuming and confusing. With roslaunch, it is possible

to launch all the nodes at a time contained in a specific extensible markup language (XML) file

which is read by the command.

Visualization and monitoring of programs can be done writing simple programs to subscribe

to topics, reading the data retrieved by that topic. However, ROS provides a visualization program

called rviz, which allows viewing of a large set of datatypes.

Multiple instantiations of a node or a cluster of nodes is also possible, by assigning a names-

pace when launching the program and ensuring that there are no name collisions, leading to not

being required to modify the code of the files.

With ROS, it is possible to work with a simulated robot that represents the real machine,

making it easier and faster to test the devoped programs. It also supports hardware interfaces for

most of the components like cameras and motor controllers.

Currently, there are two versions of ROS, ROS1 and ROS2, each one containing multiple

distributions. The first version of ROS is reaching its End-of-Life (EOL) state, meaning that

eventually it will no longer be maintained, and ROS2 will be the only maintained one.

ROS2 is especially interesting due to the fact that it supports MicroROS, a variant of ROS

capable to run natively on embedded microcontrollers running real-time operating systems.

2.1.1 ROS1 teaching material

ROS1 contains a vast quantity of information and examples dedicated to teaching purposes.

There is the official ROS documentation, called "ROS wiki"3 that explains and exemplifies

some concepts and teaches how to use some tools. There is also information to build simple

programs.

Regarding books, one of the most famous is "A Gentle Introduction to ROS", also known as

"agitr", and written by Jason M. O’Kane4. This book addresses initial ROS topics in a simple and

very well explained way.

2http://wiki.ros.org/Packages
3http://wiki.ros.org/Documentation
4https://jokane.net/agitr/

http://wiki.ros.org/Packages
http://wiki.ros.org/Documentation
https://jokane.net/agitr/

2.2 Examples of robots suited for AI Robotics 5

One of the advantages of ROS is its big community and industry adhesion. That created a big

online community, building a big network of educative material containing information regarding

various questions and applications.

2.1.2 ROS2 teaching material

With the End-of-Life of ROS1, there is a flow of ROS1 users passing to this later version. However,

this conversion is moving slowly and there is not as much teaching content available created by

the community. Just as in ROS1, ROS2 has official documentation5 explaining concepts and

commands and has tutorials to learn ROS2 using simple examples.

Regarding books, it was suggested by a questionnaire that will be discussed in a later chapter

"A Concise Introduction to Robot Programming with ROS2", written by Francisco Martín Rico6.

However, at the time of writing this document, the book is not yet available.

2.2 Examples of robots suited for AI Robotics

Robots consist of three main components: Actuators, Sensors and Control Systems. Briefly, actua-

tors are components responsible for the movement, for example, a motor. Sensors are components

that obtain information from the real world, like reading the temperature in a room. The con-

trol system is responsible to process the information obtained by the sensors, and controls the

actuators. For example, a command to turn on the fan when the read temperature is above 30ºC.

There are many types of robots suitable for many applications. One of the most common types

of robots are the manipulator robots, very useful in the manufacturing industry in tasks like pick-

and-place and cutting, screwing, and so on. Another common type of machines are the mobile

robots, with increasing use in storage and transportation systems, like warehouses.

Looking at the work of F. Bellas et al.[7], the purpose was to create an educational robot to

be used in a robotics subject. Their approach was to produce a low-cost robot so that institutions

could afford a decent quantity of them to have multiple robots at the student’s disposal, being able

to work in a small group and have a stronger interaction with the real machines. They also had

attention in creating a long-term duration mobile robot so it doesn’t get outdated quickly, by being

able to update the robot in software and hardware aspects. Another important feature they had in

consideration was the use of various sensors and actuators, as well connectivity features, adding

robustness and functionalities to the robot.

Another important aspect given by Francesco Mondada et al. [2] work, is that a robot should

have a small size. Also, the information about the robot needs to be open, and using open source

material for the robot is one way to accomplish this goal. All those three aspects provide a better

experience to the student/developer, making the development less complex and confusing, facili-

tating the learning, and speeding the project’s conclusion.

5https://docs.ros.org/en/foxy/index.html
6https://www.routledge.com/A-Concise-Introduction-to-Robot-Programming-with-ROS2/

Rico/p/book/9781032264653

https://docs.ros.org/en/foxy/index.html
https://www.routledge.com/A-Concise-Introduction-to-Robot-Programming-with-ROS2/Rico/p/book/9781032264653
https://www.routledge.com/A-Concise-Introduction-to-Robot-Programming-with-ROS2/Rico/p/book/9781032264653

6 Robot Operating System (ROS) and robotics teaching platforms

Next will be presented some examples of robots targeting different levels of expertise.

2.2.1 BulbRobot

The BulbRobot [1] is a simple robot based on the Whaveshare AlphaBot 27. It uses a camera and a

chrome-plated light bulb, making it a mirror. Having the camera on the base of the robot pointing

to the mirror part of the bulb (the bulb is centered and elevated from the camera) creates an om-

nidirectional vision to the robot. Figure 2.1 shows the robot to better understand the construction.

The bulb is fixed and elevated by a support with four legs and offers adjustable height, so it can be

easier to adjust to the ideal height. The robot despite being simple in terms of hardware, the vision

system provides flexibility making the BulbRobot capable of executing various applications.

The Alphabot 27 is a two-layer structure (one on top of the other) and uses the Raspberry Pi

(RPi) Computer. More precisely, the BulbRobot used the RPi3 Model B+. The base board has

two infrared (IR) sensors for obstacle avoidance, five IR sensors for line tracking, and it has an

interface for an attachable ultrasonic sensor. As actuators, it has four Red, Green, Blue (RGB)

Light-Emitting Diodes (LED)s and two direct current (DC) motors. The upper base is used to

connect the RPi and has a joystick, an IR receiver, a servo-motor interface, and a buzzer. Besides

these sensors, the robot uses a camera, as previously mentioned. The exact model is the Raspberry

Pi Camera Module (B) Revision 2.0.

The price of the whole system is not referred on the article. However, the price of the Al-

phabot2, not including the Raspberry Pi3, is around 80C at the time of writing this document8. As

for the RPi, its cost is around 42C9.

Figure 2.1: The BulbRobot (3D software model) [1]

7https://www.waveshare.com/wiki/AlphaBot2-Pi
8https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-raspberry-pi-3-n-o-inclu-a-raspberry-pi.

html
9https://www.botnroll.com/pt/placas-controladoras-e-kits/2482-raspberry-pi-3-model-b-bcm2837b0.

html

https://www.waveshare.com/wiki/AlphaBot2-Pi
https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-raspberry-pi-3-n-o-inclu-a-raspberry-pi.html
https://www.botnroll.com/pt/kits-para-montagem/2709-alphabot2-plataforma-rob-tica-m-vel-compat-vel-com-raspberry-pi-3-n-o-inclu-a-raspberry-pi.html
https://www.botnroll.com/pt/placas-controladoras-e-kits/2482-raspberry-pi-3-model-b-bcm2837b0.html
https://www.botnroll.com/pt/placas-controladoras-e-kits/2482-raspberry-pi-3-model-b-bcm2837b0.html

2.2 Examples of robots suited for AI Robotics 7

2.2.2 Mona

Mona10 [8] is a low cost, open source mobile robot developed for both teaching and research

purposes based on the ATmega328 microcontroller.

For actuators, Mona has two DC motors with magnetic encoders to provide movement to the

machine. As for sensors, it is equipped with five IR proximity sensors. The low base quantity of

hardware equipment is to make the Mona a low cost and modular robot. A variety of sensors can

be added using expansion boards. An expansion board including a RPi Zero was designed to add

more processing power to Mona.

It supports three communication methods as default: Universal Synchronous/Asynchronous

Receiver/Transmitter (USART), Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI).

With an add-on board, it is possible to add Wireless Fidelity (Wi-Fi), Bluetooth or Radio Fre-

quency (RF).

Regarding software, to program Mona, it can be used Arduino. However, pure C or C++, Java,

Pascal, Basic and Assembly can be used as well.

A simulation of the robot is available in Stage, an open-source software for the simulation of

mobile robot groups in a 2D environment. The Figure 2.2 presents the Mona robot.

The base price of this robot is about 118C according to the robot’s article and the exchange

rate at the time of writing this document (the original price is in pounds (£)). Although the price of

the extension boards was not specified, the low cost of the base robot and the existence of multiple

boards concludes that these might not be included in the 118C price range.

Figure 2.2: The Mona robot10

2.2.3 Khepera IV

The Khepera IV11 [9], shown in Figure 2.3, is the fourth iteration of the Khepera series. It is a

small mobile robot designed for indoor applications.

This robot is equipped with twelve IR sensors, eight around the robot and four downward-

facing, five ultrasound sensors, an Inertial Measurement Unit (IMU), that is, an accelerometer and

10https://uomrobotics.com/robots/mona.html
11http://www.k-team.com/khepera-iv

https://uomrobotics.com/robots/mona.html
http://www.k-team.com/khepera-iv

8 Robot Operating System (ROS) and robotics teaching platforms

a gyroscope, two microphones and a color Complementary Metal-Oxide Semiconductor (CMOS)

camera with a resolution of 752x480. It has two DC motors with encoders to provide movement

to the machine, three RGB LEDs and a speaker as actuators. For connectivity, it possesses Wi-Fi

and Bluetooth.

The Khepera functionality can be extended using the Universal Serial Bus (USB) or Bluetooth

to connect to other devices, or using custom boards using a communication bus. The bus provides

power, I2C, SPI, serial, USB and other more specific lines. Some examples of these boards include

a gripper or a laser range finder. Besides the official boards, exists some 3rd party ones as well

that provide other functionalities to the robot.

As for the processing power, the robot uses an embedded computer called Overo FireSTORM

COM from Gumstix, running GNU/Linux. It also has a microcontroller (dsPIC33FJ64 GS608)

that has the function to control the hardware.

Finally, for software, libraries for the robot are available. As for the programming languages,

it supports C/C++ and python.

Regarding the price, official retailers available on the official Khepera website sell it for

3240C12. The extension boards are not included in the pack contents.

Figure 2.3: The Khepera IV11

2.2.4 Thymio

Thymio13 [10] is a low cost mobile robot, presented in Figure 2.4. Regarding sensors, Thymio is

equipped with seven proximity sensors, two infrared sensors pointing to the ground, an accelerom-

eter, a thermistor, a microphone, five capacitive touch buttons and an infrared remote control re-

ceiver. It also has 39 LEDs, two motors for the wheels and a speaker as actuators. The robot

includes a memory-card slot, a USB connection and a trailer hook as well. A wireless version of

Thymio is available and includes the wireless module and a USB dongle.

For software, Thymio uses Aseba, which is a programming environment. For PC, Aseba has an

Integrated Development Environment (IDE) that supports Visual Programming Language (VPL),

a script language, and Blockly. Aseba also supports ROS using the asebaros bridge.

12https://www.generationrobots.com/en/402241-khepera-iv-mobile-robot.html
13https://www.thymio.org/

https://www.generationrobots.com/en/402241-khepera-iv-mobile-robot.html
https://www.thymio.org/

2.2 Examples of robots suited for AI Robotics 9

The normal version robot is listed for 151.75C14, while the wireless version cost 195.42C15.

Figure 2.4: The Thymio robot14

2.2.5 E-puck and e-puck2

The e-puck16 [2] is a small mobile robot that offers a base set of sensors, actuators and capabil-

ities. However, this robot allows expandability of features, sensors and actuators using physical

extension boards, making it suitable for a wider range of applications. Figure 2.5 shows an e-puck

robot.

Figure 2.5: The e-puck robot with the basic extension board [2]

The base of the e-puck contains eight infrared proximity sensors, an 3D accelerometer (with

later versions also having a 3D gyroscope17), three microphones and a color CMOS camera with

a resolution of 640x480. As actuators, it is equipped with two stepper motors used for the robot

movement, a speaker, eight red LEDs, and a set of green LEDs around the body. It also has

one stronger red LED next to the camera. Looking at the connectivity, it supports RS232 serial

communication and Bluetooth.

14https://www.generationrobots.com/en/401213-mobile-robot-thymio-2.html
15https://www.generationrobots.com/en/402337-wireless-thymio.html
16http://www.e-puck.org/
17https://www.gctronic.com/doc/index.php/E-Puck

https://www.generationrobots.com/en/401213-mobile-robot-thymio-2.html
https://www.generationrobots.com/en/402337-wireless-thymio.html
http://www.e-puck.org/
https://www.gctronic.com/doc/index.php/E-Puck

10 Robot Operating System (ROS) and robotics teaching platforms

The basic version includes a default extension board in which contains an infrared remote

control receiver, an RS232 connector, a speaker, a reset button and a 16 positions rotary switch.

There are more extensions available for the robot. Some examples are an extension with a turret

with three linear cameras, a rotating scanner equipped with infrared or three analog sensors to

measure the ground color. Figure 2.6 shows some examples of the extension boards.

Regarding software, it is provided a bootloader to program the robot via Bluetooth, a library

to drive the hardware and a monitor for remote control of the e-puck with a computer.

The e-puck is supported in various simulator environments, some of them being Webots and

Enki.

Figure 2.6: Examples of e-puck extension boards: an infrared distance scanner(left) and turret
with three linear cameras (right) [2]

A second generation of the e-puck, called e-puck218 is already available, improving some

features while adding others. Figure 2.7 presents this robot.

Regarding sensors19, it is still used the same IR sensors and it was added a Time of flight (ToF)

sensor, on the IMU it was added a 3D magnetometer, it has one more microphone (four in total)

and the camera is still the same. The IR receiver and the 16 positions rotary switch are the same,

but now are available on the robot itself and not on the extension board. As for actuators it uses the

same 2 stepper motors, it still has one speaker, and the red LEDs are reduced to four, but four RGB

LEDs were added. For communication, it was added Wi-Fi and Bluetooth Low Energy (BLE).

The extension boards developed for the first generation of the e-puck are all compatible with

the e-puck219.

As for these robots prices, both versions can be found for around 878 euros, with the extension

boards sold separately20.

18https://www.gctronic.com/e-puck2.php
19https://www.gctronic.com/doc/index.php/e-puck2
20https://www.gctronic.com/shop.php

https://www.gctronic.com/e-puck2.php
https://www.gctronic.com/doc/index.php/e-puck2
https://www.gctronic.com/shop.php

2.2 Examples of robots suited for AI Robotics 11

Figure 2.7: The e-puck218

2.2.6 Robobo

Robobo21[7, 3], shown in Figure 2.8, is a mobile robot formed by a wheeled base and a smart-

phone. Regarding actuators, its base is equipped with four motors, two of them responsible for

the robot movement and the other two to allow movement of the smartphone, being able to tilt

and pan. It also has seven RGB LEDs. Looking at the sensors, each motor contains an encoder.

The robot also has eight infrared sensors, some of which are pointing to the ground. So, these

sensors can be used for object detection, fall avoidance, and ambient light sensing. The base has a

microcontroller responsible to control the existing hardware of the base, as well carry other simple

tasks and calculations.

Besides the existing equipment in the base, the robot can also use several sensors and func-

tionalities present on the smartphone, such as cameras, gyroscope, accelerometer, magnetometer,

Global Positioning System (GPS), microphone, speakers, tactile display, connectivity via WI-FI,

4G and Bluetooth and so on. The range of capabilities will vary depending on the smartphone

used. The smartphone is responsible to execute the more complex computing tasks.

Regarding software, they developed a framework in Java that allow users the creation of cus-

tom apps in Android. A framework using Swift is also available for iPhone Operating System

(iOS) devices. The framework supports programming languages for beginners, intermediate and

advanced users. For beginners, block programming is available, using Scratch or their own IDE

using Blockly. For intermediate and advanced users, the programming languages Python and ROS

are supported by the robot.

A simulated version of the robot is also available and can be used in Gazebo and V-Rep simu-

lators.

The base of the Robobo is available to purchase at their website, offering options to buy a

single or in a pack with accessories. The unitary price is 399C, while the four robot pack is

1399C22.

21https://theroboboproject.com/en/
22https://theroboboproject.com/en/shop/

https://theroboboproject.com/en/
https://theroboboproject.com/en/shop/

12 Robot Operating System (ROS) and robotics teaching platforms

Figure 2.8: The Robobo robot [3]

2.2.7 Robots Comparison and conclusions

To better evaluate and compare the existing robots, and to look at the advantages and disadvantages

of each one, the table 2.1 was made. It presents the more relevant features of the robots, mainly

the equipment and the price of each machine. For more information about each robot, check the

respective robot section.

It is important to clarify that the values correspond to the price attributed on the official sites,

or in stores indicated by them. If no robot purchase was found online, the price shown is the

one presented in the conference papers and articles about these robots. In those cases, the price

might be outdated. It should also be noted that the cost does not include taxes for transportation

or any other additional payment required, and the listed price corresponds to the one presented

by the websites and stores at the time of writing this document. Also, some of the prices were in

other currencies and were converted to euros, meaning that the price can vary depending on the

conversion rate.

When comparing the robots it is possible to check that most of them do not accomplish the

requirements established. The problem is that some robots are too simple, being very limited in

functionalities and processing capacity, or they are well equipped but the cost is too high. Also,

some robots have a huge amount of sensors and actuators, which leads to higher complexity either

in electrical and mechanical levels. Few robots are equipped with a camera, and most of those use

a low quality one, mostly because of the limited processing power that is not able to handle high

resolution cameras.

Vision systems are becoming more common, not only because the system’s processing power

is increasing to the point where it is possible to handle high quality images at high frame rates, but

also due to the flexibility and capabilities a camera provides. A robot using a high quality camera

is a good concept mostly because it is possible to create virtual sensors from the image captured,

while at the same time it reduces the electrical and mechanical system complexity, making it

23https://www.generationrobots.com/fr/402241-robot-mobile-khepera-iv.html
24https://theroboboproject.com/en/shop/

https://www.generationrobots.com/fr/402241-robot-mobile-khepera-iv.html
https://theroboboproject.com/en/shop/

2.2 Examples of robots suited for AI Robotics 13

Table 2.1: Mobile robots and their main features

Robot Model Controller/Computer Sensors Actuators Price (C)

BulbRobot (2.2.1) Raspberry Pi 3 B

2 obstacle avoidance IR;
5 line tracking IR;
1 Ultrasonic;
1 IR receiver;
1 joystick;
1 camera;

2 DC motors;
4 RGB LEDs;
1 servo-motor;
1 buzzer;

122(a)

Mona (2.2.2) ATmega 328
5 proximity IR;
2 magnetic encoders;

2 DC motors; 118(b)

Khepera IV (2.2.3)

Gumstix Overo
FireSTORM COM;

dsPIC33FJ64 GS608;

12 IR;
1 IMU;
2 microphones;
1 camera;

2 DC motors;
3 RGB LEDs;
1 speaker;

3240(b)23

Thymio (2.2.4) Microchip PIC24F

7 proximity IR;
2 line tracking IR;
1 accelerometer;
1 thermistor;
1 microphone;

2 DC motors;
39 LEDs;
1 speaker;

151.75(c)

E-puck (2.2.5) Microchip dsPIC30F6014A

8 proximity IR;
1 accelerometer;
1 gyroscope(later versions);
3 microphones;
1 camera;

2 stepper motors;
1 speaker;
9 red LEDs;
Set of green LEDs;

878(b)

E-puck2 (2.2.5) STM32F407

8 proximity IR;
1 ToF;
1 IMU with magnetometer;
4 microphones;
1 camera;
1 IR receiver;
1 rotary switch;

2 stepper motors;
1 speaker;
5 red LEDs;
4 RGB LEDs;
Set of green LEDs;

878(b)

Robobo (2.2.6)
PIC32 based;
Phone processor(d);

4 motor encoders;
8 IR;
Phone sensors(d);

2 movement motors;
2 phone support motors;
7 RGB LEDs;
Phone actuators;(d)

39924

a This price only includes the Alphabot2 and RPi3. The cost for the structure and other materials required
were not specified.

b Price does not include the extension boards.
c Price shown is for the non wireless version.
d Depends on the phone model.

minimalist. The BulbRobot (2.2.1) is a great example of a low-cost, minimalist, camera-based

mobile robot.

This study and comparison only picked a very small amount of existing platforms. In the work

done by A.Fernando Ribeiro and Gil Lopes[11] a more complete list of different robots was made.

It is also possible to check some existing robotics competitions and events that occur around the

14 Robot Operating System (ROS) and robotics teaching platforms

world.

2.3 Summary

This chapter presented some important characteristics and functionalities of ROS. It was explored

how it works, how it is structured and some additional features this tool contains to program robots.

It also described and compared various robots to provide a better notion of the existing options.

Chapter 3

Questionnaire Results

During this dissertation, a questionnaire was sent to some Professors and researchers with some

experience in robotics about the teaching of robotics and ROS1/ROS2. The form sent can be

seen in appendix A. The summary of the results of this questionnaire is supported by all six

responses gathered. Since not all questions were answered by everyone, for each one, the number

of responses will be referred, if relevant.

The summary of the survey is divided into a series of subsections, where each one represents

the questions asked, and contains a summary of the answers followed up by a small discussion of

the results where appropriate.

Before starting to analyze and discuss the questions, it is important to note that there are no

right or wrong answers. These answers come from the opinion and experiences of each respondent

and those depend on what worked best for them. The discussion made also is an opinion of the

gathered results and therefore, it should not be considered the absolute truth.

3.1 Classification of experience in ROS use and teaching

To better comprehend and analyze the level of capabilities and experience not only in the tools

but also in teaching with those, it was made a question where was asked to classify how well they

know both ROS1 and 2 and how experienced they are in teaching these tools. These questions

used a scale from 1 to 5, where 1 corresponds to no experience and 5 means very experienced.

The obtained results are presented in figure 3.1 with the answers gathered by all six respon-

dents represented by a graph, where 3.1a presents the proficiency level in ROS1 and 3.1b the

teaching experience on this tool, and the same can be seen in 3.1c and in 3.1d but for ROS2.

Analyzing the graph, it is ensured that there is always at least one person who has experience

in a version of ROS and in teaching with the tool. Doing a further analysis of the answers given by

each respondent, only one person does not have any skills both in teaching and using both versions

of ROS, while the rest of the people are experienced in using and teaching at least one of these

tools.

15

16 Questionnaire Results

The results of these questions are very important to better analyze the following people’s

answers and opinions regarding the tools. The use and teaching of these tools require practice, and

the better the experience in these fields, the stronger the opinion is about ROS and how it should

be used and taught.

(a) Proficiency in the use of ROS1 (b) Teaching experience in ROS1

(c) Proficiency in the use of ROS2 (d) Teaching experience in ROS2

Figure 3.1: Graphs of the responses of personal classification on experience in using and teaching
ROS1 and 2, where 1 in the scale is no experience and 5 very experienced.

3.2 Robotics teaching course and academic level

It was also asked about the course and what academic level the respondents teach robotics.

Of the six people, five answered. Of those, four teach robotics in Electrical Engineering, one

in Informatics Engineering, and one in Industrial Informatics and Robotics Master. As for the

academic levels they teach, two of them teach in Bachelor’s degree, four teach in Master’s degree,

four in a Doctoral degree, and one teaches robotics in Summer School. It is important to refer that

there are more responses than people, meaning that some of them teach in more than one course

and/or at more than one academic level.

3.3 Is teaching robotics with ROS important? Why?

For this question, five people said yes and only one said no.

The ones that said yes justified with it being the main industry standard, being free and open

source, and having a good integration with other tools. It also is well documented, containing a

big amount of learning material and simplifying the knowledge transmission. Finally, it provides

better visualization of how the main robotics components interact with each other.

3.4 Is teaching ROS2 relevant? Why? 17

As for the no response, the justification is based on the teaching of a lot of robotic concepts

that can be taught without the need of ROS.

Despite the disagreeing response not being invalid, it is a fact that ROS is a relevant tool in the

industry1, as verified by the overall responses. Having some knowledge of this type of robotics

programming is relevant because it gives students a better formation if they learn what is most

likely to use in the real world.

3.4 Is teaching ROS2 relevant? Why?

Just like the previous question, five people agreed and one disagreed.

The justifications given by the people who said yes consist of the fact that ROS2 is becoming

more relevant due to the ROS1 End-of-Life (EOL) increasing the use of the later version, and

eventually will be the official standard in most of the industry. Teaching obsolete technologies and

standards does not prepare students for the real world. Also, it was also said that the ROS2 is more

reliable and stable than the previous version.

Who said no, justified with the response of the previous question, that is, ROS is not needed

to teach robotic concepts.

It is a fact that ROS1 is reaching his EOL. However, this version continues to have a strong

community and market influence, so it is not obsolete at all. There is a lot of information available

and applications developed that still use the first version ROS. Also, some concepts are transversal

to both versions. So, despite the growing use of ROS2, having some knowledge of the previous

version might be useful as well, at least while the last distribution of ROS1 is still maintained.

3.5 Do you consider it important to work with real robots when teach-
ing robotics? When teaching ROS? Why for robotics and why for
ROS?

In this question, everyone agreed that it is important to use physical robots to teach robotics. Stu-

dents can gain some mechanical and electronic skills, as well low-level and firmware programming

skills, helping them to realize how important all of these skills really are for robotics development.

It gives a better understanding of how each component of the system works and can even moti-

vate students by observing the results physically instead of using just a simulation. It also better

prepares students for the industry.

Although not everyone responded to the ROS questions, the ones they did agree on as well

since it is important to deal with parts of the systems and better prepare students for the real-world

industry.

Physical robots are important tools that assist the student’s formation. Improves the teaching

by approximating to real-world applications, since physical systems are used most of the time

1https://www.analyticsinsight.net/top-10-ros-based-robotics-companies-to-know-in-2022/

https://www.analyticsinsight.net/top-10-ros-based-robotics-companies-to-know-in-2022/

18 Questionnaire Results

in the industry, and provides the acquisition of mechanical and electronic skills, giving a better

understanding of how the whole system works. It also motivates them to work because they want

to see practical results.

3.6 Between C++ and Python, which one do you consider more im-
portant to teach ROS with? Why?

This question only got five answers.

Some responses suggested that there is no more relevant language for ROS, saying that C++

is better for certain applications, while Python is better for others. Python can be used for basic

concept teaching and rapid prototyping, while C++ is considered more suitable for more advanced

applications.

On the other hand, some respondents considered Python language better for ROS teaching,

due to its simplicity, for being a more structured language, or for having more external libraries

for robotics, such as Machine Learning or Computer Vision as examples.

Both languages are important. However, the choice of the language depends on the program-

ming knowledge in one over the other, and the type of application to be developed. Python can be

used for more simple programs and when execution performance is not important, while C++ is

more relevant for more complex applications, mainly where performance is a big factor2. Since

robotic applications are usually real-time systems that require fast information processing and ac-

tion execution, and they might contain heavy programs running in multiple threads, then C++

might be the best language for this type of work.

3.7 Do you consider any topic(s) of the book irrelevant (or less rele-
vant) to a first introduction to ROS? Which one(s)?

This question is related to the topics discussed in the book "A Gentle Introduction to ROS" written

by Jason M. O’Kane3.

This question got five responses, in which four people responded that all topics are impor-

tant and relevant for robotics, with one also referring that the level of depth of each topic in the

book might not be necessary for a first contact with ROS. One person responded that chapter 9,

Recording and replaying messages, is not very important for robotics.

The low number of responses to this question demonstrates how well this book introduces

ROS.

2https://roboticsbackend.com/python-vs-cpp-with-ros/
3https://www.cse.sc.edu/~jokane/agitr/

https://roboticsbackend.com/python-vs-cpp-with-ros/
https://www.cse.sc.edu/~jokane/agitr/

3.8 Classify how important you think the following topics of ROS are for teaching of ROS at an
introductory level. 19

3.8 Classify how important you think the following topics of ROS are
for teaching of ROS at an introductory level.

The purpose of this question was to gather some other topics that are only briefly talked about,

or not talked at all by the book referenced by the previous question, and asked to classify the

importance to teach these in an introductory level of ROS. Those were Integrated Development

Environment (IDE) for ROS, utilization of GNU Debugger (GDB) (attach to process), actions

servers/clients, ROS Transform (TF), Rviz, simulation 2D/3D and runtime parameters.

Relatively to the answers, there were six, but not all topics have six classifications, having

some with only five responses. After a more in-depth analysis of answers, it was found that the

respondent that did not classify all the topics is the one with no experience in both versions of

ROS and, since this question is specific for ROS, it was decided to invalidate the classification

attributed to the topics that he answered.

Figure 3.2 presents the graphs of the classifications given to each topic. Each topic was clas-

sified on a scale from 1 to 5, where 1 corresponds to saying that it is not important, and 5 it is a

very important topic to learn in ROS.

To better analyze the classification attribution of each suggested topic, the average was calcu-

lated. Table 3.1 shows the topic and the resulting average, ordered from highest to lowest. With

that, it can be considered that the highest ones are the topics considered more important, and the

lowest ranking one the least important.

Analyzing the data, it is safe to say that in general, each topic was considered relatively im-

portant to teach, ones more than the others, but nothing had a bad classification.

Table 3.1: Average of the classifications gathered for each topic

Topic Average
Rviz 5
Simulation 2D/3D 4,6
TF 4,4
IDE for ROS 4
Actions servers/clients 3,8
Runtime Parameters 3,8
GDB (attach to process) 3,4

In fact, all of these topics have their own importance when developing ROS programs. Not

only expands the knowledge on ROS capabilities, allowing the creation of different applications,

but also can speed up the development and testing process of the programs. Rviz and TF are

really important topics to learn since they aid in the application development and are basic tools

for robotics and ROS. The IDE for ROS is also important, especially for starters, so they can have

a stable development platform with supporting tools for program development. An example tool

is GDB to provide faster testing and error identification.

20 Questionnaire Results

(a) IDE classification
(b) Utilization of GDB classifica-
tion

(c) Actions servers/clients classifi-
cation

(d) TF classification (e) Rviz classification
(f) Simulation importance classifi-
cation

(g) Parameters classification

Figure 3.2: Graphs of the responses classifying the importance to learn some topics in ROS

3.9 Besides the topics of the previous question, which topics do you
consider the book is lacking?

This question had the objective to check possible suggestions of the respondents on other important

topics in ROS.

It got three answers, one being a simulation topic, but this one is already referred on the

previous question, another answer was a chapter for important libraries that exists for ROS such

as OpenCV, MoveIt, Point Cloud Library (PCL), among other, and the last one was the addition

of some real case examples.

As for the others who did not answer, it was assumed that they did not consider any other topic

important than the ones presented.

These suggestions are good ones since the given examples are usually simple and represent

fictional cases with the only purpose to teach and show ROS concepts. Real case examples allow

a better perception of how certain programs work and also provide a better understanding of when

it does make sense to apply certain knowledge acquired in a certain situation. Having a topic ded-

icated to important, commonly used libraries is also useful, especially for a better understanding

of how to use them.

3.10 Do you have any suggestions about books, guides or videos for ROS? 21

3.10 Do you have any suggestions about books, guides or videos for
ROS?

This question also had the purpose to collect suggestions of informative and educative material for

ROS.

One person said that both ROS wiki and Answers should be enough in most cases, but it tends

to not be updated as frequently as it should. He also mentioned that the Git Issues of the main

packages are also a good place to find more information about specific packages.

The other answer recommended "A Concise Introduction to Robot Programming with ROS2"

book, written by Francisco Martín Rico4.

3.11 Summary

The objective of this questionnaire was to check how important and relevant is considered robotics

and ROS teaching from the perspective of those who have experience in these subjects and to

understand what helps to have a more efficient and enriching learning experience.

The first few questions were important to provide a clearer picture of what formation areas

and in what academic levels ROS and robotics teaching have greater influence. It was possible

to understand that most people that teach robotics have knowledge in ROS and teach it to their

students. This demonstrates the importance this tool has in student’s formation in robotics.

Most people consider ROS2 relevant and even consider that this version is the logical evolution

both of the tool and the industry.

Also, it is possible to conclude that everyone thinks that physical robots are a must in robotics

teaching since it enriches the student’s robotics formation with the acquisition of other skills be-

sides robotics programming.

Regarding the programming language, there is a clear division in what is better for robotics

teaching. However, this question also depends in what are the teaching objectives and what is the

type of programs and applications pretended for the students to develop.

Lastly, on the book question, since most of the respondents did not eliminate anything regard-

ing the book contents, it demonstrates how well made it is for ROS introduction, approaching the

core concepts. However, with the follow-up question (classification of the importance of other

ROS topics) it is possible to analyze that there are other topics considered important, and these are

only briefly referred, or not referred at all, on the book’s contents.

4https://www.taylorfrancis.com/books/mono/10.1201/9781003289623/
concise-introduction-robot-programming-ros2-francisco-mart%C3%ADn-rico

https://www.taylorfrancis.com/books/mono/10.1201/9781003289623/concise-introduction-robot-programming-ros2-francisco-mart%C3%ADn-rico
https://www.taylorfrancis.com/books/mono/10.1201/9781003289623/concise-introduction-robot-programming-ros2-francisco-mart%C3%ADn-rico

22 Questionnaire Results

Chapter 4

The Physical Robot

In this chapter, a detailed analysis of the robot used in this dissertation is provided. Firstly, the

robot is briefly described, then its materials are listed and the hardware architecture of the machine

is analyzed. Finally, the modifications done to the robot are explained.

The files created that are referred in this section are available on a Github repository1.

4.1 The Robot and its Hardware

For this dissertation, a robot was not built from scratch, but rather utilized one that was already

built, proceeding with the required modifications to meet the established requirements. The differ-

ential robot presented in the figure 4.1 was originally designed by Professor and researcher Paulo

José Cerqueira Gomes da Costa2 with the purpose of being a support tool in robotics teaching.

It is currently used in Autonomous Systems3, a curricular unit in the second year of the Master’s

degree in Electrical and Computer Engineering at the Faculty of Engineering, University of Porto

(FEUP).

Figure 4.1: Physical robot in its original configuration

1https://github.com/AlexMiranda16/DissertationFiles
2https://sigarra.up.pt/feup/pt/func_geral.formview?p_codigo=211795
3https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=485759

23

https://github.com/AlexMiranda16/DissertationFiles
https://sigarra.up.pt/feup/pt/func_geral.formview?p_codigo=211795
https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=485759

24 The Physical Robot

This robot underwent some modifications, namely the attachment of a camera pointing down

and the respective support, the upgrade of the Raspberry Pi, and the change of the layout to ac-

commodate the added material. These changes will be explained and justified in more detail later

in the chapter. The final robot is displayed in the figure 4.2.

Figure 4.2: Final robot with all modifications applied

4.1.1 List of Material

All of the material listed in table 4.1 was already with the original robot received, with the ex-

ception of the Raspberry Pi4 4 Gigabytes (GB) version (which replaces the Raspberry Pi3 of the

original robot), the USB-C cable and the camera. The reasons for adding these new materials will

be explained later in this chapter. As for the rest of the material already provided in the original

robot, it will not be discussed in detail, since it was already chosen and is out of the scope of this

dissertation. In table 4.1, besides the material and its quantities, it also shows the price of each one.

It should be noted that the cost does not include taxes for transportation or any other additional

payment required, and the listed price corresponds to the one presented by the websites and stores

at the time of writing this document. Also, some of the prices were in US$ and were converted to

euro, meaning that the price can vary depending on the conversion rate. The total cost of the robot

is 428,59C.

The motors utilized are 12V (Volt) DC motors equipped with a metal gearbox and an encoder

providing a resolution of 2797 counts per revolution (CPR) of the gearbox output shaft. The

encoder works at 5V.

The Motor Driver Shield chosen is a board compatible with the Arduino board and can control

two bidirectional DC Motors. This board operates at a range between 5V and 28V and can deliver

3Ampere (A) continuous per channel.

4.1 The Robot and its Hardware 25

Table 4.1: List of Material of the robot

Material Quantity Product Name Cost (C)

Motor with encoder 2
Gear Motor w/Encoder,
No.GB37Y3530-12V 251R

25.37 (each)5

Motor Driver Shield 1 Pololu Dual MC33926 74.306

Micro Controller 1 Arduino Uno + USB-A to USB-B cable 17.107 (a)

Arduino Screw Shield 1 Arduino Screw Shield V2 6.648

Step-Down Converter 1 HCJ–IPM–V2 3.449

Battery 1
Hacker TopFuel LiPo 20C ECO-X
2400mAh 4S MTAG

49.8210

Light Detection And Ranging
(LiDAR)

1 YDLIDAR X4 79.3011

Camera 1 200º , 5MP fisheye camera - JOY-IT 40.2012

Raspberry Pi 1 Raspberry Pi 4 Model B (4GB version) 63.9013

Memory Card 1 32GB Micro-Secure Digital card (SD) 5.6014

3D printing filament 1 1 kg Roll - Devil Design 20.2015 (b)

Other material x Wires, solder, screws, button, etc 15(c)

USB-A to USB-Micro cable 1 1.1016

USB-C cable with no end connector 1 3.6517

Micro-USB cable with no end connector 1 3.2018

TOTAL 428.59
a The selected Arduino already comes with an USB type A to USB type B cable.
b Due to the fact that most of the robot structure is 3D printed, it is not possible to determine the total

quantity of material required to be printed. However, 1 kg of filament should be enough to print all
pieces. The printed pieces for this dissertation (camera support and RPi4 case) utilized a total of
around 200 grams of material. In this case, the pieces were printed with Polylactic Acid (PLA)+
filament, but other materials can be used.

c The value assigned to this material is not exact. It is only an estimate with a margin of error.

The Arduino Uno4 is a famous micro-controller commonly used in small electronics and

robotics projects. It is based on the ATmega328P with a clock speed of 16 MegaHertz (MHz)

and has 14 digital pins and 6 analog pins.

The step-down converter is a DC to DC converter, with the output voltage adjustable from

1.25V to 35V, and a maximum output current of 3A.

The battery operates at 14.8Volts with a capacity of 2400mAh. It contains 4 cells and a voltage

indicator, displaying the battery charge status with four LED.

The LiDAR rotates 360º being able to scan omnidirectionally. It has a range up to 10 meters

and its angle resolution is between 0.43 to 0.86º.

The recommended size for the Micro-SD memory card is 32GB. This is due to the size of all

software needed to install.

For the RPi4 and the camera, as previously said, those will be detailed later in the chapter.

4https://store.arduino.cc/products/arduino-uno-rev3

https://store.arduino.cc/products/arduino-uno-rev3

26 The Physical Robot

4.1.2 Hardware Architecture

Figure 4.3 represents all the connections in the hardware, giving a good visualization of how the

whole system is interconnected. For all components, the inputs are represented on the left side

and the outputs on the right, with the exception of the USB since the communication can be bidi-

rectional, being an input and output at the same time. A color scheme was added to differentiate

the connections, grouping the traces by a specific voltage, or a type of cable. A figure legend was

added to better identify the reasoning for each group.

Note that every connection is done through a cable or wire, except the analog and digital pins,

because the Motor Driver shield board and the Arduino board are coupled together. As for the

USB cables in the figure, the one connecting the Raspberry Pi and the Arduino Uno is a USB type

A to USB type B cable, and the connection between the Raspberry Pi and the LiDAR is done using

a USB type A to USB-Micro cable. To power the Raspberry Pi, a USB type C cable is used with

the other end directly soldered to the output power of the step-down converter, and to power the

LiDAR it is used a USB-Micro cable with the other end soldered on the same output as the RPi

power cable is soldered.

This last cable was initially removed because it was thought that it was not needed. However,

it was re-soldered so the LiDAR can be powered externally by the Step-Down converter. On the

original robot, this sensor was powered only using the data port present on its board, being enough

to correctly function. Unfortunately, when the equipment was tested with the new Raspberry Pi, it

was not working properly due to the insufficient power provided by this newer computer. For this

situation where there is a low supply of energy to the LiDAR, its board contains another USB port

designed specifically to power the sensor using an external power source. Having this in mind,

5https://www.dfrobot.com/product-634.html
6https://www.pololu.com/product/2503
7https://www.ptrobotics.com/plataforma-arduino-e-modelos-alternativos/

4033-arduino-uno-r3-compativel-c-cabo-usb-da-funduino.html
8https://www.ptrobotics.com/arduino-proto-screw/8677-arduino-screw-shield-com-terminais-de-parafusos.

html
9https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.

html
10https://www.ptrobotics.com/baterias-lipo/9496-bateria-lipo-148v-2400mah-xt60.

html
11https://www.amazon.com/youyeetoo-Scanning-Obstacle-Avoidance-Navigation/dp/

B07JGV5JTG?th=1
12https://mauser.pt/catalog/product_info.php?cPath=1667_2620_2956&products_id=

096-7651
13https://mauser.pt/catalog/product_info.php?products_id=096-7402
14https://mauser.pt/catalog/product_info.php?cPath=641_2548_1574&products_id=

047-2895
15https://mauser.pt/catalog/product_info.php?cPath=2207_2402_2308&products_id=

096-8418
16https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=

047-2826
17https://mauser.pt/catalog/product_info.php?cPath=1667_1753&products_id=047-3229
18https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=

047-3227

https://www.dfrobot.com/product-634.html
https://www.pololu.com/product/2503
https://www.ptrobotics.com/plataforma-arduino-e-modelos-alternativos/4033-arduino-uno-r3-compativel-c-cabo-usb-da-funduino.html
https://www.ptrobotics.com/plataforma-arduino-e-modelos-alternativos/4033-arduino-uno-r3-compativel-c-cabo-usb-da-funduino.html
https://www.ptrobotics.com/arduino-proto-screw/8677-arduino-screw-shield-com-terminais-de-parafusos.html
https://www.ptrobotics.com/arduino-proto-screw/8677-arduino-screw-shield-com-terminais-de-parafusos.html
https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.html
https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.html
https://www.ptrobotics.com/baterias-lipo/9496-bateria-lipo-148v-2400mah-xt60.html
https://www.ptrobotics.com/baterias-lipo/9496-bateria-lipo-148v-2400mah-xt60.html
https://www.amazon.com/youyeetoo-Scanning-Obstacle-Avoidance-Navigation/dp/B07JGV5JTG?th=1
https://www.amazon.com/youyeetoo-Scanning-Obstacle-Avoidance-Navigation/dp/B07JGV5JTG?th=1
https://mauser.pt/catalog/product_info.php?cPath=1667_2620_2956&products_id=096-7651
https://mauser.pt/catalog/product_info.php?cPath=1667_2620_2956&products_id=096-7651
https://mauser.pt/catalog/product_info.php?products_id=096-7402
https://mauser.pt/catalog/product_info.php?cPath=641_2548_1574&products_id=047-2895
https://mauser.pt/catalog/product_info.php?cPath=641_2548_1574&products_id=047-2895
https://mauser.pt/catalog/product_info.php?cPath=2207_2402_2308&products_id=096-8418
https://mauser.pt/catalog/product_info.php?cPath=2207_2402_2308&products_id=096-8418
https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=047-2826
https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=047-2826
https://mauser.pt/catalog/product_info.php?cPath=1667_1753&products_id=047-3229
https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=047-3227
https://mauser.pt/catalog/product_info.php?cPath=1874_57_107_2260&products_id=047-3227

4.1 The Robot and its Hardware 27

now the LiDAR board has its two USB ports being utilized, one for data communication, and

another for power.

The figure 4.4 is a close-up picture of the real connections of the hardware, without the rasp-

berry, LiDAR and camera components.

Figure 4.3: Schematic of the Hardware Layout

Figure 4.4: Hardware layout of the physical robot

28 The Physical Robot

4.2 Hardware and Design Modifications

To accomplish the requirements proposed in this dissertation, it was required to do some modifi-

cations to the robot. In the following sections, it will be detailed the modifications done, as well

the procedures and justifications of the reasons to make them.

4.2.1 Camera support

Since the original robot has no support to install the camera in the desired configuration, it was

required to create one. For this, Autodesk Fusion 36019 was used. The choice of this tool is

essentially due to its ease of learning and use. With this software it is possible to design 3D

models, being a viable tool to develop the camera support structure, with the ability to recognize

more easily faults and problems associated with the design.

To better design and visualize the support, a construction of the physical robot was made in

the software. Some measurements of the real model were made to more accurately design the

virtual one in Fusion360, so the 3D model of the robot is approximately a simplified 1:1 scale of

the real one. The figure 4.5 represents the robot made in the software. Some components were not

drawn since they do not add value to the overall dimensions and, therefore, do not interfere with

the implementation of the support.

Figure 4.5: 3D model of the robot in its original configuration

Having the 3D model of the robot, it is easier to start doing some possible camera supports.

The first supports were made at the front of the robot, trying to maintain the original configuration.

However, although this configuration gives a really good vision at the front, and the sides are

limited only by the support itself, the rear view is really limited, not only due to the long profile

of the robot, but also due to the height of the LiDAR, obstructing the rear view. The following

figures 4.6a, 4.6b and 4.6c represents some of the first prototypes of the support.

Having the previous problems in mind, not only the camera support needed to be more centered

but also the LiDAR needed to be moved. Moving only the camera support to the center is not

19https://www.autodesk.pt/products/fusion-360/overview?term=1-YEAR&tab=
subscription

https://www.autodesk.pt/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://www.autodesk.pt/products/fusion-360/overview?term=1-YEAR&tab=subscription

4.2 Hardware and Design Modifications 29

(a) A support version (in red) (b) A support version (in black)
(c) A support version (in dark blue)

Figure 4.6: 3D model of the robot with different versions of a frontal camera support in red - (a);
black - (b); and dark blue - (c)

enough because, despite improving the vision at the back, it is still obstructed significantly by the

LiDAR height. So, both the LiDAR and the support need to move. Moving the LiDAR to the

center of the robot will interfere with the current position of the Raspberry Pi, so the RPi also

needs to move.

To comply with the required changes a solution thought was to place both the LiDAR and

the Raspberry at the center, below the camera. The best layout is the one shown in the figure 4.7

corresponding to the final solution, where the LiDAR is at the bottom, the RPi is at the middle,

and on top is the camera. This means that the camera support not only holds the camera itself but

also the RPi. This layout was chosen not only to solve the problems already discussed but also

to avoid some problems that would cause if a different arrangement of the components was used.

More specifically, it avoids the need to purchase a new longer ribbon cable to connect the camera

to the RPi, since they are near enough to use the one provided with the camera, not interfering

too much with the vision. Also, the heat caused by the RPi is dissipated more easily, due to the

fact of not being obstructed by another component. If the LiDAR was on top of the Raspberry, the

heat generated would be transferred to the LiDAR, not being ideal. Finally, a lower position of the

LiDAR is preferred. Objects are only detected by the sensor if they are at the same level as the

LiDAR, not detecting the ones that are lower. So, to have a reliable detection of objects, the lower

the LiDAR is in the robot the better.

Some changes were also made to the support to provide a platform for the Raspberry, to

improve the overall stability of the structure, and to improve the camera vision at the lateral of

the robot.

The figure 4.8b shows only the camera and RPi support made. Since this will be printed

in a 3D printer, the model was divided by half without compromising the overall rigidity and

stability of the piece, as exemplified in the figure 4.8a. This allows a lower printer time and avoids

excessive use of printing support material, reducing the filament waste and lowering the cost per

model printed. Despite both pieces appearing to be identical, the screwing holes for the Raspberry

case are not in the same position. Therefore, it is required to print both pieces, and not only the

30 The Physical Robot

Figure 4.7: 3D model of the robot with the final version of the support

same one two times. Depending on the printer settings, it uses around 80 grams of material and

about 8 hours to complete printing each piece.

The printed support, already with the Raspberry Pi and the camera place, is presented in the

figure 4.8. To attach the modifications to the physical robot it was required to drill some holes in

the upper base of the robot. Eight new holes were drilled to fix with screws both the LiDAR in its

new position and the camera support. Due to the new position and orientation of the RPi, and the

shortness of the new USB-C cable acquired to power this computer, another hole was drilled near

the USB-C port as a pass-through for the cable. Also, to avoid buying a new USB cable to connect

the LiDAR to the Raspberry, the board was moved to the location shown in the figure 4.9 allowing

to use the cable provided with the original robot. Four new holes were drilled to fix this board.

(a) 3D of both support pieces to be
printed

(b) 3D model of the support
(c) Support 3D printed. with cam-
era and RPi installed

Figure 4.8: Final camera support, in a virtual 3D model - (a); Split in half version for 3D printing
- (b); 3D printed version, with Raspberry and camera installed - (c)

4.2 Hardware and Design Modifications 31

Figure 4.9: New location of the LiDAR board

4.2.2 The Raspberry Pi upgrade

The original robot contains a Raspberry Pi 3B V1.2. Despite this Micro-Computer being enough to

develop basic robotic applications, it was replaced with a Raspberry Pi 4 Model B 4GB of Random

Access Memory (RAM) version. This upgrade was done because the RPi4 is significantly faster20

than the RPi3 and the RAM was increased from just 1GB to 4GB. Another improvement was in

the Input/Output (I/O), now equipped with 2 USB3.0, meaning faster transfer speeds over USB.

All these upgrades, mainly the faster processor and the larger memory allow the development of

more heavy and advanced robotics applications reducing the probability of suffering a bottleneck.

However, the upgrade to the Raspberry Pi 4 required some modifications to the robot. The

Micro USB cable used in the robot to power the RPi3 was replaced with a USB-C one. Due to the

shortness of the cable acquired and the new position and orientation of the RPi, a new hole was

drilled to pass the cable.

The already printed case for the RPi3 is not compatible with the RPi4 due to the changes in

the I/O. Fortunately, a similar case but for the Raspberry Pi 4 was already designed, and available

at the Thingiverse website21 so, there is no need to redesign any structure created. Both the top

and the lower case, depending on the 3D printer settings, take about 2h30min and 20 grams of

material each.

The Raspberry Pi chip gets really hot20, so a heat sink and thermal paste were added for better

heat dissipation. The 3D printed top case touches this heat sink enough to not allow the case to be

totally closed so, the four screws used to close the case were screwed enough to fix it but not all

the way down to avoid too much tension.

20https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b
21https://www.thingiverse.com/thing:3714695

https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b
https://www.thingiverse.com/thing:3714695

32 The Physical Robot

4.2.3 The Raspberry Pi camera

Another important component was the camera to be used in the robot. There are some key features

for a camera to be a good candidate for the robot. One of them is the camera resolution. The better

resolution, the crispier the image is, enhancing the definition of the objects especially the ones

further away from the robot. This improves the accuracy and the range of the detection of the

objects by the software. However, an image with too many pixels means more processing time,

lowering the number of processed images per second. Having a too low rate of processed images

is particularly bad because the information can become outdated, obligating the robot to lower

the speed of its movement or, in a worst-case scenario, to collide with an object due to the real

location of the object not being processed in time. Another important feature is the angle of view.

Since the camera is on the top of the support pointing downwards, with the purpose of achieving

a 360º view around the robot, the camera itself must have a big angle view. A too narrow viewing

angle limits the range of viewing around the robot. Lastly, the price is an important parameter. To

keep the cost low, a good quality camera with a low cost is important.

The selected camera complies with these key factors. It is equipped with a 5 Megapixels(MP)

sensor, and capable of recording in 1080p at 30 frames per second, which is good enough to give an

image with a decent resolution, and not big enough to give major bottlenecks when processing the

image. The lens used is a fish-eye one, which gives an angle view of 200º. This allows viewing all

around the robot, limited only by the distance from the robot to the object (due to the resolution).

This camera connects to the Raspberry in the camera module port using a ribbon cable (which

came included with the camera).

4.3 Summary

This chapter focused on the hardware of the robot, listing all the materials used and explaining

how these are interconnected. It also explained all the modifications required to do on the orig-

inal robot to accomplish the pretended system. It explained all the procedures followed for the

camera support creation, the reasoning for the Raspberry Pi upgrade and it was listed the major

characteristics needed for a camera that leads to the one that it is using.

Chapter 5

The Software

During the dissertation, multiple code files were created, imported, or modified and various soft-

ware tools were used. This chapter focus on explaining everything done during this dissertation

related to software. It will list the software tools used, the work involved in environment configu-

ration, and the development of code/programs.

Figure 5.1 depicts the structure of the whole robot system, software and hardware. It represents

where each developed program runs and its interaction with other programs, and the interconnec-

tion between all robot’s hardware.

Figure 5.1: Software and Hardware structure

5.1 Requirements

This section has the purpose to list and introduce all the pieces of software and other tools used

during this dissertation. More information about it, and about how to properly install and configure

the environment is presented in appendix B.

33

34 The Software

The Raspberry Pi requires an Operating System (OS) so it can be properly used. The installa-

tion was the official one, called Raspberry Pi OS, and the version chosen was the Debian Buster.

This version is not the most recent at the time of this dissertation, but the guides followed to install

other software used it, and to avoid installation problems related to OS versions, it was chosen to

install the same one as the guides.

Since one of the objectives of this dissertation is to use the robot for ROS teaching, this soft-

ware also needs to be installed. Both versions of ROS1 and ROS2 were installed, with the distri-

butions being Noetic Ninjemys and Foxy Fitzroy respectively.

The physical robot contains an Arduino Uno and to more easily program and load code to

this micro-controller, the Arduino IDE was installed. Besides this IDE, the Visual Studio Code

(VSCode) was also installed for the creation and development of ROS code.

Appendix B also has information on how to fix device ports assigned by the Operating System.

The lock of these ports is important because some programs use them to connect the Raspberry

Pi to other devices for communication. That is the case of the Arduino Uno and the LiDAR.

Appendix B also explains how to configure a new fixed port name.

Lastly, it was installed the Virtual Network Computing (VNC) Server. This is a piece of

software that provides remote access to the RPi OS from another computer. It is easier to work

and debug while the robot is being tested with certain applications.

5.2 ROS2 and Applications Development

This section briefly explains the developed and modified ROS packages for the robot. All the files

referred here are available in a GitHub Repository1. This GitHub also has an explanation about

the prerequisites and the necessary steps to run the practical applications developed. Appendix D

is a copy of this explanation guide.

5.2.1 ROS code Migration

Some source code designed for ROS1 belongs to other authors. However, these original files were

modified to be supported in ROS2. The procedures to migrate packages originally made in ROS1

to the later version, ROS2, are explained in the appendix C. Briefly, certain parts of the files and

code suffer modifications in a way to correspond to the structure and naming of ROS2. These

changes will depend on the complexity of the packages to migrate.

The migration process was performed on the created package for the camera, provided by the

master’s student in computer engineering Vítor Ventuzelos[12], and the code was developed using

the ROS Noetic distribution. Another package migrated was the one responsible for the LiDAR

developed in ROS Melodic distribution. This package is available on the official LiDAR website2.

1https://github.com/AlexMiranda16/Physical_Robot_Introduction_ROS2
2https://www.ydlidar.com/service_support/download.html?gid=5

https://github.com/AlexMiranda16/Physical_Robot_Introduction_ROS2
https://www.ydlidar.com/service_support/download.html?gid=5

5.2 ROS2 and Applications Development 35

5.2.2 ROS2 packages explanation

In this subsection, a brief description of created/modified packages is given, explaining their pur-

poses and how they work.

However, not all packages developed are in this subsection, because the remaining ones have

the intent to create some practical function for the robot. For that reason, they are explained in

section 5.2.3.

5.2.2.1 RPi-Uno package

This developed package works as a bridge between the Raspberry Pi, running ROS2 programs,

and the Arduino Uno. It is responsible for the communication between the ROS2 running pro-

grams, and the program executing on the Uno board. This communication is serial via USB cable

connected to both RPi and Arduino USB ports.

The node on this package (called serial_com) sends/receives messages to/from the Arduino

board. More precisely, it contains one subscriber that receives from another ROS2 node the speed

commands to apply to the robot motors. These are then sent to the Arduino program. It also has 2

publishers responsible to publish the current and odometry values of each motor. The information

of these sensors is received from the Arduino program. Chapter 5.3 contains more information

about the Arduino program.

5.2.2.2 Fisheye camera package

As previously mentioned, this package is authored by Vítor Ventuzelos and it was modified so it

can be compatible with ROS2 Foxy. The objective of the package is to apply an image processing

algorithm to the image captured by the camera, with the intention to create virtual sensors, that is,

to imitate the behavior of different physical sensors.

It contains various nodes with different functionalities but the one used by the programs or

applications that will be referred later in this chapter only makes use of the "simulated_lidar"

node. This node, as the name says, with the image processing simulates a LiDAR sensor. It

simulates various laser beams all around the robot and estimates the distances of the objects near

it. This information is then published on a topic to be available to other nodes.

The other nodes in this package are "object_detection", which detects objects around the robot

(in four positions: at the front, back, left and right of the machine) and classifies them on a scale

from zero to three, where three is the closest to the robot. These levels are associated with the

danger level. There is also the "proximity_sensor" node with the function to make approximated

measurements in five directions in front of the robot.

This package requires other packages to properly work. Those are "cv_bridge", "OpenCV"

and "image_transport". It also needs an Application Programming Interface (API) to use the

Raspberry Pi camera with OpenCV, called RaspiCam. At the end of the section B.3 (ROS2 Foxy

Fitzroy installation) on the appendix B it is explained how to get and configure them on the system.

36 The Software

5.2.2.3 LiDAR package

As for the physical LiDAR package, its program is responsible to control and collecting the data

gathered by this sensor. This node (ydlidar_ros2_driver) is responsible to configure the communi-

cation since it communicates with the RPi through a serial port (uses USB), and has the function

to adjust and setup the settings of the LiDAR mode of operation. The laser information with the

distances measured is published on a topic to be available to other nodes.

Besides the package conversion from ROS1 to ROS2, some more modifications to the code

were made, mainly the change of the baud rate value to 128000, the typical value according to its

datasheet2.

On the official LiDAR website2, there is the Software Development Kit (SDK) that is required

to enable use of the sensor. It is also available documentation for further information about the

specifications or how to properly configure and use it.

5.2.3 Applications created

To test parts of robot hardware and to test some of the system potentials, it was developed three

small and simple applications. Each demo corresponds to a ROS2 package and requires some of

the packages mentioned in the previous section.

The first demo is the "motor_test_control" package which has the objective to test the motors,

the second one is the "camera_lidar_range_test" package that measures the distance of near objects

at the front and back of the robot, and the last demo is a simple obstacle avoidance application.

These demos are available on the GitHub Repository1 along with an explanation on how to

setup and execute them. Appendix D is a copy of this guide, but it is recommended to consult the

actual web page to visualize video examples that are not possible to be seen in the appendix.

5.2.3.1 Motor_test_control package

This package was the first demo developed with the purpose to test motor movement, while at the

same time have a useful and practical application for a user-controlled mobile robot.

In this program, the robot movement is controlled using a keyboard with the following keys

corresponding to these respective movements:

• w -> forward

• a -> left rotation

• s -> backward

• d -> right rotation

• any other key -> stop the robot

The node (called demo) reads the key pressed by the user on the terminal and publishes the

corresponding motor control commands that the RPi-Uno subscribes.

5.3 Arduino Code 37

5.2.3.2 Camera_lidar_range_test package

This package corresponds to the second demo created and it has the objective to test the camera

and to use image processing nodes. It uses a camera-based virtual LiDAR to measure the distance

of near objects at the front and back of the robot.

The virtual LiDAR is generated by an image processing node (simulated_lidar) executed on

the fisheye camera package (fisheye_camera_simulated_sensors_ros2). This node publishes the

beams of the simulated LiDAR containing the distance measured by each one. The demo sub-

scribes to this node and prints on a terminal the distances measured by the frontal and rear laser

beam so it can be visible to the user.

5.2.3.3 Reactive_robot_demo package

The last demo is a simple autonomous application of a reactive robot3. The application is a simple

obstacle avoidance example.

The robot moves forward and when an object is near him and there is a collision risk, the robot

rotates to the left until the object is not interfering anymore. Having a free path, the robot resumes

its rectilinear motion.

This demo uses the same virtual LiDAR used by the previous demo, but now it is only using the

frontal laser measurements to detect objects. It checks the distance measured identifying whether

there is an object near in front of the robot or not. Evaluating the result, it is decided what command

should be sent to the motors. The command is then published. This demo also uses the RPi-Uno

package node for communication and motor control.

5.3 Arduino Code

The code for the Arduino Uno was supplied by Professor Paulo Costa, the one also responsible for

the development of the original physical robot. This code can be found on the GitHub Repository1

along with the developed ROS2 packages. This code has essentially two functions:

• Low-level control of the motors. It reads the encoder and current of each motor, while at the

same time it has logic to better control the requested motor speed.
• Serial communication. The Uno communicates with the Raspberry Pi via USB exchanging

information with each other.

The Arduino program executing communicates with the previously mentioned "RPi-Uno"

ROS2 package. The current information gathered by the motor driver shield board and the odom-

etry values are sent to the RPi, while the motor speed commands are received by the Arduino.

These messages are sent via serial communication through USB port.

This communication is done using specific channels. Each channel identifies what the message

information is for. Table 5.1 shows the association between the channel letter and their meaning.

3https://www.igi-global.com/dictionary/swarm-robotics/24606

https://www.igi-global.com/dictionary/swarm-robotics/24606

38 The Software

Note that the channel letters are case-sensitive. Another particularity is that all data values are

sent/received in hexadecimal so, it is required to convert the data of the message before it is ready

to be used. This is due to the channel form of communication, to avoid having actual numbers

being read as letters. All messages have the same structure of 1 byte for the channel followed by

4 bytes corresponding to the data value.

Table 5.1: Channels and their respective function

Channel Purpose
L Command left motor speed
R Command right motor speed
i Current of the left motor
j Current of the right motor
l Encoder value of the left motor
r Encoder value of the right motor

Regarding the odometry of each motor, what is actually sent by the Arduino program is the

number of encoder triggers in a certain direction. A full motor wheel rotation corresponds to 2797

counts4. Also, this value increments or decrements according to the motor rotation direction.

5.4 Summary

This chapter focused on the software part of the system, listing all the necessary tools and explain-

ing how the developed code and programs are organized. It explains ROS developments, mainly

on the ROS1 code migration to ROS2 and on the ROS2 packages and applications explanation.

Lastly, it is explained the functioning of the Arduino program and how it communicates with

the Raspberry Pi.

4https://wiki.dfrobot.com/12V_DC_Motor_251rpm_w_Encoder__SKU__FIT0186_

https://wiki.dfrobot.com/12V_DC_Motor_251rpm_w_Encoder__SKU__FIT0186_

Chapter 6

Results and Discussions

6.1 Physical robot discussion

The 3D printed camera and RPi support is physically stable, but the mounting was not perfect, due

to the handmade screw holes not being perfectly aligned. The same can be said for the LiDAR

and its data and power board. However, these imperfections do not directly interfere with the

robot’s functionality. The worst-case scenario is a slight inclination in the camera/LiDAR, leading

to small measurement errors, but since the purpose of the robot is to be a learning platform and

not a high precision system, it is not relevant.

An important aspect to be discussed is the price. In fact, the total robot cost is higher than ex-

pected, but this is a consequence of not choosing most of the components of the system. However,

the LiDAR is meant to be removed after being used for the camera calibration, with the objective

to reduce the overall cost of the machine and achieve the minimalist setup pretended. Despite that,

its cost must be presented. Also, the specifications of some pieces utilized are above what would

be necessary for a low-cost machine for a beginner and intermediate level of robotics and ROS

teaching. For example, the capacity of the battery could be smaller, leading to cheaper alterna-

tives. Also, the motors could be less powerful, with the possibility to use motors driver shields

with lower specifications and therefore, cheaper.

With the new RPi4 and with the unexpected and late connection of the LiDAR to the power

output of the step-down converter, this component might exceed its power limits. According to the

converter information1, the maximum power output is 15Watts(W), and when the power is above

10W it is recommended to attach a heat sink. Looking at the RPi4 benchmarks2, this computer on

load consumes about 8W of power, but it can be higher depending on what it is doing and what it

is connected through its I/O. Lastly, checking the LiDAR datasheet3 the minimum start-up peak

current is at least 1A or 5W of power, and that is more power than the Raspberry Pi USB port

allows to draw. Adding all this up, there might be some times when the power draw is superior

1https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.
html

2https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b
3https://www.ydlidar.com/service_support/download.html?gid=5

39

https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.html
https://www.ptrobotics.com/alimentacao/2647-modulo-conversor-dc-dc-step-down-lm2596.html
https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b
https://www.ydlidar.com/service_support/download.html?gid=5

40 Results and Discussions

to 10W, and might go even closer to the 15W if an unexpected power peak happens. Using this

current configuration for long periods of time might shorten the lifespan of the converter.

6.2 Software and applications development

This section is to discuss some results and problems associated with software and with the demo

applications created for the robot. Note that the GitHub page where the developed application files

are located contains photos and videos on the "ReadMe" file about the demos. Appendix D is a

copy of this tutorial page, but to better visualize the robot working and doing the desired tasks, it

is suggested to consult the repository4. It has videos of all three demos developed and those can

not be visualized in the appendix.

6.2.1 User controlled robot demo

This demo along with the GitHub tutorial introduces some basic ROS2 concepts. It teaches how to

run nodes with the ROS2 "run" command, explains how to visualize the running nodes and topics,

and shows how to visualize topic messages by using the "topic echo" ROS2 command. These are

simple concepts but important to know to better understand how the software system is built and

what are some interactions. These can also be seen as simple debugger tools since they show if

everything is running properly, removing the barrier between bugs on the code itself or something

that is missing to run, for example. This demo also allows for a better understanding of how the

robot works and how ROS2 interacts with it.

Regarding the execution of the application itself, it is possible to visualize that the robot is re-

sponsive to the commands introduced. To see a video example of this demo, the GitHub repository

has one in the "ReadMe" file4.

Since this demo communicates with the Arduino Uno to control the motors, it is possible

to verify if the messages are being well received and published by the node responsible for that

(the "serial_com" node of the "RPi-Uno package"). Figure 6.1 shows two terminals printing the

messages published by this package node. Figure 6.1a corresponds to the current draw by each

motor, and 6.1b is the Odometry value of each motor sent by the Arduino (Note that this value is

only precise if the wheels do not spin with the robot on the same place).

6.2.2 Distance measure demo

Regarding the second demo tutorial, this introduces a new command, the ROS2 "launch". This in

comparison to the "run" ones, demonstrates that it is possible to simplify and reduce the number

of commands and terminals open required to execute a full application. Now, to fully start a demo

it is only needed one terminal and one command.

Evaluating the second demo (the one that prints the distances of objects at the front and back

of the robot), the distances measured are not very precise and they do not translate to the actual

4https://github.com/AlexMiranda16/Physical_Robot_Introduction_ROS2

https://github.com/AlexMiranda16/Physical_Robot_Introduction_ROS2

6.2 Software and applications development 41

(a) Current draw from each motor (b) Odometry of each motor

Figure 6.1: Messages received from the Arduino and published by the RPi-Uno communication
package

distance of the objects. Since the distances measured are based on the object pixel location in the

image, objects at the same relative distance to the robot but with different heights might retrieve

different measures.

Figure 6.2 makes this problem clear, where 6.2a represents the detection and measurement of

the relatively low position of the hand, retrieving the value of around 148, and 6.2b shows the

detection of the hand at approximately the same distance to the robot but raised in comparison to

the first example, calculating measurements of about 215.

(a) Distance measured with hand low (b) Distance measured with hand high

Figure 6.2: Distance to the hand measured by the robot when it is at the same distance but with
the hand in lower position - (a); and upper position - (b)

Also, the camera was not calibrated, and that leads to imprecise measurements too.

However, this lack of precision does not affect the functionality of the robot by much. It is still

possible to have a notion of distances if the robot is used in a more controlled environment. Instead

of looking at the values as absolute ones, they should be looked as relative, meaning that the

higher the number, the further the objects are. Figure 6.3 shows an example of two measurement

situations, where the closer hand retrieves a lower number (6.3a), while the further hand gives an

higher one (6.3b).

Since this robot is more oriented to beginners in ROS and/or robotics, an high precision system

is not mandatory. As the next demo proves (the object avoidance application), it is still possible to

create and develop programs without a very precise machine.

42 Results and Discussions

(a) Distance measured with hand close to the robot (b) Distance measured with hand far from the robot

Figure 6.3: Distance to the hand measured by the robot when the hand is close - (a); and when it
is far - (b)

6.2.3 Reactive robot demo

Just as discussed in the previous demo, this application (reactive robot avoiding obstacles) uses

the same distance indicative values measured from the camera virtual sensor.

Also, due to the simplicity of this program, because it is only using a single laser beam from

the virtual LiDAR created by the camera, objects that are not directly in front of the robot, but are

in its trajectory, might not be detected. The same can happen to very small, or very big objects,

especially if they are very uniform in shape and/or color. That is due to the implemented image

processing algorithm used (and the demo only using a single beam). This algorithm is based on

the identification of edges of the objects, and if no edge is identified on the LiDAR laser direction,

for the demo there is no obstacle identified.

However, this did not stopped from creating a functional practical application. By using ob-

jects that the robot has little trouble detecting (with colors that do not blend in with the surrounding

environment, and not being bigger than the robot to avoid vision obstruction), and by using the

robot in a controlled environment where it will not appear unexpected objects, it is possible to

create functional programs. To see a video example of this demo working, the GitHub repository

has one in the "ReadMe" file4.

6.2.4 LiDAR

Unfortunately, the code for this device is not working, and therefore, it is not used in any of the

developed applications. The code possibly has some bugs because, despite passing all device

verification steps returning that it is running fine, and saying that the scan is about to start, this

scanning process does not start and returns an "Operation time out" error, not being able to get the

LiDAR data. The messages printed by the LiDAR on the terminal can be seen on the figure 6.4.

However, despite this device not being operational due to code problems, this does not have

major consequences on the possibility of creating and developing programs for the robot. The

initial objective of the LiDAR was to calibrate the camera, increasing its precision. So, the biggest

disadvantage of not having this device is not having a system with higher precision. It is obvious

6.3 Summary 43

that with that it is not possible to create applications using high precision, but that did not stopped

the development of vision system base functions with the robot, as previously seen with the demos

created.

Figure 6.4: Terminal printed logs of the LiDAR program

6.3 Summary

Chapter 6 discussed some observations regarding the developed work on the physical robot.

It also discussed the software developments, mainly the demos created by analyzing some of

its characteristics. It also explained what are the learning outcomes of the tutorial created for the

robot.

44 Results and Discussions

Chapter 7

Conclusions and Future Work

7.1 Main contributions

With the work on this dissertation, it was possible to accomplish the initial objectives defined.

However, these can always be improved and, in the following section, some suggestions are given.

The work of this dissertation had three main contributions: The questionnaire results, the

physical robot, and the robot tutorial.

The questionnaire results contributed to a clearer notion in robotics and ROS teaching. Even

though this form had a small number of responses, it allowed for a clearer picture of what people

with experience in robotics or in both versions of ROS find more important and valuable in teach-

ing these subjects. These gathered answers provide some guidelines to help give an overall better

learning experience to students.

Another contribution was the adaptation of one robot so it can be a more capable ROS/robotics

teaching platform. The developed demos not only demonstrate some potentialities of the created

machine but also serves as validation that the robot is actually capable to be used in ROS teaching

with the ability to perform different tasks.

Lastly, the GitHub tutorial creation contributed to a formal introduction and explanation on

how to use the developed robot, with a step-by-step guide on how to start all the demos created,

while at the same time, it teaches some ROS2 basic concepts and commands.

7.2 Future work

7.2.1 Physical platform

Most of the recommendations presented here are not mandatory but would improve slightly the

robot’s design and functionality. These are suggestions that were noted after the build was done

and resulted from the discussion previously made in chapter 6.

A new 3D printable design of the robot’s upper base can be made with the addition of screw

holes for the camera support and to accommodate the new layout of the components. The holes

for the cables can also be in the design.

45

46 Conclusions and Future Work

Although the camera support does not appear to have any problem, at least from what was

used during this dissertation, the design can be printed with thinner cylindrical legs to decrease the

LiDAR vision obstruction. The cables can also be routed around the camera support legs for the

same reasons.

Since the primary objective was to get a low-cost mobile robot, a new evaluation of all com-

ponents can be made, with the possibility of finding cheaper alternatives, with specifications suffi-

cient to meet the necessary requirements. Of course, this new material list would probably require

a redesign of the robot.

Regarding components, the step-down converter problems referred on the physical robot dis-

cussions in chapter 6 can be solved by replacing it with one with higher power output capability,

or by adding a second one equal to the step-down already used, and distributing the components

among the converters. One of these options is preferred over adding the heat sink, to ensure that the

output power draw is always below the maximum allowed. Note that if the 2 converters solution

is used, using a heat sink is still recommended.

7.2.2 Software and program development

Regarding the code, this can always be improved. There is always the possibility to add new fea-

tures and create entirely new applications or improve some already existing either by performance

or precision. For example, in the reactive robot demo to avoid objects, it is possible to make it use

more information sent by the simulated LiDAR and make it aware of objects in more directions.

Despite that, there all still some suggestions to be made.

An important step to be done is the camera calibration. This calibration allows reducing preci-

sion errors in object detection and distance measurement that are associated with image distortion.

There is also interest in making the LiDAR work by fixing the bugs presented in its current code.

With that, it is possible to improve the camera precision by using the LiDAR distance information.

Making the LiDAR functional also allows the creation of other programs and applications.

Although ROS1 is reaching its End of Life, there is still interest in teaching and learning this

older version, so it still makes sense to convert the codes created in ROS2 to ROS1, and reuse the

codes that were originally made for ROS1.

7.2.3 Simulator

A useful tool for robotics teaching is the simulator. This simulator would not replace the physical

robot but rather act as a support tool for application development. A simulator allows to work

and test programs being developed without the risk of damaging the real robot. It also eases and

speeds the work process, not being dependent on the robot’s availability. Another advantage is the

easy access to a simulator. It is a cheaper solution than building a robot for every single person

or student that will use it. So, everyone can develop their own applications without too many

restrictions, and when implemented and tested in the simulator, they can pass to the real robot

testing.

Appendix A

Questionnaire Form

47

18/09/22, 14:12 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/viewform 1/4

Universidade do Porto (UP)

Instituto Politécnico do Porto (IPP)

Universidade de Aveiro (UA)

Universidade de Coimbra (UC)

Universidade do Minho (UM)

Universidade de Coruña (UDC)

Outra:

Teaching of robotics and ROS1/ROS2
Faculty of Engineering of the University of Porto

This questionnaire has the purpose to gather information about robotics teaching and
ROS1/ROS2 from the community with some experience in these �elds.

There are no correct or incorrect answers.

The data colllected in this questionnaire will be processed anonymously, and no personal
data will be published or shared.
The data received from these questions will be used for statistical purposes only, being
presented anonymously in the reports that will feature them.

All of the collected data will not be used outside of the scope of this study.

Thank you for your cooperation :)

*Obrigatório

In which faculties/universities do you teach robotics?

18/09/22, 14:12 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/viewform 2/4

Electrical Engineering

Informatics Engineering

Mechanical Engineering

Arti�cal Intelligence

Outra:

High School

Bsc.

Msc.

Phd.

Outra:

In which course(s) do you teach robotics?

At what level do you teach robotics?

18/09/22, 14:12 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/viewform 3/4

Please classify the level of agreement with each statement: *

1- Totally
disagree

2- Partially
disagree

3- Neither
disagree nor

agree

4- Partially
agree

5- Totally
agree

I am pro�cient
in the use of
ROS1

I am pro�cient
in the use of
ROS2

I have
teaching
experience in
ROS1

I have
teaching
experience in
ROS2

I am pro�cient
in the use of
ROS1

I am pro�cient
in the use of
ROS2

I have
teaching
experience in
ROS1

I have
teaching
experience in
ROS2

Is teaching robotics with ROS important? Why?

A sua resposta

Is teaching ROS2 relevant? Why?

A sua resposta

Do you consider important to work with real robots when teaching robotics? When
teaching ROS? Why for robotics and why for ROS?

A sua resposta

18/09/22, 14:12 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/viewform 4/4

Página 1 de 3

Nunca envie palavras-passe através dos Google Forms.

Este formulário foi criado dentro de Universidade do Porto. Denunciar abuso

Between C++ and Python, which one do you consider more important to teach ROS
with? Why?

A sua resposta

Seguinte Limpar formulário

 Formulários

18/09/22, 14:13 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/formResponse 1/4

Robotics/ROS course contents

The book "A gentle Introduction to ROS", by Jason M. O’Kane, is often used as
introductory material. Here (in 2 images for a better visualization) is presented the
Contents in Brief of the book (if you want to access the book, it is available through
this link: https://www.cse.sc.edu/~jokane/agitr/)

Teaching of robotics and ROS1/ROS2

18/09/22, 14:13 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/formResponse 2/4

Do you consider any topic(s) of the book irrelevant (or less relevant) to a first
introduction to ROS? Which one(s)?

A sua resposta

18/09/22, 14:13 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/formResponse 3/4

Página 2 de 3

Classify how important you think the following topics of ROS are for teaching of
ROS at an introductory level.

1- Not
important at

all
2 3 4

5- Very
Important

IDEs for ROS
(ex: VSCode)

Utilization of
GDB (attach to
process)

Action
servers/clients

TF

Rviz

Simulation
2D/3D

Runtime
parameters

IDEs for ROS
(ex: VSCode)

Utilization of
GDB (attach to
process)

Action
servers/clients

TF

Rviz

Simulation
2D/3D

Runtime
parameters

Besides the topics of the previous question, which topics do you consider the book
is lacking?

A sua resposta

Do you have any suggestions about books, guides or videos for ROS?

A sua resposta

Anterior Seguinte Limpar formulário

18/09/22, 14:14 Teaching of robotics and ROS1/ROS2

https://docs.google.com/forms/d/e/1FAIpQLSfr5MXVOYJKyM2yloNRpZ4mti23SxmbSpitWPhU3EI2ZszT3g/formResponse 1/1

Personal info (optional)

Página 3 de 3

Nunca envie palavras-passe através dos Google Forms.

Este formulário foi criado dentro de Universidade do Porto. Denunciar abuso

Teaching of robotics and ROS1/ROS2

Optionally insert your name here:

A sua resposta

Optionally insert your e-mail here, if you wish to receive a summary of this survey

A sua resposta

Anterior Enviar Limpar formulário

 Formulários

56 Questionnaire Form

Appendix B

Software Installation and Environment
Configuration

To fully prepare the system to run all the required software and to execute the desired functions, a

series of installation and configuration steps were made. This guide has the purpose to detail the

procedures to replicate the Raspberry Pi configuration done in this dissertation.

Before starting the explanation of the steps for each installed tool, it is important to know how

to create disk backups. Backing up is particularly useful because the installation process takes

some time and, in case of a need to restore the Operating System or if it is pretended to replicate

multiple robots, restoring the backup created is much less time-consuming.

This online guide1 explains very well how to do both the backup and the restore. The created

backup should be for the whole disk, as the guide implies, and not only for a partition. There is a

risk of the restoration not working if the image is only a partition.

B.1 Operating system installation

The official Operating System supported for the RPi is the Raspberry Pi OS2. To install this Op-

erating System the official website provides the Raspberry Pi Imager, an easy-to-use software to

install the OS in just a few steps. It just needs to select the Operating System version to install, se-

lect the target drive where to install, and click on write. Note that with the imager, all the existing

data will be overwritten, and therefore, lost.

The OS version used was the Debian Buster since it was the version used by the online guide

followed to install ROS2 (more on this guide on the ROS2 Foxy Fitzroy installation section).

Earlier versions are not supported by the RPi4 so, if an older version is installed, which was the

case of the original robot (with Debian Stretch), it will not boot. It is possible to upgrade the

installed version to a more recent OS, however, a clean installation is preferable because of its

simplicity, speed and stability.

1https://blog.agungpratama.id/post/2020-02-05-how-to-backup-and-clone-your-raspberry-pi-image/
2https://www.raspberrypi.com/software/

57

https://blog.agungpratama.id/post/2020-02-05-how-to-backup-and-clone-your-raspberry-pi-image/
https://www.raspberrypi.com/software/
https://blog.agungpratama.id/post/2020-02-05-how-to-backup-and-clone-your-raspberry-pi-image/
https://www.raspberrypi.com/software/

58 Software Installation and Environment Configuration

As previously referred, it is recommended to use a 32GB Micro-SD card since the software

used occupies more than 16GB.

B.2 ROS1 Noetic Ninjemys Installation

To install this distribution of ROS3, this guide explains all the steps required to successfully do it

on the Raspberry OS.

From the authors of the guide, there are multiple variants of the noetic version. The one

installed was ros_comm because of the unlikely success in installing the others, as the guide

explains.

Despite recommending expanding the swap memory size, it was not done for this dissertation.

The 4GB of RAM available on the RPi4 should be enough for the kind of applications used in the

robot. If memory problems start to appear, it is suggested to do these steps.

B.3 ROS2 Foxy Fitzroy installation

Installing ROS2 in a Raspberry Pi with Raspberry Pi OS is not as straightforward as in an Ubuntu

machine. Some packages are not supported and therefore, will not build properly. So, an in-

stallation guide4 was followed to perform a correct installation of ROS2. This guide works as a

complement to the official installation guide5. The installed distribution was the same as the guide,

ROS2 Foxy Fitzroy.

However, despite the tutorial, problems still surged when installing ROS2. The following is

a list of recommendations and solutions to problems that arose during the installation for this

dissertation:

• On the official installation guide, when doing the "Install development tools and ROS tools"

step, if the following error appears "Malformed entry 1 in list file /etc/apt/sources.list.d/ros2.list

(Component)", it is needed to run “sudo rm /etc/apt/sources.list.d/ros2.list”6 command to fix

the problem.

• When running the commands on "Install developing tools and ROS tools" from the official

installation guide, it might result in an "unable to locate package python3-colcon-commom-

extensions” and “unable to locate package python3-vcstool” error. The resolution to this

problem consists in installing previously the python colcon extension. This procedure can

be consulted here7.

3https://varhowto.com/install-ros-noetic-raspberry-pi-4/
4https://medium.com/swlh/raspberry-pi-ros-2-camera-eef8f8b94304
5https://docs.ros.org/en/foxy/Installation/Alternatives/Ubuntu-Development-Setup.

html
6https://askubuntu.com/questions/1168520/how-i-can-fix-the-error-malformed-entry-1-in-list-file-etc-apt-sources-list-d
7https://colcon.readthedocs.io/en/released/user/installation.html

https://varhowto.com/install-ros-noetic-raspberry-pi-4/
https://colcon.readthedocs.io/en/released/user/installation.html
https://varhowto.com/install-ros-noetic-raspberry-pi-4/
https://medium.com/swlh/raspberry-pi-ros-2-camera-eef8f8b94304
https://docs.ros.org/en/foxy/Installation/Alternatives/Ubuntu-Development-Setup.html
https://docs.ros.org/en/foxy/Installation/Alternatives/Ubuntu-Development-Setup.html
https://askubuntu.com/questions/1168520/how-i-can-fix-the-error-malformed-entry-1-in-list-file-etc-apt-sources-list-d
https://colcon.readthedocs.io/en/released/user/installation.html

B.4 Arduino IDE installation 59

• At the web guide followed to install ROS2 there is a reference to a build error on the "mim-

ick_vendor" package. This error did not happen during the installation so the procedures to

solve it were ignored.

• Every time a new terminal is opened, the ROS2 setup files have to be sourced. To avoid this,

the sourcing can be added to the shell startup script8. Running this command “echo "source

∼/ros2_foxy/install/local_setup.bash" » ∼/.bashrc” in a terminal will add the sourcing and

automatically source the setup files when opening a terminal.

To properly use the camera and process the image gathered by it, additional packages need to

be installed. The guide followed to install ROS2 can be used to install some of those packages as

well since it shows how to get "vision_opencv", "cv_bridge", "image_transport", among others.

However, the branches of some repositories are not updated so, to get the correct packages, check-

ing GitHub is important. For example, the branch name on the guide for the "vision_opencv"

package is incorrect and should be replaced to clone a branch called foxy.

The last step is to configure the RaspiCam, an API for using the RPi camera with OpenCV.

The GitHub repository can be found here9 with the compiling information on the ReadMe file.

B.4 Arduino IDE installation

Installing the Arduino IDE does not require too many steps. This guide10 explains everything

needed to do to successfully install the IDE.

This software was used for the original robot, and code for the Arduino UNO board was

developed. This code was reused for this dissertation because the UNO continues to communicate

with the Raspberry Pi and still has the same function as before, that is, to control the motors.

To use the available code, other libraries need to be included in Arduino IDE fresh install.

From the downloaded folder, all the content inside the "libraries" folder goes to the Arduino IDE

libraries folder (usually it is inside of "arduino-ide_version" folder). The downloaded "MC33926"

folder contains the code used to control the robot.

B.5 Visual Studio Code installation

The installation and configuration of the VSCode was supported by a video tutorial11.

In the official VSCode site, it is possible to download an arm version for the Debian distri-

bution. After downloading and installing the IDE it is time to install extensions to better support

ROS packages and files. The extensions installed are "C/C++ IntelliSense (ms-vscode.cpptools)",

"Python (ms-python.python)" and "CMake(twxs.cmake)". These extensions will auto-install some

8https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/
Configuring-ROS2-Environment.html

9https://github.com/cedricve/raspicam
10https://www.raspberrypi-spy.co.uk/2020/12/install-arduino-ide-on-raspberry-pi/
11https://www.youtube.com/watch?v=RXyFSnjMd7M&ab_channel=LucasSchulze

https://github.com/cedricve/raspicam
https://www.raspberrypi-spy.co.uk/2020/12/install-arduino-ide-on-raspberry-pi/
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html
https://github.com/cedricve/raspicam
https://www.raspberrypi-spy.co.uk/2020/12/install-arduino-ide-on-raspberry-pi/
https://www.youtube.com/watch?v=RXyFSnjMd7M&ab_channel=LucasSchulze

60 Software Installation and Environment Configuration

more. Finally, it is needed to change the configuration.json and add the path in the "includepath"

section to source the packages both from the source workspace, and the working workspace.

B.6 Define fixed tty devices

When a device connects to the Raspberry Pi, the Operating System attributes a device identification

port that can be used to connect to it. This type of attribution is dependent on what type of device

is connected. For example, some USB devices are identified by a "ttyUSBX" where the "X" is

a number that is not fixed. That means that the same device might not have the same number

identifier every time it is reconnected to the RPi.

In code and programs where the connection is made using the "tty", it is required to success-

fully connect to it independently of the port number to avoid the need to always check which

number is the identifier port for the device, and to change on the code the number.

B.6.1 LiDAR device identifier

The LiDAR is identified with "ttyUSBX" (X being a number) and to lock the port identifier, a

tutorial12 was followed. Doing the first command presented in the guide, the device is easily

identified if no other devices are connected (if there are more devices, a trick to better get the

correct one is to run the command before and after plugging the device). For the LiDAR it should

be something similar to this: "Bus 001 Device 004: ID 10c4:ea60 Cygnal Integrated Products, Inc.

CP2102/CP2109 UART Bridge Controller [CP210x family]".

With that, it is already possible to obtain the vendor and product identifier (ID). Those are

10c4 and ea60 respectively. However, it is required a deeper research to collect the serial number

attribute. That is accomplished using part of the "udevadm" command, more precisely "udevadm

info -a -n /dev/ttyUSBX". If the value of the "tty" port is unknown, running in a terminal the

"ls /dev/" command displays various "tty", including the USB one with the number pretended (if

there are multiple "ttyUSB" the trick previously mentioned allows to identify the correct number).

This command prints multiple parent devices. The serial number can be obtained by looking for

the parent device with the vendor and product ID. Figure B.1 shows the correct parent device to

collect the information required. For easier identification of the valuable data, it was marked with

a red circle.

Finally, the rule must be added to the file indicated on the guide, where "SYMLINK" corre-

sponds to the name wished to attribute to the LiDAR. In this case, the given name was "ttyYDLi-

dar".

12https://community.silabs.com/s/article/fixed-tty-device-assignments-in-linux-using-udev?
language=en_US

https://community.silabs.com/s/article/fixed-tty-device-assignments-in-linux-using-udev?language=en_US
https://community.silabs.com/s/article/fixed-tty-device-assignments-in-linux-using-udev?language=en_US

B.6 Define fixed tty devices 61

Figure B.1: Parent device with the vendor and product ID and serial number for the LiDAR

B.6.2 Arduino device Identifier

The Arduino Uno is another device that is connected to the RPi via USB cable. However, the

Operating System identifies the Uno with "ttyACMX" (X is a number given by the OS). The steps

for this device are very similar to the previous one and the same guide12 can be followed.

With the first command, it is expected to return a message similar to this one "Bus 001 Device

006: ID 2341:0043 Arduino SA Uno R3 (CDC ACM)". For this case, the vendor ID is 2341 and

the product is 0043. Doing the same search for the serial number done for the LiDAR, but now

for "ttyACMX", will print a parent device with all the information displayed. The expected result

is presented in figure B.2.

The last step involves adding the same rule on the same file mentioned in the guide. For the

Arduino Uno, the name given was "ttyUNO".

Figure B.2: Parent device with the vendor and product ID and serial number for the Arduino

62 Software Installation and Environment Configuration

To check if the devices are connected, and the names assigned, running the command "ls /dev/"

on a terminal will return the ports and they should appear just like figure B.3.

Figure B.3: New names assigned for the devices, written in blue

Appendix C

ROS Migration Guide

Some work involved in this dissertation was the migration of ROS1 packages to ROS2. This guide

details the procedures done to the camera and LiDAR packages that was initially written in ROS1.

To fully migrate a package, the official documentation1 for ROS2 has a guide explaining how

to do it. However, some instructions are not very clear and information is spread around. Nev-

ertheless, the reading of the guide is recommended, especially the example because it is more

organized and clearer of what to modify.

The easiest way to migrate ROS1 to ROS2 is to first create a new ROS2 package and then

transfer the files one by one, or moving and changing small pieces of the files. The advantage of

creating a new package is that some files, in particular, the "package.xml" and "CMakeLists.txt"

require transformations that are already done in the ROS2 standard format of a package, not being

necessary to do so many alterations to these files.

Besides the creation of a new package to move the content pretended to transform, another new

package should be created specifically for custom messages and services if the package to migrate

contains these types of files. It is not mandatory to do that, but it is better for the organizational

structure of multiple packages systems because if multiple packages use the same type of custom

message they all depend on the same package with just the message, instead depending on a

package with other purposes that also contains the message2.

C.1 Migration of Custom Messages and Services

The official documentation3 for ROS2 Foxy Fitzroy has a tutorial to learn how to create a custom

message or service. However, this guide does not clarify some important aspects that can lead to

errors if not properly handled.

When the custom message has a data type of another package, for example, geometry_msgs/

msg/Point this package must be installed and its dependency must be added both on "package.xml"

1https://docs.ros.org/en/foxy/The-ROS2-Project/Contributing/Migration-Guide.html
2https://roboticsbackend.com/ros2-create-custom-message/
3https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/

Custom-ROS2-Interfaces.html

63

https://docs.ros.org/en/foxy/The-ROS2-Project/Contributing/Migration-Guide.html
https://roboticsbackend.com/ros2-create-custom-message/
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Custom-ROS2-Interfaces.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Custom-ROS2-Interfaces.html

64 ROS Migration Guide

and "CMakeLists.txt" of the message package. At "package.xml" the "<depend>package_name

</depend>" must be added and in "CMakeLists.txt" the "find_package(package_name REQUIRED)"

must be as well2. Also, "DEPENDENCIES builtin_interfaces package_name" need to be added in

"rosidl_generate_interfaces" from the CMakeLists.txt file4. If when building the custom message

package an error occurs about a specific type of data on the message or service structure, it is most

likely to be missing one of the dependencies just referred.

With the message created, the last step is to add to the packages where it is going to be used.

This step will be referred later in this guide when explaining the modifications required to make

to the other files.

Both packages migrated had a custom message structure created and no services, so, this guide

only focused on the transformation of message files. These files went to the same package created

specifically for messages called "custom_message". The recommendations previously referred

were important to the LiDAR message, because the data structure contains a data type included in

the "std_msgs" package.

C.2 Migration of Package.xml files

Since a new package was created, some of the alterations needed to be done in this file are already

accomplished. These are the ones involving the substitution of "catkin" to "ament_cmake" depen-

dencies. Note that most of the official migration1 guide instructions for the custom messages and

services are already done with the specific package created for that so, there is no need in adding

the dependencies for "rosidl_(...)" that was already added in the custom_message package.

Therefore, for these files, all there is to it is adding the depend of the packages used by the

ROS1 version and the package used for the custom messages. However, some of the packages

have different names due to the ROS version. That is the case of "roscpp" and "rospy" that in

ROS2 are called "rclcpp" and "rclpy" respectively. Also, the dependencies "message_runtime"

and "message_generation" are not to be included since these are for custom messages and services

for ROS1.

Despite the alterations of the modified files, more dependencies were added that were miss-

ing from the original ones. It was the case of the "std_srvs" package dependency on the LiDAR

XML file, and "cv_bridge", "image_transport" and "OpenCV" on the camera package XML file.

In both packages it was also added the dependency of the custom message package, that is "cus-

tom_message".

C.3 Migration of CMakeLists.txt files

Again, with the creation of a new package some modifications on the guide1 are already done,

only needing to port some parts of the ROS1 CMakeLists file to ROS2. Also, most of the custom

messages and services porting can be ignored again, since they are already done in the package

4https://answers.ros.org/question/314724/ros2-embedding-a-msg-as-a-field-in-a-custom-msg/

https://answers.ros.org/question/314724/ros2-embedding-a-msg-as-a-field-in-a-custom-msg/

C.4 Migration of source files 65

created with that purpose, only being required to include the dependency of the created custom

message package.

The first step to do is adding the "find_package" command, separating each package and

adding a "REQUIRED" in each one (find_package(package_name REQUIRED)). The "catkin"

and "message_generation" packages are not to be included in ROS2 since these are for the previous

version of ROS.

The existing "include_directories" command for ROS1 is changed to "target_include_directories",

which already exists when creating a new package, so there is no need to add it. However, some

arguments might be missing. The ones belonging to catkin are not meant to be added.

The "target_link_libraries" remains the same for ROS2 so it can be copied directly from the

original version, with the exception of the catkin libraries that are not used.

Finally, the "ament_target_dependencies" includes all other packages used by the source files.

For the LiDAR package, besides the packages already included in the ROS1 version, the

package "std_srvs" and "custom_message" were added. On the "target_link_libraries" and "tar-

get_include_directories" the LiDAR SDK arguments existing on the corresponding commands on

the original files were included. Finally, the packages "rclcpp", "rclpy", "sensor_msgs" "std_srvs"

and "custom_message" package were added on "ament_target_dependencies".

As for the camera package, the "PkgConfig" package on the original version was not included.

Also, for this case, it was not required to set the OpenCV directory. On the other hand, for the

raspicam, it was set (set(raspicam_DIR "/usr/local/lib/cmake")). The "custom_message" package

was added as well.

Since the camera package contains multiple source files, it is required to add an executable for

each one. Also, each one needs an "ament_target_dependencies", a "target_link_libraries" and a

"target_include_directories", and these executable need to be included on the "install" command.

The "target_link_libraries" were copied from the original file with the catkin libraries removed.

For the "target_include_directories", the arguments existing on the corresponding commands on

the original files were included. Lastly in each source file "ament_target_dependencies" it was

included the packages they depended on.

C.4 Migration of source files

With a well configured IDE for the used ROS2 distribution and with the previous modifications

well done, most of the required changes to do in the source files will be marked as errors. Here it

won’t be explained every single error that occurred in the migration process due to the simplicity

of most errors and the easy clarification given both by the example on the official migration guide1

previously mentioned and by the basic guide to create a simple publisher and subscriber5. These

guides were enough to migrate most of the code to ROS2.

5https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/
Writing-A-Simple-Cpp-Publisher-And-Subscriber.html

https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html

66 ROS Migration Guide

The first thing to change is the included libraries on the header files, or on the source ones if

the package does not contain them. Here, "ros/ros.h" is changed to "rclcpp/rclcpp.hpp", the msgs

libraries types need a "msg" in the include (e.g.: sensor_msgs/msg/....hpp), the srvs libraries are

equal as the msgs ones, expect with a "srv" (e.g.: std_srvs/srv/....hpp) and the custom message

needs to be added where it is going to be used. The structure of the custom message include is

important, "custom_message/msg/file_name.hpp" 6.

On the code itself, most of the changes are related to the new structure or naming of the

included packages. Some functions of these packages are different either by their arguments or by

their syntax to achieve the same purposes as the original code intends. It is the case of the "ros"

class that was replaced with "rclcpp" in ROS2 so, the commands on the original files with "ros"

need to be replaced. The ones related to the creation of a node and a publisher/subscriber are easy

to modify following the tutorials mentioned above1/5. To get the current time originally obtained

by the "ros::Time::now()" command, ROS2 uses the node itself for that (node_name->now())7.

It is important to refer that the object declaration type of the packages included, including the

objects created for the publishers and services, changes slightly in comparison to the original code

due to the different naming of the packages. In ROS2, the objects created from the package types

included need to have the "msg" or "srv" just like in the header files.

The ROS2 parameters tutorial8 supported the migration of the parameters on the code. These

were replaced with "node_name->get_parameter", with the arguments of the function being the

same as the original command replaced. As for the parameters of the launch files, the next section

will specify the alterations in more detail.

C.5 Migration of launch files

The official ROS2 Foxy documentation has a separate tutorial from the Migration guide specifi-

cally to explain how to migrate launch files9 from ROS1 to ROS2. The launch files on the packages

to migrate are not too complex, so there is not much to change. On the "node" the "type" attribute

is changed to "exec", on the "param" if there is a "type" attribute it is eliminated. Some files used

the "arg" and despite existing in ROS2 as well, it was opted to not use and just use the "param"

with the default values on the "arg" one.

6https://stackoverflow.com/questions/68052476/ros2-colcon-build-could-not-generate-hpp-files
7https://answers.ros.org/question/287946/ros-2-time-handling/
8https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/

Using-Parameters-In-A-Class-CPP.html
9https://docs.ros.org/en/foxy/How-To-Guides/Launch-files-migration-guide.html

https://stackoverflow.com/questions/68052476/ros2-colcon-build-could-not-generate-hpp-files
https://answers.ros.org/question/287946/ros-2-time-handling/
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Using-Parameters-In-A-Class-CPP.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/Using-Parameters-In-A-Class-CPP.html
https://docs.ros.org/en/foxy/How-To-Guides/Launch-files-migration-guide.html

Appendix D

Physical Robot Introduction using
ROS2 (GitHub ReadMe)

67

AlexMiranda16 / Physical_Robot_Introduction_ROS2 Public

Physical_Robot_Introduction_ROS2 / README.md

AlexMiranda16 Update README.md

 2 contributors

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

 main

Physical_Robot_Introduction_ROS2
This repository contains three ROS2 demos to teach the user how to work with ROS2 to
develop programs for physical robots. This tutorial will explain how to setup and run
each demo for the robot depicted below. The objective of this guide is to give a first
contact to the robot by running and testing these demos, while at the same time get
more used to ROS2 environment. This programs were specifically made using this robot
so, it is assumed that you are using one equal to the one shown on the image below. It
is not guaranteed that these demos will work on a different robot.

The first demo tests the motors, controlling the robot using a keyboard, and checking if
the motor current and encoders are published. The second demo tests if the camera
and the image processing algorithm is properly working, by reading the distances
measured at the front and back of the robot. The third and last demo is a simple
reactive robot demo, where the robot uses the camera to check for objects at his front
and avoids them.

These demos are independent from each other and, if you want to run one demo when
another is running, you should stop the running one first before starting the demo
wanted.

This repository was developed during Alexandre Miranda's master dissertation, at the
Faculty of Engineering of the University of Porto (FEUP).

1. Prerequisites
One obvious prerequisite is to have at least one robot equal to the one used to develop
these demos.

Regarding software, you need to install some tools, mainly:

Raspbian OS (Debian Buster version)
ROS2 Foxy Fitzroy (and some packages described below)
Arduino IDE
Visual Studio Code (optional)
VNC Server (optional but recomended for remote access to the robot's Operating
System, both for developing, running and debbuging programs)

You will also need to configure device identification ports attributed by the OS.

For you to know how to install all the software and how to create fixed tty device ports,
you can download the following PDF file. This guide provides additional information to
possible installation and configuration problems.

Software_Installation_Env_Config.pdf

Besides the software, you need to create a new ROS2 workspace to place all the robot
packages. In this example, the ROS2 workspace is "dev_ws" but you can give it another
name.

Open a terminal and create a new directory. Then, go to the "src" directory and clone
the repository. Check the dependencies of the workspace and then build it using the
colcon command.

As the instalation and configuration guide refers, you need to add additional packages
to your workspace.

Download the following packages to the src folder of your workspace directory. When
downloaded, compile the workspace again.

The next step is to install the RaspiCam, an API for using the Raspberry Pi camera with
OpenCV. The compilation process guide is explained on the ReadMe file of the
RaspiCam repository, located here: https://github.com/cedricve/raspicam.

Do not forget that in every new terminal opened, you need to source the setup script of
this workspace. Alternatively, you can add the source command to the .bashrc file in a
similar way to that shown in section A.3 of the intallation guide.

For more information about the ROS2 workspace creation, please visit "Creating a
workspace".

2. Demo 1 - Keyboard robot motor control
Objective: Test the motors' operation.

The program controls the robot movement using the "wasd" keyboard keys:

w - foward;
a - left rotation;
s - backward;

mkdir -p ~/dev_ws/src
cd ~/dev_ws/src
git clone https://github.com/AlexMiranda16/Physical_Robot_Introduction_ROS2
cd ..
rosdep install -i --from-path src --rosdistro foxy -y
colcon build --cmake-args -DCMAKE_BUILD_TYPE=Release

cd ~/dev_ws/src
git clone --branch foxy https://github.com/ros-perception/vision_opencv.git
git clone --branch foxy https://github.com/ros-perception/image_common.git
git clone --branch ros2 https://github.com/ros-
perception/image_transport_plugins.git
cd ..
rosdep install --from-paths src -r -y
colcon build --cmake-args -DCMAKE_BUILD_TYPE=Release

source install/setup.bash

d - right rotation;
To stop the motors, any other key can be pressed.

If not done yet, use the Arduino IDE to upload the code to the Arduino board you are
using (must be an ATMega328 microcontroller board).

Assuming the projects are already compiled (if not, use the colcon build command
previously mentioned in your workspace directory), open two terminal windows and go
to your workspace diretory and source the script file in both of them.

Now, in one terminal start the motor control program with the following command. It is
in this terminal that you will insert the keyboard commands to move the robot.

On the other terminal, start the "serial_com" node from the "rpi_uno" package. This
package is responsible for the communication between the Raspberry Pi and the
Arduino. This program subscribes to the topic that sends the movement command for
each motor, and send it to the Arduino. This node also receives information from the
Arduino, namely the motor current and the odometry, and publish it.

The robot now should be ready to go!

To check if everything is running properly, with both nodes running, run the ros2 node
list and ros2 topic list commands on one new terminal. You should see the
following nodes and topics running.

cd ~/dev_ws/
source install/setup.bash

ros2 run motor_test_control demo

ros2 run rpi_uno serial_com

If you want to check if the "serial_com" node is publishing the current and odometry
from both motors, you can use the ros2 topic echo command. In two new separate
terminals, run:

The following video shows an example on how the application should work. You can
see on the top left the two terminals. The left one prints the odometry values received
by the arduino, and the right one prints the current. You can also see how the robot
should behave by pressing different letters. If you haven't done yet, give it a try!

 Demo1_robot_keys_terminal.mp4

Additional Notes:

All messages have a letter that works as an identification and a number that
corresponds to the value we want to send or read. In this case, each letter represents a
motor and the type of data we are sending/receiving, and the number translates its
value. All messages have the same order: left_motor&value right_motor&value (first is
the letter and value of the left motor, followed by a space and then the letter and value
of the right motor). This next table clarifies the different letters meaning.

Channel Meaning

L Command left motor speed

R Command right motor speed

i Current of the left motor

ros2 topic echo /motor_current
ros2 topic echo /motor_odometry

0:03 / 0:24

Channel Meaning

j Current of the right motor

l Encoder value of the left motor

r Encoder value of the right motor

The odometry value received is actually the number of encoder triggers in a certain
direction, giving the position of the motor. A full 360º rotation corresponds to 2797
counts. Also, the value increases or decreases according to the motor rotation direction.

For more information about the motor, you can visit its wiki page:
https://wiki.dfrobot.com/12V_DC_Motor_251rpm_w_Encoder__SKU__FIT0186_

3. Demo 2 - Camera based virtual LiDAR
test
Objective: test the camera and the applied image processing algorithm.

This demo prints on the terminal the distance of the nearest object both at the front
and at the rear of the robot.

If not done yet, use the Arduino IDE to upload the code to the Arduino board you are
using (must be an ATMega328 microcontroller board).

Assuming the projects are already compiled (if not, use the colcon build command
previously mentioned in your workspace directory), open two terminal windows and go
to your workspace diretory and source the script file in both of them.

Now, in one terminal start the camera range test program with following command.
This terminal will display the frontal and rear measurements.

On the other terminal, run the camera simulated LiDAR. This node is the one
responsible for gathering the camera image, do some processing on it and with that it
simulates a LiDAR sensor, and publish the distances calculated around the robot.

cd ~/dev_ws/
source install/setup.bash

ros2 run camera_lidar_range_test demo

ros2 run fisheye_camera_simulated_sensors_ros2 simulated_lidar

Instead of running both ros2 run to execute this application, it can be used the launch
file created. Stop both nodes if they are still running and in one terminal run the next
ros2 launch command:

Again, to check if everything is running properly, with both nodes running, run the
ros2 node list and ros2 topic list commands on one new terminal. You should

see the following nodes and topics running.

If everything is working as pretended, the demo should behave similarly to the video
shown. On the top left of the video you can see the distance measured both by the
front and back of the robot. Note that the values aren't precise and therefore do not
represented the actual distance. This must be seen more as a scale, where the bigger
the number, the further the objects are.

 Demo2_camera_distance.mp4

ros2 launch camera_lidar_range_test range_demo.launch.xml

0:03 / 0:30

224 lines (141 sloc) 12.3 KB

Additional Notes

Tall objects might give wrong measures. In the video you can see that the hand down
and up at a similar distance give different measurements.

4. Demo 3 - Reactive robot demo
Objective: Run a simple reactive robot that avoids colision with objects.

The robot moves forward until a nearby object is identified in front of it. The robot then
rotates to the left until the object is no longer in its front and proceeds to move
forward in the new direction.

If not done yet, use the Arduino IDE to upload the code to the Arduino board you are
using (must be an ATMega328 microcontroller board).

Assuming the projects are already compiled (if not, use the colcon build command
previously mentioned in your workspace directory), open one terminal window and go
to your workspace diretory and source the script file.

Now, start the reactive robot program with the following ros2 launch command. This
launch file will start three nodes:

The reactive robot demo node. Evaluates the camera information and commands
the movement for the robot to make.
The simulated LiDAR node. As previsouly explained on the demo2 program, is
responsible for the camera image processing, simulating a virtual LiDAR by
calculating the distance of objects aroud the robot.
The Raspberry Pi - Arduino communication node. Also explained previouly. Ensures
the communication between the Rasperry and the Arduino, by sending movement
commands for each motor, and receiving the current and odometry of each one.

In a couple of seconds, the robot should start moving by itself.

Again, to check if everything is running properly, with both nodes running, run the
ros2 node list and ros2 topic list commands on one new terminal. You should

see the following nodes and topics running.

cd ~/dev_ws/
source install/setup.bash

ros2 launch reactive_robot_demo reactive.launch.xml

If the robot is doing what it is supposed to do in this demo, you should see it behave
similarly to this video. It will turn left to avoid obstacles when it is near them.

 Demo3_reactive_robot.mp4

0:06 / 0:22

References

[1] J. Ferreira, F. Coelho, A. Sousa, and L.P. Reis. Bulbrobot – inexpensive
open hardware and software robot featuring catadioptric vision and virtual
sonars. Advances in Intelligent Systems and Computing, 1092 AISC:553–
564, 2020. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85082111392&doi=10.1007%2f978-3-030-35990-4_45&
partnerID=40&md5=59552fe8c6dcbf19cf472e7a598c6a9a, doi:10.1007/
978-3-030-35990-4_45.

[2] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher Cianci,
Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zufferey, Dario Floreano, and A. Mar-
tinoli. The e-puck, a robot designed for education in engineering. Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, 1, 01 2009.

[3] L.F. Llamas, A. Paz-Lopez, A. Prieto, F. Orjales, and F. Bellas. Artificial in-
telligence teaching through embedded systems: A smartphone-based robot ap-
proach. Advances in Intelligent Systems and Computing, 1092 AISC:515–
527, 2020. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85082141920&doi=10.1007%2f978-3-030-35990-4_42&
partnerID=40&md5=1851fe510d7c56521865c94ff82c2ee8, doi:10.1007/
978-3-030-35990-4_42.

[4] K. Afsari and M. Saadeh. Artificial intelligence platform for low-cost robotics.
2020. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85101156220&doi=10.1109%2fICSPIS51252.2020.9340156&partnerID=
40&md5=618bc5b89f77c93cfc3480b794dd0485, doi:10.1109/ICSPIS51252.
2020.9340156.

[5] D. Kumar and L. Meeden. A robot laboratory for teaching artificial intelligence. volume 30,
pages 341–344, 1998. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-0004877047&doi=10.1145%2f274790.274326&partnerID=40&
md5=e8b8fd080f87f6d59348bf9940641269, doi:10.1145/274790.274326.

[6] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Ng. Ros: an open-source robot operating system. volume 3, 01 2009.

[7] F. Bellas, M. Naya, G. Varela, L. Llamas, M. Bautista, A. Prieto, and R.J. Duro. Robobo:
The next generation of educational robot. Advances in Intelligent Systems and Com-
puting, 694:359–369, 2018. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85042229481&doi=10.1007%2f978-3-319-70836-2_
30&partnerID=40&md5=b61b77ac66ec91b5caed9ec0e5e2b191, doi:
10.1007/978-3-319-70836-2_30.

77

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082111392&doi=10.1007%2f978-3-030-35990-4_45&partnerID=40&md5=59552fe8c6dcbf19cf472e7a598c6a9a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082111392&doi=10.1007%2f978-3-030-35990-4_45&partnerID=40&md5=59552fe8c6dcbf19cf472e7a598c6a9a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082111392&doi=10.1007%2f978-3-030-35990-4_45&partnerID=40&md5=59552fe8c6dcbf19cf472e7a598c6a9a
http://dx.doi.org/10.1007/978-3-030-35990-4_45
http://dx.doi.org/10.1007/978-3-030-35990-4_45
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082141920&doi=10.1007%2f978-3-030-35990-4_42&partnerID=40&md5=1851fe510d7c56521865c94ff82c2ee8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082141920&doi=10.1007%2f978-3-030-35990-4_42&partnerID=40&md5=1851fe510d7c56521865c94ff82c2ee8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082141920&doi=10.1007%2f978-3-030-35990-4_42&partnerID=40&md5=1851fe510d7c56521865c94ff82c2ee8
http://dx.doi.org/10.1007/978-3-030-35990-4_42
http://dx.doi.org/10.1007/978-3-030-35990-4_42
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101156220&doi=10.1109%2fICSPIS51252.2020.9340156&partnerID=40&md5=618bc5b89f77c93cfc3480b794dd0485
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101156220&doi=10.1109%2fICSPIS51252.2020.9340156&partnerID=40&md5=618bc5b89f77c93cfc3480b794dd0485
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101156220&doi=10.1109%2fICSPIS51252.2020.9340156&partnerID=40&md5=618bc5b89f77c93cfc3480b794dd0485
http://dx.doi.org/10.1109/ICSPIS51252.2020.9340156
http://dx.doi.org/10.1109/ICSPIS51252.2020.9340156
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0004877047&doi=10.1145%2f274790.274326&partnerID=40&md5=e8b8fd080f87f6d59348bf9940641269
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0004877047&doi=10.1145%2f274790.274326&partnerID=40&md5=e8b8fd080f87f6d59348bf9940641269
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0004877047&doi=10.1145%2f274790.274326&partnerID=40&md5=e8b8fd080f87f6d59348bf9940641269
http://dx.doi.org/10.1145/274790.274326
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042229481&doi=10.1007%2f978-3-319-70836-2_30&partnerID=40&md5=b61b77ac66ec91b5caed9ec0e5e2b191
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042229481&doi=10.1007%2f978-3-319-70836-2_30&partnerID=40&md5=b61b77ac66ec91b5caed9ec0e5e2b191
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042229481&doi=10.1007%2f978-3-319-70836-2_30&partnerID=40&md5=b61b77ac66ec91b5caed9ec0e5e2b191
http://dx.doi.org/10.1007/978-3-319-70836-2_30
http://dx.doi.org/10.1007/978-3-319-70836-2_30

78 REFERENCES

[8] F. Arvin, J. Espinosa, B. Bird, A. West, S. Watson, and B. Lennox. Mona:
an affordable open-source mobile robot for education and research. Journal
of Intelligent and Robotic Systems: Theory and Applications, 94(3-4):761–775,
2019. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85047239237&doi=10.1007%2fs10846-018-0866-9&partnerID=40&md5=
b4da0ec639a668b405cd210ac622d910, doi:10.1007/s10846-018-0866-9.

[9] J.M. Soares, I. Navarro, and A. Martinoli. The khepera iv mobile robot: Performance
evaluation, sensory data and software toolbox. Advances in Intelligent Systems and
Computing, 417:767–781, 2016. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84951800623&doi=10.1007%2f978-3-319-27146-0_
59&partnerID=40&md5=06ddd1376a1b82efb7f24e8be0b7872d, doi:
10.1007/978-3-319-27146-0_59.

[10] Francesco Mondada, Michael Bonani, Fanny Riedo, Manon Briod, Lea Pereyre, Philippe
Retornaz, and Stephane Magnenat. Bringing robotics to formal education: The thymio open-
source hardware robot. IEEE Robotics Automation Magazine, 24(1):77–85, 2017. doi:
10.1109/MRA.2016.2636372.

[11] A.Fernando Ribeiro and Gil Lopes. Learning robotics: a review. Current Robotics Reports
2020 1:1, 1:1–11, 1 2020. URL: https://link.springer.com/article/10.1007/
s43154-020-00002-9, doi:10.1007/S43154-020-00002-9.

[12] Vítor Ventuzelos, Gonçalo Leão, and Armando Sousa. Teaching ros1/2 and reinforcement
learning using a mobile robot and its simulation. Iberian Robotics Conference (ROBOT),
2022. Accepted for publication.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047239237&doi=10.1007%2fs10846-018-0866-9&partnerID=40&md5=b4da0ec639a668b405cd210ac622d910
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047239237&doi=10.1007%2fs10846-018-0866-9&partnerID=40&md5=b4da0ec639a668b405cd210ac622d910
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047239237&doi=10.1007%2fs10846-018-0866-9&partnerID=40&md5=b4da0ec639a668b405cd210ac622d910
http://dx.doi.org/10.1007/s10846-018-0866-9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951800623&doi=10.1007%2f978-3-319-27146-0_59&partnerID=40&md5=06ddd1376a1b82efb7f24e8be0b7872d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951800623&doi=10.1007%2f978-3-319-27146-0_59&partnerID=40&md5=06ddd1376a1b82efb7f24e8be0b7872d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951800623&doi=10.1007%2f978-3-319-27146-0_59&partnerID=40&md5=06ddd1376a1b82efb7f24e8be0b7872d
http://dx.doi.org/10.1007/978-3-319-27146-0_59
http://dx.doi.org/10.1007/978-3-319-27146-0_59
http://dx.doi.org/10.1109/MRA.2016.2636372
http://dx.doi.org/10.1109/MRA.2016.2636372
https://link.springer.com/article/10.1007/s43154-020-00002-9
https://link.springer.com/article/10.1007/s43154-020-00002-9
http://dx.doi.org/10.1007/S43154-020-00002-9

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Document Structure

	2 Robot Operating System ([abrevs]ROS) and robotics teaching platforms
	2.1 Robot Operating System ([abrevs]ROS)
	2.1.1 [abrevs]ROS1 teaching material
	2.1.2 [abrevs]ROS2 teaching material

	2.2 Examples of robots suited for [abrevs]AI Robotics
	2.2.1 BulbRobot
	2.2.2 Mona
	2.2.3 Khepera IV
	2.2.4 Thymio
	2.2.5 E-puck and e-puck2
	2.2.6 Robobo
	2.2.7 Robots Comparison and conclusions

	2.3 Summary

	3 Questionnaire Results
	3.1 Classification of experience in [abrevs]ROS use and teaching
	3.2 Robotics teaching course and academic level
	3.3 Is teaching robotics with [abrevs]ROS important? Why?
	3.4 Is teaching [abrevs]ROS2 relevant? Why?
	3.5 Do you consider it important to work with real robots when teaching robotics? When teaching [abrevs]ROS? Why for robotics and why for [abrevs]ROS?
	3.6 Between C++ and Python, which one do you consider more important to teach [abrevs]ROS with? Why?
	3.7 Do you consider any topic(s) of the book irrelevant (or less relevant) to a first introduction to [abrevs]ROS? Which one(s)?
	3.8 Classify how important you think the following topics of [abrevs]ROS are for teaching of [abrevs]ROS at an introductory level.
	3.9 Besides the topics of the previous question, which topics do you consider the book is lacking?
	3.10 Do you have any suggestions about books, guides or videos for [abrevs]ROS?
	3.11 Summary

	4 The Physical Robot
	4.1 The Robot and its Hardware
	4.1.1 List of Material
	4.1.2 Hardware Architecture

	4.2 Hardware and Design Modifications
	4.2.1 Camera support
	4.2.2 The Raspberry Pi upgrade
	4.2.3 The Raspberry Pi camera

	4.3 Summary

	5 The Software
	5.1 Requirements
	5.2 [abrevs]ROS2 and Applications Development
	5.2.1 [abrevs]ROS code Migration
	5.2.2 [abrevs]ROS2 packages explanation
	5.2.3 Applications created

	5.3 Arduino Code
	5.4 Summary

	6 Results and Discussions
	6.1 Physical robot discussion
	6.2 Software and applications development
	6.2.1 User controlled robot demo
	6.2.2 Distance measure demo
	6.2.3 Reactive robot demo
	6.2.4 [abrevs]LiDAR

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Main contributions
	7.2 Future work
	7.2.1 Physical platform
	7.2.2 Software and program development
	7.2.3 Simulator

	A Questionnaire Form
	B Software Installation and Environment Configuration
	B.1 Operating system installation
	B.2 [abrevs]ROS1 Noetic Ninjemys Installation
	B.3 [abrevs]ROS2 Foxy Fitzroy installation
	B.4 Arduino [abrevs]IDE installation
	B.5 Visual Studio Code installation
	B.6 Define fixed tty devices
	B.6.1 [abrevs]LiDAR device identifier
	B.6.2 Arduino device Identifier

	C [abrevs]ROS Migration Guide
	C.1 Migration of Custom Messages and Services
	C.2 Migration of Package.[abrevs]xml files
	C.3 Migration of CMakeLists.[abrevs]txt files
	C.4 Migration of source files
	C.5 Migration of launch files

	D Physical Robot Introduction using [abrevs]ROS2 (GitHub ReadMe)
	References

