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Resumo

Atualmente a principal aplicação de software para semigrupos é a package de GAP
chamada Semigroups [29], em articulação com a package Smallsemi [13]. O GAP [17]
é um sistema e linguagem de programação para álgebra discreta computacional. Embora
estas packages ofereçam muitas opções de cálculo e forneçam uma biblioteca de todos
os semigrupos até o tamanho 8, várias operações de semigrupos importantes não estão
disponíveis. Em parte, isto deve-se ao facto de a arquitetura subjacente ser voltada para a
teoria de grupos e os semigrupos frequentemente requerem técnicas algorítmicas que são
mais próximas das empregadas na Álgebra Universal do que daquelas usadas em grupos.

Existem maneiras de construir álgebras a partir das existentes (produtos diretos etc.),
mas a operação inversa é crítica: decompor uma dada álgebra em outras menores. Este tipo
de decomposição é especialmente importante em semigrupos, pois mesmo a estrutura de
semigrupos muito pequenos pode ser muito obscura.

Até agora não existe uma ferramenta computacional geral para decompor semigrupos.
Por exemplo, o GAP já contém código para encontrar todas as congruências de classes muito
particulares de semigrupos, mas está muito longe de fornecer um método geral. A situação é
ainda pior em relação aos endomorfismos. O objetivo da package CREAM (Algebra Con-
gRuences, Endomorphisms and AutomorphisMs) é resolver esta situação implementando al-
goritmos eficientes para calcular congruências, endomorfismos e automorfismos de álgebras
do tipo (2m, 1n). Vários algoritmos gerais (como em [15]) serão adaptados para o contexto
da teoria de semigrupos e mais geralmente para álgebras do tipo (2m, 1n) cobrindo assim
grupos e semigrupos mas também álgebras unárias e também loops, campos, anéis, semi-
anéis, álgebras de Lie, MV-álgebras, Meadows, álgebras de lógica, etc. Estes algoritmos
serão implementados em GAP. Isso incluirá as seguintes questões:

• Dada uma álgebra finita A do tipo (2m, 1n), encontrar todas as congruências de A,
pelo menos tão rápido quanto os programas existentes (ou seja, o código produzido
será geral e pelo menos tão rápido quanto o código que existe para classes específicas
de álgebras apenas);

• Dada uma álgebra finita A do tipo (2m, 1n), encontrar todos os endomorfismos de
A; em particular, o código deve calcular efetivamente os automorfismos de A, uma
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ferramenta que essencialmente existe apenas para grupos.

Uma álgebra universal é uma estrutura algébrica que consiste num conjunto A e numa
coleção de operações sobre A. Uma operação n-aria sobre A é uma função que tem como
entrada um n-tuplo de elementos de A e retorna um elemento de A. Neste contexto só estão
a ser consideradas operações com aridade 1 ou 2, i.e. operações unárias e binárias. Uma
álgebra do tipo (2m, 1n) é uma álgebra universal comm operações binárias e n unárias.

Este uso genérico da package CREAM depende de teoremas de álgebra universal.
Isto tem custos, pois teoremas de tipos específicos de álgebras (e.g. grupos, semigrupos,
etc) não podem ser usados para reduzir o espaço de procura e melhorar a performance.
Canon e Holt [10], usaram vários algoritmos inteligentes e teoremas específicos de grupos
para produzir código mais rápido que a package CREAM a calcular automorfismos de
grupos com ordens maiores. Analogamente, Mitchell et al. [29] usaram teoremas da teoria
de semigrupos para calcular eficazmente automorfismos e congruências de semigrupos
completamente 0-simples. Mas estes estão entre os poucos casos de código GAP disponível
que é mais rápido que a package CREAM que é de uso mais generalizado. Para a maioria
de outras classes de álgebras de tipo (2m, 1n) a package CREAM é mais rápida a calcular
auto[endo]morfismos/congruências. Um dos algoritmos principais implementado na pack-
age é o algoritmo de Freese descrito em [15] que calcula congruências principais para uma
álgebra universal.

Para chegar a esta performance a package CREAM usa uma mistura de algoritmos
standard de álgebra universal juntamente com ferramentas de procura eficiente por modelos
finitos de fórmulas de primeira ordem e a implementação de partes de código em C.

Em geral, calcular congruências de álgebras é uma tarefa difícil. Existem vários teoremas
descritivos para diferentes tipos de álgebra e algumas ferramentas computacionais para
calcular congruências para álgebras finitas, mas geralmente essas ferramentas são aplicáveis
a um conjunto muito específico e estreito de álgebras. O nosso objetivo era fornecer
uma ferramenta eficaz para calculá-los para álgebras finitas do tipo (2m, 1n) abrangendo
um conjunto muito amplo de álgebras, incluindo a maioria dos tipos e classes de álgebra
atualmente estudados. O algoritmo usado foi o algoritmo de Freese cuja eficiência depende
em muito da representação das álgebras e congruências. Em especial a representação
de partições/congruências como um array é determinante na eficiência do cálculo das
congruências principais uma vez que permite uma junção de blocos muito rápida, uma das
operações mais utilizadas durante a execução do algoritmo de congruências. Além disso a
representação usada não limita o âmbito geral das álgebras suportadas.

No âmbito deste doutoramento vários algoritmos para o cálculo de automorfismos
foram testados e a conclusão foi que o algoritmo mais promissor foi um algoritmo que usa
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invariantes das operações das álgebras para limitar os possíveis automorfismos da álgebra.
Este algoritmo é usado na package Loops cuja implementação foi usada como guia tendo
o seu âmbito sido expandido para suportar não só magmas mas qualquer álgebra do tipo
(2m, 1n). A implementação final dos algoritmos de automorfismos usando a abordagem
de invariantes foi contribuída para a package CREAM por Choiwah Chow com base nas
conclusões e no trabalho realizado no âmbito deste doutoramento.

Dada a falta de referências sobre algoritmos para calcular endomorfismos, o algoritmo
para calcular endomorfismos usado na package CREAM foi definido usando teoremas bási-
cos de álgebra universal como o teorema do homomorfismo, para relacionar congruências,
álgebras quocientes, subálgebras e endomorfismos. O algoritmo foi desenvolvido usando os
algoritmos de congruências e automorfismos implementados, e uma aplicação denominada
MACE4. OMACE4 [27] é uma aplicação de linha de comando que procura modelos finitos
de fórmulas de primeira ordem.

Embora o GAP seja adequado para prototipagem e implementação rápida de algoritmos,
o código resultante não é muito rápido devido ao facto de ser uma linguagem interpretada.
Reescrever o código em C permitiu melhorias surpreendentes que alcançaram uma melhoria
de até 670 vezes do código GAP para o código C.

Além disso, a integração com o MACE4 permite combinar a eficiência de algoritmos
como [15], com um amplo conjunto de possibilidades fornecidas por uma ferramenta
eficiente na procura por modelos finitos de fórmulas de primeira ordem, dando uma
flexibilidade muito grande à package CREAM.

A package CREAM é em média 20 vezes mais rápida no cálculo de congruências
dos tipos de semigrupos muito limitados que são suportados pela função Congruence-
sOfSemigroups da package Semigroups que é a função mais abrangente em GAP para o
cálculo de congruências. A única aplicação que possui um âmbito semelhante em termos de
álgebras suportadas é a interface de linha de comando UACalc, mas faz isso em jython, sem
beneficiar do ecossistema existente na plataforma GAP. Quando comparado com o UACalc,
o package CREAM é consistentemente mais de 3 vezes mais rápido.

Relativamente a automorfismos e endomorfismos, a comparação com outras bibliote-
cas/aplicativos é muito difícil, uma vez que o suporte é limitado principalmente a grupos
e outras estruturas algébricas intimamente relacionadas com grupos. Para essas álgebras,
o desempenho das packages GAP Loops e Sonata são comparáveis e às vezes melhores
do que a package CREAM. Essas bibliotecas por vezes contam com o uso de teoremas
específicos para essas álgebras. Mas apenas a package CREAM suporta a maioria das
álgebras estudadas em álgebra convencional e moderna.
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Dada a importância das congruências, automorfismos e endomorfismos para o estudo de
estruturas algébricas, espera-se que a packageCREAM com seu desempenho e versatilidade
possa ser uma ferramenta útil para a comunidade GAP e um amplo grupo de matemáticos.

O código resultante está disponível como o pacote GAP CREAM que está totalmente
documentado.

Palavras-chave: Congruências, Morfismos, Universal, Álgebra, GAP
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Summary

While there are efficient algorithms to decompose very particular classes of semigroups,
groups and quasigroups, there are no similar facilities available for the more general
algebraic structures such as algebras of type (2m, 1n), with an arbitrary number of binary
and unary operations. In this thesis, its presented the GAP package CREAM (Algebra
CongRuences, Endomorphisms and AutomorphisMs) that provides efficient algorithm
implementations to calculate congruences, endomorphisms and automorphisms of algebras
of type (2m, 1n) covering groups and semigroups but also unary algebras, and loops, fields,
rings, semi-rings, MV-algebras, Meadows, algebras of logic, etc.

An universal algebra is an algebraic structure consisting of a set A together with a
collection of operations on A. An n-ary operation on A is a function that takes n-tuple of
elements from A and returns a single element of A. In the current scope are only considered
operations with arity of 1 or 2, i.e. unary and binary operations. An algebra of type (2m,1n)
is a universal algebra withm binary and n unary operations.

This general applicability of the CREAM package relies on universal algebra theo-
rems. This comes with a cost since theorems on specific types of algebras (e.g. groups,
semigroups, etc) cannot be used to reduce the search space and enhance performance.
Canon and Holt, using a mix of smart algorithms and specific group theorems, produced
fast code to compute automorphisms of groups that is faster than CREAM on large orders.
Similarly, Mitchell et al. used semigroup theory theorems to compute in a very effective
way automorphisms and congruences of completely 0-simple semigroups. But these are
among the few cases of known GAP code that are faster than our general purpose package
CREAM. For most other classes of algebras of type (2m, 1n), CREAM is faster computing
auto[endo]morphisms/congruences. One core algorithm implemented in the package is
Freese’s algorithm [15] that calculates principal congruences for a universal algebra.

To get this performance, CREAM uses a mixture of standard universal algebra algo-
rithms together with tools that can search efficiently for finite models of first-order formulas
and the implementation of parts of the code in C.

Keywords: Congruences, Morphisms, Universal, Algebra, GAP
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Chapter 1

Introduction

Currently the main software application for semigroups is the GAP package Semigroups
[29], in connection with the package Smallsemi [13]. GAP [17] is a system and computer
language for computational discrete algebra. While these packages offer many calculation
options, and provide a library of all semigroups up to size 8, several important semigroup
operators are not available. This is partly because the underlying architecture is geared
towards group theory and semigroups often require algorithmic techniques that are closer to
those employed in Universal Algebra than to those used in groups.

There are ways of building algebras from existing ones (direct products, etc.), but critical
is the inverse operation: decomposing a given algebra into smaller ones. This type of
decompositions is especially important in semigroups as even the structure of very small
semigroups might be very obscure.

Computing congruences is important since congruences have close ties to the structure of
algebras - for example, the subdirectly irreducible algebras are precisely the ones that possess
a unique minimal nontrivial congruence; the use of congruences for the decomposition in
direct products is an example of the relation between congruences’ properties and direct
reducibility. The connection between congruences and endomorphisms is well known and
its importance in modern algebra can hardly be overestimated. Tame Congruence Theory
[19] emerged as a powerful tool to study the structure of finite algebras, and continues to
provide a big leverage in the study of locally finite varieties. These examples point to the
critical importance of the study of congruences in algebra.

Investigation of automorphism groups of mathematical structures is one of the classical
algebraic problems. A cornerstone was the work of Evariste Galois, but its impact goes far
beyond. In the words of P. J. Cameron [9]:

In the famous Erlanger Programme, Klein proposed that geometry is the study of
symmetry; more precisely, the geometric properties of an object are those which
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1. INTRODUCTION

are invariant under all automorphisms of the objects. (. . .) According to Artin,
“the investigation of symmetries of a given mathematical structure has always
yielded the most powerful results.”

These ideas, expressed by Klein in 1872 [23] and by Artin in 1957 [6], give some insight on
why the computation of automorphisms of various mathematical structures has been such an
attractive topic for so many decades.

As natural numbers are products of prime numbers, finite algebras are compositions of
simpler algebras. Two of the most frequent compositions are direct products and sub-direct
products. Tools to decompose a given algebra are therefore very important.

The Krohn-Rodes theorem is an important decomposition theorem for decomposition
of finite automata and finite semigroups [32] with applications in biology and biochemical
systems, artificial intelligence, finite-state physics, psychology, game theory and other do-
mains. It is the analogue of the Jordan-Hölder Theorem for groups. One of the fundamental
ingredients of this theorem are divisors.

Sub-algebras are the most basic and omnipresent objects in algebra. Sub-algebras are so
important that some have their own names. For example, in groups we have: Hall, Frattini,
center, Cartan, Fitting, normal, centralizer, fixed-point, etc. In rings, we have: ideal, center,
centralizer, kernel, Gaussian integers, principal ideals, etc. A tool to compute sub-algebras
(subgroups, subrings, etc) has been one of the most frequent requests in the GAP Forum.
However calculating SubAlgebras is very demanding.

This makes the case in favour of a general centralized and effective GAP tool that
computes congruences, automorphisms, endomorphisms, isomorphisms, monomorphisms,
epimorphisms, divisors, sub-algebras and more for algebras of type (2m, 1n), i.e. a finite
universal algebra withm binary and n unary operations.

So far, there is no general computational tool to decompose algebras. For example, GAP
already contains code to find all the congruences of semigroups, but it is very far from pro-
viding a general method other types of algebras. The situation is even worse regarding endo-
morphisms. The aim of the project is to address this situation. In this project several general
algorithms (as in [15]) will be adapted to support algebras of type (2m, 1n) thus covering not
only semigroups but also unary algebras, loops, fields, rings, semi-rings, Lie algebras, MV-
algebras, Meadows, algebras of logic, etc. These algorithms will be implemented in GAP.
These will include the following questions:

• Given a finite algebra A of type (2m, 1n), find all congruences of A, at least as fast as
the existing programs (that is, the code produced will be general and at least as fast as
the code that exists for particular classes of algebras only);
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• Given a finite algebra A of type (2m, 1n), find all endomorphisms of A; in particular
the code should effectively compute the automorphisms of A, a tool that essentially
only exists for groups.

The result of this work was CREAM[5] that stands for “Algebra CongRuences,
Endomorphisms and AutomorphisMs” and is a GAP package with fast methods for
calculating congruences, automorphisms, endomorphisms, isomorphisms, monomorphisms,
epimorphisms, divisors, sub-algebras and more for algebras of type (2m, 1n), i.e., a finite
universal algebra withm binary and n unary operations.

Algebras of type (2m, 1n) cover the majority of the algebras used in practice and it
is a very rare occurrence that an algebraic structure actually uses ternary or higher arity
operations (see [8]).

Handling the most popular classes of algebras with a good performance makes CREAM
a useful tool to almost all algebraists. Nevertheless, this needed to be achieved without using
theorems specific to some types of algebras. Only theorems from Universal Algebra.

To achieve this, the most time consuming parts of the algorithms were re-written in C
to improve the performance of the code, for example taking advantage of data structures
allowing the fast manipulation of data among many other techniques. Also CREAM was
integrated with MACE4 benefiting of one of the fastest applications in its class that is
under a continuous improvement process including artificial intelligence techniques that
will benefit the performance of CREAM in the future. As far as we know this is the first
time that this toll is integrated with GAP.

The resulting code is available as the fully documented GAP package CREAM.

After this introduction, the core of this thesis is divided in three parts. Chapter 2
reviews the mathematical background underlying this work. Chapter 3 discusses the several
aspects of the computational implementation of the package CREAM. Chapter 4 describes
application of the work done in this thesis. After these three core chapters, there is a small
conclusion on Chapter 5. As Appendices this thesis includes the CREAM package manual
and the article “CREAM: a Package to Compute [Auto, Endo, Iso, Mono, Epi]-morphisms,
Congruences, Divisors and More for Algebras of Type (2n, 1n)”[5].

Chapter 2, “Mathematical Background”, is divided in four sections covering the defini-
tions of algebras of type (2n, 1n), the definition of congruence and a discussion of the state of
the art in terms of algorithms to calculate congruences, automorphisms and endomorphisms.
In the last section, other algebras that are mentioned in examples or used in tests are defined.
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1. INTRODUCTION

Chapter 3, “Computational Implementation”, is divided in five sections covering the
representation of data structures in the package CREAM, the algorithms implemented in
CREAM, a description CREAM that points to the CREAM manual in the appendix A, a
description of MACE4 and finally the perfomance discussion of the package CREAM.

Chapter 4, “Applications”, is divided in six sections covering the application of CREAM
in determination of monolithic algebras, to small semigroups, small groups, special groups,
semigroups and monoids and particular classes of algebras defined axiomatically. Finally
there is a section going through future improvements to CREAM.

Finally Chapter 5, “Conclusions”, goes through the main conclusions from this work.
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Chapter 2

Mathematical Background

Definitions adapted from [8] are used throughout this section.

2.1 Algebras of Type (2m,1n)

The CREAM package applies to Universal Algebras of Type (2m,1n)[8] which includes
a wide range of algebraic structures. Starting with the definition of Universal Algebra,
different types and classes of algebras are defined in this section.

For A, a nonempty set and n > 0, An is the set of n-tuples of elements from A. An n-ary
operation on A is a function f : An → A. The arity of f is n.

A language (or type) of algebras is a set F of function symbols such that a nonnegative
integer n is assigned to each member f of F . This integer is called the arity (or rank) of f ,
and f is said to be an n-ary function symbol.

Definition 2.1.1 (Universal Algebra). IfF is a language (or type) of algebras then an algebra
A of type F is an ordered pair (A,F ) where A is a nonempty set and F is a family of finitary
operations on A indexed by the language F such that corresponding to each n-ary function
symbol f in F there is an n-ary operation fA on A.

For the scope of this package are only considered operations with arity of 1 or 2, ie. unary
and binary operations.

Definition 2.1.2 (Algebra of type (2m,1n)). An algebra of type (2m,1n) is a universal algebra
withm binary and n unary operations.

This type of algebras do not include nullary operations for the sake of simplicity. This
will not impact the calculation of congruences but might impact the calculation of endomor-
phisms. For instance, the endomorphisms of a monoid without taking into consideration the
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nullary operation (0) will be calculated in the sense of semigroup endomorphisms and not
in the sense of monoid endomorphisms. If the monoid has more than one idempotent, there
might be additional semigroup endomorphisms that are not monoid endomorphisms.

Two algebras are of the same type if the number of operations of each arity is the same.
This does not mean that algebras of the same type belong to the same algebra class. For
example, an algebra of type (21) is not necessarily a semigroup.

A table was proposed by the British mathematician Arthur Cayley to represent the binary
operation of a group. In his honor, these are now known as Cayley Tables.

A Cayley table can be used to define a binary operation on a finite set A.

Table 2.1: Cayley Table

1 2 3

1 1 2 3

2 2 3 1

3 3 1 2

Analogously to a Cayley table, a row vector can be used to represent a unary operation
on a finite set A.

Table 2.2: Row Vector

1 2 3

3 1 2

An Algebra of type (2m,1n) can be defined by a set of Cayley tables and Row vectors
representing binary and unary operations respectively.

Definition 2.1.3 (Magma). A Magma (A, ·) is an algebraic structure consisting of a set A
together with 1 binary operation. No other properties are imposed.

Magmas can also be refered as Binar or Groupoid.

One of the main and most studied algebras classes are Semigroups.

Definition 2.1.4 (Semigroups). A Semigroup (A, ·) is an algebraic structure consisting of a
set A together with 1 binary operation, such that the following hold:
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∀x, y, z ∈ A : (x · y) · z = x · (y · z) (associativity)

A semigroup is a Universal Algebra of type (21) in which the binary operation is
associative. At times, if there is no cause for confusion, the operation symbol may be
omitted, writing a semigroup A instead of a semigroup (A, ·).

Many algebras, like monoids and groups, also have a binary associative operation, and
often thought of as semigroups (with additional operations).

Definition 2.1.5 (Monoids). AMonoid (A, ·, 1) is an algebraic structure consisting of a setA
together with 1 binary operation and 1 nullary operation (constant), such that the following
hold:

∀x, y, z ∈ A : (x · y) · z = x · (y · z) (associativity)
∀x ∈ A : 1 · x = x = x · 1 (identity)

1 is the identity element of A.

A Monoid is a Semigroup with identity and a Universal Algebra of type (21, 01) in
which the binary operation is associative and where the nullary operation maps to the identity.

Since the Monoid constant 1 derives from the operation · and the Monoid axioms, a
Monoid is often considered as a algebraic structure consisting of a set A together with 1
binary operation (A, ·). As mentioned before representing monoids without the nullary
operation might produce additional endomorphisms.

An ideal of a semigroup A is a set I ⊆ A for which AI ∪ IA ⊆ I .

Groups are one of the most studied algebraic structures since its introduction by Évariste
Galois in the 1830s.

Definition 2.1.6 (Groups). A Group (A, ·,−1 , 1) is an algebraic structure consisting of a set
A together with 1 binary operation, 1 unary operation and a 1 nullary operation (constant),
such that the following hold:

∀x, y, z ∈ A : (x · y) · z = x · (y · z) (associativity)
∀x ∈ A : 1 · x = x = x · 1 (identity)
∀x ∈ A : x · x−1 = 1 = x−1 · x (inverse)

1 is the identity element of A.

7
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A Group is a Semigroup with identity and inverse and a Universal Algebra of type (21,
11, 01) in which the binary operation is associative, has an identity and inverse.

Since the Group unary operation −1 and the constant 1 derive from the operation · and
the Group axioms, a Group is often considered as a algebraic structure consisting of a set A
together with 1 binary operation (A, ·)

A binary operation · on a set A is commutative if the following holds:

∀x, y ∈ A : x · y = y · x (commutativity)

A Commutative Group is also called an Abelian Group.

Definition 2.1.7 (Lattices). A Lattice (A,⊔,⊓) is an algebraic structure consisting of a set
A together with 2 binary operations called join and meet, such that the following hold:

∀x, y ∈ A : x ⊔ y = y ⊔ x ∧ x ⊓ y = y ⊓ x (commutativity)
∀x ∈ A : x ⊔ x = x ∧ x ⊓ x = x (idempotency)

∀x, y, z ∈ A : x⊔ (y ⊔ z) = (x⊔ y)⊔ z ∧ x⊓ (y ⊓ z) = (x⊓ y)⊓ z (associativity)
∀x, y ∈ A : x ⊔ (x ⊓ y) = x ∧ x ⊓ (x ⊔ y) = x (absorption)

Lattices can also be viewed as ordered sets in a standard way: we stipulate that x ≤ y if
and only if x ⊔ y = y (or, equivalently, if and only if x ⊓ y = x); then (A,≤) is a poset,
and furthermore, each two element subset {x, y} has a least upper bound equal to x ⊔ y and
a greatest lower bound equal to x ⊓ y. Conversely, if (A,≤) is a partially ordered set such
that each two element set {x, y} has both a least upper bound and a greatest lower bound,
we obtain a lattice, in the sense of Definition 2.1.7, by defining the join operation as the least
upper bound and the meet as the greatest lower bound.

The congruences of an algebra (see 2.2) form a lattice.

Other algebras that were used in the scope of testing or examples of the usage of CREAM
to calculate congruences, automorphims and endomorphism are presented in section 2.4.
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2.2 Congruences

2.2 Congruences

Congruences are one of the main topics of this PhD work. Congruences is a unifying
concept for quotient algebras, subalgebras and homomorphisms.

A congruence of an algebra is an equivalence relation on the underlying set of an algebra
that is compatible with all algebraic operations [8].

Definition 2.2.1 (Congruence). Let A be an algebra of type F and θ an equivalence relation
on A. Then θ is a congruence on an algebra A if it satisfies µ(a1, a2, ..., an)θµ(b1, b2, ..., bn)
for every n-ary operation µ ∈ F and all elements a1, ..., an, b1, ..., bn such that aiθbi for each
i = 1, ..., n.

The set of all congruences on an algebra A is denoted by Con A.

An equivalence relation onA, such as a congruence, partitions the setA into equivalence
classes or blocks each made up of related elements.

Definition 2.2.2 (Partition). A partition of a set A is a collection of non-empty subsets of A,
such that every element of A is included in exactly one subset. Each subset in a partition is
called a block.

For example, {{1, 3}, {2, 4}} is a 2-block partition of the set {1, 2, 3, 4}.

Let A be a set and θ an equivalence on A. For each a ∈ A, we denote by a/θ the
equivalence class of a and by A/θ we denote the set of all equivalence classes:

a/θ = { a′ ∈ A | aθa′ }
A/θ = { a/θ | a ∈ A }

To each congruence θ on A, there corresponds a natural map from A to A/θ, that maps each
element of A to its equivalence class.

Definition 2.2.3 (Quotient Algebra). On the set A/θ an algebra of type F is defined as
follows:

µA/θ(a1/θ, a2/θ, ..., an/θ) = µA(a1, a2, ..., an)/θ for every n-ary operation µA ∈ F .

This is well-defined since θ is a congruence of the algebra A and hence compatible with
its operations.

Definition 2.2.4 (Principal Congruence). Given an algebra A of type F with x, y ∈ A, the
principal congruence generated by (x, y), which is denoted by CgA(x, y) is the smallest
congruence θ such that xθy.
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The congruences of A form a lattice with universe Con A, where the meet operation is
the intersection of the input congruences and the join is the smallest congruence containing
both input congruences.

Homomorphisms are closely related with congruences.

Definition 2.2.5 (Homomorphism). If A, B are two algebras of the same type, then
a function f : A → B is a homomorphism from A to B if f(µA(a1, a2, ..., an)) =

µB(f(a1), f(a2), ..., f(an)) for every n-ary operation µA, µB and a1, . . . an ∈ A. Here µA

and µB stand for the two operations of A and B that are indexed equally by the (common)
index scheme.

A homomorphism from an algebra to itself is called an endomorphism.

If f : A → B is a bijective homomorphism then it is called a isomorphism. If an
isomorphism exists between two algebras, then the two algebras are said to be isomorphic.

If f is both an endomorphism and an isomorphism then f is referred to as an automor-
phism.

If f is a homomorphism of an algebra A, then the image of B = f(A) is a subalgebra of
A and is also isomorphic to a quotient algebra of A, namely, it is isomorphic to A/θ, where
θ is the kernel of f :

Definition 2.2.6 (Kernel). Let A, B be two algebras of the same type and f : A → B be a
homomorphism from A to B. The kernel of f is:

ker(f) = {(x, y) ∈ A2 : f(x) = f(y)}

For each homomorphism f : A → B, ker(f) is an equivalence relation and is also a
congruence on A.

Conversely, every congruence on A can be realized as the kernel of a suitable homomor-
phism:

If A is an algebra and θ ∈ Con A, the natural map f : A→ A/θ defined by f(x) = x/θ

is a homomorphism. Furthermore, ker(f) = θ.

Theorem 2.2.1 (Homomorphism Theorem). If A, B are two algebras of the same type and
the function f : A → B is an onto homomorphism from A to B then there is a unique
isomorphism g : A/ker(f)→ B satisfying f = g ◦h, where h is the natural homomorphism
h : A→ A/ker(f)
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Figure 2.1: Homomorphism Theorem

A f B

h

A/ker(f)

g

This relation between congruences, quotient algebras, subalgebras and endomorphisms
allows us, having the congruences of an algebra, to calculate all endomorphisms.
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2.3 State of the Art

In general, computing congruences of algebras is a difficult task. There are several
descriptive theorems for different types of algebra and there are some computational tools
to compute these objects for finite objects but generally these tools are applicable to a very
specific and narrow set of algebras. Our goal was to provide an effective tool to compute
them for finite algebras of type (2m, 1n) encompassing a very wide set of algebras including
most of the currently studied algebra types and classes.

Fast algorithms exist to find the congruences of groups and semigroups. For example,
with GAP [17], a system for computational discrete algebra, the package semigroups [29]
includes the function CongruencesOfSemigroup that returns the congruences of a given
semigroup. This function only works for a limited set of semigroups that belong to the
classes Simple, Brandt, Group, Zero Simple or Rectangular Band and is only highly efficient
for Rees Matrix semigroups and Rees Zero Matrix semigroups. This function relies on
specific techniques and congruence representations such as linked triples and others that are
specific to some types of semigroups.

Not much literature was found regarding algorithms to calculate congruences for
generic universal algebras. The Ralph Freese’s algorithm described in [15] provides such
an algorithm and was selected as basis for this PhD work. The Freese algorithm provides
not only very fast algorithms based on strong mathematical background but also relies on
data structures to encode partitions and algebra operations that be accessed fast and easily
manipulated. The underlying data structures are arrays allowing that each element can
accessed directly using pointers. For the representation of partitions (that represent also
congruences) the encoding proposed is not only an array but also takes into consideration
the performance implication of the encoding of the partition in the array.

During this work a second article [11] was analysed and its algorithms for calculating
congruences were compared with the Freese’s algorithm. One distinguishing feature of this
approach is that this algorithm generates a closure system graphG(C) that has as vertexes all
unordered pairs P (A) of the algebra A and edges from vertex {x, y} to {z, w} if there is an
operation f ∈ F such that {z, w} = {f(x), f(y)}. The algorithm described here is very ef-
ficient in calculating this graph avoiding the repetition of the execution of algebra operations.

The complexity of these algorithms is detailed in the section 3.5.2 and the Freese
algorithm is shown to have a complexity of O(|F|n3) while the complexity of the graph
algorithm is calculated to be bounded by O(log2(n

2)n4). This makes both algorithms
comparable if |F| grows proportional to n log(n2), with an advantage for the Freese
algorithm for slower growth and an advantage for the graph algorithm otherwise.
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The algorithm chosen as the basis of this work was the Freese’s algorithm and given the
efficiency of its underlying data structures it was not considered changing it for this initial
version of CREAM. However, there is the possibility that precalculating a transition graph
between the unordered pairs and generating the congruences from this graph could result in
some performance gains. This is one possibility that is listed as possible future improvement
for the CREAM package.

Running on a different platform, jython, UACalc [16] also implements the Freese’s
algorithm that is the basis for the calculation of congruences described here. UACalc
Command Line Interface was used as reference in terms of performance.

There are numerous papers concerning the automorphism groups of particular classes
of algebras, for example, Schreier [34] and Mal’cev [26] described all automorphisms of
the semigroup of all mappings from a set to itself. Similar results have been obtained for
various other structures such as orders, equivalence relations, graphs, and hypergraphs; see
the survey papers [31] and [30]. More examples are provided, among others, by Gluskǐn
[18], Araújo and Konieczny [3], [4], and [2], Fitzpatrick and Symons [14], Levi [21] and
[20], Liber [22], Magill [25], Schein [33], Sullivan [35], and Šutov [36].

In GAP, special properties of groups are used to implement the function Automor-
phismGroup to efficiently find the automorphism group of a given group. However, this
specialized method, while extremely efficient, works only on groups and not on any other
more general algebraic structures, such as quasigroups, semigroups and magmas. Likewise,
the Loops package [24] in GAP provides another version of the function Automorphism-
Group to compute all the automorphisms of a given quasigroup.

The Loops package algorithm uses invariants on group and quasigroup operations to
narrow the possible automorphisms to a manageable set that can be easily tested.

In the scope of this PhD several automorphism algorithms were tested and the
conclusion was that the invariants algorithm was the most promising. The final imple-
mentation of the automorphism algorithms using the invariants approach was contributed
toCREAM by Choiwah Chow based on conclusions and work done in the scope of this PhD.

In the automorphisms algorithm the Loops package was used as guideline for the
implementation of the CreamAutomorphims adapting the algorithm to support any magma
allowing an easy adaptation to support any algebra of type (2m,1n).

Regarding endomorphisms the literature found was very scarce and a single implemen-
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tation for groups and near-rings was found in the GAP library SONATA [1]. SONATA
implements the function Endomorphisms that can calculate endomorphisms for groups and
nearings by calculating the endomorphisms of the group reduct of the nearing and returning
those that are also nearing endomorphisms. This function is very efficient for the algebras it
supports.

Given the lack of references on algorithms to calculate endomorphisms, the endomor-
phism algorithm used in the CREAM package was defined using basic universal algebra
theorems such as the homomorphism theorem to relate congruences, quotient algebras, sub-
algebras and endomorphisms. The algorithm was developed using the implemented congru-
ences and automorphisms algorithms and an application that searches for finite models of
first order formulas calledMACE4.
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2.4 Other Algebras

In this section we present a set of algebras that were used in the scope of testing or exam-
ples of the usage of CREAM to calculate congruences, automorphims and endomorphisms.
While their definition is not required for understanding the theoretical background of this
work, they are defined here for the sake of completeness.

Simple Semigroups have specific characteristics that makes the use of specific algorithms
to calculate congruences possible.

Definition 2.4.1 (Simple Semigroup). A Semigroup A is simple if it has no Ideals other than
A.

A Semigroup A with 0 contains an element 0 ∈ A such that 0x = x0 = 0 for any x ∈ A.

Definition 2.4.2 (0-Simple Semigroup). A Semigroup A is 0-simple if it has no Ideals other
than {0} and A.

An element x of a set A equipped with a binary operator · is said to be idempotent if:

x · x = x.

An idempotent x ∈ A is said to be primitive if it is non-zero and there is no other
non-zero idempotent i ∈ A such that ix = xi = i.

A Completely 0-Simple Semigroup is a 0-Simple Semigroup that contains a primitive
idempotent.

Viktor Valdimirovich Wagner in 1952 and Gordon Preston in 1954, introduced the notion
of Inverse Semigroups.

Definition 2.4.3 (Inverse Semigroups). A semigroup is called an Inverse Semigroup if every
element x has a unique inverse x−1, such that:

xx−1x = x ∧ x−1xx−1 = x−1.

Brandt semigroups were introduced by Heinrich Brandt in 1927.

Definition 2.4.4 (Brandt Semigroup). A Brandt semigroup is completely 0-simple inverse
semigroup.

The Rees matrix semigroups were introduced by David Rees in 1940 that are used for
building new semigroups from existing ones.

Definition 2.4.5 (Rees matrix semigroup). A Rees matrix semigroup (A, ·) is an algebraic
structure consisting of a set A together with 1 binary operation. Given sets I and J , S a
Group and P = (pij)j∈J,i∈I a | J | × | I | matrix with entries in S, the Rees matrix
semigroup is (A, ·), where A = J × S × I and (i, s, j) · (k, t, l) = (i, spjkt, l).
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Another interesting type of semigroups that will be refered in this work are Rectangular
Bands.

Definition 2.4.6 (Rectangular Band). A Rectangular Band is a semigroup such that the fol-
lowing hold:

∀x, y ∈ A : xyx = x.

A bipartition of degree n is an equivalence relation on the set I∪J , where I = {i1, ..., in}
and J = {j1, ..., jn}.

Given 2 bipartitions of degree n, α and β, their product or composition α · β can be
described as: let K = {k1, ..., kn}, α′ be obtained from α by changing every point j ∈ J to
K, β′ be obtained from β by changing every point i ∈ I to K. Θ is the equivalence relation
α′ ∪ β′ in I ∪ J ∪K. α · β is defined as the bipartition Θ ∩ ((I ∪ J)× (I ∪ J)).

Definition 2.4.7 (PartitionMonoid). A Partition Monoid (A, ·) is an algebraic structure con-
sisting of a set A together with 1 binary operation where A is every possible bipartition of
degree n and · is the composition of the 2 bipartitions.

In the scope of a bipartition the relation < is defined such than ik < il, jk < jl, ik < jl,
jk < il whenever k < l.

A bipartion x is called planar if there aren’t distinct blocks A,B ∈ x, a, a′ ∈ A, b, b′ ∈ B
where a < b < a′ < b′.

Definition 2.4.8 (Planar PartitionMonoid). A Planar Partition Monoid (A, ·) is an algebraic
structure consisting of a set A together with 1 binary operation where A is every possible
planar bipartition of degree n and · is the composition of the 2 bipartitions.

The Planar Partition Monoid is the subsemigroup of the Partition Monoid consisting of
those bipartitions that are planar.

Definition 2.4.9 (Partial Brauer Monoid). A Brauer Monoid (A, ·) is an algebraic structure
consisting of a set A together with 1 binary operation where A is every possible bipartition
of degree n where blocks have size 2 or 1 and · is the composition of the 2 bipartitions.

The Partial Brauer Monoid is the subsemigroup of the Partition Monoid consisting of
those bipartitions where blocks have size 2 or 1.

Definition 2.4.10 (Brauer Monoid). A Brauer Monoid (A, ·) is an algebraic structure con-
sisting of a set A together with 1 binary operation where A is every possible bipartition of
degree n where blocks have size 2 and · is the composition of the 2 bipartitions.
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The Brauer Monoid is the subsemigroup of the Partial Brauer Monoid consisting of
those bipartitions where blocks have size 2.

Definition 2.4.11 (JonesMonoid). A JonesMonoid (A, ·) is an algebraic structure consisting
of a set A together with 1 binary operation where A is every possible planar bipartition of
degree n where blocks have size 2 and · is the composition of the 2 bipartitions.

The Jones Monoid is the subsemigroup of the Brauer Monoid consisting of those bipar-
titions that are planar.

Definition 2.4.12 (MotzkinMonoid). AMotzkin Monoid (A, ·) is an algebraic structure con-
sisting of a setA together with 1 binary operation whereA is every possible planar bipartition
of degree n where blocks have size 1 or 2 and · is the composition of the 2 bipartitions.

The Motzkin Monoid is the subsemigroup of the Partial Brauer Monoid consisting of
those bipartitions that are planar.

Definition 2.4.13 (Gossip Monoid). A Gossip Monoid (A, ·) is an algebraic structure con-
sisting of a set A together with 1 binary operation where A is all d by d boolean matrices
that define an equivalence relation and · is the multiplication of the 2 matrices.

Definition 2.4.14 (Symmetric Group). The Symmetric Group of degree n is the group of all
possible permutation on an n-element set with binary operation being the composition of the
permutations.

Definition 2.4.15 (Distributive Lattice). A Lattice (A,⊔,⊓) is distributive if it satisfies:

∀x, y, z ∈ A : x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

Definition 2.4.16 (Near Distributive Lattice). A Near Distributive Lattice (A,⊔,⊓) is an
algebraic structure consisting of a set A together with 2 binary operations called join and
meet, such that the following hold:

(A,⊔,⊓) is a Lattice
∀x, y ∈ A : x ⊓ (y ⊔ z) = x ⊓ (y ⊔ (x ⊓ (z ⊔ (x ⊓ y))))
∀x, y ∈ A : x ⊔ (y ⊓ z) = x ⊔ (y ⊓ (x ⊔ (z ⊓ (x ⊔ y))))

Definition 2.4.17 (Almost Distributive Lattice). An Almost Distributive Lattice (A,⊔,⊓) is
an algebraic structure consisting of a setA together with 2 binary operations called join and
meet, such that the following hold:

(A,⊔,⊓) is a Near Distributive Lattice
∀x, y, v, u ∈ A : v⊓(u⊔(x⊓(y⊔(x⊓z)))) ≤ u⊔((x⊓(y⊔(x⊓z)))⊓(v⊔(x⊓y)⊔(x⊓z)))
∀x, y, v, u ∈ A : v⊔(u⊓(x⊔(y⊓(x⊔z)))) ≥ u⊓((x⊔(y⊓(x⊔z)))⊔(v⊓(x⊔y)⊓(x⊔z)))
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≤ and ≥ being the underlying partial orders resulting from ⊔ and ⊓).

Definition 2.4.18 (Bounded Lattice). A Bounded Lattice (A,⊔,⊓, 0, 1) is an algebraic struc-
ture consisting of a set A together with 2 binary operations and 2 nullary operations (con-
stants), such that the following hold:

(A,⊔,⊓) is a Lattice
∀x ∈ A : 0 ⊔ x = x

∀x ∈ A : 1 ⊔ x = 1

Definition 2.4.19 (Modular Lattice). A Modular Lattice (A,⊔,⊓) is an algebraic structure
consisting of a set A together with 2 binary operations, such that the following hold:

(A,⊔,⊓) is a Lattice
∀x, y, z ∈ A : ((x ⊓ z) ⊓ y) ⊔ z = (x ⊓ z) ⊔ (y ⊓ z) (modular identity)

Definition 2.4.20 (Lattice-Ordered Monoid). A Lattice-Ordered Monoid (A,⊔,⊓, ∗, 1) is an
algebraic structure consisting of a set A together with 3 binary operations and a nullary
operation (constant), such that the following hold:

(A,⊔,⊓) is a Lattice
(A, ∗, 1) is a Monoid

∀x, y, z ∈ A : x ∗ (y ⊔ z) = (x ∗ y) ⊔ (x ∗ z)
∀x, y, z ∈ A : (x ⊔ y) ∗ z = (x ∗ z) ⊔ (y ∗ z)

A Commutative Lattice-Ordered Monoid is one where the monoid operation ∗ is com-
mutative.

Definition 2.4.21 (Distributive Lattice Ordered Semigroup). A Distributive Lattice Ordered
Semigroup (A,⊔,⊓, ∗) is an algebraic structure consisting of a set A together with 3 binary
operations, such that the following hold:

(A,⊔,⊓) is a Distributive Lattice
(A, ∗) is a Semigroup

∀x, y, z ∈ A : x ∗ (y ⊔ z) = (x ∗ y) ⊔ (x ∗ z)
∀x, y, z ∈ A : (x ⊔ y) ∗ z = (x ∗ z) ⊔ (y ∗ z)

Definition 2.4.22 (Complemented Lattice). A Complemented Lattice (A,⊔,⊓, 0, 1) is an al-
gebraic structure consisting of a set A together with 2 binary operations and 2 nullary oper-
ations (constants), such that the following hold:

(A,⊔,⊓, 0, 1) is a Bounded Lattice
∀x∃y ∈ A : (x ⊔ y = 1) ∧ (x ⊓ y = 0) (complement)

Definition 2.4.23 (Boolean Algebra). A Boolean Algebra (A,⊔,⊓,¬, 0, 1) is an algebraic
structure consisting of a set A together with 2 binary operations, 1 unary operation and 2
nullary operations (constants), such that the following hold:
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(A,⊔,⊓, 0, 1) is a Bounded Distributive Lattice
∀x ∈ A : x ⊓ ¬x = 0

∀x ∈ A : x ⊔ ¬x = 1

Definition 2.4.24 (Ockham Algebra). A Ockham Algebra (A,⊔,⊓,′ , 0, 1) is an algebraic
structure consisting of a set A together with 2 binary operations, 1 unary operation and 2
nullary operations (constants), such that the following hold:

(A,⊔,⊓, 0, 1) is a Bounded Distributive Lattice
∀x, y ∈ A : (x ⊓ y)′ = x′ ⊔ y′

∀x, y ∈ A : (x ⊔ y)′ = x′ ⊓ y′

0′ = 1

1′ = 0

Definition 2.4.25 (Ortholattice). A Ortholattice (A,⊔,⊓,′ , 0, 1) is an algebraic structure
consisting of a set A together with 2 binary operations, 1 unary operation and 2 nullary
operations (constants), such that the following hold:

(A,⊔,⊓, 0, 1) is a Bounded Lattice
∀x ∈ A : x ⊔ x′ = 1

∀x ∈ A : x ⊓ x′ = 0

∀x, y ∈ A : (x ⊓ y)′ = x′ ⊔ y′

∀x, y ∈ A : (x ⊔ y)′ = x′ ⊓ y′

Definition 2.4.26 (Bilattice). A Bilattice (A,⊔,⊓,⊕,⊗,¬) is an algebraic structure con-
sisting of a set A together with 4 binary operations and an unary operation, such that the
following hold:

(A,⊔,⊓) is a Lattice
(A,⊕,⊗) is a Lattice

∀x, y ∈ A : (¬(x ⊔ y) = ¬x ⊓ ¬y) ∧ (¬¬x = x)

∀x, y ∈ A : (¬(x⊕ y) = ¬x⊕ ¬y) ∧ (¬(x⊗ y) = ¬x⊗ ¬y)

Definition 2.4.27 (MV-algebras). An MV-algebra (A,+,¬, 0) is an algebraic structure con-
sisting of a setA together with 1 binary operation, 1 unary operation and 1 nullary operation
(constant), such that the following hold:

(A,+, 0) is Commutative Monoid
∀x ∈ A : ¬¬x = x

∀x ∈ A : x+ ¬0 = ¬0
∀x, y ∈ A : ¬(¬x+ y) + y = ¬(¬y + x) + x

A MV-algebra (Multivalued Logic Algebra) is a Universal Algebra of type (21, 11, 01).
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2. MATHEMATICAL BACKGROUND

Definition 2.4.28 (Quasigroup). A Quasigroup (A, ∗, \, /) is an algebraic structure consist-
ing of a set A together with 3 binary operations, such that the following hold:

∀x, y ∈ A : y = x ∗ (x \ y)
∀x, y ∈ A : y = x \ (x ∗ y)
∀x, y ∈ A : y = (y/x) ∗ x
∀x, y ∈ A : y = (y ∗ x)/x

\ and / are normally called left and right divisions.

A Quasigroup is a Universal Algebra of type (23).

Since the Quasigroup operations \ and / that are derived from the operation ∗ and the
Quasigroup axioms, a Quasigroup is often considered as an algebraic structure consisting of
a set A together with 1 binary operation (A, ∗).

Definition 2.4.29 (Loop). A Loop (A, ∗, \, /, 1) is an algebraic structure consisting of a setA
together with 3 binary operations and 1 nullary operation (constant), such that the following
hold:

(A, ∗, \, /) is a Quasigroup
∀x ∈ A : 1 · x = x = x · 1 (identity)

A Loop is a Quasigroup with identity and a Universal Algebra of type (23, 01).

Since the Loop operations \, / and constant 1 derive from the operation ∗ and the Loop
axioms, a Loop is often considered as a algebraic structure consisting of a setA together with
1 binary operation (A, ∗).

Definition 2.4.30 (Ring). A Ring (A,+, ∗,−, 0) is an algebraic structure consisting of a set
A together with 2 binary operations, 1 unary operation and 1 nullary operation (constant),
such that the following hold:

(A,+,−, 0) is an Abelian Group
(A, ∗) is a Semigroup

∀x, y, z ∈ A : x ∗ (y + z) = (x ∗ y) + (x ∗ z) (left distributivity)
∀x, y, z ∈ A : (y + z) ∗ x = (y ∗ x) + (z ∗ x) (right distributivity)

A Ring is a Universal Algebra of type (22, 11, 01).

Since the Ring operation− and constant 0 are derived from the operation+ and the Ring
axioms, a Ring is often considered as a algebraic structure consisting of a setA together with
2 binary operations (A,+, ∗)
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Definition 2.4.31 (Ring with Identity). A Ring with Identity (A,+, ∗,−, 0, 1) is an algebraic
structure consisting of a set A together with 2 binary operations, 1 unary operation and 2
nullary operation (constant), such that the following hold:

(A,+, ∗,−, 0) is a Ring
∀x ∈ A : x ∗ 1 = x ∧ 1 ∗ x = x (identity)

A Ring with Identity is a Universal Algebra of type (22, 11, 02).

Definition 2.4.32 (Regular Ring). A Regular Ring (A,+, ∗,−, 0, 1) is an algebraic structure
consisting of a set A together with 2 binary operations, 1 unary operation and 2 nullary
operation (constant), such that the following hold:

(A,+, ∗,−, 0, 1) is a Ring with Identity
∀x∃y ∈ A : x ∗ y ∗ x = x (pseudo-inverse)

A Regular Ring is a Universal Algebra of type (22, 11, 02).

A Commutative Ring is a Ring where the ∗ operation is commutative.

Definition 2.4.33 (Boolean Ring). ABoolean Ring (A,+, ∗,−, 0, 1) is an algebraic structure
consisting of a set A together with 2 binary operations, 1 unary operation and 2 nullary
operation (constant), such that the following hold:

(A,+, ∗,−, 0) is a Commutative Ring
(A,+, ∗,−, 0, 1) is a Ring with Identity

∀x ∈ A : x ∗ x = x

A Boolean Ring is a Universal Algebra of type (22, 11, 02).

Thus, a Boolean Ring is a commutative ring with identity where the multiplication
operation is idempotent.

Definition 2.4.34 (Semiring). A Semiring (A,+, ∗) is an algebraic structure consisting of a
set A together with 2 binary operations, such that the following hold:

(A,+) is a Commutative Semigroup
(A, ∗) is a Semigroup

∀x, y, z ∈ A : x ∗ (y + z) = (x ∗ y) + (x ∗ z) (left distributivity)
∀x, y, z ∈ A : (y + z) ∗ x = (y ∗ x) + (z ∗ x) (right distributivity)

A Semiring is a Universal Algebra of type (22).
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2. MATHEMATICAL BACKGROUND

Definition 2.4.35 (Idempotent Semiring). A Idempotent Semiring (A,+, ∗) is an algebraic
structure consisting of a setA together with 2 binary operations, such that the following hold:

(A,+, ∗) is a Semiring
∀x ∈ A : x+ x = x

An Idempotent Semiring is a Universal Algebra of type (22).

Definition 2.4.36 (Meadows). AMeadow (A,+, ∗,−,−1 , 0, 1) is an algebraic structure con-
sisting of a set A together with 2 binary operations, 2 unary operations and 2 nullary oper-
ations (constants), such that the following hold:

(A,+, ∗,−, 0) is a Commutative Ring
∀x ∈ A : 1 ∗ x = x (identity)
∀x ∈ A : (x−1)−1 = x

∀x ∈ A : x ∗ (x ∗ x−1) = x

A Meadow is a commutative Ring with a multiplicative identity element and a total
multiplicative inverse operation and is a Universal Algebra of type (22, 12, 02).

Since the Meadows operations −, −1 and constants 0 and 1 are derived from the
operations +, ∗ and the Meadows axioms, a Meadow is often considered as a algebraic
structure consisting of a set A together with 2 binary operations (A,+, ∗)

Definition 2.4.37 (BCI-algebras). A BCI-algebra (A, ∗, 0) is an algebraic structure consist-
ing of a set A together with 1 binary operation and 1 nullary operation (constant), such that
the following hold:

∀x, y, z ∈ A : ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0

∀x, y ∈ A : (x ∗ (x ∗ y)) ∗ y = 0

∀x ∈ A : x ∗ x = 0

∀x, y ∈ A : ((x ∗ y = 0) ∧ (y ∗ x = 0))⇒ (x = y)

∀x ∈ A : (x ∗ 0 = 0)⇒ (x = 0)

A BCI-algebras is a Universal Algebra of type (21, 01).
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Chapter 3

Computational Implementation

3.1 Representation

The representation of algebras and congruences has a significant impact on the efficiency
of the algorithms implemented. Especially the representation of partitions/congruences as
an array is determinant for the efficiency in the calculation of congruences since it allows
for a very fast join of blocks, one of the most used operations during the execution of the
congruences algorithm.

3.1.1 Algebra of Type (2m,1n)

The package CREAM represents a finite Universal Algebra as a list of operations. An
operation of arity 1 is represented by a vector, while an operation of arity 2 is represented
by a square matrix. The underlying set A is implicitly specified by the vector or matrix
sizes, which need to agree in a valid representation. If this dimension is d, the algebra is
defined on the set A = {1, . . . , d}. The particular case of F = {}, an algebra without
operations, is not supported by this implicit representation. Since such algebras are not
interesting mathematically these algebras are being excluded from this representation and
are not considered valid algebras.

The vector or matrix describes the corresponding operation by listing all images in the
obvious way. The following is an example of a representation for an algebra with a unary
and a binary operation.

[ [3, 1, 2],
[ [1, 2, 3],
[2, 3, 1],
[3, 1, 2] ] ]
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3. COMPUTATIONAL IMPLEMENTATION

3.1.2 Partition

One of the key starting points in the representation of algebras is the representation
of partitions. The Freese algorithm [15] performance depends on the way partitions are
represented internally. In [15], Freese goes back to 1960’s and 1970’s findings in computer
science described in [37]. Several approaches were tested and the most efficient way to
represent a block of a partition was found to be a tree. Hence, the representation of a partition
would then be a forest where a forest is a disjoint union of trees. The forest is physically
encoded in the computer memory by an array, whose size will be the size of the set A.

In a tree, each node or leaf has a parent node except for the top nodes or roots. For
example the block {1, 3, 4, 5} could be represented by the tree below where 3 is the root
block and 1 and 5 are the leafs.

Figure 3.1: Possible tree representation of a block [1,3,4,5]

3

1 4

5

This isn’t the single representation of this block. Parts of the algorithms will work with
any representation of a block while others will require the block representation to be unique.

A shallow tree is a tree in which all non-root nodes are connected directly to the top
root element. To obtain a unique representation, we adopted the convention that the trees
used in representing a partition are shallow and that the smallest element in a block will be
the root node. A partition representation that respects the above conventions will be called
a normalized (representation of a) partition. The normalized representation of the block
{1, 3, 4, 5} would be:

Figure 3.2: Normalized tree representation of a block [1,3,4,5]

1

3 4 5

Since a partition is a set of disjoint blocks it can be represented as a set of disjoint trees
that hence can be called a forest.
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A partition such as {{1, 3, 4, 5}, {2, 6}} will be represented by 2 trees such as:

Figure 3.3: Forest representation of a congruence [[1,3,4,5][2,6]]

1

3 4 5

2

6

When representing the forest as an array each position of the array represents a node and
the value of the node points to its parent node. The top nodes should have a value indicating
that the node is the root of the tree. A negative number is used to indicate that a node is a
root node and the absolute value of this number is the number of elements of the block.

There are two main reasons for this to be the most efficient representation of partitions.
On one side, the tree representation allow the joining of 2 blocks to be very fast, since after
the determination of the root node of each of the blocks to join, it is sufficient to change the
value of one of the root nodes to point to the other to do the join. On the other hand, the use
of an array allows direct access to any node and a fast transversing of the tree up to the root
node when determining the root node.

Using these conventions, the encoding of the above partition will have the form:

[[1, 3, 4, 5], [2, 6]] - [-4, -2, 1, 1, 1, 2]

The encoding of a partition into singletons will have the form:

[[1], [2], [3], [4], [5], [6]] - [-1, -1, -1, -1, -1, -1]

The encoding of a partition with just one block is:

[[1, 2, 3, 4, 5, 6]] - [-6, 1, 1, 1, 1, 1]

Other examples are:

[[1, 6], [2], [3, 5], [4]] - [-2, -1, -2, -1, 3, 1]
[[1, 3, 5], [2, 6], [4]] - [-3, -2, 1, -1, 1, 2]
[[1, 2, 5, 6], [3, 4]] - [-4, 1, -2, 3, 1, 1]

3.1.3 Congruences

Every equivalence relation and hence every congruence corresponds to a partition of the
underlying set, and hence congruences can be represented by partitions as detailed in the
previous section.
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3. COMPUTATIONAL IMPLEMENTATION

3.1.4 Homomorphism, Endomorphism, Isomorphism and Automor-
phism

To represent an endomorphism of an algebra of size n, an n-sized array can be used.

In this array representation the position i of the array contains the image of i in this
mapping. Therefore the mapping f(i) = ai for an algebra of size 6 is represented as:

[a1, a2, a3, a4, a5, a6]

The identity mapping on an algebra A of order 6 would be represented by:

[1, 2, 3, 4, 5, 6]

If this mapping is bijective, such an automorphism, then all values in the array will be
different and less or equal than n, such as:

[ 1, 2, 6, 5, 4, 3 ]
[ 1, 3, 2, 5, 4, 6 ]
[ 1, 3, 6, 4, 5, 2 ]
[ 1, 6, 2, 4, 5, 3 ]
[ 1, 6, 3, 5, 4, 2 ]

In case of non-injective mappings, such as endomorphisms repeated values can appear in
the array:

[ 1, 1, 1, 1, 1, 1 ]
[ 1, 2, 2, 1, 1, 2 ]
[ 1, 3, 3, 1, 1, 3 ]
[ 1, 6, 6, 1, 1, 6 ]

26



3.2 Algorithms

3.2 Algorithms

In this section, several algorithms will be presented using pseudocode. This pseudocode
tries to be as language agnostic as possible but in some cases uses the syntax of GAP or C to
convey certain concepts.

One of these cases are array and lists were the GAP syntax is used for representing
and accessing these structures. To represent the element in the position index in a uni-
dimensional array or list we use array[index] and in the case of bi-dimensional arrays or
list of lists we use array[index1][index2]. To represent/create an array or list with 2
elements we use [element1, element2].

3.2.1 Congruences algorithm

The starting point for the computation of congruences are the algorithms described in
[15] to calculate the smallest congruence containing a given partition Θ of a finite alge-
bra A; in particular this is used to compute the congruence generated by a pair of elements
(a, b) ∈ A × A, called the principal congruence generated by {a, b}. From this base algo-
rithm all congruences of the algebra A are generated in an efficient way. We used [15] as
it is the fastest general algorithm we know; some optimizations were introduced taking into
account that we only deal with operations of arity at most 2, and we take advantage of C to get
an implementation faster than the original implementations made by Freese and his collabo-
rators; finally, we make it available through GAP and hence fully compatible with the many
other resources in the system. Of course, for our goals, the computation of congruences is
the necessary intermediate step towards the computing of proper endomorphisms of general
algebras (of the considered types).

3.2.1.1 Partition Functions

Several functions to manipulate partitions play an important role in the algorithm to
calculate principal congruences and will be described in the following section.

The function SizeOfSet takes a partition as argument and returns the number of elements
of the set underlying to the partition.

The function NumberOfElements takes an array as argument and returns the number of
elements of the array.

The function NumberOfFunctions takes an algebra as argument and returns the number
of functions of the algebra.
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3. COMPUTATIONAL IMPLEMENTATION

The function CreamSizeAlgebra takes an algebra as argument and returns the number
of elements of the set underlying to the algebra.

The function CreamRootBlock is an operation that returns the root node for a node i.
The root node of a node is itself if the value of the node representation is negative or points
to itself. If the value of the node representation points to a different node then that node
is the parent node. This algorithm could be run recursively until reaching the root node
but it is implemented iteratively for better performance. This operation will work both for
normalized and non-normalized partitions.

Before returning, the node parent is set to the found root node in order to make the tree
representing the partition as shallow as possible avoiding that in future calls the algorithm
needs to transverse several nodes to reach the root node.

Algorithm 1 CreamRootBlock (i, partition)
j ← i

while partition[j] ≥ 0 do
j ← partition[j]

end while
if i ̸= j then
partition[i]← j

end if
return j

The function CreamJoinBlocks is an operation that joins the blocks of x and y in a
partition. This operation will work both for normalized and non-normalized partitions and
the resulting partition will not necessarily be normalized.

In order to keep the tree representing the partition as shallow as possible the root node of
the merged block will be the root node of the block with more elements originally.
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3.2 Algorithms

Algorithm 2 CreamJoinBlocks (x, y, partition)
r ← CreamRootBlock(x, partition)

s← CreamRootBlock(y, partition)

if r ̸= s then
if partition[r] < partition[s] then
partition[r]← partition[r] + partition[s]

partition[s]← r

else
partition[s]← partition[r] + partition[s]

partition[r]← s

end if
end if

TheCreamNumberOfBlocks function returns the number of blocks of a partition. Given
the encoding of partitions, we simply count the number of positions of the array that have
negative values.

Algorithm 3 CreamNumberOfBlocks (partition)
nblocks← 0

dimension← SizeOfSet(partition)

for i = 1 to dimension do
if partition[i] < 0 then
nblocks← nblocks+ 1

end if
end for
return nblocks

The CreamNormalizePartition function normalizes the partition by making it shallow
and having the smallest element of each block the root node.
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3. COMPUTATIONAL IMPLEMENTATION

Algorithm 4 CreamNormalizePartition (partition)
dimension← SizeOfSet(partition)

for i = 1 to dimension do
r ← CreamRootBlock(i, partition)

if r ≥ i then
partition[i]← −1
if r > i then
partition[r]← i

end if
else
partition[r]← partition[r]− 1

end if
end for

The CreamJoinPartition function joins two partitions, i.e. the smallest partition
containing both input partitions.

Algorithm 5 CreamJoinPartition (partition1, partition2)
dimension← SizeOfSet(partition1)

for i = 1 to dimension do
CreamJoinBlocks(i,CreamRootBlock (i,partition1),partition2)

end for
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The CreamComparePartitions function compares normalized partitions. Returns 0 if
the partitions are equal. Returns -1 or 1 if partition1 > partition2 or partition1 < partition2 .
Partition order is equivalent to the underlying list order. Its purpose is to allow binary search
in sets of partitions.

Algorithm 6 CreamComparePartitions (partition1, partition2)
dimension← SizeOfSet(partition)

for i = 1 to dimension− 1 do
if partition1[i] > partition2[i] then
return −1

end if
if partition1[i] < partition2[i] then
return 1

end if
end for
return 0

3.2.1.2 Calculating Principal Congruences

The base algorithm in [15] calculates the smallest congruence containing Θ, a partition
of a finite algebra A. The simplest case where Θ only contains one nontrivial block and this
block has only two elements, is used as a starting point.

The algorithm works with unary algebra operations but in what concerns this algorithm
an n-ary algebra operation can be converted into a set of unary operations. For the purpose
of this work, algebras with operation arity up to 2 are considered. Therefore, binary algebra
operations need to be converted to unary operations.

For simplicity it will be assumed that A is an algebra of size |A| and type (21) with the
binary operation µ. This can be easily extended to multiple binary operations. To convert
this operation to unary operations, x is fixed to each argument of µ, and for each x ∈ A will
result in:

µx(y) = µ(y, x)

µ′
x(y) = µ(x, y)

The equivalence relation θ on A is a congruence if and only if it is compatible with all
2|A| unary operations µx(y), µ′

x(y) for all x ∈ A.
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Suppose θ is a congruence and that aθb with a, b ∈ A, then for every x:

µx(a) = µ(a, x)θµ(b, x) = µx(b)

µ′
x(a) = µ(x, a)θµ(x, b) = µ′

x(b)

Conversely, suppose that θ is compatible with all µx(y), µ′
x(y) for all x ∈ A, and that

a1θb1, a2θb2 with a1, a2, b1, b2 ∈ A. Then:

µ(a1, a2) = µa2(a1)θµa2(b1) = µ(b1, a2) = µ′
b1(a2)θµ

′
b1(b2) = µ(b1, b2)

Therefore for the purpose of congruence calculation, a binary operation µ(x, y) with
x, y ∈ A can be converted into 2|A| unary operations, where |A| is the size of the algebra:

µx(y) = µ(y, x) and µ′
x(y) = µ(x, y)

There will be one unary operation for each line and column of the operation’s multipli-
cation matrix. Duplicate unary operations that result from this conversion can be removed
from the set of unary operations.

For instance for the algebra:

[ [ [2, 1, 1],
[1, 2, 2],
[1, 3, 2] ] ]

the following unary operations would be considered;

[ [2, 1, 1],
[1, 2, 2],
[1, 3, 2],
[1, 2, 3] ]

Notice that 2 duplicate unary operations are removed in this particular case.

The principal congruence algorithm will take as input the algebra and a pair of elements
ofA that will constitute the one nontrivial block with 2 elements to be used as a starting point.
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Algorithm 7 CreamPrincipalCongruence (algebra,InitialPair)
PairList← [InitialPair]

partition← SingletonPartition()

partition← CreamJoinBlocks(partition, InitialPair[1], InitialPair[2])

NFuncs← NumberOfFunctions(algebra)

while PairList ̸= empty do
Pair ← Get and remove element from PairList

for i = 1 to NFuncs do
f ← algebra(i)

r ← CreamRootBlock(partition, f(Pair[1]))

s← CreamRootBlock(partition, f(Pair[2]))

if r ̸= s then
partition← CreamJoinBlocks(partition, r, s)

Add [r, s] to PairList
end if

end for
end while
return partition

LetA be an algebra of type (1f )with f unary operations µp and θ an equivalence relation
on A. The algorithm starts by joining the initial pair (a, b) in the same block and creates a
new pair (ri(µp(a)), ri(µp(b))) for every operation where ri(x) is the root of x according to
the variable partition at step i. If the elements of the new pair are in different blocks, the
blocks are joined, the new pair is added to the list of pairs to be processed and the cycle is
repeated. Otherwise, if elements of the new pair are already in the same block no new pair
will be added to the pair list. The algorithm terminates when every pair in the list is already
in the same block, running out of new pairs and returning the current partition.

If θ is a congruence on an algebra A and x, y ∈ A then by definition:

xθy ⇒ µp(x)θµp(y), for every µp where 0 < p ≤ f

and the principal congruence Cg(a, b) is the smallest congruence such that aθb.

The first step to prove the correctness of the algorithm is to prove that the termination
condition of the algorithm’s main cycle is reached, the algorithm terminates and returns a
partition.

Initially the partition variable contains a partition where every block has a single
element. The starting pair (a, b) is added to a FIFO list and the blocks of a and b are joined.
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3. COMPUTATIONAL IMPLEMENTATION

Let ri(x) be the root of x according to the variable partition at step i of the algorithm
for any x ∈ A.

On each subsequent step i a pair (u, v), u, v ∈ A, is removed from the list, and a new
pair (ri(µp(u)), ri(µp(v))) is created for each µp. If ri(µp(u)) = ri(µp(v)) then µp(u) and
µp(v) are already in the same block of the partition and no new pair is added to the pair list.
Otherwise the blocks are joined and the pair (ri(µp(u)), ri(µp(v))) is added to the pair list.

The algorithm stops when the pair list is empty. This termination condition is guaranteed
to occur since at most n − 2 joins can be done before every pair (u, v) is removed from
the list and ri(µp(u)) = ri(µp(v)) is true and in this case the pair is removed from the
pair list and no new pair is added, progressively reducing the list size until the list is exhausted.

Let θ′ be the partition’s underlying equivalence relation when the algorithm stops and let
θ be the principal congruence Cg(a, b).

The correctness of the algorithm requires that the correctness of the output is proven.
One of the conditions to prove the correctness of the algorithm is that the resulting partition
is a congruence. To prove that θ′ is a congruence it’s needed to prove that if uθ′v then
µp(u)θ

′µp(v) for all µp.

At the start of algorithm, every element starts as a singleton in the partition being its
own root. The first pair whose blocks are joined in the same block is the initial pair (a, b)
and the algorithm generates pairs such as (ri(µp(a)), ri(µp(b))). This means aθ′b and later
at a step i the pair (ri(µp(a)), ri(µp(b))) blocks are joined and ri(µp(a))θ

′ri(µp(b)). Since
obviously µp(a)θ

′ri(µp(a)) and ri(µp(b))θ
′µp(b) then µp(a)θ

′µp(b) for any µp, proving that
the conditions for θ′ to be a congruence hold for the initial pair (a, b).

Lemma 3.2.1. If uθ′v then µp(u)θ
′µp(v) and the conditions for θ′ to be a congruence hold.

Proof. In each join of the pair (u1, v1) with blocks {u1, ..., up} and {v1, ..., vq}, the
block {u1, ..., up, v1, ..., vq} is created and u1θ′...θ′upθ′v1θ′...θ′vq. This means that u1θ′v1
and at some later step i the new pair (ri(µp(u1)), ri(µp(v1))) is created, its blocks
are joined and ri(µp(u1))θ

′ri(µp(v1)). Assuming that from previous pairs it’s already
proven that µp(u1)θ

′...θ′µp(up) and µp(v1)θ
′...θ′µp(vq) then this step proves also that

µp(u1)θ
′...θ′µp(up)θ

′µp(v1)θ
′...θ′µp(vq). Since our assumption holds at start of the algorithm

then it will hold for every subsequent step. This proves that if uθ′v then µp(u)θ
′µp(v) proving

that the conditions for θ′ to be a congruence hold after each step of the algorithm. □

One additional condition for the correctness of the algorithm is that θ′ contains
θ = Cg(a, b). At the start of the algorithm the initial pair (a, b) blocks are joined by
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CreamJoinBlocks(a, b) in the same block and (a, b) will be the initial pair added to the
pair list that will be processed with each operation. Since the initial pair will always be in
the same block of the partition and aθ′b then θ′ contains θ = Cg(a, b).

At this point it remains to be proved that θ′ ⊆ θ = Cg(a, b).

To prove that θ′ = θ it remains to prove that for every pair u and v in the same block of
the variable partition then uθv. This is self-evident for the initial pair (a, b) since aθb and at
the start of the algorithm the blocks of a and b are joined and {a, b} is the only non-singleton
block in partition. Moreover the pair added to the list is (a, b) which obviously lies in θ.
Remains to prove that after each subsequent step this remains true taking as assumption that
this holds for previous steps.

Lemma 3.2.2. If u and v are in the same block of the variable partition at step i then uθv.

Proof. Assuming that at a step i that the partition blocks are contained in θ then in each
join with the pair (u1, v1) the blocks {u1, ..., up} and {v1, ..., vq} are contained in θ and the
resulting block from the join will be contained in θ if u1θv1. Considering the algorithm
then u1 = ri(µp(x)) and v1 = ri(µp(y)) where x and y come from the pair list and are in
the same block since for them to get into the pair list their blocks would have to be merged
beforehand. Under the initial assumption, if x and y are in the same block then xθy. Since θ is
a congruence if xθy then µp(x)θµp(y). Also given that ri(µp(x)) and µp(x) are by definition
in the same block then ri(µp(x))θµp(x) and analogously ri(µp(y))θµp(y). This means that
since xθy then ri(µp(x)) = u1θv1 = ri(µp(y)) and the joined block will be contained in θ.
Since our assumption holds at start of the algorithm and holds after every step then if the
elements of a pair are in the same block of the variable partition and then the pair lies in θ.
As the lemma holds at every step i, it also holds when the algorithm terminates □

Since θ′ is a congruence containing the principal congruence and every pair in the same
block lies in the principal congruence then θ′ is the principal congruence and θ′ = θ.

To calculate all the principal congruences this function is called for all pairs of elements
of A.

35



3. COMPUTATIONAL IMPLEMENTATION

Algorithm 8 CreamAllPrincipalCongruences (algebra)
dimension← CreamSizeAlgebra(algebra)

allPrincipalCongruences← []

for i = 1 to dimension− 1 do
for j = i+ 1 to dimension do
congruence← CreamPrincipalCongruence(algebra, [i, j])

AddCongruence(allPrincipalCongruences, congruence)

end for
end for
return allPrincipalCongruences

As described in [15] this algorithm is very efficient showing a moderate growth of
execution time with |A|. Apart from the algorithm itself, there are a few implementation
options that make this implementation of the algorithm especially efficient.

One of these aspects is the use of arrays to encode partitions, which allow for a constant
and very fast random access to each partition element.

This is combined with the balancing and collapsing of the trees representing the blocks
in the partition that are baked into the CreamJoinBlocks and CreamRootBlock algorithms
which try to ensure that the trees are as shallow as possible during the execution of the
CreamPrincipalCongruence algorithm.

In CreamJoinBlocks the tree is balanced by keeping as root of the joined block the root
of the bigger original block.

In CreamRootBlock the tree is collapsed by setting the root node of the element on
which the function is called to its return value avoiding having to transverse several nodes
of the tree on future calls.

Both of these implementation details allow for shallower trees representing the blocks
that will make CreamRootBlock faster given that fewer nodes will have to be transversed
to determine the root node of a node.

This is especially important since CreamRootBlock is the most called function when
calculating a principal congruence of an algebra.

3.2.1.3 Calculating All Congruences

Having all the principal congruences, the remaining congruences can be obtained by
combining the principal congruences.
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It is well known that congruences of an algebra are naturally ordered by inclusion and
form a lattice. All the congruences can be obtained as joins of principal congruences.

This allows an efficient way to compute all the congruences. The principal congruences
are stored in an ordered set. In a separate ordered set, all congruences are gathered. This is
initialized with the set of principal congruences. For each congruence in this set, the joins
with principal congruences are computed, and the resulting new congruences are added to
the set (eliminating duplicates).

Algorithm 9 CreamAllCongruences (algebra)
allPrincipalCongruences← CreamAllPrincipalCongruences(algebra)

allCongruences← allPrincipalCongruences

i← 1

while i < NumberOfElements(allCongruences) do
for j = 1 to NumberOfElements(allPrincipalCongruences) do
if ¬isContained(allPrincipalCongruences[j], allCongruences[i]) then
congruence← JoinPartition(allCongruences[i], allPrincipalCongruences[j])

AddCongruence(allCongruences, congruence)

end if
end for
i← i+ 1

end while
return allCongruences

The join is only done if the principal congruence is not contained in the congruence that
is being joined with. If this is the case, the congruence resulting of the join will be the con-
taining congruence. This can be optimized by keeping the information about which principal
partitions were joined to reach a congruence.

3.2.2 Automorphism algorithm

In the scope of this PhD several automorphism algorithms were tested and the conclusion
was that the invariants algorithm, similar to what is used in the Loops package, was the most
promising. Due to the need to focus other parts of the CREAM Package this line of work
was stopped and its conclusions were passed to Choiwah Chow that used this knowledge
to make the final implementation of the automorphism algorithms using the invariants
approach. This implementation was contributed to CREAM.
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In the automorphisms algorithm, the Loops package was used as guideline for the
implementation of the CreamAutomorphims function by tweaking the algorithm to accept
any magma as input allowing an easy adaptation to support any algebra of type (2m,1n).

The invariants algorithm uses characteristics of each element that are invariants under
automorphism to reduce the search space for automorphisms. One invariant under automor-
phism is idempotency, meaning that an automorphism maps idempotents to idempotents and
therefore identifying idempotents allows to reduce the search space for automorphisms by
searching only for mappings where idempotents map to idempotents and non-idempotents
map only to non-idempotents.

Some simple invariants are:

• Distinct Row Elements

• Distinct Column Elements

• Number of Idempotents in a Row

• Number of Idempotents in a Column

• Number of Elements Commuting

• Number of Appearances in Cayley Table

Although based on work done in this PhD the code of the automorphism algorithm in-
cluded in the CREAM Package is not part of this PhD work. This algorithm is described in
[5].

3.2.3 Endomorphisms algorithm

This section deals with non-automorphism endomorphisms. Automorphisms are dealt
with in section 3.2.2.

MACE4 is used for the calculation of endomorphisms. MACE4 [27] is a program that
searches for finite models of first-order formulas. The use of MACE4 in CREAM is further
described in section 3.4. The classic approach to calculate endomorphisms using MACE4
would be to initiate a search with the algebra’s operations encoded inMACE4. The algebra:

[ [ [ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 2, 3, 1 ] ] ]

would be encoded inMACE4 as:
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fa1(0,0)=0. fa1(0,1)=0. fa1(0,2)=0. fa1(0,3)=0. fa1(0,4)=0. fa1(0,5)=0.
fa1(1,0)=0. fa1(1,1)=0. fa1(1,2)=0. fa1(1,3)=0. fa1(1,4)=0. fa1(1,5)=0.
fa1(2,0)=0. fa1(2,1)=0. fa1(2,2)=0. fa1(2,3)=0. fa1(2,4)=0. fa1(2,5)=0.
fa1(3,0)=0. fa1(3,1)=0. fa1(3,2)=0. fa1(3,3)=0. fa1(3,4)=0. fa1(3,5)=0.
fa1(4,0)=0. fa1(4,1)=0. fa1(4,2)=0. fa1(4,3)=0. fa1(4,4)=0. fa1(4,5)=0.
fa1(5,0)=0. fa1(5,1)=0. fa1(5,2)=0. fa1(5,3)=1. fa1(5,4)=2. fa1(5,5)=0.

In this encoding fa1 is the algebra’s operation. Normally MACE4 input will have one
clause per line but here we are showing different clauses in each line for compactness.
Please notice thatMACE4 is zero-based unlike GAP that is one-based.

In a zero-based language, the initial element of a sequence is 0 while in one-based
languages the initial element of a sequence is 1. The impact in representing algebras is that
in an algebra of size 6 is represented with elements {0, 1, 2, 3, 4, 5} in a zero-based language
and with elements {1, 2, 3, 4, 5, 6} in a one-based language

To the algebra operations one clause for each operation will be added such as:

f(fa1(x))=fa1(f(x)). , if fa1 is a unary operation or

f(fa1(x,y))=fa1(f(x),f(y)). , if fa1 is a binary operation.

This classic approach while very effective and fast for low order algebras needs further
optimizations for high order algebras in which the congruences of the algebra are used to
limit theMACE4 search space for endomorphisms.

To calculate all the endomorphisms of an algebra of high order, the following steps are
followed:

1. Calculate the congruences of algebra A;

2. For each congruence R calculate A/R (except for the singleton congruence);

3. Calculate the subalgebras of A that are isomorphic to A/R (usingMACE4);

4. For each pair subalgebra/congruence derive the corresponding endomorphism;

5. Calculate the automorphisms of A (that will also be endomorphisms).

The congruences of A are calculated with the algorithms described in 3.2.1.
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For each congruence R (except for the singleton congruence that will be dealt later), the
A/R operation can be obtained just by substituting the values in A operations by its root
blocks. For the previously shown algebra the congruence is:

[ [ 1, 2, 3], [4], [5, 6] ] - [ -3, 1, 1, -1, -2, 5 ]

and the A/R operation is:

1 x 1 = 1
1 x 4 = 1
1 x 5 = 1
4 x 1 = 1
4 x 4 = 1
4 x 5 = 1
5 x 1 = 1
5 x 4 = 1
5 x 5 = 1

This operation can be encoded inMACE4 as:

fa1(a0,a0)=a0.
a0!=a3.
fa1(a0,a3)=a0.
a0!=a4.
fa1(a0,a4)=a0.
fa1(a3,a0)=a0.
fa1(a3,a3)=a0.
a3!=a4.
fa1(a3,a4)=a0.
fa1(a4,a0)=a0.
fa1(a4,a3)=a0.
fa1(a4,a4)=a0.

RunningMACE4 with the definition of the algebra operation and the above encoding of
A/R as assumptions we get 16 possible models each one of them corresponding to a different
endomorphism of the algebra A. One of these models would be:

interpretation( 6, [number = 1,seconds = 0], [
function(a0, [0]),
function(a3, [1]),
function(a4, [2]),
function(fa1(_,_), [

0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,1,2,0])]).
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This means that this model corresponds to the mapping {1 → 1, 4 → 2, 5 → 3} which
can be represented as:

[ 1, , , 2, 3, ]

The missing mappings of the endomorphism can be easily deduced from the congruence
since elements of the same block must map to the same element. In this example the mapping
of 2 and 3 needs to be the same as 1 and the mapping of 6 needs to be the same as 5 and the
missing mappings would then be {2→ 1, 3→ 1, 6→ 3} yielding the endomorphism:

[ 1, 1, 1, 2, 3, 3]

Repeating this process for all congruences and for all models obtained with MACE4
from each congruence, all the algebra’s endomorphisms (except for the automorphisms) can
be obtained.

Finally, for the singleton congruence the associated endomorphisms would be also auto-
morphisms and in this case is more efficient to use the algorithm described in 3.2.2 than the
one usingMACE4.

3.2.4 Monomorphism algorithm

The monomorphism algorithm implemented in CREAM uses invariants in a similar
way to the automorphism algorithm.

Invariants can be used to speed up the process of finding a monomorphism from one
magma to another, or from one algebra to another. If f is an injective homomorphism from
a magma A to a magma B, then it is a isomorphism from A to B restricted to the range of
f . Thus, the same ideas of applying invariants in constructing automorphisms can be used
for constructing monomorphisms. Specifically, an monomorphism f can map an element
a ∈ A to b ∈ B only if a and b have the same invariant vector. This greatly reduces the
search space for monomorphisms between A and B.

Again and although it was based on work done in this PhD the code of the monomorphism
algorithm included in the CREAM Package is not part of this PhD work. This algorithm is
described in [5].

The CREAM package includes the functions CreamExistsMonomorphism (returning
true if a monomorphism exists) and CreamOneMonomorphism (returning one monomor-
phism) and CreamAllMonomorphisms (returning all monomorphisms)
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3.2.5 Epimorphism algorithm

CreamAllEpimorphisms(A1, A2) returns all epimorphisms fromA1 toA2, provided the
algebras are compatible. The algorithm first finds all congruences φ of A1 such that A1/φ

and A2 are isomorphic. For each such φ, the corresponding epimorphisms are obtained by
composing the quotient map with an isomorphism to A2 and all automorphisms of A2.

For efficiency, a size check is implemented before searching for isomorphisms and the
automorphisms of A2 are only calculated once.

Algorithm 10 CreamAllEpimorphisms(algebra1, algebra2)
allCongruences← CreamAllCongruences(algebra1)

dimension1← CreamSizeAlgebra(algebra1)

dimension2← CreamSizeAlgebra(algebra2)

autoList← []

epiList← []

for all cong in allConguences do
if dimension2 = CreamNumberOfBlocks(cong) then

[qalgebra,mapToQalgebra]← QuotientAlgebraFromCongruence(algebra1, cong)

iso← IsomorphismAlgebras(qalgebra, algebra2)

if not iso = fail then
if autoList = [] then
autoList← CreamAutomorphisms(algebra2)

end if
for all auto in autoList do
epi← []

for j = 1 to dimension1 do
epi[j]← auto[iso[mapToQalgebra[i]]]

end for
Add epi to epiList if not already in the list

end for
end if

end if
end for
return epiList

In this section only the function CreamAllEpimorphisms is addressed but the CREAM
package also includes the functionsCreamExistsEpimorphism (returning true if an epimor-
phism exists) and CreamOneEpimorphism (returning one epimorphism).
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3.2.6 SubUniverses algorithm

The SubUniverses algorithm returns a list of all underlying sets of all subalgebras of the
input algebra. It first generates all 1-generated subalgebras, then iteratively expands each
i-generated algebra by adding another generator.

For performance enhancement, these expansions are limited to one element from
each orbit of the algebra’s automorphism group. At the end of each cycle, the remaining
(i+1)-generated subuniverses are obtained by applying the automorphism group. The algo-
rithm stops when an iteration produces only one subuniverse with the same size of the algebra.

The algorithm relies on the SubUniverseFromElement routine, which calculates the
subalgebra generated by a subalgebra and an additional element. This routine assumes
that the input subuniverse is closed under the algebra’s operations. The algorithm adds the
element to the updated subuniverse, calculates all directly generated additional elements,
and places them in a temporary list. These elements are then filtered for those that are
already in the subuniverse, and the remaining elements are put into a second list. Elements
from the second list are then added to the subuniverse iteratively.

The function SizeSubUniverse takes a subuniverse as argument and returns the number
of elements of the subset underlying to the subuniverse.
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Algorithm 11 CreamAllSubUniverses(algebra)
dimension← CreamSizeAlgebra(algebra)

autoList← CreamAutomorphisms(algebra)

for i = 1 to dimension do
sigma[i]← []

if i = 1 then
sigmaMinus← [[]]

else
sigmaMinus← sigmaExpanded[i− 1]

end if
for all cSigma in sigmaMinus do
elemList← [1..dimension]

Remove all elements in cSigma from elemList

while NumberOfElements(elemList) <> 0 do
j ← elemList[1]

sUniverse← SubUniverseFromElement(algebra, cSigma, j)

Add sUniverse to sigma[i] if not already in the list
autoEs← the orbit of j under autoList
Remove all elements in autoEs from elemList

end while
end for
sigmaExpanded[i]← []

for all sUniverse in sigma[i] do
autoUniverses← the orbit of sUniverse under autoList
Add all elements of autoUniverses to sigmaExpanded[i] if not already in the list

end for
if NumberOfElements(sigma[i]) = 1 and SizeSubUniverse(sigma[i][1]) =

dimension then
break

end if
end for
sUniverses← ∪i

j=1sigmaExpended[j]

return sUniverses
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Algorithm 12 SubUniverseFromElement(algebra, initSubUniverse, element)
dimension← CreamSizeAlgebra(algebra)

elemList← [element]

newSubUniverse← initSubUniverse

nElem← NumberOfElements(elemList)

while nElem > 0 do
currentElem← elemList[nElem]

Remove element in position nElem from elemList

newElemList← []

for all operations op of the algebra do
if op is binary then
Add op[currentElem][currentElem] to newElemList if not already in the list
for all subUniverseElem in newSubUniverse do
Add op[currentElem][subUniverseElem] to newElemList if not already in
the list
Add op[subUniverseElem][currentElem] to newElemList if not already in
the list

end for
else
Add op[currentElem] to newElemList if not already in the list

end if
end for
Add currentElem to newSubUniverse if not already in the list
elemList← elemList ∪ (newElemList \ newSubUniverse)
nElem← NumberOfElements(elements)

if SizeOfSubUniverse(newSubUniverse) + nElem = dimension then
newSubUniverse← [1..dimension]

nElem← 0

end if
end while
return newSubUniverse

3.2.7 DivisorUniverses algorithm

CreamAllDivisorUniverses(A1, A2) checks if A1 has a divisor that is isomorphic to A2,
where A1 and A2 are compatible algebras. Its return is a list of all pairs (B,φ), such that
B is a subuniverse ofA1,φ is a congruence of the subalgebraB, andB/φ is isomorphic toA2.

The algorithm first calculates the subalgebras of A1, then their quotients and then checks
those for isomorphisms to A2, in each case using the corresponding algorithms of the
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CREAM package. A size condition is used to prune unnecessary calculations.

Algorithm 13 CreamAllDivisorUniverses(algebra1, algebra2)
dimension← CreamSizeAlgebra(algebra2)

subUniverseList← CreamSubUniverses(algebra1)

divisorList← []

for all subUniverse in subUniverseList do
if dimension <= SizeOfSubUniverse(subUniverse) then
subAlgebra← CreamSubUniverse2Algebra(algebra1, subUniverse)

congList← CreamAllCongruences(subAlgebra)

rcongList← []

for all cong in congList do
if dimension = CreamNumberOfBlocks(cong) then
Add cong to rcongList if not already in the list

end if
end for
for all cong in rcongList do

[qAlgebra,mapToQalgebra]← QuotientAlgebraFromCongruence(subAlgebra, cong)

if CreamAreAlgebrasIsomorphic(qAlgebra, algebra2) then
Add [subUniverse, cong] to divisorList if not already in the list

end if
end for

end if
end for
return divisorList

In this section only the function CreamAllDivisorUniverses is addressed but the
CREAM package also includes the functions CreamExistsDivisor (returning true if a di-
visor between the algebras exists) and CreamOneDivisorUniverse (returning one divisor
between the algebras).

3.2.8 DirectlyReducible algorithm

CreamAllDirectlyReducible(A) looks for two (non-trivial) commuting congruences
ϕ, ψ of A, whose meet is trivial and whose join is A × A. If those exist, A is isomorphic to
the direct product A/ϕ× A/ψ.

Because all algebras are finite, it suffices to check that the congruences have a trivial
meet, and that the corresponding product algebra has the correct size. The algorithm uses
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numerical constraints to avoid unnecessary calculations.

The return of the algorithm is a list of pairs of congruences. These pairs should be consider
as sets, i.e. if (α, β) is listed the (equally valid) pair (β, α) is not listed separately.

Algorithm 14 CreamAllDirectlyReducible(algebra)
dimension← CreamSizeAlgebra(algebra)

congList← CreamAllCongruences(algebra)

pCongList← []

for all cong in congList do
cNBlocks← CreamNumberOfBlocks(cong)

if cNBlocks <> 1 and cNBlocks <> dimension and
IsInt(dimension/cNBlocks) then
Add cong to pCongList

end if
end for
pairs← []

for all 2-element subsets {i, j} of pCongsList do
iNBlocks← CreamNumberOfBlocks(i)

jNBlocks← CreamNumberOfBlocks(j)

if iNBlocks ∗ jNBlocks = dimension then
cMeet←MeetPartition(i, j)

cMeetNBlocks← CreamNumberOfBlocks(cMeet)

if cMeetNBlocks = dimension then
Add [i, j] to pairs

end if
end if

end for
return pairs

In this section only the function CreamAllDirectlyReducible is addressed but the
CREAM package also includes the functions CreamExistsDirectlyReducible (returning
true if there are commuting congruences R, T where A/R x A/T is isomorphic to A) and
CreamOneDirectlyReducible (returning one pair of commuting congruences R, T where
A/R x A/T is isomorphic to A).
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3.3 The CREAM Package

CREAM stands for “Algebra CongRuences, Endomorphisms and AutoMorphisms”.
CREAM is a GAP Package developed in GAP and C. GAP stands for “Groups, Algorithms,
Programming” and is a system for computational discrete algebra, with particular emphasis
on Computational Group Theory. A detailed description of the CREAM Package is
presented in the Appendix A.
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3.4 MACE4

MACE4 [27] is a command line application that searches for finite models of first-order
formulas and statements.

MACE4 is used by the package CREAM but was not developed or changed in the scope
of the work of this PhD. Despite not being part of the PhD this section about MACE4 was
added to contextualize its use in the package CREAM.

MACE4 uses the same formulas and statements syntax as Prover9 [28]. MACE4
takes into account two sets of clauses: assumptions and goals. Goal clauses are negated by
MACE4.

MACE4 can be used either to find models that verify a set of clauses or to find
counterexamples.

The domain size can be set and the search can be limited by time or number of models
or the search will be done until exhausting all possible models.

The MACE4 version being used is an optimized rebuild done by Carlos Sousa
and Choiwah Chow in the scope of their PhD thesis work that can be found in
https://gitlab.com/cfmsousa/prover9.

MACE4 is used internally by CREAM for 3 purposes:

• Generating algebras of a specific type from axioms (e.g group, semigroup, etc).

• Determining whether 2 algebras are isomorphic.

• Determining the endomorphisms of an algebra.

The use of MACE4 for the determination of endomorphisms is described in section 3.2.3.

MACE4 can be used to search for algebras of defined types within a domain. For instance
we can determine all groups of a determined order by adding asMACE4 clauses the group
axioms.

(x * y) * z = x * (y * z). % associativity
1 * x = x. % left identity
x * 1 = x. % right identity
x' * x = 1. % lef inverse
x * x' = 1. % right inverse

49



3. COMPUTATIONAL IMPLEMENTATION

For a domain of size 4, 3 models are returned.

interpretation( 4, [number = 1,seconds = 0], [
function(*(_,_), [

1,0,3,2,
0,1,2,3,
3,2,1,0,
2,3,0,1]),

function('(_), [0,1,2,3])]).
interpretation( 4, [number = 2,seconds = 0], [

function(*(_,_), [
1,0,3,2,
0,1,2,3,
3,2,0,1,
2,3,1,0]),

function('(_), [0,1,3,2])]).
interpretation( 4, [number = 3,seconds = 0], [

function(*(_,_), [
3,0,1,2,
0,1,2,3,
1,2,3,0,
2,3,0,1]),

function('(_), [2,1,0,3])]).

Some of these models might be isomorphic. To determine whether 2 algebras corre-
sponding models returned by MACE4 we need to determine whether a bijective mapping
exists between the algebras that preserves the operations of the algebraic structures.

This can be done by defining the algebras’ operations asMACE4 clauses adding clauses
for a structure preserving bijective mapping between them. In the following example this
was done for the second and the third models returned byMACE4.

fs(0,0)=1.fs(0,1)=0.fs(0,2)=3.fs(0,3)=2.
fs(1,0)=0.fs(1,1)=1.fs(1,2)=2.fs(1,3)=3.
fs(2,0)=3.fs(2,1)=2.fs(2,2)=0.fs(2,3)=1.
fs(3,0)=2.fs(3,1)=3.fs(3,2)=1.fs(3,3)=0.

ft(0,0)=3.ft(0,1)=0.ft(0,2)=1.ft(0,3)=2.
ft(1,0)=0.ft(1,1)=1.ft(1,2)=2.ft(1,3)=3.
ft(2,0)=1.ft(2,1)=2.ft(2,2)=3.ft(2,3)=0.
ft(3,0)=2.ft(3,1)=3.ft(3,2)=0.ft(3,3)=1.

f(fs(x,y)) = ft(f(x),f(y)).
f(x) = f(y) -> x = y.
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There is one bijective mapping f(x) between these algebras:

interpretation( 4, [number = 1,seconds = 0], [
function(f(_), [3,1,0,2]),
function(fs(_,_), [

1,0,3,2,
0,1,2,3,
3,2,0,1,
2,3,1,0]),

function(ft(_,_), [
3,0,1,2,
0,1,2,3,
1,2,3,0,
2,3,0,1])]).

The fact that there is a bijective mapping between the groups means that the 2 groups
are isomorphic.

When this is done for the first 2 groups:

fs(0,0)=1.fs(0,1)=0.fs(0,2)=3.fs(0,3)=2.
fs(1,0)=0.fs(1,1)=1.fs(1,2)=2.fs(1,3)=3.
fs(2,0)=3.fs(2,1)=2.fs(2,2)=1.fs(2,3)=0.
fs(3,0)=2.fs(3,1)=3.fs(3,2)=0.fs(3,3)=1.

ft(0,0)=1.ft(0,1)=0.ft(0,2)=3.ft(0,3)=2.
ft(1,0)=0.ft(1,1)=1.ft(1,2)=2.ft(1,3)=3.
ft(2,0)=3.ft(2,1)=2.ft(2,2)=0.ft(2,3)=1.
ft(3,0)=2.ft(3,1)=3.ft(3,2)=1.ft(3,3)=0.

f(fs(x,y)) = ft(f(x),f(y)).
f(x) = f(y) -> x = y.
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No models are found.

============================== DOMAIN SIZE 4 =========================

============================== STATISTICS ============================

For domain size 4.

Current CPU time: 0.00 seconds (total CPU time: 0.00 seconds).
Ground clauses: seen=64, kept=60.
Selections=2, assignments=8, propagations=38, current_models=0.
Rewrite_terms=195, rewrite_bools=56, indexes=0.
Rules_from_neg_clauses=2, cross_offs=20.

============================== end of statistics =====================

User_CPU=0.00, System_CPU=0.06, Wall_clock=0.

Exiting with failure.

Process 26688 exit (exhausted) Wed Jun 23 10:20:26 2021
The process finished Wed Jun 23 10:20:26 2021

This means that these 2 groups are not isomorphic.
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3.5 Performance

3.5.1 Improving Performance

The code calculating congruences was originally developed in GAP. This allowed a fast
prototyping of the algorithms and a rapid detection and correction of issues.

While GAP is adequate for fast prototyping and implementation of algorithms the
resulting code is not very fast because it is an interpreted language. GAP supports what is
known internally as kernel modules that allow the development of C code that can be called
within GAP. This code is compiled and generally shows a much better performance that the
interpreted GAP code.

In order to have the best balance between performance gain and development effort the
code was profiled in order to identify which functions were taking more CPU time. Prior-
itizing the implementation in C of those functions would give us the biggest performance
gains with minimal development effort.

Please note that some of the following transcripts were obtained before the final names
for the functions and package were defined. Due to this, the function names are different
from the current ones.

gap> algebra:= [MultiplicationTable(SymmetricGroup (4))];;
gap> ProfileFunctions(internalPartitionRoot, blockJoin, internalMinimalCongrue$
gap> allCongruences(algebra);;
gap> DisplayProfile();
count self/ms chld/ms stor/kb chld/kb package function
5922 104 84 0 0 Algebr* blockJoin
282 76 172 0 0 Algebr* normalizePartition

1659681 16316 52 0 0 Algebr* internalRootPartition
276 3616 16512 353 3152 Algebr* internalMinimalCongru*
1 12 20132 6 3514 Algebr* internalAllMinimalCon*
1 0 20160 0 3522 Algebr* allCongruences
1 0 20160 0 3522 Algebr* internalAllCongruences

36 3162 OTHER
20160 3522 TOTAL
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3. COMPUTATIONAL IMPLEMENTATION

From the profiling data, the most consuming functions revealed to be:

• CreamRootBlock (shown as internalRootPartition) – 1659681 runs spending a total
of 16316 ms (∼81%) runtime

• CreamPrincipalCongruence (shown as minimalCongruence) – 276 runs spending
a total of 3616 ms (∼18%) runtime

• CreamJoinBlocks (shown as blockJoin) – 5922 runs spending a total of 104 ms
(<1%) runtime

• CreamNormalizePartition (shown as normalizePartition) – 282 runs spending a to-
tal of 76 ms (<1%) runtime

The most time consuming functions are CreamRootBlock and CreamPrincipalCon-
gruence that account for nearly 99% of the runtime and these were rewritten in C. The time
consumption of CreamJoinBlocks and CreamNormalizePartition is negligible (<1%)
but since they are called inside CreamPrincipalCongruence they were rewritten in C also.

The performance results of running the code with S4 and S5 before this rewrite can be
seen in transcript below.

gap> algebra:= [MultiplicationTable(SymmetricGroup (4))];;
gap> allCongruences(algebra);;time;
484
gap> algebra:= [MultiplicationTable(SymmetricGroup (5))];;
gap> allCongruences(algebra);;time;
481000

The calculation of the congruences of S4 took 484ms to calculate while the calculation
of the congruences of S5 took 481000s.

The performance results of running the code with S4 and S5 after this rewrite can be seen
in transcript below.

gap> algebra:= [MultiplicationTable(SymmetricGroup (4))];;
gap> allCongruences(algebra);;time;
16
gap> algebra:= [MultiplicationTable(SymmetricGroup (5))];;
gap> allCongruences(algebra);;time;
9636
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This yielded 16ms for the calculation of the congruences of S4 and 9636ms for S5

These rewrites achieved a staggering improvement yielding a 30-fold improvement
(from 484ms to 16ms) in calculating the congruences for S4 and a 50-fold improvement
(from 481000ms to 9636ms) in calculating the congruences for S5.

The following step in terms of the performance improvement process was to rewrite
the full CreamAllCongruences and CreamAllPrincipalCongruences in C. After this full
rewrite further improvements were obtained.

gap> algebra:= [MultiplicationTable(SymmetricGroup (4))];;
gap> CreamAllCongruences (algebra);;time;
4
gap> algebra:= [MultiplicationTable(SymmetricGroup (5))];;
gap> CreamAllCongruences (algebra);;time;
716

With this full rewrite a total 120-fold improvement (from 484ms to 4ms) was obtained
for S4 and a 670-fold improvement (from 481000ms to 716ms) for S5.

3.5.2 Congruences algorithm performance

The analysis of the theoretical time complexity of the Freese algorithm was done based
on the paper data [15] and compared with the graph algorithm’s [11] complexity analysed in
section 2.3.

Considering unary algebras, for the sake of simplicity, the analysis of the Freese algo-
rithm presents a complexity of O(|F|n) where n = |A|, to calculate a principal congruence
CgA(x, y). Taking into account that there will be

(
n
2

)
= n(n−1)

2
unordered pairs for which

to calculate CgA(x, y) then all principal congruences can be calculated in a maximum of
O(|F|n3).

For the graph algorithm the complexity of calculating the graph is indicated to be
O(|F|n2). At first look the graph algorithm has a lesser complexity, growing slower with
n but after running the graph algorithm it would still be necessary to build the congruences
from the graph. Even if some optimizations from the Freese algorithm are used to build
the congruences from the graph the time complexity of doing this would be bounded by
O(log2(n

2)n4). This makes both algorithms comparable if |F| grows proportional to
n log(n2), with an advantage for the Freese algorithm for slower growth and an advantage
for the graph algorithm otherwise.
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One of the advantages of the Freese’s algorithm is the use of data structures that facilitate
the traversing of the graph of unordered pairs without having to build the graph explicitly.
Moreover, the main time consumption in the Freese’s algorithm is the congruence generation
and special attention was taken to the performance of the algorithms building partitions
(congruences) from unordered pairs.

The performance of the congruence algorithm implementation in CREAM was tested
against different congruence implementations. For these tests the algebras were considered
as universal algebras of type (21) even in cases were these algebras can have definitions with
different types.

The semigroup GAP package includes the function CongruencesOfSemigroup that re-
turns the congruences for a semigroup. This function does not work for all semigroups and
in the case of the semigroups listed in the smallsemi package we determined that it works
for the semigroups that belong to one of the following classes (see section 2.4 for definitions
on these algebras):

• Simple

• Brandt

• Group

• Zero Simple

• Rectangular Band

For these semigroups we’ve run the CongruencesOfSemigroup function and the
CreamAllCongruences 5 times and calculated the average runtime after removing the best
and worst runtimes getting the following results:

56



3.5 Performance

Table 3.1: Performance Comparison betweenCongruencesOfSemigroup andCREAM on calculating all con-
gruences.

Size Number of Algebras CongruencesOfSemigroup(ms) CreamAllCongruences(ms)

1 1 7 < 1

2 3 20 < 1

3 4 29 < 1

4 7 41 < 1

5 9 53 < 1

6 8 71 < 1

7 12 153 4

8 14 484 35

1-8 58 858 40

So although the number of algebras for which CongruencesOfSemigroup works is very
limited even for those algebras CreamAllCongruences is more than 20 times faster.

During testing it was found that there is a very specific type of semigroup where the
function CongruencesOfSemigroup achieves significatively better results than Crea-
mAllCongruences. These are the Rees Matrix Semigroups or the Rees Zero Matrix
Semigroups. These groups are Simple Semigroups or Zero Simple Semigroups. But to
achieve this kind of performance the semigroup needs to be created using the GAP functions
ReesMatrixSemigroup or ReesZeroMatrixSemigroup. If otherwise, the semigroup is
created from its multiplication table while being isomorphic to a Rees Matrix Semigroup or a
Rees Zero Matrix Semigroup the performance will be similar to what was found above. See
in the following table the average runtime for 10 runs with random Rees Matrix Semigroups:
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Table 3.2: Performance Comparison on calculating all congruences of Rees Matrix Semigroup.

Size CongruencesOfSemigroup CongruencesOfSemigroup CreamAllCongruences UACalc

(ReesMatrixSemigroup) (MultiplicationTable)

(ms) (ms) (ms) (ms)

12 1 15 < 1 1

18 2 28 < 1 3

24 5 55 2 7

30 1 92 4 32

36 4 139 10 34

42 11 203 16 55

48 8 296 24 77

54 5 416 46 138

60 5 553 60 220

66 1 671 82 291

72 9 873 136 409

78 2 1 098 180 555

84 5 1 341 233 743

90 4 1 622 307 961

For the Rees Matrix Semigroups or the Rees Zero Matrix Semigroups the function
CongruencesOfSemigroup takes advantage of its particular structure to apply in a very
efficient way the use of the linked triple algorithm but this can only be used in a very restrict
setting and with a very limited set of semigroups.

UACalc is the implementation of the Freeze algorithm done under his supervision in
java and jython. It includes a GUI version in Java and a command line interface in jython.
The performance of the GUI version is poor and we will not be looking into its performance.
On the other hand the command line interface has a performance that is comparable to
CreamAllCongruences. The same random Rees Matrix Semigroups that were used with
CongruencesOfSemigroup and CreamAllCongruences were written into files readable
by UACalc and the congruences were calculated in UACalc. CreamAllCongruences is
consistently more than 3 times faster than UACalc. For these algebras with one binary
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3.5 Performance

operation the runtime rises roughly proportionally to n4 (where n is the size of the algebra)
or t2 (being t the number cells of the multiplication matrix of the algebra operation).

Figure 3.4: Performance Comparison on calculating all congruences of Rees Matrix Semigroup
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To further compare the performance of CreamAllCongruences with UACalc several
specific types of Semigroups, Monoids and Groups were run.
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3. COMPUTATIONAL IMPLEMENTATION

Table 3.3: Performance Comparison between CREAM and UACalc

Algebra Size Number of CreamAllCongruences UACalc

Congruences (ms) (ms)

GossipMonoid(3) 11 84 1 2

PlanarPartitionMonoid(2) 14 9 1 1

JonesMonoid(4) 14 9 < 1 1

BrauerMonoid(3) 15 7 < 1 2

PartitionMonoid(2) 15 13 < 1 1

FullPBRMonoid(1) 16 167 3 4

SymmetricGroup(4) 24 4 3 10

FullTransformationSemigroup(3) 27 7 3 14

FullTransformationMonoid(3) 27 7 3 7

SymmetricInverseMonoid(3) 34 7 6 25

JonesMonoid(5) 42 6 12 36

MotzkinMonoid(3) 51 10 23 73

PartialTransformationMonoid(3) 64 7 63 223

PartialBrauerMonoid(3) 76 16 117 351

BrauerMonoid(4) 105 19 430 1 420

SymmetricGroup(5) 120 3 812 2 700

PlanarPartitionMonoid(3) 132 10 1 094 3 490

JonesMonoid(6) 132 10 950 3 444

PartitionMonoid(3) 203 16 6 500 19 979

SymmetricInverseMonoid(4) 209 11 6 970 22 318

FullTransformationSemigroup(4) 256 11 22 529 53 557

FullTransformationMonoid(4) 256 11 22 385 52 361

MotzkinMonoid(4) 323 11 47 593 134 945

JonesMonoid(7) 429 7 161 987 485 004
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The performance for these algebras is mostly similar to what was found for the Rees
Matrix Semigroups with a bigger variance in the results in the sense that the average of
CreamAllCongruences over UACalc is between 3 and 3,5 times but depending on the
algebras we get improvements spanning from 2 times to 4,5 times. The runtime also rises
roughly proportionally to n4 (although with more variance).

Figure 3.5: Performance Comparison between CREAM and UACalc
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3.5.3 Automorphisms algorithm performance

The automorphism algorithm included in the CREAM Package was developed by
Choiwah Chow and is not part of this PhD work. Its performance is described in [5].

3.5.4 Endomorphisms algorithm performance

To test the performance of the algorithms to calculate endomorphisms, the algorithms
were run with specific types of Semigroups, Monoids and Groups and using the classic and
congruence algorithms running with MACE4. As described in 3.2.3 the classic algorithm
uses only MACE4 to calculate endomorphisms while the congruence algorithm uses the
algebra congruences to limit the search space of MACE4. The classic algorithm is used in
CREAM for algebras of size up to 60 while the congruence algorithm is used for algebras
of size above 60. The only GAP function to calculate endomorphisms that came to our
attention is the function Endomorphisms from the package SONATA. This function can
calculate endomorphisms for a very narrow set of algebras, namely groups and near-rings.
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3. COMPUTATIONAL IMPLEMENTATION

The groups in the list algebras were also run with SONATA.

As for congruences, in these tests the algebras were considered as universal algebras of
type (21) even in cases were these algebras can have definitions with different types.

Table 3.4: Performance Comparison between endomorphisms calculation algorithms

Algebra Size Number of Classic Congruences SONATA

Endomorphisms (ms) (ms) (ms)

GossipMonoid(3) 11 66 30 1 635 NA

PlanarPartitionMonoid(2) 14 72 56 233 NA

JonesMonoid(4) 14 72 45 232 NA

BrauerMonoid(3) 15 28 38 160 NA

PartitionMonoid(2) 15 89 50 313 NA

FullPBRMonoid(1) 16 1 426 585 5 134 NA

SymmetricGroup(4) 24 58 101 142 166

FullTransformationSemigroup(3) 27 40 116 364 NA

FullTransformationMonoid(3) 27 40 112 360 NA

SymmetricInverseMonoid(3) 34 54 274 504 NA

JonesMonoid(5) 42 113 746 777 NA

MotzkinMonoid(3) 51 98 1 972 2 400 NA

PartialTransformationMonoid(3) 64 138 2 586 1 963 NA

PartialBrauerMonoid(3) 76 165 7 897 7 796 NA

BrauerMonoid(4) 105 274 50 164 19 875 NA

SymmetricGroup(5) 120 146 32 861 2 979 201

PlanarPartitionMonoid(3) 132 393 95 460 25 803 NA

JonesMonoid(6) 132 393 131 472 22 889 NA

PartitionMonoid(3) 203 687 741 441 105 421 NA

SymmetricInverseMonoid(4) 209 282 470 901 75 940 NA
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In this test the classic algorithms not using congruences is faster than using congruences
for algebras up to size 60 but for larger algebras its runtime raises very fast and the algorithm
using congruences becomes faster.

Figure 3.6: Endomorphisms performance
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For groups the SONATA package achieves very good results but covering a very narrow
set of algebras.

Considering these results the CreamEndomorphisms function uses the classic algo-
rithm for algebras with size up to 60 and the congruences algorithm for 60 or larger algebras.
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Chapter 4

Applications

4.1 Monolithic Algebras

A monolith is a congruence that is contained in every other congruence except the
identity congruence. An algebra with a monolith is said to be a monolithic algebra.

As an example the semigroup:

[ [ [ 1, 1, 1, 1 ],
[ 1, 1, 1, 1 ],
[ 1, 1, 1, 1 ],
[ 1, 1, 2, 1 ] ] ]

is monolithic:

gap> algebra := [RecoverMultiplicationTable(4,2)];
[ [ [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ], [ 1, 1, 2, 1 ] ] ]
gap> CreamAllCongruences(algebra);
[ [ -1, -1, -1, -1 ], [ -2, 1, -1, -1 ], [ -2, 1, -2, 3 ], [ -3, 1, 1, -1 ],
[ -3, 1, -1, 1 ], [ -4, 1, 1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);
true

This can be confirmed visually if the congruences of this semigroup are depicted as
a graph and it can be seen that the congruence [[1,2][3][4]] is contained in every other
congruence except for the singleton congruence confirming that the semigroup is monolithic.
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Figure 4.1: Congruences of a monolithic algebra
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On the other hand the semigroup:

[ [ [ 1, 2, 3, 4 ],
[ 2, 1, 4, 3 ],
[ 3, 4, 1, 2 ],
[ 4, 3, 2, 1 ] ] ]

is not monolithic:

gap> algebra := [RecoverMultiplicationTable(4,7)];
[ [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ] ]
gap> CreamAllCongruences(algebra);
[ [ -1, -1, -1, -1 ], [ -2, 1, -2, 3 ], [ -2, -2, 2, 1 ], [ -2, -2, 1, 2 ],
[ -4, 1, 1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);
false

Moreover, looking at the congruences graph it can be seen that none of the congruences
except for the singleton congruence is contained in every other congruence confirming that
the semigroup isn’t monolithic.
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Figure 4.2: Congruences of a non-monolithic algebra

[[1,2,3,4]]

[[1,2][3,4]][[1,4][2,3]] [[1,3][2,4]]

[[1][2][3][4]]

It is simple to calculate whether an algebra in monolithic having the list of minimal
congruences and a function that compares two partitions and calculates whether one is
contained in the other. One congruence is contained in another if every element in same
block in the first congruence will also be in the same block in second congruence.

The CreamContainedPartition function returns whether a partition is contained in
another. A partition is contained in another if each of its blocks is contained in a block
of the other partition. This function is used internally to determine whether an Algebra is
monolithic or not. This algorithm assumes that the partitions are normalized.
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Algorithm 15 CreamContainedPartition (partition1, partition2)
dimension← SizeOfSet(partition1)

for i = 1 to dimension do
if partition1[i] < 0 then
if partition2[i] < 0 then
block2← i

else
block2← partition2[i]

end if
for j = i+ 1 to dimension do
if partition1[j] = i and not block2 = partition2[j] then
return false

end if
end for

end if
end for
return true

Having this we can calculate the minimal congruences and compare them, eliminating
those that contain other congruences. If a single congruence is returned then this congruence
is contained in every other congruence (and the algebra is monolithic). This is done with the
CreamIsAlgebraMonolithic function.
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Algorithm 16 CreamIsAlgebraMonolithic (algebra)
partitions← CreamAllPrincipalCongruences(algebra)

npartitions← NumberOfElements(partitions)

if npartitions > 1 then
i← 2

repeat
if CreamContainedPartition(partitions[1], partitions[i]) then
Remove(partitions, i)

else if CreamContainedPartition(partitions[i], partitions[1]) then
partitions[1]← partitions[i]

Remove(partitions, i)

i← 2

else
i← i+ 1

end if
until NumberOfElements(partitions) < i

end if
npartitions← NumberOfElements(partitions)

if npartitions > 1 then
return false

else
return true

end if

Some examples of the use of the package can be seen next:

gap> algebra := [RecoverMultiplicationTable(6,1)];
[ [ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ] ] ]
gap> CreamAllPrincipalCongruences(algebra);
[ [ -1, -1, -1, -1, -2, 5 ], [ -1, -1, -1, -2, 4, -1 ],
[ -1, -1, -1, -2, -1, 4 ], [ -1, -1, -2, 3, -1, -1 ],
[ -1, -1, -2, -1, 3, -1 ], [ -1, -1, -2, -1, -1, 3 ],
[ -1, -2, 2, -1, -1, -1 ], [ -1, -2, -1, 2, -1, -1 ],
[ -1, -2, -1, -1, 2, -1 ], [ -1, -2, -1, -1, -1, 2 ],
[ -2, 1, -1, -1, -1, -1 ], [ -2, -1, 1, -1, -1, -1 ],
[ -2, -1, -1, 1, -1, -1 ], [ -2, -1, -1, -1, 1, -1 ],
[ -2, -1, -1, -1, -1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);
false
gap> algebra := [RecoverMultiplicationTable(6,19)];
[ [ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 2, 1, 1 ], [ 1, 1, 2, 1, 1, 1 ] ] ]
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gap> CreamAllPrincipalCongruences(algebra);
[ [ -2, 1, -1, -1, -1, -1 ], [ -2, 1, -1, -1, -2, 5 ],
[ -2, 1, -1, -2, 4, -1 ], [ -2, 1, -1, -2, -1, 4 ],
[ -2, 1, -2, 3, -1, -1 ], [ -2, 1, -2, -1, 3, -1 ],
[ -2, 1, -2, -1, -1, 3 ], [ -3, 1, 1, -1, -1, -1 ],
[ -3, 1, -1, 1, -1, -1 ], [ -3, 1, -1, -1, 1, -1 ],
[ -3, 1, -1, -1, -1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);
true
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4.2 Small Semigroups

For all small semigroups up to size 6, all its congruences and endomorphisms were
calculated and are provided as an annex to this thesis. It was calculated also whether the
semigroups were monolithic (this was calculated up to size 8).

For these test runs the algebras were considered as universal algebras of type (21) even
in cases where these algebras can have definitions with different types.

Table 4.1: Determination of all monolithic semigroups up to size 8

Size Number of Number of Performance

semigroups monoliths (ms)

1 1 0 0

2 4 4 0

3 18 7 0

4 126 16 8

5 1 160 103 108

6 15 973 1 823 1 712

7 836 021 149 020 127 356

8 1 843 120 128 48 438 046 462 897 348

All automorphisms for semigroups up to size 7 were also calculated separately and the
automorphism group and its ID was calculated for each of these semigroups. The group ID
is the identification of a group in the Small Group textbfGAP library [7].
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The CREAM library doesn’t calculate the automorphisms of an algebra as an automor-
phism group but as a list of bijective mappings but there is an easy way to calculate the
automorphism group from the list of mappings. To do this all the mappings are converted
into permutation using the PermList function and each of these permutations is used as gen-
erator for the group. Having this we can get the Group Id using the IdGroup function. An
example of this process is shown below:

gap> ##################################################
gap> # Small Semigroup size 7 id 836016
gap> ##################################################
gap> algebra := [RecoverMultiplicationTable(7,836016)];
[ [ [ 1, 2, 3, 3, 2, 2, 2 ], [ 2, 3, 1, 1, 3, 3, 3 ], [ 3, 1, 2, 2, 1, 1, 1 ],

[ 3, 1, 2, 2, 1, 1, 1 ], [ 2, 3, 1, 1, 4, 4, 4 ],
[ 2, 3, 1, 1, 4, 4, 4 ], [ 2, 3, 1, 1, 4, 4, 4 ] ] ]

gap> auto := CreamAutomorphisms (algebra);
[ [ 1 .. 7 ], [ 1, 2, 3, 4, 5, 7, 6 ], [ 1, 2, 3, 4, 6, 5, 7 ],
[ 1, 2, 3, 4, 6, 7, 5 ], [ 1, 2, 3, 4, 7, 5, 6 ], [ 1, 2, 3, 4, 7, 6, 5 ] ]

gap> Size (auto);
6
gap> g := Group (List (auto, PermList));
Group([ (), (6,7), (5,6), (5,6,7), (5,7,6), (5,7) ])
gap> id := IdGroup (g);
[ 6, 1 ]

The full outputs are also being provided as an annex and a summary table from these
runs is provided next.
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Table 4.2: Determination of automorphism group for semigroups up to size 7

Size 2 3 4 5 6 7

# Semigroups 4 18 126 1 160 15 973 836 021

[ 1, 1 ] trivial 3 12 78 746 10 965 746 277

[ 2, 1 ] C2 1 5 39 342 4 121 76 704

[ 3, 1 ] C3 2 26 412

[ 4, 1 ] C4 1 7 82

[ 4, 2 ] C2 × C2 3 26 441 7 314

[ 5, 1 ] C5 6

[ 6, 1 ] S3 1 5 33 300 3 638

[ 6, 2 ] C6 37

[ 8, 2 ] C4 × C2 4

[ 8, 3 ] D8 1 17 169

[ 8, 5 ] C2 × C2 × C2 6 172

[ 10, 1 ] D10 2

[ 12, 4 ] D12 4 49 790

[ 16, 11 ] C2 ×D8 10

[ 24, 12 ] S4 1 4 30 277

[ 24, 14 ] C2 × C2 × S3 14

[ 36, 10 ] S3 × S3 2 24

[ 48, 48 ] C2 × S4 4 45

[ 72, 40 ] (S3 × S3) ≀ C2 1

[ 120, 34 ] S5 1 4 30

[ 144, 183 ] S3 × S4 4

[ 240, 189 ] C2 × S5 4

[ 720, 763 ] S6 1 4

[ 5040, - ] S7 1
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4.3 Small Groups

Using the Small GroupGAP library [7] the groups from order 2 to 96 were extracted and
the CREAM functions were used with them:

• Order 2-31 - CreamAllCongruences, CreamAllEndomorphisms and CreamIs-
Monolithic

• Order 32-96 - CreamAllCongruences and CreamIsMonolithic

For these test runs the groups were considered as universal algebras of type (21).

An example of this process is shown below:

gap> ##################################################
gap> # Small Group size 8 id 1
gap> ##################################################
gap> algebra := [MultiplicationTable(SmallGroup(8,1))];
[ [ [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ 2, 3, 5, 6, 4, 7, 8, 1 ],

[ 3, 5, 4, 7, 6, 8, 1, 2 ], [ 4, 6, 7, 1, 8, 2, 3, 5 ],
[ 5, 4, 6, 8, 7, 1, 2, 3 ], [ 6, 7, 8, 2, 1, 3, 5, 4 ],
[ 7, 8, 1, 3, 2, 5, 4, 6 ], [ 8, 1, 2, 5, 3, 4, 6, 7 ] ] ]

gap> CreamSizeAlgebra(algebra);
8
gap> cong := CreamAllCongruences(algebra);
[ [ -1, -1, -1, -1, -1, -1, -1, -1 ], [ -2, -2, -2, 1, -2, 2, 3, 5 ],
[ -4, -4, 1, 1, 2, 2, 1, 2 ], [ -8, 1, 1, 1, 1, 1, 1, 1 ] ]

gap> Size (cong);
4
gap> endo := CreamEndomorphisms(algebra);
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 3, 4, 1, 7, 3, 4, 7 ], [ 1, 4, 1, 1, 4, 4, 1, 4 ],
[ 1, 5, 7, 4, 2, 8, 3, 6 ], [ 1, 6, 3, 4, 8, 2, 7, 5 ],
[ 1, 7, 4, 1, 3, 7, 4, 3 ], [ 1, 8, 7, 4, 6, 5, 3, 2 ] ]

gap> Size (endo);
8
gap> CreamIsAlgebraMonolithic(algebra);
true
gap>

The full outputs are also being provided as an annex and a the summary table from these
runs is provided next.

74



4.3 Small Groups

Table 4.3: Summary for Small Group Runs

Size Number of Number of

Groups Monolithic

2-7 8 6

8-15 19 9

16 14 6

17-23 17 7

24 15 2

25-31 19 7

32 50 16

33-47 54 10

48 52 4

49-63 69 16

64 52 22

65-71 17 3

72 50 3

73-79 18 5

80 52 1

81-95 70 13

96 231 13
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4.4 Groups, Semigroups and Monoids

For a selection of larger groups, semigroups and monoids, all its congruences and en-
domorphismswere calculated. It was also calculated whether these algebras weremonolithic.

For these test runs the algebras were considered as universal algebras of type (21) even
in cases where these algebras can have definitions with different types.

An example of this process is shown below:

gap> ##################################################
gap> # Brauer Monoid degree 3
gap> ##################################################
gap> algebra := [MultiplicationTable(BrauerMonoid(3))];
[ [ [ 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 3 ],

[ 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 1, 3, 2 ],
[ 1, 2, 3, 1, 2, 3, 1, 2, 3, 3, 2, 3, 2, 1, 1 ],
[ 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 4, 5, 6, 5, 6 ],
[ 4, 5, 6, 4, 5, 6, 4, 5, 6, 5, 6, 4, 4, 6, 5 ],
[ 4, 5, 6, 4, 5, 6, 4, 5, 6, 6, 5, 6, 5, 4, 4 ],
[ 7, 8, 9, 7, 8, 9, 7, 8, 9, 7, 7, 8, 9, 8, 9 ],
[ 7, 8, 9, 7, 8, 9, 7, 8, 9, 8, 9, 7, 7, 9, 8 ],
[ 7, 8, 9, 7, 8, 9, 7, 8, 9, 9, 8, 9, 8, 7, 7 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ],
[ 4, 5, 6, 1, 2, 3, 7, 8, 9, 11, 10, 14, 15, 12, 13 ],
[ 1, 2, 3, 7, 8, 9, 4, 5, 6, 12, 13, 10, 11, 15, 14 ],
[ 7, 8, 9, 1, 2, 3, 4, 5, 6, 13, 12, 15, 14, 10, 11 ],
[ 4, 5, 6, 7, 8, 9, 1, 2, 3, 14, 15, 11, 10, 13, 12 ],
[ 7, 8, 9, 4, 5, 6, 1, 2, 3, 15, 14, 13, 12, 11, 10 ] ] ]

gap> CreamSizeAlgebra(algebra);
15
gap> cong := CreamAllCongruences(algebra);
[ [ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ],
[ -3, 1, 1, -3, 4, 4, -3, 7, 7, -1, -1, -1, -1, -1, -1 ],
[ -3, -3, -3, 1, 2, 3, 1, 2, 3, -1, -1, -1, -1, -1, -1 ],
[ -9, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1 ],
[ -9, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, 11, 10, 10, 11 ],
[ -9, 1, 1, 1, 1, 1, 1, 1, 1, -6, 10, 10, 10, 10, 10 ],
[ -15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]

gap> Size (cong);
7
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gap> endo := CreamEndomorphisms(algebra);
[ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ],
[ 2, 1, 3, 8, 7, 9, 5, 4, 6, 10, 15, 12, 14, 13, 11 ],
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ],
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 10, 10, 10, 10 ],
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ],
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 10, 10, 10, 10, 10 ],
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 12, 12, 10, 10, 12 ],
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ],
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 10, 10, 10, 10, 10, 10 ],
[ 4, 6, 5, 1, 3, 2, 7, 9, 8, 10, 11, 15, 14, 13, 12 ],
[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ],
[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10 ],
[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 15, 15, 10, 10, 15 ],
[ 6, 4, 5, 9, 7, 8, 3, 1, 2, 10, 12, 15, 13, 14, 11 ],
[ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ],
[ 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10 ],
[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ],
[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10 ],
[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 10, 11, 11, 10, 10, 11 ],
[ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ],
[ 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10 ],
[ 8, 9, 7, 2, 3, 1, 5, 6, 4, 10, 15, 11, 13, 14, 12 ],
[ 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 12, 11, 14, 13, 15 ],
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ],
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10 ],
[ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ] ]

gap> Size (endo);
28
gap> CreamIsAlgebraMonolithic(algebra);
false
gap>
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The full outputs are also being provided as an annex and a summary table from these
runs is provided next.

Table 4.4: # of Congruences and Endomorphisms for a selection of larger algebras

Algebra Size Number of Number of Is

Congruences Endomorphisms Monolithic

GossipMonoid(3) 11 84 66 No

PlanarPartitionMonoid(2) 14 9 72 No

JonesMonoid(4) 14 9 72 No

BrauerMonoid(3) 15 7 28 No

PartitionMonoid(2) 15 13 89 No

FullPBRMonoid(1) 16 167 1426 No

SymmetricGroup(4) 24 4 58 Yes

FullTransformationSemigroup(3) 27 7 40 Yes

FullTransformationMonoid(3) 27 7 40 Yes

SymmetricInverseMonoid(3) 34 7 54 Yes

JonesMonoid(5) 42 6 113 No

MotzkinMonoid(3) 51 10 98 No

PartialTransformationMonoid(3) 64 7 138 Yes

PartialBrauerMonoid(3) 76 16 165 No

BrauerMonoid(4) 105 19 274 No

SymmetricGroup(5) 120 3 146 Yes

PlanarPartitionMonoid(3) 132 10 393 No

JonesMonoid(6) 132 10 393 No

PartitionMonoid(3) 203 16 687 No

SymmetricInverseMonoid(4) 209 11 282 Yes

FullTransformationSemigroup(4) 256 11 345 Yes

FullTransformationMonoid(4) 256 11 345 Yes
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4.5 Algebra Classes

The CREAM package has a function that calls MACE4 to generate lists of algebras
of specific type and size based on their axiomatic definition. The generated algebras can
then be used with the CREAM functions that calculate congruences, automorphisms and
endomorphisms.

CREAM was used with the following algebra classes:

• Almost distributive lattices

• BCI-algebras

• Bilattice

• Boolean algebra

• Boolean ring

• Commutative lattice-ordered monoids

• Commutative regular rings

• Complemented distributive lattices

• Complemented modular lattices

• Distributive lattice ordered semigroups

• Ockham algebras

• Ortholattices

• Orthomodular lattices

• Idempotent semirings

• Extra loops

• Digroup

• Commutative dimonoids

• Loops

• Fields

• MV-Algebras
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An example of this process is shown below:

gap> ##################################################
gap> # Almost distributive lattice
gap> ##################################################
gap> axioms;
"(x v y) v z = x v (y v z). x v y = y v x. (x ^ y) ^ z = x ^ (y ^ z). x ^ y = \
y ^ x. (x v y) ^ x = x. (x ^ y) v x = x. x ^ (y v z) = x ^ (y v (x ^ (z v (x ^\
y)))). x v (y ^ z) = x v (y ^ (x v (z ^ (x v y)))). w ^ (u v (x ^ (y v (x ^ z\
)))) < u v ((x ^ (y v (x ^ z))) ^ ((w v (x ^ y)) v (x ^ z))). w v (u ^ (x v (y\
^ (x v z)))) > u ^ ((x v (y ^ (x v z))) v ((w ^ (x v y)) ^ (x v z)))."
gap> algebras := CreamAlgebrasFromAxioms(axioms,4);
[ [ [ [ 1, 1, 1, 1 ], [ 1, 2, 1, 2 ], [ 1, 1, 3, 3 ], [ 1, 2, 3, 4 ] ],

[ [ 1, 2, 3, 4 ], [ 2, 2, 4, 4 ], [ 3, 4, 3, 4 ], [ 4, 4, 4, 4 ] ] ],
[ [ [ 1, 1, 1, 1 ], [ 1, 2, 2, 2 ], [ 1, 2, 3, 3 ], [ 1, 2, 3, 4 ] ],

[ [ 1, 2, 3, 4 ], [ 2, 2, 3, 4 ], [ 3, 3, 3, 4 ], [ 4, 4, 4, 4 ] ] ] ]
gap> Size (algebras);
2
gap> CreamSizeAlgebra(algebras[1]);
4
gap> cong := CreamAllCongruences(algebras[1]);
[ [ -1, -1, -1, -1 ], [ -2, 1, -2, 3 ], [ -2, -2, 1, 2 ], [ -4, 1, 1, 1 ] ]
gap> Size (cong);
4
gap> endo := CreamEndomorphisms(algebras[1]);
[ [ 1, 1, 1, 1 ], [ 1, 1, 2, 2 ], [ 1, 1, 3, 3 ], [ 1, 1, 4, 4 ],
[ 1, 2, 1, 2 ], [ 1, 2, 3, 4 ], [ 1, 3, 1, 3 ], [ 1, 3, 2, 4 ],
[ 1, 4, 1, 4 ], [ 2, 2, 2, 2 ], [ 2, 2, 4, 4 ], [ 2, 4, 2, 4 ],
[ 3, 3, 3, 3 ], [ 3, 3, 4, 4 ], [ 3, 4, 3, 4 ], [ 4, 4, 4, 4 ] ]

gap> Size (endo);
16
gap> CreamIsAlgebraMonolithic(algebras[1]);
false
gap>

The type of the algebra will depend on the number and type of operations present in
the algebra axioms that will generate models with that specific number of binary and unary
operations.
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The full outputs are also being provided as an annex and a summary table from these
runs is provided next.

Table 4.5: Summary for Algebra Class Runs

Algebra Size Algebra Number of Number of

Class Type Algebras Monolithic

Almost distributive lattices 4 (22) 2 0

BCI-algebras 5 (21) 118 80

Bilattice 6 (24, 11) 32 32

Boolean algebra 8 (22, 11) 1 0

Boolean algebra 16 (22, 11) 1 0

Boolean ring 16 (22) 1 0

Commutative lattice-ordered monoids 5 (23) 199 97

Commutative regular rings 6 (22, 12) 72 66

Complemented distributive lattices 16 (22, 11) 1 0

Complemented distributive lattices 32 (22, 11) 1 0

Complemented modular lattices 8 (22, 11) 41 40

Distributive lattice ordered semigroups 4 (23) 479 170

Ockham algebras 6 (22, 11) 197 20

Ortholattices 7 (22, 11) 46 12

Orthomodular lattices 14 (22, 11) 33 31

Idempotent semiring 5 (22) 149 42

Extra loop 10 (23) 2 1

Digroup 8 (22, 11) 10 3

Commutative dimonoid 4 (22) 101 37

Loops 6 (23) 109 108

Fields 16 (21, 12) 6 6

MV-Algebras 12 (21, 11) 4 1
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4.6 Future Improvements

Despite all the achievements that were possible in the scope of this work there is room
for improvement that will be considered for future work.

Although the achieved performance is already very good it seems to be possible to further
improve the performance of CREAM. The congruence and automorphism algorithms are
fully run on C but other algorithms are still mostly in GAP. An obvious and sure way to
achieve further performance improvements would be to rewrite the most time consuming
parts of those algorithms in C.

In what concerns the algorithms, two other areas with potential for improvement
performance-wise is to do optimizations in the generation of all congruences from principal
congruences and the use of pre-calculated graphs in the algorithm when calculating principal
congruences.

One additional area of performance improvement related with the architecture of the
package would be to evaluate the possibility of using parallelization to achieve further
improvements.

One improvement that was identified during later stages of this work would be to add
support to nullary operations (constants) in algebras. This will not make a difference in
congruence calculation but will present different results in the calculation of automorphisms
and endomorphisms. Without considering nullary operations some automorphisms and
endomorphisms will be returned that aren’t automorphisms and endomorphisms of the
algebra with the nullary operations.

Other avenue for improvement would be to have tighter integration with MACE4 by
loading it as a library instead of being run as separate process.

There are a few functions providing intermediate or complementary results and data that
are not currently exposed by CREAM and that would be good additions to the CREAM
interface. Examples of such functions would be:

• CreamCongruenceEndomorphisms - Returning the endomorphisms derived from a
specific congruence of the algebra;

• CreamCongruenceSubUniverses - Returning the subuniverses of the subalgebras de-
rived from a specific congruence of the algebra;

• CreamEndomorphismSubUniverses - Returning the subuniverses of the subalgebras
derived from a specific endomorphism of the algebra;
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• CreamEquivalenceRelationPartition - Returns the GAP equivalence relation de-
fined by the partition;

• CreamPartitionEquivalenceRelation - Returns the partition defined by the GAP
equivalence relation;

• CreamAutomorphismGroup - Returns the algebra’s automorphisms as a Group;

• CreamEndomorphismSemigroup - Returns the algebra’s endomorphisms as a Semi-
group;

• CreamJoinPartition - Returns the join of 2 partitions,

• CreamMeetPartition - Returns the meet of 2 partitions;

• CreamViewHasseDiagram - Allows the visualisation the Hasse diagram of the con-
gruence lattice.
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Chapter 5

Conclusion

The CREAM package makes available efficient algorithms for the calculation of con-
gruences, automorphisms, endomorphisms, monomorphisms, isomorphisms, subalgebras,
divisors, monoliths, direct decompositions, etc., being the first tool doing that. These
algorithms work with algebras of type (2m, 1n) covering a very wide set of algebras while
being consistently fast.

Supporting algebras of type (2m, 1n) covers most extensively studied algebras in
conventional and modern algebra since these algebras normally don’t have fundamental
operations of arity greater than two.

There are situations where other algorithms and implementations were faster but these
cases were only more efficient for very specific types of algebras. Only CREAM was able
to have a consistent performance across different types of algebras.

In particular, the Freese congruence algorithm relies on the performance of the manipu-
lation of the partition data structure that allows a very fast calculation of each of the principal
congruences. This is done without limiting the scope of the algebra supported.

While GAP is adequate for fast prototyping and implementation of algorithms the
resulting code is not very fast because it is an interpreted language. Rewriting the code in C
allowed for staggering improvements that reached up to a 670-fold improvement from the
GAP code to the C code.

Also the integration withMACE4 allowed to combine the efficiency of algorithms such
as [15], with wide set of possibilities provided by a first order axiom-based model searcher
giving a very wide flexibility to CREAM.

Regarding automorphisms and endomorphisms the comparison to other li-
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braries/application is very difficult since the support is mostly limited to groups and
other closely related algebraic structures. For these algebras the performance of the GAP
packages Loops and Sonata are comparable and sometimes better than CREAM. These
libraries rely sometimes on the use of theorems specific to these algebras. But onlyCREAM
supports most of the algebras studied in conventional and modern algebra.

The CREAM package is on average 20 times faster in calculating congruences of the
very limited set semigroups that are supported by the function CongruencesOfSemigroups
from the package Semigroups which to our knowledge is most general function in GAP
for the calculation of congruences. The only application that has a similar range in terms
of supported algebras is UACalc command line interface but does that in jython not
benefiting of the existing GAP ecosystem. When compared with UACalc the CREAM
package is consistently more than 3 times faster. The CREAM package has a better overall
performance to existing tools (for small models).

Given the importance of congruences, automorphisms and endomorphisms for the study
of algebraic structures there is the expectation the package CREAM with its performance
and versatility can be a useful tool for theGAP community and a wide groupmathematicians.

CREAM already allowed obtaining hundreds of new results in mathematics and there is
no comparable tool in GAP or other platforms.
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Appendix A

The CREAM Package Manual

CREAM stands for “Algebra CongRuences, Endomorphisms and AutoMorphisms”.
CREAM is a GAP Package developed in GAP and C. GAP stands for “Groups, Algorithms,
Programming” and is a system for computational discrete algebra, with particular emphasis
on Computational Group Theory.

A.1 Installation

A.1.1 Package Dependencies

The CREAM package is written in GAP and C. It runs in GAP version 4.10 or above,
with C run-time support.

If you do not see the subfolder pkg/cream in the main directory of GAP then download
the CREAM package from the distribution website https://gap-packages.github.io/cream/

and unpack the downloaded file into the pkg subfolder.

A.1.2 Compiling the kernel module

C is used extensively in the CREAM package for best performance. Therefore the GAP
kernel module written in C must be compiled. It is not possible to use the CREAM package
without the kernel module.

To compile the kernel component inside the pkg/cream-2.0.0 directory, type:

./configure
make
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A.1.3 Compiling MACE4

Calls to MACE4 are made by CREAM. MACE4 sources are provided with the CREAM
package on the pkg/cream-2.0.0/src/prover9/ directory. MACE4 needs to be com-
piled on installation of the package. If the compiled binary cannot be found in the
pkg/cream/src/prover9/build directory, the system path will be searched for MACE4. This
way if the supplied MACE4 cannot be compiled, a separate installation of MACE4 can be
used instead as long it is accessible from the system path.

To compileMACE4 inside the pkg/cream/src/prover9/build/ directory, type:

cmake -DCMAKE_BUILD_TYPE=Release ..
make mace4

A.1.4 Building the documentation

The documentation of CREAM can be built with the following command, executed inside
the pkg/cream directory:

make doc

A.1.5 Testing your installation

Test files conforming to GAP standards are provided for CREAM and are located in the
folder named tst. The following command runs all tests for the CREAM package:

ReadPackage("Cream","tst/testall.g");
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A.2 Package Functions

A.2.1 Algebras

CreamSizeAlgebra

▷ CreamSizeAlgebra(A) (function)

This function returns the order of the algebra A, provided the algebra is valid. An algebra
will be valid if all vectors and matrices defining its operations have the same size. Cream-
SizeAlgebra will return fail if the algebra is not valid.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamSizeAlgebra(algebra);
6
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamSizeAlgebra(notAlgebra);
fail
gap>

91



A. THE CREAM PACKAGE MANUAL

CreamIsAlgebra

▷ CreamIsAlgebra(A) (function)

This function returns true the if the algebra A is valid and false otherwise. An algebra will
be valid if all the vectors and matrices defining its operations have the same size.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamIsAlgebra(algebra);
true
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamIsAlgebra(notAlgebra);
false
gap>

A.2.2 Congruences

CreamNumberOfBlocks

▷ CreamNumberOfBlocks(P) (function)

This function returns the number of blocks in a partition P. It returns fail if P does not
correspond to a partition. Similarly, all the following functions will return fail for invalid
inputs.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> partition:= CreamPrincipalCongruence(algebra,[1,4]);
[ -3, -3, 2, 1, 1, 2 ]
gap> CreamNumberOfBlocks(partition);
2
gap> CreamNumberOfBlocks([ -3, -3, 2, 1, 1, 7 ]);
fail
gap>
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CreamContainedPartition

▷ CreamContainedPartition(P1,P2) (function)

Returns true if partition P1 is contained in P2, i.e. if every block of P1 is contained in a
block in P2.

gap> CreamContainedPartition ([ -3, -3, 2, 1, 1, 2 ], [ -6, 1, 1, 1, 1, 1 ]);
true
gap> CreamContainedPartition ([ -6, 1, 1, 1, 1, 1 ], [ -3, -3, 2, 1, 1, 2 ]);
false
gap> CreamContainedPartition ([ -3, -3, 2, 1, 1, 7 ], [ -6, 1, 1, 1, 1, 1 ]);
fail
gap>

CreamPrincipalCongruence

▷ CreamPrincipalCongruence(A,p) (function)

This function returns the principal congruence of an algebra A generated by a pair p of
elements based on the Ralph Freese’s algorithm described in ”Computing congruences effi-
ciently” [15]. The congruence is returned in the partition format described in 3.1.2.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamPrincipalCongruence(algebra,[1,4]);
[ -3, -3, 2, 1, 1, 2 ]
gap> CreamPrincipalCongruence(algebra, [1,7]);
fail
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamPrincipalCongruence(notAlgebra,[1,4]);
fail
gap>
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CreamAllPrincipalCongruences

▷ CreamAllPrincipalCongruences(A) (function)

This function returns all principal congruences of an algebra A. This is done by going
through all possible pairs in an algebra and calculating the principal congruence for each one
of these pairs.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAllPrincipalCongruences(algebra);
[ [ -3, -3, 2, 1, 1, 2 ], [ -6, 1, 1, 1, 1, 1 ] ]
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllPrincipalCongruences(notAlgebra);
fail
gap>

94



A.2 Package Functions

CreamIsAlgebraMonolithic

▷ CreamIsAlgebraMonolithic(A) (function)

This function returns true if the algebra A is monolithic, by determining if there is a prin-
cipal congruence that is contained in every other principal congruence.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamIsAlgebraMonolithic(algebra);
true
gap> algebra := [ [ [ 1, 1, 3 ], [ 1, 1, 3 ], [ 3, 3, 1 ] ] ];
[ [ [ 1, 1, 3 ], [ 1, 1, 3 ], [ 3, 3, 1 ] ] ]
gap> CreamIsAlgebraMonolithic (algebra);
false
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamIsAlgebraMonolithic (notAlgebra);
fail
gap>
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CreamAllCongruences

▷ CreamAllCongruences(A) (function)

This function returns all congruences of an algebra A. All principal congruences are
calculated and the trivial congruence is added to the list. The principal congruences are then
combined to generate all possible congruences.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAllCongruences(algebra);
[ [ -1, -1, -1, -1, -1, -1 ], [ -3, -3, 2, 1, 1, 2 ], [ -6, 1, 1, 1, 1, 1 ] ]
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllCongruences(notAlgebra);
fail
gap>
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A.2.3 Isomorphisms, Automorphisms and Endomorphisms

CreamAreIsomorphicAlgebras

▷ CreamAreIsomorphicAlgebras(A,B) (function)

This function returns true if the algebras A and B are isomorphic.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAreIsomorphicAlgebras(algebra1,algebra1);
true
gap> algebra2:= [MultiplicationTable(CyclicGroup (6))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 3, 4, 5, 6, 1 ], [ 3, 4, 5, 6, 1, 2 ],

[ 4, 5, 6, 1, 2, 3 ], [ 5, 6, 1, 2, 3, 4 ], [ 6, 1, 2, 3, 4, 5 ] ] ]
gap> CreamAreIsomorphicAlgebras(algebra1,algebra2);
false
gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAreIsomorphicAlgebras(notAlgebra,notAlgebra);
fail
gap>
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CreamAllSubUniverses

▷ CreamAllSubUniverses(A) (function)

This function returns the subuniverses of the subalgebras of A.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAllSubUniverses(algebra);
[ [ 1 ], [ 1, 2 ], [ 1, 2, 3, 4, 5, 6 ], [ 1, 3 ], [ 1, 4, 5 ], [ 1, 6 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> notAlgebra := [ algebra[1], c3[1] ];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ],
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]

gap> CreamAllSubUniverses(notAlgebra);
fail
gap>

CreamSubUniverse2Algebra

▷ CreamSubUniverse2Algebra(A,S) (function)

Returns the algebra corresponding a subalgebra represented by its subuniverse

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> salgebras := CreamSubUniverses(algebra);
[ [ 1 ], [ 1, 2 ], [ 1, 2, 3, 4, 5, 6 ], [ 1, 3 ], [ 1, 4, 5 ], [ 1, 6 ] ]
gap> CreamSubUniverse2Algebra(algebra, salgebras[2]);
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamSubUniverse2Algebra(algebra, [ 1, 7 ]);
fail
gap>
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CreamAlgebrasFromAxioms

▷ CreamAlgebrasFromAxioms(Ax,d) (function)

This function returns all isomorphic algebras of dimension d that respect the axioms Ax
using MACE4.

gap> axioms;
"x * x = x. (x * y) * x = x * y.y * (x * y) = x * y. x * ((x * y) * z) =
(x * y) * z."
gap> algebras := CreamAlgebrasFromAxioms (axioms,3);
[ [ [ [ 1, 1, 1 ], [ 1, 2, 1 ], [ 1, 1, 3 ] ] ],
[ [ [ 1, 1, 1 ], [ 1, 2, 2 ], [ 1, 2, 3 ] ] ] ]

gap>

CreamEndomorphisms

▷ CreamEndomorphisms(A) (function)

This function returns all endomorphisms of an algebra A. All congruences of an algebra A
are calculated and for each congruence ϕ MACE4 is used to find all subalgebras of A that are
isomorphic to the quotient A/ϕ. The automorphisms are then calculated using the invariants
algoritm implemented in C.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamEndomorphisms(algebra);
[ [ 1, 1, 1, 1, 1, 1 ], [ 1, 2, 2, 1, 1, 2 ], [ 1 .. 6 ],
[ 1, 2, 6, 5, 4, 3 ], [ 1, 3, 2, 5, 4, 6 ], [ 1, 3, 3, 1, 1, 3 ],
[ 1, 3, 6, 4, 5, 2 ], [ 1, 6, 2, 4, 5, 3 ], [ 1, 6, 3, 5, 4, 2 ],
[ 1, 6, 6, 1, 1, 6 ] ]

gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamEndomorphisms(notAlgebra);
fail
gap>
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CreamAutomorphisms

▷ CreamAutomorphisms(A) (function)

This function returns all automorphisms of an algebra A. The algorithm used in this func-
tion calculates characteristics of the algebra’s elements that are invariant under automor-
phisms. This narrows the set of potential images to which each element can map, giving an
efficient way to determine the automorphisms.

gap> algebra:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAutomorphisms(algebra);
[ [ 1 .. 6 ], [ 1, 2, 6, 5, 4, 3 ], [ 1, 3, 2, 5, 4, 6 ], [ 1, 3, 6, 4, 5, 2 ],
[ 1, 6, 2, 4, 5, 3 ], [ 1, 6, 3, 5, 4, 2 ] ]

gap> s2 := MultiplicationTable(SymmetricGroup (2));
[ [ 1, 2 ], [ 2, 1 ] ]
gap> c3 := MultiplicationTable(CyclicGroup (3));
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> notAlgebra := [ s2, c3 ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAutomorphisms(notAlgebra);
fail
gap>

100



A.2 Package Functions

CreamExistsEpimorphism

▷ CreamExistsEpimorphism(A,B) (function)

This function returns whether there is an epimorhisms between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamExistsEpimorphism(algebra1,algebra2);
true
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsEpimorphism(algebra1,c3);
false
gap> notAlgebra := [ algebra2[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsEpimorphism(notAlgebra, notAlgebra);
fail
gap>

CreamOneEpimorphism

▷ CreamOneEpimorphism(A,B) (function)

This function returns one epimorhism between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamOneEpimorphism(algebra1,algebra2);
[ 1, 2, 2, 1, 1, 2 ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneEpimorphism(algebra1,c3);
fail
gap> notAlgebra := [ algebra2[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneEpimorphism(notAlgebra, notAlgebra);
fail
gap>
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CreamAllEpimorphisms

▷ CreamAllEpimorphisms(A,B) (function)

This function returns the epimorhisms between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamAllEpimorphisms(algebra1,algebra2);
[ [ 1, 2, 2, 1, 1, 2 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllEpimorphisms(algebra1,c3);
[ ]
gap> notAlgebra := [ algebra2[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllEpimorphisms(notAlgebra, notAlgebra);
fail
gap>

CreamExistsMonomorphism

▷ CreamExistsMonomorphism(A,B) (function)

This function returns whether there is a monomorphisms between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamExistsMonomorphism(algebra1,algebra2);
true
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsMonomorphism(algebra1,c3);
false
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsMonomorphism(notAlgebra, notAlgebra);
fail
gap>
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CreamOneMonomorphism

▷ CreamOneMonomorphism(A,B) (function)

This function returns a monomorphisms between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamOneMonomorphism(algebra1,algebra2);
[ 1, 2 ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneMonomorphism(algebra1,c3);
fail
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneMonomorphism(notAlgebra, notAlgebra);
fail
gap>

CreamAllMonomorphisms

▷ CreamAllMonomorphisms(A,B) (function)

This function returns the monomorphisms between two algebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> CreamAllMonomorphisms(algebra1,algebra2);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 6 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllMonomorphisms(algebra1,c3);
[ ]
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllMonomorphisms(notAlgebra, notAlgebra);
fail
gap>
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CreamExistsDivisor

▷ CreamExistsDivisor(A,B) (function)

This function returns whether the algebra B is a divisor of the algebra A.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamExistsDivisor(algebra1,algebra2);
true
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsDivisor(c3,algebra2);
false
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ],
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]

gap> CreamExistsDivisor(notAlgebra, notAlgebra);
fail
gap>
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CreamOneDivisorUniverse

▷ CreamOneDivisorUniverse(A,B) (function)

This function returns one divisor universe and respective congruence between two alge-
bras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamOneDivisorUniverse(algebra1,algebra2);
[ [ 1, 2 ], [ -1, -1 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneDivisorUniverse(c3,algebra2);
fail
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneDivisorUniverse(notAlgebra, notAlgebra);
fail
gap>
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CreamAllDivisorUniverses

▷ CreamAllDivisorUniverses(A,B) (function)

This function returns the divisors universes and repective congruences between two al-
gebras A and B.

gap> algebra1:= [MultiplicationTable(SymmetricGroup (3))];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ] ]
gap> algebra2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> CreamAllDivisorUniverses(algebra1,algebra2);
[ [ [ 1, 2 ], [ -1, -1 ] ], [ [ 1, 2, 3, 4, 5, 6 ], [ -3, -3, 2, 1, 1, 2 ] ],
[ [ 1, 3 ], [ -1, -1 ] ], [ [ 1, 6 ], [ -1, -1 ] ] ]

gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]
gap> CreamAllDivisorUniverses(c3,algebra2);
[ ]
gap> notAlgebra := [ algebra1[1], c3[1] ];
[ [ [ 1, 2 ], [ 2, 1 ] ], [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamAllDivisorUniverses(notAlgebra, notAlgebra);
fail
gap>
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CreamExistsDirectlyReducible

▷ CreamExistsDirectlyReducible(A) (function)

For algebra A there are commuting congruences R, T where A/R × A/T is isomorphic
to A.

gap> s2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra:=[MultiplicationTable(DirectProduct(s2,s2))];
[ [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ] ]
gap> CreamExistsDirectlyReducible(algebra);
true
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamExistsDirectlyReducible(c3);
false
gap> notAlgebra := [ algebra[1], c3[1] ];
[ [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ],
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]

gap> CreamExistsDirectlyReducible(notAlgebra);
fail
gap>
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CreamOneDirectlyReducible

▷ CreamOneDirectlyReducible(A) (function)

For algebra A there is a commuting congruences R, T where A/R× A/T is isomorphic
to A.

gap> s2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra:=[MultiplicationTable(DirectProduct(s2,s2))];
[ [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ] ]
gap> CreamOneDirectlyReducible(algebra);
[ [ -2, 1, -2, 3 ], [ -2, -2, 2, 1 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneDirectlyReducible(c3);
fail
gap> notAlgebra := [ algebra[1], c3[1] ];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ],
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]

gap> CreamOneDirectlyReducible(notAlgebra);
fail
gap>
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CreamAllDirectlyReducible

▷ CreamAllDirectlyReducible(A) (function)

For algebra A find commuting congruences R, T where A/R× A/T is isomorphic to A.
For the sake of simplicity, symmetric pairs are only listed once and if [ R, T ] then [ T ,
R ] won’t be in the output despite being valid for direct product construction.

gap> s2:= [MultiplicationTable(SymmetricGroup (2))];
[ [ [ 1, 2 ], [ 2, 1 ] ] ]
gap> algebra:=[MultiplicationTable(DirectProduct(s2,s2))];
[ [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ] ]
gap> CreamOneDirectlyReducible(algebra);
[ [ -2, 1, -2, 3 ], [ -2, -2, 2, 1 ] ]
gap> c3 := [MultiplicationTable(CyclicGroup (3))];
[ [ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]
gap> CreamOneDirectlyReducible(c3);
fail
gap> notAlgebra := [ algebra[1], c3[1] ];
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6, 5 ], [ 3, 5, 1, 6, 2, 4 ],

[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ],
[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ] ]

gap> CreamOneDirectlyReducible(notAlgebra);
fail
gap>
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CREAM: a Package to Compute [Auto,
Endo, Iso, Mono, Epi]-morphisms,
Congruences, Divisors and More for
Algebras of Type (2m, 1n)
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B. CREAM: A PACKAGE TO COMPUTE [AUTO, ENDO, ISO, MONO,
EPI]-MORPHISMS, CONGRUENCES, DIVISORS AND MORE FOR ALGEBRAS
OF TYPE (2M , 1N)
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CREAM: A PACKAGE TO COMPUTE [AUTO, ENDO, ISO, MONO, EPI]-MORPHISMS,

CONGRUENCES, DIVISORS AND MORE FOR ALGEBRAS OF TYPE (2n, 1n)

JOÃO ARAÚJO, RUI BARRADAS PEREIRA, WOLFRAM BENTZ, CHOIWAH CHOW, JOÃO RAMIRES,

LUIS SEQUEIRA, AND CARLOS SOUSA

ABSTRACT. The CREAM GAP package computes automorphisms, congruences, endomorphisms and subal-

gebras of algebras with an arbitrary number of binary and unary operations; it also decides if between two such

algebras there exists a monomorphism, an epimorphism, an isomorphism or if one is a divisor of the other. Thus

it finds those objects for almost all algebras used in practice (groups, quasigroups in their various signatures,

semigroups possibly with many unary operations, fields, semi-rings, quandles, logic algebras, etc).

As a one-size-fits-all package, it only relies on universal algebra theorems, without taking advantage of

specific theorems about, eg, groups or semigroups to reduce the search space. Canon and Holt produced very

fast code to compute automorphisms of groups that outperform CREAM on orders larger than 128. Similarly,

Mitchell et al. take advantage of deep theorems to compute automorphisms and congruences of completely

0-simple semigroups in a very efficient manner. However these domains (groups of order above 128 and

completely 0-simple semigroups) are among the very few examples of GAP code faster than our general purpose

package CREAM. For the overwhelming majority of other classes of algebras, either ours is the first code

computing the above mentioned objects, or the existing algorithms are outperformed by CREAM, in some

cases by several orders of magnitude.

To get this performance, CREAM uses a mixture of universal algebra algorithms together with GAP coupled

with artificial intelligence theorem proving tools (AITP) and very delicate C implementations. As an example

of the latter, we re-implement Freese’s very clever algorithm for computing congruences in universal algebras,

in a way that outperforms all other known implementations.

1. INTRODUCTION

Investigation of automorphism groups of mathematical structures is one of the classical algebraic prob-

lems. A cornerstone was the work of Evariste Galois, but its impact goes far beyond. In the words of P. J.

Cameron [22]:

In the famous Erlanger Programme, Klein proposed that geometry is the study of symmetry;

more precisely, the geometric properties of an object are those which are invariant under

all automorphisms of the objects. (. . .) According to Artin, “the investigation of symmetries

of a given mathematical structure has always yielded the most powerful results.”

These ideas, expressed by Klein in 1872 [36] and by Artin in 1957 [18], give some insight on why the com-

putation of automorphisms of various mathematical structures has been such an attractive topic for so many
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decades. It should be observed here that this effort is closely linked to an omnipresent problem in mathemat-

ics – stated explicitly by Ulam [60] – of describing the mathematical objects whose endomorphisms encode

all the relevant information about them:

End(A) ∼= End(B)⇒ A ∼= B.

The connection between endomorphisms and congruences is well known, but the importance of congru-

ences goes far beyond a tool to get endomorphisms; in fact their importance in modern algebra can hardly

be overestimated.

Congruences have close ties to the structure of algebras - for example, the subdirectly irreducible algebras

are precisely the ones that possess a unique minimal nontrivial congruence; direct irreducibility is also

characterized by properties of congruences. In Universal Algebra, a variety is a class of algebras of the same

type, that satisfy a certain set of identities, or equivalently, by a celebrated theorem of Garrett Birkhoff (see

[21, Theorem II.11.9]), a class closed under taking subalgebras, homomorphic images and direct products.

Each variety is also generated by its subdirectly irreducible algebras. Properties of congruence lattices of

algebras over a variety are closely related to the identities satisfied in that variety. This gave rise to what

is usually referred to the theory of Maltsev conditions - see, for example, [31]. The commutator of normal

subgroups was generalized for algebras, first those in a congruence-permutable variety [55], then for any

algebra in a congruence modular variety [33]; see [29]. Thus notions like Abelianness or nilpotency can

be applied meaningfully in a much wider context, and many fruitful consequences have been derived, for

example in the context of natural dualities [24]. Tame Congruence Theory [34] emerged as a powerful tool

to study the structure of finite algebras, and continues to provide a big leverage in the study of locally finite

varieties. These examples point to the critical importance of the study of congruences in algebra.

As observed above, congruences are closely related to endomorphisms and the latter form a monoid

(semigroup with identity) that very often encodes very relevant information about the original object and

can be investigated with the increasingly powerful techniques developed by experts in semigroup theory

(especially since they started to massively apply the classification of finite simple groups [1, 3–8, 10–12, 19,

49, 51, 54, 57]).

Everything said above should make the case in favour of a general centralized and very effective GAP

tool that computes congruences, automorphisms and endomorphisms of general algebras of type (2m, 1n).
We chose these since the overwhelming majority of algebras used in practice have this type: it is a very rare

occurrence that an algebraic structure actually uses ternary or higher arity operations (see [21]).

The problem is that computing [endo]automorphisms/congruences of general algebras is a difficult task

and hence the majority of existing tools target specific classes (groups, semigroups, quasigroups, etc.) in

order to take advantage of the domain’s theorems. Probably the best example is the GAP code to find auto-

morphisms of groups, devised by J. J. Cannon and D. Holt [23], that takes advantage of many deep theorems

and builds upon many past computational optimizations to quickly get auxiliary objects. In contrast, since

we want our algorithms to apply for general algebras of type (2m, 1n), we cannot rely on theorems that only

hold in very specific cases. The challenge of this project is thus to provide an effective tool to compute the

objects for finite algebras of type (2m, 1n) that works for all algebras of this type and does not fall far behind

the more dedicated tools that take advantage of very specific domain theorems.

The final result is that CREAM compares favourably even with the specialized Cannon and Holt tool

referred to above: for groups up to order 128, our general purpose tool finds the automorphisms of a group

faster than their very optimized code. For most other classes of algebras, our tool outperforms specialized

code, in some cases by large margins. This was achieved by a combination of results and ideas from different

parts of computational algebra, artificial intelligence theorem proving, and optimized C implementations.

Regarding congruences, we take advantage of a new implementation of Freese’s algorithm [28], an algorithm

that stands out by its quality and generality; for automorphisms, after many different tests and approaches,

the most effective way turned out to be a generalization of the ideas developed in [48]. Once possessing a

very good tool to compute automorphisms, finding [mono,epi,iso]-morphisms is straightforward.
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Finally, our tool also handles divisors. Given two algebras, A and B, we say that B divides A if B
is a homomorphic image of a subalgebra of A. In different words, B divides A if there is a subalgebra

C of A and a congruence ρ of C such that C/ρ is isomorphic to B. Like congruences, divisors are very

important tools. For example, the celebrated Krohn–Rhodes theorem states that every finite semigroup S
divides a wreath product of finite simple groups, each dividing S, together with copies of the 3-element

monoid {1, a, b}, where ba = aa = a, ab = bb = b (for details see [53]). The key difficulty when finding

divisors is to find the subalgebras of a given algebra; CREAM has an algorithm to compute them.

There are numerous papers concerning the automorphism groups of particular classes of algebras, for

example, Schreier [52] and Mal’cev [42] described all automorphisms of the semigroup of all mappings

from a set to itself. Similar results have been obtained for various other structures such as orders, equivalence

relations, graphs, and hypergraphs; see the survey papers [46] and [47]. More examples are provided, among

others, by Gluskı̌n [32], Araújo and Konieczny [14], [15], and [16], Fitzpatrick and Symons [26], Levi [38]

and [39], Liber [40], Magill [41], Schein [50], Sullivan [58], and Šutov [59].

Fast algorithms exist to find the congruences and automorphisms of groups and semigroups. For example,

with GAP [30], the package SEMIGROUPS includes the function CongruencesOfSemigroup that returns the

congruences of a given semigroup. This function only works for a limited set of semigroups, belonging to

the classes Simple, Brandt, Group, Zero Simple or Rectangular Band, and only for Rees Matrix semigroups

and Rees Zero Matrix semigroups is it highly efficient. On a different platform, UACalc [27] supports a

wider range of algebras. UACalc also implements the Freeze algorithm that is the basis for the calculation

of congruences described here.

Regarding automorphisms in GAP, many special properties of groups are used to implement the function

AutomorphismGroup to efficiently find the automorphism group of a given group. However, this special-

ized method, while extremely efficient, works only on groups and not on any other more general algebraic

structures, such as quasigroups, semigroups and magmas. Likewise, the Loops package [48] in GAP pro-

vides another version of the function AutomorphismGroup to compute all the automorphisms of a given

quasigroup.

To date, there are no known implementations of general functions for finding divisors, congruences and

[endo, auto, epi, mono, iso]-morphisms of magmas or algebras of type (2m, 1n) in GAP. To fill the void, the

CREAM package implements such functions in GAP with part of the code written in C for performance.

This article is composed of 6 sections: this introduction, a short description of the mathematical concepts

and background, the description of the algorithms used in the CREAM package, a comparative discussion

of the performance of the package, a list of applications of the package and finally a short conclusion.

2. MATHEMATICAL BACKGROUND

2.1. Algebra of Type (2m,1n). An Algebra in the sense of Universal Algebra is an algebraic structure

consisting of a set A together with a collection of operations on A. (If we want to be more precise, an

algebra also contains an indexed scheme that references the operations, but we are not going to enter those

technical details; for a complete definition see [21].)

An n-ary operation on A is a function that takes an n-tuple of elements from A and returns a single

element of A, that is, a function from An to A. The number n is called the arity of the operation. For the

scope of this package we are only considering operations with arity 1 or 2, i.e., unary and binary operations.

An algebra of type (2m,1n) is a universal algebra with m binary and n unary operations.

The package represents a finite Universal Algebra as a list of operations. An operation of arity 1 is

represented by a vector, while an operation of arity 2 is represented by a square matrix. The underlying set

A is implicitly specified by the vector or matrix sizes, which need to agree for a valid representation. If

this size is d, the algebra is defined on the set A = {1, . . . , d}. We can safely ignore the ambiguity this

introduces in the (uninteresting) case of an algebra without operations. Each vector or matrix describes

the corresponding operation by listing all images in the obvious way. The following is an example of a

representation for an algebra with a unary and a binary operation.
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[ [3, 1, 2], [ [1, 2, 3], [2, 3, 1], [3, 1, 2] ] ]

For those CREAM functions that involve more than one algebra, the operations of the algebras need

to be aligned by a common index scheme. In our representation, this index is indirectly provided by the

order in which the operations are listed. The involved algebras need to be compatible, that is, they have the

same number of operations of each arity, and the operations are listed in the same position in the algebra

representation.

2.2. Partition. A partition of a set A is a collection of non-empty subsets of A, such that every element of

A is included in exactly one subset [21]. Each subset in a partition is called a block or part. For example,

{{1, 3}, {2, 4}} is a 2-blocks partition of the set {1, 2, 3, 4}.
A block of a partition is efficiently represented as a tree. A partition is represented by a forest, that is, a

disjoint union of trees. The forest is physically presented in the computer memory by an array, whose size

will be the size of the set A.

In a tree, each node has a parent node, except for the top node or root. In the array representation, each

position of the array represents a node and the value of the node points to its parent node. Top nodes should

have a value indicating that the node is the root of the tree. A negative number is used to signal the root, and

the absolute value of this number is the number of elements of the block.

A shallow tree is a tree in which all non-root nodes are connected directly to the root. To obtain a unique

representation, we adopt the convention that the trees used in presenting a partition are shallow, and that the

smallest value in a block will be the root node. A partition representation that respects the above conventions

will be called a normalized (representation of a) partition.

Thus, for l,m ≥ 1, the array

[ . . . ,−l, . . . ,m, . . . ]
↑ ↑

position i position k

means that i is the root of a block (as its entry is negative) of size l; in addition the element k belongs to the

block whose root is m.

Using these conventions, the encoding of the partition [[1], [2], [3], [4], [5], [6]] induced by the iden-

tity relation is

[-1, -1, -1, -1, -1, -1]

while the partition [[1, 2, 3, 4, 5, 6]] with just one block is encoded as

[-6, 1, 1, 1, 1, 1]

Other examples are given below.

partition encoded as

[[1, 6], [2], [3, 5], [4]] [-2, -1, -2, -1, 3, 1]

[[1, 3, 5], [2, 6], [4]] [-3, -2, 1, -1, 1, 2]

[[1, 2, 5, 6], [3, 4]] [-4, 1, -2, 3, 1, 1]

This non-intuitive way of representing partitions will prove its usefulness later on.

2.3. Congruences. A congruence of an algebra is an equivalence relation on its underlying set that is

compatible with all algebraic operations [21].

Technically, a congruence relation is an equivalence relation≡ on an algebra that satisfies µ(a1, a2, ..., an) ≡
µ(a′1, a

′

2, ..., a
′

n) for every n-ary operation µ and all elements a1, ..., an, a
′

1, ..., a
′

n such that ai ≡ a
′

i for each

i = 1, ..., n.

Congruences will be represented in the same way as their corresponding partitions, as detailed in the

previous section.
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2.4. Homomorphism, Endomorphism, Isomorphism and Automorphism. If A, B are two algebras of

the same type, then a function f : A→ B is a homomorphism from A to B if µ(f(a1), f(a2), ..., f(an)) =
f(µ(a1, a2, ..., an)) for every n-ary operation µ and a1, . . . an ∈ A (more precisely, µ here stands for the

two operations of A and B that are indexed equally by the (common) index scheme).

An endomorphism is a homomorphism from an algebra to itself, a monomorphism is an injective homo-

morphism, while an isomorphism is a bijective homomorphism. An automorphism is a homomorphism that

is both an isomorphism and an endomorphism.

3. THE ALGORITHMS

3.1. Congruences algorithm. The starting point for the computation of congruences are the algorithms

described in Freese [28] to calculate the smallest congruence containing a given partition Θ of a finite algebra

A; in particular this is used to compute the smallest congruence containing a pair of elements (a, b) ∈ A×A,

called the principal congruence generated by {a, b}. From this base algorithm all congruences of the algebra

A are generated in an efficient way. Optimizations to the original algorithm were introduced taking into

account that we only allow operations of arity at most 2. In addition, we take advantage of C to get a

faster implementation than the original implementations made by Freese and his collaborators. Finally, our

implementation is integrated with GAP and hence fully compatible with its other resources.

3.1.1. Partition Functions. There are several partition functions that play an important role in the algorithm

to compute principal congruences.

The function CreamRootBlock is an operation that returns the root node for a node i. The root node of

a node is itself if the value of the node representation is negative. If the value of the node representation

points to a different node then that node is the parent node. This algorithm could be run recursively until

reaching the root node but is implemented iteratively for better performance. This operation will work both

for normalized and non-normalized partitions.

Before returning, the node parent of i is set to the found root node in order to make the tree representing

the partition as shallow as possible, thus avoiding that in future calls the algorithm needs to transverse several

nodes to reach the root node.

Algorithm 1 CreamRootBlock (i, partition)

j ← i
while partition[j] ≥ 0 do

j ← partition[j]
end while

if i 6= j then

partition[i]← j
end if

return j

The function CreamJoinBlocks is an operation that joins the blocks containing given elements x and y.

This operation will work both for normalized and non-normalized partitions. The resulting partition may

not in general be normalized even if the original partition is.

In order to keep the tree representing the partition as shallow as possible, the root node of the merged

block will be the root node of the larger original block.
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Algorithm 2 CreamJoinBlocks (x, y, partition)

r ← CreamRootBlock(x, partition)
s← CreamRootBlock(y, partition)
if r 6= s then

if partition[r] < partition[s] then

partition[r]← partition[r] + partition[s]
partition[s]← r

else

partition[s]← partition[r] + partition[s]
partition[r]← s

end if

end if

The CreamNumberOfBlocks function returns the number of blocks of a partition. Given the encoding

of partitions we simply count the number of positions of the array that have negative values.

Algorithm 3 CreamNumberOfBlocks (partition)

nblocks← 0
dimension← ArraySize(partition)
for i = 1 to dimension do

if partition[i] < 0 then

nblocks← nblocks+ 1
end if

end for

return nblocks

The CreamNormalizePartition function normalizes the partition by making it shallow and having the

smallest element of each block the root node.

Algorithm 4 CreamNormalizePartition (partition)

dimension← ArraySize(partition)
for i = 1 to dimension do

r ← CreamRootBlock(i, partition)
if r ≥ i then

partition[i]← −1
if r > i then

partition[r]← i
end if

else

partition[r]← partition[r]− 1
end if

end for

The CreamJoinPartition function computes the join of two partitions, i.e. the smallest partition contain-

ing both input partitions.
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Algorithm 5 CreamJoinPartition (partition1, partition2)

dimension← ArraySize(partition1)
for i = 1 to dimension do

CreamJoinBlocks(i,CreamRootBlock (i,partition1),partition2)

end for

The CreamComparePartitions function compares normalized partitions. Returns 0 if the partitions are

equal, -1 if partition1 > partition2, and 1 if partition1 < partition2. Partitions are ordered by the order of

the underlying list. The purpose of this function is to allow binary search in sets of partitions.

Algorithm 6 CreamComparePartitions (partition1, partition2)

dimension← Length(partition1)
for i = 1 to dimension− 1 do

if partition1[i] > partition2[i] then

return −1
end if

if partition1[i] < partition2[i] then

return 1
end if

end for

return 0

3.1.2. Computing Principal Congruences. The base algorithm in [28] computes the smallest congruence

containing Θ, a partition of a finite algebra A. The simplest case is when Θ only contains one nontrivial

block and this block has only two elements.

The algorithm only works with unary operations. Since our algebras have binary operations, we have

to convert them to a family of unary operations. In this case a binary operation f(x, y) can be converted

into 2n unary operations (where n is the size of the algebra) by assigning to each element x ∈ A the unary

operations cx and rx, which are induced by the corresponding column and row in the Cayley table of f :

cx(y) = f(y, x) and rx(y) = f(x, y).

For example, the algebra:

[[[2, 1, 1], [1, 2, 2], [1, 3, 2]]]

induces the following unary operations (after removing duplicates):

[[2, 1, 1], [1, 2, 2], [1, 3, 2], [1, 2, 3]].

The principal congruence algorithm takes as input the algebra and the generating pair of elements.

The algorithm joins the pair of elements in the same block and applies the algebra’s unary functions to

each element of the pair. In this way, it obtains one additional pair per function that will be joined in the

same block, repeating this process until the list of pairs is exhausted.
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Algorithm 7 CreamPrincipalCongruence (algebra,InitialPair)

PairList← [InitialPair]
partition← SingletonPartition()
partition← CreamJoinBlocks(partition, InitialPair[1], InitialPair[2])
NFuncs← ArraySize(algebra)
while PairList 6= empty do

Pair ← Pop(PairList)
for i = 1 to NFuncs do

f ← algebra(i)
r ← CreamRootBlock(partition, f(Pair[1]))
s← CreamRootBlock(partition, f(Pair[2]))
if r 6= s then

partition← CreamJoinBlocks(partition, r, s)
PairList← Push(PairList, [r, s])

end if

end for

end while

return partition

As described in [28] this algorithm is very efficient showing a moderate growth of execution time with n.

Apart from the algorithm itself, several implementation choices were used to increase efficiency as well.

One of these aspects is the use of arrays to encode partitions which allow for a constant and very fast

random access to the partition element.

This is combined with the balancing and collapsing of the trees representing the blocks in the partition

that are parts of the CreamJoinBlocks and CreamRootBlock algorithms. This approach aims for trees that

are as shallow as possible during the execution of the CreamPrincipalCongruence algorithm.

In CreamJoinBlocks the tree is balanced by keeping as root of the joined block the root of the bigger

original block.

In CreamRootBlock the tree is collapsed by setting the parent node of the element on which the function

is called equal to its return value, avoiding having to traverse several nodes of the tree in future calls.

Both of these implementation details allow for shallower trees representing the blocks, which will make

CreamRootBlock faster, given that fewer nodes will have to be transversed to determine the root node of a

node.

This is especially important since CreamRootBlock is the most called function when calculating a prin-

cipal congruence of an algebra.

To compute all the principal congruences this function is called for all pairs of elements of A.

Algorithm 8 CreamAllPrincipalCongruences (algebra)

dimension← SizeAlgebra(algebra)
allPrincipalCongruences← []
for i = 1 to dimension− 1 do

for j = i+ 1 to dimension do

congruence← CreamPrincipalCongruence(algebra, [i, j])
AddCongruence(allPrincipalCongruences, congruence)

end for

end for

return allPrincipalCongruences
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3.1.3. Calculating All Congruences. It is known that the congruences of an algebra form a lattice with

the usual set inclusion partial order. The meet is the usual intersection; the join of two congruences is the

smallest congruence containing both.

The minimal elements of this lattice are precisely the principal congruences, and we can obtain all con-

gruences by computing joins, starting with the principal congruences.

The key part is to find an efficient way to combine minimal congruences to get all congruences of the

algebra. The principal congruences are stored in an ordered set and the congruences are combined from

start to end by the join operation. Each congruence resulting from these joins will be added to the ordered

set (eliminating duplicates).

Algorithm 9 CreamAllCongruences (algebra)

allPrincipalCongruences← CreamAllPrincipalCongruences(algebra)
allCongruences← allPrincipalCongruences
i← 1
while i < Size(allCongruences) do

for j = 1 to Size(allPrincipalCongruences) do

if ¬isContained(allPrincipalCongruences[j], allCongruences[i]) then

congruence← JoinPartition(allCongruences[i], allPrincipalCongruences[j])
AddCongruence(allCongruences, congruence)

end if

end for

i← i+ 1
end while

return allCongruences

The join operation is only called if the principal congruence is not contained in the congruence that is

being joined with. This is optimized by preserving the information about which principal partitions were

joined.

3.1.4. Calculating Monolithic Algebras. Monolithic Algebras are algebras that have a single minimal con-

gruence that is contained in every other congruence except for the identity congruence.

This is simple to calculate having the list of minimal congruences and a function that compares two

partitions and calculates whether one is contained in the other.

The CreamContainedPartition function returns whether a partition is contained in another. This func-

tion is used internally to determine whether an Algebra is monolithic or not. This algorithm assumes that

the partitions are normalized.
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Algorithm 10 CreamContainedPartition (partition1, partition2)

dimension = ArraySize(partition1)
for i = 1 to dimension do

if partition1[i] < 0 then

if partition2[i] < 0 then

block2← i
else

block2← partition2[i]
end if

for j = i+ 1 to dimension do

if partition1[j] = i and not block2 = partition2[j] then

return false
end if

end for

end if

end for

return true

We calculate the principal congruences and compare them eliminating those that contain other congru-

ences. If a single congruence is returned then this congruence is contained in every other congruence (and

the algebra is monolithic). This is done with the CreamIsAlgebraMonolithic function.

Algorithm 11 CreamIsAlgebraMonolithic (algebra)

partitions← CreamAllPrincipalCongruences(algebra)
npartitions← Size(partitions)
if npartitions > 1 then

i← 2
repeat

if CreamContainedPartition(partitions[1], partitions[i]) then

Remove(partitions, i)
else if CreamContainedPartition(partitions[i], partitions[1]) then

partitions[1]← partitions[i]
Remove(partitions, i)
i← 2

else

i← i+ 1
end if

until Size (partitions) < i

end if

npartitions← Size(partitions)
if npartitions > 1 then

return false
else

return true
end if

3.2. Automorphism algorithm. The automorphisms of an algebra A of type (2m,1n) can be derived from

the calculation of the automorphisms of a set of algebras each containing only one binary operation of
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A. The automorphism group of the algebra will be the intersection of all the automorphism groups of these

magmas that also commute, function composition-wise, with all the unary operations of the original algebra.

In general, it is difficult to obtain automorphisms efficiently. The authors of the Loops GAP package [48]

used an idea that we could apply to general magmas. With some adaptations this allows for very effective

computing of the automorphisms of magmas.

3.2.1. Invariant Vector. The general idea is to pick a list of properties invariant under homomorphisms and

then partition the algebras using these properties. For example, if e is idempotent, then any endomorphism

must map e onto an idempotent. This is the basis of the Discriminator in the Loops package, which im-

plemented nine such invariants for the domain elements of quasigroups. However, most of these invariants

cannot be carried over directly to magmas. We devised a total of seventeen invariants that hold for any

magma. In general, unless otherwise said, given an element x in a Magma M and k ∈ Z
+, we define xk

to be xk−1 ∗ x for k ≥ 2 and x1 = x (ie. we associate on the left). For each element p in a magma M ,

CREAM computes the following:

(1) Smallest k such that pk = pn, with n > k > 1.

(2) Number of domain elements for which p is a left identity.

(3) Number of domain elements for which p is a right identity.

(4) Number of elements y such that p = (py)p.

(5) Number of distinct elements in row p of the multiplication table.

(6) Number of distinct elements in column p of the multiplication table.

(7) 1 if p is an idempotent, 0 otherwise.

(8) Number of idempotents in column p of the multiplication table.

(9) Number of idempotents in row p of the multiplication table.

(10) 1 if the equality p(pp) = (pp)p holds, 0 otherwise.

(11) Number of domain elements that commute with p.

(12) Number of domain elements s for which (ss)p = p(ss).
(13) Number of domain elements s such that s2 = p.

(14) Number of domain elements s satisfying p(ps) = (pp)s
(15) Number of multisets {x, y} with xy = yx = p.

(16) Number of elements t ∈M such that for two idempotents e, f ∈M , we have p = et = tf .

(17) Number of elements t ∈ M for which there exist two elements x, y ∈ M such that p = xy and

t = yx.

Many of these invariants have an algebraic meaning. For example, (17) is the size of the conjugacy class

of p when the magma is a group; (16) is the size of the filter generated by p when the magma is a regular

semigroup; (13) is the number of square roots of p; (11) is the size of the centralizer of p; (8) and (9) are the

number of idempotents in the left or right ideals generated by p; (5) and (6) are the number of elements in

the left or right ideals generated by p; (1) deals with the periodicity of p; etc.

The intersection of the blocks induced by these invariants partitions the elements of the algebra, and by a

straightforward argument on first order logic any endomorphism must preserve the blocks of this partition.

3.2.2. Generating Set. We can cut down the size of the search tree by focusing only on the images of the

elements in a generating set. Some generating sets may be more suitable for finding automorphisms than

others:

• A smaller generating set is preferred because it would require fewer trials in constructing an isomor-

phism.

• Generators from partition blocks with fewer elements are preferred since any homomorphism must

send the elements of a block into itself.

Our algorithm satisfies both the constraints above and efficiently produces a generating set. It is depicted

in Algorithm 12.
11



Algorithm 12 Constructing Efficient Generating Set

submagma← [ ]
generator ← [ ]
candidates← magma elements sorted by ascending block size

while submagma 6= magma do

generator ← generator ∪ the element that increase the size of submagma most, and if 2 elements

increase the size by the same amount, take the one from the smaller block.

submagma← submagma generated by generator
candidates← candidates with elements in submagma removed

end while

3.2.3. The Automorphism Algorithm. To find the automorphisms we start by partitioning the Magma ac-

cording to the invariant vectors of each element and then obtain an efficient generating set. We then need

to find the images of the generating set taking into account that each element in the generating set can only

map to elements having the same invariant vector. Then we extend this partial map to a full map and check

that the homomorphism condition is satisfied.

We tested the algorithm on groups, loops, and quasigroups, obtaining the same results as yielded by the

existing tools. For magmas of orders 2 and 3, and semigroups of orders 6 and 7 (as there are no general

tools to compute automorphisms) we double check our results against the output of Mace4 [44].

3.2.4. Algebras of Type (2m,1n). Given an algebra of type (2m,1n) its automorphism group can be com-

puted by taking the intersection of all the automorphism groups of the binary operations that also commute,

function composition-wise, with all the unary operations.

A useful observation is that the intersection of the trivial group and any group is the trivial group. There-

fore, if any of the automorphism group generated in the process is a trivial group, then the search can be

terminated with the trivial group declared the automorphism group for the algebra.

This algorithm is implemented in the CreamAutomorphisms function in the CREAM package, as shown

in Algorithm 13.

Algorithm 13 CreamAutomorphisms(algebra)

binaryOperations← AllBinaryOperations(algebra)
unaryOperations← AllUnaryOperations(algebra)
D ← ∅
repeat

B ← Pop a binary operation from binaryOperations
C ← all automorphisms of B
C ← all automorphisms in C that commute with every unary operation in unaryOperations
if C = ∅ then

return ∅
end if

D ← D ∪ C
until binaryOperations = ∅
return Intersection(D)

3.3. Endomorphisms algorithm. The classic approach to calculate endomorphisms would be to use Mace4

to search for endomorphisms and while this is very effective and fast for low order algebra further optimiza-

tions are needed for high order algebras in which the congruences of the algebra can be used to limit the

Mace4 search space for endomorphisms.
12



To compute all endomorphisms of high order algebras, CREAM does the following:

(1) Compute the congruences of the algebra A;

(2) For each congruence R, compute A/R (except for the trivial congruence);

(3) Compute the subalgebras of A that are isomorphic to A/R (using the finite model builder Mace4);

(4) For each compatible pair subalgebra/congruence derive a corresponding endomorphism;

(5) Add the automorphisms of A.

The congruences of A are calculated with the algorithms described in 3.1. For each congruence R (ex-

cept for the trivial congruence that will be dealt with later), a representation of the A/R operation can be

obtained by replacing the values in A’s operation tables by their roots, and eliminating rows and columns

not corresponding to roots. If we have the algebra:

[ [ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],[ 1, 1, 1, 2, 3, 1 ] ] ]

and the congruence
[ [ 1, 2, 3], [4], [5, 6] ] - [ -3, 1, 1, -1, -2, 5 ],

then the A/R operation is:

1 4 5

1 1 1 1

4 1 1 1

5 1 1 1

and passed to Mace4 as follows:
f(a0,a0)=a0.

a0!=a3.

f(a0,a3)=a0.

a0!=a4.

f(a0,a4)=a0.

f(a3,a0)=a0.

f(a3,a3)=a0.

a3!=a4.

f(a3,a4)=a0.

f(a4,a0)=a0.

f(a4,a3)=a0.

f(a4,a4)=a0.

where f is the binary operation of the algebra. It is worth observing that Mace4 is zero-based, unlike GAP,

which is one-based.

Running Mace4 with the definition of the algebra operation and the above encoding of A/R as assump-

tions we get 16 possible models each one of them corresponding to a different endomorphism of the algebra

A. One of these models would be in Mace4’s output:

interpretation( 6, [number = 1,seconds = 0], [

function(a0, [0]),

function(a3, [1]),

function(a4, [2]),

function(fa1(_,_), [

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,1,2,0])]).

From this model we get the partial mapping f : {1, 4, 5} ⊆ A → {1, 2, 3}, defined by f(1) = 1,

f(4) = 2 and f(5) = 3, that can be represented by [1, , , 2, 3, ]. The gaps can be easily filled since elements

of the same block must map to the same image. In this example, 2 and 3 have the same image as 1, while 6
and 5 have the same image yielding the endomorphism: [1, 1, 1, 2, 3, 3].

Repeating this process for all congruences and for all models obtained with Mace4 from each congruence,

all the algebra’s endomorphisms (except for the automorphisms) can be obtained.

Finally, for the trivial congruence the associated endomorphisms would be also automorphisms and in

this case it is more efficient to use the the algorithm described in 3.2 than using Mace4.
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3.4. Monomorphisms algorithms. Invariants can be used to speed up the process of finding an monomor-

phism from one magma to another, or from one algebra to another. If f is an injective homomorphism from

a magma A to a magma B, then it is a isomorphism from A to B restricted to the range of f . Thus, the same

ideas of applying invariants in constructing automorphisms can be used for constructing monomorphisms.

Specifically, an monomorphism f can map an element a ∈ A to b ∈ B only if a and b have the same

invariant vector. This greatly reduces the search space for monomorphisms between A and B.

Algorithm 14 CreamAllMonomorphismMagmas(magma1, magma2)

genL← generating set from magma1
for i = 1 to Size(magma2) do

rangeM [i]← list of elements of magma2 that have same invariant vector as genL[i]
end for

monoMaps← ∅
for all mappings m from genL to elements of rangeM s.t. genL[i] maps only to elements in rangeM [i]
do

if m is an injective homomorphism then

monoMaps← monoMaps ∪m
end if

end for

return monoMaps

Algorithm 15 CreamAllMonomorphism(algebra1, algebra2)

b1← first binary operation in algebra1
b2← first binary operation in algebra2
monoList← CreamAllMonomorphismMagmas(b1, b2)

algebraMonoList← []
for each monoMap in monoList do

mono← true
for each corresponding pair of operations b1 ∈ algebra1, b2 ∈ algebra2 do

if monoMap is not an isomorphism from b1 to b2 then

mono← false
break out of for loop

end if

end for

if mono then

Add monoMap to algebraMonoList if not already in the list

end if

end for

return algebraMonoList

In this section only the function CreamAllMonomorphisms is addressed but the Cream package also

includes the functions CreamExistsMonomorphism (returning true if a monomorphism exists) and Crea-

mOneMonomorphism (returning one monomorphism).

3.5. Epimorphisms algorithm. CreamAllEpimorphisms(A1 ,A2) returns all epimorphisms fromA1 toA2,

provided the algebras are compatible. The algorithm first finds all congruences ϕ of A1 such that A1/ϕ and

A2 are isomorphic. For each such ϕ, the corresponding epimorphisms are obtained by composing the

quotient map with an isomorphism to A2 and all automorphisms of A2.
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For efficiency, a size check is implemented before searching for isomorphisms and the automorphisms of

A2 are only calculated once.

Algorithm 16 CreamAllEpimorphisms(algebra1, algebra2)

allCongruences← CreamAllCongruences(algebra1)
dimension1← SizeAlgebra(algebra1)
dimension2← SizeAlgebra(algebra2)
autoList← []
epiList← []
for all cong in allConguences do

if dimension2 = CreamNumberOfBlocks(cong) then

[qalgebra,mapToQalgebra]← QuotientAlgebraFromCongruence(algebra1, cong)
iso← IsomorphismAlgebras(qalgebra, algebra2)
if not iso = fail then

if autoList = [] then

autoList← CreamAutomorphisms(algebra2)
end if

for all auto in autoList do

epi← []
for j = 1 to dimension1 do

epi[j]← auto[iso[mapToQalgebra[i]]]
end for

Add epi to epiList if not already in the list

end for

end if

end if

end for

return epiList

In this section only the function CreamAllEpimorphisms is addressed but the Cream package also in-

cludes the functions CreamExistsEpimorphism (returning true if a epimorphism exists) and CreamOneEpi-

morphism (returning one epimorphism).

3.6. SubUniverses algorithm. The SubUniverses algorithm returns a list of all underlying sets of all sub-

algebras of the input algebra. It first generates all 1-generated subalgebras, then iteratively expands each

i-generated algebra by adding another generator.

For performance enhancement, these expansions are limited to one element from each orbit of the al-

gebra’s automorphism group. At the end of each cycle, the remaining (i + 1)-generated subuniverses are

obtained by applying the automorphism group. The algorithm stops when an iteration produces only one

subuniverse with the same size of the algebra.

The algorithm relies on the SubUniverseFromElement routine, which calculates the subalgebra generated

by a subalgebra and an additional element. This routine assumes that the input subuniverse is closed under

the algebra’s operations. The algorithm adds the element to the updated subuniverse, calculates all directly

generated additional elements, and places them in a temporary list. These elements are then filtered for those

that are already in the subuniverse, and the remaining elements are put into a second list. Elements from the

second list are then added to the subuniverse iteratively.
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Algorithm 17 CreamAllSubUniverses(algebra)

dimension← CreamSizeAlgebra(algebra)
autoList← CreamAutomorphisms(algebra)
for i = 1 to dimension do

sigma[i]← []
if i = 1 then

sigmaMinus← [[]]
else

sigmaMinus← sigmaExpanded[i − 1]
end if

for all cSigma in sigmaMinus do

elemList← [1..dimension]
Remove all elements in cSigma from elemList
while Size(elemList) <> 0 do

j ← elemList[1]
sUniverse← SubUniverseFromElement(algebra, cSigma, j)
Add sUniverse to sigma[i] if not already in the list

autoEs← the orbit of j under autoList
Remove all elements in autoEs from elemList

end while

end for

sigmaExpanded[i]← []
for all sUniverse in sigma[i] do

autoUniverses← the orbit of sUniverse under autoList
Add all elements of autoUniverses to sigmaExpanded[i] if not already in the list

end for

if Size(sigma[i]) = 1 and Size(sigma[i][1]) = dimension then

break
end if

end for

sUniverses← ∪ij=1
sigmaExpended[j]

return sUniverses
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Algorithm 18 SubUniverseFromElement(algebra, initSubUniverse, element)

dimension← CreamSizeAlgebra(algebra)
elemList← [element]
newSubUniverse← initSubUniverse
nElem← Size(elemList)
while nElem > 0 do

currentElem← elemList[nElem]
Remove element in position nElem from elemList
newElemList← []
for all operations op of the algebra do

if op is binary then

Add op[currentElem][currentElem] to newElemList if not already in the list

for all subUniverseElem in newSubUniverse do

Add op[currentElem][subUniverseElem] to newElemList if not already in the list

Add op[subUniverseElem][currentElem] to newElemList if not already in the list

end for

else

Add op[currentElem] to newElemList if not already in the list

end if

end for

Add currentElem to newSubUniverse if not already in the list

elemList← elemList ∪ (newElemList \ newSubUniverse)
nElem← Size(elements)
if Size(newSubUniverse) + nElem = dimension then

newSubUniverse← [1..dimension]
nElem← 0

end if

end while

return newSubUniverse

3.7. DivisorUniverses algorithm. CreamAllDivisorUniverses(A1 , A2) checks if A1 has a divisor that is

isomorphic to A2, where A1 and A2 are compatible algebras. Its return is a list of all pairs (B,ϕ), such that

B is a subuniverse of A1, ϕ is a congruence of the subalgebra B, and B/ϕ is isomorphic to A2.

The algorithm first calculates the subalgebras of A1, then their quotients and then checks those for iso-

morphisms to A2, in each case using the corresponding algorithms of the Cream package. A size condition

is used to prune unnecessary calculations.
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Algorithm 19 CreamAllDivisorUniverses(algebra1, algebra2)

dimension← CreamSizeAlgebra(algebra2)
subUniverseList← CreamSubUniverses(algebra1)
divisorList← []
for all subUniverse in subUniverseList do

if dimension <= Size(subUniverse) then

subAlgebra← CreamSubUniverse2Algebra(algebra1, subUniverse)
congList← CreamAllCongruences(subAlgebra)
rcongList← []
for all cong in congList do

if dimension = CreamNumberOfBlocks(cong) then

Add cong to rcongList if not already in the list

end if

end for

for all cong in rcongList do

[qAlgebra,mapToQalgebra]← QuotientAlgebraFromCongruence(subAlgebra, cong)
if CreamAreAlgebrasIsomorphic(qAlgebra, algebra2) then

Add [subUniverse, cong] to divisorList if not already in the list

end if

end for

end if

end for

return divisorList

In this section only the function CreamAllDivisorUniverses is addressed but the Cream package also in-

cludes the functions CreamExistsDivisor (returning true if a divisor between the algebras exists) and Crea-

mOneDivisorUniverse (returning one divisor between the algebras).

3.8. DirectlyReducible algorithm. CreamAllDirectlyReducible(A) looks for two (non-trivial) commuting

congruences φ,ψ of A, whose meet is trivial and whose join is A×A. If those exist, A is isomorphic to the

direct product A/φ×A/ψ.

Because all algebras are finite, it suffices to check that the congruences have a trivial meet, and that the

corresponding product algebra has the correct size. The algorithm uses numerical constraints to avoid un-

necessary calculations.

The return of the algorithm is a list of pairs of congruences. These pairs should be consider as sets, i.e. if

(α, β) is listed the (equally valid) pair (β, α) is not listed separately.
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Algorithm 20 CreamAllDirectlyReducible(algebra)

dimension← CreamSizeAlgebra(algebra)
congList← CreamAllCongruences(algebra)
pCongList← []
for all cong in congList do

cNBlocks← CreamNumberOfBlocks(cong)
if cNBlocks <> 1 and cNBlocks <> dimension and IsInt(dimension/cNBlocks) then

Add cong to pCongList
end if

end for

pairs← []
for all 2-element subsets {i, j} of pCongsList do

iNBlocks← CreamNumberOfBlocks(i)
jNBlocks← CreamNumberOfBlocks(j)
if iNBlocks ∗ jNBlocks = dimension then

cMeet←MeetPartition(i, j)
cMeetNBlocks← CreamNumberOfBlocks(cMeet)
if cMeetNBlocks = dimension then

Add [i, j] to pairs
end if

end if

end for

return pairs

In this section only the function CreamAllDirectlyReducible is addressed but the Cream package also

includes the functions CreamExistsDirectlyReducible (returning true if there are commuting congruences R,

T where A/R x A/T is isomorphic to A) and CreamOneDirectlyReducible (returning one pair of commuting

congruences R, T where A/R x A/T is isomorphic to A).

4. PERFORMANCE

4.1. Congruences algorithm performance. The semigroup GAP package [45] includes the function Con-

gruencesOfSemigroup that returns the congruences of a semigroup, for some classes of semigroups. For

Rees matrix semigroups the function CongruencesOfSemigroup takes advantage of theoretical results and

hence achieves better results than CreamAllCongruences. But to achieve this kind of performance the

semigroup needs to be created using the GAP functions ReesMatrixSemigroup or ReesZeroMatrixSemi-

group. If instead an isomorphic copy of a Rees Matrix (Zero) semigroup is created using a multiplication

table the performance will be much worse.

For Rees Matrix Semigroups or Rees Zero Matrix Semigroups (generated with ReesMatrixSemigroup or

ReesZeroMatrixSemigroup) the function CongruencesOfSemigroup takes advantage of their particular

structure by applying the efficient linked triple algorithm [35]. However, this efficiency can only be realized

in this restricted setting.

UACalc also implements Freese’s algorithm, and was done under his supervision in Java and Jython.

It includes a GUI version in Java and a command line interface in Jython. The performance of the GUI

version is poor and it will not be used for comparison. On the other hand the command line interface has a

performance that is comparable to CreamAllCongruences. The same random Rees Matrix Semigroups that

were used with CongruencesOfSemigroup and CreamAllCongruences were written into files readable by

UACalc and the congruences were calculated in UACalc.
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Table 1. Performance Comparison on calculating all congruences of Rees Matrix Semigroups.

Size CongruencesOfSemigroup CongruencesOfSemigroup CreamAllCongruences UACalc

(ReesMatrixSemigroup) (MultiplicationTable)

(ms) (ms) (ms) (ms)

12 1 15 < 1 1

18 2 28 < 1 3

24 5 55 2 7

30 1 92 4 32

36 4 139 10 34

42 11 203 16 55

48 8 296 24 77

54 5 416 46 138

60 5 553 60 220

66 1 671 82 291

72 9 873 136 409

78 2 1 098 180 555

84 5 1 341 233 743

90 4 1 622 307 961

CreamAllCongruences is consistently more than 3 times faster than UACalc. For these algebras with

one binary operation the runtime rises roughly proportionally to n4 (where n is the size of the algebra) or t2

(being t the number cells of the multiplication matrix of the algebra operation).

4.2. Automorphisms algorithm performance. The CREAM package automorphism function was run on

algebras of Type (2m,1n) to compare the timings against the Loops package. All experiments were run 7

times, with the lowest and highest times discarded. The averages of the remaining 5 are reported in Table 2.

We see that the speeds from both packages are quite close.

Table 2. Performance Comparison between Loops and CREAM on Automorphism Group Generation.

Algebraic Structure Loops Package(sec) CREAM Package(sec)

Quasigroups, order 5 0.588 0.562

Quasigroups, order 6 520 541

Loops, order 6 0.101 0.086

Loops, order 7 14.623 13.945

Groups, order 32 0.854 0.935

Groups, order 64 39.98 41.05

Groups, order 128 12,031 12,160

4.3. Endomorphisms algorithm performance. To evaluate the performance of the algorithms to calculate

endomorphisms, we tested both the classic algorithm and the congruence algorithm running with Mace4, as

described in 3.3, on several types of Semigroups, Monoids and Groups. The only GAP function to calculate

endomorphisms that came to our attention is the function Endomorphisms from the package SONATA. This

function can calculate endomorphisms for a very narrow set of algebras, namely groups and near-rings. The

groups in the list algebras were also run with SONATA.
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Table 3. Performance Comparison between endomorphisms calculation algorithms

Algebra Size Number of Classic Congruences SONATA

Endomorphisms (ms) (ms) (ms)

GossipMonoid(3) 11 66 30 1 635 NA

PlanarPartitionMonoid(2) 14 72 56 233 NA

JonesMonoid(4) 14 72 45 232 NA

BrauerMonoid(3) 15 28 38 160 NA

PartitionMonoid(2) 15 89 50 313 NA

FullPBRMonoid(1) 16 1 426 585 5 134 NA

SymmetricGroup(4) 24 58 101 142 166

FullTransformationSemigroup(3) 27 40 116 364 NA

FullTransformationMonoid(3) 27 40 112 360 NA

SymmetricInverseMonoid(3) 34 54 274 504 NA

JonesMonoid(5) 42 113 746 777 NA

MotzkinMonoid(3) 51 98 1 972 2 400 NA

PartialTransformationMonoid(3) 64 138 2 586 1 963 NA

PartialBrauerMonoid(3) 76 165 7 897 7 796 NA

BrauerMonoid(4) 105 274 50 164 19 875 NA

SymmetricGroup(5) 120 146 32 861 2 979 201

PlanarPartitionMonoid(3) 132 393 95 460 25 803 NA

JonesMonoid(6) 132 393 131 472 22 889 NA

PartitionMonoid(3) 203 687 741 441 105 421 NA

SymmetricInverseMonoid(4) 209 282 470 901 75 940 NA

In this test the classic algorithm not using congruences is faster than using congruences for algebras up

to size 60 but for larger algebras its runtime raises very fast and the algorithm using congruences becomes

faster.

In view of these results, the CreamEndomorphisms function uses the classic algorithm for algebras with

size up to 60 and the congruences algorithm for larger algebras.

The SONATA package achieves very good results for groups but it only works on a very narrow set of

algebras.

5. CONCLUSION

The CREAM package provides efficient algorithms for the calculation of congruences, automorphisms

and endomorphisms. These algorithms work with algebras of type (2m, 1n), covering a very wide set of

algebras and being consistently fast.

The integration with Mace4 allowed us to combine efficient algorithms such as [28] with the wide set of

possibilities provided by a first order axiom-based model searcher.

The appendices of this article include a detailed performance discussion of the main algorithms and

applications of the CREAM package to different algebra classes.

The CREAM package can be found and downloaded from https://gitlab.com/rmbper/cream

and the outputs from the test runs described in section B can be found in https://gitlab.com/rmbper/cream_data.
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Appendices

A. DETAILED PERFORMANCE

A.1. Congruences algorithm performance. The semigroup GAP package [45] includes the function

CongruencesOfSemigroup that returns the congruences of a semigroup. This function doesn’t work for all

semigroups, but for those in which it works we have run the CongruencesOfSemigroup function against

our CreamAllCongruences 5 times and calculated the average runtime after removing the best and worst

runtimes getting the following results:

Table 4. Performance Comparison between CongruencesOfSemigroup and CREAM on calculating all congruences.

Size Number of Algebras CongruencesOfSemigroup(ms) CreamAllCongruences(ms)

1 1 7 < 1

2 3 20 < 1

3 4 29 < 1

4 7 41 < 1

5 9 53 < 1

6 8 71 < 1

7 12 153 4

8 14 484 35

1-8 58 858 40

The number of semigroups for which CongruencesOfSemigroup works is very limited, yet even for

those algebras CreamAllCongruences is more than 20 times faster.

The tests show that there is a very specific type of semigroup in which the function CongruencesOf-

Semigroup takes advantage of theoretical results and hence achieves better results than CreamAllCongru-

ences. These are the Rees Matrix Semigroups or the Rees Zero Matrix Semigroups. But to achieve this

kind of performance the semigroup needs to be created using the GAP functions ReesMatrixSemigroup or

ReesZeroMatrixSemigroup. If instead an isomorphic copy of a Rees Matrix (Zero) semigroup is created

using a multiplication table the performance will be similar to what was found above. See in the following

table the average runtime for 10 runs with random Rees Matrix Semigroups: For Rees Matrix Semigroups or

Rees Zero Matrix Semigroups (generated with ReesMatrixSemigroup or ReesZeroMatrixSemigroup) the

function CongruencesOfSemigroup takes advantage of their particular structure by applying the efficient

linked triple algorithm [35]. However, this efficiency can only be realized in this restricted setting.

UACalc also implements Freese’s algorithm, and was done under his supervision in Java and Jython.

It includes a GUI version in Java and a command line interface in Jython. The performance of the GUI

version is poor and it will not be used for comparison. On the other hand the command line interface has a

performance that is comparable to CreamAllCongruences. The same random Rees Matrix Semigroups that

were used with CongruencesOfSemigroup and CreamAllCongruences were written into files readable by

UACalc and the congruences were calculated in UACalc. CreamAllCongruences is consistently more

than 3 times faster than UACalc. For these algebras with one binary operation the runtime rises roughly

proportionally to n4 (where n is the size of the algebra) or t2 (being t the number cells of the multiplication

matrix of the algebra operation).

To further compare the performance of CreamAllCongruences with UACalc, tests with several specific

types of Semigroups, Monoids and Groups were run.
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Table 5. Performance Comparison on calculating all congruences of Rees Matrix Semigroup.

Size CongruencesOfSemigroup CongruencesOfSemigroup CreamAllCongruences UACalc

(ReesMatrixSemigroup) (MultiplicationTable)

(ms) (ms) (ms) (ms)

12 1 15 < 1 1

18 2 28 < 1 3

24 5 55 2 7

30 1 92 4 32

36 4 139 10 34

42 11 203 16 55

48 8 296 24 77

54 5 416 46 138

60 5 553 60 220

66 1 671 82 291

72 9 873 136 409

78 2 1 098 180 555

84 5 1 341 233 743

90 4 1 622 307 961

Table 6. Performance Comparison between CREAM and UACalc

Algebra Size Number of CreamAllCongruences UACalc

Congruences (ms) (ms)

GossipMonoid(3) 11 84 1 2

PlanarPartitionMonoid(2) 14 9 1 1

JonesMonoid(4) 14 9 < 1 1

BrauerMonoid(3) 15 7 < 1 2

PartitionMonoid(2) 15 13 < 1 1

FullPBRMonoid(1) 16 167 3 4

SymmetricGroup(4) 24 4 3 10

FullTransformationSemigroup(3) 27 7 3 14

FullTransformationMonoid(3) 27 7 3 7

SymmetricInverseMonoid(3) 34 7 6 25

JonesMonoid(5) 42 6 12 36

MotzkinMonoid(3) 51 10 23 73

PartialTransformationMonoid(3) 64 7 63 223

PartialBrauerMonoid(3) 76 16 117 351

BrauerMonoid(4) 105 19 430 1 420

SymmetricGroup(5) 120 3 812 2 700

PlanarPartitionMonoid(3) 132 10 1 094 3 490

JonesMonoid(6) 132 10 950 3 444

PartitionMonoid(3) 203 16 6 500 19 979

SymmetricInverseMonoid(4) 209 11 6 970 22 318

FullTransformationSemigroup(4) 256 11 22 529 53 557

FullTransformationMonoid(4) 256 11 22 385 52 361

MotzkinMonoid(4) 323 11 47 593 134 945

JonesMonoid(7) 429 7 161 987 485 004

The performance for these algebras is mostly similar to what was found for the Rees Matrix Semigroups,

with a bigger variance in the results. On average CreamAllCongruences is between 3 and 3,5 times faster
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than UACalc but, depending on the algebras, we get improvements spanning from 2 times to 4,5 times. The

runtime also rises roughly proportionally to n4 (although with more variance).

A.2. Automorphisms algorithm performance. The CREAM package automorphism function was run on

algebras of Type (2m,1n) to compare the timings against the Loops package. All experiments were run 7

times, with the lowest and highest times discarded. The averages of the remaining 5 are reported in Table 7.

We see that the speeds from both packages are quite close.

Table 7. Performance Comparison between Loops and CREAM on Automorphism Group Generation.

Algebraic Structure Loops Package(sec) CREAM Package(sec)

Quasigroups, order 5 0.588 0.562

Quasigroups, order 6 520 541

Loops, order 6 0.101 0.086

Loops, order 7 14.623 13.945

Groups, order 32 0.854 0.935

Groups, order 64 39.98 41.05

Groups, order 128 12,031 12,160

We have also run experiments on generating automorphism groups for magmas and semigroups. Results

are displayed on Table 8. For these experiments, we do not have results from other GAP packages to compare

with. Therefore the following results can be taken as the benchmark to beat in future improvements.

Table 8. Performance of CREAM on Automorphism Group Generation for Magmas and Semigroups.

Algebraic Structure Time(sec)

Magmas, order 2 0.016

Magmas, order 3 1.253

Semigroups, order 6 2.316

Semigroups, order 7 45.947

The CREAMAutomorphisms runs substantially faster than the simple intersection of automorphism

groups, especially when the automorphism group is the trivial group. Sample results are shown in Table 9.

Table 9. Performance Comparison between CREAMAutomorphisms and Intersection of Automorphism Groups.

Algebra of type (2, 2, 2, ...)
Algebra

AutomorphismGroup

(sec)

Intersection of

Automorphism

Groups

(sec)

Is Trival Group

the Automorphism

Group?

All 2,328 non-isomorphic

groups of order 128
153.8 201.5 No

All 67 non-isomorphic

groups of order 243
10.3 56.3 No

All 15 non-isomorphic

groups of order 625
11.3 122.9 No

All 15 non-isomorphic

groups of order 999
2.1 168.9 Yes
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A.3. Endomorphisms algorithm performance. To evaluate the performance of the algorithms to calculate

endomorphisms, we tested both the classic algorithm and the congruence algorithm running with Mace4, as

described in 3.3, on several types of Semigroups, Monoids and Groups. The only GAP function to calculate

endomorphisms that came to our attention is the function Endomorphisms from the package SONATA. This

function can calculate endomorphisms for a very narrow set of algebras, namely groups and near-rings. The

groups in the list algebras were also run with SONATA.

Table 10. Performance Comparison between endomorphisms calculation algorithms

Algebra Size Number of Classic Congruences SONATA

Endomorphisms (ms) (ms) (ms)

GossipMonoid(3) 11 66 30 1 635 NA

PlanarPartitionMonoid(2) 14 72 56 233 NA

JonesMonoid(4) 14 72 45 232 NA

BrauerMonoid(3) 15 28 38 160 NA

PartitionMonoid(2) 15 89 50 313 NA

FullPBRMonoid(1) 16 1 426 585 5 134 NA

SymmetricGroup(4) 24 58 101 142 166

FullTransformationSemigroup(3) 27 40 116 364 NA

FullTransformationMonoid(3) 27 40 112 360 NA

SymmetricInverseMonoid(3) 34 54 274 504 NA

JonesMonoid(5) 42 113 746 777 NA

MotzkinMonoid(3) 51 98 1 972 2 400 NA

PartialTransformationMonoid(3) 64 138 2 586 1 963 NA

PartialBrauerMonoid(3) 76 165 7 897 7 796 NA

BrauerMonoid(4) 105 274 50 164 19 875 NA

SymmetricGroup(5) 120 146 32 861 2 979 201

PlanarPartitionMonoid(3) 132 393 95 460 25 803 NA

JonesMonoid(6) 132 393 131 472 22 889 NA

PartitionMonoid(3) 203 687 741 441 105 421 NA

SymmetricInverseMonoid(4) 209 282 470 901 75 940 NA

In this test the classic algorithm not using congruences is faster than using congruences for algebras up

to size 60 but for larger algebras its runtime raises very fast and the algorithm using congruences becomes

faster.

In view of these results, the CreamEndomorphisms function uses the classic algorithm for algebras with

size up to 60 and the congruences algorithm for larger algebras.
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B. APPLICATIONS

B.1. Monolithic Algebras. Some examples of the use of the package to calculate whether an algebra is

monolithic can be seen next:
gap> algebra := [RecoverMultiplicationTable(6,1)];

[ [ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ] ] ]

gap> CreamAllPrincipalCongruences(algebra);

[ [ -1, -1, -1, -1, -2, 5 ], [ -1, -1, -1, -2, 4, -1 ],

[ -1, -1, -1, -2, -1, 4 ], [ -1, -1, -2, 3, -1, -1 ],

[ -1, -1, -2, -1, 3, -1 ], [ -1, -1, -2, -1, -1, 3 ],

[ -1, -2, 2, -1, -1, -1 ], [ -1, -2, -1, 2, -1, -1 ],

[ -1, -2, -1, -1, 2, -1 ], [ -1, -2, -1, -1, -1, 2 ],

[ -2, 1, -1, -1, -1, -1 ], [ -2, -1, 1, -1, -1, -1 ],

[ -2, -1, -1, 1, -1, -1 ], [ -2, -1, -1, -1, 1, -1 ],

[ -2, -1, -1, -1, -1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);

false

gap> algebra := [RecoverMultiplicationTable(6,19)];

[ [ [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 2, 1, 1 ], [ 1, 1, 2, 1, 1, 1 ] ] ]

gap> CreamAllPrincipalCongruences(algebra);

[ [ -2, 1, -1, -1, -1, -1 ], [ -2, 1, -1, -1, -2, 5 ],

[ -2, 1, -1, -2, 4, -1 ], [ -2, 1, -1, -2, -1, 4 ],

[ -2, 1, -2, 3, -1, -1 ], [ -2, 1, -2, -1, 3, -1 ],

[ -2, 1, -2, -1, -1, 3 ], [ -3, 1, 1, -1, -1, -1 ],

[ -3, 1, -1, 1, -1, -1 ], [ -3, 1, -1, -1, 1, -1 ],

[ -3, 1, -1, -1, -1, 1 ] ]

gap> CreamIsAlgebraMonolithic(algebra);

true

B.2. Small Semigroups. For all small semigroups up to size 6, all its congruences and endomorphisms

were calculated. It was moreover determined whether the semigroups were monolithic (this was calculated

up to size 8).

Table 11. Determination of all monolithic semigroups up to size 8

Size Number of Number of Performance

semigroups monoliths (ms)

1 1 0 0

2 4 4 0

3 18 7 0

4 126 16 8

5 1 160 103 108

6 15 973 1 823 1 712

7 836 021 149 020 127 356

8 1 843 120 128 48 438 046 462 897 348

All automorphisms for semigroups up to size 7 were also calculated separately and the automorphism

group and its ID was calculated for each of these semigroups. The group ID is the identification of a group

in the Small Group GAP library [20].

The CREAM library doesn’t calculate the automorphisms of an algebra as an automorphism group but

as a list of bijective mappings, but there is an easy way to calculate the automorphism group from the list

of mappings. To do this, all the mappings are converted into permutations using the PermList function and

each of these permutations is used as generator for the group. Having this we can get the Group Id using the

IdGroup function.
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The following table gives the automorphism of semigroups up to size 7 (and reproduces the results in [9]):

Table 12. Computation of the automorphism groups of semigroups up to size 7

Size 2 3 4 5 6 7

# Semigroups 4 18 126 1 160 15 973 836 021

[ 1, 1 ] trivial 3 12 78 746 10 965 746 277

[ 2, 1 ] C2 1 5 39 342 4 121 76 704

[ 3, 1 ] C3 2 26 412

[ 4, 1 ] C4 1 7 82

[ 4, 2 ] C2 × C2 3 26 441 7 314

[ 5, 1 ] C5 6

[ 6, 1 ] S3 1 5 33 300 3 638

[ 6, 2 ] C6 37

[ 8, 2 ] C4 × C2 4

[ 8, 3 ] D8 1 17 169

[ 8, 5 ] C2 × C2 × C2 6 172

[ 10, 1 ] D10 2

[ 12, 4 ] D12 4 49 790

[ 16, 11 ] C2 × D8 10

[ 24, 12 ] S4 1 4 30 277

[ 24, 14 ] C2 × C2 × S3 14

[ 36, 10 ] S3 × S3 2 24

[ 48, 48 ] C2 × S4 4 45

[ 72, 40 ] (S3 × S3) ≀ C2 1

[ 120, 34 ] S5 1 4 30

[ 144, 183 ] S3 × S4 4

[ 240, 189 ] C2 × S5 4

[ 720, 763 ] S6 1 4

[ 5040, - ] S7 1
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B.3. Small Groups. Using the Small Group GAP library [20] the groups from order 2 to 96 were extracted

and the Cream functions were used with them:

• Order 2-31 - CreamAllCongruences, CreamAllEndomorphisms and CreamIsMonolithic

• Order 32-96 - CreamAllCongruences and CreamIsMonolithic

A summary from these runs is provided in Table 13.

Table 13. Summary for Small Group Runs

Size Number of Number of

Groups Monolithic

2-7 8 6

8-15 19 9

16 14 6

17-23 17 7

24 15 2

25-31 19 7

32 50 16

33-47 54 10

48 52 4

49-63 69 16

64 52 22

65-71 17 3

72 50 3

73-79 18 5

80 52 1

81-95 70 13

96 231 13
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B.4. Groups, Semigroups and Monoids. For a selection of larger groups, semigroups and monoids, all

congruences and endomorphisms were calculated. It was also calculated whether these algebras were mono-

lithic. A summary from these runs is provided in Table 14.

Table 14. # of Congruences and Endomorphisms for a selection of larger algebras

Algebra Size Number of Number of Is

Congruences Endomorphisms Monolithic

GossipMonoid(3) 11 84 66 No

PlanarPartitionMonoid(2) 14 9 72 No

JonesMonoid(4) 14 9 72 No

BrauerMonoid(3) 15 7 28 No

PartitionMonoid(2) 15 13 89 No

FullPBRMonoid(1) 16 167 1426 No

SymmetricGroup(4) 24 4 58 Yes

FullTransformationSemigroup(3) 27 7 40 Yes

FullTransformationMonoid(3) 27 7 40 Yes

SymmetricInverseMonoid(3) 34 7 54 Yes

JonesMonoid(5) 42 6 113 No

MotzkinMonoid(3) 51 10 98 No

PartialTransformationMonoid(3) 64 7 138 Yes

PartialBrauerMonoid(3) 76 16 165 No

BrauerMonoid(4) 105 19 274 No

SymmetricGroup(5) 120 3 146 Yes

PlanarPartitionMonoid(3) 132 10 393 No

JonesMonoid(6) 132 10 393 No

PartitionMonoid(3) 203 16 687 No

SymmetricInverseMonoid(4) 209 11 282 Yes

FullTransformationSemigroup(4) 256 11 345 Yes

FullTransformationMonoid(4) 256 11 345 Yes
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B.5. Automorphisms of Specific Algebra Classes. The following table contains the groups that appear as

automorphims groups of associative rings up to order 15.

Table 15. Computation of the automorphism groups of rings up to size 15

Size 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# Rings 2 2 11 2 4 2 52 11 4 2 22 2 4 4

[ 1, 1 ] trivial 2 1 3 2 4 3

[ 2, 1 ] C2 1 6 1 1 12 1 2 4 2 1

[ 4, 1 ] C4 1

[ 4, 2 ] C2 × C2 1 6 3 1

[ 6, 1 ] S3 2 1

[ 6, 2 ] C6 1

[ 8, 3 ] D8 3

[ 8, 5 ] C2 × C2 × C2 4 1 2

[ 12, 4 ] D12 2

[ 16, 11 ] C2 × D8 3

[ 16, 14 ] C2 × C2 × C2 × C2 2

[ 24, 12 ] S4 1

[ 24, 13 ] C2 × A4 × S3 2

[ 32, 46 ] C2 × C2 × D8 4

[ 36, 10 ] S3 × S3 4

[ 48, 48 ] C2 × S4 7

[ 64, 261 ] C2 × C2 × C2 × D8 1

[ 72, 40 ] (S3 × S3) ≀ C2 2

[ 120, 34 ] S5 1

[ 144, 183 ] S3 × S4 2

[ 216, 162 ] S3 × S3 × S3 2

[ 576, 8653 ] S4 × S4 1

[ 720, 763 ] S6 1

[ 5040, - ] S7 3

[ 13824, - ] S4 × S4 × S4 1

[ 14400, - ] S5 × S5 1

[ 17280, - ] S6 × S4 2

[ 40320, - ] S8 2

[ 362880, - ] S10 1 1

[ 518400, - ] S6 × S6 1

[ 39916800, - ] S11 2

[ 479001600, - ] S12 1

[ 6227020800, - ] S13 1

[ 87178291200, - ] S14 1
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The variety of Quasi-MV-algebras [37] is defined by the following identities (in ProverX syntax [13,17]):
(x + z) + y = x + (y + z).

x’’ = x.

x + 1 = 1.

(x’ + y)’ + y = (y’ + x)’ + x.

(x + 0)’ = x’ + 0.

(x + y) + 0 = x + y.

0’ = 1.

Table 16. Computation of the automorphism groups of Quasi-MV-algebras of size up to 12

Size 2 3 4 5 6 7 8 9 10 11 12

# Quasi-MV-algebras 1 1 4 4 11 11 27 27 60 62 131

[ 1, 1 ] trivial 1 1 3 2 7 4 16 8 35 17 76

[ 2, 1 ] C2 1 2 3 4 5 9 10 18 19

[ 4, 2 ] C2 × C2 2 1 4 2 10 5

[ 6, 1 ] S3 1 3 5 9

[ 8, 5 ] C2 × C2 × C2 2 1 4 2

[ 12, 4 ] D12 1 2 5

[ 16, 14 ] C2 × C2 × C2 × C2 2 1

[ 24, 12 ] S4 1 2 4

[ 24, 14 ] C2 × C2 × C3 1 2

[ 48, 48 ] C2 × S4 1 2

[ 48, 51 ] C2 × C2 × C2 × S3 1

[ 96, 226 ] C2 × C2 × S4 1

[ 120, 34 ] S5 1 1 2 4

[ 240, 189 ] C2 × S5 1 2

[ 480, 1186 ] C2 × C2 × S5 1

[ 720, 763 ] S6 2

[ 1440, 5842 ] C2 × S6 1

[ 5040, - ] S7 1 2

[ 10080, - ] C2 × S7 1

[ 40320, - ] S8 1

[ 362880, - ] S9 1
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The quasivariety of BCI algebras [2] is defined by the following identities (in ProverX syntax [13, 17]):
((x * y) * (x * z)) * (z * y) = 0.

(x * (x * y)) * y = 0.

x * x = 0.

((x * y = 0) & (y * x = 0)) -> (x = y).

(x * 0 = 0) -> (x = 0).

Table 17. Computation of the automorphism groups of BCI algebras of size up to 7

Size 2 3 4 5 6 7

# BCI algebras 2 5 22 118 974 10,834

[ 1, 1 ] trivial 2 3 13 78 679 7,970

[ 2, 1 ] C2 2 7 31 241 2,384

[ 4, 1 ] C4 1 1 2

[ 4, 2 ] C2 × C2 2 20 207

[ 6, 1 ] S3 2 5 25 195

[ 6, 2 ] C6 1

[ 8, 2 ] C4 × C2 1

[ 8, 3 ] D8 4

[ 8, 5 ] C2 × C2 × C2 3

[ 12, 4 ] D12 4 35

[ 24, 12 ] S4 1 4 22

[ 36, 10 ] S3 × S3 2

[ 48, 48 ] C2 × S4 3

[ 120, 34 ] S5 1 4

[ 720, 763 ] S6 1
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The variety of quandles [43] is defined by the following identities (in ProverX syntax [13, 17]):
x v (y v z) = (x v y) v (x v z).

(x ˆ y) ˆ z = (x ˆ z) ˆ (y ˆ z).

(x v y) ˆ x = y.

x v (y ˆ x) = y.

x v x = x.

Table 18. Computation of the automorphism groups of quandles of size up to 6

Size 2 3 4 5 6

# quandles 1 3 7 22 73

[ 2, 1 ] C2 1 1 1

[ 3, 1 ] C3 1 1

[ 4, 1 ] C4 1 2

[ 4, 2 ] C2 × C2 1 5 8

[ 5, 1 ] C5 1

[ 6, 1 ] S3 2 1 2 3

[ 6, 2 ] C6 2 15

[ 8, 2 ] C4 × C2 2

[ 8, 3 ] D8 1 3 8

[ 8, 5 ] C2 × C2 × C2 7

[ 12, 3 ] A4 1 1

[ 12, 4 ] D12 3 6

[ 16, 11 ] C2 × D8 5

[ 18, 3 ] C3 × S3 3

[ 20, 3 ] C5 × C4 3 3

[ 24, 12 ] S4 1 2

[ 24, 13 ] C2 × A4 × S3 3

[ 36, 10 ] S3 × S3 1

[ 48, 48 ] C2 × S4 2

[ 72, 40 ] (S3 × S3) ≀ C2 1

[ 120, 34 ] S5 1

[ 720, 763 ] S6 1
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B.6. Algebra Classes. The CREAM package allows for the generation of lists of algebras of specific types

based on its axiomatic definition. This is done using the function CreamAlgebrasFromAxioms that uses

Mace4 to generate algebras according with this axiomatic definition. This function takes as input a string

with the axioms in Mace4 format and a positive integer with the size of the generated algebras. The gener-

ated algebras can then be used with the CREAM functions that calculate congruences, endomorphisms and

whether the algebra is monolithic. CREAM was applied in this way to the following classes of algebras:

• Almost distributive lattices

• BCI-algebras

• Bilattices

• Boolean algebras

• Boolean rings

• Commutative lattice-ordered monoids

• Commutative regular rings

• Complemented distributive lattices

• Complemented modular lattices

• Distributive lattice ordered semigroups

• Ockham algebras

• Ortholattices

• Orthomodular lattices

• Idempotent semirings

• Extra loops

• Digroups

• Commutative dimonoids

A summary from these runs is provided in Table 19.

Table 19. Summary for Algebra Class Runs

Algebra Size Algebra Number of Number of

Class Type Algebras Monolithic

Almost distributive lattices 4 (22) 2 0

BCI-algebras 5 (21) 118 80

Bilattice 6 (24, 11) 32 32

Boolean algebra 8 (22, 11) 1 0

Boolean algebra 16 (22, 11) 1 0

Boolean ring 16 (22) 1 0

Commutative lattice-ordered monoids 5 (23) 199 97

Commutative regular rings 6 (22, 12) 72 66

Complemented distributive lattices 16 (22, 11) 1 0

Complemented distributive lattices 32 (22, 11) 1 0

Complemented modular lattices 8 (22, 11) 41 40

Distributive lattice ordered semigroups 4 (23) 479 170

Ockham algebras 6 (22, 11) 197 20

Ortholattices 7 (22, 11) 46 12

Orthomodular lattices 14 (22, 11) 33 31

Idempotent semiring 5 (22) 149 42

Extra loop 10 (23) 2 1

Digroup 8 (22, 11) 10 3

Commutative dimonoid 4 (22) 101 37
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