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POPULAR SCIENCE SUMMARY OF THE THESIS 

Both before and after birth, the human body undergoes rapid development including cell 

differentiation, organ formation, and organ system development. Environmental exposures 

and stressors during pregnancy and early life may influence these processes and thereby 

future health outcomes, potentially through molecular or epigenetic mechanisms. Epigenetics 

refers to changes in gene activity or function, without modification of the gene’s 

deoxyribonucleic acid (DNA) sequence itself, and for example result in a gene being 

“switched on” or “switched off”. This will in turn affect gene expression processes, i.e., 

whether and when a protein is ultimately created from the instructions contained in this gene. 

Epigenetic changes can be reversible or irreversible, and may also be heritable. The most 

extensively studied epigenetic mechanism is DNA methylation, where cytosine, one of the 

four DNA bases, is turned into 5-methylcytosine. DNA methylation has been proposed to 

constitute a link between genetic and environmental factors. Epigenetic patterns established 

early in life (already in utero) may affect gene expression over a lifetime and have been 

suggested to increase susceptibility to chronic diseases. 

Chronic obstructive pulmonary disease (COPD) is a complex disease considered a major 

global health problem, and tobacco smoking is a major risk factor. Various other factors, such 

as genetics, air pollution, and repeated airway infections have also been shown to influence 

the risk of COPD. However, the role that DNA methylation might play in the pathogenesis of 

COPD has not been comprehensively studied. 

Another complex disease, peanut allergy, is one of the most common food allergies and the 

leading cause of severe allergic reactions (anaphylaxis) among children. Peanut oral 

immunotherapy (pOIT) refers to ingestion of a small amount of peanut over time in a 

controlled manner and can lead to desensitization and tolerance. Combined treatment with the 

pharmaceutical omalizumab, an anti-immunoglobulin E (IgE) antibody that reduces the 

excessive immune response to e.g., peanuts, may facilitate initiation of pOIT in a safe way. 

However, the mechanisms of oral immunotherapy-induced tolerance are not well understood. 

This thesis aimed to identify molecular signatures of early-life exposures, chronic respiratory 

disease, as well as allergy treatment responses. 

In the first study, DNA methylation patterns at birth and later in childhood were investigated 

in relation to the child’s age at birth, counted as gestational age in weeks. This large-scale 

investigation was based on data from 26 independent cohorts from an international PACE 

consortium and revealed that DNA methylation levels at several sites across the genome 

correlate strongly with gestational age. Further analyses of blood from the umbilical cord 

suggested that these changes were likely to capture fetal development across tissues. The 

absolute level of DNA methylation at the majority of the identified methylation sites changed 

during childhood, with many sites tending to catch up in methylation levels by school age and 

then stabilizing. However, we also identified a subset of methylation sites (17%) where 

differences in methylation levels related to gestation age were stable from birth to 



adolescence. Bioinformatics analyses showed that the genes coupled to the identified 

methylation sites could be linked to human diseases, and are likely to be involved in 

biological processes essential for fetal development. Many of the methylation sites also 

affected the expression of nearby genes. 

In the next study, the impact of outdoor exposure to particles of less than 2.5 micrometers in 

size (PM2.5) at birth and current residential address on DNA methylation, and gene expression 

were assessed in childhood and adolescence. We found evidence suggesting that gene 

expression signatures in children and adolescents were associated with PM2.5 exposure levels 

measured at the birth address. When we combined methylation and matched gene expression 

data to PM2.5 exposure we found several examples where both methylation and expression 

levels were affected (called interactome hotspots). Some of the identified genes were 

associated with diseases known to be caused by or worsened by air pollution exposure. 

In the third study, the methylation profiles in cells collected from the lower airways – 

primarily macrophages - were assessed in relation to COPD status and smoking in adults, 

with the aim of gaining further understanding of disease pathogenesis. We found several 

COPD-associated changes in the DNA methylation levels of the target cells, with a strong 

functional link to gene expression levels. Our analyses also suggest that both genetic and 

epigenetic mechanisms play important roles in COPD. 

In the fourth study, the gene expression profiles before, during, and after pOIT were 

evaluated in adolescent patients with severe peanut allergy. Here, we found both up- and 

downregulation of immune-related genes in relation to pOIT and treatment with omalizumab. 

These results may shed light on mechanisms of allergen tolerance. 

In conclusion, the presented results have increased our knowledge regarding the role of DNA 

methylation and gene expression in human development, pollution exposure effects, disease 

mechanisms, and treatment response. The findings may contribute in translational efforts 

bridging epidemiology, experimental research, and clinical care.  



 

 

ABSTRACT 

Environmental exposures and early life stressors may influence developmental processes and 

have long-term health consequences, potentially mediated by molecular mechanisms such as 

epigenetic modifications. The most extensively studied epigenetic mechanism is DNA 

methylation, which has been proposed to constitute a link between genetic and environmental 

factors. Epigenetic patterns established early in life (already in utero) may affect how a gene 

is expressed throughout life, and thereby increase susceptibility to chronic disease. Other 

factors like genetics and repeated airway infections also influence disease risk. 

Chronic obstructive pulmonary disease (COPD) is a complex disease considered a major 

global health problem, with tobacco smoking being one of the main risk factors. The role that 

deoxyribonucleic acid (DNA) methylation might play in the pathogenesis of COPD has not 

been comprehensively studied. Bronchoalveolar lavage (BAL) cells from the airways and 

alveolar space are considered key targets for COPD. Peanut allergy is another complex 

disease – one of the most common food allergies and the leading cause of anaphylaxis among 

children. Peanut oral immunotherapy (pOIT) can lead to desensitization and tolerance, and 

combined treatment with anti-immunoglobulin E (IgE) using omalizumab may facilitate oral 

immunotherapy initiation. The mechanisms of oral immunotherapy-induced tolerance, 

including possible changes at the transcriptional level, are not well understood.  

The main aim of this thesis was to identify molecular signatures of early-life exposures, 

chronic respiratory disease, as well as allergy treatment responses. 

In Study I, the association between gestational age and DNA methylation patterns (at 5´-

cytosine-phosphate-guanine-3´ sites, CpGs, across the genome) was investigated in newborns 

and older children from the large The Pregnancy And Childhood Epigenetics (PACE) 

consortium meta-analysis, including 11,000 participants in 26 independent cohorts. Changes 

in DNA methylation associated with gestational age were explored in additional pediatric 

cohorts at 4–18 years. The functional follow-up and correlation analyses between DNA 

methylation and gene expression were performed using cord blood. In addition, we evaluated 

DNA methylation profiles in other relevant tissues (fetal brain and lung) related to gestational 

age. We found numerous epigenome-wide differentially methylated CpGs related to 

gestational age at birth. Notably, many of the identified CpGs had not previously been 

associated with gestational age. Several CpGs affected the expression of nearby genes, 

displayed a strong functional link with human diseases, and were enriched in biological 

processes essential for fetal development. The epigenetic plasticity of fetal development 

across tissues was captured by many methylation sites. However, the majority of methylation 

levels underwent changes over time and stabilized after school age. 

In Study II, the impact of outdoor exposure to particles of less than 2.5 micrometers in size 

(PM2.5) at birth and current residential address on gene expression was explored in childhood 

and adolescence in the MeDALL consortium encompassing three European birth cohorts. In 

addition, the functional molecular patterns of PM2.5 exposure were evaluated by integrating 



protein-protein interaction and genome-wide gene expression with matched DNA 

methylation. We found evidence suggestive of gene signatures in children and adolescents 

associated with PM2.5 exposure at birth. However, the integration of multi-omics profiles 

revealed several epigenetic deregulation gene module interactome hotspots where both 

methylation and expression levels were affected by PM2.5 exposure at birth and current 

address. Some of the identified genes were associated with diseases known to be caused by or 

worsened by air pollution exposure. 

In Study III, the pivotal role of DNA methylation profiles in BAL cells primarily 

macrophages was assessed in relation to COPD status and smoking in adults, to gain a further 

understanding of the disease pathogenesis. Several CpGs were associated with COPD in BAL 

cells, across the epigenome. Many of the identified CpGs displayed a strong functional link 

with gene expression and pathways enriched in cancer, various types of cell junctions, and 

cyclic adenosine monophosphate (cAMP) and Rap1 signaling. Notably, almost half of the 

CpGs co-located in the proximity of COPD-associated single nucleotide polymorphisms, 

which suggests that both genetic and epigenetic mechanisms are of importance at certain loci. 

In Study IV, the blood gene expression profiles before, during, and after pOIT and 

Omalizumab (O, an anti-IgE monoclonal antibody) treatment were evaluated in adolescent 

patients with severe peanut allergy using high-throughput ribonucleic acid (RNA) 

sequencing. At the first two timepoints, baseline and pOIT start, we investigated if there was 

an effect of omalizumab treatment on gene expression. In addition, a longitudinal analysis 

was performed to evaluate the combined effect of pOIT with Omalizumab (pOIT+O). We 

also evaluated the overlap of pOIT+O-associated genes with genes associated with acute 

peanut allergic reactions in a previously published clinical study by Watson et al1. First, we 

showed that the blood gene expression of patients with peanut allergy was not altered by 

omalizumab treatment alone. However, the combined effect of pOIT+O showed up- and 

downregulation of several genes involved in T-cell functions and immune responses. 

Furthermore, comparing our findings with genes previously found to be affected during acute 

peanut allergic reactions suggested that pOIT+O may play a role in altering the same genes 

(in the opposite direction). 

In conclusion, we demonstrated that DNA methylation profiles are related to gestational age 

at birth. The identified methylation sites were linked to human diseases and are likely to be 

involved in biological processes essential for fetal development. Most of the methylation sites 

also affect expression of nearby genes and reflect epigenetic plasticity of fetal development 

across tissues. We highlighted the added value of multi-omics analyses in relation to 

information on PM2.5 exposure that may enhance the understanding of molecular mechanisms 

and biological responses induced by air pollutants. Moreover, we revealed COPD-associated 

methylation changes in macrophage-dense BAL cells with a strong functional link to 

different pathways and gene expression. Both genetic and epigenetic mechanisms play 

important roles at certain loci. We also provided insights into the transcriptome profiles 

during pOIT and combined treatment with omalizumab.   
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1 BACKGROUND 

1.1 MOLECULAR BIOLOGY AND BIOINFORMATICS TOOLS  

Molecular biology studies the chemical structure and different biological processes in the 

basic units of life, such as DNA, RNA, and proteins. It also evaluates the interaction of these 

macromolecules at a cellular level2,3. According to the central dogma of molecular biology, 

the information flow is consecutive starting from DNA to RNA and then to protein4 (Figure 

1). The chemical modifications of DNA by the environment without changing the sequence 

of DNA are called epigenetic, which may lead to the modification of genes at the 

transcriptomic level. In this thesis, epigenetic and transcriptomic molecular biological 

processes were explored, described in detail in the following sections.  

 

 

Figure 1. The central dogma of molecular biology information flow. 

 

In recent years, numerous multi-omics data have been generated, and various bioinformatic 

tools have been developed to analyze such large-scale datasets. These approaches contribute 

to identifying potential biomarkers and give a functional interpretation of those markers. The 

application of bioinformatics is also discussed in the following section.     

1.1.1 Epigenetics 

Epigenetics studies heritable changes in gene activity or function that occur without 

modification of the DNA sequence. The epigenetic changes can occur during cell 

differentiation, X-chromosome inactivation, embryogenesis, and genomic imprinting5,6. DNA 

methylation, histone modifications, and non-coding RNAs are parts of the epigenetic 

processes7. The most extensively studied epigenetic mechanism is DNA methylation, where 
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5-methylcytosine occurs by transferring a methyl group onto the C5 position of cytosine. 

DNA methylation has been proposed to constitute a link between genetic and environmental 

factors8. In the event of disease, the abnormal response and behavior of the cell could be 

regulated by changes in DNA methylation patterns frequently induced by environmental 

factors, causing the alteration of the gene activity9-11.  In addition, the change in DNA 

methylation level could transmit across human generations12, and age-associated changes 

might occur even in the absence of disease13. Some of the studies included in this thesis focus 

on DNA methylation driven by early life exposure and disease status; details can be found in 

the upcoming sections. 

1.1.2 Transcriptomics  

A gene is usually subdivided into coding regions (exons) and non-coding regions (introns).  

Exons are the functional part of a gene where messenger RNA molecules are produced as the 

result of the transcription of the genetic sequence. However, in the splicing process, the 

introns are removed.  During the gene activation, a set of mRNAs called transcripts are 

generated to form the transcriptome. The study of the transcriptome using mRNA expression 

is called transcriptomics. The expression levels can be assessed using both sequencing-based 

and microarray-based methods. In the upcoming section, detailed information on the 

transcriptomic studies included in this thesis can be found.      

1.1.3 Application of bioinformatics tools 

Substantial efforts have been made until today to develop appropriate statistical models and 

bioinformatics tools to get meaningful biological information out of the heterogeneous and 

high-dimensional data generated by high-throughput technologies. To unravel associations 

between DNA methylation and exposures or disease, many computational methods have been 

developed that can be applied in epigenome-wide association studies (EWAS)14. These 

bioinformatics aim to process and analyze the methylation data. Similarly, various methods 

have also been developed to process and analyze gene expression data15. Analyzing only 

single-level omics profiling can give important information about involved mechanisms, but 

will not fully elucidate a complex biological response. Combining and integrating various 

omics levels may therefore help to better understand the holistic underlying biological 

mechanisms16. To overcome these major challenges, different analytical protocols and 

computational tools have been developed to integrate the different layers of omics17,18. Many 

bioinformatic tools, computational capacity, and statistical methods have also been developed 

to provide the functional interpretation of the interaction between genes or proteins19. Those 

tools depend on already created databases by assembling thousands of reported literature 

interactions and enriching important biological information20. The most common biological 

databases used by most of the tools include Gene Ontology (GO) which characterizes and 

categorizes the functions of genes and their products according to biological processes, 

molecular functions, and cellular components21, and functional databases such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG)22 and Reactome pathway23.  Utilizing 

different functional analysis tools can enhance our understanding of the underlying biological 
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mechanisms of a large list of genes or proteins generated from high-throughput genomics and 

proteomics technologies24. 

1.2 GESTATIONAL AGE 

1.2.1 Health effects of preterm birth and low gestational age 

Gestational age measures pregnancy length and the time a fetus grows inside the mother's 

womb, commonly assessed based on ultrasound estimations or the date of the last menstrual 

period25. Around 1 in 10 babies are born prematurely (birth before 37 weeks gestation), 

according to the World Health Organization, often with no apparent cause although several 

risk factors have been established (see below). Preterm birth is the leading cause of neonatal 

morbidity and mortality26,27, as well as long-term morbidity and impaired health conditions28-

31. Children surviving birth at a very low gestational age are more likely to have major health 

challenges, including retinopathy of prematurity, bronchopulmonary dysplasia, and 

cardiovascular and neurodevelopmental impairment32-36. Infants born moderately preterm 

(between 32 and 36 completed weeks of gestation) are also observed to have lower lung 

function compared to those born at term37. Moreover, learning disabilities, sensory defects, 

and respiratory illnesses are shown to be more prevalent in preterm-born children38.   

1.2.2 Gestational age and DNA methylation 

It is well known that preterm birth is associated with many risk factors, including multiple 

pregnancies, smoking, maternal stress, and intrauterine infections, ethnicity, and genetic 

factors39-44. Many of these have also been associated with DNA methylation patterns, which 

may constitute an important link between exposure and outcome45,46. The epigenetic patterns 

related to such exposures potentially influence gene expression profiles that can lead to 

chronic diseases later in life47-49. Several previous studies have reported the link between 

gestational age and cord blood DNA methylation among both term and preterm births50-55. 

Although DNA methylation patterns related to gestational age have been identified at birth, 

little is known about the stability and persistence of these methylation changes over time. In a 

comparison of children born preterm and term, numerous loci identified as differentially 

methylated at birth were also associated with body size and height at school-age, with a 

potential link to bone mineralization processes56. A longitudinal EWAS comparing 

individuals born preterm to those born at term reported numerous methylation differences at 

birth. Interestingly, some CpG sites distinguishing preterm and term birth have been observed 

at 18 years of age, reflecting a lasting epigenetic effect47. Further knowledge of the role of 

DNA methylation and gene expression on the length of gestation will increase our 

understanding of the molecular basis of the aberrant process of prematurity and normal 

human development.    
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1.3 AIR POLLUTION EXPOSURE  

1.3.1 Air pollution exposure and health effects 

Air pollution constitutes a mixture of solid and liquid particles with different chemical and 

biological properties, such as particulate matter (PM), several gases, including ozone (O3), 

nitrogen oxides (NOx), and carbon monoxide (CO), as well as vapors like volatile organic 

compounds57. Particulate matter is a general term used for particles of different origins, sizes, 

shapes, and chemical and physical properties, suspended in air. PM are labeled depending on 

their size: particles having an aerodynamic diameter < 10 μm, PM10; fine PM2.5 representing 

particles less than 2.5 μm in diameter; and ultrafine PM with an aerodynamic diameter of 

<0.1 μm, PM0.1. PM10 only reach the proximal airways and are usually removed by 

mucociliary clearance if the airway mucosa is intact. However, fine, and ultrafine PM are 

able to access the lower parts of the human airway passages and the circulation system as 

they bypass the alveolar wall58. NOx has two components, nitrogen oxide (NO) and nitrogen 

dioxide (NO2).  

The major source of NOx is automobile exhaust. The combustion processes are the primary 

source of fine and ultrafine PM, but some also as secondary particles from semi-volatile 

compounds.  PM is mainly derived from re-suspended road dust, originated from the 

mechanical wear of tires and brake lining of the vehicles, road surface wear as well as 

sanding/salting of roads.  

Outdoor air pollution has been estimated to cause 4.2 million premature deaths every year, 

according to WHO59. In epidemiological studies, air pollution exposure has also been linked 

to different health effects, such as adverse pregnancy outcomes60, childhood airway disease61, 

COPD62, and neurodevelopmental disorders63 (e.g., reduction in fundamental cognitive 

development64 and autism spectrum disorder65).  Previous studies have shown that children 

are particularly sensitive to the adverse effects of air pollution, and that timing of exposure 

plays a critical role in subsequent pathophysiological changes later in life. In the Swedish 

cohort BAMSE, exposure to air pollution during the first year of life has been associated with 

asthma, and lung function impairment in children up to school age and adolescence, as well 

as with chronic bronchitis and airflow limitation up to young adulthood66-71. Although the 

exact mechanisms underlying such adverse health effects of air pollution are unclear, several 

studies have suggested pollutant-induced oxidative stress and systemic inflammation as 

potential intermediate biological responses to exposure72,73. Overall, the present evidence 

indicates that traffic air pollution exposure is related to molecular changes through oxidative 

stress and systemic inflammation74. Yet, the exact mechanisms are not known. 

1.3.2 Molecular changes induced by air pollution exposure 

In the past, many single-level omics studies of environmental exposure, including air 

pollution effects on DNA methylation75-80 and gene expression81-84, were conducted. 

Moreover, the recent large-scale study of long-term PM2.5 exposure on gene expression 

revealed several genes involved in cell signaling and immune response85. While analyses 
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using individual gene expression or DNA methylation profiling can give important 

information about either transcriptomic or epigenetic mechanisms, such an approach may be 

insufficient to reveal the complex biological response to air pollution exposure. In contrast, 

the integration of omics data may shed new light on gene modules or molecular pathways 

underlying negative health effects86,87. Combining and integrating multi-omics levels may 

help to better understand the holistic biological mechanisms16. In addition, it has been 

suggested that omics integration may enhance study power with an increased likelihood of 

identifying biologically relevant mechanisms88,89. For example, in the recent integrative study 

of methylome and transcriptome of human cardiomyocytes, multiple altered methylomes and 

transcriptome signatures in the cardiac disease-specific genes following PM2.5 exposure have 

been reported90. At present, human studies of environmental exposures combining different -

omics data are, however, scarce91. 

1.4 CHRONIC OBSTRUCTIVE PULMONARY DISEASE 

1.4.1 Prevalence and definition of COPD  

COPD is one of the complex diseases that constitute a major global health problem and is the 

third leading cause of death in the world92. About 384 million people suffer from COPD 

worldwide, and in Sweden, almost 500,000 people are affected by the disease93-95. Tobacco 

smoking is the major cause of COPD. Among the elderly tobacco smokers, approximately 

fifty percent develop COPD96. Yet, it is a puzzle why some but not all develop COPD. Both 

genetic and environmental exposures contribute to the risk of COPD.  Indoor and outdoor air 

pollution, including occupational exposure to organic and inorganic dust and chemicals, are 

the key environmental risk factors for COPD93. 

Furthermore, children and young adults with impaired lung function have been shown to have 

an increased risk of COPD later in life97,98. There are different early life risk factors linked to 

the development of irreversible airflow limitation, which is a key feature in COPD, including 

parental asthma, asthma, childhood respiratory tract infections, and exposure to air 

pollution66. Prematurely born children often follow a low lung function trajectory and may 

not reach the peak lung function in early adulthood, which potentially contributes to the 

development of COPD later in life99-101.  

It has been demonstrated that the contribution of genetic factors is important in COPD. 

Several COPD-associated genetic variants have been identified in large genome-wide 

association studies102. In addition, a twin study has shown that 40-60% of COPD 

susceptibility is explained by genetic factors103,104. The accumulated gene-environment 

interaction that the individual encounter over the life span may also contribute to the 

development of COPD105.   

Historically, various definitions of COPD have been used. Recently, The Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) harmonized and united the view and definition of 

COPD93. In this thesis, the GOLD guideline was used to define COPD (Table 1).  
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COPD is characterized by airflow limitation and persistent respiratory symptoms, including 

dyspnea. The observed airflow limitation can be caused by emphysema, inflammation of the 

central airways, and/or obstruction of the small peripheral airways93. COPD is also linked 

with other diseases, including lung cancer, cardiovascular disease, osteoporosis, skeletal 

muscle dysfunction, diabetes, and depression106. 

1.4.2 DNA methylation in COPD 

The potential risk factors of COPD, such as cigarette smoking, and air pollution, may also 

induce DNA methylation changes following these exposures107,108. The overlap of DNA 

methylation network modules from fetal and adult lung tissues reveals the disease pathways 

linked with the exposure-related and age-associated developmental origin of COPD109. The 

role that DNA methylation might play in the pathogenesis of COPD has not yet been studied 

comprehensively. A systematic review by Machin et al. showed that COPD EWASs on 

peripheral blood have found no consistent differences110. However, studies based on cells 

from the main target organ of the disease (lung tissue and bronchial brushings) have 

identified consistent findings111,112; and previous transcriptomic studies on COPD also show 

rather strong associations113. Despite the great interest and intense research in DNA 

methylation patterns on target organs and surrogate tissue from COPD subjects and controls, 

no study has evaluated DNA methylation patterns in cells from airways on bronchoalveolar 

lavage (BAL) cells to date. 

1.5 PEANUT ALLERGY AND ORAL IMMUNOTHERAPY 

1.5.1 Peanut allergy  

Peanut allergy is an IgE-mediated disease that affects approximately 2% of the population in 

high-income countries114. It is a complex disease that for many patients is a lifelong 

condition115 starting early in life. However, about 20% of affected children may outgrow their 

peanut allergy116. In the first decade of the 21st century, the prevalence of peanut allergy has 
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increased in the United States117. A similar trend was also observed from nationwide United 

Kingdom (UK) records between 2001 and 2005118. In addition, the population birth cohort 

BAMSE in Stockholm (Sweden) showed an increase in self-reported peanut allergy and 

serum IgE-sensitization between 4- and 8-year-olds119. Some peanut-allergic individuals have 

a severe disease that may lead to anaphylaxis after peanut allergen ingestion. A Swedish 

study on emergency-care visits showed that about 19% of food-induced anaphylaxis in 

children was caused by peanuts120, which is in line with data observed worldwide121.  

1.5.2 Oral immunotherapy  

In recent years, oral immunotherapy (OIT) has emerged as a promising treatment for children 

with different IgE-mediated food allergies. It has a success rate of desensitizing (i.e., loss of 

IgE sensitization) up to 80% in children with persistent food allergies like peanut, milk, egg, 

or wheat122-124. However, safety issues and adverse events, such as severe allergic reactions, 

must be considered125. Oral immunotherapy protocols outline ingestion of the allergen in a 

controlled manner with gradually increasing dosages, rendering the individual to become 

desensitized and, if continued, may eventually result in tolerance. Specifically, peanut oral 

immunotherapy (pOIT) can induce desensitization and then tolerance126. Although the 

pathogenesis of food allergy is relatively well-studied127, mechanisms of OIT-induced 

tolerance are not well understood. However, it is known that OIT impacts multiple cell types 

that can act together to adapt the immune response and lead to desensitization. Still, not all 

patients respond to OIT, for some the effect is very limited and short-lived128,129.  

Omalizumab (an anti-IgE monoclonal antibody), which is used as a treatment for severe 

allergic asthma and other IgE-driven allergies, can also facilitate OIT initiation130. However, 

little is known about the involved mechanisms, including possible changes at the 

transcriptional level. 

1.5.3 Transcriptional changes in peanut oral immunotherapy 

Even though we are beginning to understand the immunological events associated with 

desensitization in peanut OIT, studies on transcriptional changes may further increase our 

understanding of the underlining mechanisms and identify potential biomarkers of successful 

pOIT. This will be valuable both when using pOIT in the clinic and may help peanut-allergic 

individuals, especially those that are non- or low responders to OIT. Transcriptional changes 

associated with pOIT have not yet been studied extensively. A few studies have used singe 

cells RNA-seq to investigate peanut-specific CD4+ T cells and regulatory immune cell 

populations to understand successful desensitization in those undergoing pOIT131,132. 

However, little is known about the effect of pOIT on the blood transcriptome level.  
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2 AIMS 

The overarching aim of this thesis was to identify molecular signatures of early-life 

exposures, chronic respiratory disease, and allergy treatment response by applying 

appropriate computational and statistical methods in a molecular epidemiological framework. 

 

The specific aims of this thesis were: 

I. To investigate the association of gestational age with DNA methylation patterns in 

newborns and older children 

II. To assess the impact of air pollution exposure on gene expression and DNA 

methylation profiles in childhood and adolescence 

III. To characterize DNA methylation patterns in BAL lung cells related to chronic 

obstructive pulmonary disease, COPD 

IV. To explore changes in transcriptomic profiles during omalizumab treatment and oral 

immunotherapy for peanut allergy 
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3 MATERIALS AND METHODS 

3.1 DATA SOURCES 

Study I utilized individual participant data from 39 birth and child cohorts (including 

BAMSE described below) based in 14 countries in Europe, the United States of America 

(USA), Canada, and Australia, participating in the PACE consortium. Study II used data 

from the European MeDALL consortium that includes BAMSE and additional six European 

cohorts of younger children and six older cohorts (up to adolescence). Study III obtained 

data from the Swedish KOLIN study, and data from the Swedish FASTX study were 

analyzed in Study IV. 

3.1.1 BAMSE birth cohort 

The Barn (Children), Allergi (Allergy), Miljö (Environment), Stockholm, Epidemiologi 

(Epidemiology) (BAMSE) birth cohort is an ongoing prospective study from Stockholm, 

Sweden133. Enrollment occurred between February 1994 and November 1996 at the first child 

health visit from four predefined areas of Stockholm County (Järfälla, Solna, Sundbyberg, 

and parts of Stockholm inner-city), Figure 2. The study area represents the inner city, urban 

and suburban areas with different housing types, socio-demographic characteristics, and 

environmental exposures, including traffic-related air pollution levels.  

 

 

Figure 2. The four predefined recruitment areas included in the BAMSE birth cohort of Stockholm 

County, Sweden.  
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When the children were two months of age, their parents received a questionnaire on parental 

allergies and various exposures (e.g., housing characteristics and lifestyle factors). Out of the 

7,221 newborns in the study area, 477 had unavailable addresses, 502 declined participation, 

897 never answered the questionnaire, and 1,256 were actively excluded; either the family 

planned to move within a year, did not sufficiently understand Swedish, had a seriously ill 

child, or an older sibling already enrolled. In the end, a total of 4,089 children were included. 

At ages 1, 2, 4, 8, 12, and 16 years of the children, the parents received repeated 

questionnaires focused on symptoms of allergic disease in their children, as well as on 

various risk factors134. The survey response rates were 96%, 94%, 91%, 84%, 82%, and 78%, 

respectively. All children with completed questionnaires at 4, 8, and 16 years of age were 

invited to a clinical examination, including lung function testing and blood sampling. Blood 

samples are available for 2,605, 2,470, and 2,547 children at the age of 4, 8, and 16, 

respectively, including 1,699 children at all three clinical follow-ups. A summary of the 

follow-ups is illustrated in Figure 3. Additional BAMSE follow-ups have been completed in 

recent years (2016-2019 and 2020-2022), but data from these occasions were not included in 

the present thesis67,135. 

 

Figure 3. The flow chart of the BAMSE birth cohort recruitment and follow-up years of data 

collections. 
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3.1.2 PACE consortium 

The Pregnancy And Childhood Epigenetics (PACE) consortium 

(http://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm)136 is 

comprised of researchers around the world who are interested in studying the early life 

environmental impact on epigenetic changes and human disease. Through this ongoing 

collaboration, methylation data measured through Illumina HumanMethylation450 BeadChip 

from cord blood as well as older ages (up to adolescence) were available. The PACE 

consortium includes 39 birth and child cohorts from 14 counties in Europe, the USA, Canada, 

and Australia. The following cohorts were included in Study I, ALSPAC (UK), BAMSE 

(Sweden), CBC (USA), CHAMACOS (USA), CHS (USA), EDEN (France), EXPOsOMICS 

collaborative European project including (Envirogen (Belgium), PiccoliPlus (Italy), RHEA 

(Greece)), GECKO (The Netherlands), Gen3G (Canada), Generation R (The Netherlands), 

GOYA (Denmark), INMA (Spain), IoW (1st generation) (UK), IoW (2nd generation) (UK), 

MoBA1 (Norway), MoBA2 (Norway),  MoBA3 (Norway),  NFBC1986 (Finland), PIAMA 

(The Netherlands), PREDO (Finland), Project Viva (USA) and RAINE (Australia)136. A 

summary of included birth cohorts in Study I is presented in Table 2. 

3.1.3 MeDALL consortium  

Mechanisms of the Development of ALLergy (MeDALL) consortium137 is an European 

Union-funded project (2010-2015) on the origin and mechanisms of IgE‐associated allergic 

diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy in children. The 

aim was to investigate how and which environmental factors influence the initiation of 

allergy. The MeDALL project includes six cohorts with younger children and seven older 

cohorts (up to adolescence) from 10 European countries. The following three European birth 

cohorts were included in Study II, BAMSE133 (Sweden), GINIplus138 (Germany), and 

INMA139 (Spain). A summary of included birth cohorts in Study II is presented in Table 3. 

3.1.4 KOLIN study 

Respiratory and Cardiovascular Effects in COPD (KOLIN) is a mechanistic bronchoscopy-

based cross-sectional study designed to investigate COPD, particularly the rapid lung 

function decline phenotype140. In the recruitment phase, KOLIN used data from the 

longitudinal Obstructive Lung disease In Northern Sweden (OLIN) COPD study to identify 

potential COPD subjects with rapid and non-rapid decline; ever-smoker and non-smoker 

controls with the aim to include 15 participants in each of the four groups. OLIN COPD is a 

prospective longitudinal population-based case-referent study within the OLIN studies141. 

The OLIN studies are part of an epidemiological research program including four adult 

cohorts; the first was founded in 1985 and the fourth in 1996 in Norrbotten, the northernmost 

part of Sweden. Initially, the project had a focus on asthma. However, it expanded to multiple 

research fields over the years, including COPD, allergy, and health economy. In 2002-2004, 

invitations for re-examination were sent to participants from four previous OLIN cohorts who 

had performed spirometry and/or completed structured interviews (n ≈ 4200). A total of 993 

subjects with airway obstruction (FEV1/VC< 0.7) and sex- and age-matched controls were 

http://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm
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included in OLIN COPD. In total n=1,986 individuals were followed every year from 2005 to 

measure spirometry, body mass index (BMI), and to answer structured interviews. At the 

follow-up in 2010, the first phase of KOLIN recruitment was conducted but did not identify 

enough COPD subjects. Thus, a second phase was conducted in 2012/2013. Participants who 

fulfilled the pre-determined criteria regarding lung function, annual FEV1 decline, and 

smoking history in the OLIN COPD study population were specifically selected for potential 

bronchoscopy and in-depth clinical investigation and biomarker analyses. In total, 162 

individuals were identified as potential KOLIN study subjects. Of these, 52 individuals were 

included in the final study population (Figure 4), but 15 non-smokers were excluded from 

Study III analysis, leaving 37 subjects to undergo bronchoscopy and other investigations.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The flow chart of the KOLIN study, bronchoscopy and BAL cell collection. 

 

The most common reason for non-participation among potential KOLIN subjects was an 

unwillingness to undergo bronchoscopy, severe or unstable cardiovascular disease, or other 

significant diseases like dementia, cancer, and porphyria. In addition, participants were 

excluded if they had asthma, systemic disease, and/or treatment with immune-modulating 

therapy, or clinical signs of upper or lower respiratory tract infection within the last six 

weeks. The participants underwent clinical examination, spirometry, electrocardiogram, 

routine blood tests, and bronchoscopy (for collecting BAL, bronchial wash (2 x 20 ml), and 

biopsies).  
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3.1.5 FASTX study 

The FASTX (Food Allergen Suppression Therapy with Xolair®) study is an open one-armed 

exploratory phase-2 study of pOIT combined with omalizumab treatment. The study includes 

peanut-allergic adolescents (n=23) with documented anaphylactic reactions to peanuts within 

the last five years and with a positive peanut basophil activation test (BAT/CD-sens142,143). 

Twenty-three participants with severe allergy were selected out of 41 screened participants. 

The excluded 18 participants had very high or low total serum IgE levels, or negative 

BAT/CD-sens to peanut and concordant allergens. The recruitment of patients was performed 

at the outpatient allergy clinic at Sachs' Children and Youth Hospital or referred by pediatric 

allergists in the Stockholm area to the study team. However, some patients or parents 

contacted the study team directly after hearing or reading about the listed clinical trials on the 

clinicaltrials.gov website. In addition, all the patients were required to have a concomitant 

allergy to either pollen or pets. Information regarding included patients and clinical outcomes 

has previously been described in detail144-146. For the study outline, see Figure 5.  

 

 

Figure 5. The flow chart of the FASTX study treatment protocol. 
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The study was divided into two parts. First, the patients were treated with omalizumab at 

individual recommended dosages (dosages for allergic asthma) for an initial 8-week period. 

For some patients, additional periods were needed until the BAT/CD-sens analysis showed 

suppressed reactivity to peanut145,146. In the second part, all patients underwent an open 

peanut challenge (pOIT start) before starting peanut OIT (pOIT) at 280 mg of peanut protein 

combined with omalizumab treatment. The peanut dose was gradually increased every two 

weeks, if tolerated, until reaching a maintenance dose of 2800 mg. After eight weeks on the 

maintenance dose, patients decreased the omalizumab dose by 50% (Maintenance). After 

that, they continued to reduce the omalizumab by 50 % every eighth week if pOIT was 

tolerated and BAT/CD-sens suppressed. Eleven patients (treatment success) were able to 

tolerate pOIT without omalizumab protection for >8 weeks and then pass an open peanut 

food challenge (Final). Six patients (treatment failure) could not discontinue omalizumab, but 

blood samples were obtained for analysis after 2-3 years of omalizumab treatment (Final). 

Six patients dropped out of the study (the treatment protocol is summarized in Figure 5). 

3.2 STUDY POPULATIONS 

The study population of Study I was based on the PACE consortium, including 11,000 

participants in 26 independent cohorts with available cord and/or peripheral blood DNA 

methylation as well as information on gestational age. Women with multiple births and 

gestational age of more than 42 weeks (294 days) were excluded. In total, 20 cohorts with 

data on newborns (n = 6,885), four cohorts in early childhood (4–5 years; n = 736), five 

cohorts at school age (7–9 years; n = 1,445), and five cohorts in adolescence (16–18 years; 

n = 1,934) were included. However, after excluding participants with maternal complications 

(i.e., maternal pre-eclampsia, diabetes, or hypertension) and cesarean section delivery or 

delivery start with induction, 17 cohorts of newborns (n = 3,648), four cohorts in early 

childhood (n = 453), five cohorts in school-age (n = 899) and five cohorts in adolescence 

(n = 1,129) were included in the final analyses. Four of the included cohorts had data both at 

birth and at an older age (Table 2). 
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In Study II, 656 participants from the MeDALL consortium of three European birth cohorts, 

BAMSE (n=244), GINIplus (n=247), and INMA (n=165), with available gene expression and 

PM2.5 air pollution exposure were included. Moreover, matched DNA methylation data were 

available from BAMSE (n=240) and INMA (n=103) cohorts. (Table 3).  

 

 

 

Study III was based on the cross-sectional KOLIN study of 18 COPD subjects and 15 

controls (ex- and current smokers with normal lung function) who underwent bronchoscopy 

to collect BAL cells for cellular analyses and DNA extraction. 

The final Study IV comprised peanut-allergic adolescents (n=17) who had been treated with 

omalizumab for eight weeks, followed by a stepwise increase of daily peanut ingestion and 

subsequent withdrawal of omalizumab. Finally, an open peanut challenge was performed. 

Peripheral blood cells were collected before and three times during pOIT. 

 

3.3 EXPOSURE AND OUTCOME ASSESSMENTS 

3.3.1 Gestational age  

In Study I, gestational age in days was obtained from each cohort based on birth certificates, 

and medical records using ultrasound estimation or last menstrual period date, (or combined 

estimate). Otherwise, this information was extracted from self-administrated questionnaires. 

3.3.2 Outdoor air pollution 

In Study II, annual average traffic-PM2.5 concentrations were estimated at the home address 

at birth and at the time of bio-sampling for each study participant in the MeDALL cohorts 

using land-use regression (LUR) models developed through the ESCAPE (European Study of 

Cohorts for Air Pollution Effects) project147. A total of 20 PM sampling sites were selected in 

each study area to characterize the spatial distribution of air pollution and residential 

addresses of cohort participants in these areas. In each site, the measurements were performed 

three times during two weeks in the cold, warm, and intermediate seasons, and the results 
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were averaged to estimate the annual average after adjusting for temporal variation using a 

background reference site located centrally. LUR models were developed for PM2.5 based on 

measured yearly average concentrations and additional predictors of geographic variables 

from both European and local databases. To explain the spatial variation of PM2.5 

concentrations in the model, supervised forward stepwise procedures were performed by 

including additional predictors such as digital road network, land use, population density, 

altitude, and study-specific local data. In addition, traffic intensity on the nearest street and 

traffic load on all major roads within a 100m buffer were considered in the model. Modeling 

was done locally at each center using a common exposure assessment manual 

(http://www.escapeproject.eu/manuals/) following harmonized procedures regarding air 

pollutants measurements, development of land-use regression models, and validation147. The 

models were then used to estimate annual average PM2.5 concentrations at the birth addresses, 

as well as the current addresses at the time of blood sampling. 

3.3.3 COPD 

In Study III, the participants’ COPD status was assigned using GOLD stage 2-3148 

(FEV1/VC < 0.70 and FEV1 30-80% of predicted) with a rapid decline (FEV1 decline ≥60 

ml/year) or non-rapid decline (FEV1 decline ≤30 ml/year). Additionally, all the participants 

had a smoking history of at least ten pack-years at baseline. Conversely, the control groups 

had a similar smoking history at baseline but had normal lung function (FEV1/VC ≥ 70% and 

FEV1 ≥80% of predicted) and a decline in FEV1<20 ml/year. 

3.3.4 Peanut oral immunotherapy 

In the final Study IV, pOIT combined with omalizumab was given to peanut-allergic 

adolescents with documented anaphylactic reactions to peanuts and positive for peanut-

specific BAT. At baseline, the patients were first challenged with 0.1 mg of peanuts proteins 

and then, the dose was increased every 30 minutes (1 mg, 10 mg, 100 mg, 1 g, and 10 g) to 

confirm that they reacted to peanuts clinically. The challenge was only stopped if anaphylaxis 

was on the verge of breaking out. Moreover, the physician limited the dose or dosing 

intervals depending on the patient's situation. However, in the absence of anaphylaxis, no 

medication was given besides the common practice; instead, patients were under very close 

supervision with emergency treatment drugs readily available.  

Detailed information about the treatment procedure can be found in section 3.1.5. 

3.4 OTHER COVARIATES  

The covariate variables for Studies I-IV are summarized in Table 4. The definitions of 

covariates in Study I and II were harmonized across all included cohorts in the PACE and 

MeDALL consortia, respectively. In Study III and Study IV, the covariates were defined 

according to KOLIN and FASTX study protocols, respectively.  

 

http://www.escapeproject.eu/manuals/
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3.5 SPIROMETRY  

The participants’ spirometry was measured following the ATS/ERS guidelines149 using a dry 

volume spirometer (Mijnhardt Vicatest 5, the Netherlands) in Study III. The Swedish 

spirometric reference values were applied150. The highest value of forced vital capacity or 

slow vital capacity was defined as vital capacity (VC). If a participant showed values FEV1 < 

80% of predicted or FEV1/VC < 0.70, then a reversibility test (after administration of 400 

micrograms of salbutamol) was performed. The highest value of pre- and post-

bronchodilatation FEV1 and VC was used to define COPD. 

3.6 BRONCHOSCOPY 

The same medical team performed bronchoscopies in Study III at Luleå Hospital (the 

Division of Respiratory Medicine and Allergy, Department of Medicine, Sunderby Central 

Hospital of Norrbotten Luleå, Sweden) and Umeå Hospital (the Division of Respiratory 

Medicine and Allergy, Department of Medicine, University Hospital, Umeå, Sweden). 

Premedication was given to the participant 30 min before the procedure with 1.0 mg of 

atropine, but some received midazolam 4–8 mg per os. Lidocaine was used to achieve local 
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anesthesia. A flexible video bronchoscope was inserted into the participant through the mouth 

via a mouthpiece in a supine position. BAL was performed by infusing three aliquots of 

60 ml of sterile sodium chloride (0.9%), pH 7.3, at 37 °C in the middle or lingula lobe. The 

fluid was gently sucked back after each infusion and pooled into a tube placed in iced water. 

The recovered BAL fluid was transported to the laboratory for immediate analysis. 

3.7 DNA METHYLATION ANALYSIS 

Different technologies have been developed throughout the years to investigate DNA 

methylation. In this thesis, genome-wide DNA methylation was assessed using two Illumina 

array-based BeadChip platforms. Detailed descriptions of the two methods are in the 

following sections.  

3.7.1 Illumina Infinium Methylation450 BeadChip 

Cord and peripheral blood samples were collected and stored according to standard 

procedures in the PACE consortium for 11,000 participants from 26 cohorts in Study I. The 

extracted DNA was bisulfite converted using the Zymo EZ DNA MethylationTM kit (Zymo, 

Irvine, CA). Following conversion, the genome-wide methylation status of over 485,000 CpG 

sites was measured using the Illumina HumanMethylation450k BeadChip after randomizing 

the samples in the 96-well plates. GenomeStudio Software processed the raw methylation 

intensities. The level of methylation expressed as β value (β = M/ [c + M + U]), the proport ion 

of intensity of methylated (M) over the sum of methylated (M) and unmethylated (U) probes, 

c is a constant. Each cohort used its quality control, normalization, and batch correction 

pipeline from the standard Bioconductor R packages. In the same way, cord blood DNA 

methylation levels from 38 newborns (open access look-up dataset) were bisulfite converted 

and quality accessed using Illumina HumanMethylation450k BeadChip (see GEO platform: 

GSE62924, https://www.ncbi.nlm.nih.gov/geo/)151. More details about sample selection, 

quality controls, and normalization procedures, including batch correction, can be found in 

the original paper. 

3.7.2 Illumina Infinium MethylationEPIC BeadChip 

In Study III, the genome-wide methylation status of over 866 836 CpG sites was measured 

using DNA extracted from BAL cells of 18 COPD subjects and 15 controls (ex- and current 

smokers with normal lung function). The extracted DNA (500 ng) underwent bisulfite 

conversion using the Zymo EZ DNA MethylationTM kit (Zymo, Irvine, CA). The 96-well 

plates were used to place the sample after randomization and measures by Illumina 

MethylationEPIC BeadChip. The process of raw methylation intensity and measure of 

methylation level was similarly performed as stated in the previous 3.7.1 section. The 

standard Bioconductor R packages were used for quality control, normalization, and batch 

correction. Similarity, BAL cells from 19 smoker and non-smoker individuals' methylation 

(open-access look-up dataset) were processed with MethylationEPIC BeadChip (see GEO 

platform: GSE133062, https://www.ncbi.nlm.nih.gov/geo/)152. More detailed information 

about sample selection and quality controls can be found in the original paper. 

file:///C:/Users/simmer/Documents/Writing%20a%20kappa/Thesis%20draft/Thesis%20draft%20V2_9292022.docx
file:///C:/Users/simmer/Documents/Writing%20a%20kappa/Thesis%20draft/Thesis%20draft%20V2_9292022.docx
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3.8 GENE EXPRESSION ANALYSIS 

A range of technologies has been developed for the purpose of assessing the gene expression 

profile. In this thesis, array-based and sequence-based technologies were used to determine 

the differential gene expression levels, as described in the following section.  

3.8.1 Microarray 

In Study II, whole blood was collected from three MeDALL consortium cohorts, i.e., 

BAMSE (n=244, mean age of 16.7 years), GINIplus (n=247, mean age 15.2 years), and 

INMA (n=165, mean age 4.5 years) by PAXgene tubes, and extraction of RNA was 

processed batch-wise using an extraction kit (QIAGEN, Courtaboeuf, France). Expression 

levels were quality assessed and hybridized by Human Transcriptome Array 2.0 Genechips 

(HTA 2.0, Affymetrix). In Study I, cord blood gene expression levels from 38 newborns 

(look-up) were determined using Affymetrix Human Gene 2.0 Array (see GEO platform: 

GSE48354, https://www.ncbi.nlm.nih.gov/geo/)153. More detailed information about sample 

selection and quality controls can be found in the original paper.  

3.8.2 RNA-sequencing  

In Study IV, peripheral blood cells from (n=17 adolescents, age 12-18 years) were collected 

before and three times during pOIT combined with omalizumab in the FASTX study using 

PAX gene blood RNA tubes (PreAnalytix/Qiagen) and stored at −80 °C. RNA was extracted 

by the PAXgene Blood miRNA kit (PreAnalytiX, QIAGEN, Inc., Germantown, MD, USA) 

and purified with TruSeq Stranded Total RNA using the Qiagen Fastselect human rRNA and 

Globin removal. RNA sequencing was performed in one batch by 150bp paired ends using 

the Illumina NovaSeq-6000 system. RNA sequencing reads were filtered based on their 

quality with FASTQC and trimmed for adapters using TrimGalore (cutadapt 2.8). The 

quantification of gene-level counts was performed by featureCount 1.5.1. In Study III, RNA 

extracted from BAL cells from 19 smoker and non-smoker individuals (look-up) was 

sequenced by 125 bp paired-end on an Illumina HiSeq 2500152. More detailed information 

about sample selection and quality controls can be found in the original paper. 

3.9 ANNOTATIONS AND BIOINFORMATICS RESOURCES  

3.9.1 Annotations 

In Studies I-III, CpG sites were annotated to the target gene using Illumina's annotation 

based on the UCSC database. However, in Study I, we enhanced annotation for nearest genes 

within 10 Mb of each site by the program Snipper154. On the other hand, in Study III, for 

those CpG sites where no target gene was available, the nearest gene was annotated using 

GREAT version 4.0.4155. In Study II, the probes in Illumina 450k were assigned to the gene 

by taking the average value mapped within 200 bp of the TSS. If no probes were found 

within a 200 bp window, but with the first exon, the corresponding average of probes 

mapping to the 1st exon of the gene was assigned. Finally, for a gene with no 200 bp of the 

TSS and first exon probes, we used the average over probes within 1500 bp of the TSS.  

file:///C:/Users/simmer/Documents/Writing%20a%20kappa/Thesis%20draft/Thesis%20draft%20V2_9292022.docx
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The annotation of transcript clusters of gene expression in Study II was performed by 

NetAffx annotation version 36. Whereas RNA-seq in Study IV, the reads were aligned to the 

GRCh38 human reference genome assembly. 

3.9.2 Bioinformatics resources 

In this thesis, we used multiple available online bioinformatic resources. The High-quality 

INTeractomes (HINT) database (http://hint.yulab.org/)156 was utilized to integrate DNA 

methylation and gene expression in Study II. This contains protein-protein interactions 

(PPIs) from 8 interactome resources (BioGRID, MINT, iRefWeb, DIP, IntAct, HPRD, MIPS, 

and the PDB). The two types of PPIs are binary physical and co-complex associations from 

different organisms. After removing duplicates and self-link, 150,199 PPIs remained. 

In addition, functional enrichment analyses of identified genes from Studies I-IV were 

conducted making use of two functional bioinformatic resources based on gene ontology 

(GO, http://geneontology.org/)21,157 and Kyoto Encyclopedia of Genes and Genomes (KEGG, 

https://www.genome.jp/kegg/)22. GO terms describe biological processes, molecular 

functions, and cellular components. The KEGG pathways include known knowledge of 

molecular interaction, reaction and network relation for human diseases, metabolism, cellular 

processes, genetic and environmental information processing, organismal system, and drug 

development22. Furthermore, the Immunological Genome Project RNA-seq dataset 

(ImmGen, https://www.immgen.org/Databrowser19/DatabrowserPage.html)158 was explored 

in Study III to evaluate differentially methylated genes from BAL cells related to changes in 

macrophages. 

3.10 ETHICAL CONSIDERATIONS 

All studies included in this thesis followed the standard study protocols with Helsinki 

Declaration to adhere to high standards of ethical conduct.  

In BAMSE, informed written consent was given by the parents at each of the follow-ups 

between ages of two months up to 16 years. Similarly, in the FASTX study, informed consent 

was provided by the parents, but if the participant was older than 18, informed consent was 

given by the participant him/herself. In KOLIN, the participants gave informed consent (oral 

and written). In all studies information ensuring participants' right to withdrawal and 

confidential treatment of their collected data was given. All data referring to personal identity 

in BAMSE and FASTX were separated from the original database and stored in a different 

database highly protected by firewalls to promote data security. Furthermore, no individual 

data on study subjects are available to persons outside the study team, and biological samples 

are stored in locked freezers and utilized according to standards set by Karolinska Institutet. 

Similarly, in the KOLIN study, consent forms and questionnaires were stored locally on 

paper, and datasets were stored on a select few local computers protected by firewalls in 

accordance with Umeå university guidelines, on a network-attached storage only accessible 

to authenticated users. The same guidelines apply to our collaborative cohorts from MeDALL 

and PACE (albeit with specific national/local rules – see below).  

http://hint.yulab.org/
http://geneontology.org/
https://www.genome.jp/kegg/
https://www.immgen.org/Databrowser19/DatabrowserPage.html
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In BAMSE, the participants received a gift certificate of 500 SEK at the 16-year follow-up as 

reimbursement for the inconvenience and time during the clinical examination. The 

participants have received feedback on their clinical examination results (IgE tests, lung 

function and blood pressure) and in case of any abnormal results, they are advised to seek 

appropriate public health care for further consultation. No information about genetics, 

epigenetics, or transcriptomics analyses results were given to the participants, since these data 

were considered exploratory and not ready for interpretation or use at the individual level.   

In the FASTX study, only severely allergic adolescents were included to get a homogenous 

study population and to offer potentially disease-modifying treatment to those who would 

benefit most. Moreover, adolescents, not younger children, were enrolled in the study to get 

willing participation as a good ethical practice, less trouble during the treatment, and a 

reliable report of potential adverse events as young children have difficulty reporting 

subjective symptoms. All allergic reactions were documented in the participant's medical 

records, according to clinical practice.  

Clinical examination, spirometry, electrocardiogram, routine blood tests and bronchoscopy 

reports in KOLIN study were documented in the participant's medical records, according to 

clinical practice. All subjects received a study-specific identification code, and the code key 

was stored behind locked doors within the premises. To guarantee participants' confidentiality 

and anonymity, data files distributed to researchers were de-identified and included only the 

study-specific identification code. DNA methylation data has been uploaded to the Gene 

Expression Omnibus database repository (GSE198870) without the identification code. 

Participants who underwent bronchoscopy were offered financial compensation for taking 

part in time-consuming examinations. Undergoing the clinical examinations and the above 

different procedures might uncover diseases and/or medical conditions previously unknown 

to the subject. While knowledge about these conditions might be unwanted, the benefit of 

early diagnosis was assessed to exceed the possible harm. In KOLIN, pathological findings 

have been evaluated by physicians, and subjects were informed about the findings and 

offered referral to the appropriate public health care for further consultation. 

In this thesis, we also used data from two big consortia, MeDALL and PACE. Each 

participating cohort followed local/national medical ethical guidelines on recruiting and 

follow-up of their participant with a described study design, inclusion criteria, enrolment, and 

data collection. The PACE consortium has a bottom-up approach with a core principle of 

scientific excellence, transparency, collaboration, disclosure with mutual trust, and 

confidentiality. Each researcher signed a confidentiality statement to keep all exchange 

information confidential. Moreover, each cohort performed independent analysis according to 

a common, pre-specified analysis plan and sent summary statistic results for meta-analysis for 

greater power and novel discovery, or they signed a data transfer agreement for analysis 

based on the General Data Protection Regulation (GDPR) principle of processing and storing 

of data. If a participant in any of the included cohorts in this thesis no longer wants his/her 

information to be available, individual-level data can be expunged. 
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 In Studies I-II, ethical approval has been received for the BAMSE study from the regional 

ethics committee at Karolinska Institutet, Stockholm, Sweden (reference numbers: 93-189, 

98-175,01-475, 02-420, 2010/1474-31/3, and 2011/2037-32). In Study III, the KOLIN study 

was approved by the Regional Ethical Review Board at Umeå University, Sweden (reference 

numbers: 2011-147-31M and 2017-91- 32M). Moreover, the KOLIN study was registered at 

ClinicalTrails.gov; NCT02729220. The ethical committee in Stockholm, Sweden approved 

FASTX Study IV (reference numbers: 2013/827-31/3, 2014/1980-32, 2016/1390-32, 2020–

00807), and the Swedish Drug Agency also approved the study (reference numbers: 5.1–

2013–46183). The FASTX study was registered at EudraCT: 2012–005625–78 and 

ClinicalTrails.gov; NCT02402231. For the Study I PACE consortium and Study II 

MeDALL consortium, local ethical committees in each country approved the study protocol 

and data collection. 

3.11 STATISTICAL ANALYSIS 

All analyses were carried out using R version 3.4.0 or later159 and Bioconductor packages160 

unless stated otherwise.  

3.11.1 Presenting the study characteristics  

The study participant's characteristics were presented as frequency and percentage total in 

Studies I-IV. For continuous variables, mean, median, standard deviation, IQR, and 

minimum and maximum values were presented in Studies I-IV. Fisher exact test and the 

Mann-Whitney U test were used in Study III to assess the difference between COPD cases 

and controls. 

3.11.2 Pearson correlation  

Correlation analysis in Study I and Study II was performed using the Pearson correlation 

test. 

3.11.3 Covariate assessment  

The potential covariates in Studies I-IV were assessed using principal component 

regressions161. 

3.11.4 Epigenome-wide association study 

The EWAS analysis was performed by robust linear regression (rlm in the MASS R 

package162) to estimate the association between DNA methylation and gestational age in 

Study I. Robust linear regression accounts for the potential heteroscedasticity in the 

methylation data. In the same way, the association between DNA methylation and COPD in 

Study III applied the same regression model. In both studies, potential confounders and cell 

types were adjusted for. Detailed information is shown above or can be found in the original 

papers. 
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3.11.5 Differentially methylated regions 

Differentially methylated regions (DMR) in Study I were analyzed using comb-p163 and 

DMRcate164 for meta-analysis of EWAS results. In Study III, only DMRcate was applied to 

identify DMR from the associated EWAS result. Input parameters used for the DMR calling 

are provided in the original papers.   

3.11.6 Transcriptome-wide association study   

The differential gene expression analysis in Study II was performed using the limma 

package in R165. The RNA-seq data in Study IV used DESeq2166 to identify differentially 

expressed genes. Detailed information about the adjusted variables is shown above; or can be 

found in the original papers.  

3.11.7 Cell type correction  

The relative proportions of white blood cells from DNA methylation in Studies I-II were 

estimated by the Houseman method167 using the estimateCellCounts function in the Minfi 

package in R168. The cord blood analyses used the Bakulski reference169 to estimate the 

proportions of 7 blood cell types (nucleated red blood cells, CD4+ T-lymphocytes, CD8+ T-

lymphocytes, NK (natural killer) cells, B-lymphocytes, monocytes, and granulocytes). For 

the whole blood analyses, Reinius reference170,171 was used to estimate the proportions of 6 

cell types (CD4+ T-lymphocytes, CD8+ T-lymphocytes, B-lymphocytes, monocytes, 

granulocytes, and natural killer cells). In contrast, the RNA-seq data in Study IV estimated 

the cell composition via deconvolution through the CIBERSORT method172. In Study III, 

the actual cell type counts were measured for BAL cells which include macrophages, 

lymphocytes, neutrophils, eosinophils, and mast cells. 

3.11.8 Meta-analysis 

The study-specific effect estimates could be combined in a meta-analysis using a weighted 

inverse of the variance. The combined estimates can be calculated either by fixed effect with 

METAL173 or random effect with METASOFT174 tools. In the fixed-effect meta-analysis, a 

similar true effect common to all the studies is assumed whereas, the random effect meta-

analysis considers within- and between-studies variation while estimating the mean of a 

distribution of effects. In Studies I and II, effect estimates from cohort-specific EWAS 

results were subsequently included in a fixed-effect meta-analysis. In the same way, cohort-

specific results of the TWAS were also included in a fixed-effect meta-analysis in Study II. 

Additionally, in Study I, a random-effects model was performed considering between 

studies' heterogeneity by the I2 statistic175. I2 > 50% was defined as a high level of between-

study variation and replaced fixed-effect values with random-effects estimates. 

3.11.9 Longitudinal analysis 

A linear mixed model was applied for longitudinal DNA methylation with gestational age in 

Study I and RNA-sequence of pOITs in Study IV by considering the within-person time 



 

 29 

effect. The models were adjusted for potential confounders in each study shown above or can 

be found in the original papers. In Study I, an interaction term with time was included to 

assess the impact of methylation change over time per day increase in gestational age at 

delivery. 

3.11.10 Epigenetic aging 

In Study IV, the DNA methylation age was calculated using an open-access tool developed 

by Horvath176. The recommended normalization (preprocessQuantile)168 and analysis options 

stated in the software tutorial were applied. A set of variables, including different measures of 

biological age and epigenetic age acceleration, was returned by Horvath's epigenetic age 

calculator. 

3.11.11  Omics analysis  

In recent years, different methodological approaches have been developed to integrate many 

omics platforms and assess their biological meaning. In this thesis, two approaches were used 

to find the link between DNA methylation and gene expression and describe their biological 

meaning. Moreover, the colocalization of identified CpGs with SNPs is also stated in the 

following sections. 

3.11.11.1 Correlation of DNA methylation and gene expression 

DNA methylation and gene expression correlations were tested using publicly available 

paired measured mRNA gene expression (Affymetrix Human Transcriptome Array 2.0) and 

DNA methylation (Illumina Infinium® HumanMethylation450 BeadChip assay) of cord 

blood151,153 in Study I and mRNA gene expression (RNA-seq) and DNA methylation 

(Illumina Infinium® MethylationEPIC BeadChip assay) of BAL cell152 in Study III 

respectively. The transcript levels of genes within the 500kb region of the significant CpGs 

were tested (250 kb upstream and 250 kb downstream). First, the residuals for mRNA 

expression and residuals for DNA methylation were created, and then correlations between 

expression residuals and DNA methylation residuals were evaluated using Pearson 

correlation and linear regression. These residual models were adjusted for potential 

confounders, as stated in the original papers.  

3.11.11.2 Integration of DNA methylation and gene expression 

In Study II, an integrated genome-wide DNA methylation meta-analysis with matched 

transcriptome-wide gene expression meta-analysis on PM2.5, along with PPI, was performed 

using the Functional Epigenetic Module (FEM) algorithm in R package87. The FEM 

algorithm first constructs an integrated network with weights on the network edges from the 

associations' analysis of PM2.5 and both gene expression and DNA methylation. Afterward, 

the inference of the FEMs as heavy subgraphs on this weighted network87. The integration of 

DNA methylation and gene expression profiling was performed after constructing the PPI 

network for hub gene identification from the HINT database.  
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3.11.11.3 Colocalization of differentially methylated CpGs with GWAS 

In Study IV, the evidence of colocalization of genetic and epigenetic variation was evaluated 

by comparing COPD-associated CpGs with the 82 SNPs from a recently published large-

scale GWAS of 35,735 COPD cases and 222,076 controls102. The COPD-associated CpGs 

were located within a 1Mb window (500 kb upstream and 500 kb downstream) surrounding 

the 82 SNPs. In addition, SNPs and CpGs located in the same gene were checked. 

3.11.12 Functional and enrichment analysis 

To gain insight into the functional and biological relevance of differentially methylated and 

expressed genes in Studies I-IV, enrichment analysis of gene ontology and KEGG pathway 

was performed. Overrepresentation analysis (ORA) in Study I and Study III was applied 

using ConsensusPathDB tool177,178 (http://consensuspathdb.org). In Study II, a network-

based pathway annotation tool BinoX179 in PathwAX II web server 

(http://pathwax.sbc.su.se/)180 was used to perform the KEGG pathway enrichment analysis. 

Enrichplot R package181 was employed when visualizing the functional enrichment of GO 

biological processes in Study IV. ORA p-values were calculated using a hypergeometric test, 

and network-based pathway enrichment used binomial distribution to calculate the p-value of 

interactions between genes and pathways after randomizing the network 1,000 times.  

The two-sided doubling mid p-value of the hypergeometric test was also used to assess the 

enrichment of colocalization deferentially methylated CpGs for several biologic annotations 

provided in Illumina Array in Study I and Study III. Likewise, the enrichment of genes 

associated with pOIT and genes associated with peanut allergic reactions in Watson et al.1 in 

Study IV. Furthermore, the enrichment analysis of birth weight EWAS findings182 and the 

gestational age EWAS in Study I used the same method.  

3.11.13  Multiple testing 

In statistical hypothesis testing, there is a 5% chance of incorrectly rejecting the null 

hypotheses (Type I error), even though all the null hypotheses are true. The probability of 

false positive results increases with an increase in the number of null hypothesis tests. When 

controlling for multiple comparisons, the number of false positives reduces with the cost of 

power, which means an increase in false negatives (Type II error). Several methods currently 

exist to control multiple testing by maximizing power and ensuring an acceptable Type I 

error rate. The Bonferroni correction is a method for controlling multiple tests by dividing the 

nominal p-value by the number of tests performed. Bonferroni correction is shown to be too 

conservative in many settings. It assumes independence between the tested associations, 

which is usually not the case in omics analysis where the correlation between tested variables 

is more common. A slightly less conservative method, a one-step Šidák correction183 that 

controls the family-wise error rate, was also developed. Even a more relaxed framework like 

Benjamini-Hochberg FDR correction184 has frequently been used in omics analyses.  

http://consensuspathdb.org/
http://pathwax.sbc.su.se/
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In Study I and Study III, a strict Bonferroni correction for differential methylation analysis 

and the correlations between DNA methylation and gene expression was applied. However, 

the DMR analysis used a one-step Šidák correction for Comb-p and Benjamini-Hochberg 

FDR correction for DMRcate. The differential gene expression analysis in Study II and 

Study IV and integration analysis of genome-wide DNA methylation with matched gene 

expression in Study II applied FDR correction. Similarly, the enrichment p-values in Studies 

I-IV were adjusted for multiple testing using FDR. The multiple testing p-value <0.05 was 

considered statistically significant. 
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4 RESULTS AND DISCUSSION 

4.1 STUDY I: THE INFLUENCE OF GESTATIONAL AGE ON DNA 

METHYLATION 

In this study, we investigated the influence of gestational age in days on blood DNA 

methylation in the large PACE consortium meta-analysis. In total, 3,648 newborns from 17 

cohorts and 2,481 older children from ten cohorts (aged 4-18 years), including four cohorts 

with data both at birth and at an older age, were included in the main “no complication 

model” after excluding participants having pregnancy complications like maternal diabetes, 

hypertension or pre-eclampsia, or cesarean section delivery or delivery starting with 

induction. Detailed information about the participating cohorts and their characteristics, 

including the gestational age range, can be found in Study I (Table 1). 

We identified 8,899 differentially methylated CpGs annotated to 4,966 genes in cord blood 

DNA methylation associated with gestational age at birth across the genome at Bonferroni-

significance p<0.05 with a somewhat more negative (60%) than positive (40%) direction of 

effect. For functional downstream analyses, we selected the loci that included at least three 

adjacent CpGs that survived Bonferroni correction, and those fulfilling the section criterion 

were in total 1,276 CpGs annotated to 325 unique genes. Similarly, we observed a slightly 

more frequent negative (55%) than positive (45%) direction of effect (Figure 6).  

 

Figure 6. Volcano plot for the meta-analysis of DNA methylation at birth related to 

gestational age per week. X-axis: effect size estimates in weeks; y-axis: log10(p-value).  
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The DMR analysis using two independent approaches (comb-p and DMRcate) revealed 

numerous unique regions associated with gestational age at birth. Moreover, the identified 

CpGs were concordant with the larger dataset of 6,885 participants from 20 cohorts “all births 

model” without excluding maternal complications and cesarean section delivery or induced 

delivery. In addition, when the data were restricted to term birth only, we observed consistent 

results, which implies that preterm birth was not driving the majority of the association 

results. We also found a strong enrichment of CpG island shores, enhancers, and DNase I 

hypersensitive sites among the significant CpGs that may suggest the functional importance 

of identified CpGs. 

Notably, many of the 8,899 CpGs overlapped with previously known EWAS of gestational 

age-associated CpGs47,51,52,54,55,185. Importantly, we also found 3,343 novel CpGs annotated to 

2,577 genes that had not been linked with gestational age in previous studies.  

To explore whether the detected gestational age-associated CpGs in cord blood were also 

differentially methylated in other fetal tissues, we used two publicly available datasets based 

on collected prenatally fetal lung186 and fetal brain187. We observed a significant overlap 

between CpGs in cord blood and fetal brain and lung tissues in relation to gestational age. 

Thus, the epigenomic plasticity of prenatal development across tissues was partly captured by 

the cord blood findings. One of the genes in gestational age-associated CpGs with the most 

prominent negative effect estimated in cord blood, NCOR2 was also significant in brain and 

lung fetal tissues. NCOR2 has previously been linked with lung function in GWAS through 

vitamin A metabolism188. It has been suggested that Vitamin A supplementation declines the 

risk of bronchopulmonary dysplasia in extremely preterm-born children189. In addition, 

NCOR2 in neurons is related to aging in methylation levels190. 

The persistence effect of identified gestational age-associated CpGs in cord blood was 

examined using cross-sectional whole blood from older children, including early childhood, 

school age, and adolescence. The cord blood findings were generally not persisted into 

childhood and adolescence. Only cg26385222 CpGs annotated to TMEM176B were related to 

gestational age at birth, childhood, and adolescence. TMEM176B gene was associated with 

gestational age in cord blood in a previous study52 and has been indicated as a potential 

biomarker for various cancers191. The lack of stability at older ages could be explained by the 

smaller sample size, or the later exposures or development may influence the association. 

Similarly, the longitudinal analysis showed that many gestational age-related CpGs at birth 

undergo dynamic changes during early childhood and tend to stabilize in methylation levels 

by school age. However, some of the gestational age-related CpGs at birth (17%) were stable 

over time across childhood and into adolescence (Figure 7).  
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Figure 7.  Three selected single representative CpGs with methylation change from birth to 

adolescence in association with gestational age. (1) Birth to early childhood in the INMA cohort 

and (2) Birth to adolescence in the ALSPAC cohort; (A) The methylation level decreases and 

stabilize after school age. (B) The methylation level increases and stabilize after school age. (C) 

The methylation level is stable from birth to school age/adolescence. The selected methylation beta 

values are shown on the y-axis for each age group (x-axis). Turquoise: birth; blue: early childhood; 

red: childhood school age and golden yellow: adolescence.  

 

The genes annotated to gestational age-related CpGs demonstrated a functional enrichment of 

Gene Ontology biological processes, including embryonic development, regulation of cellular 

and biological processes, and immune system development. Likewise, the subset of 

gestational age-related genes was enriched in pathways of various diseases where low 

gestational age was a known risk factor, such as asthma192, cancer193, inflammatory bowel 

disease194, and type I and type II diabetes195 [71]. Notably, genes annotated to stable CpGs 

across time up to adolescence revealed enrichment of infection- and immune-related 

conditions. 

In addition, the potential functional impact of significant CpGs was explored using paired 

correlation of DNA methylation and gene expression in 38 cord blood samples151,153 within a 

±250-kb window of a transcript. We found 367 CpG-transcript associations; 246 were unique 

CpGs significant at Bonferroni p<0.05. Of these, 46% were negatively correlated, and the 
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most significant was cg01332054 and SEMA7A, and the most prominent effect estimate was 

for cg26179948 and JAZF1. Similarly, among the 44% positively correlated CpG-transcript 

associations, the most significant was cg20139800 and MOG, and the most prominent effect 

estimate was for cg03665259 and CDSN (Figure 8). These strong correlations of cis-effects 

imply that the gestational age-related CpGs are most likely to have a direct functional impact 

on newborns.  

 

 

Figure 8. Correlations between selected pairs of DNA methylation and gene expression 

levels. (A) SEMA7A and cg01332054. (B) JAZF and cg26179948. (C) MOG and 

cg20139800. (D) CDSN and cg03665259. The effect size estimate and p-value are shown on 

top of each plot.   

In conclusion, we found numerous epigenome-wide differentially methylated CpGs related to 

gestational age at birth, including novel CpGs that had not previously been associated with 

gestational age. Many identified CpGs displayed a strong functional link with human diseases 

and were enriched with biological processes essential for fetal development. The epigenetic 

plasticity of fetal development across tissues was captured by many methylation sites. 

However, the majority of CpGs underwent changes over time and stabilized after school age. 

In all, our study highlights new knowledge in relation to epigenetics, preterm birth, and 

gestational age.  

4.2 STUDY II: MOLECULAR CHANGES ASSOCIATED WITH AIR POLLUTION 
EXPOSURE 

In Study II, we explored the genome-wide gene expression associated with birth and current 

PM2.5 exposure in 656 participants from the MeDALL consortium, including three European 

birth cohorts of pre-school children (INMA), and adolescents (BAMSE and GINIplus). In 
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addition, we investigated the integration of DNA methylation with matched gene expression 

in relation to both early-life and current PM2.5 exposure, along with a protein-protein 

interaction network analysis. The characteristics of the study subjects are presented in (Study 

II; Table1). The PM2.5 exposure levels were on average lowest for BAMSE and highest for 

INMA cohort (Figure 9). Moreover, we observed a moderate correlation between PM2.5 

exposure levels at birth and current residential address (0.45, 0.32, 0.46) in BAMSE, 

GINIplus, and INMA, respectively. 

 

 

Figure 9. Birth and current address particulate matter (PM2.5) μg/m3 exposures in the different 

cohorts INMA, GINIplus and BAMSE. (A) Density plot with box plot at birth address. (B) 

The correlation between birth and current address PM2.5 levels. Correlation coefficient and p-

value on top of each plot (C) Density plot with box plot at current address. 

 

We identified two genome-wide significant (FDR p<0.05) differentially expressed transcript 

clusters TC10001332.hg.1 (annotated to MiR-1296 gene) and TC14001976.hg.1 (long non-

coding RNA located near FOXA1-2 (chr14:38066368-38067552)) in relation to PM2.5 

exposure levels at birth Figure 10. However, no significant association was found with 

current PM2.5 exposure levels.  
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Figure 10. Forest plot of meta-analysis significant gene expression levels associated with birth 

PM2.5 exposure in children and adolescents. (A) TC10001332.hg.1 (B) TC14001976.hg.1 

Nevertheless, out of the top 100 significant differentially expressed genes related to birth 

PM2.5 exposure levels, 18 were also significant at nominal p-value (p<0.05) with the same 

direction of effect in the analysis with current PM2.5 exposure levels.   

One of the newly identified differentially expressed genes, MIR-1296 (coding for miRNA), 

was found to link with different types of cancer, including breast, hepatocellular, colorectal, 

prostate, and lung cancer196-200. In addition, it has also been shown to be a potential 

prognostic marker of heart failure201. FOXA1-2 plays a key role in lung alveolar and 

respiratory endoderm morphogenesis and differentiation, including α-cells in the endocrine 

pancreas, liver, and prostate luminal ductal epithelia202-205. 

Further, to understand the mechanisms of biological responses to PM2.5 exposure, the 

functional molecular pattern was explored using the multi-omics profile of genome-wide 

gene expression and DNA methylation. The integration analysis of matched genome-wide 

gene expression and DNA methylation along with protein interaction network revealed 9 and 

6 significant functional epigenetically deregulated modules associated with birth and current 

PM2.5 exposure, respectively, at FDR level (FDR p<0.05) Table 5.  
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We observed simultaneous hypomethylation and overexpression of the top significant gene 

module centered around NR1I2 related to PM2.5 exposure at birth (Figure 11). NR1I2 (Nuclear 

Receptor Subfamily 1 Group I Member 2) has been considered a potential target for asthma 

therapy206.  
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Figure 11. Functionally epigenetic deregulated top significant hotspot with the core gene NR1I2 

related to PM2.5 exposure at birth address. DNA methylation status relates to node color with 

hypermethylation in blue and hypomethylation in yellow. Expression patterns are shown in circles 

around the nodes as upregulation in red and downregulation in green. Edge widths show the 

average statistics of gene-gene interaction in the network. 

Another module that had the largest subnetwork size and contained 64 genes was centered 

around MAPK6. MAPK6 gene was previously associated with air pollution in vivo207 and in 

vitro91.  

The identified six hotspot modules in relation to current PM2.5 exposure did not overlap with 

modules associated with exposure at birth, partly because of differences in exposure levels as 

indicated by a moderate correlation between birth and current exposure, as well as because 

exposure during different periods of life may result in different molecular responses. The two 

top gene hubs, TAF8 and TAF5 associated with current PM2.5 exposure, contain the same 20 

genes in their hubs. TAF8 gene has in other studies been linked to prostate cancer208. The 

largest gene module among the six hotspot modules in relation to current PM2.5 exposure was 

centered around the GNAI3 gene, which contains 31 genes. GNAI3 genes play a key role in 

lung adenocarcinoma209. Another epigenetically deregulated hotspot centered around the 

SCARA3 gene (Figure 12) with simultaneous hypomethylation and overexpression has 

previously reported that oxidative stress induces the alteration of this gene expression210. 

Oxidative stress has been identified as one of the key mechanisms responsible for the adverse 

health effects of air pollution. Further, the gene was related to the progression of type 2 

diabetes mellitus at methylation level211.   
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Figure 12. Functionally epigenetic deregulated top significant hotspot with the core gene 

SCARA3 related to PM2.5 exposure at birth address. DNA methylation status relates to node 

color with hypermethylation in blue and hypomethylation in yellow. Expression patterns shown 

in circles around the nodes as upregulation in red and downregulation in green. Edge widths 

show the average statistics of gene-gene interaction in the network. 

Among other identified modules, the central genes MLST8 was previously linked with type 2 

diabetes212 and KCTD15 was associated with both obesity and type 2 diabetes213,214. In 

addition, TRIM69 gene has been associated with cardiovascular diseases215. Air pollution, 

especially PM2.5 exposure, is a previously known risk factor for obesity, type 2 diabetes as 

well as cardiovascular diseases216-218.  

Notably, the KEGG pathways analysis revealed that the differential gene expression 

associated with PM2.5 exposure at birth address is linked to ribosome activity, olfactory 

transduction, complement and coagulation cascades, and systemic lupus erythematosus. On 

the other hand, genes associated with PM2.5 exposure at the time of bio-sampling were linked 

to ribosome-related pathways only. Moreover, the identified different genes in the 

subnetwork modules were strongly linked to KEGG pathways, including adherens junction, 

cell cycle, thyroid hormones signaling and notch signaling, fatty acid degradation, and 

oxidative phosphorylation. They are also related to diseases where air pollution is considered 

a risk factor, such as Huntington, Alzheimer, Parkinson, cancer as well as rheumatoid 

arthritis.  

Besides the suggestive evidence of differential gene expression in children and adolescents 

associated with PM2.5 exposure at birth, the integration of DNA methylation with matched 
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gene expression identified several interactome hotspots of epigenetic deregulation gene 

modules in relation to PM2.5 exposure both at birth and current address. Thus, our study 

emphasizes added value of additional layers of omics information in the environmental 

exposure data to enhance the understanding of molecular mechanisms of biological responses 

to harmful exposure. 

4.3 STUDY III: DNA METHYLATION PATTERNS RELATED TO COPD  

COPD-associated changes in DNA methylation on macrophage-dense BAL cells from 18 

COPD subjects and 15 controls with normal lung function who had current and previous 

smoking history were analyzed in Study III. The COPD cases and controls had a close match 

with the potential confounders age, sex, and BMI. Pack-years were however higher in the 

COPD group. Similarly, smoking intensity among the current smokers was higher in the 

COPD group. Moreover, COPD subjects were the only ones who used inhaled 

corticosteroids, and had a lower BAL recovery (Table 6). These potential confounders were 

adjusted for in the model.  
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This first-time EWAS of COPD on BAL cells using the latest Illumina EPIC BeadChip 

revealed 1,155 Bonferroni-significant CpGs annotated to 1,089 genes that spread across all 

chromosomes (Figure 13). We also found a strong enrichment of CpG islands among the 

significant CpGs. More than half of the identified CpGs had higher mean methylation in 

COPD cases than controls. Furthermore, the DMR analysis identified numerous unique 

regions related to COPD, where the top significance located in chr15:64790751-64791797 

consisted of 5 CpGs and overlapped with the promotor of the ZNF609 gene. 

 

Figure 13. Manhattan plot of BAL DNA methylation in relation to COPD after adjustment for 

covariates and cell types. The horizontal line indicates Bonferroni-corrected significance level. 

Chr = chromosome in the x-axis and log10 (p-value) in the y-axis. 

The genes mapped to the significant CpGs with large DNA methylation change were 

previously linked with COPD or disease severity, such as POMC, NLRP3, SCNN1A, 

ZNF322, and SOX30102,219-222. Moreover, other novel genes not previously associated with 

COPD were identified. As the BAL fluid was dominated by macrophages, we investigated 

whether the identified COPD-associated genes were expressed in macrophages or other cell 

types using the Immunological genome project RNAseq dataset158. We found only an 8.4% 

overlap between our COPD-associated genes and genes expressed exclusively by cell types 

other than macrophages. Therefore, the identified changes observed in this study were most 

probably linked to macrophages. This is in line with a previous study that showed an 

epigenetic modification of alveolar macrophage function in COPD223. 

The enrichment of COPD-associated genes in both CpGs and DMRs shared several similar 

Gene Ontology biological processes, including organ or body structure development, nervous 

system, and metabolic processes. In addition, various molecular functions, such as 

transcription factor activity and growth factor binding, and different cellular compartments 

were highlighted. Enrichment for transcription factors was previously reported in EWAS of 

lung tissues from COPD cases and control subjects with normal lung function111. Likewise, 

COPD-associated enrichment for KEGG pathways revealed various cancer pathways, which 

is not surprising, as COPD is a known risk factor for several cancer types independent of 

smoking224. Moreover, different types of cell junctions, as well as cAMP and Rap1 signaling 
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pathways, were also identified. The two non-cancer pathways, cAMP and Rap1 signaling 

were targeted with COPD treatment drugs225-229. 

Normal aging processes in COPD lungs are found to be perturbed in many ways, such as 

increased oxidative stress, stem cell exhaustion, and cellular senescence230. This makes 

COPD a condition where accelerating aging may be of importance231. To investigate whether 

DNA methylation age and chronological age were different between COPD subjects 

compared to controls, we calculated DNA methylation aging using Horvath's epigenetic 

clock. In these analyses, we found however no significant difference between methylation 

and chronological age, which implies that either age as calculated by DNA methylation is not 

accelerated in COPD, or that epigenetic alteration involved in the accelerated aging of BAL 

cells was through mechanisms other than DNA methylation. Alternatively, the Horvath clock 

may not be optimal for BAL cell epigenetics. 

The potential functional effects of significant CpGs were explored using paired correlation of 

BAL cell DNA methylation and gene expression data from Ringh et al.152 within a ±250-kb 

window of a transcript. We found 101 CpG- transcript associations; 79 were unique CpGs at 

Bonferroni p<0.05. Of these, 54% were negatively correlated, and the most significant with 

the largest effect estimate was cg18196647 and CPD. Similarly, among the positively 

correlated CpG- transcript associations, the most significant and largest effect estimate was 

cg13267718 and FLI1 (Figure 14). FLI1 gene was previously associated with lung 

cancer232,233. Similarly, CPD is known to be involved in lung cancer234. In addition, the strong 

correlation between DNA methylation and gene expression implies a direct functional impact 

on identified COPD-related CpGs. 

 

Figure 14. Correlations between selected pairs of DNA methylation and gene expression levels. (A) 

CPD and cg18196647. (B) FLI1 and cg13267718. The correlation coefficient and p-value are 

shown on top of each plot.   
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Finally, we investigated the co-localization of CpGs in the present study with the genetics of 

recently identified 82 loci associated with COPD by Sakornsakolpat et al.102. We found that 

38.7% of the CpGs were co-localized within a ±500 kb window of one or more COPD-

associated SNPs; 10% were within a ±100 kb window of one or more SNPs. Of these, ten 

were annotated to the same gene, and only ADGRG6/GPR126 SNPs were annotated to more 

than one CpGs. ADGRG6/GPR126 has been associated with COPD in previous EWAS, 

GWA, and gene expression studies, and DLCO/VA112,235,236. 

Thus, this study found several epigenome-wide differentially methylated CpGs related to 

COPD in BAL cells. Many of the identified CpGs displayed a strong functional link with 

gene expression and pathways enriched for cancer, different types of cell junctions, and 

cAMP and Rap1 signaling. Almost half of the CpGs co-locate in the proximity of COPD-

associated SNPs, which indicates that both genetic and methylation-related mechanisms are 

of importance in these gene regions. Possibly, these SNPs may even act as methQTLs, thus 

influencing methylation levels, although we were not able to test this directly in our study.  

4.4 STUDY IV: GENE EXPRESSION DURING PEANUT ORAL 
IMMUNOTHERAPY AND OMALIZUMAB TREATMENT 

In Study IV, we explored gene expression changes in whole blood of 17 peanut-allergic 

adolescents (age 12-18 years) using RNA-sequencing profiles during pOIT and omalizumab 

treatment where the blood samples were taken at baseline, pOIT start, maintenance, and final 

timepoints. The characteristics of the study subject, including any concomitant asthma, 

conjunctivitis, rhinitis, or eczema, are presented in (Study IV Table S1).   

At first, we investigated if there was an effect of omalizumab treatment on gene expression 

using the two timepoints, baseline and pOIT start. We found no significant difference, which 

suggests that omalizumab treatment alone does not induce alteration in peripheral blood gene 

expression. It should be noted that at baseline, the participants were not exposed to any 

peanut allergens, and the concomitant allergies or asthma were under control. This likely 

contributed to our observation of no expression effect of omalizumab treatment alone. 

Secondly, the combined effect of pOIT with omalizumab (pOIT+O) was examined in the 

longitudinal analysis of three timepoints (pOIT start, maintenance, and final). We identified 

680 genes (337 upregulated / 343 downregulated) associated with pOIT+O at nominal p 

<0.005. Only 16 genes were differentially expressed at the FDR level (FDR<0.05). The three 

largest most down-regulated genes: ASGR2, GPBAR1, and HM13 and upregulated genes:  

CDKN2AIP, ICOS, and USP44, are presented in Figure 15. For example, ICOS expression 

plays a role in T-cell differentiation during inflammatory conditions237 and may be involved 

in allergic disease mechanisms238.  
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Figure 15. Violin plot of selected pOIT log2 gene expression levels (A) Upregulated (B) 

Downregulated genes at FDR p-value < 0.05 for three treatment protocol steps. Turquoise violin: 

pOIT start, yellow violin: Maintenance, red violin: Final. 

 

Pathway analysis revealed a strong overlap of Gene Ontology biological processes in 343 

downregulated genes that converge to neutrophil degranulation, immune response, 

phagocytosis, and metabolic process, while upregulation of 337 genes linked to protein 

regulation and modification (Study IV Figure 1). Moreover, we evaluated the enrichment of 

our 680 pOIT+O-associated genes with genes linked to acute peanut allergic reactions in a 

recently published clinical study by Watson et al.1 at the same p-value cut-off (p <0.005) and 

found that 108 genes overlapped, mostly with opposite direction. (Figure 16). This 

comparison indicates that pOIT+O could alter genes affected during acute peanut allergic 

reactions. 
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Figure 16. The overlap of FASTX pOIT genes with Watson et al. peanut-related genes at 

nominal p<0.005 (108 genes). The x-axis: Effect size estimates from the longitudinal FASTX 

pOIT. The y-axis: mean change of gene expression at baseline and after 4-hour peanut 

challenge in Watson et al. Blue: opposite direction. Green: same direction.  

In conclusion, we demonstrated that the gene expression levels in blood of patients with 

peanut allergy did not alter by omalizumab treatment alone. However, the combined effect of 

pOIT+O showed an up-and downregulation of several genes involved in T-cell functions and 

immune responses. Furthermore, pOIT+O treatment seems to alter the expression of genes 

affected during acute peanut allergic reactions. 

4.5 METHODOLOGICAL CONSIDERATION 

One strength of the conducted molecular epidemiological studies (Study I and II) in this 

thesis is that the material used is based on prospective cohorts, including BAMSE and other 

international birth cohorts. The data were collected in a prospective manner where the 

exposure measurements occurred prior to the outcome assessments. Detailed questionnaires 

were repeatedly filled out during the follow-up in all participating cohorts. In addition, the 

exposure and outcome definitions were harmonized. An additional strength is the large 

number of participants included in the cohorts and the analyses. Moreover, the omics 

integration and functional follow-up analyses used data from collaborating research groups 

and comprehensive bioinformatics online resources. However, molecular epidemiological 

studies are subject to limitations in the study design or applied method, including systemic 

error (bias) or random error that may raise the issue of reproducibility, validity, and stability 

of identified markers239; thus, one has to keep this in mind when interpreting the results of 

these studies.  
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4.5.1 Systematic error (bias) 

The validity of a molecular epidemiological study becomes high by eliminating systematic 

error. Systematic error mainly depends on the definition or measurement of exposure and 

outcome and recruitment of a study population. The major types of bias are selection bias, 

information bias (misclassification), and confounding.    

4.5.1.1 Selection bias 

Selection bias can occur during the enrollment of subjects into the study population or during 

the follow-up of study subjects. This can be present if the selection of the subjects in the 

study is based on factors related to exposure or outcome240, which may result in a different 

association between exposure and outcome for those included and not included in the study. 

In the BAMSE prospective population-based birth cohort, 75% of eligible children from 

Stockholm County were included in the study. The non-responders had a higher prevalence 

of parental smoking but no other significant differences in background characteristics were 

found compared with those who participated in BAMSE133. Dropout or loss of follow-up is 

another cause of section bias. The survey response rates in BAMSE at 4, 8, and 16 years were 

91%, 84%, and 78%, respectively. Those participating in the clinical examinations and 

collected blood samples were 63%, 60%, and 62% at ages 4, 8, and 16, respectively, 

including 42% of children participating in all three clinical follow-ups. In the original cohort 

and the follow-up “sub-cohorts”, including the clinical examinations at different time points, 

baseline characteristics follow more or less a similar distribution with no major selection bias 

problems identified except female participants more likely to stay in the follow-up than 

male241,242. One of the challenges in cohort studies (and other study types) is the choice of 

inclusion criteria (initially and for subgroup analyses) to obtain a representative sample for 

the population under study. In Study I-II, the inclusion criteria depended on the availability 

of blood samples and questionnaire data from the cohorts. The selection of participants in 

Study III included those who performed clinical examinations and were willing to undergo 

bronchoscopy given that they fulfilled the pre-determined criteria regarding lung function, 

annual FEV1 decline, and smoking history. The controls for the COPD cases were both age- 

and sex-matched. In Study IV, the recruitment of patients was performed at the outpatient 

allergy clinic at Sachs' Children and Youth Hospital or referred by pediatric allergists in the 

Stockholm area. In addition, willing participants who received information about the study 

through the clinicaltrials.gov website were also included in the study. Thus, only very 

motivated adolescents with severe allergies were included to have a homogenous study 

population with any concurrent allergies to either pollen or pets.  

4.5.1.2  Information bias (misclassification) 

Information bias, or misclassification, is characterized by any systematic error in the exposure 

or outcome assessment. Information bias has two categories: differential misclassification, 

either the classification error depends on the exposure or outcome; otherwise, non-differential 

misclassification if occurs independently of the exposure or outcome 240,243. In Study I, a 

potential bias (non-differential misclassification) could occur in relation to gestational age 
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because the participating cohorts estimated gestational age using ultrasound or according to 

the last menstrual period (or combined), and if one of these two methods was more correct 

than the other. However, a study shows a high correlation between gestational age estimated 

by ultrasound and the last menstrual period244. Similarly, the misclassification of true air 

pollution exposure could have influenced our findings, as we did not incorporate individual 

time-activity data and indoor exposure levels. However, validation studies had demonstrated 

good concordance of modeled outdoor levels of air pollution with measured outdoor levels, 

as well as personal exposure measurements245,246. Importantly, the air pollution exposure 

assessment was harmonized in each participating cohort. 

COPD was defined using the GOLD criteria (stage 2-3) and was further characterized with 

respect to lung function decline and smoking history. The spirometry was assessed according 

to the ATS/ERS guidelines using a dry volume spirometer by well-trained and experienced 

staff. Any misclassification in COPD cases or controls is likely non-differential as the 

measurement should only be affected by a random error in the lung function measurement.  

Peanut oral immunotherapy combined with omalizumab was given to peanut-allergic 

adolescents by well-trained and experienced physicians and nurses on each visit, while 

laboratory staff was blinded. During the treatment, misclassification is unlikely given the 

detailed clinical protocol, but cannot be 100% excluded.  

In this study, we used two microarray-based DNA methylation Infinium 450K and EPIC 

chips. The EPIC chip includes >90 % of the CpGs from the 450K and an additional 413,743 

CpGs, and these additional probes improve the coverage of regulatory regions247. But the 

EPIC array includes only 3% of the known 28.2 million CpG sites in the human genome. 

Several reasons could cause failure in microarray experiments, including low-quality DNA 

input, incomplete bisulfite conversion, or a failure in other Infinium assay steps248. However, 

this variation is likely to happen randomly, which may lead to a non-differential 

misclassification for exposure of interest. In addition, technical variations related to the 

bisulfite treatment and microarray chips are corrected using batch correction methods or 

adjusted in the model. In Study I-II, the participating cohorts followed their normalization 

and quality control (QC) protocols in DNA methylation, which may induce heterogeneity in 

the result. However, previous EWAS meta-analysis shows similar results between non-

normalized methylation and normalized methylation using different protocols across the 

cohorts154. 

The gene expression data used in this study was based on microarray and RNA-seq; both 

have high reliability and reproducibility. The microarray was based on a hybridization-based 

technique, while the RNA seq refers to a sequencing-based technique249. In both cases, a 

technical variation occurs during RNA extraction, library preparation, and other production 

steps while running in different chips. This process might result in random technical variation 

with respect to exposure of interest that may be leading a non-differential misclassification 

unless the case and control are on different plates or different batches. 
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In Study I and Study III, the functional follow-up of CpGs on gene expression was done 

±250-kb window. The co-localized within a ±500 kb window of one or more COPD-

associated SNPs on CpGs were performed in Study III. However, there was no consensus on 

the optimal distance of cis-effects. The functional analyses in Study I was performed using a 

set of genes robustly affecting gestational age overlap with regions of Bonferroni significant 

at least three or more adjacent CpGs; these lead to not including potential important single 

CpGs in the functional analyses. 

The results of this study might be influenced to some degree by the misclassification of 

exposure. However, the potential bias was likely non-differential as DNA methylation or 

gene expression levels and the exposures were assessed separately.  

4.5.1.3 Confounders  

A confounder is the third factor besides exposure and outcome (e.g., intervention, treatment, 

exposure) that influences both outcome and exposure250. Confounding can result in either 

under- or overestimation of the association250. In these studies, potential confounders or 

variables affecting the effect estimates along with known confounders were adjusted for in 

the models. The list of potential confounders included in this thesis is shown above in Table 

4.   

It is known that gene expression and DNA methylation are tissue- and cell-specific, and 

studying the right relevant tissues associated with exposure or disease is very important. In 

Study I, we assessed DNA methylation from the cord and whole blood associated with 

gestational age; in addition, fetal and brain tissues were compared with blood findings. 

However, in Study II, rather than nasal epithelium, where the first contact between air 

pollution and the respiratory tract occurs, blood samples were assessed for convenience 

reasons. The main target organ BAL cell DNA methylation profiles were evaluated in COPD 

cases and controls in Study III.  However, the DNA methylation pattern may differ between 

BAL cells or other relevant lung tissues or blood. By the systemic nature of peanut allergy, 

blood RNA sequence was evaluated for pOIT in Study IV.  

Cell types are important potential confounding factors in DNA methylation and gene 

expression, and adjusting for measured or estimated cell types is, therefore essential. In 

Studies I-II, a relative proportion of white blood cells from DNA methylation was calculated 

using a Bakulski reference for cord blood169 and Reinius reference for whole blood170,171. In 

Study IV, the cell composition in RNA-seq was estimated via deconvolution through the 

CIBERSORT method172. Measured cell type counts were adjusted for BAL cell DNA 

methylation in Study III. 

In Study I, we adjusted the model for known potential clinical/environmental confounders, 

including maternal smoking during pregnancy and birth weight. Still, some of the identified 

gestational age-related DNA methylation overlapped with those presented in the maternal 

smoking EWAS154, which may reflect the under-reporting of smoking status by some 

pregnant women as smoking-related DNA methylation might capture quantitative smoking 
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history more accurately than self-report251. In addition, the adverse effect of shorter 

gestational age is linked with some biological pathways related to smoking CpGs252,253. 

Similarly, we observed an overlap of CpGs in birth weight182 and gestational age in our study. 

The impact of DNA methylation may have been shared by the two correlated factors in 

newborns, which makes it difficult to uncouple the effect. Also, two potential confounders, 

maternal obesity and alcohol intake that may alter offspring DNA methylation, were not 

included in the adjustment. However, the impact of maternal obesity and alcohol intake is 

modest compared to maternal smoking254,255.   

Socioeconomic status is related to air pollution exposure, especially in urban areas where low 

socio-economy is often linked to high traffic-related air pollution exposure256. However, the 

opposite is observed in Stockholm, where a higher socio-economic status is more common in 

the inner-city areas that also have the highest traffic-related air pollution levels70. Therefore, 

in Study II, the results were adjusted for the study area (as well as for socio-economic 

status). One of the potential confounders for COPD is smoking; in Study III, the smoking 

history was retrieved from the longitudinal population-based cohort, and both the COPD 

cases and controls had a documented smoking history. Air pollution is known to increase the 

risk of having COPD and is associated with DNA methylation, but we did not have data on 

this confounding factor in Study III. The treatment outcome, either success or failure, was 

adjusted for in Study IV. As all the patients were required to have a concomitant respiratory 

allergy and many also had asthma, they might have used inhaled steroids while on pOIT. 

Such treatment was not controlled for in the analyses, although inhaled steroids are believed 

to leave few biological fingerprints when assessed systemically257.  

Thus, it is possible that residual or unmeasured confounders might have affected the 

associations presented in this thesis. In addition, cross-sectional analyses were performed in 

Study I-IV; therefore, the association cannot infer causation.   

4.5.2 Random error  

The presence of random error in a selected sample can occur due to the population's 

variability, which affects the precision of an estimate. A way to minimize the random error 

and maximize precision is to have a larger sample size that still represents the source 

population.  The selected subsample in Studies I-II from the original cohorts, depending on 

the availability of blood samples, questionnaire data, and measured exposure, did limit the 

sample size compared to the original cohorts but still reached very reasonable numbers. 

Meta-analysis of data within an international consortium with harmonized exposure and 

outcome variables increased the sample size of Study I and Study II; in total, 11,000 and 

650 participants in Study I and Study II were included in the analysis, respectively. Even 

though we had a large sample size in Study I, rather few premature births were observed. 

The sample size in Study III (18 COPD cases and 15 controls) is limited because the sample 

collection depends on bronchoscopies to get the BAL fluid, and recruiting makes it difficult 

as the medical procedure is time-consuming and invasive to some extent. Similarly, in Study 

IV, the sample size was small due to challenging enrollment in pOIT from the peanut-allergic 
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participant, who feared allergic reactions, and disliked the taste of peanuts. Some participants 

also dropped out; at the end, a total of 17 participants’ data were collected at four-time points. 

The small sample size in Studies III-IV may have introduced some statistical uncertainty, 

that we tried to overcome by rigorous methodologic, statistical approaches and the use of 

publicly available datasets for additional analyses.   

4.5.3 Generalizability of results 

The birth cohort BAMSE and other international studies included in Study I-II are 

population-based. The majority of cohorts contributing to Study I comprise participants of 

European ancestry, and few cohorts of Hispanic background. Only European ancestry was 

included in Study II.  

The association between DNA methylation and gestational age in Study I should be 

generalizable to most populations of European and Hispanic origin.  

The objective of Study II was to assess the impact of air pollution on transcriptomic and 

epigenetic profiles. The molecular mechanisms induced by air pollution could be 

generalizable to most populations of European origin but, since we only included data from 

three centers, applications to other areas with higher or lower exposure levels are uncertain.  

Our results in Study III could be considered generalizable to an older Swedish population 

aged 62 years and above since participants from the longitudinal population-based OLIN 

COPD cohort were recruited. But the sample size was rather small and originated only from 

one Norrbotten-based study that prevents complete generalizability across regions or time 

periods etc. Study IV and the FASTX study could be regarded as fairly generalizable to an 

adolescent Swedish population with severe allergy although the patients were recruited in the 

Stockholm area. However, the Study IV analyses were aimed to elucidate mechanisms and 

detect biomarkers in relation to OIT, which is also feasible in a selected group of patients or 

participants as in this case.  
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5 CONCLUSIONS AND FUTURE PERSPECTIVES  

The following conclusion can be drawn from the separate studies included in this thesis: 

I: Using an epigenome-wide approach, we showed that gestational age was associated with 

methylome signatures at birth, which likely captures the epigenetic plasticity of fetal 

development across tissues. Methylation levels in the majority of identified CpGs changed 

over time and stabilized after school age. In addition, we presented functional links between 

identified CpGs and human diseases and enrichment of biological processes essential for fetal 

development, along with correlated gene activities.  

II: PM2.5 exposure at birth altered transcriptome profiles in children and adolescents. 

Integration of gene expression with matched DNA methylation data and protein-protein 

interactions revealed several epigenetic deregulation gene modules interactome hotspots in 

relation to PM2.5 exposure both at birth and at the time of bio-sampling. We highlighted the 

added value of additional layers of omics information on PM2.5 exposure to enhance the 

understanding of molecular mechanisms and biological responses induced by air pollution 

exposure. 

III: COPD was associated with methylome signatures in BAL cells, primarily consisting of 

alveolar macrophages. These epigenetic effects likely reflected the local impact of the disease 

on the lung and airways. Additionally, we presented the functional pathways that are affected 

and altered in COPD and also have a link to gene expression. In addition, our results 

suggested that both genetic and epigenetic mechanisms play important roles at certain COPD-

associated loci. 

IV: Omalizumab treatment in patients with peanut allergy alone did not change peripheral 

gene expression levels. However, pOIT and combined treatment with omalizumab did alter 

transcriptome profiles. We demonstrated up- and downregulation of several genes involved in 

T-cell functions and immune responses. Furthermore, pOIT and combined treatment with 

omalizumab seemed to alter genes affected during acute peanut allergic reactions. 

In an ideal setting, we could have addressed our study limitations and expanded the studies in 

this thesis in the following way: Collecting additional samples of premature individuals in 

Study I, especially among subjects borne extremely preterm. This would have allowed us to 

find methylation patterns on the whole spectrum of gestational ages. Including additional 

samples from heavily polluted or less polluted cities in Study II would allow us to compare 

the molecular pattern at different exposure levels. By increasing the sample size in Study III, 

we would have had better power to identify stable and replicable COPD markers. Adding a 

control group without omalizumab treatment and increasing the sample size in Study IV 

would have helped us identify transcriptomic changes associated with pOIT without 

concomitant treatment. Extensive use of publicly available bioinformatic databases and 

collaborating internationally in the consortium could have created a possibility of replicating 
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the research findings and investigating the functional role of early-life exposures, chronic 

diseases, and treatment response.  

Going forward, studying relevant tissues or cell types other than surrogate tissues could 

produce relevant data to uncover the underlying molecular mechanisms induced by early 

environmental exposures and disease pathogenesis, and treatment response. In the future, in 

addition to total BAL cell investigations, a sorted BAL cell population from the lung in a 

genome-wide setting would give additional valuable information at the cellular level. 

Moreover, several studies have suggested that nasal epithelial cells could serve as a proxy to 

study the lower airways258. It would be very valuable to study how air pollution affects 

airway epithelium, as the nasal epithelium is a primary target for inhaled harmful substances. 

Epithelial cell analyses may help us understand the molecular changes that directly affect the 

inner airway system. Furthermore, adding additional layers of information using the single-

cell technique in clinical settings would likely strengthen our understanding of, for example, 

treatment response.    

Future research should focus on the integration of different omics layers of information to 

enhance understanding of molecular mechanisms and biological responses that arise due to 

early environmental exposures or in complex diseases like COPD. Moreover, having 

additional layers of omics information would be highly relevant for capturing the molecular 

treatment response from pOIT (and other treatments). However, handling the large-scale and 

complex data produced from the different layers of omics requires method development and 

user-friendly bioinformatics pipeline tools. But some of these are already underway18. 

The results in this thesis show that early-life exposure to air pollution affects DNA 

methylation as well as gene expression. In addition, DNA methylation in BAL cells is 

strongly associated with COPD. Furthermore, pOIT and combined treatment with 

omalizumab alter gene expression. However, the functional mechanisms induced by 

environmental exposure, the functional role of disease pathogenesis, and the functional effect 

of the treatment response still need additional clarification. It would be valuable to expand 

our analyses to identify the functional aspects of the identified key genes.    

In summary, these findings may contribute valuable knowledge regarding the influence of 

environmental exposures and stressors in utero and early life on developmental processes, 

health, and disease. Our epigenetics results regarding COPD provided additional insights into 

the pathogenesis of disease, and analyses of gene signatures in relation to immunotherapy 

treatment response may open for novel approaches to study the biological effects of specific 

treatments. Overall, the findings in this thesis can contribute to translational efforts bridging 

epidemiology, experimental research, and clinical care. 
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6 POPULÄRVETENSKAPLIG SAMMANFATTING AV 

AVHANDLINGEN 

Både innan och efter att en människa föds pågår en snabb utveckling av kroppen 

inkluderande celldifferentiering, bildning av organ och utveckling av organsystem. 

Exponering för miljöfaktorer eller andra stressorer under fosterlivet och de första levnadsåren 

skulle kunna påverka dessa utvecklingsprocesser, potentiellt genom molekylära och 

epigenetiska mekanismer, och därigenom ha en negativ inverkan på individens hälsa senare i 

livet. Epigenetik innebär förändringar i en gens aktivitet eller funktion, utan att själva DNA-

sekvensen har ändrats, vilket kan resultera att genen ”slås på” eller ”stängs av”. Det kommer i 

sin tur påverka genuttryck och kodning av protein, det vill säga hur och när ett protein bildas 

utifrån instruktionen som genen innehåller. Epigenetiska förändringar kan vara antingen 

reversibla eller enkelriktade, och även ärftliga. Den mest utförligt studerade epigenetiska 

mekanismen är DNA-metylering, där cytosin, en av de fyra byggstenarna som DNA är 

uppbyggt av, ombildas till 5-methylcytosin. DNA-metylering har föreslagits vara en länk 

mellan genetik och miljöfaktorer. Epigenetiska mönster som uppkommit tidigt i livet (under 

graviditeten) kan påverka genuttrycket under hela livet och skulle därmed kunna påverka en 

individs benägenhet att utveckla kroniska sjukdomar.  

Kroniskt obstruktiv lungsjukdom (KOL) är en komplex sjukdom och ses som ett globalt 

hälsoproblem. En huvudsaklig riskfaktor för KOL är tobaksrökning. Andra faktorer som 

genetik, luftföroreningar och upprepade luftvägsinfektioner har också visats vara kopplade till 

risken att utveckla KOL. Däremot har rollen som DNA-metylering spelar i utvecklingen av 

KOL inte studerats i detalj. 

En annan komplex sjukdom, jordnötsallergi, är en av de vanligast förekommande 

födoämnesallergierna och den ledande orsaken till allvarlig allergisk reaktion (anafylaxi) hos 

barn.  Oral immunoterapi vid jordnötsallergi (pOIT) innebär att en liten mängd jordnöt intas 

under kontrollerade former och kan leda till en minskad känslighet och utveckling av tolerans 

för födoämnet. Behandling med läkemedlet omalizumab, en anti-IgE-antikropp som minskar 

den allergiska reaktionen mot till exempel jordnöt, skulle kunna göra starten av oral 

immunoterapi vid jordnötsallergi säkrare. Mekanismerna bakom hur tolerans uppkommer vid 

oral immunoterapi är dock inte klarlagda.  

Denna avhandling syftar till att identifiera de molekylära mönster som kan relateras till tidiga 

exponeringar, kronisk lungsjukdom, liksom svaret på allergibehandling.  

I den första studien relaterades DNA-metyleringsmönstret vid födelsen till hur lång 

graviditeten hade varat (antal gestationsveckor). Denna storskaliga undersökning baserades 

på data från 26 olika studier som deltog i det stora PACE-konsortiet och kunde visa att det på 

flera platser i arvsmassan fanns ett samband mellan nivån av DNA-metylering och 

graviditetslängd. Genom att analysera blod från navelsträngen kunde vi visa på att dessa 

förändringar troligen kunde kopplas till fosterutveckling i flera olika vävnader.  
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I de flesta fall var nivån av DNA-metyleringar föränderlig under barndomen, d.v.s. om det 

fanns skillnader kopplade till gestationsålder vid födseln så ändrade sig nivåerna med åldern 

till jämförbara nivåer vid skolåldern, och därefter ligga kvar på samma nivå. Dock 

identifierades en mindre mängd metyleringsplatser (17%) där sambandet mellan lägre 

metyleringsnivå och lägre gestationsålder kvarstod upp i tonåren. Bioinformatikanalyser 

visade att de gener som kunde kopplas till de identifierade metylationsplatserna har i andra 

studier visats ha samband med olika sjukdomar och sannolikt är involverade i biologiska 

processer som är nödvändiga för fostrets utveckling. Flera av metylationsplatserna påverkade 

också uttrycket av närliggande gener.  

I nästa studie undersöktes sambandet mellan den beräknade utomhusexponeringen för 

partiklar med storlek mindre än 2.5 mikrometer (PM2.5) vid bostadsadressen vid födseln samt 

under tonåren, och effekten på DNA-metylering. Genyttryck undersöktes under barndomen 

och tonåren. Vi fann att genuttryck hos barn och tonåringar var kopplat till den exponering 

för PM2.5 som fanns vid födelseadressen. När vi kombinerade metylering och genuttryck och 

relaterade detta till exponering för PM2.5 fann vi flera exempel på interactome hotspots, det 

vill säga tillfällen då både metylering och genuttryck påverkas. Några av de identifierade 

generna kunde kopplas till sjukdomar som orsakas eller förvärras av 

luftföroreningsexponering.  

I den tredje studien studerades sambandet mellan metylering i celler från de nedre 

luftvägarna, i huvudsak makrofager, KOL-status och rökning hos vuxna individer, med 

avsikten att öka förståelsen om sjukdomsuppkomsten vid KOL. Vi fann flera samband mellan 

KOL och DNA-metyleringsnivåer i dessa celler, med en stark funktionell koppling till 

nivåerna för genuttryck. Vår analys pekar också mot att både genetiska och epigenetiska 

mekanismer spelar viktiga roller för KOL-sjukdomen.  

I det fjärde delarbetet studerades genuttrycket före, under och efter pOIT hos tonåringar med 

allvarlig jordnötsallergi. Här återfanns både upp- och nedreglering av immunrelaterade gener 

i relation till pOIT och omalizumab-behandling. Dessa resultat kan hjälpa oss att förstå 

mekanismerna bakom toleransutveckling vid svår allergi.  

Sammanfattningsvis har de presenterade resultaten ökat vår kunskap avseende den roll DNA-

metylering och genuttryck spelar i människans utveckling, gällande effekter av 

föroreningsexponering, för sjukdomsmekanismer och vid svar på behandling. Dessa fynd kan 

bidra till att överbrygga epidemiologisk och experimentell forskning med klinisk vård.  
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