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Abstract

The future demand for digital information will exceed the capabilities of current optical
communication systems, which are approaching their limits due to component and fiber
intrinsic non-linear effects. Machine learning methods are promising to find new ways of
leverage the available resources and to explore new solutions. Although, some of the machine
learning methods such as adaptive non-linear filtering and probabilistic modeling are not
novel in the field of telecommunication, enhanced powerful architecture designs together with
increasing computing power make it possible to tackle more complex problems today.

The methods presented in this work apply machine learning on optical communication sys-
tems with two main contributions. First, an unsupervised learning algorithm with embedded
additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained
end-to-end, learning a geometric constellation shape for lowest bit-error rates over ampli-
fied and unamplified links. In simulation and experimental studies the learned constellations
improved performance compared to conventional constellation schemes. Second, supervised
machine learning methods, especially deep neural networks with and without internal cycli-
cal connections, are investigated to combat linear and non-linear inter-symbol interference
(ISI) as well as colored noise effects introduced by the components and the fiber. On high-
bandwidth coherent optical transmission setups their performances and complexities are
experimentally evaluated and benchmarked against conventional digital signal processing
(DSP) approaches. The results indicate that feed-forward deep neural networks (without
internal cyclical connections) proved to reflect systematic non-linearities more accurately
than common 5th-order Volterra non-linear equalizers (VNLEs). They either outperformed
pruned VNLEs with equal complexity or achieved the same performance with less multipliers
and hence lower complexity. In comparison to feed-forward architectures, recurrent archi-
tectures (with internal cyclical connections) compensated next to non-linear ISI as well as
colored noise effects. They either matched or outperformed the reference DSP approaches,
consisting of VNLEs accompanied symbol-spaced whitening filters and BCJR detectors.
While feed-forward architectures are overall a promising candidate to replace VNLEs, the
performance or respectively the complexity benefit of recurrent architectures is strongly re-
lated to the considered scenario.

This thesis shows how machine learning can be applied to optical communication systems.
In particular, it is demonstrated that machine learning is a viable designing and DSP tool
to increase the capabilities of optical communication systems.





Zusammenfassung

Die künftige Nachfrage nach digitalen Informationen wird die Kapazität der derzeitigen
optischen Kommunikationssysteme übersteigen, die aufgrund der nichtlinearen Effekte von
Komponenten und Fasern an ihre Grenzen stoßen. Methoden des maschinellen Lernens sind
hier ein vielversprechender Ansatz, neue Wege und Lösungen zu finden, um die verfügbaren
Ressourcen besser auszunutzen und die limitierenden Faktoren zu kompensieren. Obwohl ei-
nige dieser Methoden im Bereich der Telekommunikation nicht neu sind, wie zum Beispiel
die adaptive nichtlineare Filterung und die probabilistische Modellierung, ermöglichen heut-
zutage neue leistungsstarke Architekturen in Verbindung mit zunehmender Rechenleistung
die Lösung von Problemen höherer Komplexität.

Die in dieser Arbeit vorgestellten Methoden wenden maschinelles Lernen auf optische Kom-
munikationssysteme an und untersucht dabei zwei Hauptthemen. Zuerst wird das Erlernen
von optimalen Konstellationsdiagrammen über eine verstärkte und unverstärkte Verbindung
betrachtet. Dabei wird ein unüberwachter Lernalgorithmus mit eingebettetem AWGN-Kanal
und entsprechender Leistungsbeschränkung Ende-zu-Ende trainiert. In Simulationen und
experimentellen Studien zeigen die erlernten Konstellationen eine bessere Leistung als her-
kömmliche. Anschließend werden Methoden des überwachten maschinellen Lernens, insbe-
sondere tiefe neuronale Netze mit und ohne interne zyklische Verbindungen, untersucht, um
lineare und nichtlineare Intersymbolinterferenzen sowie farbige Rauscheffekte von den Kom-
ponenten und der Faser zu kompensieren. In kohärenten optischen Übertragungssystemen
mit hoher Bandbreite werden die Leistung und Komplexität dieser neuronale Netze experi-
mentell evaluiert und mit konventionellen DSP Ansätzen verglichen. Die Ergebnisse zeigen,
dass vorwärtsgerichtete neuronale Netze (ohne interne zyklische Verbindungen) systema-
tische Nichtlinearitäten genauer widerspiegeln als herkömmliche VNLEs. Entweder wurde
bessere Leistung bei gleicher Komplexität oder gleiche Leistung mit geringerer Komplexi-
tät durch weniger Multiplikatoren erreicht. Im Vergleich zu vorwärtsgerichtete Architektu-
ren kompensierten rekurrente Architekturen (mit internen zyklischen Verbindungen) neben
der nichtlinearen Intersymbol-Interferenz auch die Auswirkungen von farbigem Rauschen.
Die Referenzansätze, bestehend aus VNLEs mit Whitening-Filtern und BCJR-Detektoren,
konnten reproduziert oder übertroffen werden. Während vorwärtsgerichtete Architekturen
insgesamt vielversprechende Kandidaten sind, um VNLEs zu ersetzen, ist der Leistungs- be-
ziehungsweise Komplexitätsvorteil von rekurrenten Architekturen stark vom betrachteten
Szenario abhängig.



In dieser Arbeit wird die Anwendung maschinellen Lernens auf optische Kommunikations-
systeme aufgezeigt. Insbesondere wird darauf eingegangen, dass maschinelles Lernen ein
praktikables Werkzeug für den Entwurf und die digitale Signalverarbeitung ist, um die Ka-
pazität optischer Kommunikationssysteme zu erhöhen.
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Chapter 1

Introduction

The globalization of our society is largely attributed to the progress in communication
technology [1]. In particular, the internet has evolved from a small network between research
institutions to a global infrastructure with an increasing number of services and ever-growing
demand on data rate. The number of network endpoints has thereby increased from a few
millions in the 1990s to billions nowadays [2]. To support this demand of internet traffic, the
internet backbones rely on fiber-optic communications technology. Optical fiber links offer,
in contrast to wireless or even wired electrical links, low attenuation over long distances and
a huge amount of available bandwidth.

In the past decades, the transmission capacity over optical fiber links has been enhanced
by multiple technological breakthroughs [3]. In 1987, optical amplifiers, such as Erbium-
doped fiber amplifiers (EDFAs), replaced electronic regeneration schemes as repeaters, which
enabled pure optical and cost effective wavelength division multiplexing (WDM) systems.
Furthermore, in 2008, coherent transceiver technology enabled access to both quadrature
and polarization of each optical carrier, which opened up an additional dimension to transfer
information. In combination with digital signal processing (DSP) and the increasing digital-
to-analog converter (DAC) speed, state-of-the-art commercial coherent systems can reach
transmission capacities of 400 Gbit/s per carrier.

However, as mentioned above, consumer demand for digital information is growing exponen-
tially. In 2023 nearly two-thirds of the global population will have internet access and the
number of devices connected to networks will increase from 18.4 (2018) to 29.4 billion [4].
Hence the number of connected devices will surpass the global population by more than
three times. Machine-To-Machine (M2M) and Internet of Things (IoT) interconnections are
thereby the fastest growing application type. They will constitute at least half of the global
traffic and will probably outpace the traffic consumed by humans in the near future. Optical
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Chapter 1 Introduction

communication systems have to keep up with this pace of service demand, while maintain-
ing low cost and high energy efficiency. It is therefore inadvisable to increase the capacity by
simply installing new optical transmission links exponentially. The limited capacity has to
be overcome as well by supporting higher data rates per channels, i.e., increasing the sym-
bol rates and the spectral efficiencies per carrier. However, higher symbol rates and richer
signal constellations introduce several challenges.

1.1 Motivation

In optical long-haul transmission systems (>1000km), fiber’s non-linearity caused by the
Kerr effect [5] is arguably the most prominent effect that limits the achievable information
rates of fiber-optic communication systems [6–8]. However, in optical transmission systems,
distortions do not end with the transfer characteristics of the fiber itself. Numerous opti-
cal/electrical (O/E) components introduce additional impairments, which require effective
compensation to attain highest data rates. The compensation is especially important, when
high-bandwidth communications meet short reach, as reduced fiber lengths turn components
into the dominate source of impairments. Typical use cases include data center interconnects
(DCIs) with a reach of 80 km and metro core networks with hundreds of kilometers reach.

In such optical short-reach communication systems, the high data rate demand leads to
symbol rates higher than the provided 3dB-bandwidth of the O/E components. This in turn
leads to inter-symbol interference (ISI) and after equalization to colored noise effects due
to noise enhancement. In addition to the linear impairments, the transmitted symbols are
subject to non-linear distortions with memory effects arising from the non-linear transfer
characteristics of the O/E components. Today’s commercial coherent optical short-reach
transceivers commonly compensation linear channel impairments and phase noise effects
from the laser source. Non-linear compensation and colored noise effect reduction are no
standard features yet, but will inventively become a key element of DSP to keep up with
the every increasing data rates.

Several DSP-based techniques to compensate non-linear fiber as well as component effects
are proposed in the literature. The most popular one for non-linear fiber compensation is the
digital back-propagation (DBP) algorithm [9] based on the split-step Fourier method (SSFM)
which approximates the non-linear Schrödinger equation (NLSE) [10]. Another popular ap-
proach against fiber as well as component non-linerities is the Volterra non-linear equalizer
(VNLE) [11, 12]. By combining linear convolution and non-linear power series the VNLE
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1.2 Overview and Outline of Contribution

is capable of modeling time-invariant non-linear systems with finite fading memory. How-
ever, high computational complexity allied with limited benefits due to imprecise modeling
remains a challenge for practical implementation of efficient DSP-based non-linear compen-
sation. Here, machine learning methods, which have relished increased attention after the
artificial intelligence (AI) winter [13], may be capable to explore new solutions.

1.2 Overview and Outline of Contribution

Although, some of the machine learning methods such as adaptive non-linear filtering and
probabilistic modeling are not novel in the field of telecommunication, new powerful archi-
tecture designs together with increasing computing power make it possible to tackle more
complex problems today. For instance, machine learning methods, especially deep neural
networks (DNNs), have recently demonstrated excellent performance gains for the physi-
cal layer in various applications, such as channel equalization [14–21], optical performance
monitoring [22–25] and end-to-end learning [26, 27].

The object of this thesis is to build upon the aforementioned contributions and to deepen
the investigation of machine learning capabilities in DSP, focusing primarily on optical
short reach communication and on a fair comparison with classical DSP algorithms in terms
of performance and complexity. In particular, the thesis interpolates material from three
journal papers [28–30] and four conference papers [31–34] published by the author within
the duration of the Doctor of Philosophy (PhD) program. Their contents are related to two
main topics, demonstrating that machine learning is a viable designing as well DSP tool for
increasing the capabilities of optical communication systems.

Neural Network Assisted Geometric Shaping: To achieve maximum performance,
it is essential to match the modulation to the actual transmit channel conditions, i.e., for op-
tical short reach communication a constellation shape must take amplified and unamplified
scenarios into account. In Chapter 4, novel auto-encoder structures based on deep neural
networks are introduced to design modulation formats optimized for lowest bit error ratios
(BERs) over amplified and unamplified links. Besides the geometry of the symbol constel-
lation, also the bit mapping with and without label extension is optimized. The learned
high-order modulation formats are numerically and experimentally evaluated.

Non-linear Compensation for Optical Transmission: In Chapter 5 two DNN ar-
chitecture concepts are investigated to combat linear and non-linear ISI as well as colored
noise effects. The first concept relies on feed forward one-dimensional convolutional neural
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Chapter 1 Introduction

networks (1D-CNNs) as well known as feed forward time delay neural networks (TDNNs).
Equal to conventional linear and non-linear equalizer designs, e.g., finite impulse response
(FIR) filters and VNLEs, the memory effects of the channel and components are consid-
ered by adding time delayed versions of the observed channel output. This allows the TDNN
to have a finite dynamic response to time series input data and to describe causal time-
invariant non-linear systems with finite fading memory. In this context, particular attention
is placed on hard and soft demapping and on the corresponding cost functions.

The second concept relies on bidirectional recurrent neural networks (BRNNs). In contrast to
the TDNN, the BRNN architecture enables internal memory states corresponding to infinite
impulse response (IIR) filters. For each concept we describe the main rationale behind the
approach and compare its performance experimentally with classical DSP approaches to
combat the strong impairments mentioned in Section 1.1.

1.3 Outline of the Thesis

In Chapter 2, an application-oriented introduction to a coherent optical transmission system
is provided, including the description of the fiber-optic channel, the hardware components as
well as the DSP blocks to transmit respectively to recover the desired information. Particu-
lar emphasis is placed on the linear and non-linear impairments caused by the components
and fiber as well as the capabilities to compensate them by DSP. Furthermore, the de-
sign paradigm of joint optimization of high-order modulation and forward error correction
(FEC), known as coded modulation, is reviewed, which lays the groundwork for the subse-
quent assumptions and discussions. Probabilistic shaping as a powerful technique to increase
transmission performance is reviewed, too.

Chapter 3 covers an introduction into machine learning, focusing on general neural networks
with and without internal cyclic connections. For each design the main concept is described
as well as the corresponding forward and backward pass, and training process.

Chapter 4 and Chapter 5 contain the two outlined contributions in Section 1.2, namely Neu-
ral Network Assisted Geometric Shaping and Non-linear Compensation for Optical Trans-
mission.

Each of the abovementioned chapters contains a concluding section that highlights the main
findings. The most important aspects and potential future research directions of these indi-
vidual remarks are compiled in Chapter 6.
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Chapter 2

Coherent Optical Transmission Systems

Digital coherent optical transceivers use polarization, amplitude and phase to encode and de-
code information. It provides full knowledge of the optical field and hence enables the utiliza-
tion of sophisticated modulation schemes, such as M -ary phase-shift keying and quadrature
amplitude modulation (QAM). Moreover, the preserved phase information after optical-to-
electrical conversion allows to compensate effectively for transmission impairments by means
of DSP.

A simplified block diagram of an optical coherent transmission system is depicted in Fig. 2.1.
The system consists of several electronic, electro-optic and optical components, which can
be grouped into a digital, an electrical and an optical layer. The digital layer contains the

Digital

Electrical

Optical

Digital Signal Processing TXInput
Bit Stream

DAC DAC DAC DAC

XI XQ YI YQ

4 × DA

Optical
Modulator

Local Laser
Source

Fiber-optic
Channel

Coherent
Front-end

Local Laser
Oscillator

ADC ADC ADC ADC

4 × TIA

X̃I X̃Q ỸI ỸQ

Digital Signal Processing RX Output
Bit Stream

Figure 2.1: Block diagram of a coherent optical transmission system. The black dashed section
denotes the digital, the blue section the electrical and the red section the optical part.
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Chapter 2 Coherent Optical Transmission Systems

transmitter and receiver-side DSP. The electrical layer groups the DACs and driver ampli-
fiers (DAs) at the transmitter, and the analog-to-digital converters (ADCs) and the trans-
impedance amplifiers (TIAs) at the receiver. The final layer is the optical level, composed
of the optical modulator at the transmitter and the coherent front-end at the receiver, each
with the respective laser, and finally in between the fiber-optic channel with filters, ampli-
fiers, e.g., EDFAs, and the fiber itself. Note that, the DAC, ADC, optical modulator and the
coherent front-end belong actually to more than one layer due to their task of conversion.

This chapter provides an application-oriented introduction to a coherent optical transmis-
sion system. The more important parts for the following chapters are descripted in more
detail while a more comprehensive discussion on the other subjects can be found in the cor-
responding references. At first, the individual components of the transmitter are reviewed
focusing on their linear and non-linear impairments. Secondly, next to the main determinis-
tic linear fiber impairments like attenuation and chromatic dispersion, fiber non-linearities
like self-phase modulation and cross-phase modulation are characterized. Finally, the com-
ponents of the coherent receiver and the standard receiver-side DSP blocks, to recover the
transmitted signal, are described.

2.1 Coherent Optical Transmitter

The role of the coherent optical transmitter is to modulate two orthogonal polarizations
(conventionally referred to as horizontal and vertical polarization) of the optical carrier
with four electrical real baseband signals and to transmit the corresponding modulated
optical signal over the fiber. The data XI, XQ for the horizontal polarization and YI, YQ for
the vertical polarization are thereby separately modulated and combined by a polarization
beam combiner (PBC) to yield the polarization-multiplexed transmitted signal, as shown
in Fig. 2.2.

In a real system, the amplitude and the envelope impulse response of the O/E components are
not constant within their operational bandwidth, and the transmitted signal gets distorted
in both amplitude and phase. This leads to strong linear channel dispersion and hence to
ISI, especially in high-speed optical coherent transmission systems, where the symbol rates
can be higher than the provided 3dB-bandwidth of the O/E components. In addition to
these linear impairments, the transmitted symbols are subject to non-linear distortions with
memory effects arising from the non-linear transfer characteristics of the O/E components.

6
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laser

IQ-MZM

IQ-MZM

PBC

vertical pol.

horizontal pol.DAC DA

DAC DA

DAC DA

DAC DA

DSP

XI[n]

XQ[n]

YI[n]

YQ[n]

XI[n] XQ[n]

YI[n] YQ[n]

Figure 2.2: Transmitter for in-phase, quadrature and polarization multiplexing.

The sources of non-linearity may usually be characterized as memoryless. However, the non-
linear O/E components are embedded in a network where linear filtering operation takes
place. Consequently, the overall effect of the channel on the input signal is a non-linear
mapping with memory [35]. Hence, even in a back-to-back (BtB) setup, linear and non-
linear interdependencies in the received symbols after channel transmission occur.

In the following the transmitter components and their impairments are described in more
detail. In case of DAC, DA and optical modulator the focus is on the origin of the non-linear
behavior. Nevertheless, frequency responses of real components are shown as well.

2.1.1 Laser

In a coherent optical system a laser, acronym for light amplification of stimulated emission
of radiation [36], provides the optical carrier. To enable high data rate optical transmission,
the major requirements for such a laser are high optical power and narrow linewidth. The
high power is required to compensate for the insertion loss of the optical modulator when
high order modulations are used, while the narrow linewidth is required to keep the impact
of the phase noise small. For instance, in a coherent 100-Gbit/s system [37], a linewidth of
1 MHz or less is required for both the transmitter light source and the local light source at
the receiver. The effect of phase noise is caused by the random phase fluctuations in the laser
cavity and can be described as a Wiener-Process [38, Eq. 2]. In a coherent modem, after
reception, the carrier phase noise can be estimated and compensated via DSP by exploiting
its auto-correlation. Section 2.3.2 on the receiver-side DSP chain includes a discussion on
carrier phase recovery.
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Chapter 2 Coherent Optical Transmission Systems

2.1.2 Digital-to-Analog Converter

The DACs convert the digital signal into the analog domain and have become essential
elements in an optical transmission systems. Their advent has allowed the use of sophisti-
cated DSP techniques at the transmitter to keep up with the demand of high data rates
and to achieve high spectral efficiencies. Nowadays the sampling rates of high-speed DACs
have reached 128 GSa/s for technologies based on Silicon-Germanium bipolar transistors
[39–42] and 120 GSa/s for complementary metal-oxide semiconductor (CMOS) [41]. Today,
electronic converters are a major performance limiter for high data rate communication.
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Figure 2.3: Non-linear impairment: Transfer
function of a 3-bit DAC considering offset, gain
and differential and integral non-linearity errors
[43].

0 10 20 30 40 50 60 70

Frequency [GHz]

-10

-8

-6

-4

-2

0

M
a

g
n

it
u

d
e

 [
d

B
]

f
3dB

 = 44GHz

Figure 2.4: Linear impairment: Bandwidth
limiting effects from the analog components lead
to linear distortion, e.g. measured frequency re-
sponse of Micram DAC 4 with 44 GHz 3dB band-
width [44, Fig. bottom left p.3].

The DAC represent a limited number of discrete digital input codes by a corresponding
number of discrete analog output values. The transfer function of an ideal N -bit DAC is
therefore a series of 2N equidistant discrete points as shown in Fig. 2.3. However, in practice
statics distortions such as offset errors [43, Sec. 3.2], slope errors [43, Sec. 3.2], differential
non-linearity (DNL) errors [43, Sec. 3.3] and integral non-linearity (INL) errors [43, Sec. 3.4]
affect the conversion. While the differences in the offset and slope can be adjusted to zero
by trimming, the non-equidistant discrete points due to DNL/INL cause non-linear signal
distortions.

Next to the aforementioned non-linear impairments, the transmitted symbols are subject to
linear distortions caused by bandwidth limitation. Fig 2.4 depicts the measured frequency
response of the Micram DAC4 [44] with 44GHz 3dB-bandwidth which is used to perform
the experiments in this thesis.

8



2.1 Coherent Optical Transmitter

2.1.3 Driver Amplifier

The output amplitude of the DAC is typically limited to a range of 200 mVpp to 700 mVpp.
Such voltages are too low to drive common optical modulators, which typically requiring
3 − 4 Vpp (in future we may will see lower driving voltages). Electrical DA are therefore
needed to amplify the DAC output signal and to achieve the input power required by the
accompanied optical modulator.
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Fig 2.5 illustrates the behavior of an ideal and real SHF S804-B broadband amplifier [45].
Above a certain input power level, the real amplifier gets into compression and the gain is
actually less than for an input signal with lower power level. At a certain point, the output
power will not get amplified, even if the input power is further increased, i.e., the amplifier
is in saturation. To quantify this non-linear behaviour the datasheet provides the values
of gain compression at 1 dB, 2 dB and 3 dB. For instance, the 1 dB compression point
indicates the output power at which the output level is 1 dB less than that of an ideal
(linear) amplifier. Non-linear regime operation leads to non-equidistant constellation points
and also to intermodulation distortion (IMD) as discussed in [46].

In case of IMD, the spectrum at the output of the non-linear device will not only consist of
the original signals but will also contain the sum and difference of the input signals along
with their harmonics as shown in Fig. 2.7. While most of the harmonics can be removed
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Figure 2.7: Intermodulation products and related frequency. The input test signal consists of two
fundamentals frequency f1 and f2 while the output signal contains multiple intermodulation products
when the amplifier is operated in the non-linear region.

by a filter, odd harmonics products, which fall very close to the fundamentals, will degrade
the performance. In practice, the optimal operations point is a trade-off between required
output power and non-linear effects.

As can be observed from Fig. 2.6, in comparison to the frequency response of the Micram
DAC4 the frequency response of the SHF S804-B broadband amplifier is rather flat. Linear
impairments caused by the limited bandwidth of the DA are therefore modest, even if high
symbol rates are considered.

2.1.4 External Optical Modulator

The external Mach-Zehnder modulator (MZM) is an interferometric structure made from a
material with strong electro-optic effect, such as Lithium niobate (LiNb03), Gallium arsenide
(GaAs) or Indium phosphide (InP) [46]. Fig. 2.8 shows the general structure of an MZM.
Note that, in coherent systems four of these MZMs are combined to modulate in-phase and
quadrature components of both polarizations. Applying electric fields to the arms changes
the optical path lengths, resulting in phase modulation. Combining two arms with opposite
driving voltages V1(t) = Vin(t), V2(t) = −Vin(t) converts phase modulation into the desired
intensity modulation.

The optical input Ein(t) is split into the upper and lower modulator arms. Subsequently,
the two fields are phase modulated with two phase shifters driven by the electrical signal
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Figure 2.8: Structure of a MZM.
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Vin(t) and then recombined into the optical output Eout(t). The corresponding output field
is given by [47, Eq. 1],

Eout(t) = Ein(t)1
2

(
exp

(
jπVin(t)

Vπ

)
+ ϱ exp

(
−jπVin(t)

Vπ

))
(2.1)

where Vπ denotes the halfwave switching voltage. The parameter ϱ is a scaling factor between
zero and one that accounts for a splitting imbalance and hence for an asymmetric device.
It is related to the optical extinction ratio δ, defined as the ratio of maximum to minimum
optical power, by ϱ = (

√
δ− 1)/(

√
δ + 1) [47]. According to (2.1), the transfer function of an

ideal device with infinite-extinction ratio is shown in Fig. 2.9. A typical modulator exhibits
an optical extinction ratio in the range of 15 to 25 dB, which will results in a spurious phase
shift in Fig. 2.9. The dashed line represents the output field, while the solid line represents
the corresponding output power. In coherent systems the bias point is set to to the null
point, in order to operate whenever possible in the linear regime [48]. However, if the output
voltage swing of Vin(t) exceeds the linear regime non-equidistant constellation points and
IMDs occur in the output signal.
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2.1.5 Digital Signal Processing Algorithms

Bit Stream

DM

FEC Encoder

Mapper

Training Sequence
Insertion

Resampling

Pulse Shaping

Preemphasis

To DACs

PX

Figure 2.11: Block diagram of a coherent transmitter DSP chain. In the case of probabilistic
shaping, the input distribution PX is imposed on the FEC encoder input with a distribution matcher
(DM). While the dotted blocks are omitted in the simulations and experiments in this thesis, the
gray highlighted DSP block is replaced by a neural network, see Chapter 4.

Most of today’s communication systems build on the design paradigm of bit-interleaved
coded modulation (BICM) because of its powerful scheme to achieve highest data rates
with general signal constellations. BICM was initially proposed by E.Zehavi in [49] and
studied in information-theoretic terms by G.Caire in [50]. The key idea is to separate the
actual coding from the modulation through an interleaving permutation [51]. In particular,
as further outlined by AG i Fàbregas in [51], BICM takes advantage of the signal-space
coding perspective, whilst allowing for the use of powerful families of binary codes, such as
Turbo codes [52, 53] and low-density parity-check (LDPC) [54, 55] codes, with virtually any
modulation format. The marginal performance loss (see Fig.4 in [50]) incurred by the BICM
interface is thereby outweighed by the low complexity. In principle this loss can be reduced
by using iterative decoding [56], however, at the cost of increasing latency and complexity.
Further information on BICM can be found in [51, 57].

In this thesis, we assume non-iterative BICM schemes, which is the de-facto standard of
modern communication systems. In the following, we briefly outline the DSP chain of the
transmitter, including FEC, modulation schemes and constellations shaping. Note that the
corresponding receiver-side DSP scheme is discussed in Section 2.3.2.
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2.1 Coherent Optical Transmitter

Forward Error Correction Encoder

Since Shannon’s seminal landmark on the channel capacity of the additive white Gaussian
noise (AWGN) channel [58], much research effort has been put into finding practical codes
that approach this limit with reasonable complexity [59]. In the following, we will briefly
discuss coding in general as well as linear block codes and the task of the FEC encoder. For
more technical details on channel coding, the reader is referred to [60].
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Figure 2.12: Coded and uncoded BER versus signal-to-noise ratio (SNR).

FEC is a common technique to control the errors in the data transmission over noisy chan-
nels. In principle, it is a method of improving the system bit error rate without requiring an
increase in the SNR [61, Sec. II-C]. For instance, in fiber-optics the BER after FEC decod-
ing, should be as low as 10−12 or 10−15 [62]. The key concept of FEC is to encode the signal
in a redundant way by applying a channel code at the transmitter. This allows the receiver
to detect a limited number of erroneous bits in the received signal and to correct these errors
without the need of re-transmission. The channel codes we assume in this thesis are linear
block codes. In a block code, a sequence of information bits of length kc is encoded and re-
dundancy is added, resulting in a codeword of length nc [59]. Hence, such codes exhibits a
rate of RC = kc/nc, or equivalently, a coding overhead (OH) of RC

−1 − 1 [59]. If the infor-
mation bits remain unchanged by the FEC encoder and only redundancy bits are added,
the encoder is called systematic [59]. This approach is often used to reduce complexity.

The strength of the FEC is characterized by the coding gain, i.e., the difference in SNR
at which the system operates with a specific BER with and without FEC. Note that, the
serial addition of the redundant bits increases the bit rate. Hence, to maintain the same
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Chapter 2 Coherent Optical Transmission Systems

performance, the required SNR increases by the ratio of the rate expansion, e.g, a 7% rate
expansion requires a 0.3 dB increase in the SNR [61]. The coding gain is thus quoted typically
as a net coding gain, which is obtained by subtracting the linear noise penalty associated
with the expanded serial rate from the raw coding gain [61], as shown in Fig. 2.12.

Mapper

According to the modulation format in use, the encoded bits are mapped to the symbol
constellation. The general purpose of a modulation format is to represent the encoded binary
information in a appropriate form for transmission. The fundamental trade-off in the choice
of modulation format is thereby: robustness to distortion while maintaining high spectral
efficiency [59].

The most simplest modulation format represents a logical zero by the signal being absent
and a logical one by presence of the signal. In the communication community this method
is called on-off keying (OOK), with a maximum spectral efficiency of 1 bit/s/Hz. More
advanced modulation formats, for instance two-dimensional (2D) modulations, such as QAM
constellations, utilize the orthogonality of trigonometric functions to transmit information
in the real part (in-phase) and imaginary part (quadrature) of the signal. Note that many
2D modulation formats are the results of two one-dimensional (1D) concatenated formats,
e.g., squared (even) QAMs. In this case, the two dimension can be demodulated separately
without any information loss at the receiver, however, this is only possible, if the channel
impairments on the in-phase and quadrature components are not correlated.

Constellation Shaping

On the AWGN channel, discrete and equidistant constellations with uniform signaling result
in a gap to capacity of 1.53 dB at high SNR [63, Sec. IV-B]. To compensate this performance
loss, signal shaping [64] can be employed to mimic a Gaussian-like shape of the constellation
and to obtain optimal signaling.

Signal shaping can be categorized into geometric and probabilistic shaping, as shown in
Fig. 2.13. In geometric shaping, a non-uniformly spaced constellation with equiprobable
symbols is used, whereas in probabilistic shaping, the constellation is fixed to a uniform grid
with differing probabilities per constellation point [59]. While probabilistic shaping is able
to close the gap to AWGN capacity, in geometric shaping a gap remains, if the cardinality of
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2.1 Coherent Optical Transmitter

(a) In probabilistic shaping, the constellation is
fixed to a uniform grid with differing probabilities
per constellation point.

(b) In geometric shaping, a non-uniformly spaced
constellation with equiprobable symbols is used.

Figure 2.13: Constellation shaping.

constellation is finite. However, both techniques attract significant attention and are included
in various standards, for instance in DVB-NGH [65], where geometric shaping is proposed.
A comprehensive comparison of both geometric and probabilistic shaping in terms of their
information theoretic achievable rates can be found in [66].

In this thesis, geometric shaping is applied for designing modulation formats and the ap-
proach of probabilistic shaping is assumed for label extension. In the case of probabilistic
shaping we assume the probabilistic amplitude shaping (PAS) architecture of [67], which
optimally intertwines shaping and coding in a capacity approaching and efficiently imple-
mentable way by concatenating a constant composition distribution matcher (CCDM) and
an off-the-shelf FEC. The role of the DM is thereby to transform a uniformly distributed
bit stream to a non-uniform bit stream. More details on the principle of CCDM are given
in [68]. Note that in the case of probabilistic shaping a binary systematic FEC encoder is
assumed, since it does not affect the information bits, hence the shaped DM output remains
unchanged by the FEC encoder.

Further DSP algorithms

After the mapper, constant amplitude zero auto-correlation (CAZAC) training sequences
and pilot symbols are inserted prior to the payload for data-aided frame detection, carrier
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frequency offset estimation, channel impulse response estimation and carrier phase estima-
tion at the receiver DSP [69]. The training symbols and payload data form together the DSP
frame structure. The resulting frame is resampled to the sample rate of the DAC and shaped
by a root-raised-cosine (RRC) filter. Pulse shaping is required to reduce the spectral width
of the signal and hence to reduces the ISI in bandlimited channels. For a detailed description
on pulse shaping the reader is refer to [70], where an elaborate explanation on the design
of pulse shaping filters is provided. Finally, to compensate for transmitter impairments, a
static preemphasis can be applied after pulse shaping.
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2.2 Fiber-Optic Channel

2.2 Fiber-Optic Channel

Within the fiber-optic channel, the transmitted orthogonally polarized waveform is exposed
to loss, dispersion and non-linear effects. Its evolution through a standard single-mode fiber
(SSMF) can be modeled by the coupled NLSE [59, Eq. 3.4]

∂Ax

∂z
= −α

2 Ax︸ ︷︷ ︸
Linear Impairment:

Attenuation

− β1,x
∂Ax

∂t︸ ︷︷ ︸
Linear Impairment:

Group delay

+ j
β2,x

2
∂2Ax

∂t2︸ ︷︷ ︸
Linear Impairment:

Chromatic disperison

+ β3,x

6
∂2Ax

∂t2︸ ︷︷ ︸
Linear Impairment:

Third-order disperison

(2.2)

− jγ(|A2
x|+

2
3 |A

2
y|)Ax︸ ︷︷ ︸

Non-linear Impairment:
Kerr elctro-optic effect

where A(z, t) denote the pulse envelope, α the fiber loss, β1 the group delay, β2 the chro-
matic dispersion, β3 third-order dispersion and γ the non-linearity of the waveguide. The
corresponding couple NLSE of the y-polarization can be obtain by changing the indices. The
first, second, third and fourth term on the right side represent the linear effects, whereas
the fifth term describes the influence of the non-linearity. In the following, the linear (Sec-
tion 2.2.1, 2.2.2, 2.2.3) and non-linear effects (Section 2.2.4) will be considered independently
in order to describe their behavior.

Note that the coupled NLSE is a simplification of the general non-linear Schrödinger equation
(GNLSE) [71, Eq. 4.375]. Depending on the required channel model, e.g., if a more realistic
fiber with randomly varying polarisation states and modal birefringence is necessary, the
coupled NLSE must be further extended to fully account for such effects. As they play a
subordinate role in this thesis, a detailed discuss is omitted here. The interested reader is
referred to, e.g., [71, Eq. 4.392], for further details how to extend the coupled NLSE.

2.2.1 Attenuation

An optical pulse carried through an optical fiber channel is attenuated by material absorp-
tion and Rayleigh scattering [5], whereby the total attenuation depends on the selected
wavelength and fiber in use as shown in Fig 2.14a. The attenuation constant is especially
high near the resonance frequencies of the oscillators in the media, because the power of the
electromagnetic field will be partly transformed into kinetic energy. For optical fibers these
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Figure 2.14: Attenuation and chromatic dispersion.

oscillators are built by the molecules of the basic material (silica glass) and impurities in the
fiber, mainly hydroxyl (OH−) ions [5]. Hence, the effect occurs not only near the fundamen-
tal resonances of the molecules, but also in the vicinity of their harmonics. Common coherent
optical communication systems operating therefore in the range of 1550 nm (C-band fre-
quency spectrum), where a SSMF exhibits an minimum average attenuation coefficient of
αdB = 0.2 dB/km.

Transmitter EDFA EDFA EDFA EDFA Receiver

Booster
Amplifier

In-line
Amplifier

In-line
Amplifier

Pre-
Amplifier

Figure 2.15: Booster, inline, and pre-amplifier EDFAs used in optical transmission line

The accumulated losses are compensated by optical amplifiers, e.g., EDFA, at the end of
each span. However, the optical amplifiers introduce additive noise, in particular amplified
spontaneous emission (ASE) noise during amplification. The amount of ASE noise is related
to noise figure (NF) and the amplification factor of the EDFA.
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2.2 Fiber-Optic Channel

2.2.2 Chromatic Dispersion

While the group delay and the third-order-dispersion term can be neglected by considering a
reference frame and a long pulse duration, see [59, Sec. 3.1.2], the chromatic dispersion term
cannot be omitted. In contrast to propagation in vacuum, the phase velocity in a medium
is a function of the frequency or wavelength [5, Eq. 2.63]. If, for instance, a modulated
optical carrier is injected into fiber the different frequency components will propagate with
different phase velocities and will arrive at the output at different times. This alteration of
the propagation time is the group-velocity dispersion (GVD) [5, Sec. 5.3].

In optical fibers the accumulated dispersion is called chromatic dispersion and it is the
combination of material dispersion and waveguide dispersion as shown in Fig. 2.14b. As a
consequence of GVD, the frequency components arrive out of phase at the output of the
fiber and the duration of the resulting pulses is broadened. In high-speed optical transmission
systems, which operate at minimum fiber attenuation (1550 nm), this will lead to ISI which
has to be compensated at the receiver-side by DSP (see Section 2.3.2). A detailed derivation
of the linear part of Eq. (2.2) and hence a mathematical description of the pulse broadening
can be found in [5, Sec. 5.3].

2.2.3 Polarization-Mode Disperison

The degenerate nature of the orthogonally polarized modes holds only for an ideal SSMF
with perfectly cylindrical core of uniform diameter [72]. Due to manufacturing imperfections,
mechanical strain and stress-induced anisotropy caused by bending and vibrations, such a
perfect circular shape with a constant refractive index along the fiber cannot be achieved [73].
Hence the mode degeneracy between the orthogonal polarization states is broken and the
fiber acquires birefringence [72]. The fiber birefringence ∆n(ω) = |nf (ω) − ns(ω)| [72, Eq.
2.2.40] causes a difference between the phase in each polarization mode [73, Eq. 2.19]

∆β(ω) = |bf (ω)− bs(ω)| = w

c
∆n(ω) = w

c
|nf (ω)− ns(ω)|, (2.3)

where nf is associated with the faster group velocity of the fast mode and ns refers to the
slow mode. This effect is called polarization mode dispersion (PMD). PMD can be mod-
eled by considering concatenating S independent fiber segments with independent uniform
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birefringence [69, Eq. 6]

HPMD(ω) =
S∏

s=1
R(ϕ′

s)H(ω, ∆τs, θs)R(ϕ′′
s ) (2.4)

where ϕ
′
s and ϕ

′′
s denote the angles between the slow axis and the polarization state of the

fast axis, respectively, θs the polarization phase and ∆τs the differential group delay (DGD)
between the two orthogonal fast and slow axes of the Hermitian birefringence matrix.

In general, because of its
√

L dependence [72, Eq. 1.2.18], PMD-induced pulse broadening is
relatively small compared with GVD effects. However, it becomes a limiting factor for high-
speed communication systems and has to be continuously compensated at the receiver-side
DSP due to its time-varying behavior [72].

2.2.4 Kerr Elctro-Optic Effect

A fiber-optic channel is a non-linear medium. Fiber non-linearities are generated by the Kerr
effect and are covered by the fifth right term in Eq. (2.2). In 1875 [74], John Kerr discovered
that the refractive index of a dielectric material changes its value in response to an external
applied electric field. Furthermore, he showed that the induced change of the refractive index
is directly proportional to the square of the external applied electric field.

In optical fiber communication the propagating light itself causes an instantaneous change
in the electric field. Hence changes in the refractive index lead in turn to changes in the
signal speed, which manifest themselves as small changes in the phase of the propagating
wave [75].

By neglecting the linear parts in Eq. (2.2), the differential equation is directly solvable
in time domain and the influence of the fiber non-linearity on a propagating pulse can
be examined. According to the solution provided in [5, Sec. 5.5], it turns out that new
frequency components are generated in the spectrum of a propagating pulse due to the non-
linear behavior. Fig. 2.16 shows an example provided in [5, Sec. 5.5]. It depicts the spectral
evolution of an initially unchirped optical pulse with a duration of 25 ps after a propagation
distance of 1 km, 5 km, 10 km and 14 km in a SSMF without dispersion. Note that, if the
pulse changes its spectrum due to its own intensity we observe self phase modulation (SPM),
while the spectral broadening induced by other pulses, propagating at the same time in the
waveguide, is called cross phase modulation (XPM). Both are, in principle, deterministic non-
linear effects that can be compensated by inverting the NLSE (2.2). Since the bit pattern
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Figure 2.16: Spectral evolution of an unchirped optical Gaussian pulse with a duration of 25 ps
at different distances in a SSMF [5, Fig. 4.20].

of the other channels is unknown, only SPM can be compensated with standard NLSE
approaches at the receiver-side DSP (see Section 2.3.2).

21



Chapter 2 Coherent Optical Transmission Systems

2.3 Coherent Optical Receiver

Coherent detection allows a linear mapping of the optical signal into the electrical domain
such that amplitude and phase of both polarizations are available in the electrical domain
after demodulation by the optical front-end and detection by a row of photodiodes [76]. The
full knowledge of the optical field enables the utilization of sophisticated modulation schemes,
such as QAM, as well as the compensation of the O/E components and fiber impairments
mentioned in the previous sections. In the following the optical front-end (Section 2.3.1)
and the standard receiver-side DSP (Section 2.3.2) to recover the transmitted signal are
described in more detail.

2.3.1 Optical Front-End

ERec(t) PBS PBSELO(t) DSP

horizontal pol.

vertical pol.
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Optical
Hybrid

2× 4
90◦

Optical
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ADC
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Figure 2.17: Coherent optical receiver consisting two polarization beam splitter (PBS), two 90◦ hy-
brids, four balanced photodiodes and four ADCs.

In Fig. 2.17 a high level block diagram of a coherent optical receiver is illustrated. The
received optical signal is separated by a polarization beam splitter (PBS) into two orthogonal
polarization components X and Y and fed to a 90◦ hybrid. In the 90◦ hybrid the signal is
mixed with the local oscillator (LO) to separate the corresponding in-phase and quadrature
components of each polarization. The LO consists of a LASER with a narrow linewidth and
higher power compared to the received signal to enhance the receiver sensitivity [77]. The
obtained optical signals are then transferred into the electrical domain by a row of balanced
photodiodes. This is followed by four high-speed ADCs, which digitalize the baseband signals

22



2.3 Coherent Optical Receiver

within a certain range by a limited number of digital output codes [43]. Since the analog
scale is continuous, while the digital codes are discrete, a quantization error is introduced.
Note that quantization is indeed non-linear but can be modeled as AWGN.

2.3.2 Digital Signal Processing Algorithms

From ADCs

Resampling | ADC � 2 SpS

Digital Back-Propagation

Framing

CFO Compensation

2 × 2 MIMO Equalizer

Timing Recovery | 2 SpS � 1 SpS

Carrier Phase Recovery

Post-Equalizer

Demapper

FEC Decoding

Inverse DM

PX

PX

Bit Stream

Figure 2.18: Block diagram of the coherent offline receiver DSP chain. The demapper and the
CCDM requires knowledge about the input distribution PX to correctly calculate the prior infor-
mation respectively to inverse the shaping. While the dotted blocks are omitted in the simulation
and experiments in this thesis, the gray highlighted DSP blocks are replaced by neural network, see
Chapters 4 and 5.

Coherent detection recovers the entire optical field within the electronic bandwidth of the
receiver and consequently DSP allows for efficient mitigation of the main degrading distor-
tions arising from the optical fiber, component imperfections as well as clock and carrier
recovery. Some of these effects are deterministic while others are random. This section de-
scribes the main standard DSP algorithms which are utilized to recover the received signals
after transmission. The flow of the signal through the data-aided receiver DSP is depicted
in Fig. 2.18.
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Digital Back-Propagation

After resampling, DBP aims at inverting, via Eqs. (2.2), the optical fiber channel, i.e., the
forward propagation [9]. However, an analytical solution does not exist. Only for isolated
effects analytical solutions can be derived as it has been mentioned in the previous section
to illustrate the phenomena of chromatic dispersion and fiber non-linearity. Nevertheless,
an approximated solution can be obtained via the SSFM [78], a numerical finite-element
method. Eq. (2.2) can be written in the following form

∂Ax

∂z
= (L̂ + N̂)Ax (2.5)

where L̂ = j β2
2

∂2

∂t2 is the linear and N̂ = −jγ|Ax + Ay|2 the non-linear part. Following T.
Schneider [5, Chap. 5.3 and 5.5] the solution of (2.5) reads as

Ax(z + ∆z, t) = e∆z(L̂+N̂)Ax(z, t) (2.6)

where z is the current position within the span, t the time and ∆z the step size. If ∆z is
sufficiently short, the right part of (2.6) can be approximated by the SSFM, breaking the
interaction of linear and non-linear distortion within this short step, yielding the solution

e∆z(L̂+N̂)Ax(z, t) ≈ e∆zL̂e∆zN̂ Ax(z, t). (2.7)

These short steps are then cascaded and solve for the link length. The linear part of (2.7) pro-
vides the bulk chromatic dispersion compensation. Chromatic dispersion can be considered
as a time-invariant linear impairment, unless the optical path is newly routed. Therefore,
the chromatic dispersion can be estimated initially by blind algorithms [79–85] and after-
wards compensated by a zero-forcing (ZF) frequency divison equalizer (FDE) [69, 84–86]
per polarization, analytically expressed as [9, Eq. (7)]

A(z + ∆z, t) = F−1{F{A(z, t)}HCD(wk)} (2.8)

with A = [Ax, Ay] and HCD(wk) given by [69]

HCD(wk) = exp
(

j
Dλ2w2

k

4πc

)
, (2.9)

and where D = β2∆z in ps/nm is responsible for the accumulated dispersion of a signal after
propagating through an optical fiber of length ∆z in km and with group velocity dispersion
β2 in ps2nm, λ in nm is the central wavelength of the signal, c is the speed of light in
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2.3 Coherent Optical Receiver

vacuum. Since the frequency equalizer is discrete wk, k = 0, . . . , N−1 represents the discrete
angular frequencies, where N is the length of the filter. One step frequency-domain linear
compensation for the two polarizations requires thus the evaluation of four N -point complex
fast Fourier transforms (FFTs) and 2N complex multiplications, which gives a complexity of
2N +2N log2(N) complex multiplications or 8N +8N log2(N) real multiplications [87]. Due
to the overlap-save algorithm for blockwise frequency-domain filtering, the number of useful
samples on both polarizations is reduced from 2N to 2(N−2Noverlap), where Noverlap denotes
the number of overlapping samples. As a result, the required number of real multiplications
per symbol for one linear step is [87, Eq. 7]

mulCD-FDE = npolnsamp(8N + 8N log2(N))
npol(N − 2Noverlap) . (2.10)

where npol is the number of polarizations and nsamp is the oversampling ratio per polariza-
tion. The non-linear part of (2.7) provides the non-linear phase corrections. It is applied
in time-domain and can be analytically expressed by the following complex exponential fac-
tor [9, Eq. (8)]

A(z + ∆z, t) = A(z, t)e−jγ|A(z,t)|2∆zϕ (2.11)

where ϕ ∈ [0, 1] is the compensation scaling factor to optimize the non-linear mitigation as
proposed in [88]. One step time-domain non-linear compensation for the two polarizations
requires 2× 10N real multiplications. Hence, the number of real multiplications per symbol
for one non-linear step is [87, Eq. 8]

mulStandard-DBP = mulCD-FDE + npolnsamp10N

npolN
. (2.12)

In essence, the DBP uses the SSFM to calculate the transmitted signal by simulated prop-
agation of the received signal through a fiber with negated parameters with respect to the
fiber link [89]. Note that, the optimal value of the step size ∆z, in terms of performance,
would tend to zero. However, this would require an infinite number of steps within the fiber
channel (and hence high computational complexity). In practice it is common to consider
only one step per span when non-linear fiber compensation is applied.

Carrier Frequency Offset Compensation

The optical signal can be detected at the receiver either in homodyne or intradyne con-
figuration. In homodyne detection, the beam of a laser source is split between transmitter
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Chapter 2 Coherent Optical Transmission Systems

and receiver, which ensures matched phase and frequency. However, this configuration is
only possible in the lab. In intradyne detection, two laser sources are used, i.e., one at
the transmitter and one at the receiver. In real systems, the two laser cannot be perfectly
synchronized. This leads to a frequency offset in the order of ±1.8GHz, which has to be
compensated in the DSP domain. In this thesis, we used a carrier frequency offset (CFO)
compensation algorithm based on Schmidl&Cox [90] and implemented it according to [91].

2× 2 MIMO Equalizer

While the prior FDEs of the DBP are dedicated to perform coarse compensation of the static
chromatic dispersion, a shorter adaptive 2×2 multiple input multiple output (MIMO) FDE
is dedicated to polarization demultiplexing, residual PMD compensation, as well as tracking
of time-varying effects [69]. The equalizer matrix W (wk) is obtained by using the minimum
mean square error (MMSE) solution, which aims to minimize the expectation of the squared
Euclidean distance of the equalized and transmitted signal, and maximizes the signal-to-
interference-and-noise ratio (SINR). The equalizer matrix is given by [69, Eq. (18)]

W (wk) = HH(wk)[H(wk)HH(wk) + δ(wk)]−1, (2.13)

where H(wk) denotes the channel matrix and δ(wk) the noise autocorrelation matrix. Note
that, the MMSE solution converges in the high SNR regime to the ZF solution and in the
low SNR regime to the matched filter (MF) solution. It provides the best trade-off, in terms
of performance, between ISI suppression and noise enhancement.

Since in a real system the channel matrix H(wk) of (2.13) is not known, the receiver needs
to retrieve it from the received data. In this thesis, training-aided channel estimation based
on CAZAC sequences is applied [69, Sec. IV]. This approach requires periodical transmission
of the training sequence to track the time-varying effects [92], such as PMD.

Timing Recovery

At this stage the coarse frequency offset between the transmitter LASER and LO has been
removed from the received samples. However, as the transmitter and receiver operate with
separate radio frequency (RF) clock sources, sampling points at the ADC are not aligned
to the incoming data samples. This corresponds to small sampling frequency offsets and
drifting sampling phase relations. A digital timing recovery (TR), either in time domain [93,
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94], combined time and frequency domain [95], or pure frequency domain [96], estimates
the sampling phase and resamples the signal to align the samples. In this thesis, the most
common time domain method is used, the Gardner method [94], which operates at two
samples per symbol.

Carrier Phase Recovery

The carrier phase recovery (CPR) tracks and compensates laser phase noise introduced by
free-running transmitter and LO lasers. Laser phase noise is often modeled as a Wiener noise
process [97, 98], which is a random walk of Gaussian variables with zero mean and variance
proportional to the combined linewidth of the lasers [99]. Various approaches can be used to
compensate this deterministic distortion, such as the Viterbi and Viterbi [100], which was
used in the receiver DSP in the thesis for small constellations. For high-order constellations
a pilot-aided CPR [101] was employed.

Post-Equalizer

A linear or non-linear equalizer is placed before the memoryless demapper to combat residual
distortion, like residual ISI due to non-ideal channel characteristics. The equalizer attempts
to reverse the residual effects before the demapper, which assumes an AWGN channel and
hence ideal compensation of the impairments. A popular approach for non-linear equalization
is shown in Fig. 2.19, namely the VNLE. The VNLE has proven to be very effective against
component and fiber non-linearities [11, 12].

y(i)

linear FIR filter

2nd order Kernels

...

P th order Kernels

+ ỹ(i)
nonlinear Volterra Kernels

Figure 2.19: Blockdiagram of a Volterra non-linear equalizer.
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By combining linear convolution and non-linear power series, the VNLE is capable to describe
causal as well as non-causal time-invariant non-linear systems with finite fading memory. Let
y(i) and ỹ(i) represent a system with single input and single output, respectively, the p-th
order non-causal discrete time Volterra series is given by [102, Sec. 4.2]

ỹ(i) = fVNLE(y(i), hp) =
P∑

p=1

M1∑
s1=−M1

· · ·
Mp∑

sp=−Mp

hp(s1, · · · , sp)
p∏

k=1
y(i− sk), (2.14)

where hp(s1, · · · , sp) denotes the p-th order Volterra kernel, M1 the symmetric memory
length for the linear terms and M2 to Mp the symmetric memory lengths for the non-linear
terms of second order and higher. Generalizing [103, Table I] to an arbitrary order p, the
relationship between the symmetric memory length and the number of equalizer kernels Np

is given by

Np = 1
p!

p−1∏
i=0

(2Mp + 1 + i). (2.15)

The real-time complexity of a VNLE is defined by the number of kernels, see (2.14). Their
number is directly connected to the required number of hardware multipliers, namely

mulVNLE = N1 +
P∑

i=2
(Ni︸ ︷︷ ︸

Kernels

+ (2Mi + 1) + 1︸ ︷︷ ︸
Feature Matrix [104, Sec. IV-B]

). (2.16)

y(i +1)

×

D D

D D

y(i +1) y(i +1)2 y(i) y(i)2 y(i−1) y(i−1)2

×

×

×

×

×

×
× × × ×××

+ ỹ(i)

Feature Matrix
[104, Sec. IV-B]

Kernels

Figure 2.20: Signal flow diagram of a 2nd order Volterra equalizer with symmetric memory length
of M1 = 1 and M2 = 1. The white blocks indicate the linear part (FIR filter), while the gray blocks
indicate the non-linear part. The dashed multipliers denote thereby the generation of the cross-terms.
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Eq. (2.16) is derived from the structure presented in [104, Sec. IV-B]. It considers terms
that can be obtained by delaying other terms as well as the reuse of products of order k to
compute products of order k + 1.

Demapper

The a posteriori probability (APP) soft-demapper calculates soft-bits [105, Sec. 3]

ℓi = log Pr(bi = 0|y)
Pr(bi = 1|y) . (2.17)

We can interpret the values of the soft-bits in the following way: the signs represent the
hard decision, i.e., 0, if ℓi > 0 and 1, if ℓi ≤ 0, and the absolute values |ℓi| indicate how
confident the soft-demapper is about its decisions. Large |ℓi| indicate high confidence. With
the aid of Bayes’ rule, Eq. (2.17) can be expressed in terms of channel likelihoods and prior
information [105, Eq. 7]

ℓi = log
∑

x∈X(bi=0) p(y|x)∑
x∈X(bi=1) p(y|x)︸ ︷︷ ︸

channel likelihood

+ log Pr(bi = 0)
Pr(bi = 1)︸ ︷︷ ︸

prior information

, (2.18)

where the sets X(bi = j) contain all constellation symbols with the i-th bit equals j. The
channel likelihood conditions on symbols and are independent of the source statistics. The
prior information contains the information about the source statistics.

For independent and uniformly distributed symbol the prior information is equals zero.
Further assuming an AWGN channel, the soft-bits in Eq. (2.18) can be calculated according
to [106, Sec. 3.3]

ℓi =
∑
b∈B

(−1)b log
∑

x∈X(bi=b)
exp(− 1

N0
||y − x||2), (2.19)

where N0 is the noise power spectral density. For binary phase shift keying (BPSK) trans-
mission this further simplifies to

ℓi = y

N0
. (2.20)

A general alternative low complexity solution of Eq. (2.19) is given by applying the max-log
approximation (MLA) [106, Sec. 3.3.3]

ℓi = 1
N0

∑
b∈B

(−1)b min
x∈X(bi=b)

||y − x||2. (2.21)
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For non-uniformly distributed symbol levels, as in the case of probabilistic shaping, the prior
information is non-zero. In this case the demapper requires knowledge about the applied
input distribution at the transmitter to correctly calculate the soft-bits in Eq. (2.18).

In general, by using the reliability information contained in the soft demapper, soft-decision
FEC can be more powerful than hard-decision schemes [59, 107], for instance, if low code
rates are considered [108]. Since we can obtain hard-decision (HD) from soft decision (SD),
mutual information can only decrease according to the data processing theorem.
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2.4 Performance Metrics

This section introduces the main used metrics in this thesis for assessing the performance of
optical communication systems.

2.4.1 Pre-FEC Bit-Error Ratio

For hard-decision coding schemes, the BER after decoding, denoted as post-FEC BER, is
a deterministic function of the uncoded BER, denoted as pre-FEC BER, as long as burst
errors are neglected [59]. This deterministic relation between BER before and after decod-
ing has lead to the use of a hard-decision FEC limit, giving the maximum pre-FEC BER
for which a desired post-FEC BER is not exceeded. The concept of a FEC limit makes
the implementation of a hard-decision FEC encoding/decoding and hence time-consuming
simulations obsolete.

2.4.2 Achievable Rate

In [62] the authors demonstrated, that the concept of a FEC limit is acceptable, if the
decoder is based on hard-decisions and fed with bits. However, if BER based FEC limits are
used in soft-decision FEC systems, the prediction of the post-FEC BER is imprecise, see [62,
Sec. IV]. A more accurate post-FEC BER predictor is the achievable rate. The achievable
rate indicates the number of bits per symbol that can be reliably transmitted through the
channel. By [109, Eq. (100)], we can estimate from the transmitted bits b and the soft bits
ℓ the achievable rate per polarization

R = m−min
s≥0

n∑
i=1

m∑
j=1

log2 [1 + exp(−s(1− 2bij)ℓij)] (2.22)

where m is the number of bits per symbol, e.g., m = 6 for 64-QAM, where n is the number of
transmitted symbols, and where we assumed uniformly distributed channel input symbols.
The optimization over s is used for matching the softbits ℓij to the ‘true’ probabilities so
that sℓij ≈ log Pr(Bij=0|yi)

Pr(Bij=1|yi) where yi are the channel outputs available to the demapper
for estimating the bit Bij . Without the optimization over s, the achievable rate estimate
obtained by (2.22) can be too low, providing only a loose lower bound of the theoretical
limit. See [109, Sec. V.C] for details. Note that (2.22) is called general mutual information
(GMI) in [62, Eq. (32)].

31



Chapter 2 Coherent Optical Transmission Systems

2.4.3 Optical Signal-to-Noise Ratio

In optical transmission systems the optical signal-to-noise ratio (OSNR) is used to quantify
the optical signal quality. The definition of OSNR is [7, Eq. 33]

OSNR = Psignal
PASE

= Psignal
2NASEBref

(2.23)

where P signal is the total average optical signal power summed over the two states of pola-
rization, NASE is the spectral density of ASE noise and the reference bandwidth Bref is
usually 12.5 GHz, corresponding to a 0.1 nm resolution bandwidth of a optical spectrum an-
alyzer (OSA) at 1550 nm carrier wavelength (193.4 THz carrier frequency). The definition
of OSNR is in direct relationship to the SNR, and differs from it by a normalization factor
as follows [7, Eq. 34]

OSNR = pRs
2Bref

SNR (2.24)

where p = 1 for a single polarization and p = 2 for a polarization-multiplexed signal. In the
experimental setup the optical signal and noise powers of Eq. (2.23) are directly measured
using the OSA.
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Artificial Neural Networks

Artificial neural networks (ANNs) were originally developed as mathematical models for
information storage and organization in biological brains [110–112]. Although it is nowadays
clear that ANNs have little resemblance to real biological neurons, they enjoy continuing
popularity as non-linear models [113].

Many varieties of ANNs with different properties have been introduced over the last decades.
One important distinction is thereby made between ANNs whose connections are acyclic, and
those whose connections form cycles. Acyclic ANNs are referred to as feed-forward neural
networks [113]. Typical examples of feed-forward neural networks include perceptrons [111],
radial basis function networks [114] and Hofield nets [115]. The most widely used form of
feed-forward neural network, and the one we focus on in this thesis and in Section 3.1, is
the mulitlayer perceptron [116]. ANNs with cycles are referred to as feedback or recurrent
neural networks (RNNs) [113]. They are discussed in Section 3.2. For both neural network
architectures the forward and backward pass is described.

a
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a
[ℓ−1]
2

a
[ℓ−1]
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∑
g

w1

w2
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( S∑
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s ws + b

)
Input Projection Ouput

b

Figure 3.1: Single artificial neuron.
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Figure 3.2: The used activation functions and the derivatives: (a) hyperbolic tangent (tanh)
activation function (b) hard tanh (H-tanh) activation function (c) rectified linear unit (ReLU)
activation function (d) linear activation function.

3.1 Multilayer Perceptron

Multilayer perceptrons computing structures are built from several layers of artificial neu-
rons [117, Chap. 5]. A single artificial neuron is a processing unit with a number of inputs
and one output, as shown in Fig. 3.1. Each input is associated with a weight. The neuron

... ...
...

...
...

x1

x2

x3

xN

y1

y2

yM

Input layer Hidden layers Output layer

Figure 3.3: Example of a deep neural network (DNN) with three hidden layers. While the design
of the input and output layer depends on the input and output dimension of the desired function,
the design options of the hidden layers are numerous and interrelated.
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first computes an activation by summing up the particular weighted inputs and a bias term.
Secondly, an activation function g(·) is applied to obtain the neuron’s output. The purpose
of the activation function is to introduce non-linearity into the output of a neuron and to
decide, whether a neuron should be activated or not. This non-linear transformation makes
it capable to learn and perform more complex tasks. Fig. 3.2 depicts the activation functions
and the derivatives used in this thesis. The derivatives are required for training, in particu-
lar for gradient descent, see Section 3.1.3. Interconnecting multiple neurons in parallel leads
to a neural network with one hidden layer, a so-called shallow network. Multiple layers in
series, where the output of the previous layer serves as input for the next layer, lead to a
DNN [118] as shown in Fig. 3.3.

3.1.1 Forward Pass

Let x = [x1, . . . , xN ] and y = [y1, . . . , yM ] denote the input and output vectors with N input
and M output neurons, respectively, the forward pass of a DNN with L-layers is given by

a[0] = x, (3.1)

z[l] = W [l]a[l−1] + b[l], (3.2)

a[l] = g(z[l]), l = 1, . . . , L (3.3)

y = a[L], (3.4)

where z[l] denotes the activation, a[l] the output vector of the l-th layer and W [l] and b[l] the
weight matrices and bias vectors, respectively. Eq. (3.1) denotes the input layer and (3.2) as
well as (3.3) are executed successively for layers l = 1, 2, . . . , L to obtain output y in (3.4).
In the following, (3.1), (3.2), (3.3), and (3.4) will be referred to by

y = fDNN(x, W [1], . . . , W [L], b[1], . . . , b[L]). (3.5)

3.1.2 Depth of Multilayer Perceptron

Montúfar et al. (2014) [119] demonstrated that deep networks are more expressive and re-
quire far fewer neurons to represent a desired function than shallow networks. They showed
that the number of decision regions of deep models grows exponentially in the depth and
polynomially in the number of neurons in the hidden layers. Their growth is much faster than
that of shallow models which grow only polynomially in the number of hidden units [120].

35



Chapter 3 Artificial Neural Networks

Consequently, deeper models need exponentially less parameters to reach the desired rep-
resentation capacity. Note that, choosing a deeper model and hence a cascade structure
matches as well better with the intertwined memory effects and non-linearities of the physi-
cal channel in optical communication. Deeper layers can reuse constructed conclusions from
the lower layers in order to gradually build more complex functions [121]. Furthermore, in
2017, Montúfar et al. [122, Eq. 5] introduced an upper bound on the number of activation
patterns of a multilayer perceptron. In a neural network the number of activation patterns
correspond to the number of possible distinct input space regions that the neural network
can distinguish. For fixed parameters, a network with n0 inputs and n1, . . . , nL ReLUs in
the hidden layers realizes at most

L∏
l=1

ml−1∑
j=0

(
nl

j

)
, ml−1 = min{n0, . . . , nl−1} (3.6)

activation patterns as one traverses the input space. The fundamental of the bound is based
on the assumption that an arrangement of n ReLUs divides a d dimensional space (input) into
at most

∑d
j=0

(n
j

)
regions. In general, the bound provides an indication of the representation

capacity and hence of the capacity of a given multilayer perceptron architecture.
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Figure 3.4: According to (3.6), number of activation patterns of a neural network with one input
neuron and one to six hidden layers with various neurons and one ouput neuron. Some exemplary
designs are labeled with their structures, where the numbers denote the number of neurons.

Fig. 3.4 shows the number of activation patterns related to the total number of neurons in
the hidden layers of a shallow neural network and a deep neural network with up to six lay-
ers. Each small dot denotes an individual neural network architectural design. The number
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of input and output neurons is set to one. Some exemplary designs are labeled with their
structure, where the labels denote the number of neurons. As expected the representation
capacity grows exponential within the number of hidden layers and that for each depth an
architectural trade-off between complexity and representation capacity exists. The optimal
architectures are located at the corresponding envelops and are the designs with equal neu-
rons in the hidden layers. In theory they are therefore the preferred choices, however, in
practice matched architecture with non-equal distributed neurons can outperform the equal
distributed structures in terms of both complexity and performance.

3.1.3 Backward Pass

In this thesis, neural networks are trained in a supervised learning manner, building knowl-
edge from a dataset comprised of inputs and desired outputs. In such a supervised learning
manner the neural network learns and approximates the unknown underlying mapping func-
tion from inputs to outputs by tuning its parameters. This process involves using an opti-
mization algorithm that searches through a space of possible parameters for a set of weights
and biases which minimize a predefined cost function L. However, training deep neural net-
works is very challenging. In [123] the authors have shown that neural networks are difficult
to optimize because they are non-convex (or non-concave) and contain local minima, saddle
points and a highly multidimensional space. Methods which solve these problems currently
best are gradient-based optimization methods, e.g., gradient descent [124, Chap.2]

W [l]
new ←W

[l]
old −

∂L
∂W

[l]
old

(3.7)

b[l]
new ← b

[l]
old −

∂L
∂b

[l]
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(3.8)

b[L]

a[L−1]

W [L]
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∂a[L]
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∂z[L]

∂z[L]

∂b[L]

Figure 3.5: Simple computational graph of the last layer of a neural network to illustrate the
backpropagation of error algorithm.
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where the parameters receive an update proportional to the partial derivatives of the cost
function with respect to the current network parameters in each iteration of training. An
effective algorithm to compute these gradients is the backpropagation of error algorithm [118,
Sec. 6.5]. It computes the particular gradients by iterating backward from the last layer to
the first layer and by applying thereby the chain rule.

The derivation of a general cost function with respect to the weights and biases in the L-th
layer can be expressed by applying the chain rule as follows

∂L
∂W [L] = ∂z[L]

∂W [L]
∂a[L]

∂z[L]
∂L

∂a[L] = a[L−1]g′(z[L]) ∂L
∂a[L] , (3.9)
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∂z[L]
∂L

∂a[L] = g′(z[L]) ∂L
∂a[L] , (3.10)

where g′(·) is the derivative of the activation function. The gradient of the previous layers, to-
wards the first layer, are subsequently calculated by propagation backwards. The derivations
for l = L, . . . , 2 are defined as follows
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∂a[L] , (3.11)
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From (3.11) and (3.12) it can be observed that, the computation of the gradients in the
previous layer builds on the particular gradients of the post layer. Hence, some particular
gradients of the expended chain rule expression have to be evaluated only once.

Training neural networks with gradient-based learning methods and backpropagation en-
counters the problem of vanishing gradient, i.e, the gradients in the early layers become
extremely small and the network cannot learn the parameter within this layer effectively.
The main cause of vanishing gradients are the non-linear activation functions. Many non-
linear activation functions map their input into a very restricted output range. As a result,
there are large regions of the input space which are mapped to a small range. In these re-
gions of the input space, even a large change in the input will produce a small change in the
output, hence the gradient is small. The problem of small gradients becomes enhanced in
DNN, where layers are stacked on top of each other. Gradients smaller than 1 of deeper lay-
ers will get multiplied up to L times to compute gradients of the early layers in an L-layer
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network. This reduces the value of the gradient for the initial layers even further. As a re-
sults, those layers are not able to learn properly. The depth of a DNN is thus limited and in
practice the optimum performance is found in a trade off between number of hidden layers
and the effect of vanishing gradients.

3.2 Recurrent Neural Networks

In the previous section we considered neural networks whose connections did not form cycles.
If we relax this condition, and allow cyclical connections another type of ANN is obtained,
the RNNs. A type in which some of the connections between neurons point backwards. The
network connections form thus a directed graph along a temporal sequence, which allows
the RNN to exercise temporal dynamic behavior [125, Chap.2.3]. Derived from feed-forward
neural networks, which can only map from the input to the output vectors, RNNs take as
their input not just the current input vector but also what they have perceived previously
in time. The key point is that the recurrent connections allow a memory of previous inputs
to persist in the network’s internal state, and thereby influence the network’s output [113].
It is therefore a specialized neural network for processing a sequence of values [126]. This
makes them applicable to tasks such as handwriting [127] or speech recognition [128]. In this
section, we provide the basic information of RNNs, which are used within this thesis. For
additional information on RNNs, we refer the reader to the textbook of Graves (2012) [113,
Chap. 3.2].

3.2.1 Forward Pass

The forward pass of a recurrent layer concur with the feed-forward layer, expect of activations
arriving at the hidden layer are from both the current external input and the hidden layers’
activations from a previous timestep [128]. With y(t) representing the input vector, the
hidden state h(t) at time t is given by

h(t) = g(W y(t) + Uh(t− 1) + b). (3.13)

where the hidden state of the previous time step h(t−1) is multiplied by its own hidden-state-
to-hidden-state weight matrix U , otherwise known as a transition matrix and similar to a
Markov chain. The hidden-state-to-hidden-state weight matrix acts as filter and determines
how much importance to accord to both the present input and the past hidden state. Because
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Figure 3.6: Example of recurrent neural network (RNN) with one self connected hidden layer. The
colored arrows denote the additional connections of each particular neuron within the layer.

this feedback loop appears at every time step of the series, each hidden state contains traces
not only of the previous hidden state, but also of all those that preceded h(t− 1) for as long
as memory persist.

The differentiable non-linear activation function g(·) is applied on the sum of the weight in-
puts and hidden states similar to a feed-forward layer. The complete sequence of the hidden
activations can be calculated by starting at t = 1 and recursively applying (3.13), increment-
ing t at each step [128]. Note that for these initial values the hidden state matrix h(0) is
required. In this thesis, the initial values are always set to zero. However, in [129] the authors
have shown that the RNN stability and performance can be improved in some scenarios by
using nonzero initial values.

3.2.2 Backward Pass

Just like feed-forward neural networks, RNNs are trained with gradient-based learning meth-
ods. Two well-known algorithms have been devised to efficiently calculate weight derivatives
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Figure 3.7: An unrolled recurrent neural network with one hidden layer. Each node represents a
layer of network units at a single timestep. Note that, the same weights are reused at every timestep.

for RNNs, the real time recurrent learning (RTRL) [130] and the backpropagation through
time (BPTT) [131]. In this thesis, BPTT is used, since it is conceptually simpler.

Like standard backpropagation, BPTT consists of a repeated application of the chain rule.
The subtlety is that, for recurrent networks, the loss function depends on the activation of
the hidden layer not only through its influence on the output layer, but also through its
influence on the hidden layer at the next timestep [128]. A way to visualize this and to point
out the functionality of BPTT is to consider the update graph. The update graph is formed
by unfolding the network along the input sequence. Fig. 3.7 shows an unfolded RNN with
one hidden layer. It can be observed that time is expressed by a well-defined ordered series
of calculations, linking one time step to the next. Hence, RNNs can be simply considered
as a nested composition of feed-forward layers with equal weights and the backpropagation
algorithm explained in Section 3.1.3 can be reused to compute the corresponding derivatives
of an RNN.

3.3 Optimization Algorithm

Various enhanced optimizers are researched within the last few couples of years to update
the weights and biases of the neural network. One of them is the stochastic gradient descent
(SGD) optimization algorithm, which iteratively updates the parameters of a model by
moving them in the direction of the negative gradient of the loss evaluated on a minibatch.

However, the SGD has trouble navigating through ravines, i.e. areas where the surface curves
much more steeply in one dimension than in another [132], which are quite common around
local optima [124]. This issue can be overcome by determining the trend of the gradients,
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namely by the momentum. Momentum [133] is a method that accelerates convergence to-
wards the relevant direction and dampens oscillations to the irrelevant directions. Popular
algorithms in this line of research are adaptive gradient methods, which update the stepsize
on the fly according to the gradients received along the way. Theses algorithm have gained
widespread use in high dimensional problems for their ability to converge robustly, without
the need to fine-tune parameters [134].

In the following, we will outline two optimization algorithms which are used within this thesis
to update the weights and biases of the neural network, namely RMSprop and ADAM. A
greater overview of other gradient descent optimization algorithms is given by S. Ruder
in [124].

3.3.1 RMSprop

RMSprop is an adaptive learning rate method proposed by Geoff Hinton. The main idea
behind RMSprop is to divide the learning rate by an exponentially decaying average of
squared gradients in order to hinder the search in the direction of oscillation.

W
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t −
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∂L
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[l]
t

(3.14)
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(

∂L
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[l]
t

)2

(3.15)

where η is the initial learning rate and vt the estimates of the uncentered variance of the
gradients [124]. Hinton suggests ρ to be set to 0.9, while a good default value for the learning
rate η is 0.001.

3.3.2 Adam

Adaptive Moment Estimation (Adam) [135] is another method that computes adaptive learn-
ing rates for each parameter. In addition to RMSprop, which stores an exponentially decaying
average of past square gradients vt, Adam keeps as well an exponentially decaying average
of the past gradients [124, Sec. 4.6],
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(3.16)
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with
mt = δmt−1 + (1− δ) ∂L

∂W
[l]
t

. (3.17)

where mt is the estimate of the mean of the gradients. Default values for ρ and δ are 0.999
and 0.9, receptively.
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Chapter 4

Neural Network Assisted Geometric
Shaping

For a given transmit bandwidth, optical communication systems achieve highest data rates
by increasing their spectral efficiency with higher modulation orders. To achieve maximum
performance, it is essential to match the modulation to the actual transmit channel condi-
tions. End-to-end learning is a machine learning method for designing high-order optimized
modulations formats and to realize geometrical constellation shaping for various channel sce-
narios. It enables joint optimization of the mapper and demapper to learn optimal symbol
constellations. The mapper and demapper are implemented as DNNs consisting of various
hidden layers, that realize the functionality of so-called auto-encoders [26]. The DNN struc-
ture enforces dimension reduction and makes the auto-encoder map its input into an inphase
(I) and quadrature quadrature (Q) transmit component. A limitation of the end-to-end de-
sign is that the required gradients of the cost function between the mapper and demapper
must be known. In a real transmission system, the transfer function of the channel is not
available in analytical form and the mapper cannot be optimized by backpropagation of
the gradient. Therefore, the neural network based auto-encoders are usually trained offline
by considering idealized channel models in additional layers [26, 136]. In [26] the authors
use an auto-encoder to improve communication over an AWGN channel, while in [136] the
auto-encoder is combined with the Gaussian noise (GN)-model to optimize the constellation
design for amplified long-haul scenarios. In both cases the training of the auto-encoders re-
lies on one-hot encoded vectors, which led to constellations’ optimized links with respect to
the symbol error ratio (SER).

In contrast, in this proposal, the bit stream is directly fed to the DNN mapper to jointly
optimize the positions of the constellation points and the binary labeling and hence the
BER. This is a significant enhancement, because the performance of a given constellation
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geometry depends critically on the bit mapping. It is well known that a Gray-mapping or a
quasi Gray-mapping is necessary in case of BICM. The approach also enables the realization
of binary mappings with label extension [137] and the use of the binary cross-entropy as
cost function.

We demonstrate the concept by designing optimized constellations both for amplified and
unamplified optical links with and without label extension. In particular, we consider next
generation DCI compatible coherent 800 Gb/s and 1 Tb/s systems using 92 GBd DP-
32QAM and 82 GBd DP-128QAM with 15% FEC. The gain of the learned 32QAM and
128QAM modulation formats over standard cross-32QAM and cross-128QAM is confirmed
by transmission experiments with offline processing.

4.1 Auto-Encoder and Decoder
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Figure 4.1: End-to-end communication as an autoencoder with various transmitters adapted for
different use cases: (a) amplified link, (b) amplified link with label extension and distribution matcher
(DM) and (c) unamplified link.

Fig. 4.1 shows the proposed DNN mappers for three different communication use cases, as
well as a single DNN demapper, which is suitable for all scenarios. Version (a) represents
the structure for communication systems using optical amplifiers within the link. In this
scenario, the power budget applies to a two-dimensional constellation, i.e. to the I and Q
components jointly. This makes it a two-dimensional average power constraint, which is met
by a normalization layer. Version (b) enables geometric shaping with label extension for an
amplified link. Label extension, introduced by Smith [137], is a technique where an additional
bit is added as the least significant bit. The cardinality of the alphabet is thereby increased
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4.1 Auto-Encoder and Decoder

and more codewords are available per symbol. The more labeling options, the higher the
probability for perfect Gray-labeling of odd constellations, where normally perfect Gray
mapping is no longer possible.

Version (c) represents the structure for optimizing constellation diagrams for unamplified
links, i.e., a link without optical amplifiers between transmitter and receiver. Unamplified
links with large link budget are common in datacom and short-reach telecom applications.
For instance, within the 400ZR project, the Optical Internetworking Forum (OIF) has the
objective to define a 40 km (ER) unamplified application code. It is therefore expected that
a new proposal will be necessary soon for the upcoming 800ZR systems. However, such links
require high transmitter optical power to increase link budget and performance. As described
in Section 2.1.4, in a coherent optical transmitter, the power of the transmit laser is equally
split between two orthogonal polarization planes X and Y and for each polarization plane
between the I and Q components. Each tributary (XI, XQ, YI, YQ) is modulated via a
Mach-Zehnder modulator that carves the desired signal shape by attenuating the laser. As
a consequence, the maximum power per dimension is limited. If no optical amplifier follows,
as in the case of an unamplified link, this calls for a one-dimensional peak power constraint
rather than a two-dimensional average power constraint. In this scenario, it is therefore
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(f) ML-128QAM (2D)
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Figure 4.2: Modulation formats.
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important to minimize the peak-to-average power ratio (PAPR) for each one-dimensional
signal component in order to achieve a higher transmit power and a correspondingly higher
link budget.

The resulting optimized constellation schemes are plotted in Fig. 4.2. All auto-encoder struc-
tures are trained by minimizing the binary cross-entropy using the back-propagation linked
with the RMSprop optimization algorithm [138]. Fig. 4.2a and 4.2e depict the common
32QAM and 128QAM cross schemes. Fig. 4.2b, 4.2d and 4.2f represent the learned constel-
lations for amplified links using the structures (a) and (b) of Fig.4.1, while Fig. 4.2c and
4.2g show the learned constellations for unamplified cases using structure (c).

4.2 Numerical Study

The proposed constellations schemes are first evaluated numerically on an AWGN channel.
Fig. 4.3a and 4.3b show the BER as a function of the SNR, benchmarking the 32QAM and
128QAM constellation schemes for amplified links. It can be observed, that in comparison to
conventional Cross-32QAM, an improvement of 0.45 dB and 0.90 dB is achieved at the FEC
limit of 2×10−2 when ML-32QAM (2D) and ML-6bit-32QAM (2D) is employed, respectively.
However, in comparison to Cross-32QAM with label extension, only a diminished gain of
0.1 dB is achieved by ML-6bit-32QAM (2D). This indicates that Cross-32QAM with label
extension is nearly optimal, due to the Gray-labeling. Furthermore, in case of 128QAM, the
proposed ML-128QAM (2D) exhibits a gain of ca. 0.4 dB in terms of SNR.

Figs. 4.3c and 4.3d show the BER as a function of the peak SNR (pSNR), benchmarking the
32QAM and 128QAM constellation schemes for unamplified links. The pSNR is a quality
metric for constellation diagrams in combination with unamplified links. It takes the SNR
value and hence the noise sensitivity as well as the peak power of the constellation into
account. The definition of pSNR is given by [139]

pSNR = max{|X|2}
σ2 (4.1)

From Fig. 4.3a, it can be observed that the ML-32QAM (1D) constellation achieves in terms
of noise sensitivity the same performance as Cross-32QAM. However, ML-32QAM (1D) has
a one-dimensional PAPR of 3.52 dB, which is 0.5 dB lower than the PAPR of cross-32QAM.
Hence, it outperforms Cross-32QAM by 0.5 dB in terms of pSNR in Fig. 4.3c. The same
behavior is also observed if 128QAM is employed. ML-128QAM (1D) exhibits a 0.58 dB
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lower one-dimensional PAPR than Cross-128QAM and hence outperforms it in terms of
pSNR, due to an optimal tradeoff between noise robustness and PAPR.
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Figure 4.3: BER versus SNR for amplified links (2D) and pSNR for unamplified links (1D).
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4.3 Experimental Investigation

A coherent single-carrier dual-polarization (DP) transmission system over a single-mode fiber
(SMF) is employed to experimentally evaluate the performance of the proposed constellation
schemes. The setup is shown in Fig. 4.4.

Tx DSP
AWG

100 GSa/s

DA

DP-IQMTunable
ECL EDFA

3 dB
Coupler EDFA

OSA
OSNR Monitoring

Optical
Power Meter

EDFA

ASE Noise Loading

90◦Hybrid Tunable
ECL

Photodiodes

Oscilloscope
256GSa/s Rx DSP

Figure 4.4: Schematic of optical back-to-back transmission system with ASE noise loading used
for the experimental investigations. AWG: arbitrary waveform generator, DA: driver amplifiers, DP-
IQM: dual polarization inphase-quadrature modulator, EDFA: Erbium-doped fiber amplifier, ECL:
external cavity laser. The blue arrows indicate the logical part while the black and red arrows the
electrical and optical part respectively. The photos show the DAC, 90◦-hybrid, PDs and oscilloscope
in use.

For a net bitrate of 800 Gb/s DP-32QAM without label extension, 920 Gb/s of pseudo
random data including 15% overhead for FEC are transmitted at 92 GBd. For a net bitrate
of 800 Gb/s with LE, using 6-bit labels instead of 5-bit labels, the baudrate has to be
increased to SE5/SE6 · 92 GBd = 94.9 GBd when using the same 15% overhead FEC code,
due to the lower spectral efficiency of ML-LE-32QAM, as shown in Fig. 4.5. The spectral
efficiencies are calculated as follows [66, Eq. 9]

SEm = H −m · (1−RC) (4.2)

where H denotes the entropy, m the number of bits per symbol and RC the FEC code rate.
For a net bitrate of 1 Tb/s DP-128QAM, 1150 Gb/s of pseudo random data are transmitted
at 82 GBd. The measurements were performed in a BtB configuration at 1550 nm with ASE
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Figure 4.5: Spectral efficiency of 32QAM with and without label extension related to the assumed
FEC overhead. The red circle indicate the considered operation point.

noise loading, in order to compare preFEC BERs at varying OSNR values. The electrical
signals are generated by a 100 GSa/s Micram DAC with 40 GHz 3 dB-bandwidth and
4.5 ENOB. Subsequently, the signals are amplified by drivers (SHF S804A) which exhibit
a 3 dB-bandwidth of 60 GHz. In the optical domain, an external cavity laser (ECL) source
with 1 kHz linewidth and a wavelength of 1550 nm generates a continuous wave signal which
is modulated by a DP-I/Q Modulator (Fujitsu-FTM7992HM-32 GHz). At the receiver side,
the optical signal is combined with ASE noise generated by an EDFA and then amplified.
After the 70 GHz photodiodes, the electrical signals are captured by a 110 GHz bandwidth
real-time oscilloscope operating at 256 GSa/s. In order to evaluate the constellation schemes
on unamplified links, the optical output power of the DP-I/Q Modulator is measured with
an optical power meter.

4.3.1 Optical Back-to-Back Performance Evaluation

The performance of 800 Gb/s and 1 Tb/s over an optical BtB channel, using the constellation
schemes of Fig. 4.2, is shown in Fig. 4.6. On the top, Fig. 4.6a shows the preFEC BER as a
function of the OSNR, comparing the constellation schemes for amplified links. ML-32QAM
(2D) outperforms the common Cross-32QAM by 0.50 dB in OSNR at the TPC FEC limit of
2 · 10−2. A benefit of 1.0 dB in OSNR can be observed with ML-LE-32QAM (2D) including
label extension. The drawback of label extension is the higher FEC throughput and hence the
higher baudrate, which may imply larger complexity and power. Regarding the transmission
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Figure 4.6: Performance of 800 Gb/s and 1 Tb/s over an optical BtB channel using the constellation
schemes of Fig. 4.2. On the top, the preFEC BER as a function of the OSNR is shown, comparing
the constellation schemes for amplified links (2D). On the bottom, the preFEC BER as a function
of the peak OSNR (pOSNR) is shown, comparing the common cross constellations and the learned
constellation schemes for unamplified links (1D).

of 1 Tb/s, the proposed ML-128QAM (2D) outperforms the Cross-128QAM by 1.21 dB at
the FEC limit. The benefit is emphasized by the high error floor. It is expected that in the
linear regime the gain of ML-128QAM (2D) will settle in the range of 0.4 dB, as in the
numerical study.
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4.3 Experimental Investigation

On the bottom, Fig. 4.6b shows the preFEC BER as a function of the peak OSNR (pOSNR),
comparing the common cross constellations and the learned constellation schemes for un-
amplified links. The pOSNR is considered as follows,

pOSNRdB = OSNRdB + PAPRdB (4.3)

= OSNRdB + 10 log10
max{|X|2}
E[|X|2] . (4.4)

It takes the OSNR value and hence the noise sensitivity as well as the optical transmit-
ter output power into account. The ML-32QAM (1D) exhibits a 0.50 dB lower analytical
PAPR than Cross-32QAM having equal receiver sensitivity. Consequently, the ML-32QAM
(1D) achieves a theoretical 0.5 dB higher transmit power and, in a dark fiber scenario, a
correspondingly higher received power. However, in the high baudrate bandwidth-limited
experimental setup, it can be observed that the benefit shrinks and only a diminished gain
of 0.25 dB at the FEC limit can be achieved. Due to the lower baudrate of 82 GBd, the ben-
efit of the 0.58 dB lower analytical PAPR of ML-128QAM (1D) is higher. A gain of 0.50 dB
in peak OSNR at the FEC limit is achieved in comparison to the common Cross-128QAM
constellation.
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Figure 4.7: Transmission power gain of DP-ML-32QAM (1D) and DP-ML-128QAM (1D) related
to DP-Cross-32QAM and DP-Cross-128QAM, respectively.
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4.4 Summary

In this chapter, novel auto-encoder structures based on deep neural networks are intro-
duce to design modulation formats optimized for lowest bit-error rate over amplified and
unamplified links. Besides the geometry of the symbol constellation, the machine learning
optimization method optimizes also the bit mapping with and without label extension. The
learned modulation formats are experimentally evaluated and gains of up to 1.0 dB and
1.2 dB in OSNR and 0.25 dB and 0.50 dB in pOSNR are demonstrated at the FEC limit
for 800 Gb/s DP-32QAM and 1 Tb/s DP-128QAM, respectively. The simulated and exper-
imental results show improved performances, but also highlight the challenges in matching
the offline learning architecture to the real system.
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Chapter 5

Non-linearity Compensation for Optical
Transmission

b1(i), . . . , bm(i) Mapper x(i) Channel y(i) Demapper ℓ1(i), . . . , ℓm(i)

Figure 5.1: General communication black-box model.

In modern optical communication systems, SD-FEC and QAM schemes are key technolo-
gies for realizing high spectral efficiencies (SE) [62]. A core component of such an SD-FEC
BICM [50] system is the soft-demapper, which provides, given the observation of the (symbol-
level) channel output y(i), bit-level reliability values ℓ(i) = [ℓ1(i), . . . , ℓm(i)], so-called condi-
tional log-likelihood ratio (LLRs) [140, Chap. 16], suitable as SD-FEC decoding input. Their
quality thus directly affects the overall system performance. Classical approaches to eval-
uate the L-values, as the analytical computation of the a-posteriori LLR [106, Sec. 3.3] or
the less complex MLA [106, Sec. 3.3.3], assume ideal channel compensation of the channel
impairments and thus AWGN. However, optical communication systems comprise band-
width limited O/E components with non-linear transfer characteristics, which results in
linear and non-linear ISI as well as colored noise effects after equalization. Their impact on
the achievable rate is aggravated towards higher data rates, especially in high speed opti-
cal transmission systems where symbol rates exceed the provided 3 dB-bandwidth of the
components. Therefore, computing the L-values under the AWGN assumption implies a
performance penalty.

In recent years, machine learning methods, especially DNNs, have demonstrated excellent
performance gains in various applications. In the optical communication community, DNNs
have been applied in several publications on short-reach intensity modulation (IM)/direct
detection (DD) systems to characterize O/E components [14–16] as well as on coherent
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links to tackle fiber and component non-linearities [17–21]. In literature [17, 29, 33, 141],
where machine learning is applied for L-values computation, the authors have shown that
DNNs are a convenient tool to predict probabilities and hence to learn soft demodulation
schemes.

This chapter builds upon the aforementioned contributions and investigates two DNN ar-
chitecture concepts to combat these strong impairments. The first concept relies on feed
forward 1D-CNNs, conveniently represented by feed forward TDNNs. Equal to conventional
linear and non-linear equalizer designs, e.g., FIR filters and VNLEs, the memory effects
of the channel, in particular of the components, are considered by adding time delayed
versions of the observed channel output. This allows the feed forward designs to have a
finite dynamic response to time series input data and to describe causal time-invariant non-
linear systems with finite fading memory. In this context, special attention is placed on hard
and soft demapping and on the corresponding cost functions. The second concept relies on
BRNNs. In contrast to the TDNN, the BRNN architecture enables internal memory states
corresponding to IIR filters. For each concept we describe the main rationale behind the
approach and compare its performance experimentally with classical DSP approaches to
combat linear and non-linear ISI as well as colored noise effects.

5.1 Non-linear Feed-Forward Equalizers

b1(i), . . . , bm(i) Mapper x(i) Channel y(i)
Linear or

Non-linear
Equalizer

ỹ(i) Memoryless
Demapper ℓ1(i), . . . , ℓm(i)

Figure 5.2: General communication model including a linear or non-linear equalizer followed by a
memoryless demapper.

An approach to combat residual distortion is to extend the receiver DSP stack by a symbol-
level linear/non-linear post-equalizer. The equalizer attempts to reverse the residual ISI
effects before the memoryless demapper, which assumes an AWGN channel and hence ideal
compensation of the impairments. In this section, a non-linear equalizer is realized by a
TDNN and as reference by a VNLE. As discussed in Section 2.3.2, the VNLE is a popular
approach, which has proven to be very effective against component non-linearities [11, 12]. In
principle, it can be tailored to match any differentiable non-linear system by choosing a high
enough polynomial order and memory depth [142]. However, excessive extension for optimal
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performance can become a significant downside, as the architectural complexity of VNLEs
increase exponentially. Here, machine learning may be capable to exploring solutions.

5.1.1 Time Delay Neural Network Equalizer

...

...

b1(i), . . . , bm(i) Mapper x(i) Channel y(i) TDNNE ỹ(i) Memoryless
Demapper ℓ1(i), . . . , ℓm(i)

y(i) ...
...

y(i+Mf)

y(i)

y(i−Mp)

Memoryless
Demapper ℓ1(i), . . . , ℓm(i)ỹ(i)

. . .

. . .

Non-linear Equalizer

Figure 5.3: Block diagram of a general communication model including a TDNNE with multiple
hidden layers and an accompanied memoryless demapper.

Fig. 5.3 shows the block diagram of a general communication model including a TDNN
equalizer (TDNNE) with multiple hidden layers. Similar to the VNLE design, the memory
of the channel and the components are considered by adding time delayed versions of the
observed signal. This allows the TDNNE to have similar to the VNLE a finite dynamic
response to time series input data and to describe causal time-invariant non-linear systems
with finite fading memory. While the VNLE memory length of each particular order can
be adjusted individually, the TDNNE memory length M is a single parameter. Let y(i) =
[y(i−Mp), . . . , y(i), . . . , y(i+Mf)] and ỹ(i) denote the delayed symbol-level input vector and
scalar symbol-level output, respectively, the TDNNE with L-layers is given by

a[0](i) = y(i), (5.1)

a[l](i) = g(W [l]a[l−1](i) + b[l]), l = 1, . . . , L (5.2)

ỹ(i) = a[L](i) (5.3)

where a[l] denotes the output vector of the l-th layer and W [l] and b[l] the weight matrices
and bias vectors, respectively. For the activation function g, we use the non-linear function
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g(x) = tanh(x) for the hidden layers and the linear function g(x) = x for the output layer.
Eq. (5.1) denotes the input layer and (5.2) is executed successively for layers l = 1, 2, . . . , L

to obtain the single output x̂(i) in (5.3). In the following, (5.1), (5.2), and (5.3) will be
referred to by

ỹ(i) = fTDNNE(y(i), W [1], . . . , W [L], b[1], . . . , b[L]). (5.4)

5.1.2 Mean Square Error for Training Non-linear Equalizer

Before operations, the parameters of the VNLE and the TDNNE have to be identified,
i.e., configured upon training data, in order to match the non-linearities of interest. The
target of the equalizers during the training phase is to find the maximum-a-posterior (MAP)
estimation of the parameters which gives the highest conditional probability of the target
symbols x(i) given the training data output ỹ(i), namely

θ∗ = arg max
θ

P
(
x(i)|fNLE(y(i), θ)

)
(5.5)

= arg max
θ

P
(
x(i)|ỹ(i)

)
, (5.6)

where θ represents the kernels or the weights and biases and fNLE(y(i), θ) the corresponding
non-linear function of the equalizer. A simple approach to the problem of determining the
parameters is to follow [117, Sec. 5.2] and to make an analogy with the linear models for
regression [117, Sec. 1.2.5]. In particular, assuming an Gaussian distribution of the error
between the equalizer output and the target value with zero mean and variance σ2, i.e.,
X = Ŷ +Z, Z ∼ N (0, σ2). The corresponding cost function can then be derived as follows,

θ∗ = arg max
θ

n∏
i=1

1√
2πσ2

exp
(
−(x(i)− fNLE(y(i), θ))2

2σ2

)
(5.7)

(1)= arg min
θ

n∑
i=1

1
2
(
x(i)− fNLE(y(i), θ)

)2
(5.8)

= arg min
θ

L(x(i), y(i), θ), (5.9)

where in step (1) the quadratic cost function is obtained by applying the logarithm on (5.7).
Consequently, minimizing the mean square error (MSE) corresponds to maximizing the a-
posteriors of the weights. In the following it will be shown that the assumption of Gaussian
noise, assuming the posterior being Gaussian, after non-linear MSE equalization is not valid.
In Section 5.2 we are therefore going to revise criterion (5.7).
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Since identifying discrete-time Volterra series from training signals can be considered as
solving a set of linear equations, iterative as well as standard least-squares (LSs) approaches
based on linear algebra are appropriate to solve (5.9). Iterative approaches like least mean
square (LMS) [143, Sec. 3] or recursive least squares (RLSs) [144, Sec. III] are suitable,
if channel dynamics call for frequent kernel update. Standard LS approaches like pseudo-
inverses [145] are suitable, if a sufficiently large data set is available and if channel dynamics
are nearly static. They invert matrices, built from transmitted and received training data
[146]. It has been shown [147] that these matrices can be ill-conditioned and therefore be-
come almost singular with growing VNLE complexity. As a result, the computation of its
inverse is prone to large numerical errors. This property calls for a trade-off between ma-
trix conditioning and the number of kernels for maximum performance in each particular
scenario.

In comparison to the VNLE, only iterative training approaches are appropriate for the
TDNNE when more than one hidden layer is considered. Under this framework, the iterative
training is commonly based on gradient descent in combination with the backpropagation
algorithm [148][118, Sec. 6.5] to minimize Eq. (5.9). The weights and biases are updated
by shifting previous values towards the gradient descent of the iteratively calculated loss
function. To move gently towards the global minimum an enhanced optimization algorithm
such as the adaptive moment estimation (ADAM) [135] can be applied (see Chapter 3).

5.1.3 Volterra Series and Neural Networks

While VNLEs represent the solutions of non-linear differential systems based on its Volterra
series and hence model non-linearities with polynomials, TDNNEs compute the solutions to
a large class of general non-linear systems on basis of the non-linear activation functions.
To depict the relation and the capability of replacing VNLEs by TDNNEs, D. I. Soloway et
al. [149] introduced the approach of expanding the trained TDNNE into a Volterra series.
This is possible, if the activation functions and hence their compositions are infinitely differ-
entiable, e.g., tanh. The expansion enables a comparison of the linear and non-linear kernels
of both equalizers based on the Volterra series. The dependency between the TDNNE param-
eters and the Volterra kernels is given at a specific input vector y0 by the partial derivations.
For order one and two, the gradient and Hessian matrix are respectively

59



Chapter 5 Non-linearity Compensation for Optical Transmission

h1 = ∇fTDNNE(y, W [1], . . . , W [L], b[1], . . . , b[L])
∣∣∣∣
y=y0

, (5.10)

h2 = Hess
[
fTDNNE(y, W [1], . . . , W [L], b[1], . . . , b[L])

] ∣∣∣∣
y=y0

, (5.11)

where

h1 = [h1(−Mf), . . . , h1(Mp)], (5.12)

h2 =


hp(−Mf,−Mf) . . . hp(−Mf, Mp)

... . . . ...
0 . . . hp(Mp, Mp)

 . (5.13)

The obtained matrix which represents the 2nd order is an upper triangular matrix according
to (2.14). Terms like y(i)y(i−1) and y(i−1)y(i) are identical, so that h2(0, 1) and h2(1, 0)
can be combined to one unique kernel. Similarly, for order p, the kernel is

hp = 1
p!∇

pfTDNNE(y, W [1], . . . , W [L], b[1], . . . , b[L])
∣∣∣∣
y=y0

. (5.14)

Generalizing (5.12) and (5.13), we can represent the order p kernel by the set

hp = {hp(ss, . . . , sp) : −Mf ≤ s1 ≤ s2 ≤ · · · ≤ sp ≤Mp} . (5.15)

5.1.4 Experimental Evaluation

This section outlines the measurement setup, as used to evaluate the non-linear compensation
performance of the TDNNE and VNLE on basis of identical offline data. The quality of the
obtained signal is evaluated in terms of hard-decision and soft-decision.

5.1.4.1 Measurement Setup

A coherent single carrier transmission system over an SMF is employed to experimentally
evaluate the performance of the TDNNE. The performance is benchmarked against an VNLE
on basis of dual polarization 88 GBd 16QAM BtB offline captures, where O/E component
non-linearities dominate. The experimental setup is shown in Fig. 5.4. The measurements
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Tx DSP
AWG

100 GSa/s

DA

DP-IQMTunable
ECL EDFA

3 dB
Coupler EDFA

EDFA

ASE Noise Loading

HB
µICR

Tunable
ECL

Oscilloscope
160 GSa/s

Oscilloscope
160 GSa/s

Rx DSP

Figure 5.4: Schematic of optical back-to-back transmission system with ASE noise loading used
for the experimental investigations. AWG: arbitrary waveform generator, DA: driver amplifiers, DP-
IQM: dual polarization inphase-quadrature modulator, EDFA: Erbium-doped fiber amplifier, ECL:
external cavity laser. The blue arrows indicate the digital part while the black and red arrows the
electrical and optical parts respectively. The photo shows the high bandwidth (HB)-µICR and the
two 2-channel oscilloscopes where one is upside down to ensure short RF connections.

were performed BtB at 1550 nm with ASE noise loading, in order to compare performances
at varying OSNR levels.

The electrical signals are generated by four 100 GSa/s Micram DAC4 with 40 GHz band-
width and 4.5 effective number of bits (ENOB). Subsequently, the signals are amplified
by four SHF S804A DAs which exhibit 60 GHz 3 dB-bandwidth. In the optical domain,
a tunable 100 kHz ECL source generates a continuous wave signal which is modulated by
a LiNbO3 DP-I/Q Modulator (Fujitsu-FTM7992HM) with 32 GHz 3 dB-bandwidth. The
modulated optical signal is then combined with ASE noise generated by an EDFA and am-
plified by an additional receiver-side EDFA. The optical receiver consists of a NeoPhotonics
64 GBd class-40 high bandwidth micro integrated coherent receiver (HB-µICR) with 40 GHz
3 dB-bandwidth. The obtained electrical signals are digitized using two 2-channel 160 GSa/s
Keysight Infiniium real-time oscilloscopes with 63 GHz 3 dB-bandwidth where one is placed
upside down to ensure short RF connections from the HB-µICR as shown on the photo
in Fig. 5.4.

In order to compensate the potential mixed non-linearities and ISI effects from the O/E com-
ponents, the receiver DSP stack in Fig. 5.5 includes next to the classical coherent signal re-
covery blocks, see Section 2.3.2, four VNLEs and four proposed TDNNEs. Both schemes
operate independently on the real dimension with 1 sample per symbol (SpS) and consider
four past and zero future memory symbols. Regardless of the type of non-linear equalizer
in use, training on the particular non-linearities is essential before deployment. The train-
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Figure 5.5: Block diagram of the coherent offline DSP stack with two options a) 4x Volterra
non-linear equalizers (VNLE) and b) 4x time delay neural network equalizer for separate I and Q
processing as well as for each polarization.

ing is done upon 50% of the payload of the first received frame per OSNR value, which
consists of 66,444 symbols. To monitor the performance and possible overfitting, the non-
linear equalizers are repetitively validated during the training phase on the remaining 50%
of the payload. Once trained, the performances are evaluated on the second half of four new
captured frames.

5.1.4.2 Optical Back-to-Back Performance Evaluation
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Figure 5.6: Left: performance of optical back-to-back system 88 GBd DP-16QAM in terms of
preFEC BER by applying trained linear as well as non-linear equalizers Right: performance in
terms of achievable rate.
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Fig. 5.6 depicts the performance improvement by applying VNLE architectures of different
orders and a TDNNE architecture. On the left hand side, Fig. 5.6a shows the obtained
pre-FEC BER. The gray dashed line depicts the theoretical upper limit for DP-16QAM at
88 GBd over an AWGN channel. It can be observed, that 1st, 3rd as well as 5th order kernels
of the VNLE introduce the major benefit, while 2nd, 4th and higher orders, e.g. 6th and
7th, do not yield significant additional gain. This indicates that odd harmonics up to 5th
orders are dominant in the particular optical BtB system.

Design Trainable Kernels/Weights
VNLE 1st order 5·4 = 20
VNLE 2nd order 20·4 = 80
VNLE 3rd order 55·4 = 220
VNLE 4th order 125·4 = 500
VNLE 5th order 251·4 = 1004
TDNNE (5·10+10·10+10·10+10·1)·4 = 1040

Table 5.1: Number of trainable kernels respectively weights of four VNLE and four TDNNE
architectures.

For the TDNNE architecture different numbers of hidden layers and corresponding numbers
of neurons per layer can be examined. To preserve a fair performance comparison a TDNNE
architecture with nearly equal trainable weights as the best performing VNLE is chosen
namely a design with three hidden layers with 10 neurons each, see Table 5.1. From Fig. 5.6a
it can be observed that the TDNNEs outperform the 5th order VNLEs in terms of BER
at a FEC limit of 10−2 by 0.5 dB OSNR. This behavior indicates that neural networks
are capable to reflect systematic non-linearities with memory effects more accurate than
5th-order VNLEs.

In addition to the BER curves, Fig. 5.6a shows the corresponding performances in terms
of achievable rates. It can be observed that the performance of the TDNNE is very poor,
it even impairs the baseline performance. To get a better understanding of this behavior,
Figs. 5.7 and 5.8 show the altered scatterplots of the 5th-order VNLE and the TDNNE out-
put signal ỹ during the training phase. It can be observed, that the MSE trained non-linear
equalizers have the ability of concentrating the constellation points and to saturated the pos-
sible outputs to the target 16QAM points, in order to reach a low value of the cost function
respectively to reach the optimal MSE for non-linear equalization. However, the saturation
causes non-Gaussian distributed noise in the output constellations and induces soft informa-
tion loss which impairs the accompanied evaluation of the L-values by the soft-demappers.
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This outcome is stronger when higher orders are consider in the VNLE, the deeper the
TDNNE is designed and the smaller the constellation is chosen. In general, the training of
a non-linear equalizer with respect to the MSE between transmitted x and received signal ỹ

with 1 SpS can be considered as an approximated symbol-wise hard decision. While an im-
provement in BER can be achieved by using a hard-decision demapper a following post-FEC
BER of a soft-decision FEC decoder would be suboptimal.

To illustrate the origin of the jail window constellation diagram, the optimal linear and
non-linear equalizers using the MSE criteria are derived analytically in the Appendix A.1,
considering a BPSK signal over an AWGN channel.
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(e) epoch = 103
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Figure 5.7: Scatterplots of 5th-order VNLE output ỹ during the learning process. The MSE
trained non-linear VNLEs have the ability of concentrating the constellation points and to saturated
the possible outputs to the target 16QAM points, in order to reach a low value of the cost function re-
spectively to reach the optimal MSE for non-linear equalization. The saturation causes non-Gaussian
distributed noise in the output constellations and induces soft information loss which impairs the ac-
companied evaluation of the L-values by the soft-demappers. This outcome is stronger when higher
orders are consider in the VNLE.

65



Chapter 5 Non-linearity Compensation for Optical Transmission

(a) epoch = 250 (b) epoch = 500

(c) epoch = 750 (d) epoch = 103

(e) epoch = 104 (f) epoch = 105

Figure 5.8: Scatterplots of TDNNE output ỹ during the learning process. Similar to Fig. 5.7 the
MSE trained TDNNEs have the ability of concentrating the constellation points and to saturated
the possible outputs to the target 16QAM points, in order to reach a low value of the cost function
respectively to reach the optimal MSE for non-linear equalization. The effect of saturation, which
causes non-Gaussian distributed noise in the output constellations and induces soft information loss
which impairs the accompanied evaluation of the L-values by the soft-demappers, is even stronger
due to the cascade structure of neural networks. It converges towards a jail window. In general, the
outcome is stronger the deeper the TDNNE is designed and the smaller the constellation is chosen.
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5.2 Non-linear Feed-Forward Soft-Demapper

b1(i), . . . , bm(i) Mapper x(i) Channel y(i) Non-linear
Soft-Demapper ℓ1(i), . . . , ℓm(i)

Non-linear
Equalizery(i) Soft-

Demapper ℓ1(i), . . . , ℓm(i)

Figure 5.9: General communication black-box model.

The previous section indicated that a non-linear equalizer trained with respect to the MSE
between the equalizer’s output and the transmitted signal with 1 SpS each actually ap-
proximates symbol-wise hard-decision. While an improvement in BER in comparison to the
VNLE could be achieved by using a hard-decision demapper a following post-FEC BER of
a soft-decision FEC decoder would be suboptimal. To overcome this issue and to enable
optimal soft-decision FEC decoding, a more appropriate cost function is needed to train
the non-linear equalizer. In particular, the cost function should maximizes the achievable
rate (2.22) (accurate post-FEC BER predictor, see Section 2.4.2) and hence the confidence of
the soft-bits provided by the accompanied soft-demapper instead of minimizing the symbol-
level MSE between the equalizer’s output and the transmitted signal. To this end, as shown
in Fig. 5.9, the non-linear equalizer and the soft-demapper are considered from now on as
one DSP component acting as a non-linear soft-demapper equalizer. Hence they are now
optimized jointly by using the bitwise cross equivocation (BCE) loss function

L(b, ℓ) = log2[1 + exp(−(1− 2b)ℓ)] (5.16)

where b is the transmitted bit and where ℓ is the soft-demapper output. In the appendix A.2
and A.3, the equivalence of (5.16) to the binary cross-entropy used in classic machine learning
for binary classification is shown and also that this loss function is optimal, in the sense that
a trained soft-demapper maximize the achievable rate (2.22). Note that (5.16) does not
include the minimization over s that we have in (2.22). This allows to check, if training
has been successful. For the soft bits output by the trained non-linear soft-demapper, the
minimizing s in (2.22) should be equal to 1. Otherwise, further training is required.

5.2.1 General Volterra Non-linear Equalizer plus Soft-Demapper

From (5.16) it can be observed that only iterative training approaches are appropriate to
minimize the BCE. This implies that the soft-demapper has to be differentiable to train
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b1(i), . . . , bm(i) Mapper x(i) Channel y(i) VNLE ỹ(i) MLA ℓ1(i), . . . , ℓm(i)

Figure 5.10: General communication model including a VNLE before the demapper.

the previous non-linear equalizer by gradient descent. For instance to optimize the VNLE
with respect to the bitwise equivocation loss function (5.16) the soft-demapper can be real-
ized by the MLA, which incurs virtually no loss in high SNR ranges. The MLA effectively
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Figure 5.11: Piecewise differentiable linear approximations of the MLA soft-demapper considering
PAM8.

uses piecewise differentiable linear approximations, whose slopes form the MLA parameters,
as shown in Fig. 5.11. The MLA and the VNLE can then be optimized jointly by propa-
gating the error backwards through the MLA and by using conventional gradient descent,
minimizing the BCE (5.16).

5.2.2 Time Delay Neural Network Soft-Demapper

The designs of neural networks are numerous and interrelated. We could therefore either
stick to the arrangement shown in Fig. 5.9 and discussed in Section 5.2.1, i.e., symbol-level
non-linear equalizer plus subsequent differentiable soft-demapper, or use the TDNN directly
as a non-linear TDNN soft-demapper (TDNN-SD). Hence combining the equalization and
demapping tasks, as proposed in Fig. 5.12. To this end, we define m output units with linear
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...

...

b1(i), . . . , bm(i) Mapper x(i) Channel y(i) Non-linear
Soft-Demapper ℓ1(i), . . . , ℓm(i)

y(i) ...
...

...

y(i+Mf )

y(i)

y(i−Mp)

ℓ1(i)

ℓ2(i)

ℓm(i)

. . .

. . .

Figure 5.12: Time delay deep neural network for separate polarization processing. The architecture
deploys a dual side memory structure where Mp and Mf denote the number of past and future
memory taps and m is the number of bits per input symbol.

activation functions, to allow for negative and positive values, where m is the number of bits
per input symbol. With y(i) = [y(i−Mp), . . . , y(i), . . . , y(i+Mf)] and ℓ(i) = [ℓ1(i), . . . , ℓm(i)]
denoting the delayed signal input vector and soft-bits output vector, respectively, the TDNN-
SD with L-dense layers is given by

a[0](i) = y(i), (5.17)

a[l](i) = g(W [l]a[l−1](i) + b[l]), l = 1, . . . , L (5.18)

ℓ(i) = a[L](i) (5.19)

where a[l] denotes the output vector of the l-th layer and W [l] and b[l] the weight matrices
and bias vectors, respectively. Eq. (5.17) denotes the input layer and (5.18) is executed
successively for layers l = 1, 2, . . . , L to obtain output ℓ(i) in (5.19). For the activation
function g, the non-linear function g(x) = tanh(x) is initially used while computationally
efficient alternatives are discussed in Section 5.2.4.

5.2.3 Experimental Investigation

This section outlines the measurement setup, as used to evaluate the non-linear compensation
capability of the proposed TDNN-SD. The performance and the computational complexity is
benchmarked against a VNLE accompanied by an MLA soft-demapper on the basis of dual
polarization 92 GBd 64QAM back-to-back (BtB) offline captures, where O/E component
non-linearities dominate. For a detailed comparison of both approaches, we follow D. I.
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Soloway et al. [149] and extract the linear and non-linear kernels from the trained TDNN-SD
by Taylor expansion and compare with the Volterra kernels. Furthermore, several TDNN-SD
architectures with different activation functions and representation capacity are compared
in terms of performance and complexity. In general, the quality of the obtained soft bits is
evaluated with the achievable rate (2.22).

5.2.3.1 Measurement Setup

Tx DSP
AWG

100 GSa/s

DA

DP-IQMTunable
ECL EDFA

3 dB
Coupler EDFA

EDFA

ASE Noise Loading

90◦Hybrid Tunable
ECL

Photodiodes

Oscilloscope
256 GSa/s Rx DSP

Figure 5.13: Schematic of optical back-to-back transmission system with ASE noise loading used
for the experimental investigations. AWG: arbitrary waveform generator, DA: driver amplifiers, DP-
IQM: dual polarization inphase-quadrature modulator, EDFA: Erbium-doped fiber amplifier, ECL:
external cavity laser. The blue arrows indicate the digital part while the black and red arrows the
electrical and optical part respectively. The photo shows the 90◦-hybrid, PDs and oscilloscope in use.

A schematic of the coherent single carrier transmission system is shown in Fig. 5.13. The
setup is optimized for maximum performance without any non-linear compensation and the
measurements are performed BtB with ASE noise loading, in order to compare the achievable
rate (2.22) at various OSNR values. The signal consists of a 92 GBd DP-64QAM with gross
data rate of 1104 Gb/s. With 1% for training OH and assuming an FEC OH of 15% (e.g.,
“oFEC”, [150, Table 9.1],[151]) and 20% (e.g., LDPC, [152, Sec. 3]), the corresponding net
bit rate is 950 Gb/s and 912 Gb/s, respectively.

The signal output powers of the four 100 GSa/s Micram DACs with 40 GHz 3 dB-bandwidth
and 6-bits nominal resolution are set to -6 dBm. Subsequently, the RF signals are amplified
by four SHF S804A amplifiers with 22 dB gain and 60 GHz 3 dB-bandwidth. The amplifiers
slightly operate in a non-linear region, which in turn results in intermodulation distortions.
Their non-linear effects are mixed with potential non-linear distortions from a LiNbO3 DP-
I/Q Modulator (Fujitsu-FTM7992HM-32 GHz) with a drive voltage of ≤4.2 Vpp. In the
optical domain, two tunable 1 kHz ECLs are used at the transmitter and LO, respectively.
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(a) Block diagram of the coherent offline DSP stack.

y(i) LE/VNLE x̂(i) MLA ℓ1(i), . . . , ℓm(i)

Training Phase
x(i) MSE

b1(i), . . . , bm(i) BCE

(b) LE/VNLE accompanied by a MLA
soft-demapper trained with respect to the MSE
(gray) or the BCE (black) loss function.

y(i) TDNN-SD ℓ1(i), . . . , ℓm(i)

b1(i), . . . , bm(i) BCE

(c) TDNN-SD trained with respect to the BCE loss
function.

Figure 5.14: Block diagram of the coherent offline DSP stack with two options a) 4x Linear
equalizer (LE) / Volterra non-linear equalizers (VNLE) accompanied by a MLA soft-demapper and
b) 4x time delay neural network soft-demapper (TDNN-SD) for separate I and Q processing as well
as for each polarization.

The optically modulated signal is first amplified and then combined with the ASE noise gen-
erated by an EDFA. In comparison to the setup described in Section 5.1.4.1, the receiver
consists of an optical 90◦-hybrid and four 70 GHz balanced photodiodes instead of a NeoPho-
tonics 64 GBd class-40 HB-µICR with 40 GHz 3 dB-bandwidth. The photodiodes operate
in the linear regime with 0 dBm optical input power. The electrical signals are digitized us-

71



Chapter 5 Non-linearity Compensation for Optical Transmission

ing one Keysight Infiniium real-time oscilloscope including four 10-bits DACs operating at
256 GSa/s with 110 GHz 3 dB-bandwidth.

In order to compensate linear and non-linear ISI effects introduced from the O/E compo-
nents, the receiver DSP stack in Fig. 5.14 includes next to the classical coherent signal recov-
ery blocks, see Section 2.3.2, the stacked combination of four linear equalizers (LEs)/VNLEs
plus MLA soft-decision demappers and the proposed TDNN-SDs. Both schemes operate on
identical power normalized data and independently on each real dimension with 1 SpS. Note
that, in a lab setup the linear part has due to pronounced cable reflections many more inputs
than the non-linear part. To counterbalance this issue a linear channel shortening based on
MMSE [153] is applied before the additional advanced DSP blocks to shorten the original
linear channel. In general, channel shortening can be traced back to Falconer and Magee in
1974 [154], with the idea to filter the received signal with a prefilter such that the effective
channel after filtering has much shorter duration with affordable complexity [155].

Regardless of the scheme in use, training on the particular linearities and non-linearities
is essential before deployment. The training is done upon 50% of the payload of the first
received frame per OSNR value, which consists of 66,444 symbols. In order to prevent over-
fitting on the training set, the performance is repetitively validated during the training phase
on the remaining 50% of the payload, i.e. cross-validation. Once trained, the performance is
evaluated on the second half of six new captured frames per OSNR value.

5.2.3.2 Optical Back-to-Back Performance Evaluation

Fig. 5.15a depicts the performance in terms of achievable rate (2.22) related to OSNR for
the optical BtB 92 GBd 64QAM measurements by applying an LE, a VNLE up to 5th order
kernels and a TDNN-SD. Kernel orders greater than 5th, e.g. 6th or 7th, do not yield any
additional gain, see Fig. 5.15b, for readability, we therefore omit these results in Fig. 5.15a.
The black dot-dashed lines denote the FEC limits for 15% and 20% FEC OH, respectively. All
three architectures are optimized regarding achievable rate (2.22) performance and deploy
a dual-side symmetric memory structure, i.e. previous as well as future symbols are taken
symmetrically into account. The VNLE design e.g. 17:17:11: . . . stands for 17 linear memory
taps (8 preceding symbols + the current symbol + 8 succeeding symbols) followed by 17
memory taps for the second order, followed by 11 memory taps for the third order and so
on. The TDNN-SD design, e.g., 17|26|25|3, stands for 17 input neurons (again 8 preceding
symbols + the current symbol + 8 succeeding symbols) followed by two hidden layers with
26 and 25 neurons, feeding into 3 output nodes.
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Figure 5.15: optical back-to-back system 92 GBd DP-64QAM.

In addition to Fig. 5.15a, Fig. 5.15b plots the corresponding performance improvement
compared to the LE at various OSNR values. It can be observed that 2nd, 3rd as well as 5th
order kernels of the VNLE introduce the major benefit, while the 4th order does not yield
significant additional gain. This indicates that odd harmonics dominate, which fits with the
previous results in Section 5.1.4.1 and the theory in Section 2.1. The VNLE of 5th order
improves the linear equalized baseline curve at higher OSNR areas up to ∼ 0.09 bits/symbol.
In lower OSNR ranges where ASE noise is the dominant distortion, the gain decreases slightly
to ∼ 0.07 bits/symbol. This behavior applies for all non-linear equalizer architectures.

For the TDNN-SD architecture different numbers of hidden layers and corresponding num-
bers of neurons per layer can be examined, in order to optimize the performance. An as-
sessment of the architecture for 17 memory taps is given by Eq. (3.6). To release sufficient
representation capacity for the equalization problem, in a first step a more complex design
17|26|25|3 is chosen. In a second stage, the complexity will be slightly reduced to determine
the upper bound of the architecture complexity. It can be observed, that the appropriate
TDNN-SD architecture outperforms the 5th order VNLE and improves the linear equalized
baseline curve by up to ∼ 0.11 bits/symbol and ∼ 0.09 bits/symbol at lower OSNR values,
respectively.

To highlight the impact of the proposed BCE (5.16) the obtained constellation diagrams
after the LE, 3rd-orders VNLE and 5th-orders VNLE are depicted in Fig. 5.16, whereby
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the corresponding achievable rates are listed in the corresponding Table 5.2. In case the
equalizers are trained with respect to the MSE loss function (5.9) and independent of the
accompanied MLA soft-decision demappers, the final constellations in the left column exhibit
with increasing order non-Gaussian distributed noise, especially at the outer constellation
points. This leads to suboptimal performance in terms of achievable rate, as described in
the previous Section 5.1. Optimizing the equalizers and the MLA soft-decision demappers
jointly with respect to the BCE (5.16) yields a constellation diagram with nearly Gaussian
distributed noise and an achievable rate improvement of around 0.015 bits/QAM symbol for
5th-order VNLEs. This improvement confirms that the BCE loss function is the appropriate
objective for maximizing the achievable rate.
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Architecture: MSE: BCE Diff.:
LE

optNtaps: 17 (a) 5.409 bits/symbol (b) 5.419 bits/symbol 0.010 bits/symbol

VNLE 3rd-order
optNtaps: 17:13:11 (c) 5.474 bits/symbol (d) 5.487 bits/symbol 0.013 bits/symbol

VNLE 5th-order
optNtaps: 17:13:11:3:3 (e) 5.494 bits/symbol (f) 5.509 bits/symbol 0.015 bits/symbol

Table 5.2

(a) (b)

(c) (d)

(e) (f)
Figure 5.16: Impact on the constellation and hence on the achievable rate at 33.8 dB OSNR using
the MSE or the BCE loss function for training the LE and the VNLE. Left column: constellations
trained with respect to the MSE loss function (5.9) Right column: constellations trained with respect
to the BCE loss function (5.16). The saturation on the outer points is best visible in Fig. 5.16e,
similar to a jail window frame. In general, the effect is more pronounced (and/or more visible) on
smaller constellations in combination with stronger non-linear equalizers.
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5.2.3.3 Kernels of Volterra Non-linear Equalizer and Time Delay Neural
Network Soft Demapper

The Volterra kernels provide a useful tool for analyzing the channel behavior. The first term
in expression (2.14) represents the common finite linear impulse response of the system,
while higher order Volterra kernels represent higher order impulse responses and hence de-
scribe the non-linear dynamic behavior. Following [149], as described in Section 5.1.3, the
trained TDNN-SD can be expanded into a Volterra series and hence into comparable in-
formation. The kernels are expressed in terms of the parameters of the trained TDNN-SD
by using expressions (5.10), (5.11) and (5.14) at y0 = 0. In comparison to the customary
considered symbol based VNLE kernels, the proposed TDNN-SD provides individual ker-
nels corresponding to the soft outputs. To overcome this representation issue, the VNLE
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Figure 5.17: Comparison of the unrolled extracted linear and third order non-linear kernels of
the trained TDNN-SD with the unrolled linear and third order non-linear kernels of the trained
VNLE plus MLA. The purple stems represent the bit-level TDNN-SD linear finite impulse response,
while the red and black represent the full and sparse VNLE plus MLA linear finite impulse response,
respectively.
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kernels are extended with the particular weights of the MLA soft demapper in order to like-
wise represent the individual VNLE kernels for the soft bits. Fig. 5.17a depicts the in phase
linear kernels from the VNLE of polarization x as well as the corresponding extracted lin-
ear kernels of the TDNN-SD. In addition, the corresponding kernels of the sparse VNLE are
depicted, which we introduce in Section 5.2.4. The linear kernel values from TDNN-SD ℓ1,
TDNN-SD ℓ3, VNLE ℓ1 and VNLE ℓ3 are very similar. Interestingly, the centered bit ℓ2,
which distinguishes between the inner and outer circles of the constellation points, exhibit
higher distortions. While the TDNN-SD is able to adjust the kernels for each soft output in-
dividually by adapting the weights of the last layer separately, the VNLE does not exhibits
that flexibility. The VNLE kernel values for each soft output only differ in the amplitude.
An additional advantage of a TDNN-SD is shown in Fig. 5.17b. In comparison to the VNLE,
where the number of high order taps is limited due to complexity, the TDNN-SD comprises
all possible combinations of the input signal up to its input memory depth.

5.2.4 Comparison of Complexity

As part of the DSP of the optical transceiver, the non-linear equalizer is only deployable, if it
can be implemented efficiently enough on an application-specific integrated circuit (ASIC).
This section compares some complexity aspects of VNLEs plus MLAs versus TDNN-SD
regarding the main ASIC resources, memory and logic cells on floating point level. Logic size
can be well estimated in numbers of multipliers, as they are by far the most expensive logic
blocks of VNLEs and TDNN-SD. In general, the complexity analysis of trainable equalizers
includes two aspects, the training and the real-time execution aspect. However, in the case
of optical communication, we can assume only insignificant changes of component non-
linearities over time or slow processes like aging or temperature shifts. Thus, for a VNLE
and a TDNN-SD the extraction of training data can be done offline, once after production
on an (embedded) microcontroller. Therefore, what matters is the real-time complexity, i.e.
the number of calculations that are done on each sample when executing the particular
non-linear equalizer.

5.2.4.1 Complexity of Time Delay Neural Network Soft-Demapper

The real-time complexity of a TDNN-SD is defined by the number of layers, neurons and the
activation function in use. As described in Section 5.2.2, the layers interconnect with a weight
coefficient per connection. For implementation, those weights require memory space and a
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hardware multiplier, just like the VNLE kernels. In comparison to the VNLE, an additional
complexity part comes from the activation functions. The previously chosen tanh activation
function could be implemented with the CORDIC algorithm [156]. However, it operates
iteratively and thus, slow. A more sleek option is to linearly interpolate the tanh (I-tanh)
and to use a look-up table (LUT) or to directly utilize a simpler activation function, e.g., a
H-tanh or even a ReLU function. The ReLU is a linear function, which becomes non-linear
by clipping. It provides the most simple activation function and requires for implementation
only one hardware multiplier and one comparator for clipping. In turn, the H-tanh function
is clipped on two positions, therefore, an additional comparator for clipping is required.
The total required number of multipliers for a TDNN-SD with ReLU or H-tanh activation
function is equal and defined as

mulTDNN-SD-ReLU/H- tanh =
L−1∑
i=1

sisi+1︸ ︷︷ ︸
Weights

+
L−1∑
i=2

si︸ ︷︷ ︸
Activation Function

, (5.20)

where L is the number of layers including input and output layers and where s = s0|s2| . . . |sL

denotes the TDNN-SD design, i.e., si is the number of units in the i-th layer. For instance,
the input layer has s1 = 2M + 1 units and the output layer has sd = m units. The first
term is related to the number of weights and the second term to the number of ReLU/H-
tanh activation functions. If the slopes of the ReLU or H-tanh are equal to 1, no multipliers
at all are needed for the activation function and the second term will be equal to zero. The
complexity of a TDNN-SD with an I-tanh activation function depends on the number of
linear interpolation points K, namely

mulTDNN-SD-Inter.Tanh =
L−1∑
i=1

sisi+1︸ ︷︷ ︸
Weights

+ (K − 1)
L−1∑
i=2

si︸ ︷︷ ︸
Activation function

. (5.21)

The first term is related once more to the number of weights, while the second term is
related to the total number of multipliers which are required to generate the particular
I-tanh activation functions. In particular, one interpolated activation function consists of
(K − 1) ReLUs with a slope unequal to one or zero.

Fig. 5.18 shows the average achievable rate gain related to the number of multipliers when
the previous chosen tanh activation function is replaced by an I-tanh, a H-tanh or a ReLU
activation function. The average achievable rate gains are evaluated over the particular
OSNR captures. The TDNN-SDs with ReLU and H-tanh activation functions are retrained,
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Figure 5.18: Average achievable rate performance gain in bits/symbol related to the number of
required multipliers, when a linear interpolated tanh, a Hard-tanh or a ReLU activation function
is applied. The three subplots illustrate the particular activation functions, where the purple circle
indicate the interpolation points.

while the TDNN-SD with I-tanh activation function isn’t retrained and hence contains the
parameters of the TDNN-SD with tanh activation function. It can be observed that the per-
formance of TDNN-SD with I-tanh decreases tremendously when less than 16 interpolation
points and hence 15 multipliers are used. In contrast, the TDNN-SD with H-tanh achieves
good results in performance and complexity, while the TDNN-SD with ReLU loses perfor-
mance. Therefore, the best trade-off between performance and complexity is achieved with
the H-tanh activation function.

5.2.4.2 Complexity Evaluation

Fig. 5.19 depicts the achievable rate gain of the full VNLE and the fully connected TDNN-SD
architectures in relation to the LE versus the utilized number of multipliers at 33.8 dB OSNR
(the behaviors are very similar for other OSNR values, see Fig. 5.15b). All architectures are
optimized regarding complexity and achievable rate (e.g. the full VNLE architectures are
optimized with respect to the number of linear and non-linear taps). The blue, yellow, green
and red circled markers indicate individual VNLE architectures up to 5th order. It can be
observed, that all four curves increase and decrease with the number of multiplications. The
overall envelop indicates the optimized trade-off between complexity and performance. In
general, it is more efficient to increase the degree of orders than increasing the particular
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Figure 5.19: Non-linear compensation gains in bits/symbol related to number of multiplers for a
92-Gbaud 64QAM optical BtB system. The non-linear equalizer architectures are optimized regarding
performance and complexity. Blue, yellow, green and red represent the VNLE architectures plus MLA
with different orders while the cyan and dark blue represent the different TDNN-SD architectures with
ReLU and H-tanh activation functions. Selected circled markers are labeled with their architecture.

memory sizes. However, as abovementioned, kernel orders greater than 5th do not yield any
additional gain, but only increased complexity. The best performing VNLE architectures are
labeled with their design.

The cyan and dark blue markers represent different TDNN-SD architectures with ReLU
and H-tanh activation functions, respectively. The cyan line representing the TDNN-SD
with ReLU activation function is dashed due to its limited performance and complexity
trade-off and only plotted for completeness. The more interesting architectures, the TDNN-
SD architectures with H-tanh activation functions, are indicated by the dark blue markers.
It can be observed, that the introduced architecture 17|26|25|3 is very complex but out-
performs the VNLE architectures. According to Eq. (3.6) in Section 3.1.2, the architecture
17|26|25|3 assumes that the network has to represent ∼ 1017 activation patterns for opti-
mal equalization. On the one hand, if this assumption is not applicable, the complexity can
be reduced without performance penalty. On the other hand, if complexity is reduced while
the required number of activation patterns is essentially the TDNN-SD will exhibit insuffi-
cient capacity and will not be able to exactly equalize the signal anymore. Nevertheless, it
will still approximate it with an error. In the current setup, by optimizing the TDNN-SD
architecture regarding complexity and achievable rate (same as for the VNLE architectures)
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5.2 Non-linear Feed-Forward Soft-Demapper

the highest achievable rate with lowest complexity is achieved with the design 17|16|10|3. In
comparison to the more complex 17|26|25|3 architecture no performance loss occurs, which
indicates that in this scenario the network has to exhibit a representation capacity of at
least ∼ 108 activation patterns. If less neurons are used, the performance decreases imme-
diately, which indicates that the required number of activation patterns is falling short of
and the TDNN-SD exhibits insufficient representation capacity. Nevertheless, all TDNN-SD
options outperform all optimized full VNLE architectures with equal complexity.

Pruning techniques such as the least absolute shrinkage and selection operator LASSO (ℓ1-
norm) [157] for VNLEs or the gradual pruning algorithm [158, Sec. 3] for neural networks,
have proven to reduce the set of kernels or the number of weights without significant per-
formance loss. Fig. 5.20 shows the complexity reductions and the corresponding achievable
rate gains of the sparse VNLE and the sparse TDNN-SD architectures. The filled circled
markers represent full architectures, while the particular square markers represent sparse
architectures with different regularization values or final sparsity values [158], respectively.
It can be observed that on average the sparse VNLEs exhibit a 25% lower complexity than
the full VNLEs without performance losses. The sparse TDNN-SDs exhibit a pruning factor
of 20% for more complex architectures and up to 45% for lower complex architectures. A
truncated single weight in a lower complexity architecture, with less neurons in the hidden
layers, has a larger impact on the overall complexity.
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Figure 5.20: Non-linear compensation gains in bits/symbol related to number of multipliers.
Complexity reduction of VNLE and TDNN-SD by L1-regularization and weight pruning.
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Figure 5.21: OSNR non-linear compensation gains in dB related to number of multipliers for a
92-Gbaud 64QAM optical BtB system. The labels of the architectures correspond to the 15% as well
to the 20% OH FEC bars. The corresponding FEC requirements are shown in Fig. 5.15a.

Fig. 5.21 depicts a more detailed representation of the OSNR gains at the assumed FEC
limits related to the number of multiplications. The particular gains depend on the as-
sumed FEC OH and the corresponding FEC limit because of saturation, see Fig. 5.15a.
Similar or even same complexity architectures are grouped. The sparse VNLE reaches the
performance saturation and hence its highest OSNR gain with at least 385 multipliers. In
contrary, the sparse TDNN-SD achieves similar performance with 136 multipliers. Its per-
formance saturation and hence the highest OSNR gain is achieved with 385 multipliers. The
VNLE architecture with equal complexity exhibits an OSNR penalty of 0.35 dB. In the
low complexity regime the sparse VNLE performance decreases significantly more than the
TDNN-SD performance.

5.2.5 Summary

High architectural complexity of Volterra non-linear equalizers has motivated investiga-
tions in non-linear equalizer alternatives based on deep neural networks. In optical coher-
ent 92 GBd dual polarization 64QAM 950 Gb/s back-to-back measurements, where opti-
cal and electrical components non-linearities dominate, the proposed soft deep neural net-
work equalizers proved to reflect systematic non-linearities more accurately than a 5th-order
Volterra non-linear equalizer. They either outperform pruned Volterra non-linear equalizers
by 0.35 dB in OSNR with equal complexity or achieve the same performance with 65% less
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5.2 Non-linear Feed-Forward Soft-Demapper

multipliers and hence lower complexity. In addition, we show that the deep neural network
state-of-the-art cross-entropy cost function for classification problems is equivalent to bitwise
cross equivocation, maximizing an achievable rate. It is therefore optimal for training DSP
components acting as soft-demappers in modern communication systems with soft-decision
FEC, e.g., training of non-linear equalizers should be done via a soft-demapper with respect
to cross equivocation instead of mean square error.
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5.3 Non-linear Recurrent Soft-Demapper

Feed-forward architectures whose inputs come from tapped delay lines, as considered in the
previous section, can only model linear or non-linear FIR filters with memory at most equal
to the number of the delayed inputs. In presence of colored noise effects in a bandwidth-
limited channel, caused by the 2× 2 MIMO equalizer due to noise enhancement, such archi-
tectures provide suboptimal performance.

In this section, we investigate as an alternative to feed-forward architectures with finite
memory the compensation capability of recurrent architectures with infinite memory in
presence of linear and non-linear ISI as well as colored noise effects. To assess its capacity,
we extend the VNLE by a Forney [159] detector structure, which is able to handle colored
noise and ISI effects optimally. The Forney detector structure comprises a symbol-spaced
whitening filter (WF) and a channel-model-based Viterbi [160] or BCJR [161] detector.

5.3.1 General Volterra Non-linear Equalizer plus Whitening Filter and
BCJR Detector

y(i) VNLE ỹ(i) WF r(i) BCJR ℓ1(i), . . . , ℓm(i)

Training Phase
x(i) BURG METRIC

Figure 5.22: VNLE and whitening FIR filter (WF) accompanied by a BCJR.

A general equalizer targets to compensate the full signal response of the system. In strongly
bandwidth limited systems, such as high speed optical coherent transmission systems, this
behavior leads to strong amplification of the high signal frequencies and thus to colored noise
effects after equalization. To combat this effect Forney [159] introduced a stack combination
of a symbol-spaced FIR filter to whiten the noise and a Viterbi algorithm to remove the
generated ISI effects, as shown in Fig. 5.22. This structure is also known as Forney’s detector
structure. The accompanied Viterbi algorithm is a recursive algorithm that produces the
maximum likelihood message sequence of the observed signal r by determining an optimal
state sequence on a trellis diagram of a hidden Markov model (HMM) [162]. However, the
Viterbi algorithm computes hard-decisions, even if it is employing soft branch metrics, since
a single path is selected to each state at each time. This results in an overall decision on an
entire sequence of bits or symbols at the end of the algorithm [163, Chap. 14.3.1]. In [161]
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5.3 Non-linear Recurrent Soft-Demapper

the authors introduced as an alternative the BCJR algorithm, which is capable to compute
soft outputs in the form of posterior probabilities for each of the message bits or symbols
in a finite-state Markov system. We therefore considered the BCJR algorithm approach and
implemented the corresponding max-log-MAP approximation [163, Chap. 14.3.15], which
incurs virtually no loss in the SNR ranges considered in this work.

Before operation, the coefficients of the whitening filter and of the BCJR channel model
have to be identified, i.e., configured upon training data, in order to match the statistical
signal distribution. The simplest whitening filter has two taps with impulse response 1+αD,
where D denotes the tap delay and α the weight. A longer filter impulse response would
lead to a flatter noise spectrum, but would introduce a higher observation space and hence
exponentially more states and transitions in the trellis, namely

NStates = C l−1, (5.22)

NTransition = CC l−1 = C l, (5.23)

where C denotes the cardinality of the alphabet and l the length of the filter impulse response.
To identify the coefficients, regardless of the filter length, the Burg algorithm [164] can
be used. A detailed description of its usage is given in [165, Sec. II-E]. To achieve best
performance, the branch metrics used by the BCJR detector should match the statistical
distribution of the input signal r. We considered a histogram based Gaussian channel model
and pre-trained the mean µn and variance σ2

n of each possible transition individually before
operation. Afterwards, the branch metrics are computed as

mn = (r(i)− µn)2

σ2
n

, n = 1, . . . , C l. (5.24)

The real-time complexity of a WF and a max-log-MAP BCJR per symbol is defined by the
number of states and the considered memory length. Their number is directly connected to
the required number of hardware multipliers per symbol, namely

mulWF+BCJR = (l − 1)︸ ︷︷ ︸
WF

+ 2 · 2C l︸ ︷︷ ︸
Branch metric

(5.25)

where the first term is related to the whitening FIR filter and the second to the BCJR. The
anterior factor of 2 in the BCJR term refers to the forward and backward path, while the
remaining part refers to the computational complexity of the branch metrics, see (5.24).
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5.3.2 Bidirectional Recurrent Neural Network Soft-Demapper

y(i) BRNN-SD ℓ1(i), . . . , ℓm(i)

Training Phase
b1(i), . . . , bm(i) BCE

Figure 5.23: Bidirectional recurrent neural network soft-demapper (BRNN-SD).

Feed-forward neural network soft-demappers which inputs comprising current and historical
captures, often implemented as tapped delay lines as shown in Section 5.2.2 are limited in
functionality since they rely on a predetermined memory architecture and their outputs are
independent of previous decisions. Hence, they can only model non-linear FIR filters with
limited memory. A more powerful architecture can be implemented when cyclical connections
are allowed, namely via RNNs [166], as shown in [167, 168]. The cyclical connections form
internal memory states and enable dynamic temporal behaviors for time sequences. RNNs

b1(i), . . . , bm(i) Mapper x(i) Channel y(i) Non-linear
Soft-Demapper ℓ1(i), . . . , ℓm(i)

RNN-F RNN-F RNN-F

RNN-B RNN-B RNN-B
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Fully connected
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. . . . . . . . .

. . . . . .

Figure 5.24: Bidirectional recurrent neural network soft demapper for joint I&Q processing. It
consists of two independent RNNs, in order to predict the soft-bits of the sequence based on the
symbol’s past and future contexts, and one shared feed-forward neural networks with multiple dense
layers to concatenate the outputs of the two parallel RNNs. In principle, the joint I&Q input options
could learn as well phase impairments.
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can therefore model non-linear IIR filters as shown in [169] and are therefore also related to
hidden Markov models as shown in [170], which form the base model of BCJR detectors.

Fig. 5.24 illustrates the structure of the proposed BRNN soft demapper (BRNN-SD) for a
sequence of length N , where N denotes the number of time steps [171]. This bidirectional
architecture ensures that past as well as future symbols are taken into account to estimate the
sequence of soft bits. The received symbol sequences are fed in the forward direction into one
RNN-F unit and in backward direction (flipped) into an RNN-B unit [172]. The exchanging
state vectors are denoted by

−→
h and

←−
h , respectively, whereby

−→
h (0) and

←−
h (0) denote the

initial states and are initialized with zeros. The outputs are then concatenated and fed into
multiple fully connected dense layers terminated by a final linear layer of length equal to
m, the number of bits per symbol. This architecture accounts for past and future symbols
when estimating the soft-bits. With y(i) = [Re(y(i)), Im(y(i))] and ℓ(i) = [ℓ1(i), . . . , ℓm(i)]
representing signal input vector and soft-bits output vector, respectively, the BRNN-SD
with U recurrent layers and L dense layers is given by

−→
h [0](i) =

←−
h [0](i) = y(i), (5.26)

−→
h [u](i) = g(W [u]

F
−→
h [u](i− 1) + W [u]−→h [u−1](i) + b[u]), u = 1, . . . , U (5.27)

←−
h [u](i) = g(W [u]

B
←−
h [u](i− 1) + W [u]←−h [u−1](i) + b[u]), u = 1, . . . , U (5.28)

a[0](i) = [
−→
h [U ](i)

←−
h [U ](i)], (5.29)

a[l](i) = g(W [U+l]a[l−1](i) + b[U+l]), l = 1, . . . , L (5.30)

ℓ(i) = a[L](i), (5.31)

where W
[l]
F denote the forward and W

[l]
B the backward weight matrices. In comparison to

the previous Section 5.1 joint I&Q processing is considered here, which is required for odd
constellations. For the activation function g, we use, equal to the TDNN-SD, the non-linear
H-tanh function for the hidden layers and the linear function for the output layer. The
real-time complexity of the BRNN-SD per symbol is thus defined as

mulBRNN-SD-H-tanh =
U−1∑
i=0

2(sisi+1 + s2
i+1)︸ ︷︷ ︸

Recurrent layers

+ 2sU sU+1︸ ︷︷ ︸
Concatenate layer

+
U+L∑

j=U+1
sjsj+1︸ ︷︷ ︸

Dense layers

+
U+L∑
k=1

sk︸ ︷︷ ︸
Activation Function

(5.32)
where s = s0|s1| . . . |sU+L+1 denotes the BRNN-SD design, i.e., si is the number of units
in the i-th layer. For instance, the input layer has s0 = 2 units (inphase and quadrature)
and the output layer has sU+L+1 = m units. The first term is related to the number of
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weights in the parallel recurrent layers and the second term to the number of weights in the
concatenation layer. The third term is related to the number of weights in the subsequent
dense layers. The fourth term to the number of H-tanh activation functions. If the slopes of
the H-tanh are equal to 1, no multipliers at all are needed for the activation function and
the fourth term will be neglectable.

5.3.3 Numerical Study

In this section, we first present a numerical study of the TDNN-SD and BRNN-SD on a
simulated channel with colored noise only. Fig. 5.25 depicts the block diagram of the colored

AWGN
noise

Coloring
Filter

+ Received signalTransmitted signal

Y (z) = b0
a0+a1z−1 X(z)

Figure 5.25: Block diagram of the colored noise channel.

noise channel. The filter coefficients are set to a0 = 1, a1 = 0.5 and b0 = 1. The corresponding
power spectral densitys (PSDs) before and after applying an appropriate WF with 2-taps
are shown in Fig. 5.26-left. As expected, the noise enhancement is completely removed by
the FIR filter due to the optimal architecture. The overall performance is shown in Fig. 5.26-
right. The black line illustrates the baseline where no compensation technique is applied.
The strong noise enhancement leads to a high number of errors. Adding the 2-tap WF
and a BCJR detector improves the performance significantly. Note that, this architecture
provides the optimal decoder in this scenario. It can be observed, that the BRNN-SD is
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whitening filter with 2-taps. Right: 32QAM performance in terms of achievable rate versus SNR for
a simulated colored noise channel.
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nearly capable of recovering the performance of the BCJR, while feed-forward architectures
and hence common linear or non-linear equalizers fall short and are suboptimal in case of
colored noise effects. One reason for this are the internal memory state of the BRNN-SD
and hence the relation to the hidden Markov chain.

5.3.4 Experimental Investigations

The experimental evaluation of the proposed architectures is done on basis of identical of-
fline data captured in the case of optical 92 GBd BtB transmission with ASE noise loading
and 600 km 32-channel dense wavelength division multiplexing (DWDM) fiber transmission
of coherent 96 GBd 800 Gb/s/λ dual polarization (DP)-32QAM. In such high speed op-
tical coherent transmission systems, the data rate demand leads to symbol rates that are
higher than the provided 3 dB-bandwidth of the O/E components. This results in ISI and
after equalization to colored noise effects due to noise enhancement. Next to the aforemen-
tioned linear impairments, the transmitted symbols are subject to non-linear distortions with
memory effects arising from the non-linear transfer characteristics of the O/E components.
The non-linear effect is additionally enhanced, if long fiber is applied and hence non-linear
interference arises in the link.

5.3.4.1 800G DWDM Experimental Setup

The experimental setup is shown in Fig. 5.27a including optical BtB with ASE noise loading
(top path) and a straight transmission line with 600 km total fiber length (bottom path). In
both cases the setup was optimized for maximum performance with linear coherent DSP. The
channel under test (CUT) carries a 96 GBd DP-32QAM with gross data rate of 960 Gb/s.
With 4.4% for training sequences and assuming an FEC OH of 15% (e.g., “oFEC”, [150,
Table 9.1],[151]), the net bit rate is 800 Gb/s.

At the transmitter, the four 100 GSa/s Micram DACs with 40 GHz 3 dB-bandwidth generate
a repeated pattern of 76800 samples, hence one frame, with output powers of -6 dBm. Sub-
sequently, the RF signals are amplified by four SHF S804A amplifiers with 22 dB gain and
60 GHz 3 dB-bandwidth. The amplifiers operate in a slighly non-linear region, which in
turn results in non-linear distortions. However, with this setting the best performance could
be achieved. Their non-linear effects are mixed with potentially non-linear distortions from
the LiNb03 DP-I/Q Fujitsu modulator with 32 GHz 3 dB-bandwidth and a drive voltage
of ≤4.2Vpp.
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(a) Schematic of the optical BtB system with ASE noise loading (top path), the DWDM transmission
system including 600 km fiber (middle path) and the single transmission line including 80 km fiber (bottom
path) used for the experimental investigations. The blue arrows indicte the digital part while the black and
red arrows the electrical and optical part respectively.
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Figure 5.27: 800G DWDM experimental setup.
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In the optical domain, two tunable 100 kHz ECLs are used at the transmitter and LO,
respectively. The DWDM system is emulated by generating 31 channels loaded with noise
and shaped with a 96 GHz RRC optical filter with 0.2 roll-off factor having central frequencies
ranging from 192.095 THz (1529.774 nm) to 195.970 THz (1560.633 nm) on a 125 GHz grid.
The channels are multiplexed together with the CUT by using a 3 dB coupler and sent
to an EDFA acting as a booster. The DWDM signal is launched into a transmission line
consisting of six spans, each of 100 km length. In use are pure-silica core fibers, with ultra
low attenuation, compliant to ITU-T G.654D [173]. In comparison to G.652, G.654D fibers
exhibit a larger effective area (Aeff = 130µm2) and are thus in addition more robust against
non-linearities [174]. The seven C-band EDFAs operate therefore with optimal input and
output powers of 4 dBm and 20 dBm, respectively. Fig. 5.27b depicts the spectrum of the
96 GBd DP-32QAM CUT, whose wavelength is varied over the whole band. Fig. 5.27c
illustrates the DWDM spectra at the input and output of the 600 km transmission line. The
spectrum at the output of the booster amplifier is fairly flat with a ripple below 0.5 dB.
After the transmission line, at the receiver amplifier, a ripple of 5 dB is observed due to the
lack of gain filtering.

The receiver consists of an optical 90◦-hybrid and four 70 GHz balanced photodiodes. The
photodiodes operate in the linear regime with 0 dBm optical input power. The electrical
signals are digitized using four 10-bits ADCs operating at 256 GSa/s with 110 GHz 3 dB-
bandwidth.
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Figure 5.28: Block diagram of the coherent offline DSP stack. After the carrier phase recovery
block, six architectures are selectable: (a) LE (b) VNLE (c) LE accompanied by 2-tap WF + BCJR
(d) VNLE accompanied by a 2-tap WF + BCJR, (e) 1D-CNN plus a TDNN-SD and finally (f) 1D-
CNN plus a BRNN-SD.
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In order to compensate linear and non-linear ISI, as well as colored noise effects, the receiver
DSP stack in Fig. 5.28, includes next to the classical coherent signal recovery blocks, see
Chapter 2, several further options for enhanced signal processing, i.e., VNLE, WF + BCJR
and the proposed TDNN-SD and BRNN-SD. After the carrier phase recovery block, six
architectures are selectable: (a) LE (b) VNLE (c) LE accompanied by 2-tap WF + BCJR
(d) VNLE accompanied by a 2-tap WF + BCJR, (e) 1D-CNN plus a TDNN-SD and
finally (f) 1D-CNN plus a BRNN-SD. In comparison to Section 5.2, where linear channel
shortening is applied to counterbalance the pronounced cable reflections in a lab setup, we
state in this configuration the first linear layer as a separate neural network. In particular
we consider an additional linear 1D-CNN layer, which is trained jointly with regard to BCE
by gradient descent in order to optimize the achievable rate.

The performance of the proposed schemes is evaluated on the second half of eight cap-
tured frames, resulting in a total amount of 278,128 symbols. The first half of an additional
captured frame, referred as training frame, is used for the training of VNLE, WF, BCJR
channel model, TDNN-SD and BRNN-SD. This ensures that the data used for training is
uncorrelated with the data used for evaluation. In order to monitor the learning process and
to recognize possible noise overfitting the performance is repetitively cross-validated during
the training phase on the second half of the training frame. The training frame is completely
discarded in the evaluation phase.

5.3.4.2 Optical Back-to-Back Performance Evaluation

The overall performance of the individual DSP architectures is analysed on the optical BtB
measurements with 92 GBd and shown in Fig. 5.29. In this scenario bandwidth limiting
effects and O/E component non-linearities dominate. The black dashed line indicates the
baseline where no additional equalizer after carrier phase recovery is applied. By switching
on a complex LE (161 taps per real dimension) a gain of 0.61 dB is observed at the assumed
FEC limit. A further gain of 0.67 dB is obtained when a VNLE of 5th order with linear
and non-linear taps (161/11/7/3/3 taps of order 1/2/3/4/5 per real dimension) is used. The
TDNN-SD considering 22 input neurons (11 input neurons per real dimension) followed by
four hidden layers with 12 neurons each outperforms the VNLE by 0.15 dB. This performance
improvement of 0.15 dB matches to the observed results in the previous Section 5.1, where
a more detail comparison of VNLE and TDNN-SD is provided.

The combination of LE, WF + BCJR exceeds the performance of the VNLE and the TDNN-
SD by another 0.37 dB and 0.22 dB, respectively. Hence, linear impairments caused by
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Figure 5.29: 92 GBd DP-32QAM optical BtB performance.
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Figure 5.30: Noise PSDs of 92 GBd 32-QAM BtB before and after a whitening filter with 2-taps
of x-polarization (top) and y-polarization (bottom). It is assumed that there is no residual ISI in the
sequence after VNLE and the noise is calculated as the difference between the VNLE output and the
transmitted complex symbols. The noise peaks originate from the 50 GHz clock and are located at
12.5 GHz and 6.25 GHz.

limited bandwidth have a stronger impact on the performance than non-linear impairments
from the O/E components in the considered setup. Nevertheless, enabling altogether, i.e.,
VNLE 5th-order+WF+BCJR, the required OSNR is reduced to 27.6 dB resulting in a gain of
1.90 dB with respect to the baseline coherent DSP. Fig. 5.30 depicts the corresponding power
spectral densities before and after the WF with 2-taps of x-polarization and y-polarization,
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respectively. The spectrum is almost flat after the WF. The noise peaks originate from
the 50 GHz clock and are located at 12.5 GHz and 6.25 GHz. The green curve in Fig. 5.29
indicates the performance of the BRNN-SD with two input neurons followed by four recurrent
and two dense layers with 13 neurons each. It achieves the same performance as the stack
combination of VNLE, WF + BCJR. This indicates that recurrent architectures are not
only capable to handle mixed signal memory effects as feed-forward architectures do, but
also compensate for colored noise effects.
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Figure 5.31: Achievable rate versus number of multiplications per polarization at 28.1 dB OSNR.
The top figures depict the particular performance of different TDNN-SD and BRNN-SD designs,
while the bottom figure compares the performance of all advanced DSP options.
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Fig. 5.31 depicts the achievable rate gain of the particular applied DSP architectures in
relation to the required number of real multipliers at 28.1 dB OSNR (closest average mea-
surement point to FEC limit). The used architectures are labeled with their design. The
red markers indicate individual VNLE architectures up to 5th order, while the star mark-
ers represent different TDNN-SD architectures with various numbers of neurons within four
hidden layers. Higher order kernels respectively more hidden layers did not yield signif-
icant additional gain or complexity reduction, see top left figure. As expected and dis-
cussed in Section 5.1, all TDNN-SD options outperform all VNLE architectures with equal
complexity. The more interesting DSP architectures, the WF+BCJR as well as BRNN-SD
architectures, are indicated by the circled and square markers, respectively. It can be ob-
served, that the recurrent architecture achieves the performance of the stack combination of
VNLE+WF+BCJR with at least 3300 multipliers per polarization. If less neurons or hid-
den layers are assigned, its performance is deteriorated and the classical stack combination
outperforms the BRNN-SD. The computational complexity gap between the classical stack
combination and the BRNN-SD, in terms of real multiplications, is significant. However,
it must be emphasized that the strength of the BRNN-SD is the non-linear compensation.
In the considered scenario linear impairments are clearly dominant. A linear equalizer fol-
lowed by a WF and a BCJR is in this scenario the logical choice and yields a good trade-off
between complexity and performance.

5.3.4.3 Optical Transmission Performance Evaluation over 600 km Reach

The 800G 96 GBd DP-32QAM DWDM transmission results with reach of 600 km and cap-
tured at optimum launch power are shown in Fig. 5.32. In addition to the DSP architectures
used on the optical BtB measurements, a DBP algorithm with 6-steps (1 step per span)
is applied as a replacement for the chromatic dispersion FDE. The DBP is utilized to an-
alyze the data and to compensate for possible fiber non-linearities, primarily SPM effects
because XPM compensation needs knowledge of the other DWDM channels. The light and
dark blue markers show the performance with and without DBP including an LE after the
carrier phase recovery block. The results indicate that minor non-linear effects from the fiber
are introduced in comparable measure into all the channels during propagation. Only chan-
nel 29 (fourth from the right) exhibits a higher non-linear impact from the fiber, which may
be caused by a slight power profile imbalance. With its special role, channel 29 serves here
as an indicator for BRNN-SD performance capabilities in systems with higher fiber non-
linearities. For readability, the DBP is therefore only applied to the classical advanced DSP
schemes in channel 29.
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Figure 5.32: 800G 96 GBd DP-32QAM performance in terms of achievable rate for the 32-channel
DWDM system over a 600 km G.654D fiber link at optimal launch power of 4 dBm. Note that,
in the presence of stronger noise (wavelengths close to 1560 nm), accurate noise whitening is more
important and that the higher noise level during training makes the training process more robust
and reduces the generalization error.

Channel 1 to 32: The combination of LE, WF+BCJR exceeds the performance of the
VNLE and the TDNN-SD, which indicates that colored noise effects caused by bandwidth
limitation dominate. Nevertheless, compensating the non-linear effects from O/E compo-
nents primarily by the VNLE improves the achievable rate and hence achieves best perfor-
mance using conventional DSP schemes, see circled violet markers. However, Fig. 5.33 shows
that the higher baudrate of 96 GBd instead of 92 GBd leads to stronger noise enhancement
at high frequencies. In can be observed that the colored noise effect is not completely re-
moved by the WF, even if the number of taps of the WF is increased to 4, which causes
suboptimal performance.

The square green markers depict the performance of the BRNN-SD. In the 96 GBd DWDM
scenario, where stronger colored noise effects and broader dispersed non-linear distortions
occur [175], the BRNN-SD outperforms the best performing classical DSP combination of
VNLE, and WF + BCJR. While in the BtB scenario with 92 GBd the classical algorithms
can handle most of the impairments, in the case of transmission over fiber with 96 GBd,
they cannot model all effects optimally. In comparison, the BRNN-SD is able to learn the
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Figure 5.33: Noise PSDs of 96 GBd 32-QAM before and after a whitening filter with 2-taps of
x-polarization (top) and y-polarization (bottom). It is assumed that there is no residual ISI in the
sequence after VNLE and the noise is calculated as the difference between the VNLE output and the
transmitted complex symbols. The noise peaks originate from the 50 GHz clock and are located at
12.5 GHz and 6.25 GHz.

channel and to adjust its model more accurately to strong colored noise effects as well as
O/E component non-linearities arising at 96 GBd in a DWDM system.

Channel 29: On channel 29 the BRNN-SD achieves in comparison to the classical DSP
combination of VNLE, and WF + BCJR the largest achievable rate gain. As mentioned
above, channel 29 exhibits a higher non-linear impact from the fiber, as indicated by the
DBP gain. The good BRNN-SD performance on channel 29 may indicate that recursive
architectures are not only capable of recovering the performance of the BCJR, but may also
recover the DBP gain, compensating for fiber non-linearities. For this, a more detailed study
on a new set of data with a launch power sweep is provided in the next section, where SPM
can be clearly distinguished.

5.3.4.4 Compensation of Self-Phase Modulation

The previous results in Fig. 5.32 indicated that BRNN-SD are not only able to compen-
sate O/E component impairments but also fiber non-linearities. To examine this conjecture,
the performance of the BRNN-SD is evaluated in the case of 80 km single-wavelength fiber
transmission of coherent 80 GBd 800 Gb/s DP-64QAM using G.652 fiber. The reduced bau-
drate and the use of G.652 fiber turns non-linear effects from O/E components and fiber
into the dominant source of distortions because band-limitation is less severe. In addition,
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the deployment of DP-64QAM enables the division of inphase (I) and quadrature (Q) com-
ponents and hence the comparison of independent and joint processing of I and Q. In case of
independent processing four VNLEs/BRNN-SDs operate independently on the real dimen-
sion, while in case of joint processing I and Q are fed jointly into two VNLEs, respectively,
one BRNN-SD per polarization as illustrated in Fig. 5.34.
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Figure 5.34: Independent (left) and joint (right) I and Q processing.

Fig. 5.35 displays the launch power sweep, i.e., the measured transmission performance in
terms of achievable rate versus launch power. The small dots denote the performance of par-
ticular received frames, while the solid and dashed lines indicate the corresponding trends of
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Figure 5.35: Single-wavelength 80 GBd DP-64QAM transmission over 80 km G.652 fiber. The
small dots denote the performance of particular received frames, while the solid and dashed lines
indicate the corresponding trends of the individual DSP architectures.
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the individual applied DSP architectures. The solid lines represent the performance, when
only chromatic dispersion is compensated by two complex FDEs with blocksize equal to
8192 and 25% overlap. The dashed lines represent the performance, when SPM is compen-
sated additionally by a DBP algorithm. In general, a horizontal shift of the peak power to
the right indicates the compensation of non-linear fiber effects while an equally distributed
shift in vertical direction indicates linear and non-linear compensation of O/E components
impairments. Fig. 5.36 depicts therefore an overall performance evaluation of the individ-
ual DSP algorithms in terms of maximum achievable rate and optimal launch power versus
required number of real multiplications per polarization. The VNLE and BRNN-SD archi-
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(a) Achievable rate related to number of real
multiplications per symbol.
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(b) Optimal launch power related to number of real
multiplications per symbol.
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(c) Achievable rate related to number of real
multiplications per symbol.
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(d) Optimal launch power related to number of real
multiplications per symbol.

Figure 5.36: 80 GBd DP-64QAM optical transmission over 80km G.652 fiber.

99



Chapter 5 Non-linearity Compensation for Optical Transmission

tecture are optimized regrading complexity and achievable rate, i.e. the VNLE architectures
are optimized with respect to the number of linear and non-linear taps, and the BRNN-SD
to the number of neurons within the hidden layers. Particular architectures are labeled with
their design.

Figs. 5.36a and 5.36b depict the maximum achievable rate, respectively the optimal launch
power in case of independent I and Q processing. It can be observed, that the conventional
stack combination, e.g., VNLE+WF+BCJR, as well as the BRNN-SD mainly compensate
for component impairments, i.e., no launch power shift is obtained. A launch power shift
is only obtained, if the prior DBP algorithm is employed, compensating SPM effects. As
expected, the smaller the step size within the DBP, the higher the optimal launch power.
However, the smaller the step size, the higher the computational complexity.

Figs. 5.36c and 5.36d depict the maximum achievable rate, respectively the optimal launch
power in case of joint I and Q processing, where the compensation of non-linear phase noise
correlated over time introduced by SPM is possible. In this case, the VNLE as well as the
BRNN-SD are able to shift the optimal launch power by 0.8 dB, respectively 1.4 dB to the
right. This indicates that the VNLE and the BRNN-SD, which operate at symbol rate, are
not only capable to handle component impairments but also to a certain extend fiber non-
linearities, which confirms the assumption in the previous 800G 96Gbd DP-32QAM mea-
surements. However, in comparison to the DBP algorithm, whose fiber model is based on
the NLSE, higher computational complexity is required to achieve the same optimal launch
power, i.e., the well-kown analytical model outpaces the adaptive blackbox approach, espe-
cially in terms of complexity. Nevertheless, taking the component compensation into account,
the BRNN-SD achieves with slightly lower computational complexity equal performance as
the combination of classical stacked algorithms, consisting of a 5-step DBP, a joint VNLE,
a WF and a BCJR detector. In particular, the BRNN-SD is able to model component im-
pairments with less complexity while simultaneously compensating for SPM effects.

5.3.5 Summary

In this section a bidirectional recurrent neural network soft-demapper for bandlimited non-
linear channels is proposed. In comparison to time delay neural networks soft-demapper, the
recurrent architecture is able to handle colored noise effects caused by noise enhancement. In
92 GBd DP-32QAM optical back-to-back the proposed soft-demapper thus outperforms the
time delay neural network soft-demapper and matches the performance of the reference DSP,
consisting of a Volterra non-linear equalizer accompanied by a symbol-spaced whitening filter
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and a BCJR detector. In 96 GBd DP-32QAM 800 Gb/s 32-channel DWDM transmissions
over a 600 km G.654D fiber link the proposed approach even outperforms the reference
DSP, due to stronger colored noise and component non-linearities within the received signal.
However, in both considered setups linear impairments caused by limited bandwidth had a
stronger impact on the performance than non-linear impairments from the components and
fiber. In this cases, the BRNN is able to recover or slighly outperform the reference DSP,
but is compared to classical algorithms computationally heavy in terms of multiplications.

In contrary, in a 80 GBd DP-64QAM transmission setup over a 80 km G.652 fiber link,
where higher non-linear effects from the components as well as self-phase modulation ef-
fects from the fiber occur, the BRNN achieved with slightly less (5%) multipliers equal
performance as the conventional stack combination, consisting of a 5-step digital back prop-
agation algorithm, a joint VNLE, a WF and a BCJR detector. This confirms the assumption
of concurrent SPM compensation and makes the BRNN a promising candidate for mid-term
deployment in non-linearity-impaired and bandlimited high speed optical coherent trans-
mission systems, especially in scenarios where no accurate analytic model is available and
non-linear effects dominate.
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Chapter 6

Conclusions and Outlook

The ever-increasing demand for digital information pushes towards new approaches. In this
thesis, machine learning techniques for digital signal processing have been investigated and
applied to coherent optical communication systems to increase their capacities. The main
focus is set on next-generation high-bandwidth coherent short reach communication, where
cost-efficiency and high capacity are the main parameters in the system design. In the
following, the main results are summarized and an outlook on potential future research
directions is presented.

Neural Network assisted Geometric Constellation Shaping In chapter 4, novel
auto-encoder structures based on deep neural networks are introduced to design modulation
formats optimized for lowest bit-error rate over amplified and unamplified links. Besides the
geometry of the symbol constellation, the proposed method optimized also the bit mapping
with and without label extension. The learned modulation formats are numerically and
experimentally evaluated. In the numerical study performance gains of up to 0.9 dB and
0.4 dB in SNR and 0.5 dB and 0.58 dB in pSNR are obtained at the FEC limit for 32QAM
and 128QAM, respectively. In contrary, in the experiment gains of up to 1.0 dB and 1.2 dB
in OSNR and 0.25 dB and 0.55 dB in pOSNR are demonstrated at the FEC limit for
800 Gb/s DP-32QAM and 1 Tb/s DP-128QAM, respectively. The reported results show
that machine learning techniques are a viable method for designing and optimizing complex
optical communication systems.

Non-linear Compensation for Optical Transmission The trade-off between per-
formance and high computational complexity of conventional compensation techniques have
motivated investigations in alternatives based on DNNs. The study in Chapter 5 thus ana-
lyzed the capability of TDNNs and BRNNs for compensation of residual linear and non-linear
impairments after the carrier phase recovery block.
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In optical coherent 92 GBd DP-64QAM back-to-back measurements, where optical and
electrical components non-linearities dominate, TDNNs proved to reflect systematic non-
linearities more accurately than common 5th-order VNLEs. They either outperformed
pruned VNLEs by 0.35 dB in OSNR with equal complexity or achieved the same perfor-
mance with 65% less multipliers and hence lower complexity. In addition, we showed that the
deep neural network state-of-the-art cross-entropy cost function for classification problems
is equivalent to bitwise cross equivocation, maximizing an achievable rate. It is therefore
optimal for training DSP components acting as soft-demappers in modern communication
systems with soft-decision FEC, i.e., training of non-linear equalizers should be done via a
soft-demapper w.r.t cross equivocation instead of mean square error.

Furthermore, in comparison to a feed-forward architecture, e.g., TDNN or VNLE, it has
been shown that a BRNN architecture is capable to handle, next to non-linear ISI, colored
noise effects caused by noise enhancement. In 92 GBd DP-32QAM optical back-to-back
the BRNN thus outperformed the TDNN and matched the performance of the reference
DSP, consisting of a VNLE accompanied by a symbol-spaced whitening filter and a BCJR
detector. In 96 GBd DP-32QAM 800 Gb/s 32-channel DWDM transmissions over a 600 km
G.654D fiber link, where stronger colored noise effects occur, the BRNN even outperformed
the reference DSP. However, in both considered setups linear impairments caused by limited
bandwidth had a stronger impact on the performance than non-linear impairments from
the components and fiber. In this cases, the BRNN is able to recover or outperform the
reference DSP, but is in comparison to the classical algorithm computationally heavy in
terms of multiplications.

In contrary, in a 80 GBd DP-64QAM transmission setup over a 80 km G.652 fiber link,
where higher non-linear effects from the components as well as SPM effects from the fiber
occur, the BRNN achieved with slightly less (5%) multipliers equal performance as the
stack combination of classical DSP algorithms, consisting of a 5-step DBP algorithm, a joint
VNLE, a WF and a BCJR detector. This promotes the BRNN for mid-term deployment in
non-linearity-impaired and bandlimited high speed optical coherent transmission systems,
especially in scenarios where no accurate analytic model is available and non-linear effects
dominate.
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Future Research Directions

Neural Network assisted Geometric Constellation Shaping Both the simulated
and experimental results show improved performances, but are as well highlighting the chal-
lenges in matching the offline learning architecture to the real system. In particular, the
assumption of ideal channel compensation, i.e., AWGN is not valid in real systems. The un-
considered residual signal dependent impairments lead to a model discrepancy. Including
further component and channel properties in the optimization chain like in [27] is therefore
desirable, but faces challenges, like modeling of component and fiber imperfections together
with their corresponding derivabilities. Nevertheless, the effects of such additional compo-
nents and channel properties on the obtained constellation over amplified and unamplified
links need to be further investigated to close the model discrepancy.

Non-linear Compensation for Optical Transmission In this thesis, the complexity
aspects are estimated in number of multipliers, as they are by far the most expensive logic
blocks. Future research may include a detailed study on low fixed-point representation and
hence on quantization effects in combination with pruning. Reducing the power and the
latency of neural networks is key if we want to integrate neural networks into edge modems
with strict power and compute requirements.

Furthermore, due to the high quality of service requirements in optical transmission systems,
i.e., post-FEC BER below 10−12 or 10−15, the utilization of new digital signal processing
(DSP) approaches in the data path of commercial products is very critical. DSP blocks based
on neural networks must therefore be investigated in long term conditions to quantify their
reliability and robustness against external effects, e.g., temperature changes. A first step, is
real-time processing on field-programmable gate arrays (FPGAs).

Neural Network: Design and Trainability While the design of the input and output
layers of a neural network depends on the input and output dimensions of the desired func-
tion, the design options of the hidden layer are numerous and interrelated. Regarding their
size, general theoretical studies represent capacity upper bounds and state that minimally-
sized neural networks down to a single hidden layer can represent a wide variety of models,
when given appropriate parameters. However, those theorems do not describe the trainabil-
ity of those parameters and are also mostly limited to neural networks whose connections
are acyclic. In a real system, it is therefore currently still unclear, if the chosen neural
network architecture design is optimal for a given task. More theoretical studies on the op-
timal architecture design and trainability are therefore required, including RNN, to displace
hyper-parameter tuning techniques.
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Neural Network: Activation functions In this thesis the most likely activation func-
tions were applied. An interesting field for future research is to investigate customized acti-
vation function appropriate for optical communication, e.g., supporting optical impairment
compensation. A possible approach is to use unsupervised learning techniques and to ana-
lyze the signal impairments in measurement data. These analytic algorithms operate without
human bias or time constraints, computing every data combination to understand the data
holistically and hence the hidden information. Such tailored activation functions may reduce
the complexity of a neural network while maintaining its performance.

Neural Network: Information-theoretic perspective Information-theoretic meth-
ods have become the workhorse of several machine learning achievements over the past
years [176], ranging from practical applications, e.g, the variational information bottleneck
in representation learning [177], to theoretical investigation, e.g., the generalization bound
induced by mutual information [178]. Specific investigations on machine learning in com-
bination with optical communication from a information-theoretic perspective are however
rare and are not discussed in this thesis, but will be mandatory and of pivotal importance
to pave the way for neural networks in next-generation optical systems.
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Appendix A

Loss Optimality

A.1 Optimal Linear and Non-linear Equalizer using Mean
Square Error

In this section a simplified example based on BPSK is discussed to illustrated the origin of
the jail window in Fig. 5.8 and also to emphasis the need of training a nonlinear equalizer
w.r.t the bitwise cross equivocation (5.16) loss function. The example considered here is a
simplification of the following manuscript [179, Chap. 5], which was recently published by
G.Böcherer.

X +

N (0, σ2)

α Y equalizer f(Y )

Figure A.1

Supposed X ∈ {−1, 1} is transmitted and

Y = γ(X +N (0, σ2)) (A.1)

is received, where σ2 is the variance of the zero mean Gaussian noise source and γ the scaling
factor. The corresponding zero-forcing equalizer is linear and realizes the function

fzf(y) = 1
γ

y. (A.2)

In practice a common objective for equalizers is to minimize the MSE

E[(f(Y )−X)2]. (A.3)
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Linear MSE Equalizer

A linear equalizer calculates fliner(y) = αy. By inserting fliner(y) into (A.3) and by evaluating
the derivative w.r.t α and setting it equal to zero, we get [179, Eq. 5.21]

flinear,mse(y) = 1
λ(1 + σ2)︸ ︷︷ ︸

αMSE

y. (A.4)

It can be observed, that the α which minimizes the MSE differs from the value in (A.2).
However, with increasing SNR, the linear MSE equalizer approaches the zero-forcing equal-
izer.

Non-linear MSE Equalizer

In comparison to a linear equalizer, a non-linear equalizer has no restriction on its transfer
function, in particular for each value of y, we can choose fnon-linear(y) such that the MSE is
minimized. Conditioned on Y = y, we write the MSE as [179, Eq. 5.22]

E[(fnon-linear(y)−X)2] = PX|Y (−1|y)(fnon-linear(y) + 1)2 + PX|Y (1|y)(fnon-linear(y)− 1)2.

(A.5)
By taking the derivative of the right-hand side w.r.t fnon-linear(y) and setting it equal to
zero, we get [179, Eq. 5.23]

fnon-linear,mse(y) = 2PX|Y (−1|y)− 1. (A.6)

The APP distribution PX|Y (−1|y) can be alternatively expressed as follows

PX|Y (−1|y) = 1− PX|Y (0|y) = 1
1 + exp(−ℓ(y)) = sigmoid(ℓ(y)). (A.7)

where
ℓ(y) = 2y

γσ2 . (A.8)

Combining (A.6), (A.7), (A.8) and considering tanh(x) = 2sigmoid(2x)− 1, we finally get

fnon-linear,mse(y) = tanh( y

γσ2 ) (A.9)

Fig. A.2 shows the particular transfer functions of the zero-forcing, the linear and the non-
linear MSE trained 1-tap equalizers. It can be observed that the optimal non-linear equalizer
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trained w.r.t MSE exhibits saturation regions, resulting in the "jail window" shown in Fig. 5.8
in Section 5.1.
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(a) Transfer functions of optimal, linear, and
non-linear 1-tap equalizer considering BPSK over
AWGN channel (8 dB SNR) and γ equals 2.
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(b) Transfer functions of optimal, linear, and
non-linear 1-tap equalizer considering BPSK over
AWGN channel (18 dB SNR) and γ equals 2.

Figure A.2: Transfer functions of zero-forcing and linear as well as non-linear 1-tap equalizers
trained w.r.t MSE at 8 and 18 dB SNR.

A.2 Soft-Demapping as Logistic Regression
bi ∈ {0, 1} channel yi neural network ℓi g(·) b̂i ∈ [0, 1]

soft-demapping loss (5.16) logistic regression loss

L(b, ℓ) =
{

log(1 + exp(−ℓ)), if b = 0
log(1 + exp(ℓ)), if b = 1

L(b, b̂) =

{
log 1

b̂
, if b = 0

log 1
1−b̂

, if b = 1

Figure A.3: Bitwise soft-demapping as logistic regression.

We now show that our bitwise equivocation loss function L(b, ℓ), defined in (5.16), that
aims to maximize an achievable FEC rate is equivalent to the binary cross-entropy function
L(b, b̂) applied to the output of a sigmoid activation function b̂ = g(ℓ), which is the common
approach to binary classification (“logistic regression”) in classic machine learning, see, e.g.,
[117, Sec. 4.3.2], [180, Sec. 8.3.1], [181, pp. 142–144]. We display the neural network and the
two loss functions under consideration in Fig. A.3. Next we show that the two loss functions
are equivalent. The sigmoid activation function [117, Sec. 2.4] is defined as

b̂ = 1
1 + exp(−ℓ) . (A.10)
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We now have

L(b, b̂) =

log 1
b̂
, b = 0

log 1
1−b̂

, b = 1
(A.11)

(A.10)=

log(1 + exp(−ℓ)), b = 0

log(1 + exp(ℓ)), b = 1
(A.12)

= log2(1 + exp(−(1− 2b)ℓ)) (A.13)

= L(b, ℓ) (A.14)

which shows the equivalence of the loss functions.

A.3 Optimal Demapping with Neural Networks

For a trained neural network acting as soft-demapper, the neural network outputs ℓ and b̂

are deterministic functions of the neural network input y. We define

q(0, y) = b̂(y), q(1, y) = 1− b̂(y). (A.15)

Note that since 0 ≤ b̂(y) ≤ 1, for each y, q(·, y) defines a distribution on {0, 1}. We can now
write the loss as

L(b, b̂(y)) = − log2 q(b, y). (A.16)

For a sufficiently large number n of samples, the average loss is the cost that is minimized
by training. We next derive an information-theoretic interpretation of the cost. To this end,
we assume the channel output y takes values in a finite set Y. Note that this assumption is
in line with a practical setting, where y is discrete because of analog-to-digital conversion
with finite resolution. For n samples, the cost is

1
n

n∑
i=1

[− log2 q(bi, yi)] (A.17)

= 1
n

∑
b∈{0,1}

∑
y∈Y

∑
i:bi=b,yi=y

[− log2 q(b, y)] (A.18)

=
∑

b∈{0,1}

∑
y∈Y

[− log2 q(b, y)]
∑

i:bi=b,yi=y 1
n︸ ︷︷ ︸
(⋆)

, (A.19)
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where the term (⋆) defines a joint distribution on {0, 1} × Y. Let’s introduce the random
variable (RV) B for the channel input and the RV Y for the channel output observed by the
neural network and define

PBY (b, y) =
∑

i:bi=b,yi=y 1
n

. (A.20)

Then, we have

1
n

n∑
i=1

[− log2 q(bi, yi)] =
∑

b∈{0,1}

∑
y∈Y

PBY (b, y)[− log2 q(b, y)] (A.21)

=
∑
y∈Y

PY (y)
∑

b∈{0,1}
PB|Y (b|y)[− log2 q(b, y)] (A.22)

≥
∑
y∈Y

PY (y)
∑

b∈{0,1}
PB|Y (b|y)[− log2 PB|Y (b|y)] (A.23)

= H(B|Y ) (A.24)

where (A.22) follows by Bayes’ rule and (A.23) by the information inequality [182, Theo-
rem 2.6.3] (recall that q(·, y) defines a distribution on {0, 1} for each y). We have equality
in (A.23) if and only if

b̂(y) = q(0, y) = PB|Y (0|y) (A.25)

1− b̂(y) = q(1, y) = PB|Y (1|y). (A.26)

We next characterize the optimal ℓ. For b = 1, we have

1
1− b̂(y)

= 1 + exp[ℓ(y)] = 1
PB|Y (1|y) (A.27)

⇒ exp[ℓ(y)] = 1− 1
PB|Y (1|y) =

PB|Y (0|y)
PB|Y (1|y) (A.28)

⇒ ℓ(y) = log
PB|Y (0|y)
PB|Y (1|y) . (A.29)

(The same result is obtained when considering b = 0). We conclude that with the considered
loss functions, the neural network learns via b̂ the APP distribution PB|Y and via ℓ, it learns
the logarithmic APP ratio log PB|Y (0|y)

PB|Y (1|y) , thereby achieving the minimum cost of H(B|Y ).
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List of Abbreviations

1D one-dimensional
1D-CNN one-dimensional convolutional neural network
2D two-dimensional

ADAM adaptive moment estimation
ADC analog-to-digital converter
APP posteriori probability
ASE amplified spontaneous emission
ASIC application-specific integrated circuit
AWGN additive white Gaussian noise

BCE bitwise cross equivocation
BER bit error ratio
BICM bit-interleaved coded modulation
BPSK binary phase shift keying
BPTT backpropagation through time
BRNN bidirectional recurrent neural network
BRNN-SD bidirectional recurrent neural network soft demapper
BtB back-to-back

CAZAC constant amplitude zero auto-correlation
CCDM constant composition distribution matcher
CFO carrier frequency offset
CMOS complementary metal-oxide semiconductor
CPR carrier phase recovery
CUT channel under test
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List of Abbreviations

DA driver amplifier
DAC digital-to-analog converter
DBP digital back-propagation
DCI data center interconnect
DD direct detection
DGD differential group delay
DM distribution matcher
DNL differential non-linearity
DNN deep neural network
DSP digital signal processing
DWDM dense wavelength division multiplexing

ECL external cavity laser
EDFA Erbium-doped fiber amplifier
ENOB effective number of bits

FDE frequency divison equalizer
FEC forward error correction
FFT fast Fourier transform
FIR finite impulse response
FPGA field-programmable gate array

GMI general mutual information
GN Gaussian noise
GNLSE general non-linear Schrödinger equation
GVD group-velocity dispersion

H-tanh hard tanh
HB-µICR high bandwidth micro integrated coherent receiver
HD hard-decision
HMM hidden Markov model

I inphase
I-tanh Interpolated tanh
IIR infinite impulse response
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IM intensity modulation
IMD intermodulation distortion
INL integral non-linearity
IoT Internet of Things
ISI inter-symbol interference

LDPC low-density parity-check
LE linear equalizer
LLRs log-likelihood ratios
LMS least mean squars
LO local oscillator
LS standard least-squares
LUT look-up table

M2M Machine-To-Machine
MAP maximum-a-posterior
MF matched filter
MIMO multiple input multiple output
MLA max-log approximation
MMSE minimum mean square error
MSE mean square error
MZM Mach-Zehnder modulator

NF noise figure
NLSE non-linear Schrödinger equation

O/E optical/electrical
OH overhead
OIF Optical Internetworking Forum
OOK on-off keying
OSA optical spectrum analyzer
OSNR optical signal-to-noise ratio

PAPR peak-to-average power ratio
PAS probabilistic amplitude shaping
PBC polarization beam combiner
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List of Abbreviations

PBS polarization beam splitter
PhD Doctor of Philosophy
PMD polarization mode dispersion
PSD power spectral density
pSNR peak SNR

Q quadrature
QAM quadrature amplitude modulation

ReLU rectified linear unit
RF radio frequency
RLS recursive least square
RNN recurrent neural network
RRC root-raised-cosine
RTRL real time recurrent learning

SD soft decision
SE spectral efficiencies
SER symbol error ratio
SGD stochastic gradient descent
SINR signal-to-interference-and-noise ratio
SMF single-mode fiber
SNR signal-to-noise ratio
SPM self phase modulation
SpS sample per symbol
SSFM split-step Fourier method
SSMF standard single-mode fiber

tanh hyperbolic tangent
TDNN time delay neural network
TDNN-SD time delay neural network soft-demapper
TDNNE time delay neural network equalizer
TIA trans-impedance amplifier
TR timing recovery

VNLE Volterra non-linear equalizer
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WDM wavelength division multiplexing
WF whitening filter

XPM cross phase modulation

ZF zero-forcing
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List of Symbols

α fiber attenuation
β3 third-order disperion
β2 phase constant of dispersion
∆n fiber birefringence
∆τs differential group delay
γ nonlinear fiber parameter
ω angular frequency
σ2 noise variance
θs polarization phase

Bref reference bandwidth
L cost function
D dispersion parameter
L fiber length
N0 power spectral density of white noise
NASE spectral density of the ASE-noise in one polarization
P power
RC code-rate
Rs symbol rate
R achievable rate
Vπ half-wave switching voltage of an MZM
c speed of light
δ extinction ratio
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