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Abstract: Ecological theories suggest that environmental, social, and individual factors interact
to cause obesity. Yet, many analytic techniques, such as multilevel modeling, require manual
specification of interacting factors, making them inept in their ability to search for interactions.
This paper shows evidence that an explainable artificial intelligence approach, commonly employed
in genomics research, can address this problem. The method entails using random intersection trees
to decode interactions learned by random forest models. Here, this approach is used to extract
interactions between features of a multi-level environment from random forest models of waist-to-
height ratios using 11,112 participants from the Adolescent Brain Cognitive Development study. This
study shows that methods used to discover interactions between genes can also discover interacting
features of the environment that impact obesity. This new approach to modeling ecosystems may
help shine a spotlight on combinations of environmental features that are important to obesity, as
well as other health outcomes.

Keywords: adolescent obesity; neighborhood education; neighborhood poverty; household income;
parent education; explainable artificial intelligence; machine learning; ecological theory

1. Introduction

A critical barrier in obesity prevention and treatment is determining which individual,
social, and environmental factors shape our health [1–3]. A person’s behavior and the
multiple environments they navigate cause obesity [4]. There is evidence that connects
features of the environment with different health outcomes, but how do such features
interact [5,6]? The social ecological model has been a useful tool to conceptualize how
proximal and distal environmental factors influence individual behavior and health out-
comes [7]. Yet, current analytic methods limit the discovery of interactions between and
within different levels of the social ecological model [8,9]. The focus of this paper is to
explore an artificial intelligence approach to discovering interacting ecosystem factors that
support obesogenic behaviors.

The multitude of measurements from proximal (i.e., intrapersonal and interpersonal)
and distal (i.e., community, organizational, and policy) levels of the ecological model
make it more challenging to gain systems-level insights into interacting components of
the ecosystem. As an example, consider how features of an impoverished environment
might affect obesity prevalence. Obesity is more common in impoverished environments
as measured by proximal (i.e., household income) and distal (i.e., neighborhood income)
ecosystem features [10,11]. There is an inevitable redundancy between interpersonal
and community environments, in that neighborhoods often include households with
similar levels of income, wealth, and education. However, there are potentially meaningful
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differences between neighboring households, suggesting potential interactions between
features of the interpersonal and community ecosystem.

The challenge of choosing which feature interactions to study is a barrier to gaining
new insights into the principles of how levels of the ecosystem interact to shape health.
The growing number of ways to measure community levels of the ecosystem has made
it increasingly difficult to specify how every possible interacting feature of the environ-
ment affects a particular health outcome. To illustrate the problem, one can calculate the
number of interactions using the formula for combinations without repetition [n!/k!(n−k)!],
where n represents the number of unique features and k represents the number of fea-
tures in the interaction. For example, 627 interactions are possible with 10 features, and
21,679 interactions are possible with 20 features (up to 5-way interactions). The large search
space of potential interactions between the growing numbers of features from the ecosystem
levels is too extensive to study interactions one at a time.

The immense number of potential interactions and limitations of commonly used
analytic approaches often results in obesity studies that only consider fragments of the
ecological model [12–14]. As noted above, manually selecting less than a handful of interac-
tions is ignoring hundreds or even thousands of other potentially meaningful interactions.
Yet, a key element of ecological theories is the interactions between individual behavior and
a variety of environmental features [7,15]. A recent scoping review of the childhood obesity
literature suggests that most published studies are limited to interactions with a single
level of the ecological model (i.e., interpersonal and community, etc.) [16]. To advance our
understanding of how ecosystem features interact to cause obesity requires an efficient
approach to searching for interactions within and across levels.

A potential solution to the problem of identifying important interactions among multi-
feature, multi-level ecosystems is to leverage machine-learning algorithms that can train a
computer to learn what complex feature interactions are important for predicting a particu-
lar outcome [17]. Traditionally, people use machine-learning models to predict an outcome,
not explain feature patterns in the model [18]. This is in part because machine-learning
algorithms can produce highly complex solutions that are difficult to interpret [19]. How-
ever, recent research in artificial intelligence has helped build interpretable or explainable
machine-learning models that show domain knowledge about the modeled features [20–22].
Artificial intelligence solves problems using machines to do the tasks. With explainable arti-
ficial intelligence, the task is the extraction of knowledge from a machine-learning model to
gain insights into phenomena being modeled [17,23,24]. Thus, such an approach could help
to extract information on interacting ecosystem features from a machine-learning model
used to predict a particular health outcome.

Here, explainable artificial intelligence is used to discover interacting features of
a complex multi-level environment that reinforces obesity/obesogenic behaviors. The
goal is to use adolescent obesity as a proof-of-concept case for using a machine learning
approach to better understand the interactions between components of an ecosystem. Using
components from intrapersonal, interpersonal, and community, this paper shows evidence
that random forest models can learn interactions between features of the ecosystem that
predict obesity in youth. Taking a multi-level view of ecological systems, the models
include features from both the proximal (i.e., intrapersonal and interpersonal) and distal
(i.e., community) environment. The discovered interactions are discussed along with
implications and limitations of the approach for environmental research.

2. Materials and Methods
2.1. Human Participants

Here we use data collected as part of the ABCD study (https://abcdstudy.org, Release
3.0.1) accessed on 28 July 2021. The data came from 22 sites in the United States from
11,875 human participants aged 9–10 years. Most of our analysis is with the baseline
data available as part of the ABCD Study Curated Annual Release 3.0.1 (https://data-
archive.nimh.nih.gov/abcd, accessed on 28 July 2021). We also included dietary intake

https://abcdstudy.org
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data that were first collected at the 1-year follow-up visit. The primary outcome of our
analyses is age and sex-adjusted waist-to-height ratio z-scores, for which there were data on
11,112 participants. We excluded participants from our analyses who were missing waist
circumference, height, age, or sex data. The Institutional Review Board at the University of
Tennessee approved this project.

2.2. Predictive Variable Selection

We started our analyses with 120 features used as predictors of each child’s waist-to-
height ratio. We selected these features to provide information about individual charac-
teristics of the child (i.e., pubertal stage, nutrition, and physical activity), their household
(i.e., family history and parent demographics), and neighborhood environment (i.e., crime,
pollution, and poverty). We began the variable selection process with the goal of taking
advantage of the immense ABCD data collection. No single feature was missing over 5% of
observations. However, a limitation of the random forest modeling strategy utilized here
is that the input data cannot include missing values. Thus, to estimate missing data, we
used the multivariate imputation by chained equations R package (M.I.C.E. version 3.13.0)
and created separate models for each of the data partitions (described below) [25]. For all
datasets, we performed 5 imputations after 40 iterations and used the median imputed
value for the final analysis. To check for convergence, we inspected the trace lines of
means and standard deviations across iterations for each variable and compared means
and standard deviations before and after imputation. We did not use waist-to-height ratio,
our primary outcome, to impute any variable. Convergence plots and the R code used to
impute the missing data are available in Supplementary File S1.

2.3. Data Partitioning

For model training and evaluation, we employed a stratified 2-fold cross-validation
partitioning scheme. We created two partitions of the full dataset (1st partition:
5561 participants, 2nd partition: 5551 participants) using the groupdata2 R package (ver-
sion 1.4.1). We balanced the partitions by our primary outcome (waist-to-height ratio
z-scores) and such that siblings stayed in the same set. The R code used to partition the
data is available in Supplementary File S2.

2.4. Intrapersonal Features
2.4.1. Waist-to-Height Ratio Z-Scores

The primary outcome measure in our analyses was age and sex-adjusted z-scores
for waist-to-height ratio. We chose this metric because it adjusts for height, age, and
sex differences, and is a better surrogate measure of percent body fat than body mass
index [26]. We calculated standardized scores using the childsds R package (version 0.7.6),
which is based on the distribution of waist-height ratio in children aged 5–19 years in
NHANES III [27]. To perform the calculation, we retrieved waist circumference, height,
sex, and age from the ABCD Youth Anthropometrics file named abcd_ant01. To account
for extreme and/or unlikely input data for the calculation of waist-to-height ratios, we
removed individuals with an age and sex adjusted z-score of ≥4 or ≤−4 using the waist-to-
height ratio z-scores and a CDC reference table for height, weight, and body mass index [28].
R code for calculating the age and sex-adjusted z-scores for waist-to-height ratio is available
in Supplementary File S3.

2.4.2. Pubertal Stage

Given the age range of the ABCD sample, pubertal stage was included as an individual-
level variable. Pubertal stage is based on the research subjects’ sex at birth and parent
responses to the Pubertal Development Scale [29]. The scale values range from 1 to 5 (1 = pre-
puberty; 2 = early puberty, 3 = mid puberty, 4 = late puberty, 5 = post puberty). These data
are available in the ABCD Sum Scores Physical Health Parent file named abcd_ssphp01.
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2.4.3. Race and Hispanic Ethnicity

We also include race and ethnicity as individual-level variables, given their known
relationship with obesity disparities. Ethnicity is a binary parental response (yes/no) to
whether they consider their child Hispanic, Latino, or Latina. Parental responses (yes/no)
to whether their child belonged to a particular racial group included 16 binary questions
(White, Black/African American, American Indian/Native American, Alaska Native, Na-
tive Hawaiian, Guamanian, Samoan, Other Pacific Islander, Asian Indian, Chinese, Filipino,
Japanese, Korean, Vietnamese, Other Asian, Other Race). These data are available in the
ABCD Parent Demographics Survey file named pdem02.

2.4.4. Dietary Information

Questions from a nutritional assessment completed by the parent provided informa-
tion about the child’s diet in a typical week over the past year, as well as whether the
biological mother took prenatal vitamins. Child nutrition information comprised 14 binary
responses (yes/no) to questions about a wide range of food groups with a fixed consump-
tion frequency: “Whole grains 3 or more times per day”, “Green leafy vegetables 6 or more
times per week”, “Other vegetables 1 or more time per day”, “Berries 2 or more times per
week”, “Red meats and meat products less than 4 times per week”, “Fish 1 or more time
per week”, “Poultry 2 or more times per week”, “Beans 4 or more times per week”, “Nuts 5
or more times per week”, “Fast food or fried food less than 1 time per week”, “Olive oil
is used as the primary oil”, “Butter or margarine is used less than 1 Tablespoon per day”,
“Cheese less than 1 time per week”, and “Pastries or sweets less than 5 times per week”.
There are also two questions asking whether the biological mother took daily prenatal
vitamins or folic acid supplements before or during pregnancy. These data are available in
the ABCD Child Nutrition Assessment file named abcd_cna01.

2.4.5. Physical Activity

The ABCD study collected information about physical activity in different contexts.
They based three indicators on items from the Youth Risk Behavior Survey. These questions
assessed how many of the past 7 days the youth was physically active for at least 60 min
per day, how many of the past 7 days the youth did exercises to strengthen or tone your
muscles, and how many days in an average school week does the youth go to physical
education (PE) class. These data are available in the ABCD Youth Risk Behavior Survey
Exercise Physical Activity file named abcd_yrb01.

They also asked parents of children in the ABCD study about their child’s involvement
in 23 different sports in the past 12 months. We calculated the average time spent per week
in each sport. We summed the values of all the sports to estimate involvement in sports
on a weekly time scale. These data are available in the ABCD Parent Sports and Activities
Involvement Questionnaire (SAIQ) file named abcd_saiq02.

2.5. Interpersonal Features
2.5.1. Developmental History Measures

Items pertaining to the child’s developmental history provided information about
the youth’s completion of developmental milestones, medical problems during birth and
pregnancy, and prenatal substance exposure. Six initial questions assessed whether they
administered the exam to the caregiver in Spanish, whether they were the biological mother,
age of biological mother and father at birth, whether the child has a twin, and whether the
child was a planned pregnancy. 16 binary responses (yes/no) assessed drug use during
pregnancy before and after they knew about being pregnant (prescription medications,
tobacco, alcohol, and marijuana. The ABCD study assessed use of other drugs (i.e., cocaine,
heroin, OxyContin, and morphine) that we chose not to include because less than 1% of
the sample reported affirmative responses. Prenatal vitamin and caffeine consumption
during pregnancy was also assessed (yes/no). They assessed 25 different complications
with the pregnancy or at birth using binary response variables (yes/no). Additional
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information included length of time in months being breastfed, age when first rolled over,
said first word, and walked without help. They also asked caregivers whether their child’s
motor and language development was earlier, average, or later than most other children
(1 = Much earlier; 2 = Somewhat earlier; 3 = About average; 4 = Somewhat later; 5 = Much
later). Caregivers also reported whether their child had ever wet the bed at night. These
data are available in the ABCD Developmental History Questionnaire file named dhx01.

2.5.2. Parent Demographics and Familial Environment

Information collected from the parent as part of a demographic intake form charac-
terized the household environment. These questions assessed the parental marital status,
education, work status, earnings of primary caregiver before taxes, whether they have a
partner, number of people living in the house, and total combined family income. The
remaining questions showed whether anyone in the immediate family had experienced
various events in the past 12 months: “Needed food but couldn’t afford to buy it or couldn’t
afford to go out to get it”, “Were without telephone service because you could not afford
it”, “Didn’t pay the full amount of the rent or mortgage because you could not afford
it”, “Were evicted from your home for not paying the rent or mortgage”, “Had services
turned off by the gas or electric company, or the oil company wouldn’t deliver oil because
payments were not made”, “Had someone who needed to see a doctor or go to the hospital
but didn’t go because you could not afford it”, and “Had someone who needed a dentist
but couldn’t go because you could not afford it”. These data are available in the ABCD
Parent Demographics Survey file named pdem02.

2.6. Community Features

The residential address of each participant made it possible to characterize the commu-
nity environment using information from external geocoded databases. Included was one
indicator of crime: number of total crimes. Excluded were more specific indicators of crime
(i.e., adult offenses, violent crimes, drug abuse violations, drug sale, marijuana, drug posses-
sion, and driving while under the influence) because of higher inter-correlations (r > 0.80)
with each other and with total crime. Other measures characterized the neighborhood
in terms of deprived education, housing-quality, and poverty. Additional neighborhood
environment characteristics included metrics of population density, proximity to major
roads (meters), walkability, and ambient air pollutants at 10 × 10 km2 [annual average of
fine particulate (PM2.5) and the three-year average of nitrous di-oxide (NO2)]. These data
are available in the ABCD Residential history derived scores file named abcd_rhds01.txt.

Model Training

The input for the data analysis pipeline is a set of features (i.e., intrapersonal, inter-
personal, and community) and the predicted outcome (i.e., waist-to-height ratio z-scores).
This input is used by the iterative random forest (iRF) R package (version 3.0.0) to build
prediction models of the waist-to-height ratio z-scores using a 2-fold cross-validation
scheme [23,30,31]. The algorithm works by first generating a forest of 1000 decision trees
using the training data. It generates each decision tree using a subset of 10 features
(
√

120 f eatures), selected at random from the entire set of 120 features. It estimates the
importance of each feature based on the average variance explained in the outcome across
all the decision trees. After the algorithm generates the first prediction model, it generates a
second prediction model using the same process with one exception: the algorithm selects
the subset features such that the probability of each feature being selected is weighted
based on their performance in the first prediction model. The best performing features
in the first prediction model are more likely to be included in the decision tree than poor
performing features. The algorithm iterates through this process 5 times and keeps the
model from the iteration with the best performance based on out-of-bag error. We built
two prediction models following this process using the two data partitions.
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The output of the iRF algorithm is a list of stable interactions between variables that
predict waist-to-height ratio. The list of interactions is generated by decoding the final
prediction model using random intersection trees [32]. The algorithm identifies interactions
by detecting co-occurring features that show similar decision rules on the decision paths
of the final iteration of the random forest model. Taking the intersection of interactions
discovered by the two prediction models implemented a 2-fold cross-validation scheme.
Only the interaction term was used to calculate the variance explained in the holdout data
for each prediction model. Interactions reported in the results here explained at least 1% of
the variance in waist-to-height ratio. The results section shows the median splitting value
for the components of each interaction to aid interpretation.

3. Results

Table 1 shows descriptive statistics for demographics and waist-to-height ratio z-
scores of the whole sample. After randomly partitioning the data into halves, two separate
prediction models were built for the waist-to-height ratio z-scores. Each model included
120 features that described individual characteristics of the child (i.e., intrapersonal), their
household (i.e., interpersonal), and neighborhood (i.e., community). Using a 2-fold cross-
validation scheme, performance was evaluated for each model using the data partition
not used in model training. The two models showed modest predictive performance,
accounting for a median 11.06% of the variance in the evaluation data (Model1 = 10.37%,
Model2 = 11.75%). Figure 1 shows the average importance of the ten most important
features, averaged across both prediction models. All of the most important model features
described some aspect of the neighborhood.
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Figure 1. Ten most important features in predicting waist-to-height ratio z-scores. Dotplot showing
the decrease in residual sum of squares when the decision trees include each of the most important
features. Importance values are averages of the two prediction models. The most important features
all characterize some aspect of the neighborhood.



Int. J. Environ. Res. Public Health 2022, 19, 9447 7 of 13

Table 1. Participant demographics and Waist-to-Height Ratio Z-score (N = 11,112).

Sex
Male, n (%) 5811 (52.3%)

Female, n (%) 5301 (47.7%)
Age (years)
Mean (SD) 9.92 (0.626)

Median [Min, Max] 9.92 [8.92, 11.1]
Waist-to-Height Ratio (Z-score)

Mean (SD) 0.208 (1.05)
Median [Min, Max] 0.215 [−3.99, 3.93]

3.1. Summary of Random Forest Prediction Models

Figure 2 shows the average variance explained for each of the six interactions discov-
ered by the prediction models. Table 2 shows the median threshold values of the decision
rules used for each interacting variable. The algorithm found interactions between interper-
sonal and community factors, intrapersonal and community factors, and between different
community factors.
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Figure 2. Cross-validated interactions predictive of waist-to-height ratio z-scores. Evaluation of the
interactions was based on how much variance the interaction explained in the holdout data based on
the coefficient of determination (R-square). R-square values presented above are the average of the
two predictive models.

3.2. Interpersonal and Community Level Interactions

Children of parents with less formal education had a higher waist-to-height ratio
z-score if they lived in a neighborhood with a low percentage of adults with a high school
diploma (see Figure 3A). Children living in a home with low total household income
had a higher waist-to-height ratio z-score if they lived in a neighborhood with a high
percentage of residents living in poverty (see Figure 3B). Children living in a home with
low total household income also had a higher waist-to-height ratio z-score if they lived in a
neighborhood with lower levels of particle pollution (see Figure 3C).
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z-scores as a function of parent education level and % of neighborhood with a high school
diploma (A), total household income and % of neighborhood living in poverty (B), total house-
hold income and particle pollution (C), median neighborhood income and weekly involvement in
sports (D), % of single parent homes in neighborhood and % of neighborhood living in poverty (E), %
of neighborhood with a high school diploma and median neighborhood home values (F). All surface
maps are drawn using the first prediction model and holdout data to show the generalizability of
each interaction.

Table 2. Decision Rules and Median Splitting Values for each interacting variable.

Feature A Feature B

Parent Education < Bachelor’s Degree <92% of Neighborhood with High School Degree
Household Income < $50,000 ≥18% of Neighborhood Living in Poverty
Household Income < $50,000 Neighborhood Small Particle Pollution <7.9 µg/m3

Median Neighborhood Income < $72,341 <23 min of weekly sports
<92% of Neighborhood with High School Degree Median home values ≥ $215,825

≥18% of Neighborhood below poverty line <16% Single-parent homes

3.3. Intrapersonal and Community Interactions

Children living in a low-income neighborhood had a higher waist-to-height ratio
z-score if they played sports for less than 23 min per week (see Figure 3D).

3.4. Interactions between Community Factors

The last two discovered interactions involved features within the community level.
Children living in a neighborhood with a low percentage of adults with a high school
diploma had a higher waist-to-height ratio z-score if they lived in a neighborhood with
high median home values (see Figure 3E). Children living in a neighborhood with a high
percentage of households below the poverty line had a higher waist-to-height ratio z-score
if they lived in a neighborhood with a high number of single-parent households (see
Figure 3F).

4. Discussion

In this study, an explainable artificial intelligence approach helped discover interac-
tions between obesogenic features of the multiple environments that youth navigate. Using
components from intrapersonal, interpersonal, and community, random forest models
learned interactions between features of the ecosystem that predict obesity in youth. The
main findings are interactions that show compounding obesogenic risks across and within
ecosystem levels. The cross-sectional design stifles causal claims between the discovered
interactions and childhood obesity. However, this study shows strong evidence of unique
obesogenic risk across intrapersonal, interpersonal, and community levels of the ecosystem.
This study also shows that the probing of machine learning models is potentially fruitful
for the discovery of novel intervention targets in obesity prevention.

The two most potent interactions predictive of high waist-to-height ratios reported
here are examples of so-called double-jeopardy effects in that they show compounding
risks from different ecosystem levels [33]. Discovery of interactions between economic
or educational resources in the household and community is consistent with evidence
showing associations between these metrics and obesity. Evidence of interactions between
interpersonal and community factors supports the idea that youth with the same household
economic and educational resources can have different obesity risk levels depending on the
economic and educational resources in their neighborhood [34]. Though the mechanisms
are not clear, lower levels of education and economic resources could cause differences in
food availability or consumption in the home and neighborhood that promote eating habits
that cause obesity [35,36]. Future releases of the ABCD dataset that include features of the
neighborhood food environment can make it possible to address these hypotheses.
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The predictive models discovered compounding obesogenic risk for youth living
in low-income neighborhoods that engage in little to no weekly sports activities. This
interaction differs from the previous double-jeopardy effects in that the compounding risks
come from different constructs (i.e., economic resources and physical activity). At face
value, this interaction suggests an intervention geared towards increasing engagement in
sports for youth in low-income communities [37–39]. However, the predictive models did
not include a measure of physical activity facilities or other community level features that
might act as a barrier to sports participation. Perhaps the interaction between neighborhood
income and sports activity is a proxy for a subset of low-income communities that also
have barriers to sports participation [40,41]. Conceivably sports participation is a proxy
for having a supportive adult that facilitates their activities and provides general care.
Addressing these hypotheses requires the combination of parenting indices and features of
the built environment, such as proximity to public sport facilities and green spaces.

The prediction models also discovered compounding barriers within the community
level. Here, the finding was that impoverished neighborhoods with a high proportion of
single-parent households are more obesogenic than impoverished neighborhoods with a
low proportion of single-parent households. Previous studies show higher obesity rates
associated with living in a single-parent household and living in a neighborhood with a
high proportion of single-parent households [32,42]. Additionally, the prediction models
also included a measure of the parent’s marital status, though it was the proportion of
single-parent households in the neighborhood that interacted with neighborhood poverty.
Perhaps neighborhoods with high levels of poverty and single-parent homes have a poor
food environment compared to impoverished neighborhoods with a higher percentage of
two-parent households.

A paradoxical finding in this study was that two of the cross-validated interactions
described both high and low levels of two risk factors predictive of higher waist-to-height
ratios compared to high levels of both factors. For example, youth living in neighbor-
hoods characterized by low neighborhood education levels and high median home values
had higher predicted waist-to-height ratios compared to youth living in neighborhoods
characterized by low neighborhood education levels and low median home values. The
pattern of findings for neighborhood education is consistent with studies showing higher
rates of obesity in adults without a high school degree [43], and studies showing higher
rates of obesity in children living in neighborhoods with a higher proportion of adults
without a high school degree [44]. However, the finding of higher median home values
corresponding to higher obesity risk conflicts with reports showing higher rates of obesity
in neighborhoods with lower home values [45–47]. Indeed, the ABCD study data used
here show an overall main-effect of a negative linear correlation between home values and
waist-to-height ratio z-scores. Yet the surface plot for this interaction (see Figure 3F) shows
that neighborhoods characterized by low educational resources and high median home val-
ues are more obesogenic than neighborhoods characterized by high educational resources
and low median home values. If true, this paradoxical effect highlights the potential for the
myriad combinations of factors to create different ecosystems of obesogenic risk.

Overall, this study shows evidence that multiple levels of a youth’s ecosystem interact
to exacerbate the obesity risk. The findings support the notion that community, interper-
sonal, and intrapersonal features are proxies for non-overlapping processes that influence
the propagation of obesity [32]. The findings also show that ecosystem features can inter-
act in unexpected ways, which bolsters the importance of using artificial intelligence to
discover interacting ecosystem features. In doing so, the algorithm revealed subsets of
individuals that deviated from the expected linear patterns.

While our data-driven approach and cross-validation scheme have several strengths
relative to previous studies of the environment and obesity, reliance on only observational
data is a limitation. For example, a longitudinal study of youth who move from low- to high-
income neighborhoods would provide more interesting evidence of how neighborhood
and household economic resources intersect. However, even with multiple waves of data
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and naturally occurring interventions, the mechanisms for which these interactions are a
proxy need to be defined prior to any public policy change. Yet, a notable limitation to
discovering such mechanisms is the common approach to combine different community
or interpersonal features into an abstract composite measure that is difficult to interpret
relative to the individual features themselves.

A methodological limitation of this study is the use of census-based proxies of geo-
graphical boundaries for neighborhoods. It is unclear to what degree these boundaries
correspond to the geographical distribution of causal factors linking obesity to features
of the community. Multiple economic features contributed to the predictive models, sug-
gesting that single indices of median neighborhood levels may not accurately characterize
heterogeneous communities. Neighborhood factors aggregated based on the census tract
were the most important features in the predictive models reported here. More broadly,
these findings bolster the importance of the community ecosystem as a determinant of
obesity not accounted for by intrapersonal factors [6].

5. Conclusions

In summary, this paper shows an explainable artificial intelligence approach to search-
ing for interactions between ecosystem features that predict obesity and other health
outcomes. In practice, the method will allow a more comprehensive analysis of health and
environment interactions that is better aligned with the theoretical framework of ecolog-
ical theories. This expanded approach to searching for interactions has the potential to
improve knowledge of how features of the environment interact within and across levels of
ecological models for health. A more comprehensive knowledge of these interactions is
likely to inform social programs aimed at preventing obesity in youth. Here, many of the
interactions involve either economic or educational resources highlighting their importance
for directing interventions. Open questions remain about the operating mechanisms at play
at the community level that interact with individual behavior and propagate obesity risk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19159447/s1.

Author Contributions: Conceptualization, B.A., E.A.S. and H.R.; methodology, B.A.; software,
B.A.; writing—original draft preparation, B.A.; writing—review and editing, M.L., E.A.S. and H.R.;
visualization, B.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study is consistent with the Declaration of Helsinki. The
institutional Review Board of the University of Tennessee approved the study (UTK IRB-20-06134-XP)
for an expedited review of studies involving humans.

Informed Consent Statement: The ABCD study staff obtained informed consent from all subjects
involved in the study.

Data Availability Statement: Prior to publication, the manuscript will include a NIMH Data Archive
Digital Object Identifier for the specific data used in preparing this article.

Acknowledgments: The ABCD consortium investigators implemented and designed the study
and/or provided data but did not take part in analysis or writing of this report. The data analyzed for
this paper is available as an NIMH Data Archive Study at (https://nda.nih.gov/) using the following
DOI: https://dx.doi.org/10.15154/1522913 accessed on 28 July 2021. This manuscript reflects the
views of the authors and may not say the opinions or views of the NIH or ABCD consortium
investigators. The ABCD data used in this report came from Annual Release 3.0.1.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijerph19159447/s1
https://www.mdpi.com/article/10.3390/ijerph19159447/s1
https://nda.nih.gov/
https://dx.doi.org/10.15154/1522913


Int. J. Environ. Res. Public Health 2022, 19, 9447 12 of 13

References
1. Fitzpatrick, K.M.; Willis, D. Chronic Disease, the Built Environment, and Unequal Health Risks in the 500 Largest U.S. Cities. Int.

J. Environ. Res. Public Health 2020, 17, 2961. [CrossRef] [PubMed]
2. Cooksey-Stowers, K.; Schwartz, M.B.; Brownelsl, K.D. Food Swamps Predict Obesity Rates Better than Food Deserts in the United

States. Int. J. Environ. Res. Public Health 2017, 14, 1366. [CrossRef]
3. Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.K.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D.

Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409.
[CrossRef]

4. Glass, T.A.; McAtee, M.J. Behavioral science at the crossroads in public health: Extending horizons, envisioning the future. Soc.
Sci. Med. 2006, 62, 1650–1671. [CrossRef] [PubMed]

5. Theall, K.P.; Chaparro, M.P.; Denstel, K.; Bilfield, A.; Drury, S.S. Childhood obesity and the associated roles of neighborhood and
biologic stress. Prev. Med. Rep. 2019, 14, 100849. [CrossRef]

6. Daniels, K.M.; Schinasi, L.H.; Auchincloss, A.H.; Forrest, C.B.; Diez Roux, A.V. The built and social neighborhood environment
and child obesity: A systematic review of longitudinal studies. Prev. Med. 2021, 153, 106790. [CrossRef] [PubMed]

7. McLeroy, K.R.; Bibeau, D.; Steckler, A.; Glanz, K. An Ecological Perspective on Health Promotion Programs. Health Educ. Q. 1988,
15, 351–377. [CrossRef] [PubMed]

8. Jankowska, M.M.; Gaulton, K.; Knight, R.; Patrick, K.; Sears, D.D. Neighborhoods to Nucleotides—Advances and Gaps for an
Obesity Disparities Systems Epidemiology Model. Curr. Epidemiol. Rep. 2019, 6, 476–485. [CrossRef]

9. Minh, A.; Muhajarine, N.; Janus, M.; Brownell, M.; Guhn, M. A review of neighborhood effects and early child development:
How, where, and for whom, do neighborhoods matter? Health Place 2017, 46, 155–174. [CrossRef] [PubMed]

10. Setiono, F.J.; Guerra, L.A.; Leung, C.; Leak, T.M. Sociodemographic characteristics are associated with prevalence of high-risk
waist circumference and high-risk waist-to-height ratio in U.S. adolescents. BMC Pediatr. 2021, 21, 215. [CrossRef]

11. Klebanov, P.K.; Evans, G.W.; Brooks-Gunn, J. Poverty, ethnicity, and risk of obesity among low birth weight infants. J. Appl. Dev.
Psychol. 2014, 35, 245–253. [CrossRef]

12. Hoehner, C.M.; Handy, S.L.; Yan, Y.; Blair, S.N.; Berrigan, D. Association between neighborhood walkability, cardiorespiratory
fitness and body-mass index. Soc. Sci. Med. 2011, 73, 1707–1716. [CrossRef]

13. Yen, H.Y.; Li, C. Determinants of physical activity: A path model based on an ecological model of active living. PLoS ONE 2019,
14, e0220314. [CrossRef] [PubMed]

14. Vogeltanz-Holm, N.; Holm, J. Changes in Body Mass Index During a 3-Year Elementary School–Based Obesity Prevention
Program for American Indian and White Rural Students. Health Educ. Behav. 2018, 45, 277–285. [CrossRef] [PubMed]

15. Bronfenbrenner, U. Ecology of the family as a context for human development: Research perspectives. Dev. Psychol. 1986,
22, 723–742. [CrossRef]

16. Padez, C.M.P.; Nogueira, H.G.D.S.M. Describing studies on childhood obesity determinants by Socio-Ecological Model level: A
scoping review to identify gaps and provide guidance for future research. Int. J. Obes. 2019, 43, 1883–1890. [CrossRef]

17. Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine
learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [CrossRef] [PubMed]

18. Rai, A. Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 2020, 48, 137–141. [CrossRef]
19. Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and

slippery. Queue 2018, 16, 31–57. [CrossRef]
20. Hagras, H. Toward Human-Understandable, Explainable AI. Computer 2018, 51, 28–36. [CrossRef]
21. Gunning, D.; Vorm, E.; Wang, J.Y.; Turek, M. DARPA’s Explainable AI (XAI) Program: A Retrospective. Appl. AI Lett. 2021, 2, e61.

[CrossRef]
22. Carrieri, A.P.; Haiminen, N.; Maudsley-Barton, S.; Gardiner, L.J.; Murphy, B.; Mayes, A.E.; Paterson, S.; Grimshaw, S.; Winn,

M.; Shand, C. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci. Rep. 2021,
11, 1–18. [CrossRef] [PubMed]

23. Basu, S.; Kumbier, K.; Brown, J.B.; Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc.
Natl. Acad. Sci. USA 2018, 115, 1943–1948. [CrossRef]

24. Kumbier, K.; Basu, S.; Brown, J.B.; Celniker, S.; Yu, B. Refining interaction search through signed iterative Random Forests. arXiv
2018, arXiv:181007287. Available online: http://arxiv.org/abs/1810.07287 (accessed on 4 November 2021).

25. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

26. Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass
index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [CrossRef] [PubMed]

27. Sharma, A.K.; Metzger, D.L.; Daymont, C.; Hadjiyannakis, S.; Rodd, C.J. LMS tables for waist-circumference and waist-height
ratio Z-scores in children aged 5–19 y in NHANES III: Association with cardio-metabolic risks. Pediatr. Res. 2015, 78, 723–729.
[CrossRef] [PubMed]

28. Kuczmarski, R.J. CDC Growth Charts: United States (No. 314); US Department of Health and Human Services, Centers for Disease
Control and Prevention, National Center for Health Statistics: Hyatsville, MD, USA, 2000.

http://doi.org/10.3390/ijerph17082961
http://www.ncbi.nlm.nih.gov/pubmed/32344643
http://doi.org/10.3390/ijerph14111366
http://doi.org/10.1016/S0140-6736(14)61744-X
http://doi.org/10.1016/j.socscimed.2005.08.044
http://www.ncbi.nlm.nih.gov/pubmed/16198467
http://doi.org/10.1016/j.pmedr.2019.100849
http://doi.org/10.1016/j.ypmed.2021.106790
http://www.ncbi.nlm.nih.gov/pubmed/34506813
http://doi.org/10.1177/109019818801500401
http://www.ncbi.nlm.nih.gov/pubmed/3068205
http://doi.org/10.1007/s40471-019-00221-5
http://doi.org/10.1016/j.healthplace.2017.04.012
http://www.ncbi.nlm.nih.gov/pubmed/28528276
http://doi.org/10.1186/s12887-021-02685-1
http://doi.org/10.1016/j.appdev.2014.01.003
http://doi.org/10.1016/j.socscimed.2011.09.032
http://doi.org/10.1371/journal.pone.0220314
http://www.ncbi.nlm.nih.gov/pubmed/31348815
http://doi.org/10.1177/1090198117714825
http://www.ncbi.nlm.nih.gov/pubmed/28693339
http://doi.org/10.1037/0012-1649.22.6.723
http://doi.org/10.1038/s41366-019-0411-3
http://doi.org/10.1073/pnas.1900654116
http://www.ncbi.nlm.nih.gov/pubmed/31619572
http://doi.org/10.1007/s11747-019-00710-5
http://doi.org/10.1145/3236386.3241340
http://doi.org/10.1109/MC.2018.3620965
http://doi.org/10.1002/ail2.61
http://doi.org/10.1038/s41598-021-83922-6
http://www.ncbi.nlm.nih.gov/pubmed/33633172
http://doi.org/10.1073/pnas.1711236115
http://arxiv.org/abs/1810.07287
http://doi.org/10.18637/jss.v045.i03
http://doi.org/10.1038/ijo.2013.32
http://www.ncbi.nlm.nih.gov/pubmed/23478429
http://doi.org/10.1038/pr.2015.160
http://www.ncbi.nlm.nih.gov/pubmed/26331767


Int. J. Environ. Res. Public Health 2022, 19, 9447 13 of 13

29. Petersen, A.C.; Crockett, L.; Richards, M.; Boxer, A. A self-report measure of pubertal status: Reliability, validity, and initial norms.
J. Youth Adolesc. 1988, 17, 117–133. [CrossRef] [PubMed]

30. Kind, A.J.H.; Buckingham, W.R. Making Neighborhood-Disadvantage Metrics Accessible—The Neighborhood Atlas. N. Engl. J.
Med. 2018, 378, 2456–2458. [CrossRef] [PubMed]

31. Lantos, P.M.; Hoffman, K.; Permar, S.R.; Jackson, P.; Hughes, B.L.; Kind, A.; Swamy, G. Neighborhood Disadvantage is Associated
with High Cytomegalovirus Seroprevalence in Pregnancy. J. Racial Ethn. Health Disparities 2018, 5, 782–786. [CrossRef]

32. Chen, E.; Paterson, L.Q. Neighborhood, family, and subjective socioeconomic status: How do they relate to adolescent health?
Health Psychol. 2006, 25, 704–714. [CrossRef] [PubMed]

33. Smith, K.R.; Waitzman, N.J. Double jeopardy: Interaction effects of marital and poverty status on the risk of mortality. Demography
1994, 31, 487–507. [CrossRef]

34. Miller, M.; Saldarriaga, E.M.; Jones-Smith, J.C. Household socioeconomic status modifies the association between neighborhood
SES and obesity in a nationally representative sample of first grade children in the United States. Prev. Med. Rep. 2020, 20, 101207.
[CrossRef] [PubMed]

35. Mei, Z.; Scanlon, K.S.; Grummer-Strawn, L.M.; Freedman, D.S.; Yip, R.; Trowbridge, F.L. Increasing Prevalence of Overweight
Among US Low-income Preschool Children: The Centers for Disease Control and Prevention Pediatric Nutrition Surveillance,
1983 to 1995. Pediatrics 1998, 101, e12. [CrossRef]

36. French, S.A.; Story, M.; Jeffery, R.W. Environmental Influences on Eating and Physical Activity. Annu. Rev. Public Health 2001,
22, 309–335. [CrossRef]

37. Donohue, B.; Gavrilova, E.; Strong, M.; Allen, D.N. A sport-specific optimization approach to mental wellness for youth in
low-income neighborhoods. Eur. Phys. Educ. Rev. 2020, 26, 695–712. [CrossRef]

38. Howie, E.K.; Guagliano, J.M.; Milton, K.; Vella, S.A.; Gomersall, S.R.; Kolbe-Alexander, T.L.; Richards, J.; Pate, R.R. Ten Research
Priorities Related to Youth Sport, Physical Activity, and Health. J. Phys. Act. Health 2020, 17, 920–929. [CrossRef]

39. Weintraub, D.L.; Tirumalai, E.C.; Haydel, K.F.; Fujimoto, M.; Fulton, J.E.; Robinson, T.N. Team Sports for Overweight Children:
The Stanford Sports to Prevent Obesity Randomized Trial (SPORT). Arch. Pediatr. Adolesc. Med. 2008, 162, 232–237. [CrossRef]

40. Akpınar, A. Green Exercise: How Are Characteristics of Urban Green Spaces Associated with Adolescents’ Physical Activity and
Health? Int. J. Environ. Res. Public Health 2019, 16, 4281. [CrossRef]

41. Gardsjord, H.S.; Tveit, M.S.; Nordh, H. Promoting Youth’s Physical Activity through Park Design: Linking Theory and Practice in
a Public Health Perspective. Landsc. Res. 2014, 39, 70–81. [CrossRef]

42. Fiese, B.H.; Hammons, A.; Grigsby-Toussaint, D. Family mealtimes: A contextual approach to understanding childhood obesity.
Econ. Hum. Biol. 2012, 10, 365–374. [CrossRef] [PubMed]

43. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.;
Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association.
Circulation 2022, 145, e153–e639. [CrossRef] [PubMed]

44. Kimbro, R.T.; Denney, J.T. Neighborhood context and racial/ethnic differences in young children’s obesity: Structural barriers to
interventions. Soc. Sci. Med. 2013, 95, 97–105. [CrossRef] [PubMed]

45. Drewnowski, A.; Rehm, C.D.; Arterburn, D. The geographic distribution of obesity by census tract among 59,767 insured adults
in King County, WA. Int. J. Obes. 2014, 38, 833–839. [CrossRef] [PubMed]

46. Rehm, C.D.; Moudon, A.V.; Hurvitz, P.M.; Drewnowski, A. Residential property values are associated with obesity among women
in King County, WA, USA. Soc. Sci. Med. 2012, 75, 491–495. [CrossRef] [PubMed]

47. Hajat, A.; Kaufman, J.S.; Rose, K.M.; Siddiqi, A.; Thomas, J.C. Do the wealthy have a health advantage? Cardiovascular disease
risk factors and wealth. Soc. Sci. Med. 2010, 71, 1935–1942. [CrossRef] [PubMed]

http://doi.org/10.1007/BF01537962
http://www.ncbi.nlm.nih.gov/pubmed/24277579
http://doi.org/10.1056/NEJMp1802313
http://www.ncbi.nlm.nih.gov/pubmed/29949490
http://doi.org/10.1007/s40615-017-0423-4
http://doi.org/10.1037/0278-6133.25.6.704
http://www.ncbi.nlm.nih.gov/pubmed/17100499
http://doi.org/10.2307/2061754
http://doi.org/10.1016/j.pmedr.2020.101207
http://www.ncbi.nlm.nih.gov/pubmed/33083208
http://doi.org/10.1542/peds.101.1.e12
http://doi.org/10.1146/annurev.publhealth.22.1.309
http://doi.org/10.1177/1356336X20905324
http://doi.org/10.1123/jpah.2020-0151
http://doi.org/10.1001/archpediatrics.2007.43
http://doi.org/10.3390/ijerph16214281
http://doi.org/10.1080/01426397.2013.793764
http://doi.org/10.1016/j.ehb.2012.04.004
http://www.ncbi.nlm.nih.gov/pubmed/22652025
http://doi.org/10.1161/CIR.0000000000001052
http://www.ncbi.nlm.nih.gov/pubmed/35078371
http://doi.org/10.1016/j.socscimed.2012.09.032
http://www.ncbi.nlm.nih.gov/pubmed/23089614
http://doi.org/10.1038/ijo.2013.179
http://www.ncbi.nlm.nih.gov/pubmed/24037278
http://doi.org/10.1016/j.socscimed.2012.03.041
http://www.ncbi.nlm.nih.gov/pubmed/22591823
http://doi.org/10.1016/j.socscimed.2010.09.027
http://www.ncbi.nlm.nih.gov/pubmed/20970902

	Introduction 
	Materials and Methods 
	Human Participants 
	Predictive Variable Selection 
	Data Partitioning 
	Intrapersonal Features 
	Waist-to-Height Ratio Z-Scores 
	Pubertal Stage 
	Race and Hispanic Ethnicity 
	Dietary Information 
	Physical Activity 

	Interpersonal Features 
	Developmental History Measures 
	Parent Demographics and Familial Environment 

	Community Features 

	Results 
	Summary of Random Forest Prediction Models 
	Interpersonal and Community Level Interactions 
	Intrapersonal and Community Interactions 
	Interactions between Community Factors 

	Discussion 
	Conclusions 
	References

