
A Formal Approach for
Modeling Interactive Visual Interfaces

Emanuele Covino and Giovanni Pani
Dipartimento di Informatica

Bari, Italy
Email: covino@di.uniba.it, pani@di.uniba.it

Abstract—We provide a mathematical model that supports the
formal description of visual interfaces’ behaviour. The formalism
is based on type-inference notation, in which each variable is
defined in the domain of the interface basic widgets, and each
transition from a given state of the interface to the following one
is represented by the application of an inference rule. When a
sequence of actions is made by the user, the behaviour of the
corresponding interface is totally defined by the set of inference
rules. This formalism allows the designer to formally verify the
properties of the interface.

I. INTRODUCTION

The design of user driven interfaces is a part of the more
general Human-Computer Interaction field, and the related
problems are well recognized and described. In particular, the
approaches based on design-tools have several limitation as re-
gards the possibility of ensuring the proper functioning, testing
and verification of interfaces design and behaviour in an event-
driven environment. For most computer controlled systems an
effective design process requires a very early conceptual and
architectural validation prior to the implementation in order
to avoid re-design cycles. All relevant system’s characteristics
have to be checked during the verification phase in order to
have a high design quality. Unfortunately, most designer usu-
ally haven’t the appropriate mathematical knowledge required
for applying formal verification techniques in the software
design process. On the other hand, consistency between the
mathematical model of the system and the original one cannot
be assured. For this reasons, the introduction of a unified
formalism to describe the structure and the behaviour of a
complex system - as a generic interface - has central im-
portance. As a result, the interface should be understandable,
reusable and open to evolution. A formal approach must also
offer the tools for the evaluation of the interface’s properties,
such as absence of deadlock, predictability and availability
of commands, re-initiability. Moreover, the formalism should
offer features such as design verification, graphical represen-
tation, simulation and dynamic analysis. Formal notations that
describe both syntactic and semantics of interfaces have been
often used; for instance, diagrammatic notations, such as state
transition diagrams, Petri nets, or traditional flow diagrams;
textual notation, such as grammars or event algebras; matrix
notation; model checking. The reader can find an extensive list
of these approachs in [3], [4], [5], [6], [7], [8], [10], [11], [12],
[15], [16], [17], and a survey in [9]. All these notations have

been developed with the purpose to describe the behaviour
of the system, keeping a certain level of abstraction from the
related programming. A formal description should allow us to
verify whether or not the real system satisfies the requirements.

In this paper, a new formal specification of visual interfaces
is presented, which is based on type-inference notation; each
element of the interface is defined in the domain of the basic
widgets, and each transition from a given view (i.e. state of the
interface) to the following one is represented by the application
of an inference rule. The designer can specify the behaviour of
the interface by defining the set of inference rules. We believe
that this approach, when used to describe a specific interactive
system, provides a simpler understanding of the dynamics of
the interface, and that it is appropriate for the description and
analysis of more generic principles of interactive systems; for
instance, observability or reachability of a given state of an
interface can be easily detected by analyzing the properties of
the related inference tree. Moreover, it provides the designer
with a easy-to-understand description of the interaction, with
a mathematically precise description of transformation rules,
and with an efficient back-annotation of mathematical analysis
results.

As pointed out by an anonymous referee, this paper rep-
resents a preliminary approach to the definition of a new
visual interface’s specification language; more usability tests
and comparison with other specification languages are needed,
and they will appear in the prosecution of this paper.

The paper is organized as follows: in Section II and III
we give a quick overview of two query preview systems, the
EOSDIS (see [2], [13] and [14]) and the DaeQP (see [1]),
respectively; these systems are used for the visual analysis of
databases and we use them as subjects of our formalization. In
Section IV we provide the static description and the dynamic
behaviour of the interface, according to our notation. In
Section V we discuss some properties that could be verified
with our formalism and further work.



II. INTERACTING WITH THE EOSDIS QUERY PREVIEW
SYSTEM

In [2], [13] and [14], Doan, Plaisant et al. proposed a two-
phase approach to the dynamic query formulation by volume
preview; the two phases were the query preview and the query
refinement. They did it in order to overcome the obstacles
facing users in a querying process: network performance, data
volume, and data complexity. In the query preview phase, the
user formulate an initial query by selecting desired attribute
values, which are shown graphically on previews bars; after
this phase, the query refinement phase takes place. In this
section, we provide a short overview of the result presented
in [2], focusing our attention on the first phase, in order to
understand how the system interacts with the user, and how
to formally specify (in the following sections) its behaviour.
Figure and examples comes from [2].

The Earth Observing System Data and Information System
(EOSDIS) is a data and information system, developed by
NASA under the Mission to Planet Earth (MTPE) Program.
It handles data from NASA’s Earth science research satellites
and field measurement programs, providing data archive, dis-
tribution, and information management services.

In [2], a dynamic query interface to the EOSDIS was intro-
duced, consisting of a query preview panel (see figure 1) and of
a query refinement panel. There are three different selectable
attributes in the query preview panel: the spatial coverage, the
parameters, and the temporal coverage. The spatial coverage is
defined by continents, oceans, and a map of rectangular areas.
The parameters are classified into nine groups depending on
the types of the data sets they represent (e.g. Atmospheric
Composition, Atmospheric Dynamics, Biosphere, etc). The
temporal coverage is measured in terms of years. When the
query preview panel starts off, it displays the number of data
sets for each parameter, region, and year, in form of the
attribute preview bars or pie charts (see figure 1). The query
preview bar, on the bottom of the panel, displays graphically
the total number of the selected data sets in the left section
of the bar, and the excessive region (above the recommended
level) in the right section. An initial query in the panel is
made by selecting the parameter group of interest; this results
in (1) the display of all the available parameters in that group
and its corresponding preview bars, and (2) the updating of
the attribute preview bars for each continent and year in order
to display the corresponding number of data sets that contain
one or more parameters of the selected parameter group. For
example, if the user is interested in the temperature of U.S.
coastal waters, he selects the ”By Continents” option from the
Geographical Selection’s menu in figure 1; then, he selects the
”Atmospheric Dynamics” parameter in order to get the desired
data (he knows that the parameter ”Sea Surface Temp”, which
is used to study the temperature of coastal waters, is in both the
”Atmospheric Dynamics” and ”Ocean Dynamic” parameter
groups; and the pie chart of the parameter groups shows that
there are more data sets in the ”Atmospheric Dynamics” than
in the ”Ocean Dynamic”). The result of the parameter group

selection is illustrated in the following figure 2.
The user now selects the parameter ”Sea Surface Temp”;

this results in the change of the attribute preview bars repre-
senting each continent and year (see figure 3). The updated
preview bars represent the number of data sets in which
appears the parameter ”Sea Surface Temp”. The user has to
choose a specific year; the attribute preview bars associated to
each year help the user to know the number of the data set’s
hits he might get if he selects that year. For example, preview
bars related to the years 1984 and 1985 indicate that there are
no data sets in those years (see figure 3). They also reveals that
the majority of data sets on the ”Sea Surface Temp” occurs in
the year 1992. Thus, the user selects 1992. The total number of
the selected data sets is reduced to 276 (see figure 4), and the
user can continue to reduce the volume of the relevant data sets
to 91 by selecting ”North America” (see figure 5). Finally, this
initial query can be submitted to the data acquisition’s archive
centers for the extraction of metadata of the selected data sets.

In [2] it is also introduced a query refinement panel that
supports dynamic queries over a local database that stores
the metadata of the data sets extracted from the query pre-
view panel. The metadata contains the information of all
the attributes of the data sets such as the parameter, sensor,
platform, project, data archive centers, processing data level,
time, location which are also visually represented in the
interface. The main function of the query refinement panel is
to support further refinement for the data sets in the first step.
Note that, to our purpose, both the query preview panel and
the query refinement panel support multiple selection of the
attributes and going back and forth between the two phases,
to refine the best data set. We will define our formalism in
order to represent this situation.



Fig. 1. Initial configuration of the query preview panel

Fig. 2. The query preview panel after selecting Atmospheric Dynamics



Fig. 3. The query preview panel after selecting Sea Surface Temp

Fig. 4. The query preview panel after selecting 1992



Fig. 5. The query preview panel after selecting North America

III. INTERACTING WITH THE DAEQP QUERY PREVIEW
SYSTEM

DaeQP is a another visual query preview tool developed
in [1]; it supports the analysis of multi-dimensional data,
providing the user with multidimensional overviews and al-
lowing him to perform an appropriate data analysis by direct
manipulation of the elements on the screen. Users may filter
out uninteresting items and focus on those of interest; once a
manageable number of items is obtained, it is easy to browse
the details about groups or individual items. The scenario
provided is that of an agriculture’s trade fair; an organizer
wants to retrieve some information about some exhibitors that
attended the last edition; as usual, these data are stored in
a database. The organizer is looking to some companies with
certain characteristics, in order to send customized advertising,
together with the invitation to attend the next event. In order to
do this, DaeQP starts off from the window in figure 6, asking
the user to select an attribute (from the drop-down menu)
among the set of the attributes. In the example below, the
user chooses ”Exhibitors”. When the user presses the ”Next”
button the interface shows the distribution of the Exhibitors
along the selected other attributes (see Figure 7).

Note that in the EOSDIS system the main attributes are
selected among those that appear in the sets ”Geographical
selection”, ”Parameter groups”, and ”Year selection”. From
this moment the DaeQP and EOSDIS have exactly the same
behaviour as regards the interaction with the user. Each bar, pie

chart and geographical grid is labeled with numbers that show
how many items with that attribute value are in the selected
data set. In DaeQP, starting from the configuration of Figure 7,
the user selects companies with specific attribute values. For
example, if he is interested in producers with a few employees
that operate in north Italy, he clicks on the value or on the bar
of each of these attributes. Figure 8 shows the final result
after the user has clicked on the value ”1-10” of Personnel,
on the value ”Produttore” of Company Type and on the value
”Italia Settentrionale” (Northern Italy) of Current Markets (in
analogy with figures 2, 3, 4 and 5).

A click on the Next button will show the list of the
exhibitors in this data set; the user can use this list for his
purposes, or he can go back to the overview in figure 7 for
a different selection of attributes. He can decide to display a
different attribute at any moment of the interaction, by clicking
on the name of the attribute on top of the window in figure
7 (or figure 8). Similarly, he can remove a displayed attribute
by clicking on the related attribute button.



Fig. 6. Initial selection of attributes

Fig. 7. Overview of data w.r.t attributes Personnel, Company type, Current Market, and Geographic Area

Fig. 8. Query preview after selecting ”1-10”, ”Produttore” and ”Italia settentrionale



IV. A FORMAL MODEL OF THE USER INTERFACE

The behavior of interfaces like DaeQP or EOSDIS may be
specified by a formal description; as explained in the Intro-
duction, this should help the interface’s designer, providing
a precise and concise description of the user interface and
facilitating a coherent extension of the current system with new
functionalities. In this section we introduce a new formalism
in order to describe the structure and the behaviour of the
previously introduced visual interface. The meaning of the
interface (that is, its operational semantics) represents the
dialog between the interface and the underlying programs, and
will be described by notation-specific semantics, that is pieces
of programming languages attached to the interface descrip-
tion, or by formal specification notations. Our formalism is
based on a type-inference notation, in which each variable
is defined in the domain of the interface’s basic objects (in
this case, buttons, bars, and pie charts), and each transition
rule represents the transition from a given configuration of the
interface to the following one. As we will show in the rest of
this section, this approach allow us to easily define dynamic
interfaces, whose structure can change depending on the user’s
actions and on the database’s values.

A. Types

We recall some definitions on types and type inferences;
we will use them as the basis for our interface’s specification
language. For our purposes, we consider a type as a set of
values, in which new values can be built up from the old
ones.

If f is a function from A to B we say that f has type
A 7→ B. In general, we can form type expressions that denotes
sets of values, by means of the following rules:

1) The names of sets are type expressions (for example,
N = {0, 1, 2, . . .} is the set of natural numbers, or ID
is the set of identifiers of a programming language);

2) if A1, . . . , An are types (sets), then A1 × . . .×An is a
type expression (the Cartesian product of A1, . . . , An);

3) if A and B are types (sets), then A 7→ B is the set of
functions from A to B.

We write x : t to indicate that the value of the variable x
belongs to type t. An expression is well-typed if all operators
and functions in the expression are applied to arguments of a
suitable type. If e is an expression, e : t denotes that e is well
typed and its value has type t (for example, 3 + 5 : N ).

A type environment τ = [x 7→ t, ...] maps x into its type.
It represents the assumptions that are made about x. Given an
expression e which contains some occurrences of x, the type
of e can be determined only when the type environment τ is
defined.

A type inference is based on a set of type inference rules,
one for each expression in the language we are describing.
For example, consider an expression e1+e2, which is the sum
of two sub-expressions, each of which is well-typed and has
type B in the type environment τ . Then the entire expression
is well-typed and has type B, and this is expressed by the

following two-premises inference rule:

τ ` e1 : B τ ` e2 : B
τ ` e1 + e2 : B

The part above the line is called the premise. Now consider
an expression (e1, e2), which build a pair. If e1 has type t1
and e2 has type t2, and both are well-typed, then the pair is
well-typed and has type t1 × t2:

τ ` e1 : t1 τ ` e2 : t2
τ ` (e1, e2) : t1 × t2

Using type inference rules, the type of a complex expres-
sion can be inferred from the assumptions held in the type
environment τ . For example, with τ = [m 7→ N , n 7→ N ] we
have

τ ` m : N τ ` n : N

τ ` m+ n : N

τ ` m : N τ ` n : N

τ ` m− n : N

τ ` (m+ n,m− n) : N ×N

B. Static description of the interface

In the rest of the paper, we have that
• P = P1, P2, . . . is the set of principal categories;
S = S1, S2, . . . is the set of secondary categories;

• each category (principal or secondary) is a set of at-
tributes;

• States = {s, d} is the set of button states (selected or
deselected).

• given a set A, the number of elements of A is denoted
with #(A).

Definition 4.1: A sequence of principal attributes is the l-
ple

ssp := (ssp1, . . . , sspl)
where:

1) sspj := ((pj1, fj1), . . . , (pjn, fjn)) : (Pj × States)n,
with j = 1 . . . l and n = #(Pj);

2) pji 6= pjk, if i 6= k, with j = 1 . . . l and i, k =
1 . . .#(Pj);

3) for each j, there exists at most one i such that fji = s.
Given a sequence of principal attributes ssp =

(ssp1, . . . sspl), with sspj = ((pj1, fj1), . . . , (pjn, fjn)), the
reader understands from the previous definition that each
attribute pji is selected from the set of principal categories Pj ,
and that it is associated with a state fji : {s, d}; this means
that an attribute can be either selected or deselected. Moreover,
each attribute appears only once into the list of attributes, and
only one attribute into this list can be selected. For instance,
figures 1 and 2 show the selection of a sequence of principal
attributes.

Definition 4.2: An initial sequence is a sequence of prin-
cipal attributes with fji = d, for each i and j.

Indeed, an initial sequence is a sequence of principal
attributes that are all deselected; this corresponds to the initial
(empty) view of the panel of a query preview system.



Definition 4.3: Given a sequence of principal attributes
ssp := (ssp1, . . . , sspl), the semantic of ssp is the v + 1-
ple

[ssp] := (π1, . . . , πv)
where:

1) πq = ∅; or
2) πq = ((sq1, nq1, state), . . . , (sqr, nqr, state)) : (Sq ×

N × States)r, with q = 1 . . . v; and
3) the numbers nq1, . . . , nqr are the result of statistical

analysys made on the database, and they depend on the
sequence of principal attributes ssp.

The semantic of a sequence of attributes represents what
appears in the lower part of the screen of a query preview
system’s interface, when that sequence has been selected; in
figure 2, 7 and 8, the semantic is a set of secondary attributes,
together with the related statistical information. Note that some
among the sets can be empty and will be specified later, when
more principal attributes will be selected (as in figure 1), and
that the secondary attributes are themselves selectable in order
to filter the information.

Each set πq represents the semantic associated to the selec-
tion of principal attributes in the sequence ssp. Its elements
are triples (secondary attribute, counter, state), where all the
secondary attribute are initially deselected (in what follows
we will introduce a rule to describe what happens when a
secondary attribute is selected), and the number counter is
the result of statistical analysis on the whole database. The
set πq is empty when all the flags of the corresponding
principal attribute are deselected, meaning that the user does
not want to analyze the section of the database associated
to that attribute. For example, in figure 1 the elements of
the attribute ”Parameter Groups” are all deselected, and the
related piece of semantic (the lower left part of the screen) is
still empty; when the user selects ”Atmospherics Dynamics”
among them, the set of secondary attributes appears on the
screen, with the related bars and numbers, providing a new
view corresponding to that choice. The same happens in figure
7. We will describe how to formalize this behaviour of the
interface in the following section.

C. The dynamic behaviour of the interface

In systems similar to DaeQP and EOSDIDS, the transition
from a view to another view is steered by the user’s activity
and by the statistical functions that the system computes. We
describe all these events by means of a type-inference system,
in which the premises are based on the current configuration
of the system (i.e. on the sequence of principal and secondary
attributes) and on the action performed (i.e. on the selected
attribute). The consequence represents the new configuration
as a result of the action. To each sequence of attributes we
associate one or more semantics; the way the semantics change
is described by means of the following rules. We omit the type
environment, when straightforward.

Definition 4.4: Given a sequence of principal attributes
ssp := (ssp1, . . . , sspl), with sspj := ((pj1, fj1), . . .
, (pjn, fjn)) : (Pj×States)n, with j = 1 . . . l and n = #(Pj),

and given the related semantic [ssp] := (π1, . . . , πv), with
πq = ((sq1, nq1, state), . . . , (sqr, nqr, state)) : (Sq × N ×
States)r, with q = 1 . . . v, the choice-of-principal-attribute
rule is

(ssp, [ssp]) (pji, fji) : Pj × States
(ssp′, [ssp′])

where:
1) ssp′ is obtained by (a) setting to s the flag fji in ssp,

and (b) setting to d the flag that was previously set to s
into ssp, if any; and

2) [ssp′] depends on the new sequence of principal at-
tributes ssp′ and on the old semantic [ssp].

This rule is introduced in order to describe the step-by-
step selection of the sequence of principal attributes: given a
category, the user chooses one among the attributes belonging
to that category. For example, the user clicks on the ”By
Continents” button into the ”Geographical selection” scroll-
down menu in figure 1, obtaining a view (a semantic) cor-
responding to this choice; then, he clicks for the first time
on the ”Atmosphere Dynamics” button into the ”Parameters
groups” menu, obtaining a new view, in which a new set
of secondary parameters appears on the left bottom side of
the screen. He can now click again on a different attribute
of one of the categories, changing the semantic again and
again. In this example, the previous rule has been applied
twice. In figure 8, the same rule has been applied four
times: the principal attributes ”Geographic Area”, ”Company
Type”, ”Personnel” and ”Current Market” have been selected,
producing the semantic that appears on the lower part of the
screen (the four columns with attributes and data), and leaving
the other five attributes unselected.

Definition 4.5: Given a sequence of principal attributes
ssp := (ssp1, . . . , sspl), with sspj := ((pj1, fj1), . . .
, (pjn, fjn)) : (Pj×States)n, with j = 1 . . . l and n = #(Pj),
and given the related semantic [ssp] := (π1, . . . , πv), with
πq = ((sq1, nq1, state), . . . , (sqr, nqr, state)) : (Sq × N ×
States)r, with q = 1 . . . v, the choice-of-secondary-attribute
rule is

(ssp, [ssp]) (sji, fji) : (Sj × States)
(ssp′, [ssp]′)

where:
1) the flag fji in [ssp] is set to s and the flag that was

previously set to s into [ssp] is set to d, if any, obtaining
and intermediate semantic [ssp]∗;

2) [ssp]′ depends on the new intermediate semantic [ssp]∗

and on the old semantic [ssp].
This rule is introduced in order to describe the step-by-

step selection of the sequence of secondary attributes: given
a selection of principal attributes and the related semantic,
the user can choose some among the secondary attributes.
For example, the user clicks on the ”Sea surface temperature”
button into the ”Atmospheric Dynamics” menu, as in figure 1;
then, he clicks on the ”1992” button into the ”Year Selection”



menu, as in figure 4; then, he clicks on ”North America”, as
in figure 5. Each time the user selects an attribute among the
secondary categories, he gets a new semantic, that is a new set
of statistical information (see definition 3). In figure 8, this rule
has been applied three times, selecting the secondary attributes
”1-10”, ”Produttore”, and ”Italia settentrionale”. Note also
that the sequence of principal attributes remains unchanged,
while the new semantic depends on a intermediate one which
is obtained by changing appropriately the flags into the old
semantic.

Definition 4.6: Given a query preview system, a session of
the system is a type-inference binary tree, where:

1) each leaf is labeled with either (ssp, [ssp]), or (p, fp) :
Pi × States, or (s, fs) : Sj × States; and

2) each node is obtained by applying one between
the choice-of-principal-attribute rule or choice-of-
secondary-attribute rule.

In summary, the transition from a view to another can be
obtained in two different ways: starting from an initial se-
quence of attributes, the user can repeatedly select or deselect
items among the principal attributes, and he can do the same
among the secondary attributes, if any; in our notation, this is
represented by a type-inference tree. Note that the elements of
a generic semantic assume the same role of the elements of
a generic sequence of principal attributes; thus, the user can
select or deselect them, according to his needs.

V. CONCLUSIONS AND FURTHER WORK

The possibility of reasoning and proving properties of a
session of an interactive system is one of the advantages of
using formal notations. For example, we could reason about
the interaction between the interface and the human cognitive
system, or about the properties of the interface, in order to
modify it, or to have a proper feedback. This is easily done
by an inspection of the inference tree (a session), seeking for
path or states that can be reached. Among the properties that
seems easy to verify there are; reachability (a user interaction
can generate an effect on a part of the user interface); visibility
(each user action is associated with a modification of the
user interface); complementarity (the possibility to reach the
same configuration of the interface following two or more
different modalities); assignment (the possibility to reach a
configuration in a unique way); minimal path (if a given
configuration can be reached in different ways, we can find
the quickest way to do it); absence of deadlock (the same
configuration appears more than once in a session). Another
advantage of a formal notation is to have a sound set of tools
for the evolution of the software. A sensible prosecution of this
work could be the further development of the formalism, in
order to capture more generic interface’s models; a detailed
comparison with other well-known formalisms; and some
on-field usability tests. Moreover, a clear relation between
user-interface properties and tree-inference properties cold be
provided.

REFERENCES

[1] P. Buono, G. Pani,E. Covino and F. Costabile, A visual tool for multidi-
mensional data analysis, International workshop of Visual Language and
Computing, VLC ’05, Banff, 2005.

[2] K. Doan, C. Plaisant and B. Shneiderman, Query Previews in Networked
Information Systems, Proceedings of the 3rd International Forum on
Research and Technology Advances in Digital Libraries, ADL ’96, IEEE,
1996.

[3] M. Erwig, Abstract syntax and semantics of visual languages, Journal of
Visual Languages and Computing, vol. 9, pp. 461-483, 1998.

[4] F. Ferrucci, G. Tortora, M. Tucci and G. Vitiello, Relation grammars: a
formalism for syntactic and semantic analysis of visual languages, Visual
language theory, Springer-Verlag New York, Inc, pp. 219-243, 1998.

[5] E. J. Golin and S. P. Reiss, The specification of visual language syntax,
Journal of Visual Languages and Computing, vol. 9(2), pp. 141-157, 1990.

[6] J. M. Gooday and A. G. Cohn, Visual language syntax and semantics:
A spatial logic approach, Proc. AVI ’96 Workshop on Theory of Visual
Languages, 1996.

[7] R. Helm and K. Marriott, A declarative specification and semantics for
visual languages, Journal of Visual Languages and Computing, vol. 2,
pp. 311-332,1996.

[8] P. Curzon, R. Ruksenas and A. Blandford, An approach to formal ver-
ification of human-computer interaction, Formal Aspects of Computing
(2007) 19: 513-550.

[9] K. Marriott, B. Meyer and K. B. Wittenburg, A survey of visual language
specification and recognition, Visual language theory, Springer-Verlag
New York, pp. 5-85, 1998.

[10] M. Mezzanotte and F. Patern, Verification of Properties of Human-
Computer Dialogues with an Infinite Number of States, Proc. of the BCS-
FACS Workshop on Formal Aspects of the Human Computer Interface,
Sheffield Hallam University, 1996.

[11] M. A. Najork and S. M. Kaplan,Specifying visual languages with
conditional set rewrite systems, Proceedings of the IEEE Workshop on
Visual Languages, IEEE, New York, pp. 12-18, 1993.

[12] P. Palanque, R. Bastide, L. Dourte and C. Sibertin-Blanc, Design
of User-Driven Interfaces Using Petri Nets and Objects, CAiSE ’93:
Proceedings of Advanced Information Systems Engineering, Springer-
Verlag, vol. 17(3), pp. 569-585, 1993.

[13] C. Plaisant, B. Shneiderman, K. Doan and T. Bruns, Interface and data
architecture for query preview in networked information systems, ACM
Trans. Inf. Syst., ACM, vol. 17(3), pp. 320-341, 1999.

[14] C. Plaisant, M. Venkatraman, K. Ngamkajornwiwat, R. Barth,
B. Harberts and W. Feng, Refining Query Previews Tech-
niques for Data with Multivalued Attributes: The Case of
NASA EOSDIS, Advances in Digital Libraries Conference,
http://doi.ieeecomputersociety.org/10.1109/ADL.1999.777690, IEEE,
pp.320-341, 1999.

[15] H. Thimbleby, User interface design with matrix algebra, Journal of
ACM Transactions on Computer-Human Interaction, vol. 11.2, June 2004.

[16] D. Varr, G. Varr and A. Pataricza, Designing the automatic transforma-
tion of visual languages, Science of Computer Programming, vol. 44(2),
pp. 205-227, 2002.

[17] D. Wang and J. R. Lee, Visual Reasoning: its Formal Semantics and
Applications, Journal of Visual Languages and Computing, vol. 4(4), pp.
327-356, 1993.


