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Abstract
We analyze two-particle binding factors of H2, LiH, and HeH+ molecules/ions with the help
of our original exact diagonalization ab initio approach. The interelectronic correlations are
taken into account rigorously within the second quantization scheme for restricted basis of
renormalized single-particle wave functions, i.e., with their size readjusted in the correlated
state. This allows us to determine the many-particle covalency and ionicity factors in a natural
and intuitive manner in terms of the microscopic single-particle and interaction parameters,
also determined within our method. We discuss the limitations of those basic characteristics
and introduce the concept of atomicity, corresponding to the Mott and Hubbard criterion
concerning localization threshold in many-particle systems. This addition introduces an
atomic ingredient into the electron states and thus removes a spurious behavior of covalency
with the increasing interatomic distance, as well as provides a more complete physical
interpretation of bonding.

Keywords: atomicity in molecules, Mottness, resonant covalency, electron correlations,
EDABI method

(Some figures may appear in colour only in the online journal)

1. Introduction

Determination of the microscopic nature of chemical bonding
has been regarded as a problem of fundamental significance
since the advent of quantum chemistry and solid state physics
[1–3]. The qualitative classification of the valence-electrons
state character as covalent, ionic or atomic helps to rationalize
their overall features and select a detailed approach to ana-
lyze their detailed electronic properties. In this respect, the
role of interactions and associated with them interelectronic
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correlations is crucial in discussing the evolution of bonding
from either atomic or ionic character to predominantly cova-
lent or band states of valence electrons. The many-electron
approaches, such as configuration interaction (CI) [4] and
others [5, 6], are particularly well suited for this task.

In this work we follow a different route and employ exact
diagonalization ab initio (EDABI) method, combining the
second-quantization formulation of quantum many-particle
Hamiltonian with a concomitant readjustment of the single-
particle wave functions in the correlated state of the system.
This allows us to reinterpret some of the chemical bonding
characteristics using concepts originating from condensed-
matter physics, such as Mott–Hubbard localization. EDABI
has been formulated in our group some time ago [7–9] and
analyzed extensively in the context of correlated states in small
clusters and one-dimensional solid-state systems. Apart from

0953-4075/22/185101+13$33.00 Printed in the UK 1 © 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6455/ac8298
https://orcid.org/0000-0003-3867-8493
mailto:jozef.spalek@uj.edu.pl
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ac8298&domain=pdf&date_stamp=2022-8-19
https://creativecommons.org/licenses/by/4.0/


J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 185101 M Hendzel et al

providing rigorous description of selected properties, EDABI
has supplied us with the evolution from the atomic- to a
coherent-metallic state with decreasing interatomic distance.
Also, modeling the metallization of molecular hydrogen solid
has revealed a series of discontinuous first-order Mott-type
transitions as a function of applied pressure [10–12]. The
explicit question we would like to address here is to what
extent the concepts essential extended to lattice quantum sys-
tems, such a Mottness [13, 14], may also be qualitatively
applicable to finite molecular systems. Answering this ques-
tion forced us to reanalyze the meaning of the two-particle
covalency and related to it ionicity factors by starting from
an analytic form of many-particle wave function. We sug-
gest that such analysis may be useful in practical treatment
of bonding, here carried out in two-atom–molecule situation,
to make the discussion analytic and thus provide a degree of
clarity.

The structure of the paper is as follows. In section 2 we
summarize briefly the EDABI approach. In section 3 we rean-
alyze the bonding in H2, HeH+, and LiH systems. We also
discuss there validity of the concept of atomicity—Mottness,
with the help of which we single out the resonant cova-
lency and atomicity factors. This discussion offers a reso-
lution of the longstanding paradox of the increasing cova-
lency with the increasing interatomic distance. Finally, in
sections 4 and 5 we overview our approach. Formal details and
tabulated values of the calculated microscopic parameters as
a function of interatomic distance are provided in appendices
A and B.

2. EDABI method and many-particle bonding

The EDABI method has been proposed by us and formulated
in detail earlier [7, 9]. Below, we provide a brief summary of its
main features, as this should by helpful in grasping the essence
of our approach which will be needed in a subsequent inter-
pretation of the results regarding many-particle covalency and
ionicity, as well as the concept introduced by us of atomicity.

The starting point is the Hamiltonian containing all pairwise
interactions in the second-quantized form is

Ĥ = εa

∑
i

n̂iσ +
∑
i jσ

′
ti j â†

iσ â jσ + U
∑

i

n̂i↑ n̂i↓

+
1
2

∑
i j

′
Ki jn̂iσ n̂ jσ′ −

1
2

∑
i j

′
JH

i j

(
Ŝi · Ŝ j −

1
4

n̂in̂ j

)

+
1
2

∑
i j

′
J′

i j(â
†
i↑â

†
i↓â j↓â j↑ + H.c.)

+
1
2

∑
i j

′
Vi j(n̂iσ + n̂ jσ)(â†

iσ̄â jσ̄ + H.c.) +Hion–ion, (1)

where H.c. denotes the Hermitian conjugation, âiσ (â†
iσ) are

fermionic annihilation (creation) operators for state i and spin
σ, n̂iσ ≡ â†

iσ âiσ, and n̂i ≡ n̂i↑ + n̂i↓ ≡ n̂iσ + n̂iσ̄ . The spin oper-
ators are defined as Ŝi ≡ 1

2

∑
αβ â†

iασ
αβ
i âiβ with σi representing

Pauli matrices. The Hamiltonian contains the atomic and hop-
ping parts (∝εa and ti j, respectively), the so-called Hubbard
term ∝U; representing the intra-atomic interaction between
the particles on the same atomic site i with opposite spins,
the direct intersite Coulomb interaction ∝Ki j, Heisenberg
exchange ∝ JH

i j , and the two-particle and the correlated hop-
ping terms (∝ J′i j and Vi j, respectively). The last term describes
the ion–ion Coulomb interaction which is adopted here in its
classical form.

We now proceed to definition of two-particle bonding in
general situation and within the second-quantization repre-
sentation. The N-particle state, |ΨN〉, may be expressed in
terms of the N-particle wave function Ψ(r1, . . . , rN) and the
corresponding field operators Ψ̂(r1), . . . , Ψ̂(rN) as

|ΨN〉 =
1√
N!

∫
d3r1 . . . d3rN ΨN(r1, . . . , rN)

× Ψ̂†
1(r1) . . . Ψ̂†

N(rN)|0〉, (2)

with |0〉 being the universal vacuum state in the Fock space
(for pedagogical exposition see, e.g., [15]). Here we employ
a short-hand notation ri ≡ (ri, σi), where σi = ±1 is the spin
quantum number. We can revert this relation to determine the
wave function ΨN(r1, . . . , rN), namely

Ψα(r1, . . . , rN) =
1√
N!

〈0|Ψ̂1(r1) . . . Ψ̂N(rN)|λα〉, (3)

where |λα〉 is the eigenstate for which the wavefunction
Ψα i explicitly determined. For spin-conserving interaction,
α = (σ1, σ2, . . . , σN) is fixed N-spin-configuration. In effect,
we determine |λα〉 states around ground eigenstate |λα〉 ≡
|λmin〉. Hamiltonian (1) is used to obtain the eigenstates
which for two-electron H2 system are discussed analytically
in appendix A.

Since we focus explicitly on the two-site systems, the
set of microscopic parameters (εa, t, U, K, J, J′, and V ) is
defined through integrals of orthogonalized single particle
basis functions, {wi(r)}, used next to define the field operators
in turn needed to construct the Hamiltonian (1). They are
defined briefly first [7, 9], whereas the values of the micro-
scopic parameters are defined in appendix B, starting from
the nonorthogonal basis set of adjustable Slater functions.
Namely, the orthogonalized atomic (Wannier) orbitals for H2

molecule the 1s are defined via Slater orbitals {ψi(r)} in the
usual manner

wiσ(r) = β[ψiσ(r) − γψ jσ(r)], (4)

where σ ± 1 is spin quantum number i �= i = 1, 2, and the
coefficients β and γ take the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β =

1√
2

√
1 +

√
1 − S2

1 − S2
,

γ =
S

1 +
√

1 − S2
,

(5)
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so that β2 + γ2 = 1. The Slater orbitals ψi(r) ≡√
α3

π
exp(−α(r−Ri)), with α being the inverse size of the

orbital, are to be readjusted during the ground-state-energy
minimization in the correlated state. Optimization over
parameter α is motivated by the circumstance that the selected
single-particle basis {ψi(r)} is never complete in the quantum
mechanical sense and thus such a procedure allows for a
better estimate of the ground-state energy. This allows for
the orbital-size adjustment in the interacting environment
of remaining particles. In brief, the standard procedure of
determining the quantum-mechanical state of the system is
inverted in the sense that we first diagonalize many-particle
Hamiltonian for fixed values of the microscopic parameters
and, subsequently, readjust the wave function (inverse
size, α−1) in a recurrent fashion. The whole procedure is
schematically illustrated by a flowchart composing figure 1.

The selected a single-particle basis for H2 is composed
of four orthogonalized wave functions with indices i = 1, 2
enumerating hydrogen atoms and σ = ±1 for each i. Thus, the
truncated field operator takes the form

Ψ̂(r) =
2∑

i=1

wi(r)χσ(r)âiσ. (6)

In that situation, the two-particle wave function is defined in
accordance with equation (3), namely

Ψα(r1, r2) =
1√
2
〈0|Ψ̂1(r1)Ψ̂2(r2)|λα〉, (7)

where |λα〉 is the eigenstate (expressed in second quantization
representation). Note that this method of approach allows to
determine both the ground-state and the lowest excited states
for a single optimal value of α.

Note that here the subscripts 1 and 2 of Ψ̂(r) contain both
site and spin indices for brevity of notation. Parenthetically,
one may generalize the above definition to the case of multiple
(n) bonds (with n � 1) as

Ψa(r1, . . . , r2n) =
1√
2n!

〈0|
n∏

i=1

Ψ̂i(ri)
2n∏

j=n+1

Ψ̂ j(r j)|λ(n)
α 〉. (8)

In this manner the double (n = 2) and triple (n = 3) bonds can
be defined, albeit numerically only and in more complex situ-
ations, e.g., in the case of carbon–carbon bonds. This scenario
is not addressed here. Instead, we focus on the covalency and
ionicity, as well as introduce atomicity + covalency factor,
all for selected two-electron systems. However, we discuss
first the inherent paradox of the increasing covalency with the
increasing interatomic distance.

3. Covalency, ionicity, and atomicity on examples

3.1. Covalent bonding and ionicity in H2 case

With the help of analysis presented in appendix A for the
H2 case, one can write down explicitly the two-electron wave
function in the ground state for H2 molecule (n = 1 case). The
lowest-energy spin-singlet state is of the form

Ψ0(r1, r2) =
2(t + V)√

2D(D − U + K)
Ψc(r1, r2)

− 1
2

√
D − U + K

2D
Ψi(r1, r2), (9)

where the covalent (Ψc) and ionic (Ψi) components, read

Ψc(r1, r2) = [w1(r1)w2(r2) + w1(r2)w2(r1)]

×
[
χ↑(r1)χ↓(r2) − χ↓(r1)χ↑(r2)

]
, (10)

Ψi(r1, r2) = [w1(r1)w1(r2) + w2(r1)w2(r2)]

×
[
χ↑(r1)χ↓(r2) − χ↓(r1)χ↑(r2)

]
, (11)

with
D ≡

√
(U − K)2 + 16(t + V)2. (12)

The ratio of the coefficients in (9) provides us with the rel-
ative ratio of covalency to ionicity in the ground-state spin-
singlet configuration. The spin-singlet part is the same in both
equations (10) and (11). Explicitly, the covalency and ionicity
coefficients (factors) are defined as

γc =
16(t + V)2

16(t + V)2 + (D − U + K)2
, (13)

and

γi =
(D − U + K)2

16(t + V)2 + (D − U + K)2
, (14)

respectively, so that the condition γ i + γc = 1 holds. The fac-
tor γi asymptotically approaches zero in the limit of large
interatomic distance (R →∞), as expected. However, γc → 1
for R →∞ which represents an unphysical behavior [16–18].
This last feature will be discussed in detail below.

The obtained formulas are interpreted as follows. First, the
coefficients γc and γi in the wave function (9) depend on all
the interactions which are present in (1), i.e., they contain
the effects electronic correlations. Second, the wave functions
(10) and (11) take formally the Heitler–London form, but they
are self-consistently optimized in the correlated state (their
size α−1 is adjustable). Thus, the present formulation in its
simplest from contains a semiquantitatively correct behavior
in the large-R limit, as is demonstrated explicitly in figure 2.

In figure 2, we display the H2 binding energy and have
compared our EDABI calculated value with the results of CI
and restricted Hartree–Fock (RHF) analysis. Note difference
between the results for small R < Rbond (at minimum), as
EDABI method provides slightly lower energies compared to
those of full CI. This behavior should not influence the subse-
quent discussion in the large-R limit, which concerns us mainly
here. Nonetheless, it is worth noting both CI and EDABI are
variational approaches and perhaps our optimization of the
wave-function size at small R is as important as the inclusion
of the higher excited states. The binding energy is defined
as Ebind = λ5 − 2EH (λ5 is defined in appendix A), where
EH = −1 Ry is the energy of 1s state in atomic hydrogen.
Next, we define the bonding and ionicity as the corresponding
ratios of coefficients in equation (9), cf figure 3. We note

3
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Figure 1. Flowchart of the EDABI method. The method is initialized by selection of a trial single-particle basis of wave functions, {wi(r)},
and subsequent diagonalization the resulting many-particle Hamiltonian. Optimization of the single-particle states leads to an explicit
determination of the trial-wavefunction parameters, microscopic interaction and hopping parameters, ground-state energy, and explicit
many-particle wavefunction, all in the correlated interacting state. For detailed discussion see main text.

Figure 2. The H2 binding energy versus relative interatomic
distance, calculated within EDABI and compared with RHF and full
CI method. a0 is the Bohr radius. EDABI yields lightly lower energy
than full CI calculation at very small interatomic distance, R; this
difference does not alter the main point of our qualitative discussion.

that the covalency increases with the increasing interatomic
distance at the expense of ionicity. However, this apparent
inconsistency ignores the possibility of incipient atomicity of
the Mott–Hubbard type, i.e., the tendency toward localization
of electrons on parent atoms with increasing R (called briefly

the Mottness). The Mott-type criterion for the localization of
electron on H+ ion (i.e., formation of renormalized atomic
states) takes the form 2|t + V|/(U − K ) = 1. This condition
expresses the fact that the of bare kinetic energy is then
equal to the effective repulsive Coulomb interaction (U − K ).
In the strong correlation limit, the ratio is below unity, mean-
ing this repulsive interaction becomes predominant (note
that in the strict atomic limit, t + V ≡ 0 whereas U − K =
1.25 Ry then). The regime of strong-correlations (Mottness)
is marked explicitly in figures 3 and 4. It specifies a gradual
evolution toward the atomic state. Namely, the shaded area
should be regarded as the regime with steadily increasing
atomicity of the electronic states with increasing R. Thus, the
question of unphysically increased covalency for R > RMott

is resolved in a natural manner as within the shaded area
the covalency, γc, is composed of a sum of true (resonant)
covalency γ̄c → 0 and atomicity γa → 1 as R →∞ (see the
discussion below).

3.2. Correlation effects and incipient Mottness

The general meaning of the Mott (or Mott–Hubbard) effects is
as follows. In condensed-matter physics the criterion takes the
form of U � W [20], where W ≡ |

∑
j(i) ti j| is the bare band-

width. The transition takes the form of often discontinuous
metal–insulator transition for odd integer number of relevant
valence electrons per atom. In molecular system, such as H2,
the HOMO–LUMO splitting �U − K must overcome the

4
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Figure 3. Two-particle covalency vs corresponding ionicity for H2 molecule, calculated within EDABI method and compared with the
results of reference [19]. Shaded regime marks a gradual evolution toward atomicity, as determined from the Mott–Hubbard criterion (see in
the main text). Vertical dotted line marks equilibrium interatomic distance, whereas the horizontal dotted lines illustrate the dominant
character of the covalency in that state (with the ratio r = 1.43 ∼ 2 : 1)).

Figure 4. The lowest energy levels composed of three singlet and
three triplet states, with the marked Mott regime and associated with
it strong-correlation limit (shaded area). The scale U − K represents
the effective repulsive Coulomb interaction between electrons, i.e.,
the HOMO–LUMO splitting. The atomic character of the states
increases with the increasing interatomic distance R.

effective interatomic hopping amplitude W = 2|t|. For Hamil-
tonian (1), the Mott–Hubbard criterion takes then the form
r ≡ (U − K )/(2|t + V|) � 1 so that both the correlated hop-
ping and intersite Coulomb interaction contribute, in addition
to t and U. In the present situation, the criterion separates
only qualitatively the regime of strong correlations (r � 1)
from that with moderate to weak correlations (r < 1). Various
versions of the criterion have been shown in figure 5, depend-
ing on the theoretical model selected. Namely, the uppermost

Figure 5. Characteristics of the H2 state. The condition
(U − K)/(2|t + V|) = 1 is the so-called Mott or Mott–Hubbard
criterion for atomic localization which, in turn, determines the
critical interatomic distance R/a0 � 2.3, representing the border of
hatched area in figures 3 and 4. The atomic character of electron
wave function becomes gradually enhanced with increasing
R > RMott. The remaining curves have a supplementary character
(see main text).

curve (in green) provides the criterion for the Hubbard model,
which does not yield any Mottness point in the present sit-
uation. On the other hand, both the model with V = 0 and
the full model (represented by the starting Hamiltonian (1)),
are almost identical and yield the critical interatomic dis-
tance for localization R = RMott � 2.3a0, i.e., well above the
Rbond � 1.43a0. Note also that even for equilibrium distance
R = Rbond the hopping/interaction ratio is about ∼0.5, i.e., the
electrons are moderately correlated.

5
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Figure 6. The antiferromagnetic kinetic exchange (superexchange)
integral, Jkex, calculated as a function of interatomic distance within
EDABI approach. Superexchange dominates over its ferromagnetic
Heisenberg correspondant, JH, and provides the justification for the
molecule spin-singlet configuration. The kinetic exchange originates
from virtual resonant hopping of the electron between the atoms
[21].

Figure 7. Renormalized 1s orbital size α−1 (in Bohr units a0) vs
relative interatomic distance for the H2 molecule. Note that after
crossing the Mott–Hubbard point R = RMott, α−1 approaches
rapidly its atomic-limit value α−1 = a0.

To complete the picture, we have also plotted in figure 6
the antiferromagnetic kinetic-exchange integral Jkex = 4(t +
V )2/(U − K ) versus the direct (Heisenberg) ferromagnetic
value JH, both as a function of relative distance R/a0.
The situation is that Jkex > JH for any distance R and this
is the reason for the spin-singlet configuration of H2 in the
ground state. In brief, electrons hoping (‘resonating’) between
the sites, possible only in the total spin-singlet state |λ5〉,
contribute essentially to the bonding.

To verify the conceptual validity of the introduced Mott
threshold for atomicity onset, we have plotted in figure 7 the
Slater-orbital size α−1 as a function of R. Upon crossing the
threshold RMott,α−1 indeed approaches rapidly with the further
increasing R the 1s atomic size value a0 = 0.53 Å. Instead,
the main physical process contributing to the bonding are the
virtual process between the sites. In effect, the ionicity and
covalency factors lose their principal meaning for R � 2.3 Å.

Figure 8. The virtual hopping processes that lead to the resonant
covalency (a) and the real hopping, corresponding to the admixture
of ionicity (b). For details see main text.

In conclusion, the dominant covalent character of H2

molecule has a well defined meaning for R � Rbond, as it is
twice as large as the corresponding ionicity factor. However,
this decomposition loses gradually its principal meaning as R
increases and crosses beyond RMott = 2.3a0. The ground state
energy evolves slowly, but steadily toward, the atomic-limit
value. Note also that the Hartree–Fock analysis (cf figure 2)
provides unphysical results as this critical value of R is crossed.
This means that, in the regime of large interatomic distance, the
role of correlation becomes essential. In effect, our analysis
is applicable then and can be systematically extended numer-
ically by, e.g., enriching the single-particle basis. It would
be also of general interest to ask if those concepts could be
tested quantitatively by putting H2 molecules on surfaces of
other systems which would stretch the hydrogen-moleculesize
beyond the Mott–Hubbard threshold. Obviously, the analysis
should then incorporate also the presence of the external sur-
face potential of the substrate. However, this type of analysis
goes beyond our goals here.

3.3. Physical reinterpretation of atomicity, covalency, and
ionicity: resonant covalency

In order to provide a purely physical reinterpretation of cova-
lency and ionicity we note that the form (3) of the covalent
part contains sum of static products of the single-particle wave
functions located on the sites 1 and 2 and their reverse; this
is due to their indistinguishability in the quantum mechanical
sense. On the contrary the coefficients γc and γ i contain also
virtual intersite processes depicted schematically in figure 8. In
other words, the former factor contains a degree of atomicity
in its static form, whereas the latter encompasses true dynamic
virtual (hopping) processes of quantum-mechanical mixing.
The question is how to separate those two factors into atomicity
and resonance covalency parts in an analytic way.

To answer this dilemma we propose its following resolu-
tion. The allowed local (site) states are |0, i〉, | ↑, i〉, | ↓, i〉, and
| ↓, ↑, i〉, i.e., the empty, single occupied with spin σ =↑ or ↓, or
the double atomic occupancies. Therefore, using the following
identities

|0, i〉〈0, i|+
∑
σ

|σ, i〉〈σ, i|+ |↑, ↓, i〉〈↑, ↓, i| = I, (15)

and its equivalent second-quantized from involving site occu-
pancies

〈(1 − n̂i↑)(1 − n̂i↓)〉+ 〈n̂i↑(1 − n̂i↓)〉+ 〈n̂i↓(1 − n̂i↑)〉+ 〈n̂i↑n̂i↓〉 = 1.
(16)

6
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Noting that the probability of empty atomic configuration is
equal to that doubly occupied, i.e., physically corresponding to
the electron–hole symmetry in condensed-matter systems, we
obtain the formula for single-electron occupancy in the final
form [22]

ν ≡
∑
σ

〈n̂iσ(1 − n̂iσ̄)〉 = 1 − 2d2. (17)

Explicitly, we propose to decompose single-occupancy prob-
ability ν in the following manner

ν ≡ a + c = 1 − 2d2, (18)

where a is the atomicity, and c is called the resonant
(true) covalency, and d2 ≡ 〈n̂i↑n̂i↓〉 denotes atom double occu-
pancy probability. Now, the resonant covalency describes
the degree of mixing due to the virtual hopping admix-
ture to the frozen (atomic) configuration (cf figure 8(a)).
In the strong-correlation limit (r > 1), it can be defined as
c ≡ [|t + V|/(U − K )]2 and expresses the contribution of the
processes (a) to the two-particle wave function in the second
order [23, 24] as expressed by ratio of virtual (double hopping,
forth and back) process to the Coulomb interaction change in
the intermediate step. Therefore, the atomicity is evaluated as

a = ν − c = 1 − 2d2 − c. (19)

In the equilibrium state of H2, the resonant covalency reads
c � 0.8, whereas atomicity a � 0.1 is practically negligible.
Conversely, with increasing R, c decreases quite rapidly and
approaches zero, whereas a → 1, as anticipated.

Finally, in figure 9 we provide another characteristic con-
taining atomicity, namely the R dependence d2. This double
occupancy probability can also characterize the ionicity. The
last formula shows that the atomicity is complete when d2 = 0
and then ν = a = 1 (i.e., for R � RMott). In the other words,
the customarily, defined by (13) covalency, associated with
the wave function (3), contains both atomicity and true cova-
lency. For R � RMott it involves mainly atomicity with a small
admixture of c and d2. In this manner, the unphysical increase
of γc with increasing R is resolved. In brief, fundamentally,
we define the resonant (true) covalency c as proportional to
the inverse Mottness, i.e.,

true covalency = 1/Motness or c ≡ 1/4r. (20)

In conclusion, based on our analysis of H2 molecule we
suggest that the covalency definition through the values of γc

is not conceptually precise, whereas the ionicity is properly
accounted for either by γi or 2d2. Additionally, in this way the
redefined covalency is complementary to the Mottness and vice
versa.

3.4. LiH and HeH+ cases

We now apply the concepts introduced above for H2 molecule
to the cases of LiH and HeH+. In figures 10 and 11 we display
the binding energies versus interatomic distance for HeH+

molecular ion and LiH molecule, respectively. In the former
case, the two 1s electrons are regarded as core electrons.

Figure 9. The atom double occupancy probability d2 ≡ 〈n̂i↑n̂i↓〉 and
simple occupancy ν, both vs R/a0, calculated for H2 molecule using
EDABI approach. Note the presence of inflexion point at R = RMott,
signaling the onset of gradually increasing single occupancy (the
orange curve). The single occupancy ν contains both resonant
covalency and atomicity, which cannot be separated from each other
at this stage. For detailed discussion see main text.

Figure 10. The HeH+ binding energy versus relative interatomic
distance, obtained using EDABI method and compared with RHF
and full CI approach. a0 is the Bohr radius.

Effectively, LiH is regarded as a molecule composed of one 2s
electron due to Li and 1s electron due to H, with their orbitals
adjustable when the interactions are included. Qualitatively,
the character of these curves is similar to those of H2, depicted
in figure 2. The quantitative factors are different though and,
in particular, the bond length is slightly larger than that in H2

case.
To characterize further those two cases we have plotted in

figures 12 and 13 the covalency and ionicity factors for those
two systems, respectively. Note that for LiH the ionicity is pre-
dominant in a wide range of R, whereas the opposite is true for
HeH+. The difference arises from the circumstance that in LiH
case the orbital size of 2s electron is decisively larger and has
a higher energy leading to predominantly ionic configuration
∼Li+0.9H−0.9. In HeH+, molecular ion the bonding is largely

7



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 185101 M Hendzel et al

Figure 11. The LiH binding energy versus relative interatomic
distance, obtained using EDABI method and compared with RHF
and full CI approach. a0 is the Bohr radius.

Figure 12. Many-body covalency vs many-body ionicity for HeH+

molecule. The behavior is quite similar to that for H2 molecule
(cf figure 3).

covalent due to the fact that both two 1s2 He electrons hop
(mix) with the H+ state with no electrons in the corresponding
1s state.

One specific feature of those two systems should be noted,
which is illustrated in figures 14 and 15, where the optimized
sizes of the relevant orbitals has been shown. Namely, the
size of 1s orbital of the He and 2s orbital of Li are strongly
renormalized, the former largely expanded, whereas the latter
contracted. The principal cause of this effect is the electronic
correlation induced by the strong intraatomic (Hubbard) inter-
action ∼U. As this interaction in He is reduced by the flow
of electron to the H+ site, it is not so in the case of Li,
where presence of the hydrogen electron strongly enhances
the role of the interaction. In spite of those differences, both
systems exhibit similar span of covalency regime. On the con-
trary, the incipient Mottness appears for larger distance RMott

and this is presumably due to a larger renormalized-orbital

Figure 13. Many-body covalency vs many-body ionicity for LiH
molecule. The points are taken from [19] for comparison. The
covalency shows the same type of the unphysical R-dependence as
in the case of H2.

Figure 14. Atomic orbital size for He 1s and H 1s orbitals in HeH+

molecular ion. Note that the Mott-type boundary has been drawn for
the 1s states of He as this reached first upon increasing R.

size for Li. As can be seen from literature [25] and from our
results here, HeH+ is largely covalent and the whole analysis
of a and c factors can be repeated here without any qualitative
difference.

In table 1 we display the binding energies of the molecules
H2, HeH+, LiH, regarded here as testing ground of our
approach. For that reason we compare the obtained results
with those deducted from other methods and with use of a
richer single-particle basis. Even though our results are quan-
titatively not too accurate, they are obtained with simplest
nontrivial basis, i.e., 1s states only for H2 and HeH+ cases,
and with addition of 2s states on Li the LiH case. The
EDABI results can be improved in a straightforward manner
at the expense of computational resources. However in such
a situation our following next discussion of bonding would
be purely numerical. In other words, we accept the lower
accurateness of EG value within our method to allow
for the analytic character of the subsequent discussion. One
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Figure 15. Atomic orbital size for H 1s and Li 2s orbitals in LiH
molecule. Note the strong renormalization of atomic-orbital sizes, as
well as a rapid convergence to the atomic values above R = Rbond,
the latter being for the ionic bonding.

Table 1. Binding energy for H2, HeH+, and LiH molecules (in eV).

Method H2 HeH+ LiH

EDABI −4.0749 −1.5803 −1.6537
Full CI −4.3824 −1.6849 −1.8846
RHF −3.5963 −1.4839 −1.3616
Reference values −4.3821[26] −2.0542[27] −1.3606[28]

can find more accurate value of ground state energy for HeH+

[29].

4. Overall properties

We now compare results for those three model systems qual-
itatively. First, in figure 16 we plot relative contributions of
the covalency and ionicity factors for the two-particle ground
state (left), as well as a schematic size of the molecular orbitals
relative to their original (atomic) size (right). The atomicity
factor is not quantified at this stage. In the first two of them,
the dynamics is solely due to 1s electrons, whereas in the
LiH case the 1s2 configuration of electrons is frozen on Li
and the whole dynamics is due to 1s–2s H–Li mixing and
the corresponding interactions. This is the reason why LiH is
largely ionic, whereas the remaining two are predominantly
covalent, as illustrated in figure 13. One sees that the cova-
lency in HeH+ is larger than that for H2 molecule, a rather
unexpected intuitively result.

A separate discussion should be concerned with other over-
all properties of the systems studied. In table 2 the Mott (or
Mott–Hubbard) critical distance RMott (in the units of a0) is
provided. This distance should be compared with the bond
length Rbond calculated (cf table 3) according to three indepen-
dent methods: EDABI, full CI, and RHF methods, respectively.
We see that in each case Rbond is decisively lower than RMott.
This means that the Mott-type boundary can be crossed only
in the situation when the molecules are further apart, i.e.,
obtained artificially when, e.g., they are placed on surfaces

Figure 16. Schematic representation of the molecular orbitals for
(isosurface probability density cut = 0.02) on the right, expressing
relative covalency and ionicity contributions on the left.

Table 2. The interatomic distance corresponding to the Mott
boundary regime calculated for H2, HeH+, and LiH molecules.

System Mott boundary (a0)

H2 2.3
HeH+ 3.0
LiH 5.3

Table 3. Bond length for H2, HeH+, and LiH molecules (in units
of a0).>

Method H2 HeH+ LiH

EDABI 1.430 1.469 3.382
Full CI 1.501 1.497 3.298
RHF 1.450 1.493 3.208
Reference values 1.398 [26] 1.463 [27] 3.015 [28]

with an external force elongating them. Particularly favorable
situation occurs when molecules are placed in the environment
with a large dielectric constant, as then interaction weakens
and the bond length increases. Clearly, then the whole analysis
must be revised and a realistic configuration with inclusion
of appropriate external (surface) potential. We believe that
the essential features of our analysis should survive when the
molecule is placed in such environment, i.e., in a potential
stretching equally both atoms.

In table 1 the binding energies are listed and compared with
those from other methods. These numerical results present
probably the weakest point of our EDABI method, since the
corresponding values obtained are not very accurate. Never-
theless, we do not consider our method as a practical comput-
ing tool. Instead our main aim here was to extend, albeit at
best in a semiquantitative manner, the basis for multi-electron
covalency and ionicity, enriched by the concept of atomic-
ity, all induced by the electronic correlations. Obviously, the
approach can be extended in a straightforward manner by
enlarging the single-particle basis and applied for the systems
with larger atoms. Both of these factors have been considered
by us before [7, 9] for model systems, with one limitation,
that we have not analyzed there the bonding properties. This
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Table 4. Calculated EDABI values of the equilibrium parameters
for LiH, HeH+, and H2 molecules.

Parameter LiH H2 HeH+

EG (eV) −217.45 −31.198 −79.675
U1sLi (eV) 49.062 N/A N/A
U1sH (eV) 18.559 22.490 19.592
U1sHe (eV) N/A N/A 14.925
U2sLi (eV) 12.784 N/A N/A
t (eV) −21.150 −9.9049 −15.674
K (eV) 14.368 13.007 11.374
α1sH (a−1

0 ) 1.035 1.194 1.240
α1sHe (a−1

0 ) N/A N/A 2.095
α2sLi (a−1

0 ) 1.329 N/A N/A

analysis should be explored further along the lines discussed
here.

Finally, in table 4 we list the most important microscopic
parameters in the equilibrium state. A more detailed analysis
of those is presented in appendix B. The values of Coulomb-
interaction parameters will be reduced by the dielectric con-
stant factor if system under consideration is placed on surface
of an insulating material. This should rescale all the parameter
values accordingly.

5. Outlook

The reason for selecting the three systems analyzed here is
caused by the circumstance that HeH+ is strongly covalent,
LiH strongly ionic, and H2 can be placed in between them. On
example of the last of them our novel concept of atomicity and
resonant covalency have been proposed.

The introduced here atomicity for the case of molec-
ular system (corresponding to Mott–Hubbard localization
effects in periodic systems) amounts to specifying a grad-
ual transformation from molecular to atomic language in
describing their electronic states, as a function of interatomic
distance. This changeover is the basic feature and is asso-
ciated with the essential change in regarding those particles
as evolving within indistinguishable (molecular) character
and acquiring eventually the form of distinguishable (atomic)
states.

One must also underline that the concept of atomicity here
is quantitative in nature. This is because the Mott–Hubbard
localization concept in condensed-matter systems
[13, 20] appears usually as a first-order transition, requiring the
energy equality of the two macro configuration (delocalized,
localized) at this phase transition. Here the evolution may
be regarded as a supercritical behavior at best [13, 30, 31].
However, the antiferromagnetic kinetic exchange survives
even when the states are becoming orbitally distinguishable
[32].

Certainly, a further insight is required to quantify the
present discussion for more complex systems. The present
concepts are proposed to clarify the obviously unphysical
behavior of the increasing covalency with the increasing inter-
atomic distance. As far as we are aware of, this inconsistency,
although intuitively understandable, has not been discussed

explicitly in the quantum-chemical literature. Also, the emerg-
ing atomicity here squares well with the Mott’s original argu-
ment [20] that the metallic (covalent) state of electrons in a
periodic system is ruled out at (semi)macroscopic interatomic
distances.
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Appendix A. Eigenvalues and eigenstates for H2

molecule

Starting from the orthogonalized restricted basis, we define the
field operators as

ψ̂σ(r) = w1(r)χσ(1)â1σ + w2(r)χσ(2)â2σ , (A.1)

ψ̂†
σ(r) = w∗

1(r)χσ(1)â†
1σ + w∗

2(r)χσ(2)â†2σ , (A.2)

or, in compact notation, as

ψ̂(r) ≡
(
ψ̂↑(r)
ψ̂↓(r)

)
. (A.3)

In the above, âiσ and â†
iσ are electron annihilation and creation

operators in the state wiσ(r) ≡ w1(r)χσ(1). Also, as we restrict
here to s-orbital systems, the molecular (Wannier) functions
can be taken as real if the condition J′ = JH holds. Using
the representation (A.3), we obtain Hamiltonian (1) with the
microscopic parameters expressed through the Slater orbitals
and coefficients β and γ (cf equation (5)), or explicitly through
inverse orbital size α and interatomic distance R (see e.g.
[7, 9]). The relevant physical quantities may be thus obtained
as a function of R, with the orbital parameter α optimized in
each case.

To obtain the ground state energy EG for fixed R, the Hamil-
tonian (1) is diagonalized. This is carried out by making use
of the global symmetry respecting two-particle states, leading
to block-diagonal many-body Hilbert space, with specified
values of the total spin, S, and its z-component, Sz, as well with
transposition antisymmetry preserved. In effect, one can start
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Table B1. Ground state energy and microscopic parameters for H2 molecule (in eV).

R (a0) EG/N ε t U K J V

0.5 −657 −14.29 −31.75 30.06 19.43 0.43 −0.28
1 −1486 −22.51 −15.95 25.29 15.43 0.36 −0.19
1.5 −1558 −23.84 −9.21 22.08 12.67 0.29 −0.16
2 −1516 −23.41 −5.79 19.96 10.75 0.23 −0.16
2.5 −1461 −22.56 −3.84 18.61 9.34 0.18 −0.16
3 −1418 −21.67 −2.62 17.81 8.24 0.13 −0.16
3.5 −1389 −20.86 −1.82 17.38 7.35 0.09 −0.16
4 −1373 −20.15 −1.26 17.18 6.60 0.06 −0.15
4.5 −1365 −19.52 −0.86 17.09 5.95 0.04 −0.14
5 −1362 −18.98 −0.59 17.05 5.40 0.02 −0.12

the basis of
( 4

2

)
= 6 following states

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|1〉 = â†
1↑â

†
2↑|0〉,

|2〉 = â†
1↓â

†
2↓|0〉,

|3〉 = 1√
2

(â†
1↑â

†
2↓ + â†

1↓â
†
2↑)|0〉,

|4〉 = 1√
2

(â†
1↑â

†
2↓ − â†

1↓â
†
2↑)|0〉,

|5〉 = 1√
2

(â†
1↑â

†
1↓ + â†

2↓â
†
2↑)|0〉,

|6〉 = 1√
2

(â†
1↑â

†
1↓ − â†

2↓â
†
2↑)|0〉.

(A.4)

The first three are the spin-triplet states with Sz = +1,−1, 0,
whereas the next three are inter- and intra-site singlets, respec-
tively. The triplet state does not hybridize with other states
and provides three 1 × 1 irreducible blocks with eigenvalues
λ1 = λ2 = λ3 = ε1 + ε2 + K − JH. The remaining three sin-
glet states compose the 3 × 3 block, so the Hamiltonian in that
Fock subspace takes the form

Ĥ =

⎛
⎜⎜⎜⎝
ε+ K + JH 2(t + V) 0

2(t + V) 2ε+ J + U
1
2

(U1 − U2)

0
1
2

(U1 − U2) 2ε+ U − JH

⎞
⎟⎟⎟⎠, (A.5)

where ε ≡ (ε1 + ε2)/2 and U ≡ (U1 + U2)/2. This formula-
tion allows to apply this formalism to both H2 (where U1 =
U2 = U and ε1 + ε2 = ε), and to HeH+ and LiH, where those
simplifications are not met due to inequivalent atoms involved.

In the case of H2, the eigenvalues of equation (A.5) take the
form

λ4,5 = 2ε+
1
2

(K + U) + J ± 1
2

D, (A.6)

λ6 = 2ε+ U − J, (A.7)

with D ≡ [(U − K)2 + 16(t + V)2]
1
2 . The corresponding

eigenstates are

|λ4,5〉 ≡ |λ±〉 =
1

[D(D ± U ∓ K)]
1
2

[(4(t + V))|4〉 ± (D ± U ∓ K)|5〉],

(A.8)

where, for simplicity, we have defined the atomic-limit energy
as the reference point, ε = 0. We note that the eigenstates |λ4,5〉
are superposed of the symmetric ionic state |5〉 and covalent
part |4〉. The state |λ5〉 is the ground state as the λ5 eigenvalue
is the lowest one. In the limit U � |t + V|, the λ5 eigenvalue
reads

λ5 � 2ε+ JH + K − 4(t + V)2

U − K
. (A.9)

The last term on the right-hand side of equation (A.9) is
the so-called kinetic-exchange contribution. It competes with
ferromagnetic Heisenberg exchange ∼ JH. In similar manner,
the two-particle states for HeH+ and LiH are obtained, except
that in those two cases, the diagonalization of the Hamilto-
nian matrix (A.5) cannot be carried out analytically, since
the ε1 �= ε2 and U1 �= U2. The singlet state |λ5〉 is elaborated
further throughout the main text.

Appendix B. Tables of relevant quantities and
parameters for considered systems

In tables B1–B3 we provide relevant quantities and micro-
scopic parameters versus R, obtained within EDABI scheme
for the three systems discussed in main text, i.e., H2, HeH+,
and LiH.

Note that the value of |t| is comparable to U in the
limit R < Rbond and diminishes spectacularly when R > Rbond

(i.e. in the strong-correlation regime).
The RHF and CI computations were carried out using the

GAMESS code and the 6–31 G basis set to represent the Slater
functions. Numerical accuracy for the EDABI calculations is
10−4 a0 for R and 10−5 eV for energy, respectively.

11



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 185101 M Hendzel et al

Table B2. Ground state energy and microscopic parameters for HeH+ molecular ion (in eV).

R (a0) EG/N εH εHe t UH UHe K V

0.5 −27.84 −22.42 −14.32 −24.07 22.35 36.70 11.17 −0.99
1 −38.54 −32.81 −32.43 −18.96 20.57 21.85 8.48 −0.75
1.5 −39.84 −34.59 −33.13 −15.49 19.54 14.62 6.72 −0.60
2 −39.63 −34.10 −29.57 −13.15 18.95 11.10 5.66 −0.50
2.5 −39.38 −32.20 −25.93 −11.55 18.61 9.39 4.95 −0.44
3 −39.21 −29.67 −22.86 −10.38 18.41 8.56 4.54 −0.39
3.5 −37.68 −27.20 −20.45 −9.45 18.30 8.15 4.26 −0.36
4 −39.09 −25.08 −18.62 −8.64 18.23 7.96 4.05 −0.33
4.5 −38.97 −23.37 −17.23 −7.90 18.19 7.86 3.86 −0.31
5 −38.92 −22.01 −16.16 −7.20 18.17 7.82 3.69 −0.31

Table B3. Ground state energy and microscopic parameters for LiH molecule (in eV).

R (a0) EG/N εH ε2sLi t UH U2sLi K V

1 −98.21 −43.25 −39.32 −55.89 38.29 33.08 21.19 −1.70
1.5 −105.89 −44.47 −40.24 −48.02 35.13 26.34 19.79 −1.52
2 −108.10 −45.402 −40.97 −37.97 32.02 22.01 17.10 −1.02
2.5 −108.88 −45.73 −41.97 −30.93 28.89 17.98 16.77 −0.89
3 −109.29 −46.12 −42.53 −24.43 24.80 14.04 15.12 −0.78
3.5 −109.35 −45.93 −41.55 −19.89 22.08 11.35 13.29 −0.69
4 −109.29 −45.81 −41.53 −14.05 20.30 9.44 11.98 −0.51
4.5 −109.04 −45.50 −41.44 −11.23 19.19 8.41 10.13 −0.38
5 −108.92 −45.75 −41.39 −8.09 18.09 7.75 9.48 −0.32
5.5 −108.71 −44.96 −40.91 −5.48 18.25 7.48 6.32 −0.28
6 −108.32 −44.49 −40.76 −4.01 17.98 7.25 4.01 −0.26
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[30] Limelette P, Georges A, Jéırome D, Wzietek P, Metcalf P and
Honig J M 2003 Universality and critical behavior at the Mott
transition Science 302 89–92

[31] Spałek J 2020 Strongly correlated quantum matter: a subjective
overview of selected fundamental aspects Acta Phys. Polon.
B 51 1147–84

[32] Spałek J unpublished.

13

https://doi.org/10.1002/pssb.2221080206
https://doi.org/10.1002/pssb.2221080206
https://doi.org/10.1103/PhysRevB.28.6802
https://doi.org/10.1103/PhysRevB.28.6802
https://doi.org/10.1103/PhysRevB.28.6802
https://doi.org/10.1103/PhysRevB.28.6802
https://doi.org/10.1016/0375-9601(77)90702-2
https://doi.org/10.1016/0375-9601(77)90702-2
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1080/00268977600101161
https://doi.org/10.1080/00268977600101161
https://doi.org/10.1080/00268977600101161
https://doi.org/10.1080/00268977600101161
https://doi.org/10.1063/1.1725796
https://doi.org/10.1063/1.1725796
https://doi.org/10.1063/1.1725796
https://doi.org/10.1063/1.1725796
https://doi.org/10.1063/1.1696885
https://doi.org/10.1063/1.1696885
https://doi.org/10.1063/1.1696885
https://doi.org/10.1063/1.1696885
https://doi.org/10.1063/1.1730163
https://doi.org/10.1063/1.1730163
https://doi.org/10.1063/1.1730163
https://doi.org/10.1063/1.1730163
https://doi.org/10.1103/PhysRevA.85.042511
https://doi.org/10.1103/PhysRevA.85.042511
https://doi.org/10.1126/science.1088386
https://doi.org/10.1126/science.1088386
https://doi.org/10.1126/science.1088386
https://doi.org/10.1126/science.1088386
https://doi.org/10.5506/APhysPolB.51.1147
https://doi.org/10.5506/APhysPolB.51.1147
https://doi.org/10.5506/APhysPolB.51.1147
https://doi.org/10.5506/APhysPolB.51.1147

	Many-particle covalency, ionicity, and atomicity revisited for a few simple example molecules
	1.  Introduction
	2.  EDABI method and many-particle bonding
	3.  Covalency, ionicity, and atomicity on examples
	3.1.  Covalent bonding and ionicity in case
	3.2.  Correlation effects and incipient Mottness
	3.3.  Physical reinterpretation of atomicity, covalency, and ionicity: resonant covalency
	3.4.   and cases

	4.  Overall properties
	5.  Outlook
	Acknowledgments
	Data availability statement
	Appendix A.  Eigenvalues and eigenstates for molecule
	Appendix A. 
	Appendix B. Tables of relevant quantities and parameters for considered systems
	ORCID iDs
	References


