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Streszczenie

W niniejszej pracy prezentujemy uogólnioną teorię pól multiwektorowych, która w 
swej pierwszej postaci została przedstawiona w [21]. Bezpośrednim poprzednikiem teorii 
pól multiwektorowych jest teoria kombinatorycznych pól wektorowych Robina Formana, 
która z kolei wywodzi się bezpośrednio z dyskretnej teorii Morse'a. Jednym z celów tej 
rozprawy jest stworzenie kombinatorycznego odpowiednika pól wektorowych obecnych 
w teorii ciągłych układów dynamicznych oraz stworzenie odpowiednich narzędzi do ich 
analizy.

U podstaw uogólnienia opisywanej teorii leżą trzy fundamentalne modyfikacje za
łożeń. Po pierwsze, definiujemy pola multiwektorowe dla szerszej rodziny skończonych 
przestrzeni topologicznych, w przeciwieństwie do [21], gdzie konstrukcja dotyczyła kom
pleksów Lefschetza. Po drugie, odrzucamy wymaganie istnienia unikalnego elementu 
maksymalnego w multiwektorze. W rezultacie jedynym elementem definicji multiwek- 
tora jest założenie o jego lokalnej domkniętości. Uzyskujemy w ten sposób znaczną 
elastyczność w konstruowaniu pola multiwektorowego. Po trzecie, została uproszczona 
definicja odwzorowania wielowartościowego indukowanego przez pole multiwektorowe i 
reprezentującego kombinatoryczną dynamikę. Przekłada się to na uproszczenie dowodów 
i algorytmicznego aspektu wyznaczania rozkładów Morse'a oraz prowadzi do nowej inter
pretacji multiwektora jako dynamicznej "czarnej skrzynki".

Przy nowych założeniach teorii definiujemy kombinatoryczne odpowiedniki obiektów 
znanych z teorii ciągłych układów dynamicznych oraz badamy ich własności. Wśród nich 
mamy: zbiór izolowany niezmienniczy, parę indeksową, indeks Conley'a, zbiory graniczne, 
atraktor, czy rozkład Morse'a. Pokazujemy również pożądane własności jakich oczeki
walibyśmy od wymienionych wyżej obiektów, m.in. addytywność indeksu Conley'a oraz 
nierówności Morse'a. Nowe założenia pociągają za sobą konieczność przeprowadzenia 
nowych dowodów wszystkich własności.

W dalszej części pracy korzystamy z podstawowego narzędzia topologicznej analizy 
danych, tj. homologii persystetnych, do analizy strukturalnej trwałości zbiorów Morse'a. 
W tym celu konstruujemy moduł persystentny zygzak dla słabych rozkładów Morse'a oraz 
rozkładów Morse'a.

Następnie prezentujemy eksperymenty numeryczne bazujące na omawianej w tej roz
prawie teorii. Przedstawiamy algorytm konstrukcji pola multiwektorowego z chmury wek
torów. W szczególności uzyskujemy je poprzez próbkowanie wybranych ciągłych układów 
dynamicznych. W jednym z eksperymentów odtwarzamy graf Conley'a-Morse. Natomiast 
w kolejnych przykładach korzystamy z homologii persystentnych w celu zbadania ewolucji 
struktury zbiorów Morse'a względem wybranego parametru modyfikującego dynamikę. 
Eksperymenty prezentują potencjał dalszego wykorzystania wypracowanych narzędzi do 
analizy danych o dynamicznej naturze.
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Abstract

In this work, we present a generalization of the theory of multivector fields first 
introduced in [21]. The direct predecessor of the multivector fields theory is the theory 
of combinatorial vector fields by Robin Forman. His work, in turn, is a natural conse
quence of a discrete Morse theory. One of the main goals of this thesis is to construct a 
combinatorial counterpart of vector fields induced by continuous dynamical systems and 
to create tools for its analysis.

The generalization involves three fundamental changes in the setting of the theory. 
First, we define multivector fields for a broader family of finite topological spaces, in 
comparison to [21] where Lefschetz complexes are used. Secondly, we lift the assumption 
that a multivector must have a unique maximal element. Thus, a multivector simply be
comes a locally closed subset of space. This results in a greater flexibility in constructing 
multivector fields. Finally, we define less restrictively the multivalued map induced by a 
multivector field that defines a combinatorial dynamical system. Consequently, we can 
simplify the computational aspects of the theory, and we can introduce a new interpreta
tion of a multivector as a dynamical "black box."

With a new setting of the multivector fields theory, we define combinatorial counter
parts of multiple objects from the classical theory of dynamical systems; among others: 
isolated invariant set, index pair, Conley index, limit set, attractor, or Morse decompo
sition. We also show that the desirable properties as additivity of a Conley index and 
Morse inequalities hold. Even though the theory's general structure is preserved, new 
proves and ideas are required by the new setup.

In the further part, we use persistent homology - the topological data analysis main 
tool, to study the robustness of the structure of Morse sets. In particular, we construct 
a zigzag persistence module for weak Morse decomposition and Morse decomposition for 
multivector fields.

Finally, we show some numerical experiments based on the presented theory. We 
discuss the algorithm for constructing the multivector field from a vector cloud. As a 
proof of concept, we study vector clouds obtained by sampling chosen continuous vector 
fields. In the first experiment, we algorithmically reconstruct the Conley-Morse graph. In 
the further experiments , we use the persistence homology to study Morse sets' evolution 
with respect to a parameter modifying a dynamic. These experiments show the potential 
of the multivector fields theory as a new analysis tool for data with a dynamical nature.
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Introduction

The combinatorial approach to dynamics is originally attributed to Robin Forman. 
The study of his discrete Morse theory gave rise to the concept of the combinatorial 
vector field on CW-complexes [11]. In the following paper [10] Forman studied a broader 
family of combinatorial vector fields, including non-gradient-like combinatorial flows. He 
also studied homological properties of such vector fields by proving Morse inequalities.

Despite being strongly inspired by dynamical systems, Forman's work does not pro
vide a formal correspondence with the classic, continuous theory. The first efforts in this 
direction are presented in [15] and [4], where authors show that Forman's combinatorial 
vector field induces a flow-like multivalued map on a geometrical realization of a simplicial 
complex, i.e., an upper semi-continuous, acyclic-valued map that is homotopic to iden
tity. Moreover, they introduce the concepts of isolated invariant set, Conley index, and 
Morse decomposition in the context of Forman's theory. They show that these notions 
correspond directly to their counterparts in classical multivalued settings.

A formal tie between continuous and combinatorial dynamics should involve connec
tions in both directions. Thus, another important question is how to approximate a 
continuous dynamical system with a combinatorial model. Forman's theory is a natural 
starting point for that. However, one can easily produce examples of continuous vector 
fields which can not be modeled with Forman's combinatorial vector fields. To overcome 
these limitations, an extension of the idea of Forman to combinatorial multivector fields 
has been proposed in [21] in a more general setting of Lefschetz complexes. Both Lef- 
schetz complexes and CW-complexes can be considered as a partial order or equivalently, 
by Alexandrov theorem, as a finite topological space. We can view Forman's combinato
rial vector field as a partition of space into singletons and pairs of simplices where one is 
a face of the other of codimension 1. On the other hand, a multivector field of [21] is a 
partition of space into convex subsets (in the sense of order) with a unique maximal ele
ment. This extension leads to a much richer family of combinatorial vector fields. Hence, 
it enables us to model a greater variety of dynamical systems.

Our recent work [17], the basis for this dissertation, extends the idea of multivectors 
even further. There are three fundamental modifications. First, we replace Lefschetz 
complexes by the more general finite topological spaces. Secondly, we lift the assumption 
that a multivector must have a unique maximal element. Finally, we define the associated 
combinatorial dynamical system less restrictively, simplifying the computational aspects 
of the theory. The new setup preserves the general structure of the theory but requires 
new ideas and proofs in the study of all key dynamical concepts: Conley index, attractors, 
repellers, and Morse decomposition for multivector fields. By proving their properties, we 
also show that the Morse inequalities and Morse equations hold.

The modifications in combinatorial multivector field theory introduced in [17] simplify 
the theory's computational aspects. It also makes the theory better adjusted to the theory 
of persistence, which was presented in [7], where we study Morse decomposition's homo
logical persistence for combinatorial dynamical systems. In particular, it sets foundations 
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for the study of persistence of the Conley index [8].
The Morse decomposition and the associated Morse-Conley graph provide a compact 

global descriptor of a dynamical system. This type of qualitative summary is useful in 
the case of dynamical systems not available in a closed analytic form as a differential 
equation. This is often the case for systems known only from sampled data collected from 
experiments, observations or simulations.

The results of this thesis contribute to the program of building a combinatorial ana
logue of the classical theory of topological dynamics. In particular, the multivector field 
theory serves as a framework for modeling continuous vector fields, while the persistence 
of Morse decomposition brings additional tools for studying the Morse set's robustness.

This dissertation summarizes the process of development of the multivector field theory 
over the last five years. It mainly focuses on [17] and [7], in which the author of this thesis 
was involved.

The organization of the thesis is as follows. In Chapter 1, we set up basic definitions 
and concepts. We also present the basic properties of finite topological spaces (based on 
Section 3.4 from [17]). Chapter 2 is a short review of the algebraic topology, in particular 
the homology theory. We present the construction of homology groups via simplicial and 
singular complexes. Then we show our results on how to study the homology in the 
context of finite topological spaces (based on Section 3.5 from [17]). Finally, we recall the 
theoretical basics for zigzag persistence homology. Chapter 3 is dedicated to dynamical 
systems and for building the intuitions. First, we briefly review the concepts in continuous 
dynamics that we reconstruct in the following chapter in the combinatorial fashion. Then, 
we introduce the general definition of combinatorial dynamical systems and we present 
some examples of those. In Chapter 4, we present the main theoretical results. We define 
multivector fields and develop the combinatorial counterparts of the isolated invariant set, 
index pair, Conley index, attractor, limit sets, and Morse decomposition. We also show 
their properties. This chapter is extensively based on [17], particularly on Sections 4, 5, 6, 
and 7. Chapter 5 presents the theoretical results of [7], where we combine multivector field 
theory with persistent homology. It provides a tool for studying Morse sets' robustness. 
Finally, in Chapter 6, we consider the problem of applying the presented theory to data. 
We show an algorithm originally presented in [7] that translates a vector cloud into a 
multivector field. As a proof of a concept we present several experiments for vector fields 
derived from differential equations.

The author of this dissertation is the author of all proofs included in this thesis except 
for Proposition 2.1.2 and Theorem 2.4.3 where he is a co-author. Propositions and theo
rems without any reference were proved for this thesis's purposes and were not published 
anywhere else.

7



Chapter 1

Preliminaries

In this chapter we recall basic concepts and fix the notation needed in the sequel. We 
follow the exposition presented in [17].

1.1 Sets and maps

We denote the sets of integers, non-negative integers, non-positive integers, and pos
itive integers, respectively, by Z, Z+ , Z- , and N. Given a set A, we write #A for the 
number of elements in A and we denote by P (A) the family of all subsets of A. A multi
set is a set where multiple instances of a single elements can occur. Formally it is a map 
m : A Z+ which denote the multiplicity of elements of a set A.

We say that a family A of nonempty subsets of X is a partition of X if A = X 
and A A A = 0 for all A, A G A. Given two partitions A and B of X we say that A 

is inscribed in B and write A C B, if for every A G A there exists a B G B, such that 
A C B. Given a family A of mutually disjoint subsets of a set X, we use the notation

A* := {U A' | A' cA}. (1.1)

Let B be another family of mutually disjoint subsets. Then we write

An B := { A n B | A gA,B gB}. (1.2)

We write f : X Y for a partial map from X to Y, that is, a map defined on a 
subset dom f c X, called the domain of f, and such that the set of values of f, denoted 
im f, is contained in Y.

A multivalued map F : X Y is a map F : X P(Y) which assigns to every point
xGX a subset F(x) cY. GivenAc X, theimageofAunderFis definedby

F(A) := J F(a).
xEA

For two multivalued maps F,G : X Y we write F c G if F(A) c G(A) for all 
A G P(X). By the preimage of a set B c Y with respect to F we mean the large 
preimage, that is,

F-1(B):={xGX | F(x)AB=0}. (1.3)
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In particular, if B = {y} is a singleton, we get

F-1 ({y}):= {x e X | y e F(x)}. (1.4)

Thus, we have a multivalued map F-1 : Y X given by F-1 (y) := F-1 ({y}). We call 
it the inverse of F.

1.2 Relations and digraphs

Let X and Y be finite sets. A relation is a subset of X x Y. A map, a partial map 
and a multivalued map are all special cases of relations. Inverse of a relation R C X x Y 
is a relation R-1 := {(y, x) e Y x X | (x, y) e R}.

We say that a relation R C X x X is
• reflexive if: r.xX (x, x) e R,
• symmetric if: (x,y) e R (y,x) e R,
• antisymmetric if: (x, y), (y,x) e R x = y,
• transitive if: Ÿx,y,zeX (x, y) e R A (y,z) e R (x, z) e R.

The transitive closure of relation R C X x X is a relation R defined as

R := R U{(x,x' ) e X x X | 3xi x2 ..xn ex (x,xi ), (xi ,x2 ),..., (xn ,x' ) e R}.

Relation is an equivalence relation if it is reflective, symmetric and transitive. An equiv
alence relation R C X x X partitions a set X into subsets of elements that are mutually 
related. These sets are called equivalence classes of a relation R. Every point x e X falls 
into a unique equivalence class, we denote it by [x]R.

If X = Y then we can identify relation R C X x X with a digraph GR = (X, R). 
The set X provides nodes of the digraph and the ordered pairs of relation R constitute 
directed edges (see Figure 1.1).

Figure 1.1: An example of a directed digraph on a set of vertices X = {A, B, C, D}. 
The associated relation is the family of pairs R = {(A, B), (C, B), (C, D), (D, C), (D, D)}. 
The digraph contains one self-loop: (D, D) and a family of closed paths of the form: 
(B, C, D, D, . . . , D, B), where point D can occur an arbitrary number of times. All points 
except A are recurrent.
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A path in a digraph G = (X, R) is a sequence of elements 7 = (x0, x1,..., xn) such 
that (xi, xi+1) E R for all i E {0,1,... ,n — 1}. If additionally x0 = xn then we say that 
Y is a closed path. A (self-)loop is a closed path consisting of only two elements (n = 1), 
that is, a path y = (x0, Xi), where x0 = Xi.

A vertex is recurrent if it belongs to a closed path. In particular, every vertex with 
a self-loop is recurrent. The digraph is recurrent if all its vertices are recurrent. Vertices 
X and y are in path relation if there exists a closed path containing X and y. If G is a 
recurrent digraph, then path relation is an equivalence relation Its equivalence classes are 
called strongly connected components of G. If a digraph consists of exactly one strongly 
connected component, then we say it is a strongly connected digraph. A subset A C X of 
a digraph G = (X, R) is a strongly connected set if a subgraph GA := (A, R A (A x A)) is 
a strongly connected digraph.

1.3 Orders and posets

Let X be a finite set. We recall that a reflexive and transitive relation < on X is 
a preorder and the pair (X, <) is a preordered set. Given a preorder < on X we write 
x < y meaning x < y and x = y. If < is also antisymmetric, then it is a partial order and 
(X, <) is a partially ordered set (or poset). A partial order in which any two elements are 
comparable is a linear (total) order.

Given a poset (X, <), we say that a set A C X is convex if given x,z E A, y E X 
inequalities x < y < z imply y E A. It is an upper set if x < y with x E A and y E X 
implies y E A. Similarly, A is a down set with respect to < if given y E A and x E X 
inequality x < y imply x E A. A chain is a linearly ordered subset of a poset. We say 
that point x E X covers point y E X if y < x and there is no z E X such that y < z < x. 
See Figure 1.2 for examples of convex, down and upper set.

Figure 1.2: An example of a poset and a convex set (blue), a down set (green), and an 
upper set (red).
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For A C X we write

A- := {a G X | 3bEA a < b},

A< := A- \ A.

Proposition 1.3.1. [17, Proposition 3.2] Let (X, <) be a poset and let A C X be a 
convex set. Then the sets A- and A< are down sets.

Proof. Clearly, A- is a down set directly from the definition. To see it for A< , consider 
an a G A< and an element b G X such that b < a. Then a G A. The definitions of A- and 
A< imply that there exists an element c G A such that a < c. Since A- is a down set we 
also have b G A-. We cannot have b G A, because otherwise b < a < c which contradicts 
the convexity of A. Hence, b G A< which proves that A< is a down set. □

Given preordered sets (X, <) and (Y, <) a map f : X Y is called order-preserving 
if x < X implies f (x) < f (x') for all x,X G X.

1.4 Topological spaces

Given a set X we say that T C P(X) is a topology on X if the following conditions 
are satisfied: 
(T1) Q,X gT,
(T2) U,V gT U n V gT,
(T3) UcT UUgT.

We say that a pair (X, T) is a topological space. When the topology T is clear from 
the context we simply write X. Given two topologies T and T' of a space X we say that 
T is a finer topology than T' if T' C T. The elements of T are referred to as open sets. 
A set A is closed if there exists an open set B G T such that A = X \ B. A set N is 
a neighborhood of a set A if there exists an open set U G T such that A C U C N . A 
map f : (X, TX) (Y, TY) is continuous if for every U G TY we have f-1(U) G TX. 
A bijective map f : X Y is a homeomorphism if both f and f-1 are continuous. The 
following proposition is straightforward.

Proposition 1.4.1. Let f : (X, TX) (Y, TY) be a continuous map. If T'X is a finer
topology on X than TX then f : (X, T'X) (Y, TY) is continuous.

If a topological space (X, T) satisfy additional condition:
(T2*) UcT DUgT.
then we refer to it as an Alexandrov (topological) space. We say that X is a finite topological 
space if X is a finite set. It follows from (T2*) that every finite topological space is an 
Alexandrov space.

The interior of a set A C X is the union of all open sets contained in A. The closure 
of a set A C X is the intersection of all closed sets containing A. We denote the interior 
and closure of A C X with respect to T by intT A and clT A, respectively. We define the 
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mouth of A as the set moT A := clT A \ A. If X is finite, we also distinguish the minimal 
open superset (or open hul l ) of A as the intersection of all the open sets containing A. By 
(T2*) open hull is open. We denote it by opnT A. We note that when X is finite then 
the family Top := {X \ U | U E T} of closed sets is also a topology on X, called dual or 
opposite topo logy . The following proposition is straightforward.

Proposition 1.4.2. [17, Proposition 3.3] If (X, T) is a finite topological space then for 
every set A C X we have opnT A = cItop A.

If A = {a} is a singleton, we simplify the notation intT{a}, clT{a}, moT{a} and 
opnT{a} to intT a, clT a, moT a and opnT a. When the topology T is clear from the 
context, we drop the subscript T in this notation. Given a finite topological space (X, T) 
we briefly write Xop := (X, Top) for the same space X but with the opposite topology.

We recall that a subset A of a topological space X is loca l ly closed if every x E A 
admits a neighborhood U in X such that A A U is closed in U. Locally closed sets are 
crucial in the sequel. In particular, we have the following characterization of locally closed 
sets.

Proposition 1.4.3. [9, Problem 2.7.1] Assume A is a subset of a topological space X. 
Then the following conditions are equivalent.

(i) A is locally closed,
(ii) moTA := clTA \ A is closed in X,

(iii) A is a difference of two closed subsets of X,
(iv) A is an intersection of an open set in X and a closed set in X.

As an immediate consequence of Proposition 1.4.3(iv) we get the following proposi
tions.

Proposition 1.4.4. [17, Proposition 3.5] The intersection of a finite family of locally 
closed sets is locally closed.

Proposition 1.4.5. [17, Proposition 3.6] If A is locally closed and B is closed, then A\B 
is locally closed.

Proposition 1.4.6. [17, Proposition 3.7] Let (X, T) be a finite topological space. A 
subset A C X is locally closed in the topology T if and only if it is locally closed in the 
topology Top.

We recall that the topology Tis T2 or Hausdorff iffor any two different points x, y E X, 
there exist disjoint sets U,V E T such that x E U and y E V . It is T0 or Kolmogorov if for 
any two different points x,y E X there exists a U E T such that UA{x,y} is a singleton.

Finite topological spaces stand out from general topological spaces by the fact that the 
only Hausdorff topology on a finite topological space X is the discrete topology consisting 
of all subsets of X.
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Proposition 1.4.7. [17, Proposition 3.8] Let (X, T ) be a finite topological space and let 
A C X. Then

cl A = cl a and opn A = opn a.
a£A a£A

Proof. Let A' := Ua&A cl a. Clearly, A C A' C cl A. Since X is finite, A' is closed as a 
finite union of closed sets. Therefore, also cl A C A'. Since X is finite, and therefore an 
Alexandrov space, the second formula is dual. □

A remarkable feature of finite topological spaces is the following theorem.

Theorem 1.4.8. (Alexandrov Theorem [1]) For a preorder < on a finite set X, there 
is a topology T< on X whose open sets are the upper sets with respect to <. For 
a topology T on a finite set X, there is a preorder <T where x <T y if and only if 
x G clT y. The correspondences T <T and < T< are mutually inverse. Under these 
correspondences continuous maps are transformed into order-preserving maps and vice 
versa. Moreover, the topology T is T0 (Kolmogorov) if and only if the preorder <T is a 
partial order.

Figure 1.3: An example of the correspondence between a finite topological space and a 
partial order provided by Alexandrov Theorem. Left: a finite space X = {A, B, C, D} 

with a topology T = {0, {A}, {D}, {A, B}, {A,B,D}, {A,B,C,D}}. Right: the poset 
associated to the topological space (X, T).

The correspondence resulting from Theorem 1.4.8 lets us translate concepts and prob
lems between topology and order theory (see the example in Figure 1.3). It follows directly 
from the theorem that closed sets can be identified with down sets and open sets with 
upper sets. We can also easily find similar identifications for other types of sets.

Proposition 1.4.9. [17, Proposition 3.10] Let (X, T ) be a finite topological space. Then, 
for A X we have

opnT A = {x G X | 3aSA x >T a},

cIt A = {x G X | 3aeA x <t a}, 

intT A = {a G A | VxeX x >T a x G A}.

In other words, clT A is the minimal down set with respect to <T containing A, opn A 
is the minimal upper set with respect to <T containing A and intT A is the maximal upper 
set with respect to <T contained in A.
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Figure 1.4: Left: a finite topological space (X, T ) with a partition into two sets A = 
{{A, D, E, G}, {B, C, F }}. Right: the same space X with the disconnecting topology 
T (A). Poset associated to the new topology consists of two components.

Proposition 1.4.10. [17, Proposition 3.11] Assume X is a T0 finite topological space 
and A C X. Then A is locally closed if and only if A is convex with respect to <t.

Proof. Assume that A is locally closed. Let x,y E A. By Proposition 1.4.3 we can write
A = U A D, where U is open and D is closed. By Theorem 1.4.8 we know that U is an 
upper set and D is a down set with respect to <T. Let x, z E A and let y E X be such 
that x <t y <t z. Since x E U and U is an upper set, it follows, that y E U. Since z E D 
and D is a down set, it follows y E D. Thus y E U A D = A.

Conversely, assume that A is convex with respect to <T. By Proposition 1.4.3(ii) it 
suffices to prove that moT A = clT A \ A is closed. Suppose the contrary. Then there 
exist an x E moT A and a y E moT A such that x E clT y, that is x <T y. It follows from 
Proposition 1.4.9 and y E moT A C clT A that there exists an element z E A such that 
y <T z. In consequence we get x <T z, and therefore x E clTA. In view of x E moTA 
this implies x E A, and the assumed convexity of A then gives y E A, which contradicts 
y E moT A. □

We say that sets A, B C X are disconnected if there exist open and disjoint sets U and 
V such that A C U and B C V , otherwise they are connected . A connected set A C X is 
a connected component of X if there is no connected set B C X such that A C B. Note 
that the family of connected components of a topological space X forms a partition of X.

A partition A is T -disconnected if each set A E A is open in topology T , other
wise A is T -connected. In particular, the partition of X into connected components is 
T-disconnected. Observe that A* (see (1.1)) is the smallest topology in U A such that A 

is A*-disconnected.

Theorem 1.4.11. [7, Theorem 5.1] Assume (X, T) is an arbitrary topological space and 
A is a finite family of mutually disjoint, nonempty subsets of X. Then T(A) := (A A T)* 

(see (1.2)) is a topology on A. Moreover,
(i) if T is a T0 topology, then so is T(A);
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(ii) for every A E A, the topology induced on A by T coincides with the topology 
induced on A by T(A);

(iii) the family A is T(A)-disconnected;
(iv) if additionally A = X and each set in A is T-connected, then the connected 

components with respect to T(A) coincide with the sets in A.
We say that T(A) is the disconnecting topology on A induced by T and A (see 

Figure 1.4).

If A is a singleton, say A = {A}, then we write T(A) := T(A). Note that in this case 
the disconnecting topology and topology induced by T in A coincide. In particular T(A) = 
({A} A T)* = {U A A | U E T}. We have the following straightforward observation.

Corollary 1.4.12. Let (X, T) be a topological space and A is a finite family of mutually 
disjoint, nonempty subsets of X. Then the disconnecting topology T(A) is finer then the 
topology induced by T in U A, that is T(U A) C T(A).

1.5 Algebra

A pair (G, +) is called a group if the sum operator + : G x G G satisfies:
(i) ya,b,ceG (a + b) + c = a + (b + c) (associativity),

(ii) 3eeG VaeG e + a = a = a + e (neutral element),
(iii) VaeG 3beG a + b = e = b + a, where e is the neutral element (inverse elements). 

If additionally
(iv) ya,beG a + b = b + a (commutativity),

then we say that (G, +) is an abelian group. A subset H C G is a subgroup if a + b E H 
for any a, b E H. Then (H, +H) is a group, where +H denotes the restriction of the sum 
operator to H. A group consisting of only one element is called a trivial group and is 
denoted by 0. If n E N then we write na for the sum of n copies of an element a E G,

n

that is na = a + a + ... + a. A set B C G is called a basis of a group G if for every a E G 
there exists a unique set of integers {nb}bEB such that

a = nbb.
bEB

An abelian group G is free if it admits a basis. Every basis of a free abelian group G has 
the same number of elements [16, Theorem 7.3]. An abelian group with a finite basis is 
called a finitely generated abelian group. The rank of a finitely generated group G is the 
cardinality of its basis. We refer to elements of a basis as gene rat o rs .

Let G1, . . . , Gk be a finite family of groups. The direct product of these groups is the 
Cartesian product G1 x G2 x ... x Gk with the sum operator:

+ : ((h1-> . . . , hk(hi, . . . , hk)) (gl +1 hl, g2 +2 g2, . . . , gk +k gk).

Direct product of groups gives a new group. We denote direct product by G1 ®G2®.. .®Gk 

or i Gi.
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Let (G, +g) and (H, +H) be groups. A map h : G H is a homomorphism if for every 
a,b E G we have h(a +g b) = h(a) +H h(b). We call h a monomorphism, epimorphism 
or isomorphism respectively when h is injective, surjective or bijective. The image of a 
homomorphism is the set imh := {h(a) E H | a E G}. The kernel of a homomorphism is 
the set ker h := {a E G | h(a) = eH}, that is a set of elements mapped into the neutral 
element of H.

A sequence of abelian groups and homomorphisms

h0 h1 h2 hn
X0 --------- > Xi ------ > X2 ------ > . . . ------ > Xn+1

is an exact sequence if for every i E {0, 1, ..., n - 1} we have imhi = ker hi+1 . The 
following two propositions are straightforward.

Proposition 1.5.1. If the sequence

0 B C 0

is exact then the map g is an isomorphism.

Proposition 1.5.2. If in the following exact sequence

Xi X2 2 ■ X3-^ \ - X5

h1 is surjective and h4 is injective, then X3 = 0.

Lemma 1.5.3. (The Steenrod five-lemma)[22, Lemma 24.3] Suppose one is given a com
mutative diagram of abelian groups and homomorphisms 

A1

h1
v'

h2
■v"

Bi ------ > B2

------ > A3 --------- A4 ------------ >■

h3 h.4

------ > b3------ > b4---- >

A5

h5
4"

B5

------ > A 2

in which the horizontal sequences are exact. If h1, h2 , h4, and h5 are isomorphisms, so is 
h3.

Let H be a subgroup of an abelian group (G, +). The quotient group G /H is the 
group consisting of the family of equivalence classes

{M 1 g E G} := {g + H c G 1 g E G} = {{g + h 1 h E H} 1 g E G}

with the sum operator given by

+ : G /h x G /h 3 ([g], [h]) [g + h] E G /h.

A triple (R, +, •) with operators +, • : R x R R is a ring if (R, +) is an abelian 
group and:

(i) ya,b,ceR (a • b) • c = a • (b • c), (associativity)
(ii) ya,b,ceR a • (b + c) = a • b + a • c, (distributivity)
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(iii) ^a,b,c^R (a + b) • c = a • c + b • c. (distributivity) 
If additionally

(iv) 3£ERya£R £ • a = a = a • £ (neutral element),
we say that R is a ring with unity. The neutral element of the sum operator is usually 
denoted by 0 and the neutral element of the product operator by 1. We say that (R, + , •) 
is a field if conditions (i)-(vi) are satisfied, where

(v) VaeR\{Q} ^b£R a • b = 1 = b • a, (inverse elements)
(vi) ya,beR a • b = b • a. (commutativity)

Let (M, +) be an abelian group and (R, ©, Q) a ring with unity. We say that (M, R, •) 
is an R-module if • : R x M M is an operator, called external multiplication, such that 
for every x, y G M and a, b G R:

(i) a • (x + y) = a • x + a • y,
(ii) (a © b) • x = a • x + b • x,

(iii) (a Q b) • x = a • (b • x),
(iv) 1 R • x = x.

An R-module (M, R, •) where R is a field is called a vector space M over a field R. A 
triple (N, R, •), where N C M is a subspace of a vector space M if for every v, w G N and 
a G R we have a • (v + w) G N. We then write N C M.
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Chapter 2

Algebraic topology

In this chapter we recall concepts from algebraic topology needed in sequel. The 
Sections 2.1-2.3 are based on [22]. In Sections 2.4 and 2.5 we follow the exposition in [17] 
and [6], respectively.

2.1 Simplicial theory

2.1.1 Geometric simplicial complexes

A set of points V = {v0, v1, . . . , vn} C Rd is affinely independent if

nn
tv = 0 and ti = 0

i=0 i=0

implies that ti = 0 for all i G {0,1,..., n}. Let (v0, v1,... vn) C Rd denote the family of 
barycentric combinations of vertices V, that is points x G Rd satisfying

nn

x = tivi such that ti=1, where Vie{o,i,...,n}i« > 0. (2.1)
i=0 i=0

We say that (v0,v1,... vn) is a set spanned by V. A set a spanned by V, a collection of 
n + 1 affinely independent points, is called an n-simplex. Then n is referred to as the 
dimension of a and denoted dim a. Coefficients ti uniquely define every point x G a and 
are called the barycentric coordinates of x with respect to V. A simplex t spanned by a 
subset W C V is called a face of the simplex a; we denote this by t a. In this case we 
also say that a is a coface of t. If W C V then t is a proper face of a and a is a proper 
coface of t. The union of proper faces of a simplex a is called the combinatorial boundary 
of a and is denoted Bd a. The combinatorial interior of a is defined as Int a := a \ Bd a. 
The star of a simplex a denoted st a is the union of the combinatorial interiors of the 
cofaces of a, that is st a = |J{Int t | a t}.

A finite collection of simplices K in Rd is called geometrical simplicial complex or 
briefly a simplicial complex if the following conditions are satisfied:

1) if a G K and t is a face of a then t G K,
2) if a, t G K then a n t G K.
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The dimension of K , denoted dim K is the maximum of dimensions of simplices in K. 
A subset L C K is said to be a subcomplex of K if L is a simplicial complex. In particular, 
the collection Kn of all simplices of K up to dimension n forms a subcomplex. We call 
it an n-skeleton of K . Note that the family of simplices of K of exactly dimension n, 
denoted by K{n}, is not a subcomplex of K. A simplex a E K is a toplex in K if there is 
no proper coface of a in K. The union |JaEK a C Rd, denoted |K|, is called the polytope 
of K.

A complex L is a subdivision of a complex K if |L| = |K| and for every simplex t E L 
there exists a a E K such that t C a. There is a standard way to construct a subdivision. 
To this end we define the barycenter of a simplex a = (v0,v1,..., vn) as the point

n1:= £ —— vi. 
i=0 n +1 i

The collection of simplices

sdK := {(¿o, di,.. . , ap) | a0 ai ... ap and ai E K for i E {0,1,... ,p}}

is called the first barycentric subdivision of complex K (see Figure 2.2, left and right 
panel).

Let K be a simplicial complex. Every point X E | K| is contained in the interior of a 
unique simplex (v0, v1,. . . , vn) = a E K. This means that

n
X = tivi, for some ti > 0.

i=0
(2.2)

Thus, we can generalize the concept of the barycentric coordinate of an X E |K| to a map 
tv : |K| x V0 [0,1]. Let x E Int a and let ti be as in (2.2). Then we set

t(X, v) := tv(X) :=
iti

I0
if v = vi, 

otherwise.

A simplicial map is a map f : K0 L0 such that

(vo,vi, . . . ,vn )E K (f (v0),f (vi),...,f (vn)) E L.

A simplicial map f : K0 L0 can be linearly extended to a continuous map |f | : |K |

| L| by the formula 
f | (x) := £ tv(x)f(v).

v£Ko

We call |f| the linear extension of the simplicial map f.

Lemma 2.1.1. [22, Lemma 2.8] Let f : K0 L0 be a bijective simplicial map such that
f-1 is also a simplicial map. Then |f | : |K| |L| is a homeomorphism.
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2.1.2 Abstract simplicial complexes

An abstract n-simplex is a finite set a of n +1 elements. The dimension of a a is 
the number of its elements minus one. An abstract simplicial complex is a collection A of 
abstract simplices such that if a is in A, then all non-empty subsets of a are also in A. A 
subcollection B C A is a subcomplex of A if B is an abstract simplicial complex itself.

A map f : A0 B0 between 0-skeletons of abstract simplicial complexes A and B is
a simplicial map in the context of abstract simplicial complexes if

{Xo,Xi,. . . ,Xn} E A {f (xo),f (xi),...,f (xn)} E B.

We say that a simplicial map f : Ao Bo is an isomorphism of a simplicial complexes if 
f is a bijection such that f-1 is also a simplicial map. Two abstract simplicial complexes 
A, B are isomorphic if there exists an isomorphism f : Ao Bo.

We can think of an abstract simplicial complex as a regular simplicial complex with 
dropped geometric information. More precisely, if K is a simplicial complex, then the 
collection

{{vo,v1,.. .,v. } 1 (v0,v1, . . v. } = a E K}

is an abstract simplicial complex called the vertex scheme of K. We say that simplicial 
complex K is a geometric realization or polytope of an abstract simplicial complex A if 
a vertex scheme of K is isomorphic to A. We refer to an isomorphism p : Ao Ko as 
embedding map of an abstract simplical complex A. By Lemma 2.1.1 polytopes of any two 
geometric realizations of an abstract simplicial complex A are homeomorphic. Thus, the 
geometric realization of an abstract simplicial complex is unique up to a homeomorphism. 
We denote the geometric realization of an abstract simplicial complex A by |A|.

2.1.3 Order complex

The nerve of a finite topological space (X, T) is the collection of all nonempty chains 
in (X, <t). We denote it K(X, T), or briefly K(X) if the topology T is clear from the 
context. It forms an abstract simplicial complex that we call the order complex of (X, T) 
(see Figure 2.1). As already mentioned, for every point a E |K(X, T)| there exists a unique 
a E K(X, T) such that a E Int a. It follows that there exists a chain xo < x1 < ... < xn in 
(X, <t) such that a = (p(xo),p(x1),. . . ,p(xn)) where p : X K(X, T) is an embedding 
map. We call this chain the support of a and we denote it suppa := {xo, x1, . . . , xn}.

The construction of the order complex, similarly to the barycentric subdivision, is 
based on subchains. In fact, both constructions are related. Let K be a simplicial 
complex. It naturally induces a partial order (K, ^) where is the face relation between 
simplices. The vertices of the order complex of this poset are the simplices of K and 
the geometric realization of the order complex is the first barycentric subdivision, that is 
sdK = K(K, 7^) with the embedding map p : Ko(K, 7^) (sdK)o, given by p(a) := a 
(see Figure 2.2).
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Figure 2.1: Left: an example of a poset (a finite topological space). Right: the associated 
order complex.

Figure 2.2: A simple simplicial complex K (left), a partial order (K, ^) induced by the 
face relation of K (center) and the associated order complex K(K, 7^) (right).

Proposition 2.1.2. [17, Proposition 3.1] Let (X, <) be a poset and let A, B C X. Then

K(A n B) = K(A) n K(B) and |K(A n B)| = |K(A)| n |K(B)|. (2.3)

Moreover, if A and B are down sets, then

K(A U B) = K(A) U K(B) and |K(A U B)| = |K(A)| U |K(B)|. (2.4)

Proof. Property (2.3) and inclusions K(A) U K(B) C K(A U B), |K(A)| U |K(B)| C 
|K(A U B)| are straightforward. To see that K(A U B) C K(A) U K(B) and |K(A U B)| C 

|K(A)| U |K(B)| consider a chain x1 < x2 < ••• < xk in K(A U B). Without loss of 
generality we may assume that xk e A. Since A is a down set, the elements of chain 
x1 < x2 < • • • < xk are in A. Thus, {x0, x1,..., xk} e K(A) C K(A) U K(B). Hence, 
K(AU B) C K(A) U K(B). Clearly, an embedding of {x0, x1, . . . , xk} is in |K(A)|, therefore 

the inclusion |K(A U B)| C |K(A) | U |K(B)| follows.

Let f : (X, TX) (Y, TY) be a continuous map between two T0 topological spaces.
By Alexandrov Theorem (1.4.8) it preserves the partial orders <T X and <T Y . Therefore, 
a continuous map f induces a simplicial map K(f) : K(X, TX) K(Y, TY).
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2.1.4 Simplicial homology

Let c be a simplex, either abstract or regular, of dimension 1 or higher, defined 
or spanned by set of points V = {v0,v1,... , vp}. Up to even permutations, we can 
distinguish two classes of the orderings of those points. We call these equivalence classes 
the orientations of a simplex c . An oriented simplex is a simplex c = [v0, v1, . . . , vp] with 
the orientation induced by the order v0,v1,..., vp. We denote simplex c with the opposite 
orientation by —c. Let K be a complex, abstract or geometric. Denote by K{p} the set 
of all oriented simplices in K of dimension p. Note that K{0} = K{0}, because 0-simplices 
have only one possible orientation. Let R be a fixed commutative ring with unity. A map

cp : K{p} y R

satisfying c(—c) = —c(c) when p > 0 is called a p-chain on K over R. An elementary 
chain for an oriented simplex c is defined by

1 if T = C

ca(t) := < —1 if t = —c

0 if otherwise.

Since for p = 0 we have only one possible orientation, every map c : K0 H R is a 0-chain. 
In particular, an elementary 0-chain associated with a 0-simplex a is a map given by

( ) i1 if v = a
c-(v) := S

I 0 otherwise.

In the sequel we identify an elementary chain c., with the simplex a itself, that is we 
write a = c,. For p E {0,1,..., dim K} the simplicial chain group, denoted Cp(K), is 
the family of all p-chains in the simplicial complex K, with pointwise addition of chains 
as the group operator. For p E {0,1,..., dimK} we take C^(K) as the trivial group.

Lemma 2.1.3. [22, Lemma 5.1] The simplicial chain group C^(K) is a free abelian group 
with a basis consisting of all the elementary p-chains in C^(K).

Now, we can introduce the boundary operator, the central homomorphism for homol
ogy theory

dp : C*(K) H C^-i(K).

It is defined for basis elements by

p
dpa = dp [vo,vi, ...,Vp ] := 52(-1)*[vo, ■ ■■,Vi,... ,Vp ],

i=0

where Vi means the absence of the zth point. It is easy to prove that for every p we 
have dp ◦ dp+1 = 0. The group of p-cycles is defined as the kernel of dp and the group of 
p-boundaries is the image of dp+1. We denote them by

Zp^(K) := kerdp and B^(K) := imdp+1.
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The quotient group

H?(K) := K) /Ba(K)

is called the p-th homology group of K.
In particular, if R = F is a field, then CA(K) is a vector space over F, and so is 

Hp(K). Note that the chain group and homology groups are in fact R-modules with 
pointwise defined external multiplication. This is important in the persistence homology 
theory (see Section 2.5), which encounters technical difficulties with non-fields [24].

2.1.5 Relative simplicial homology

Let K be a simplicial complex and let K' be its subcomplex. A quotient group of 
p-chains Cp (K) /Ca , K') is the group of p-chains in K relative to K'. We denote it by 
CpA(K, K'). In particular, p-chains c, d G CA(K) are considered identical in CA(K,K') if 
c - d G ca(K').

One can easily verify that the boundary operator dp induces its relative variant

dp : C?(K,K') Cp-i(K,K'),

which also satisfies dp-1 ◦ dp = 0.
Thus, we may define the relative group of p-cycles, p-boundaries and p-homologies 

respectively by,

Za(K,K') := ker dp,

B^(K,K') := imdp+i,

HpA(K, K') := ZP(ZK') /ba(k, k').

We present two classical results for simplicial homology theory that we will use in the 
sequel.

Theorem 2.1.4. (Excision theorem [22, Theorem 9.1]) Let K be a simplicial complex 
and let K' be its subcomplex. Assume that U is an open set contained in |K'| such that 
|K | \ U is a polytope of a subcomplex L of K and L' is the subcomplex of K whose 
polytope is |K'| \ U. Then the inclusion (L,L') (K, K') induces an isomorphism

H a(L,L') = H a (K,K')

in simplicial homology.

Theorem 2.1.5. (Relative simplicial Mayer-Vietoris sequence [22, Chapter 25 Ex.2]) Let 
K be a simplicial complex. Assume that L and M are subcomplexes of K such that 
K = L U M. Let L' and M' be subcomplexes of L and M, respectively. Then there is an 
exact sequence

... hA(l n m,l' n m') hA(l, l') © hA(m, m')

hA(l u m,l' u m') hA-1(l n m, L n m')...,

called the relative Mayer-Vietoris sequence.
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2.2 Chain complexes and chain homology

The homology theory for chain complexes may be generalized to the abstract setting 
of chain complexes. A chain complex is a family C = {Cp,dp}p&z of ^-modules Cp and 
homomorphisms

dp : Cp Cp-1

such that dp ◦ dp+1 = 0 for every p. Then, we define the group of p-cycles andp-boundaries 
of chain complex C respectively by

Zp(C) := kerdp and Bp(C) := imdp+1.

The homology of a chain complex C with coefficients in R is defined by

Hp(C) := C) /bp(c).

In the case of field coefficients the rank of Hp(C) is called the pth Betti number of C and 
it is denoted /3p(C). Chain groups of a simplicial complex together with the boundary 
operators provide an example of a chain complex.

Let C = {Cp,dp} and D = {Dp,dD} be chain complexes. A collection of maps 
{np : Cp Dp}, written for short as n : C D, is a chain map if dpP ◦ np = nP-1 ◦ dp for 
all p. A chain map induces a homomorphism

(np)* : Hp(C') [a]C [n(a)]D G Hp(D) (2.5)

where a G Zp(C) and [ • ]C, [ • ]D are equivalence classes in homology groups of C and D.
In particular, a simplicial map f : Ko Lo induces a chain map f# : Cp(K) Cp(L)

defined on an elementary a = (v0,v1, ... , vn) by

I (f (vo),f (vi),..., f (vn)) if all f (vi) are pairwise different, 
f#(a) := L ,

0 otherwise.

Therefore, a simplicial map also induces a homomorphism in homology f* := (f#)* defined 
as in (2.5).

2.3 Singular theory

2.3.1 Singular chain complex

Several topological spaces, in particular most finite topological spaces cannot be rep
resented as solids of simplicial complexes. Singular homology theory, on the other hand, 
applies to all topological spaces; in particular to finite topological spaces. However, sin
gular theory operates on a generally uncountable family of objects. This makes it compu
tationally inapplicable, at least directly. Thus, a method is to encode the singular theory 
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into the computationally feasible simplicial theory. It may be a bit counter-intuitive, but 
to extract some topological invariants of a finite space, we need to go through a relatively 
sophisticated object (singular theory) just to reduce it to a combinatorial one (simplicial 
theory) again.

Consider the vector space RN of real-valued infinite sequences with pointwise addition 
and multiplication by scalars. Let Rœ denote the subspace consisting of sequences which 
are non-zero only for a finite number of arguments. Let i > 0, then by ei we denote the 
vector in Rœ with 0s for every coordinate except the ith one. Thus, we have

e1 := (1,0,0,0,...),
e2 := (0, 1, 0, 0, . . .),

e3 := (0, 0, 1, 0, . . .),

Denote by Ap the simplex spanned by vectors e1 ,e2,..., ep+1. It is called the standard 
p-simplex (see Figure 2.3 for an example). In particular Ap = (e1,e2,..., ep+1).

Now, let X be a topological space. A continuous map ôp : Ap X is a singular 
p-simplex . Let Sp(X ) denote the free abelian group generated by the singular p-simplices. 
It is called the singular chain group of X in dimension p and its elements are referred to 
as singular p-chains of X. Hence, a singular p-chain may be written as a finite formal 
sum i ni ôi of p-simplices ôi : Ap X with ni E Z.

To construct a chain complex we still need a boundary operator. To this end we 
introduce inclusion maps lzp : Ap-1 Ap defined for i E {1,... ,p} by

lpi((x1,x2,.. xp,...)) := (x1, x2,.. Xi-1 ’ xi,.
ith

xp , 0, 0, . . .) .
(p+1)th

25



The image of lpi is a p - 1 dimensional face of the standard singular p simplex. We define 
the singular boundary operator dp : Sp(X) Sp-1(X) on the basis elements of Sp(X) by

ars := ¿(-1)M ◦ ip.
i=o

The singular boundary operator satisfies dpodp+1 = 0. Thus, we get a well defined singular 
chain complex S(X) = {Sp(X),dp}. We apply it to the construction from Section 2.2 to 
obtain singular homology. We denote the pth singular homology group of a topological 
space X by Hp(X) := Hp(S(X)).

In a similar way one can define singular homology modules with coefficients in a com
mutative ring with unity. In the case of field coefficients and finitely generated homology 
we denote the pth Betti number by /3p(X) := /3p(S(X)).

Let f : X Y be a continuous map between topological spaces. It induces a chain 
map f# : S(X) S(Y) defined for 3p E S(X) by (fp)#(dp) := f ◦ 6p. Chain map, in 
turn, induces a homomorphism H(f) : H(X) H(Y). We also write f* := H(f).

The above construction works also for relative complexes. Let A be a subset of a 
topological space X. A chain complex S(A) is a subcomplex of S(X). Hence, we have the 
quotient chain complex S(X, A) := S(X) S(A), the induced boundary homomorphism 
and homology groups, denoted by H(X, A) := H(S(X, A)).

Theorem 2.3.1. [22, Chapter 24, Exercise 1] Let B C A C X be a triple of topological 
spaces. The inclusions induce the following exact sequence, called the exact homology 
sequence of the triple:

... Hn(Ai B) Hn(X, B) Hn(X, A) l^n-^A B) ... .

If a topological space X has finitely generated homology, i.e. it has only a finite 
number of nonzero homology groups and each of them is finitely generated, we define the 
Poincare polynomial

PX(t) := £/3i(X)ti. (2.6)
i=1

Similarly, for a topological pair (X, A) we put

ra

Px,A(t) := £f3i(X,A)ti. (2.7)
i=1

Finally, the following theorem shows that the simplicial homology groups of a simplicial 
complex K are isomorphic to the singular homology groups of its polytope |K|.

Theorem 2.3.2. [22, Theorem 34.3 & Theorem 34.4] Let K be a simplicial complex. 
There exists a chain map n : CA(K) S(|K|) that sends simplicial chains of K into 
singular chains of the polytope |K|, such that n* is an isomorphism of simplicial and 
singular homology. Moreover, n* commutes with homomorphisms induced by simplicial 
maps.
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2.4 Homology of finite topological spaces

This section contains results from Section 3 in [17].
We have noted in Section 2.1.3 that there is a natural correspondence between finite 

topological spaces and simplicial complexes. It also provides a geometrical intuition for 
understanding finite topologies. However, if we want to consider homology of a finite 
topological space, we need to use singular theory, which is still well-defined for finite 
setting (see Figure 2.4). In order to make the notation more explicit, we use H and 
HA for, respectively, singular and simplicial homology functor. In particular, for a finite 
topological space X and its order complex K(X), we write H(X) and HA(K(X)).

A bridge that connecting finite topological spaces and simplicial complexes was devel
oped by McCord [18]. Let (X, T ) be a finite topological space. The map

H(x,T) : |K(X, T)| 3 a maxsupp a E (X, T), 

where the max refers to the partial order <t, is called the McCord map. Actually, McCord 
uses convection identifying down sets with open sets and puts p,(x,T) (a) := minsupp a. 
However, the duality of open and closed sets in finite topological spaces (Proposition 
1.4.2) justifies this modification.

The following theorem is a consequence of [3, Theorem 1.4.6 and Remark 1.4.7] and 
[12, Proposition 4.21].

Theorem 2.4.1. (McCord Theorem) The map p,(x,T) is continuous. If f : (X, Tx) 
(Y, TY ) is a continuous map of two finite T0 topological spaces, then the diagrams

\K(X,Tx)| \K(Y,Ty)\ H (\K(X, Tx)\) H (\K(Y,Ty)\)

^(X,rX )

(X, Tx) -

a(Y,r Y )

(Y, Ty)

f*(X,r x ).

H (X, Tx ) -

a(Y,r Y ).

H (Y, Ty )

commute. Moreover, the homomorphisms p.(x,TXand p.(Y,TY)* are isomorphisms of sin
gular homologies.

Consequently, the homology of a finite space is the same as of the polytope of its order 
complex. We can further combine isomorphism p,x* with isomorphism n* introduced in 
Theorem 2.3.2, to establish a complete bridge between the singular homology of a finite 
topological space and the simplicial homology of its order complex:

H(X) = H(\K(X)|) Ha(K(X)).

We extend this correspondence to relative homology as well (see Figure 2.5 for geometrical 
interpretation).

Proposition 2.4.2. [17, Proposition 3.12] Let A, B be subsets of a finite topological 
space X such that B C A. Then K(B) is a subcomplex of K(A) and

H(A,B) = Ha(K(A), K(B)).
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Figure 2.4: Map 8 shows an example of a continuous embedding of the 2-standard simplex 
into a finite topological space. Thus 8 is a a singular 2-simplex in a finite topological space.

Figure 2.5: To "see" relative homology in the context of finite topological spaces it is 
enough to consider the simplicial homology of the corresponding order complexes. Given 
a finite topological space (left) and sets A, B, C we have H (A, B ) = HA (K(A), K(B )) and 
H(A,C) = HA(K(A), K(C)). Order complexes K(A), K(B) and K(C) are highlighted in 
blue, red and green color, respectively.
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Proof. The McCord map /iX restricted to A and B naturally induces a homomorphism 
¡iX*(A,B) in relative homology. Consider the commutative diagram

Hn(\K(B)\)^ H„(|K(A)|) -► Hn(\K(A)\, |K(B)|) —> Hn-i(IK(B)|) -> Hn-i(IK(A)\)

IX * IX * p.X *(A,B) IX * IX *

Hn(B) -------- ► Hn(A) ------------ > Hn(A,B) ------------ > Hn-l(B) --------- > Hn-l(A)

The Five Lemma [22, Lemma 24.3] implies that /iX*(A,B) is also an isomorphism. Simi
larly, the chain map n induces a homomorphism n*(A, B)• Thus again, the commutative 
diagram

H*(K(B))^> h*(K(A»^> <(K(A),K(B))^ h^-i(K(B))^ H^-i(K(A))

Hn(\K(B)\)^ H (\K(A)\) —> Hn(\K(A)\, |K(B)|) -> Hn-i(\K(B)\) -> Hn-i(\K(A)\) 

together with the Five Lemma implies that n*(A, B) is an isomorphism. It follows that 
¡iX*(A, B) ◦ n*(A, B) is also an isomorphism. □

In the sequel, we also need the variants of the excision theorem and Mayer-Vietoris 
sequence for finite topological spaces.

Theorem 2.4.3. [17, Theorem 3.14] Let (X, T ) be a finite topological space and let 
A, B, C, D be closed subsets of X such that B C A, D C C and A \ B = C \ D. Then 
H (A,B) = H (C,D).

Proof. We first observe that K(A) \ K(B) = K(C) \ K(D). Indeed, consider a chain q 

in A which is not a chain in B. Let q0 be the maximal element of q. Then q0 G B, 
because otherwise, since B is a closed set, and therefore a down set with respect to <t, 
we get q C B. Hence, q0 G A \ B = C \ D. Since C is a down set as a closed set, 
it follows that q C C and clearly q C D. Thus, q G K(C) \ K(D) which proves that 
K(A) \ K(B) C K(C) \ K(D). The proof of the opposite inclusion is analogous.

Define B := |K(A)| \ |K(cl(A\ B))| (see Figure 2.6). Clearly, B is open in |K(A)|. We 
will show that B C |K(B)|. Let a G B. Set r := supp (a) and r0 := max(r). Suppose 
that r0 G B. Then, r0 G A \ B and r C cl(A \ B) which implies a G |r| C |K(cl(A \ B))|, 
a contradiction. Hence, r C B and a G |r| C |K(B)|.

Moreover,

|K(A)| \ B = |K(A)| \ (|K(A)| \ |K(cl(A \ B))|) = |K(cl(A \ B))|

and by Proposition 2.1.2

|K(B)| \ B= |K(B)| n |K(cl(A \ B))| = |K(B n cl(A \ B))|

= |K(cl(A \ B) \ (A \ B))| = K(mo(A \ B))|.
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Figure 2.6: A geometrical interpretation of a set B for A = {a, b, c, d, e} and B = {c, e}. 

Note that e G B.

Analogous properties hold for D := \K(C)| \ |K(cl(C \ D))l in \K(C)|. Therefore, by 
Theorem 2.1.4 we have the following isomorphisms

HA(K(A), K(B)) HA(K(cl(A \ B), K(mo(A \ B)),

HA(K(C), K(D)) Ha(K(cl(C \ D), K(mo(C \ D)).

Note that according to A \ B = C \ D we have K(cl(A \ B)) = K(cl(C \ D)) and
K(mo(A \ B)) = K(mo(C \ D)). Thus, with Proposition 2.4.2 we get

H (A, B) = Ha(K(A), K(B)) = Ha(K(cl(A \ B), K(mo(A \ B)))

= Ha(K(cl(C \ D), K(mo(C \ D))) = Ha(K(C), K(D)) H (C, D),

which completes the proof of the theorem. □

Theorem 2.4.4. (Relative Mayer-Vietoris sequence for finite topological spaces [17, The
orem 3.17]) Let X be a finite topological space. Assume that Yo G X0,Yi G Xi are pairs 
of closed sets in X such that X = X0 U Xi. Then there is an exact sequence

... Hn (Xo n Xi ,Yo n Yi ) Hn (Xo, Yo ) e Hn (Xi ,Yi )

Hn (Xo U Xi ,Yo U Yi ) Hn-1 (Xo n Xi ,Yo n Yi )....

Proof. By Proposition 2.1.2 we have K(X) = K(Xo) U K(Xi) and K(Yo U Yi) = K(Yo) U 

K(Yi). Thus, the proof follows from the relative simplicial Mayer-Vietoris Theorem 2.1.5 
and Proposition 2.4.2. □
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2.5 Persistent homology

In this section we summarize the zig-zag persistence theory following [6].

2.5.1 Zigzag persistence

Let V denote a sequence (Vi )in=i of vector spaces with coefficients in a field F together 
with connecting maps (hi)n=11. Every connecting map can be a forward map hi : Vi Vi+1 

or a backward map hi : Vi+1 Vi. We write such a sequence as

V : Vi < h > V2 ' Vn. (2.8)

and we call it a zigzag module . Directions of maps in the sequence define its type. If all 
maps are forward (or backward) we refer to (2.8) as the persistence module . A module W 
is a submodule of V if both have the same type, each Wi is a subspace of Vi and for every 
map, depending on its direction, either hi(Wi) C Wi+i or hi(Wi+i) C Wi. A submodule 
W is a summand of V if there exists another submodule X of V such that Vi = Wi © Xi 

for every i. In that case V is a direct sum of zigzag modules W and X, and we write 
V=W©X. Amoduleis saidtobe decomposableifit canbewrittenas adirect sumof 
two nonzero submodules. It is indecomposable otherwise. An elementary example of an 
indecomposable module is the interval module I(b, d)

I(b,d) : Ii < > I2 < > . . . « > In, (2.9)

where Ii = F (a field fixed at the beginning of this section) if b < i < d and 0 otherwise. 
The integer b defining interval module is the birth time and d is the death time of the 
interval.

According to Gabriel Theorem [6, Theorem 2.5], we can decompose every zigzag mod
ule V into a direct sum of interval modules. In particular

V = I(bi, di) © I(&2, d2) © ... © I(bw, dN). (2.10)

We can gather births and deaths from the above decomposition into a multiset

Pers(V) ={(bi,di)|iE{1,2,...,N}}.

We refer to the elements of Pers(V) as the zigzag persistence pairs of V.

2.5.2 Interpretation of persistent homology

We are particularly interested in a zigzag persistence of homology vector spaces. Simi
larly to zigzag modules we can consider a sequence of simplicial complexes (or topological 
spaces) together with either forward or backward simplicial maps (or continuous maps), 
which we write as

X : Xi^f^ \-2 < " > . . . fn-^ Xn.
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Each simplicial map (or continuous map) fi induces homomorphism fi in homology (see 
Section 2.2 and 2.3.1). Thus, for a fixed dimension p, we obtain a zigzag module

lip X - ' ■ Hp(X2) • • ... ■ Hp(Xn). (2.11)

Each interval in the decomposition (2.10) of(2.11) represents a basis element ofHp(Xi) 
which persists trough the interval. Left end of the interval, referred to as the birth, 
indicates at which step the generator appears. Similarly, the right end point of the 
interval, referred to as the death, indicates when the generator vanishes. Consider the 
sequence of simplicial complexes in Figure 2.7 and the following sequence:

Ko —> Ki^- K^ K3^~ K4 —> K^- K5o^ K^- Ifa-t K^- K*,

(2.12) 

where every map is an inclusion, K5n6 := K5 AK6 and K6n7 := K6 AK7. Now, by applying 
the homology functor, we get a zigzag module

V : H(Ko) H(Ki) H(K2) H(K3) H(K4) H(K5)

H(K5n6) H(K6) H(^7) H(K7) H(K*),

and the associated multiset of persistence zigzag pairs Pers(V). We can graphically present 
Pers(V) using persistence barcode (see Figure 2.8), where every pair (bi, di) is represented 
by a separate bar with endpoints given by birth and death. Persistence barcode sums up 
the evolution of homology groups as the underlying space morphs. The vertical section of 
a barcode gives us the exact number of homology generators for a particular parameter 
value (e.g., for i = 5, we have 2 generators in the 0th dimension and 1 in 1st dimension). 
Looking at the barcode in Figure 2.8, we can also deduce that one of the cycles (1st 
dimensional homology generator) lives for a wide range of parameters, which may be 
interpreted as its robustness.
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Figure 2.7: A sequence of simplicial complexes. Every complex Ki is a subcomplex of a 
simplicial complex K drawn in the last picture.

Figure 2.8: A persistence barcode for a zigzag persistence module V (2.12) for a filtration 
from Figure 2.7. Red-colored bars represent persistence pairs of dimension 0, while blue 
bars correspond to the 1st dimension.
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Chapter 3

Dynamical systems

3.1 Continuous dynamical systems

The principal object of interest of this thesis is the theory of combinatorial dynam
ical systems. However, we first recall some basic concepts of the theory of continuous 
dynamical systems.

In this section we assume that X is a locally compact metric space.

Definition 3.1.1. A continuous dynamical system on X, or a flow, is a continuous map
: X x R X such that for every x E X and t, s E R we have

p(x, 0) = x and p(p(x,t),s) = <p(x,t + s).

A solution of a point x E X, is the map .:x- : R X given by <px(t) := <p(x,t). The 
invariant part of a set S C X is the set Inv S := {x E S | <p(x, R) C S}. In particular, 
S is an invariant set if S = Inv S. A compact set N C X is an isolating neighborhood if 
Inv N C int N. We say that an invariant set S is an isolated invariant set if there exists 
an isolating neighborhood N such that S C intN. Figure 3.1 shows basic examples of 
isolated invariant sets with corresponding isolated neighborhoods marked in green.

We can algebraically describe the nature of an isolated invariant set using the Conley 
index. Its construction involves a technical object called the index pair. We follow here 
the exposition presented in [19]. A pair P = (P1, P2) of closed sets such that P2 C P1 is 
an index pair for an isolated invariant set S if

(1) S = Inv(cl(P1 \ P2)) and cl(P1 \ P2) is a neighborhood of S,

(2) P2 is positively invariant in P1; that is given x E P2 and ^x([0,t]) C N, then 
M[0,t]) C

(3) P2 is an exit set for P-, that is given an x E P1 and a t1 > 0 such that ^x(t1) E Pi, 
there exists a t0 E [0,t1] for which .:x([0,t0]) C P1 and ^x(t0) E P2.

The following theorem guarantees the existence of an index pair.

Theorem 3.1.2. [19, Theorem 3.5] Given an isolated invariant set S, there exists an 
index pair for S.
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Figure 3.1: Examples of isolated invariant sets with their Conley indices: attracting point 
(left), saddle point (center) and repelling periodic orbit (right). Green sets represent 
isolating neighborhoods for given isolated invariant sets. For each example, the green set 
together with the beige set (it is empty in the first case) as an exit set form an index pair 
(P1,P2).

An example of an index pair is provided by Wazewski set. We say that a compact set 
N is a Wazewski set if N- := {x G N | Ve>0 p(x, [0, e]) / N} is closed. One can show 
that then N is an isolating neighborhood and (N, N-) is an index pair for Inv N. Note 
that if N is a Wazewski set then N \ N- is locally closed.

Theorem 3.1.3. [19, Theorem 3.12] (Wazewski principle) If N is a Wazewski set and 
H (N,N-) = 0 then Inv N = 0.

Even though index pairs are not unique, they carry common information. In particular, 
we define the homology Conley index of an isolated invariant set S as H(P1, P2), where 
(P1, P2) is an index pair for S.

Theorem 3.1.4. [19, Theorem 3.8] The Conley index is well defined, that is if (P1, P2) 

and (P[, P2) are index pairs for an isolated invariant set S then H(P1, P2) = H(P[, P2).

Conley index is used twofold. Firstly, by the Wazewski principle, if the Conley index 
for an isolating neighborhood N (that is the Conley index for Inv N) is non-trivial, then 
the invariant part of N is non-empty. See Figure 3.2 that the inverse implication is not 
valid. Secondly, the Conley index can serve as descriptor of an isolated invariant set. 
Notice that every example in Figure 3.1 has a different index.

Let x G X. An a- and w-limit sets of x for a dynamical system p are defined as

a(x):=cl Q px ((-œ, -t)),
tER+

u(x) := cl px ((t, +œ)).
tGR+

Limit sets capture the ultimate past and the ultimate future of a point x G X (see Figure 
3.3).
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Figure 3.2: The isolated invariant set S in the left picture consists of two stationary points 
and the orbit connecting them. The green and the beige set forms an index pair (P1, P2) 
for S resulting in a trivial Conley index. The isolated invariant set in the right picture 
is empty, yet the pair (P1 , P2) is still a valid index pair. This shows that the Conley 
index may fail to distinguish qualitative properties of the dynamics inside the isolating 
neighborhood (the green set) presented in both panels.

A compact invariant set A C X is an attractor if there exists a neighborhood U of 
A such that w(U) = A. Similarly, a compact invariant set R C X is an repeller if there 
exists a neighborhood U of R such that a(U) = R.

Definition 3.1.5. Let p be a dynamical system for a locally compact topological space 
X and let (P, <) be a finite partial order. A collection M = {Mp | p E P} of X is a Morse 
decomposition of X if

(i) M is a collection of mutually disjoint isolated invariant subsets of X,
(ii) for every x E X \ M there exist p, q E P such that p < q and

a(x) C Mp and u(x) C Mq

We refer to the elements of M as Morse sets.

The second condition means that the order imposed on Morse decomposition reflects 
the existence of trajectories between Morse sets. The Hasse diagram of the poset labeled 
with Conley indices of Morse sets in its nodes is called the Morse-Conley graph of the 
Morse decomposition[2]. The graph captures the global behavior of the dynamical system. 
Figure 3.4 shows an example of a Morse decomposition and its Morse-Conley graph.
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Figure 3.3: The «-limit set for a point x is the stationary point highlighted in green and 
its w-limit set is the blue periodic orbit.

Figure 3.4: An example of a Morse decomposition and the associated Morse-Conley graph. 
Green and orange sets represent index pairs for each Morse set.
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3.2 Combinatorial dynamical systems

Here, we present the general framework for combinatorial dynamics on finite topolog
ical spaces. It is mostly based on Section 4.1 and 4.2 in [17] and 2.3 in [7].

Assume that X is a finite topological space.

Definition 3.2.1. By a combinatorial dynamical system or briefly, a dynamical system 
in X we mean a multivalued map n : X x Z+ X such that for every x E X and 
m, n E Z+ we have

n(x, 0) = x and n (n(x, m), n) = n(x, m + n). (3.1)

Let n be a combinatorial dynamical system in X. Consider the multivalued map 
n : X X given by nn(x) := n(x,n). We call n1 the generator of the combinatorial 
dynamical system n. It follows from (3.1) that the combinatorial dynamical system n 
is uniquely determined by its generator. Thus, it is natural to identify a combinatorial 
dynamical system with its generator. In particular, we consider any multivalued map 
n : X X as a combinatorial dynamical system n : X x Z+ X defined recursively 
by

n(x, 1) := n(x), 

n(x,n +1) := n(n(x,n)),

as well as n(x, 0) := {x}. We call it the combinatorial dynamical system induced by a 
map n. In particular, the inverse n-1 (see Section 1.1) of n also induces a combinatorial 
dynamical system. We call it the dual dynamical system.

3.2.1 Combinatorial solutions and paths

A set is a Z-interval if it is of form Z D I where I is an interval in R. If a Z-interval 
has a minimum, we say it is left bounded; otherwise, it is left-infinite. It is right bounded 
if it has a maximum; otherwise it is right-infinite. If it is both right and left bounded, 
then it is bounded.

A solution of a combinatorial dynamical system n: X X in A C X is a partial 
map : Z A whose domain, denoted dom ^>, is a Z-interval and for any i,i + 1 E dom 
the inclusion ip(i + 1) E n(^(i)) holds. The solution is stationary if <p(t) = x for all 
t E dom for some x E X. The solution passes through x E X if x = <p(i) for some 
i E dom ^. The solution is full if dom = Z. It is a backward solution if dom y is 
left-infinite. It is a forward solution if dom is right-infinite. It is a partial solution or 
simply a path if dom y is bounded.

If is left-bounded, then we call the value of at the minimal value of its domain 
the left endpoint of If is right-bounded, then we call the value of at the maximal 
value of its domain the right endpoint of We denote the left and right endpoints of ^, 
respectively, by and ^°.
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A full solution p : Z X is periodic if there exists a T E N such that p(t + T) = p(t) 
for all t E Z. Note that a path p satisfying pr = p maybe extended to a periodic 
solution.

By a shift of a solution ip we mean the composition p ◦ rn, where the map

Tn : {k — n \ k E dom p} . m m + n E dom p

is an n-translation. Given a right-bounded solution p and a left-bounded solution f such 
that f E n(p°), there is a unique shift Tn such that

is a solution. We call this union of paths the concatenation of p and f and we denote it 
by p • We also identify each x E X with the trivial solution p : {0} {x}. Given a
full solution p, we denote its restrictions to Z+ by p+ and to Z- by p-. We finish this 
section with the following straightforward proposition.

Proposition 3.2.2. [17, Proposition 4.1] If p : Z X is a full solution of a dynamical
system n : X X, then Z 3 t p(-t) E X is a solution of the dual dynamical system 
induced by n -. We call it the dual solution and denote it pop.

3.2.2 Examples of combinatorial dynamical systems

In this section we briefly present and compare three examples of combinatorial dy
namical systems arising from a combinatorial analogue of the classical vector field. See 
[7] for another example of a combinatorial counterpart of a discrete dynamical system 
constructed from a sampled data.

The following examples show the evolution of the theory that we present in the next 
chapter. Note that a combinatorial dynamical system n : X X may be identified with 
the relation {(x,y) E X x X | y E n(x)} in X. Therefore, we can visualize it as a graph 
(see Section 1.2).

All three presented theories have slightly different general settings: CW-complexes, 
Lefschetz complexes and finite topological spaces. The examples we present are con
structed in a simplicial complexes, a natural common-ground for all three settings.

Forman's combinatorial vector field

Robin Forman [10] who introduced the concept of combinatorial vector field does not 
study combinatorial dynamical systems in our sense. However, they are present in his 
work implicitly via the concept of paths.

Let K be a finite simplicial complex. A Forman's combinatorial vector field on K is a 
map V : K K U {0} such that

(i) if V(a) = 0, then dim V(a) = dim a + 1, and a V(a);
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(ii) if V(a) = t = 0, then V(t) = 0;
(iii) for all a G K, #V-1a < 1.

A combinatorial vector field induces a partition {{a, V(a)} | a G K, V(a) = 0} for a 
such that V(a) = a and singletons {a} for a such that V(a) = 0 and a G im V. These 
doubletons and singletons are called combinatorial vectors . We can easily visualize this 
idea on the simplicial complex. Consider the example in Figure 3.5 where red dots denote 
singletons and doubletons are represented by red arrows from a to V(a). Condition (i) 
says that an arrow starting from a can only go to a coface of a of codimension 1. The 
second condition asserts that the head of an arrow cannot be a tail of another arrow. 
The third condition means that a simplex a can be the head of at most one simplex. 
One can show that this is equivalent to a partitioning the finite topological space induced 
by the face relation in a simplicial complex into singletons and connected locally closed 
doubletons (Figure 3.5, middle).

Forman defines V-paths of index p to be a sequence

Y : a0 ,T0i a1,T1i . . . , Tr-1i ar

such that for all i = 0, 1, . . . , r - 1
(i) dim ai = dim ar = p, dim ti = p + 1 ,

(ii) ti = V(ai),
(iii) ai = ai+1 Ti.

These conditions imply that a path of index p alternates between simplices of dimension 
p and p + 1. The movement from ai to ti goes along the combinatorial vector, while the 
step from ti to ai+1 is a descent to one of the faces of ti. Sequence v0, e0, v1, e1, v2, e2, v0 

is an example of a V-path of index 0 for the combinatorial vector field at Figure 3.5. We 
can wrap up this idea by reversing the arrows within combinatorial vectors in a poset 
and adding self-loops for singletons (see Figure 3.5, bottom). The resulting directed 
graph G(V) contains all V-paths. The corresponding combinatorial dynamical system 
n : K K in the finite topological space (K, T^) is given by

n(a) := V(a) U {t G K | a covers t} \ V-1(a).

Combinatorial multivector field in the sense of [21]

Theory of combinatorial multivector fields [21] is the direct predecessor of the theory 
presented in this dissertation. The theory is defined for Lefschetz complexes, but for the 
sake of this presentation, we stick to simplicial complexes. Let (K, T.) be a finite topolog
ical space induced by a simplicial complex. A multivector V is a convex subset of K with 
a unique maximal element. We say that a multivector V is critical if HA(cl V, mo V) = 0. 
A combinatorial multivector field is a partition of K into multivectors (see Figure 3.6 
middle). We denote this family of multivectors by V. For a G K we denote by [a] the 
unique multivector to which a belongs. The combinatorial dynamical system n : K K
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Figure 3.5: An example of a Forman's combinatorial vector field on a simplicial complex 
(top), its equivalent representation in terms of partitioning the poset (middle), and a 
directed graph capturing the combinatorial dynamics induced by the Forman's vector 
field.
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Figure 3.6: An example of combinatorial multivector vector field in the sense of [21] on a 
simplicial complex (top), its equivalent representation in terms of partitioning the poset 
(middle), and a directed graph capturing the combinatorial dynamics n induced by V.
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associated with V is defined for a E K by 

(cl a \ a ) U {a}

n(a) := < cl a \ [a]

if u is maximal in [u] and [u] is critical, 

if a is maximal in [a] and [a] is regular,

opn a A [a] otherwise.

Therefore, there are three types of arrows, the upward arrows inside multivectors, down
ward arrows from the maximal element in a multivector to its faces and a self-loop for 
a maximal element of a critical multivector. Again, we can translate this into a directed 
graph by starting with a poset, and then reversing arrows within multivectors, adding 
self-loops to the maximal elements of critical multivectors, and removing all down-arrows 
that do not start in a maximal element of a multivector. We also should add arrows 
resulting from upward or downward transitivity (e.g. from v2 to t0 and t0 to v4), but 
we skip them to keep the graph more readable. Figure 3.6 bottom shows an example an 
example of such a graph.

Combinatorial multivector field in the sense of [17]

Finally, we present an example of a combinatorial dynamical system associated to 
the multivector field theory which constitutes the main topic of this thesis. Let (K, 7^) 
be the finite topological space induced by a simplicial complex. The multivector V is 
simply a convex subset of K. A combinatorial multivector field V is a partition of K into 
multivectors (see Figure 3.7 middle). The unique multivector to which point a belongs 
is denoted by [a]V. Then the associated combinatorial dynamical system nV : K K is 
defined by

nV(a) := [a]V U cl a.

This definition immediately translates itself into a graph build upon a poset with addi
tional upward arrows within multivectors and self-loops at every point (see Figure 3.7 
bottom).

To see one of the examples of why larger multivectors, compared to [21] can be ben
eficial consider the family of continuous dynamical systems on R given by differential 
equation

x'(t) = t — a (3.2)

with parameter a E [—1,2]. For every value of the parameter we observe a repelling 
stationary point at coordinate a (see Figure 3.8 top). Suppose we have a fixed simplicial 
complex

K := {(p) 1 p E {—2, — ° 2}}u{(p,p +1) 1 p E {—2 — ° 1}}

and our goal is to construct the best combinatorial representation of (3.2) on K for 
different values of a. For example, if a = 2 then the repeller lies at barycenter of a 
1-simplex and we can model this situation by creating multivector {(0,1)} which behaves

43



Figure 3.7: An example of a combinatorial multivector field in the sense of [17] on a 
simplicial complex (top), its equivalent representation in terms of partitioning the poset 
(middle), and a directed graph capturing the combinatorial dynamics nV induced by V. 
Note that multivector {v2, e2, e3} is not a proper multivector in terms of [21] because there 
is no unique maximal element.
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as a repeller (see V1 in Figure 3.8 middle). Similarly, for a = — 1 we model the repeller 
with {(—1,0)} (see V0 in Figure 3.8 middle). The problem appears for a = 0 when the 
repeller is located exactly at the 0-simplex (0). We do not want to model the repeller 
with multivector {(0)} because, by the definition of nV it would behave as an attractor. 
We can make an arbitrary choice and accept one of the two models obtained for a = — 1 

or a = 1 as "close enough" models. However, if the subject of interest is the family of 
models for all values of a, then for a = 0, we observe a sort of "discontinuity." Namely, 
for a G [—1,0), we have multivector field V0 and V1 for a G (2, 1] (see Figure 3.8 middle). 
Thus, at a = 0 we have to rearrange multivectors to get from V0 to V1. On the other 
hand, if we allow multivectors without a unique maximal element, then for a = 0 we can 
model the repeller with multivector {(—1, 0), (0), (0,1)} (see V2 in Figure 3.8). Moreover, 
the transition from V0 to V1 via V2 consists of simpler, called atomic rearrangements, that 

is, a split of a single multivector into two multivectors, or the reverse operation. This idea 
will be explored further in future work.

Figure 3.8: Top: a schematic representation of a vector field given by (3.2). Middle: three 
multivector fields, V0, V1 and V2 corresponding to a = — 1, a = 1, a = 0, respectively. 
Bottom: a direct graph representing the combinatorial dynamics induced by V2.
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Chapter 4

Combinatorial multivector fields 
theory

This chapter is largely based on sections 4, 5, 6, and 7 of [17]. The author of this 
thesis wrote or partook substantially in writing all of the included proofs.

4.1 Multivector fields

As we already mentioned, the idea of the combinatorial multivector fields was intro
duced in [21]. It was inspired by Forman's combinatorial vector fields [10] informally 
reviewed in Section 3.2.2. Here, we present a generalization of the theory presented in 
[17].

The generalization, in comparison to [21] is trifold. Firstly, the Lefschetz complexes 
and Lefschetz homology are replaced with the more general setting of finite topological 
spaces and singular homology. Secondly, multivectors are no longer assumed to have a 
unique maximal element. This assumption was introduced in [21] to simplify proofs but 
turned out to be too restrictive for the further development of the theory. Thirdly, the 
induced combinatorial dynamical system is defined more liberally. These fundamental 
changes lead to a theory more convenient for applications. However, new proofs are 
required.

4.1.1 Combinatorial multivector fields for finite topological 
spaces

Let (X, T) be a finite topological space. A combinatorial multivector in X is a non
empty, locally closed subset of X. We define a combinatorial multivector field (MVF) 
as a partition V of X into multivectors (see an example in Figure 4.1). The following 
proposition, an immediate consequence of Proposition 1.4.4, provides an example of a 
property that is not true in the setting of [21]. To see this consider Y = X \ {t0} with X 
and V as in Figure 3.6.
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Figure 4.1: An example of a combinatorial multivector field V = {{A, C, G}, {D}, {H}, 
{E, I, J}, {B, F }} on a finite topological space consisting of ten points. There are two 
regular multivectors, {A, C, G} and {E, I, J}, the others are critical.

Proposition 4.1.1. [17, Proposition 4.2] Assume V is a combinatorial multivector field 
on a finite topological space X and A C X is a locally closed subspace. Then

V A := {V n A | V eV ,v n A = 0}

is a multivector field in A. We call it the multivector field induced by V on A. □

The following theorem provides more features of multivector fields not satisfied in the 
setting of [21].

Theorem 4.1.2. [7, Theorem 5.4 (ii),(iii)] Let X and Y be finite topological spaces. Let 
V be a combinatorial multivector field on Y. If f : X Y is a continuous map then 

f-1(V) := {f-1(V) | V E V}

is a multivector field on X. If W is another multivector field on X, then V A W is also 
a multivector field on X such that V A W □ V and V A W □ W.

Every point x E X has a unique multivector in V to which x belongs. We denote this 
multivector by [x]V . If the multivector field V is clear from the context, we write briefly 
[x] := [x]V. We say that a set A C X is V-compatible if for each x E A we have [x]V C A. 
The following proposition is a basic consequence of the definition of V-compatibility.

Proposition 4.1.3. [17, Proposition 4.3] The union and the intersection of a family of 
V-compatible sets is V-compatible.

With every multivector field V we associate a combinatorial dynamical system on X 
induced by the multivalued map nV : X X given by

nV(x) := [x]V U cl x. (4.1)

Note that in a single time-step a point x can jump to any other element of V = [x]V. 
Moreover, the only way to escape V is through mo V = cl V \ V. Intuitively, we can think 

47



of a multivector as a dynamical black-box. The behavior inside a multivector is unknown, 
but we know where flow escapes. Thus, we can interpret a multivector as a Wazewski set 
with (clV, moV) as the associated index pair (see Section 3.1). We distinguish two types 
of multivectors. We say that a multivector V is critical if the relative singular homology 
H(clV, mo V) is non-zero. We say that a multivector is regular if it is not critical. Thus, 
a critical multivector may be interpreted as the Wazewski set with a non-empty invariant 
subset and a regular multivector may be interpreted as a Wazewski set with all solutions 
flowing through. A point x G X is critical (respectively regular) with respect to V if [x]V 

is critical (respectively regular). Note that the combinatorial dynamical system associated 
with a multivector field in the sense of [21] depends on the criticality of points, which is 
not the case here.

Proposition 4.1.4. Let V and W be a multivector fields on X. If V C W then nV C nW.

Proof. Let x G X. We have nV(x) = [x]V U clx C [x]W U clx = nW(x). □

Recall that the preimage notation with the respect to a multivalued map means the 
large preimage (1.3). Note the duality of nV (4.1) and nV-1 (4.2).

Proposition 4.1.5. [17, Proposition 4.5] Let V be a combinatorial multivector field on 
(X, T ). If A C X, then

nv-1(A) = U ([x]v U opnx).
xEA

In particular, if A = {x} is a singleton we have

n-1(x) := n-1({x}) = [x]V U opnx. (4.2)

Proof. Assume y G nV-1(A). By (1.3) there exists an x G A such that x G nV(y), that 
is, x G cly U [y]V = nV(y). If x G cly, then from Proposition 1.4.8 we have x <t y. It 
follows from Proposition 1.4.9 that y G opnx. If x G [y]V then [x]V = [y]V 3 y. Hence, 
y G opn x U [x]V and consequently

nV-1(A) C U [x]V U opnx.
xEA

In order to show the opposite inclusion consider an x G A and a y G opn x U [x]V. 
If y G [x]V, then clearly x G [y]V C nV(y) which implies x G nV(y) A A = 0. Thus 
y G nV-1(A). If y G opnx, then by Proposition 1.4.9 we have x <t y and therefore 
x G cl y. Thus, x G nV(y) and again nV(y) A A = 0. Hence, y G nV-1(A) which 
completes the proof of the opposite inclusion. □

Note that by Proposition 1.4.6 a multivector in a finite topological space X is also a 
multivector in Xop, that is, in the space X with the opposite topology. Thus, a multivec
tor field V in X is also a multivector field in Xop. We indicate this in notation by writing 
Vop for the multivector field V considered with the opposite topology. It induces a com
binatorial dynamical system nVP := nVop : Xop Xop given by nVop (x) := [x]V U cItop x. 
As an immediate consequence of Proposition 1.4.2 and Proposition 4.1.5 we get following 
result.
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Figure 4.2: An example of a finite topological space X and X op consisting of four points 
and with the same partition into multivectors V = {{a}, {b}, {c}, {d}}. In X multivectors 
{b}, {c} and {d} are critical, while in X op only {a} is critical. Blue and green subcom
plexes in the bottom row represents respectively K(cl{b}) and K(mo{b}) for X and X op.

Figure 4.3: An example of a finite topological space X and X op consisting of five points 
and with the same partition into multivectors V = {{a, b}, {c, d}, {e}}. Either in case of 
V and Vop the only critical multivector is {e}. Multivectors {a,b} and {c,d} are regular in 
both cases. Blue and green subcomplexes in the bottom row show respectively K(cl{a, b}) 
and K(mo{a, b}) for X and X op.
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Proposition 4.1.6. [17, Proposition 4.6] The combinatorial dynamical system nOP is 
dual to the combinatorial dynamical system nV, that is, we have nVP = n-1.

Note that the duality of a multivector fields V and Vop does not mean that the regu- 
larity/criticality is preserved because some critical multivectors can become regular and 
vice versa due to the topology change (see examples in Figure 4.2 and 4.3).

4.1.2 Essential solutions

Let V be a multivector field on a finite topological space X. We say that p is a solution 
(full solution, forward solution, backward solution or path) of V if p is a solution (full 
solution, forward solution, backward solution or path) for nV (see Section 3.2.1). Given a 
solution p of V we denote by V (p) the set of multivectors V eV such that V A im p = 0.

Given a subset A C X, we denote the family of all paths of V in A by PathV ( A ) . 
Similarly, we denote the family of full solutions of V in A (respectively backward or forward 
solutions in A) by SolV(A) (respectively SolV-(A), SolV+(A)). Sometimes we are interested 
in paths and solutions passing through a particular point or with fixed endpoints. In that 
case we write

SolV(x, A) := {p E SolV(A) | p(0) = x}, 

PathV (x , A) := {p E PathV ( A ) | p(0) = x},

PathV(x,y, A) := {p E PathV(A) | pr = x and p = y}.

Note that (4.1) implies x E nV(x). Thus, every point admits a full stationary solution 
and every path may be extended to a full solution. This may suggest that every point is 
somehow invariant. To make the theory more distinctive, we follow the "dynamical black 
box" intuition. We know that a critical multivector V may be interpreted as a Wazewski 
set with a non-empty invariant set inside. Hence, a solution entering V may stay there 
forever. On the other hand, a regular multivector W may be interpreted as a Wazewski 
set with a passing-through flow. Thus, a trajectory entering W should exit W in a finite 
amount of time. With this motivation in mind, we introduce the concept of the essential 
solution.

We say that a backward solution p : Z X is left-essential (respectively forward solu
tion is right-essential) iffor every regular point x E imp the set { t E domp | p(t) E [x]V } 

is left-infinite (respectively right-infinite). We say that a full solution p is essential if it 
is both left- and right-essential. We say that a point x E X is essentially recurrent if an 
essential periodic solution passes through x. The following proposition is straightforward. 

Proposition 4.1.7. A periodic solution p is essential if and only if either #V(p) > 2 or 
the only multivector in a singleton V(p) is critical. □

We denote the set of all essential solutions in A C X (respectively left- or right
essential solutions in A) by eSolV(A) (respectively eSolV-(A), eSolV+(A)) and the set of all 
essential solutions in a set A C X passing through a point x by

eSolV(x, A) := {p E eSol(A) | p(0) = x}.
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We have the following straightforward proposition.

Proposition 4.1.8. Let p E eSolyA), p E eSol- (A) and p E PathV(A) be such that 
r = p2 and p = p~. Then p • p • p E eSol(A). □

For a given x E X we can always construct a right-essential solution starting at x. 
We prove this in the following proposition. However, this is not true for left-essential 
solutions. To see this, consider a point a in the first example in Figure 4.2 (upper-left). 
Since nV-1(a) = a, every left-infinite solution is eventually constant in a. But, multivector 
{a} is regular which makes the solution not left-essential.

Proposition 4.1.9. Let x E X, then eSoly(x,X) = 0.

Proof. Let x = x0 E X. If [x0] is critical then a stationary solution in x0 is an essential 
solution. If [x0] is regular, we can construct right-essential solution p in the following 
way. Let p(0) := x0. If there exists a y0 E [x0] such that cly0 \ [x0] = 0 then we put 
p(1) := y0 and p(2) = x1 where x1 E cly0 \ [x0]. Again, if there exists a y1 E [x1] with 
cly1 \ [x1] = 0, we put p(3) := y1 and p(4) := x2 for an x2 E cly1 \ [x2]. We proceed 
by induction up to infinity unless we reach an xn such that mo[xn] = 0 when we set 
p(k) := xn for k > 2n. Then H (cl [xn] , 0) = 0, which means that [xn] is critical. Thus, in 
both cases p is right-essential. □

With the notion of essential solution, we can now introduce the concept of invariance 
that will not degenerate in our settings.

Definition 4.1.10. The invariant part of A C X is the set

InvV A := {x E A | eSol(x, A) = 0} . (4.3)

Moreover, we say that A is an invariant set for V if InvV A = A. In the sequel if a 
multivector field V is clear from the context we drop the subscript V in SolV, eSolV and 
InvV.

Note that in contrast to the classical theory, the invariant part of a dynamical system 
to an invariant set needs not be invariant. More precisely, if A is invariant for V then A 
may not to be invariant for VA. Consider multivector field in Figure 4.2(left). The set 
A = {b, c} is invariant because either {b} and {c} are critical multivectors for V. However, 
the restriction VA of multivector field V to set A changes the status of multivector {b}. In 
particular {b} is regular in VA. Thus, we get {c} = InvVA A = InvV A = A. On the other 
hand if B = {b, c, d} then InvV B = InvVB = B.

More generally, Proposition 4.1.13 distinguishes some situations when the restriction 
to a subspace does not affect the invariance. We need first the following propositions .

Proposition 4.1.11. The invariant part of a closed and V-compatible set A C X is 
closed. In particular the invariant part of the whole space X is closed.
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Proof. Let x G Inv A, p G eSol(x, A) and y G cl x C A. By Proposition 4.1.9 we can 
find a G eSol+(y,X). Since A is closed and V-compatible we have nV(A) = A. Thus, 
for every z G A we get nV(z) G A and if G eSol+(y, A). Hence, p~ • G eSol(y, A) and 
consequently y G Inv A. □

Proposition 4.1.12. Let A C X be a V-compatible set. Then Inv A is V-compatible.

Proof. Let x G Inv A and let y G [x]V. Since A is V-compatible we have y G A. Select 
a solution p G eSol(x,A). Then p~ • y • p+ is a well-defined essential solution in A. 
Therefore, eSol(y, A) = 0 and y G Inv(A). Hence, Inv A is V-compatible. □

Proposition 4.1.13. Let A C X be closed and V-compatible. Then InvV A = InvVA A. 
In particular InvV X = InvVInv X X.

Proof. Let V G V such that V C A. Therefore V G VA. Since A is closed we have 
clX V = clA V and moX V = moA V . It follows that V is critical in VA if and only if V is 
critical in V. Thus, eSolV(A) = eSolVA(A) and InvV A = InvVA A.

By Propositions 4.1.11 and 4.1.12 InvV X is closed and V-compatible. Hence, the 
second assertion is proved. □

We have the following straightforward proposition.

Proposition 4.1.14. Let A be an invariant set. Then the family {V G V | V A A = 0} 

contains at least one critical multivector or two regular ones. □

Proposition 4.1.15. [17, Proposition 4.7] Let A, B C X be invariant sets. Then A U B 
is also invariant.

Proof. Let x G A. By the definition of an invariant set there exists an essential solution 
ip G eSol(x, A). Clearly eSol(x, A) C eSol(x,A U B). Thus, p G eSol(x,A U B) and 
x G Inv(A U B). The same holds for x G B. Hence, A U B C Inv(A U B). The opposite 
inclusion is obvious. □

Proposition 4.1.16. Let A C X be locally closed. Then InvA is also locally closed.

Proof. Let x,z G Inv A and y G A such that z <t y <t x. Let p G eSol(x, A) and
G eSol(z, A). Then p- • y • G eSol(y, A). Hence y G Inv A. □

We can capture the lack of essential solutions with homology.

Theorem 4.1.17. [17, Lemma 5.8] Let A be a V-compatible, locally closed subset of X 
such that there is no essential solution in A. Then H(clA, moA) = 0.

Proof. Let A := {V G V | V C A}. Since A is V-compatible, we have A U A. Let <A 

denote the transitive closure of the relation ’:A in A given for V,W G A by

V -A W O V A cl W = 0. (4.4)
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We claim that <a is a partial order in A. Clearly, <a is reflective and transitive. Hence, 
we only need to prove that V\ is antisymmetric. To verify this, suppose the contrary. 
Then there exists a cycle Vn ’:A Vn-1 ’:A • • • _'A V0 = Vn with n > 1 and V = Vj for
i = j and i, j G {1, 2,.. .n}. Since A cl Vi-1 = 0 we can choose vi G V A cl Vi-1 and
v— G Vi-1 such that vi G cl v/i-1. Then vi G nV(vJ-1) and v/i-1 G nV(vi-1). Thus, we can 
construct an essential solution

... • v'n • Vi • v'l • V2 • v2 • ... • v'n_i • Vn • v'n • Vi • ... .

This contradicts our assumption and proves that <a is a partial order.
Moreover, since a constant solution in a critical multivector is essential, all multivectors 

in A have to be regular. Thus,

H(clV, moV) = 0 for every V G A. (4.5)

Since <a is a partial order, we may assume that A = {VJ}J=1 where the numbering of VJ 

extends the partial order <a to a linear order <a, that is,

V1 <a V2 <a • • • <a Vm.

We claim that
i<j cl V \ V = cl Vj. (4.6)

Indeed, if this were not satisfied, then Vj A cl Vi = 0 which, by the definition (4.4) of 
_:A gives Vj _:A VJ as well as Vj VA VJ, and therefore j < i, a contradiction. For 
k G {0,1,...m} define set Wk := Uj=1 Vj. Then W0 = 0 and Wm = A. Now fix a 
k G {0, 1, . . . m}. Observe that by (4.6) we have

k m k k
cl Wk \ A = U cl Vj \ U V = U cl Vj \ U V = cl Wk \ Wk = mo Wk.

j=1 j=1 j=1 j=1

Therefore,
mo Wk = cl Wk \ A C cl A \ A = mo A.

It follows that Wk U mo A = cl Wk U mo A. Hence, the set Zk := Wk U mo A is closed. For 
k > 0 we have

Zk \ Zk-1 = Wk \ Wk-1 \ moA = Vk A A = Vk = clVk \ moVk.

Hence, we get from Theorem 2.4.3 and (4.5)

H(Zk, Zk-1) = H(clVk, moVk) = 0.

Now it follows from the exact sequence of the triple (Zk-1, Zk, clA) that (see Theorem
2.3.1 and Proposition 1.5.1)

H (cl A,Zk) = H (cl A,Zk-i).

Note that Z0 = W0 U mo A = mo A and Zm = Wm U mo A = A U mo A = cl A. Therefore, 
we finally obtain

H(cl A, mo A) = H(cl A, Z0) = H(cl A, Zm) = H(cl A, cl A) = 0,

which completes the proof of the Theorem. □
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Figure 4.4: A multivector field V (right) for a simplicial complex (left) and two isolated 
invariant sets S = {v0, v1, v2, e0, e1, e2} and T = {t0}. Note that S C cl T .

4.1.3 Isolated invariant sets

The next step is to define the isolation in the settings of finite topological spaces. Due 
to the shortage of open sets, we considerably relax, compared to the classical settings, the 
conditions for the isolation.

Definition 4.1.18. [17, Definition 4.8] A closed set N isolates an invariant set S C N , 
if the following two conditions hold:

(a) Every path in N with endpoints in S is a path in S ,
(b) nv(S) C N.

In this case, we also say that N is an isolating set for S. An invariant set S is isolated if 
there exists a closed set N meeting the above conditions.

Note that we use the notion of an "isolating set" instead of an "isolating neighborhood" 
to emphasize the difference with the classical definition (see Section 3.1). First, due to a 
finite space's sparseness, it may be the case that two isolated invariant sets do not admit 
disjoint neighborhoods (see Figure 4.4). Therefore Definition 4.1.18 is relative, meaning 
that we need to specify which isolated invariant set is isolated by a given isolating set. 
Secondly, the invariant part of an isolating set N does not need to be contained in the 
interior of N. Even more, it is possible that int N = 0 and still Inv N = 0 (consider 
N = cl S in Figure 4.4). Thirdly, in the finite setting, there exists a minimal isolating set. 
This situation is not true in the continuous case. We have the following simple yet handy 
observations.

Proposition 4.1.19. [17, Proposition 4.9] The whole space X isolates its invariant part 
Inv X. In particular, Inv X is an isolated invariant set. □

Proposition 4.1.20. [17, Proposition 4.11] Let N be an isolating set for an isolated 
invariant set S. If M is a closed set such that S C M C N, then S is also isolated by M . 
In particular, cl S is the smallest isolating set for S.

Proof. The first part is straightforward. The second statement follows because cl S is the 
smallest closed set containing S and contained in N. □
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There is a fundamental relation between the V-compatibility, local closedness, and 
isolated invariant sets.

Proposition 4.1.21. [17, Proposition 4.10, 4.12, 4.13] Let S C X be an invariant set. 
Then S is the isolated invariant set if and only if S is locally closed and V-compatible.

Proof. Assume first that S is an isolated invariant set. Suppose S is not V-compatible. 
Then there exists an x G S and a y G [x]V \ S. Let N be an isolating set for S. It follows 
from Definition 4.1.18(b), that y G nV (x) C N. Since [x]V = [y]V we have x G nV (y). 
Thus the path x • y • x is a path in N with endpoints in S, but it is not contained in S 
which in turn contradicts Definition 4.1.18(a).

Now, suppose that S is not locally closed. By Proposition 4.1.20 the set N := clS 
is an isolating set for S. By Proposition 1.4.10 there exist x, z G S and a y G S such 
that x <T y <T z. Hence, it follows from Theorem 1.4.8 that x G clTy and y G clTz. 
Therefore, x G nV(y) and y G nV(z). In particular, x,y, z G cl S. Thus, := z • y • x is a 
solution in cl S with endpoints in S. In consequence, y G S, a contradiction.

To show the opposite implication assume that S is a V-compatible and locally closed. 
To this end we will show that N := clS isolates S. We have

nv(S)= U clx U J [x]v = cl S U S = cl S = N.
xES xES

This proves condition (b) of Definition 4.1.18.
We will now show that every path in N with endpoints in S is a path in S. Let

:= x0 • x1 • ... • xn be a path in N with endpoints in S. Thus, x0, xn G S. Suppose that 
there is an i G {0, 1, ..., n} such that xi G S. Without loss of generality we may assume 
that i is maximal such that xi G S. Then xi+1 = xi and i < n, because xn G S. We have 
xi+1 G nv(xi) = [xi]v U clxi. Since xi G S, xi+1 G S and S is V-compatible, we cannot 
have xi+1 G [xi]v. Therefore, xi+1 G cl xi. Since is a path in N = cl S, we have xi G cl S. 
Hence, xi G clz for some z G S. It follows from Proposition 1.4.10 that xi G S, because 
xi+1, z G S, xi+1 G cl xi, xi G cl z and S is locally closed. Thus, we get a contradiction 
proving that also condition (a) of Definition 4.1.18 is satisfied. In consequence, N isolates 
S and S is an isolated invariant set. □

The next corollary is a straightforward consequence of Propositions 4.1.12, 4.1.16 and 
4.1.21.

Corollary 4.1.22. Let A be a locally closed and V-compatible. Then Inv A is an isolated 
invariant set.

4.1.4 Multivector field as a digraph

Let V be a multivector field in X. As mentioned in Section 1.2, we can think of a 
multivalued map nv as a digraph. We denote it by Gv. Figure 4.5 gives an example of 
how the partition in Figure 4.1 translates to the digraph. In particular, we can identify 
solutions of V with paths in GV. In this section we will show that some properties
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Figure 4.5: Digraph GV for a multivector field Figure 4.1. Black edges are induced by 
closure relation, while the red bi-directional edges represent connections within a mul
tivector. For clarity, we omit the edges that can be obtained by the inter-multivector 
transitivity (e.g., from A to G and from I to J). Nodes that are part of a critical multi
vector are additionally bolded in red.

of multivector field may be phrased in the language of graph theory. Nevertheless, we 
should keep in mind that the theory of multivector fields cannot be reduced to graph 
theory because we still have an additional intrinsic structure - the topology. We did not 
use it extensively so far, except for determining the criticality of multivectors, but this 
will change soon. Let V be a multivector field on X and let GV be the associated digraph.

Proposition 4.1.23. [17, Proposition 4.14] Assume A C X is strongly connected in GV. 
Then the following conditions are pairwise equivalent.

(i) There exists an essentially recurrent point x in A, that is, there exists an essential 
periodic solution in A through x,

(ii) A is non-empty and every point in A is essentially recurrent in A,
(iii) Inv A = 0 .

Proposition 4.1.24. Let A be a strongly connected set in GV. Then there exists a full 
periodic solution p in A such that imp = A.

Proof. For convenience, we index all points in A, that is A = {a0, a1, . . . , an}. Since A is 
a strongly connected set we can find a path pi,j E PathV(ai, aj, A) for i, j E {0, 1, . . . n}. 
A full periodic solution

P = ... • Pn,0 • P0,1 ’ P1,2 ’ ... ’ Pn-1,n ’ Pn,0 ’ P0,1 ’ ...

clearly satisfies the assertion. □

Proposition 4.1.25. [17, Proposition 4.15] If C C X is a strongly connected component 
of GV, then C is V-compatible and locally closed.

Proof. Let x E C and let y E [x]V. Then x • y E PathV(x, y, X) and y • x E PathV(y, x, X) 
proving that y E C. Hence C is V -compatible.
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Let x,z G C and let y G X be such that x <t y <t z. Since C is strongly connected 
we can find a path p from x to z. By Proposition 1.4.9 and (4.1) we have y G nV(z) and 
x G nV(y). Thus y • p G PathV(y, z, X) and z • y G PathV(z, y, X). Since we can construct 
a path to/from a point of a strongly connected component, we can extend it to any other 
element of C. It follows that y G C. Hence, C is convex and, by Proposition 1.4.10, C is 
locally closed. □

Theorem 4.1.26. [17, Proposition 4.16] If C C X is a strongly connected component of 
GV such that eSol(C) = 0, then C is an isolated invariant set.

Proof. According to Proposition 4.1.21 it suffices to prove that C is a V-compatible, locally 
closed invariant set. It follows from Proposition 4.1.25 that C is V-compatible and locally 
closed. Thus, we only need to show that C is invariant. Since Inv C C C, we only need 
to prove that C C Inv C. Let y G C. Since eSol(C) = 0, we may take an x G C and a 
p G eSol(x, C). Since C is strongly connected we can find paths p and p' in C from x to 
y and from y to x respectively. Then by Proposition 4.1.8 the solution • p • p' • is 
a well-defined essential solution through y in C. Thus, eSol(y, C) = 0, which proves that 
we have y G Inv C. □

4.2 Index pairs and Conley index for MVF

In this section we introduce homological Conley index of an isolated invariant set of 
a combinatorial multivector field. To this end we need a technical concept of an index 
pair. We prove that for a given isolated invariant set an index pair always exists and its 
homology depends exclusively on the isolated invariant set.

4.2.1 Index pairs and their properties

An index pair may be considered as an isolating set P1 with a distinguished exit set P2. 
More precisely, we have the following definition.

Definition 4.2.1. Let S be an isolated invariant set. A pair P = (P1, P2) of closed 
subsets of X such that P2 C P1, is called an index pair for S if 
(IP1) x G P2, y G nV(x) A Py y G P2 (positive invariance),
(IP2) x G Py, nV(x) \ Py = 0 x G P2 (exit set),
(IP3) S = Inv(P1 \ P2) (invariant part).

An index pair P is said to be saturated if S = P1 \ P2. The pair ({B, F, I, J}, {I, J}) 
is an example of a saturated index pair for the multivector field in Figure 4.1 and the set 
{B, F }.

We write P C Q for index pairs P, Q whenever Pi C Qi for i = 1, 2. We say that 
index pairs P, Q of S are semi-equal if P C Q and either P1 = Q1 or P2 = Q2.

Proposition 4.2.2. [17, Proposition 5.2] Let P be an index pair for an isolated invariant 
set S. Then P1 isolates S.
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Proof. According to our assumptions, the set P1 is closed, and by (IP3) we have

S = Inv(Pi \ P2) c Pi \ P2 C Pi.

Thus, it only remains to be shown that conditions (a) and (b) in Definition 4.1.18 are 
satisfied.

In order to verify (b) of Definition 4.1.18 consider a path ÿ := x0 • x1 • ... • xn in P}_ 
such that x0,xn G S. First, we will show that imÿ C P1 \ P2. To this end, suppose the 
contrary. Then, there exists an i G {1, 2,... ,n — 1} such that xi G P2 and xi+1 G P1 \ P2. 
Since ÿ is a path we have xi+1 G nV(xi). But, property (IP1) implies xi+1 G P2, a 
contradiction. Since S is invariant and x0,xn G S, we may take a G" G eSol(x0, S) and a 
pn G eSol(xn, S). The solution <p- • ÿ • is an essential solution in P1 \ P2 through xi. 
Thus, xi G Inv(Pi \ P2) = S. This proves that every path in Pi with endpoints in S is 
contained in S, and therefore Definition 4.1.18(a) is satisfied.

In order to verify (b), let x G S be arbitrary. We have already seen that then x G 

P1 \ P2 C P1. Now suppose that nV(x) \ P1 = 0. Then (IP2) implies x G P2, which 
contradicts x G P1 \P2. Therefore, we necessarily have nV(x)\P1 = 0, that is, nV(x) C P1, 
which immediately implies (b). Hence, P1 isolates S. □

As we said earlier, we can exit a multivector only through its mouth. This pattern ex
tends to invariant sets, and we capture this future in the following proposition. Moreover, 
the fact that there exists a minimal isolating set (Proposition 4.1.20) lets us effortlessly 
construct the minimal index pair.

Proposition 4.2.3. [17, Proposition 5.3] Let S be an isolated invariant set. Then the 
pair (clS, moS) is a saturated index pair for S.

Proof. To prove (IP1) assume that x G mo S and y G nV (x) A cl S. Since by Proposition 
4.1.21 S is V-compatible we have [x]V A S = 0. Therefore, [x]V A cl S C cl S \ S = mo S. 
Due to Propositions 1.4.3 and 4.1.21 moS is closed, therefore clx C moS C clS. Hence,

y G nV(x) A cl S = ([x]V U cl x) A cl S = ([x]V A cl S) U (cl x A cl S) C mo S.

To see (IP2) note that by the V-compatibility of S we have

nV(S) = U (cl x U [x]V) = U cl x U S = cl S.
xES xES

Thus, if x G S, then nV(x) \ cl S = 0. Therefore, nV(x) \ cl S = 0 for x G P1 = cl S 
implies x G cl S \ S = mo S.

Finally, since S is invariant locally closed set we get Inv(clS \ moS) = InvS = S. 
This proves (IP3), as well as the fact that (cl S, mo S) is saturated. □

Proposition 4.2.4. [17, Proposition 5.6] Assume S is an isolated invariant set. Let P 
be an index pair for S. Then the set Pi \ P2 is V-compatible and locally closed.
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Figure 4.6: Schematic depiction of the two possible cases of set A(P, Q).

Proof. Assume that P1 \ P2 is not V-compatible. This means that for some x E P1 \ P2 

there exists a y E [x]V \ (Pi \ P2). Then either y E P2 or y E Pv Consider the case y E P2. 
Since [x]y = [y]V, we have x E nV(y). It follows from (IP1) that x E P2, a contradiction. 
Consider now the case y E Pi. Then from (IP2) one obtains x E P2, which is again a 
contradiction. Together, these cases imply that Pi \ P2 is V-compatible.

Finally, the local closedness of Pi \ P2 follows immediately from Proposition 1.4.3(iii).
□

The remaining part of this subsection consists of a sequence of propositions and lemmas 
that lead us to the proof of the following theorem, which, together with Proposition 4.2.3, 
enables the definition of Conley index in Section 4.2.2.

Theorem 4.2.5. [17, Theorem 5.16] Let P and Q be two index pairs for an invariant set 
S. Then H(Pi, P2) = H(Qi, Q2).

First we will show that this property holds for saturated index pairs as well as semi
equal index pairs.

Lemma 4.2.6. [17, Lemma 5.5] Assume S is an isolated invariant set. Let P and Q be
saturated index pairs for S. Then H(Pi, P2) = H(Qi,Q2).

Proof. By the definition of a saturated index pair Qi \ Q2 = S = Pi \ P2. Hence, using 
Theorem 2.4.3 we get H(P1,P2) = H(Q1,Q2).

To show the property semi-equal pairs consider two semiequal index pairs such that
P C Q and define

A(P,Q) :=
Q1 \ P1

Q2 \ P2

if P2 = Q2,

if P1 = Q1.

Proposition 4.2.7. [17, Proposition 5.4] Let P and Q be semi-equal index pairs for S.
Then there is no essential solution in the set A(P, Q).

Proof. By the definition of A(P, Q) we have to analyze two cases. If P2 = Q2 (see Figure
4.6, left) then

A(P,Q) =Q1\P1 CQ1\P2=Q1\Q2 (4.7)
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and
A(P, Q) n (P1 \ P2) c A(P, Q) n P1 = 0. (4.8)

Similarly, if P1 = Q1 (see Figure 4.6, right) then

A(P, Q) = Q2 \ P2 c Q1 \ P2 = P1 \ P2 and A(P, Q) n (Q1 \ Q2) = 0.

By (IP3) and (4.7) we get in the first case that

Inv A(P, Q) c Inv(Q1 \ Q2) = S = Inv(P1 \ P2),

which together with 4.8 implies Inv A(P, Q) = 0. Exactly the same arguments applies to 
the second case. Thus, by the definition of the invariant part (Definition 4.1.18) there is 
no essential solution in A(P, Q). □

Proposition 4.2.8. [17, Proposition 5.7] Assume S is an isolated invariant set. Let 
P c Q be semi-equal index pairs for S. Then A(P, Q) is V-compatible and locally closed.

Proof. Our assumptions give P2, Q2 c P1 and P2, Q2 c Q1. Therefore, if P2 = Q2, then

A(P, Q) = Q1 \ P1 = (Q1 \ P2) \ (P1 \ P2) = (Q1 \ Q2) \ (P1 \ P2).

Similarly, if P1 = Q1, then, denoting by Bc the complement of B c X in X, we have

A(P,Q) = Q2 \ P2 = Q2 n P2c = (P1 n P2c) n Q2 = (P1 \ P2) n Q2

= (P1 \ P2) n (Q1 n Qc2)c = (P1 \ P2) n (Q1 \ Q2)c = (P1 \ P2) \ (Q1 \ Q2),

Thus, by Proposition 4.2.4, in both cases, A(P, Q) may be represented as a difference of 
V-compatible sets. Therefore, it is also V-compatible.

The local closedness of A(P,Q) follows from Proposition 1.4.3. □

Lemma 4.2.9. [17, Lemma 5.9] Let P c Q be semi-equal index pairs of an isolated 
invariant set S. If P1 = Q1, then H(Q2, P2) = 0, and analogously, if P2 = Q2, then
H(Q1, P1) = 0.

Proof. By Proposition 4.2.8 the set A(P, Q) is locally closed and V-compatible. Hence, 
the conclusion follows from Proposition 4.2.7 and Lemma 4.1.17. □

Lemma 4.2.10. [17, Lemma 5.10] Let P c Q be semi-equal index pairs of an isolated 
invariant set S. Then H(P1,P2) = H(Q1,Q2).

Proof. Assume P2 = Q2. We get from Lemma 4.2.9 that H(Q1, P1) = 0. Thus, Theorem
2.3.1 applied to the triple P2 c P1 c Q1 implies

H(P1, P2) == H(Q1, P2) = H(Q1,Q2).

Similarly, if P1 = Q1 we consider the triple P2 c Q2 c Q1 and obtain

H(P1, P2) = H(Q1,P2) == H(Q1,Q2).

□
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We define the push-forward and the pull-back of a set A G B by

nf(A, B) := {x G B | 3^ePathv(B) G G A, G = x}, (4.9)

n-(A, B) := {x G B | 3^ePathV(B) /P = x, y3 G A} (4.10)

Given an index pair P for S we consider the set P G P1 of all points x G P1 such no path 
starting in x enters S, that is

P := {x G P1 | n+(x,Pf) A S = 0}. (4.11)

Consider the pairs

P* := (S U P,P2),

P** := (S U P,P).

We will show that P* and P** are index pairs. See Figure 4.7 for an example of these 
auxiliary index pairs.

Proposition 4.2.11. [17, Proposition 5.11] If A G X, then n+(A,X) (respectively 
n-(A,X)) is closed (respectively open) and V-compatible.

Proof. Let x G nf;(A,X). By definition (4.9) of push-forward there exist a point a G A 
and a path <p G PathV(a,x,X). For any y G [x]V the concatenation / • y is also a path. 
Thus, y G nf;(A,X) and consequently nf(A,X) is V-compatible.

To show closedness, consider a z G clx. Then the path / • z is a path from A to z, 
implying that z G nf (A,X) and cl x G nV(A,X). Since X is finite obtain

cln;(A,X)= U clx G n;(A,X),
xen+(A,x)

and therefore n;(A,X) is closed. The proof for n-(A,X) is analogous. □

Proposition 4.2.12. [17, Proposition 5.12] If P is an index pair for an isolated invariant 
set S, then S A P = 0 and P2 G P.

Proof. We get the first assertion directly from (4.11). In order to see the other take an 
x G P2 and suppose that x G P. This means that there exists a path / in P1 such that 
yp = x and G S. The condition (IP1) of Definition 4.2.1 implies im / G P2. Therefore,

G P2 and P2 A S = 0 which contradicts S G P1 \ P2 given by (IP3). □

Proposition 4.2.13. [17, Proposition 5.13] If P is an index pair for an isolated invariant 
set S, then mo S G P. Moreover, llV(S) G S U P.

Proof. To prove that mo S G P assume the contrary. Then there exists an x G mo S, 
such that n++(x,P1) A S = 0. It follows that there exists a path in P1 from x to S. 
Since x G mo S G cl S, we can take a y G S such that x G cl y G llV(y). It follows that 
p := y • / is a path in P1 through x with endpoints in S. Since, by Proposition 4.2.2, P1 

isolates S, which contradicts x G mo S.
Finally, by V-compatibility of S guaranteed by Proposition 4.1.21, we have the inclu

sion nV(S) G cl S G S U mo S U P = S U P because we proved that mo S G P This 
proves the remaining assertion. □
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Figure 4.7: Consider a multivector field for a space X (top) and an isolated invariant 
set S = {dh, ei, deih}. Pair (P1, P2) = (X, {a, b, c, j, ab, bc}) is an index pair for S . The 
bottom figure shows set P which we use to construct auxiliary index pairs P* and P**.
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Proposition 4.2.14. [17, Proposition 5.14] Let P be an index pair for an isolated invari
ant set S. Then the sets P and P U S are closed.

Proof. Let x G P and let y G clx. Then y G nV(x). Moreover, y G P1, because P C P1 

and P1 is closed. Consider a z G nf (y, P1). Let y be a path from y to z in P1. Then x• y is 
a path from x to z in P1. It follows that z G ny(x, P1). Therefore, ny(y, P1) C ny(x, P1). 
Since, by (4.11), the latter set is disjoint from S, so is the former one. Thus, y G P, which 
proves that P is closed.

Hence, using Proposition 4.2.13 we get cl(S U P) = cl S U cl P = S U mo S U P = S U P, 
and the closedness of S U P follows. □

Lemma 4.2.15. [17, Lemma 5.15] If P is an index pair for an isolated invariant set S, 
then P* := (S U P, P2) is an index pair for S and P** := (S U P, P) is a saturated index 
pair for S.

Proof. First consider P*. By Proposition 4.2.14 set Pf = S U P is closed. By Proposition 
4.2.12 we have P* C P C S U P.

Let x G P* = P* and let y G nV (x) A P*. Then y G nV (x) A P1. It follows from (IP1) 
for P that y G P2. Thus, (IP1) is satisfied for P*.

Now, let x G P* = S U P and suppose that there is a y G nV(x) \ P* = 0. We have 
x G S, because otherwise nV(x) C cl S C cl(S U P) and then Proposition 4.2.14 implies 
nV(x) C cl(S U P) = S U P C P* which contradicts nV(x) \ P* = 0. Hence, x G P.
We have y G P1 because otherwise y G nf (x,P1) C P C P*, a contradiction. Thus 
nV(x) \ P1 = 0. Since x G P* C P1, by (IP2) for P we get x G P* = P*. This proves 
(IP2) for P*.

Clearly, P1* \ P** = P1* \ P* C P1\P*, and therefore we have the inclusion Inv(P1* \ P**) C 

Inv (P1 \ P*) = S. To verify the opposite inclusion, let x G S be arbitrary. Since S is an 
invariant set, there exists an essential solution G eSol(x, S). We have

im p C S C (P U S) \ P* = P* \ P*,

because P* A S = 0. Consequently, x G Inv(P1* \ P**) and S = Inv(P1* \ P**). Hence, P* 

also satisfies (IP3), which completes the proof that P* is an index pair for S.
Now, consider the second pair P**. Let x G P* = P be arbitrary and choose a 

y G nV(x) A P** = nV(x) A (P U S). Since x G P we get from (4.11) that nV(x) A S = 0. 
Thus, y G nV(x) A P C P = P*. This proves (IP1) for the pair P**.

To see (IP2) take an x G P* = P U S and assume nV(x) \ P** = 0. We cannot have 
x G S, because then nV (x) C nV (S) and Proposition 4.2.13 implies nV (x) C S U P = P**, 
a contradiction. Hence, x G P = P* which proves (IP2) for P**.

Since S A P = 0 by Proposition 4.2.12, we set P* \ P* = (S U P) \ P = S and

Inv(P1** \ P2**) = InvS = S.

This proves that P** is saturated and satisfies (IP3). □

We are now ready to present the proof of Theorem 4.2.5.
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Proof of Theorem 4.2.5. Let P and Q be arbitrary two index pairs for S . It follows from 
Lemma 4.2.15 that P* and P as well as P* and P** are semi-equal index pairs. Hence, 
by Lemma 4.2.10 we have isomorphisms

H(P1,P2) = H(P*,P*) = H(P**, P**).

Similarly, we obtain

H (Q1Q2) = H (Q1,Q2) = H (Q1*,Q2* ).

Since both pairs P ** and Q** are saturated, we get from Lemma 4.2.6 that H (P**, P*) = 
H (QT, Q2*). It follows that H (Pi, P2) = H (Qi, Q2). □

4.2.2 Conley index and its properties

Let S be an isolated invariant set for a combinatorial multivector field. We define 
the homology Conley index of S as H(Pi, P2), where P = (Pi, P2) is an index pair for S. 
We denote it by Con(S). Theorem 4.2.5 together with Proposition 4.2.3 guarantee that 
Conley index is well defined. In this subsection we show the Wazewski property and the 
additivity property of the Conley index.

Recall (see Section 2.4) that singular homology and Betti numbers are well defined 
for finite topological spaces, in particular for subsets of a finite topological space. Given 
a locally closed subset A of a finite topological space X we define the ith relative Betti 
number of A by /¿(A) := /¿(cl A, mo A) = rank Hi (cl A, mo A). Furthermore, we define 
the relative Poincaré polynomial of set A by pA(t) := pclA>moA(t) (see (2.7)). Note, that 
if A is closed then /¿(A) = /¿(A) and pA(t) = pA(t).

Proposition 4.2.16. [17, Lemma 5.17] If(Pi, P2) is an index pair for an isolated invariant 
set S, then

Ps(t) + PP2 (t) = Ppi (t) + (1 + t)q(t), (4.12)

where q(t) is a polynomial with non-negative coefficients. Moreover, if

H (Pi) = H (P2) ® H (cl S, mo S )

then q(t) = 0.

Proposition 4.2.17. (Wazewski property) Let A be an locally closed and V-compatible 
set. If Inv A = 0 then Con(Inv A) = H(cl A, mo A). If Inv A = 0 then H(cl A, mo A) = 0. 
In other words if Con A = 0 then Inv A = 0.

Proof. IfInvA = 0 then eSol(A) = 0. Thus, by Theorem 4.1.17 we get H(clA, moA) = 0. 

Let S := Inv A = 0. By Propositions 4.1.12, 4.1.16 and 4.1.21 set S is an isolated invariant 
set. We will show that (clA, moA) is an index pair for S. Condition (IP3) is clear because 
Inv(clA \ moA) = InvA = S. To show (IP1) note that

nV(mo A) A cl A = (mo A U [y]) A cl A = mo A
yEmo A
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because A is V-compatible and [y] n cl A c moA for every y E moA. Condition (IP2) is 
also immediate because nV(A) = cl A. Therefore nV(x) \ cl A = 0 for every x E A. By 
the definition of Conley index Con(S) = H(cl A, mo A). □

We say that an isolated invariant set S decomposes into the isolated invariant sets S' 
and S" if S = S' U S" as well as S" n cl S' = 0 and S' n cl S" = 0.

Proposition 4.2.18. [17, Lemma 5.18] Assume an isolated invariant set S decomposes 
into the isolated invariant sets S' and S". Then Sol(S) = Sol(S') U Sol(S").

Theorem 4.2.19. [17, Lemma 5.19] Assume an isolated invariant set S decomposes into 
the isolated invariant sets S' and S". Then we have

Con(S) = Con(S') © Con(S").

Proof. In view of Proposition 4.2.3, the two pairs P = (cl S', mo S') and Q = (cl S", mo S") 
are saturated index pairs for S' and S", respectively. Consider the following exact sequence 
given by Theorem 2.4.4:

. . . ^Hn (P1 n Q'\ - P2 n Q2) Hn(P1, P2) © Hn(Q1, Q2) (4 13)

^Hn (P1 U Q1, P2 U Q2) Hn-1(P1 n Q1, P2 n Q2) ....

Set S decomposes into sets S' and S", therefore we get S' n Q2 C S' n cl S" = 0 and
similarly S" n P2 = 0. Since both P and Q are saturated and S' n S" = 0 we get

P1 n Q1 = (S' u P2) n (S" u q2)

= (S' n S") u (S' n q2) u (p2 n S") u (p2 n q2) = P2 n Q2.

Thus, H(P1 n Q1, P2 n Q2) = 0, which together with the exact sequence (4.13) implies

H*(P1 U Q1, P2 U Q2) = H,(P1, P2) © H,(Q1, Q2). (4.14)

Notice further that S' n Q2 = 0 implies S' \ Q2 = S'. Similarly S" \ P2 = S". Therefore, 
since P and Q are saturated, we obtain the identity

(P1 U Q1) \ (P2 U Q2) = (P1 \ P2 \ Q2) U (Q1 \ Q2 \ P2)

= (S' \ Q2) U (S" \ P2) = s' U s" = s.

Hence, by Theorem 2.4.3,

H(clS, moS) == H(P1 U Q1, P2 U Q2). (4.15)

Finally, from (4.14) and (4.15) we get

Con(S) = H(clS, moS) == H(P1 U Q1, P2 U Q2)

= H(P1, P2) © H(Q1, Q2) = Con(S') © Con(S"),

which completes the proof of the theorem. □
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4.3 Attractors, repellers and limit sets

For the rest of Chapter 4, we fix our topological space X and a multivector field V 

on X . We also assume that X is an invariant set for V . In general, every point admits 
some right-essential solution, but not necessarily a left-essential one (Proposition 4.1.9). 
The invariance of X allows us to build an essential solution at every point of X . It will 
be crucial to obtain a duality between attractors and repeller.

Note that the invariance of X is not a particularly limiting assumption because we 
can simply restrict a space X to its invariant part. We already know that restricting a 
multivector field V to a subspace X' := InvV X is still a proper multivector field VX/ (see 
Proposition 4.1.1). Proposition 4.1.13 guarantees that X' is invariant for the restricted 
multivector field VX>. Moreover, an invariant part is V-compatible (Proposition 4.1.12) 
and closed (Proposition 4.1.11). It follows that for a multivector V C X we have clX V = 
c\Xi V and moX V = moX/ V. Thus no multivector will be modified and will not change 
its criticality.

4.3.1 Attractors, repellers and minimal sets

We define an attractor as an invariant set A C X such that nV(A) = A. Dually, a 
repeller is an invariant set R C X such that n-1(R) = R.

Proposition 4.3.1. The whole space X is both an attractor and a repeller.

Proof. To see that X is an attractor observe that the inclusion nV (X) C X is obvious 
and the opposite inclusion follows from the general assumption that X is invariant. The 
proof for the repeller is analogous. □

We can state the equivalent condition for an attractor or repeller using, respectively, 
push-forward and pull-back defined earlier (see (4.9) and (4.10)).

Proposition 4.3.2. [17, Theorem 6.1] Let A be an invariant set. Then A is an attractor 
(respectively a repeller) in X if and only if n+ A, X) = A (respectively n-(A,X) = A).

Proof. Let A be an attractor. The inclusion A C n+(A,X) is true by the definition 
of push-forward. To show inclusion n+ (A,X) C A, assume that there exists a y G 

nV;(A,X) \ A. Then by (4.9) we can find an x G A and tp G PathV(x,y,X). This implies 
that there exists a k G Z such that ^(k) G A and p(k + 1) G A. But A is an attractor 
and p(k + 1) G nV(^(k)) C nV(A) = A, a contradiction. Therefore, n+(A,X) = A. Now 
assume that n+(A,X) = A. Then nV(A) = nV(n+(A,X)) = n+(A,X) = A, proving 
that A is an attractor.

The proof for the repeller is analogous. □

Theorem 4.3.3. [17, Theorem 6.2] The following conditions are equivalent:
(1) A is an attractor,
(2) A is closed, V-compatible, and invariant,
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(3) A is a closed isolated invariant set.

Proof. Let A be an attractor. It follows immediately from Propositions 4.3.2 and 4.2.11 
that condition (1) implies condition (2). Moreover, Proposition 4.1.21 shows that (2) 
implies (3). Finally, suppose that (3) holds. By Proposition 4.1.21 set A is V-compatible. 
Since i is also closed, we have

nV(A) = U cl x U [x]V = U cl x U U [x]v = cl A U A = A, 
xEA xEA xEA

which proves that A is an attractor. □

Theorem 4.3.4. [17, Theorem 6.3] The following conditions are equivalent:
(1) R is a repeller,
(2) R is open, V-compatible, and invariant,
(3) R is an open isolated invariant set.

Proof. Assume R is a repeller. It follows from Propositions 4.3.2 and 4.2.11 that condition 
(1) implies condition (2), and Proposition 4.1.21 shows that (2) implies (3). Finally, 
assume that condition (3) holds. Then R is V-compatible by Proposition 4.1.21. The 
openness of R and Proposition 4.1.5 imply

n-1(R) P opn x U [x]V P opn x U (J [x]V = R,
xER xER xER

which proves that R is a repeller. □

Note that Theorem 4.3.4 does not hold if X is not invariant. We can examine the 
example from Figure 4.2(left). Neither of the open sets is invariant because {a} does not 
admit an essential solution. Actually, there is no repeller in this example. As mentioned, 
we can fix this by restricting X to InvX = X \ {a}. This modification makes singleton 
{b} a repeller. In general, "forward" results hold without assuming the invariance of X 
(Proposition 4.1.9), while "backward" results may fail without this assumption.

Let be a full solution in X. We define the ultimate backward and ultimate forward 
image of respectively by

uim- p := Q p .. x.r ,
tEZ-

uim+ p := P| p ([t, +œ)).
tEZ+

Note that in a finite space a descending sequence of sets must eventually stabilize. There
fore, we get the following result.

Proposition 4.3.5. [17, Proposition 6.4] Let be a full solution in X. There exists a 
k G N such that uim- y = p(—œ, —k]) and uim+ y = p[k, +œ)). In particular, the 
sets uim- and uim+ are always non-empty. □
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Proposition 4.3.6. [17, Proposition 6.5] If p is a right-essential (respectively a left
essential) solution in X, then we can find an essential solution such that im C uim+ p 
(respectively imC uim- p). In other words eSol(uim± p) = 0.

Proof. Let p be a right-essential solution in X. By Proposition 4.3.5 there exists a 
k G Z such that uim+ p = p([k, +rc>)). If there exists a critical vector V such that 
V A uim+ p = 0, then we can take as if the stationary essential solution through a point 
in V A uim+ p. Otherwise, since p is right-essential, we have at least two different regular 
multivectors V, W G V such that V A uim+ p = 0 = W A uim+ p. Then there exist 
t, s, u G Z such that k < t < s < u, p(t) G V, p(s) G W, p(u) G V and the periodic 
extension ... • p|[t)U] • p|[t,u] • ... of p|[t,«] is essential by Proposition 4.1.7.

The proof for a left-essential solution is analogous. □

For a full solution p in X. We define sets of multivectors that are visited by p infinitely 
many times by

V- (p) := {V G V | V A uim- p = 0} , (4.16)

V+(p):= {V gV| V A uim+ p = 0} . (4.17)

We refer to a multivector V G V-(p) (respectively V+(p)) as a backward (respectively 
forward) ultimate multivector of p. The families V-(p) and V+(p) will be used in the
sequel to define combinatorial limit sets, but for now, we use them in the proof of the
following theorem.

Theorem 4.3.7. [17, Theorem 6.10] Assume the whole space X is invariant. Let A C X 
be an attractor. Then A* := Inv (X \ A) is a repeller in X. It is called the dual repeller 
of A. Conversely, if R is a repeller, then R* := Inv (X \ R) is an attractor in X. It is called 
the dual attractor of R. Moreover, the dual repeller (respectively the dual attractor) is 
nonempty, unless we have A = X (respectively R = X).

Proof. We present the proof for an attractor. The proof for repeller is analogous.
Assume that A* is non-empty. We will show that A* is open. Let x G A*. It is 

sufficient to prove that opnx G A*. Thus, take a y G opnx. Then we have x G cly by 
Proposition 1.4.9. Since A is closed as an attractor (Proposition 4.3.3), we get y G A. The 
invariance of X lets us select a p G eSol(y, X). Then imp- A A = 0, because otherwise 
there exists a t G Z- such that p(t) G A and p(t + 1) G A which leads to a contradiction 
with

p(t + 1) g nv(p(t)) c nv(A) = a.

Now, let G eSol(x,X \ A). Since x G cly C nv(y), we get p- • G eSol(y,X \ A). It 
follows that y G Inv(X \ A) = A* which proves that X C A*. Therefore, the set A* is 
open.

Since A is V-compatible, also X \ A is V-compatible. Therefore, by Proposition 
4.1.12 the set A* is also V-compatible. Altogether, the set A* is invariant, open and 
V-compatible. Thus, by Theorem 4.3.4 it is a repeller.
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Finally, we will show that A* = 0 unless A = X. Suppose that X \ A = 0, and let 
x G X \ A. Since X is invariant, there exists a / G eSol(x, X). As in the first part of the 
proof one can show that im/- A A = 0, that is, we have im/- G X \ A. According to 
Proposition 4.3.6 there exists an essential solution p such that im p G uim- / G im /- G 

X \ A, and this immediately implies imp G A* = Inv (X \ A) = 0. □

Definition 4.3.8. We say that a non-empty invariant set A G X is minimal if the only 
non-empty attractor in A of the restriction VA is the entire set A.

The following proposition is straightforward.

Proposition 4.3.9. Let A G X. Then we have n;(x,A) = n+ (x,A) and n-(x,A) = 
n-A(^ A).

Proposition 4.3.10. Let A be a non-empty invariant set for V. Then A is minimal if 
and only if the following implication holds

B G A, n+(B,A) = B B = A. (4.18)

Proof. Let A be minimal. Assume there exists B C A such that n;(B,A) = B. By
Proposition 4.3.9 we have n;(B,A) = n; (B,A) = B. Thus, B is closed in A and VA-
compatible by Proposition 4.2.11. Set InvVA B is non-empty by Proposition 4.1.9 and 
closed by Proposition 4.1.11. Hence, by Theorem 4.3.3 set InvVA B is an attractor for VA. 
It follows that A is not minimal, a contradiction.

Now assume that (4.18) holds. Suppose that A is not minimal. Then there exists an 
attractor B C A for Va. By the definition of attractor and Proposition 4.3.2 we have 
B = llV.(B) = n+ (B, A). This contradicts (4.18). □

Proposition 4.3.11. Let A G X be a non-empty set. Then InvvA (nf (x, A)) = 0 for any 
point x G A.

Proof. Since x G n+ (x,A) it is non-empty. By Proposition 4.1.9 there exists a G 
eSolV+ (z, A). By Proposition 4.3.6 we can construct an essential solution p such that 
imp G uim+ G n+ (x, A). Thus, 0 = imp G Inv-,-. n+ (x, A). □

Proposition 4.3.12. [17, Proposition 6.7] Let A G X be a non-empty invariant set. 
Then A is minimal if and only if A is a strongly connected set in GV .

Proof. Let A be minimal. If A is not a strongly connected then there exist x, y G A such 
that PathV(x,y, A) = 0. It follows that y G n;(x, A). Clearly n+(nv+(x, A)) = n;(x, A) C 
A. Thus, n;(x, A) does not satisfies (4.18) and consequently by Proposition 4.3.10 set A 
is not minimal.

On the other hand, if A is a strongly connected set then for any B G A we have 
n+(B,A) = A. Hence, the only set satisfying (4.18) is A. By Proposition 4.3.10 set A is 
minimal.

□
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Corollary 4.3.13. Let A C X be a strongly connected component of GV with a non
empty invariant part. Then A is a minimal isolated invariant set.

Proof. The implication follows from Theorem 4.1.26 and Proposition 4.3.12. □

The duality given by the invariance of X allows us to adapt the proof of Proposition 
4.3.12 to get the following proposition.

Proposition 4.3.14. [17, Proposition 6.8] Let R be a non-empty invariant set. Then R 
is minimal if and only if the only non-empty repeller in R for the restriction VR is the 
entire set R.

Proof. Assume that R is minimal. By Proposition 4.3.12 the set R is a strongly connected 
set in the graph GV. Thus, for every set A C R we have n— (A, R) = R. Consequently, 
by Proposition 4.3.2 the only repeller in R for VR is the entire R.

Now suppose that R is the only non-empty repeller in R for VR. Thus, InvVR R = R. 
Let A C R be an attractor in R for Vr. Consider its dual repeller A*. If A* = 0 then 
we get A* = R, because we assumed that R is the only possible repeller in R. Therefore, 
A = 0 because R = A* = InvV;.(R \ A) c R \ A. On the other hand, if A* = 0 then 
by Theorem 4.3.7 and Proposition 4.3.2 we have A = R. Hence, the only non-empty 
attractor in R for Vr is the entire set R. This proves that R is minimal. □

Proposition 4.3.15. [17, Proposition 6.9] Let S C X be a minimal invariant set and let 
A C X be an attractor or a repeller. If A n S = 0 then S C A.

Proof. Let A be an attractor. Let x E A n S and let y E S. Since, by Proposition 
4.3.12, S is strongly connected, there exists a path p E PathV(x,y, S). We will prove 
by induction that p(k) E A for k E dom p. This is obviously true for k0 := mindom p, 
because p(k0) = x E A. Hence, assume k,k + 1 E dom p and p(k) E A. Clearly,

p(k + 1) e nV(p(k)) c nV(A) = a.

Therefore, y = p(maxdom p) E A. This proves that S C A. The proof for a repeller is 
analogous. □

4.3.2 Limit sets

We define the V-hull of a set A C X as the intersection of all V-compatible, locally 
closed sets containing A. We denote it by (A\>. Figure 4.8 gives an example of a set whose 
V-hull is much larger than the original set. As an immediate consequence of Proposition
1.4.4 and Proposition 4.1.3 we get the following result.

Proposition 4.3.16. [17, Proposition 6.11] For every A C X its V-hull is V-compatible 
and locally closed. □
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Figure 4.8: The figure shows the finite topological space X and the multivector field 
consisting of 7 multivectors V = {{a, c}, {b, d}, {e, g}, {f, h}, {i, k}, {j, l}, {m, n}}. Let 
S = {a, b}. Note that the only V-compatible, locally closed set containing S is X . Thus, 
(S )v = X.

Definition 4.3.17. We define the a- and w-limit sets of a full solution p respectively by 

a(^) := (uim- ,

V(<p) := (uim+ <p)V.

Some examples of limit sets are presented in Figure 4.9. The following proposition is 
a simple consequence of Proposition 1.4.6.

Proposition 4.3.18. [17, Proposition 6.12] Assume ip is a full solution of V and ^op is 
the associated dual solution of Vop. Then

a(p) = œ (^op ) and œ (ç>) = a(^op ). □

The following proposition shows that we can equivalently define limit sets in terms of 
ultimate multivectors.

Proposition 4.3.19. [17, Proposition 6.13] Let p be a full solution. Then

a(v) = (U V - (^)}V

and

œ M = (U V+(^)}V.

Proof. Clearly

uim- p C U{ V £ V I V A uim- p = 0} = U V-(ç>)

and therefore
a(^) = (uim- C (U V- (<^)}V.
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Figure 4.9: Left: a multivector field with two exemplary essential solutions y (blue) and 
ÿ (green). Right: limit sets for and
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Now let x G U V-(p). Then there exists a y G [x]V such that

y G uim- ip G ^uim- p^ = a(p).

Hence, since a(p) is V-compatible, we get x G a(p), which proves U V-(p) G a(p). Since 
a(p) is locally closed and V-compatible, it follows that

(U V-(p^V G a(p).

The proof for w(p) is analogous. □

Lemma 4.3.20. [17, Lemma 6.14] Assume p : Z X is a full solution of V and V-(p) 
(respectively V+(p)) contains at least two different multivectors. Then for every V G V 

such that V G a(p) (respectively V G w(p)) we have

(nV(V) \ V) A a(p) = 0 (respectively (nV(V) \ V) A w(p) = 0) (4.19)

and

(nV-1(V) \ V) A a(p) = 0 (respectively (nV-1(V) \ V) A w(p) = 0). (4.20)

Lemma 4.3.21. Let p be a full solution in X. Then limit sets a(p) and w(p) are strongly 
connected sets in GV.

Proof. Consider points x,y G a(p). We will show that PathV(x, y, a(p)) = 0. For the rest 
of the proof we use abbreviations Vx := [x]V and Vy := [y]V. Since a(p) is V-compatible 
by the definition, both Vx and Vy are subsets of a(p) but they need not be members of 
V-(p). Thus, we consider four cases.

Case 1. Vx,Vy G V-(p). In this case we get directly from the definition of V- that 
PathV (x,y,a(p)) = 0.

Case 2. Vx G V-(p) and Vy G V-(p). By Case 1 it is enough to show that there exists 
at least one point z G UV-(p) such that PathV(x,z,a(p)) = 0. Suppose the contrary. 
Then

nV;(Vx,a(p)) A U V-(p) = 0. (4.21)

By Proposition 4.2.11 set n+(Vx,a(p)) is a closed and V-compatible subset of a(p). By 
Proposition 1.4.5 set A := a(p)\n+(Vx,a(p)) is locally closed. Clearly, A is V-compatible 
and by (4.21) it contains U V-(p). It follows that a(p) = (UV-(p))v G A G a(p), a 
contradiction.

Case 3. Vx G V-(p) and Vy G V-(p). Similarly to the previous case it suffices to prove 
that there exists a point z G (UV-(p))v such that PathV(z,y,a(p)) = 0. Assume the 
contrary. Then

nV(Vy ,a(p)) A U V-(p) = 0. (4.22) 
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By Proposition 4.2.11 the set n-(Vy,a(p)) is V-compatible and open. Hence, B := 
a(p) \ n-(Vy,a(p)) is a V-compatible, locally closed set containing U V-(p). It follows 
that a(p) = (UV-(p))v C B Q a(p), a contradiction.

Case 4. Vx,Vy G V-(p). Fix a z G UV-(p). Using Case 2 we can find a path 
^1 G Pathv(x,z,a(p)) and by Case 3 a path G Pathv(z,y,a(p)). Then, ^1 • G 

Pathv(x, y, a(p)). This finishes the proof that a(p) is strongly connected.
The proof for w(p) is analogous. □

Theorem 4.3.22. [17, Theorem 6.15] Let p be an essential solution in X. Then both 
limit sets a(p) and w(p) are non-empty minimal isolated invariant sets.

Proof. The nonemptiness of a(p) and w(p) follows from Proposition 4.3.5.
The sets a(p) and w(p) are V-compatible and locally closed by Proposition 4.3.16. In 

order to prove that they are isolated invariant sets it suffices to apply Proposition 4.1.21 
as long as we prove that a(p) and w(p) are also invariant.

To this end assume that x G a(p). Suppose that V-(p) is a singleton. Then by 
Proposition 4.3.19, a(p) = [x]v. Since p is essential, this is possible only if [x]v is critical. 
It follows that the stationary solution if(t) = x is essential and a(p) is an isolated invariant 
set.

Assume now that there are at least two different multivectors in V-(p). Then the 
assumptions of Lemma 4.3.20 are satisfied and, as a consequence of (4.19), for every x G

a(p) there exist a point x' G [x]v and a point y G a(p) such that y G (nv(x') \ [x]v) Aa(p).
Hence, we can construct a right-essential solution

x0 • x0 • x1 • x'1 • x2 • x'2 • ..., (4.23)

where x0 = x, x\ G [xi]V such that (nV(x'ff) \ [xi]) Aa(p) = 0, and xi+1 G (nV(xi) \ [xi]V) A 

a(p). Property (4.20) provides a complementary left-essential solution. Concatenation of 
both solutions gives an essential solution in a(p). Hence, we proved that a(p) is invariant 
and consequently an isolated invariant set.

To better see why the constructed solution is of form (4.23) consider solution p in 
Figure 4.9. Let xi = I then nV(xi) = {I,KI,IH,IKH} = [xi]. Hence to exit [xi] we 
must first move, for example, to the point x\ = IKH. Now nV(xi) \ [xi] = 0 and we can 
choose xi+1 which is in a different multivector.

Finally, by Lemma 4.3.21 set a(p) is strongly connected in Gv and the conclusion 
follows from Proposition 4.3.12. The proof for w(p) is analogous. □

Let A,B C X. We define the connection set from A to B by:

C(A, B) := (x G X | . ,.so.i.,.v) a(p) C A and w(p) C B] . (4.24)

Proposition 4.3.23. [17, Proposition 6.17] Assume A, B C X. Then the connection set 
C(A, B) is an isolated invariant set.

74



Proof. To prove that C(A, B) is invariant, take an x G C(A, B) and choose a solution 
p G eSol(x,X) from A to B as in (4.24). It is clear that p(t) G C(A, B) for every 
t G Z. Thus, p G eSol(x, C(A,B)), and this in turn implies x G InvC(A, B) and shows 
that C(A, B) is invariant. Now consider a point y G [x]V. Then the solution p = p- • y • p+ 

is a well-defined essential solution through y such that a(p) C A and w(p) C B. Thus, 
C(A, B) is V-compatible.

In order to prove that C(A, B) is locally closed, consider x, z G C(A, B), and a 
y G X such that z <T y <T x. Select essential solutions px G eSol(x, C(A, B)) and 
pz G eSol(z, C(A, B)). Then ÿ := p- • y • pf is a well-defined essential solution through 
y such that a(^) C A and C B. It follows that y G C(A, B). Thus, by Proposition 
1.4.10, C(A, B) is locally closed. Finally, Proposition 4.1.21 implies that C(A, B) is an 
isolated invariant set. □

Proposition 4.3.24. [17, Proposition 6.18] Assume A is an attractor. Then C(A, A*) = 
0. Similarly, if R is a repeller, then C(R*,R) = 0.

Proof. Suppose there exists an x G C(A, A*). Then by (4.24) we can choose a p G 
eSol(x, X) and a t G Z such that p(t) G A and p(t + 1) G A. However, since A is an 
attractor, p(t) G A implies p(t + 1) G A, a contradiction. The proof for a repeller is 
analogous. □

4.4 Morse decomposition, Morse equation, Morse in

equalities

In this section we define Morse decompositions and prove the Morse inequalities for 
combinatorial multivector fields. We recall our general assumption that X is invariant.

4.4.1 Morse decomposition

Definition 4.4.1. Assume X is invariant and (P, <) is a finite poset. Then the collection 
M = { Mp | p G P } is called a Morse decomposition of X if the following conditions are 
satisfied:

(i) M is a family of mutually disjoint, isolated invariant subsets of X.
(ii) For every essential solution p in X either im p C Mr for an r G P or there exist 

p, q G P such that q > p and

a(p) C Mq and w(p) C Mp.

We refer to the elements of M as Morse sets.

Note that there are a few differences between the combinatorial and classical definition 
of Morse decomposition (see Definition 3.1.5). First, the condition (ii) is expressed in 
terms of solutions not points. It is caused by the multivalued nature of combinatorial 
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dynamics. Moreover, solutions can jump from one Morse set to another in a single time
step. Hence, we need to check condition (ii) for every essential solution and every point 
in X, not only in between Morse sets, that is, in X \ M. Without this assumption, we 
could construct a degenerated example where recurrent behavior is not encapsulated in a 
Morse set (see Figure 4.10).

The attractor-repeller pair that is the subject of Theorem 4.3.7 is the simplest example 
of a non-trivial Morse decomposition of X into two Morse sets. We will show it now.

Proposition 4.4.2. [17, Proposition 7.2] Let X be an invariant set and let A C X be 
an attractor. Assume A*, its dual repeller, is nonempty. Furthermore, define M1 := A, 
M2 := A*, and let P := {1, 2} be an indexing set with the order induced from N. Then 
M = {M1, M2} is a Morse decomposition of X.

Proof. By Theorems 4.3.3 and 4.3.4 both A and A* are isolated invariant sets which are 
disjoint by their construction. Let x G X and let y G eSolV(x, X). By Theorem 4.3.22 the 
set w(^>) is a minimal, isolated invariant set. By Proposition 4.3.15 it is either a subset 
of A or a subset of Inv(X \ A) = A*. The same holds for a(^>).

We therefore have four cases. The situation a(^) C M2 and w(^) C M1 is consistent 
with the Morse decomposition definition. The case a(^) C M1 and w(^>) C M2 gives 
a contradiction, because it implies that there exists t G Z such that <p(t) G M1 and 
<p(t +1) G M1 while Mi is an attractor. Now suppose that we have a(^) C M1 and

C M1. It follows that there exists a t G Z such that ^>((-rc>,t])) C A. Since A is an 
attractor we therefore have <p(t + 1) G nV(^(t)) C A, and an induction argument implies 
imC A = M1. The analogous argument holds if C M2. □

Corollary 4.4.3. An invariant set S C X is minimal if and only if the only Morse 
decomposition M of S is M = {S}.

We recall that GV stands for the digraph associated with the multivalued map nV of 
the multivector field V on X. We have the following theorem which reduces the problem 
of constructing the Morse decomposition to graph-theoretic algorithms.

Theorem 4.4.4. [17, Theorem 7.3] Assume X is invariant. Consider the family M of 
all strongly connected components M of GV with eSol(M) = 0. Then M is a Morse 
decomposition of X.

Actually, the following proposition shows that Theorem 4.4.4 provides a recipe for the 
finest Morse decomposition.

Proposition 4.4.5. Let M be the Morse decomposition X given by Theorem 4.4.4. Then 
for any other Morse decomposition M' of X we have M C M'. We call it the minimal 
Morse decomposition of X. We denote it by M(V).

Proof. Let M' be a Morse decomposition of X. Since M G M is a strongly connected 
component of GV, by Proposition 4.1.24 there exists a full periodic solution such that 
im = M. It follows from Proposition 4.1.14 that is a full essential solution. By
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Figure 4.10: A sample combinatorial multivector field V = {{A, D, F, G}, {B, C, E, H }} 

on the finite topological space X = {A, B, C, D, E, F, G, H } with Alexandrov topology 
induced by the partial order indicated by arrows. If we consider M = V , then one obtains 
a partition into isolated invariant sets with X \ M = 0. Note that ... D • H • B • F • D •... 
is a periodic trajectory which passes through both “Morse sets.”

Proposition 4.1.25 set M is V-compatible and locally closed. Thus, we have a(<p) = M. 
Hence, by Definition 4.4.1 there exists M' G M' such that M = a(^>) C M'. This proves 
the minimality of M with respect to □. □

Proposition 4.4.6. Let M be a Morse decomposition of X. Then M is the minimal 
Morse decomposition if and only if every Morse set M G M is a minimal isolated invariant 
set.

Proof. Let M be the minimal Morse decomposition of X. Then the implication follows 
directly from the construction (Theorem 4.4.4 and Proposition 4.4.5) and Corollary 4.3.13.

Let M' := M(V) be the minimal Morse decomposition and M' G M' such that 
M' C M for an M G M. By Proposition 4.4.5 Morse set M' is a strongly connected 
component. Morse set M is a strongly connected set (Proposition 4.3.12) such that 
M A M' = 0. Thus, M C M'. It follows that M = M' and M = M'.

4.4.2 Weak Morse decomposition

For reasons that will be clear in Chapter 5, we introduce a concept of the weak Morse 
decomposition.

Definition 4.4.7. Assume X is invariant and (P, <) is a finite poset. Then the collection 
M = { Mp | p G P } is called a weak Morse decomposition of X if the following conditions 
are satisfied:

(i) M is a family of mutually disjoint locally closed subsets of X.
(ii) For every full solution in X either im C Mr for an r G P or there exist p, q G P 

such that q > p and
a(^) C Mq and C Mp.

We refer to the elements of M as weak Morse sets.

In the above definition, we modified Definition 4.4.1 by replacing essential solutions 
with full solutions and isolated invariant sets with locally closed sets. Since every multi
vector admits a full stationary solution, every point belongs to a weak Morse set. Hence, 
we get the following corollary.
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Corollary 4.4.8. Let V be a multivector field for X. Then a weak Morse decomposition 
M of X is a partition of X.

Proposition 4.4.9. Let M G M be a weak Morse set. Then M is V-compatible.

Proof. Let M be a weak Morse set and let x G M. Assume y G [x] is such that y = x. 
Consider a full solution y : . . .x • y • x • y • x • .... Clearly a(^) = w(y>) = [x]. Condition 
(ii) of Definition 4.4.7 implies that y G M. □

Now we will show that the construction of the weak Morse decomposition can also be 
reduced to the computation of strongly connected components.

Theorem 4.4.10. Assume X is invariant. Consider the family M of all strongly con
nected components M of GV. Then M is the minimal weak Morse decomposition of 
X.

Proof. For convenience, assume that M = {Mi | i G P} is bijectively indexed by a finite 
set P. By Proposition 4.1.25 every M G M is V-compatible and locally closed. Since sets 
in M are strongly connected components of GV they are clearly mutually disjoint.

Define a relation < on the indexing set P as

p < q & 3^epathv(X) G Mq and y G Mp.

It is clear that < is reflexive. To see that it is transitive consider Mi, Mj, Mk G M such 
that k < j < i. It follows that there exist paths and such that G Mi, </P, tfF G Mj 
and r G Mk. Since Mj is strongly connected we can find p G Pathv, y , r , X). The 
path <p • p • clearly connects Mi with Mk proving that k < i.

In order to show that < is antisymmetric consider sets Mi, Mj with i < j and j < i. 
It follows that there exist paths <p and such that pC,4^ G Mi and p^,^C G Mj. Since 
the sets M^Mj are strongly connected we can find paths p and p' from to r and 
from to respectively. Clearly, <p G Pathv(pC,p^,X) and p • • p' G (p°,'£C,X).
This proves that Mi and Mj are the same strongly connected component.

Let p be a full solution in X. By Lemma 4.3.21 sets a(p) and w(p) are strongly 
connected sets. Hence, there exist strongly connected components Mp, Mq G M such 
that a(p) C Mq and w(p) C Mp. We have p < q directly from the construction of 
relation <. □

Theorem 4.4.11. Let M be the weak Morse decomposition of X given by Theorem 
4.4.10. Then for any other weak Morse decomposition M! of X we have M C M'. We 
call it the minimal weak Morse decomposition of X. We denote it by M+(V).

Proof. Let M' be a weak Morse decomposition of X. Since M G M is a strongly con
nected component of GV, by Proposition 4.1.24 there exists a full periodic solution y such 
that imy = M. By Proposition 4.1.25 set M is V-compatible and locally closed. Thus, 
we have a(p) = M = w(y>). Hence, by Definition 4.4.7 there exists M' G M' such that 
M = a(p) = w(p) C M'. This proves the minimality of M with respect to the relation 
C. □
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Proposition 4.4.12. Let M be a weak Morse decomposition of X . Then M is the 
minimal weak Morse decomposition if and only if every weak Morse set M G M is either 
a minimal isolated invariant set or a regular multivector.

Proof. Let M be the minimal weak Morse decomposition and let M G M. By Proposition 
4.4.9 set M is V-compatible and by Theorem 4.4.11 it is a strongly connected component 
of GV . Note that there are two possible cases. First, there exists a regular multivector 
V G V such that V = M which satisfies the conjecture. Otherwise, M contain a critical 
multivector or at least two regular ones. Thus, by Propositions 4.1.24 and 4.1.7 we can 
construct a full essential solution passing through all points of M. Thus, by Proposition 
4.1.21 it follows that M is an isolated invariant set. Finally, by Proposition 4.3.12 it is 
minimal.

Now let M be a weak Morse decomposition of X. A weak Morse set M such that M 
is a regular multivector cannot be decomposed into a smaller weak Morse sets because of 
4.4.9. If M is a minimal isolated invariant set then by Proposition 4.3.12 Morse set M 
is a strongly connected set. Suppose there is a weak Morse decomposition M' such that 
there exist M'p, M'q G M' and M'p, M'q C M G M. Let x G M'p and y G M'q. There exists a 
path y G Path(x, y, M) that can be extended to a full solution ^xy := ... • x • x • • y • y •....
Clearly a(^) C M'p and w(^) C M'q. It follows that q < p. Similarly we can show that 
q < p by constructing a full solution ^yx. This gives a contradiction with the assumption 
that M' is a weak Morse decomposition. □

We show in Theorem 4.4.14 that weak Morse decomposition leads to a Conley-Morse 
graph that is substantially the same as the one obtained from Morse decomposition. It 
is mainly due to the following corollary that is an immediate consequence of Wazewski 
property 4.2.17.

Corollary 4.4.13. Let M be a weak Morse decomposition of V and let M G M. If 
Inv M = 0 then Con(Inv M) = H(cl M, mo M). If Inv M = 0 then H(cl M, mo M) = 
0. □

Theorem 4.4.14. Let M be a weak Morse decomposition. Then family M := {Inv M | 

M G M, InvM = 0} is a Morse decomposition. If M is the minimal weak Morse 
decomposition, then M is the minimal Morse decomposition. Moreover, the Morse-Conley 
graph of M is the Morse-Conley graph of M restricted to the nodes corresponding to the 
weak Morse sets satisfying Inv M = 0.

Proof. Assume M = {Mp | p G P} and let P := {p G P | Inv Mp = 0}. Then M = 
{Inv Mp | Mp G M, p G P}. By Corollary 4.1.22 Inv M is an isolated invariant set for 
M G M. Since elements of M are mutually disjoint, so are the elements of M. Thus 
condition (i) for Morse decomposition is satisfied.

Let G eSol(X) C Sol(X). There exist p,q G P such that a(p) C Mp, w(^) C Mq 

and p > q. By Theorem 4.3.22 sets a(^) and w(^>) are non-empty isolated invariant set. 
Therefore, 0 = a(^>) C Inv Mp and 0 = C Inv Mq and Inv Mp, Inv Mq G M. Suppose
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im y C Mp for some p G P. Then, since <p G eSol(Mp), we get im <p C Inv Mp G M. A
partial order on P restricted to P is clearly an order satisfying condition (ii) of a Morse 
decomposition definition.

The minimality follows from Propositions 4.4.12 and 4.4.6. The correspondence of 
Morse-Conley graphs follows from Corollary 4.4.13. □

4.4.3 Properties of Morse sets

Let M = {Mp | p G P} be a Morse decomposition for V. For a subset I C P we define 
the Morse set of I by

M(I) := U C(Mi,Mj).
i,jeI

Proposition 4.4.15. Let i G I then Mi C M(I). In particular Mi = C(Mi, Mi).

Proof. Let x G Mi. Since Mi is an isolated invariant set there exists G eSol(x, Mi). We 
have im C Mi. By Proposition 4.1.21 set Mi is locally closed and V-compatible. Thus, 
a(^>),œ(^>) C Mi. Consequently, x G C(Mi,Mi).

Now, suppose that x G C(Mi, Mi) and x G Mi. Then there exists y G eSol(x, X) such 
that a(<p),u(<p) C Mi. Since M is a Morse decomposition it follows that i < i. This 
contradicts condition (ii) of definition 4.4.1. □

Theorem 4.4.16. [17, Theorem 7.4] The set M(I) is an isolated invariant set.

Proof. Observe that M(I) is invariant, because, by Proposition 4.3.23, every connection 
set is isolated invariant and V-compatible by Proposition 4.1.21. Set M(I) is V-compatible 
as a union of V-compatible sets and invariant as the union of invariant sets (Proposition 
4.1.15). We will prove that M(I) is locally closed. To see that, suppose the contrary. 
Then, by Proposition 1.4.10, we can choose a, c G M(I) and a point b G M(I) such that 
c <t b <t a. There exist essential solutions .:a G eSol(a,X) and G eSol(c, X) such 
that a(<pa) C Mq and w(ç>c) C Mp for some p,q G I. It follows that G := V- • b • 
is a well-defined essential solution such that a(G) C Mq and w(G) C Mp. Hence, b G 

C(Mq, Mp) C M(I) which proves that M(I) is locally closed. Thus, the conclusion 
follows from Proposition 4.1.21. □

Theorem 4.4.17. [17, Theorem 7.5] Let I be a down set in P, then M(I) is an attractor 
in X.

Theorem 4.4.18. [17, Theorem 7.6] If I C P is convex, then (M(I-), M(I<)) is an index 
pair for the isolated invariant set M(I).

Proof. By Proposition 1.3.1 the sets I- and I< are down sets. Thus, by Theorem 
4.4.17 both M(I-) and M(I<) are attractors. It follows that nV(M(I-)) C M(I-) 
and nv(M(I<)) C M(I<). Therefore, conditions (IP1) and (IP2) of an index pair are 
satisfied.

Let A := M(I-) \ M(I<). To prove (IP3) we first show that M(I) C Inv(A). By 
Theorem 4.4.16, M(I) is an isolated invariant set. Therefore, it is sufficient to prove 
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M (I ) C A. The set A is V -compatible as a difference of V -compatible sets. By Proposition
1.4.3 it is also locally closed, because M(I- ) and M(I< ) are closed as attractors (see 
Theorem 4.3.3). Assume that M(I) C A. Select an x £ M(I) \ A. By the definition 

of M(I) we can find an essential solution p through x such that œ(p) C Mp for some 
p £ I. Since M(I) C M(I-) and x £ A we get x £ M(I<). But M(I<) is an attractor. 

Therefore œ(p) C M(I<), which in turn implies p £ I, a contradiction.
To prove the opposite inclusion take an x £ Inv(A) = Inv(M(I-) \ M(I<)). Then we 

can find an essential solution p G eSol(x, A). Then imp C M(I-) \M(I<). In particular,

uim- ip A M(I<) = 0 and uim+ p A M(I<) = 0. (4.25)

We also have p G eSol(x, M(I-)), which means that there exist p,q G I- such that p > q, 
a(p) C Mp, œ(p) C Mq. We cannot have p G I<, because then we get 0 = uim- p C 

a(p) C Mp C M(I<) which contradicts (4.25). Therefore, p G I- \ I< = I. By an 
analogous argument we get q G I. It follows that x G C(Mp, Mq) C M(I). □

Note that ifI is a down set then I< = 0. Hence, an immediate consequence of Theorem 
4.4.18 we get the following Corollary.

Corollary 4.4.19. [17, Corollary 7.7] If I is a down set in P, then I- = I, I< = 0 and 

(M(I), 0) is an index pair for M(I).

Theorem 4.4.20. [17, Theorem 7.8] Assume X is invariant, A C X is an attractor and 
A* is its dual repeller. Then we have

pA(t) + pa* (t) = px (t) + (1 + t)q(t) (4.26)

for a polynomial q(t) with non-negative coefficients. Moreover, if q = 0, then C(A*, A) = 
0.

Proof. Let P := {1,2} with the order induced from N. Set M1 := A and M2 := A*. Then, 
by Proposition 4.4.2 M := {M1, M2} is a Morse decomposition of X. For I := {2} one 
obtains I- = {1, 2} and I< = {1}. Yet, this immediately implies that M(I-) = X and 
M(I<) = M({1}) = A. We have

px (t) = pM (i< )(t) and pA(t) = pM(i<) (t). (4.27)

By Theorem 4.4.18 the pair (M(I-),M(I<)) is an index pair for M(I) = A*. Thus, by 
substituting P1 := M(I-), P2 := M(I<) and S := A* into (4.12) in Corollary 4.2.16 we get 
(4.26) from (4.27). By Proposition 4.3.24 we have the identity C(A, A*) = 0. Therefore, if 
in addition C(A*, A) = 0, then X decomposes into A and A*, and Theorem 4.2.19 implies

H(Pi) = Con(X) = Con(A) ® Con(A*) = H(P2) ® H(A*),

as well as q = 0 in view of Proposition 4.2.16. This finally shows that q = 0 implies 
C (A*,A) = 0. □
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4.4.4 Morse equation and Morse inequalities

The following two theorems follow from the results of the preceding section by adapting 
the proofs of the corresponding Theorems in [21].

Theorem 4.4.21. [17, Theorem 7.9] Assume X is invariant and P = {1, 2, ..., n} is 
ordered by the linear order of the natural numbers. Let M := {Mp | p G P} be a Morse 
decomposition of X and set Ai := M({«}-), A0 := 0. Then (Ai-1, Mi) is an attractor
repeller pair in Ai. Moreover,

nn
£pMi,(t) = px(t) + (1 + t) £%(t)
i=1 i=1

for some polynomials qi(t) with non-negative coefficients and such that qi(t) = 0 implies 
C(Mi,Ai-1)=0 fori=2,3,...,n.

Theorem 4.4.22. [17, Theorem 7.10] Assume X is invariant. For a Morse decomposition 
M of X define

mk(M) := 3k(Mr).
reP

Then for any k G Z+ we have the following inequalities.
(i) The strong Morse inequalities:

mk(M) - mk-i(M) + ... ± mo(M) > 3k(X) - 3k-i(X) + ... ± 3o(X),

(ii) The weak Morse inequalities:

mk(M) > 3k(X).
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Chapter 5

Persistence of Morse Decomposition

The first section of this chapter presents the main theoretical concepts from [7] (in 
particular, from Sections 5 and 6). The second section shows some simplifications leading 
to a better visualization.

As we mentioned in Chapter 3 isolated invariant sets are always compact in the classical 
setting of semiflows on locally compact Hausdorff spaces. Therefore, every Morse set forms 
a distinct connected component in the space obtained as the union of all Morse sets with 
the topology induced from the ambient space. This is because Morse sets are always 
disjoint and, in that case, also closed. In particular, the space between the Morse sets is 
"filled" with solutions connecting them.

This need not be true in the setting of finite topological spaces. In the case of multivec
tor fields, attractors are the only closed isolated invariant sets (Theorem 4.3.3). Moreover, 
Morse sets are not disconnected in general (see Fig. 4.4). Thus, to study the evolution 
of Morse sets, we modify the topology of the space. This is where we utilize the idea of 
disconnecting topology introduced in Section 1.4 with Theorem 1.4.11.

5.1 Persistence modules of weak Morse decomposi

tion

Recall that T (A) stands for the disconnecting topology on A induced by T (see 
Theorem 1.4.11). Let us begin this section with the following theorem.

Theorem 5.1.1. [7, Theorem 5.2] Let X and Y be finite topological spaces. Let A 

(respectively B) be a family of mutually disjoint subsets of X (respectively Y ). Assume 
that a continuous map f : X Y inscribes A and B, that is f (A) C B, where f (A) := 
{ f(A) | A G A}. Then, the map

fAB : (U A, T(A)) 9 x f (x) G (U B, T(B))

is well defined and continuous.

Theorem 5.1.1 is slightly more general than what we need. In particular, we are 
interested in the case where families A and B are weak Morse decompositions. We recall 
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that M+(V) stands for the minimal weak Morse decomposition of V and by Corollary 
4.4.8 we have U M+(V) = X.

Corollary 5.1.2. [7, Corollary 5.3] Consider two finite topological spaces X and Y with 
corresponding combinatorial multivector fields V and W. Then the map

/m+(V),m+(w) : (UM+(V), T(M(V))) 3 x f (x) G (JM+ (W),T(M(W)))

is continuous under the assumption that f ◦ nV C nW ◦ f, that is, f (nV(x)) C nW(f (x)) 
for every x G X.

Let (Xi, Ti)in=1 be a family of finite topological spaces. Assume Vi is a combinatorial 
multivector field on Xi with the weak minimal Morse decomposition Mi := M+(Vi). Let 
(fi : Xi Xi+1)n-i be a sequence of continuous maps such that

fi ◦ nv, C nvi+i ◦ fi and f«(M«) E Mw.

Then we have continuous maps

fi := (f.)M„M,+i : (X‘,T‘(M,)) (Xi+1,T‘+1(M,+i)) (5.1)

that induce homomorphisms in singular homology

H(f) : H (x\ Ti(Mi)) H (xi+1, Ti+1(M.+i))

which yield the persistence module of the weak Morse decomposition

H (X1, T1(Mi)) H (X2, T2 (M2)) ... H (Xn, Tn (Mn))

We refer to the persistence barcode of this module as the persistence barcode of the minimal 
weak Morse decomposition . Moreover, we can replace some of the maps from the sequence 
{fi} with backwards maps, that is fi : Xi+1 Xi, which satisfy

fi ◦ nv,+1 C nv, ◦ fi and fi (Mi+1) E Mi

and induces

f := (/i)Mi+i,M. : (Xi+1,T+1(M,+,)) (x‘,TfM,)) . (5.2)

Then we get the zigzag persistence module of the minimal weak Morse decomposition

H (X1, T1(Mi)) ' • H (X2, T2 (M2)) ' • ... H (Xn, Tn(Mn)) (5.3)

where the direction of H(f) depends on the direction of an underlying map fi.
The next step is to guarantee that we can always construct continuous maps (5.1) and 

(5.2) to build a persistence module for any multivector fields sequence. Note that f-1(W) 
and V A f-1(W) are proper multivector fields by Proposition 4.1.2. To simplify further 
the notation we put TV := T(M+(V)).
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Figure 5.1: Example of two multivector fields V and W , and the third multivector 
field VPW obtained by the intersection (middle). Minimal Morse decomposition for 
each multivector field are M(V) = {{ab}, {d, e, de}}, M(W) = {{ac}, {c, e, ce}} and 
M(V n W) = {{a}, {c}, {ab}, {ac}}.

Proposition 5.1.3. [7, Theorem 5.4 (iv)] Let V be a multivector field on finite space X 
and W be a multivector field on Y. Let f : X Y be a continuous map. Then the map 
induced by the identity

K := idvn f-1 (W),v : (X Tvn f-1 (W)) (X Tv)

and the map induced by f

A := fvn f-1 (w),w : (X Tvn f-1 (W)) (Y TW)

are both continuous.

We can now explain why weak Morse decomposition is useful. For simplicity assume 
that f is identity. If we consider two multivector fields V and W on X, we can not 
guarantee that any of the following inclusions hold for Morse decomposition:

UM(V) c JM(Vn W),

UM(Vn W) c JM(V).

Figure 5.1 shows an example when both inclusions fail simultaneously. Consequently, 
maps k and A from Proposition 5.1.3 will not be well defined. However, if we consider 
weak Morse decomposition, the problem disappears because then the union of all weak 
Morse sets will always give the entire space.

Now, using Proposition 5.1.3 we obtain the comparison diagram between weak Morse 
decompositions for arbitrary multivector fields V and W:

(X, Tv(X, Tvn f-1 (W)) -^ (Y, Tw).

Thus, assume a sequence of finite topological spaces (Xi, Ti ) in=1 with corresponding com
binatorial multivector fields V2 and connecting continuous maps fa : X2 Xi+1 are given. 
Then the diagram
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5.2 Persistence modules of Morse decomposition

The results of the previous section show how to track all the weak Morse sets simul
taneously. However, in practice, since every regular multivector may be a weak Morse 
set on its own, that strategy can lead to an excessive number of tracked components. In 
order to focus our analysis only on sets that carry the qualitative information about the 
flow, we relax our assumptions. In particular, we do not consider the components of the 
intermediate spaces to be Morse sets.

Let V be a multivector field on a finite topological space (X, T ). We denote the union 
of all Morse sets as DV := M(V ). We endow set DV with the disconnecting topology 
TV := T X (M(V )). V V

Proposition 5.2.1. Let V be a multivector field on a finite topological space (X, T X ) 
and let W be a multivector field on (Y, TY). Assume that f : (X, TX) (Y, TY) is a
continuous map. Denote DV,W := Dv n f-1(Dw) and Tv,w = Tv (f-1(M(W))) - the 
disconnecting topology induced by TV and the counterimages of Morse sets for W. The 
map induced by the identity

:= idV,W : (DV,W, TV,W) (DV, TV)

and the map induced by f

Y := fv,w : (dv,w, tv,w) (dw, tw)

are continuous.

Proof. Consider the diagram

(Dv,w, Tv,w) —i—> (Dv,w, TV(Dv,w)) —-—> (Dv, TV)

where maps i and j are induced by the identity. Since Tv(Dv,W) is the topology induced 
in Dv,W by Tv and j is an inclusion of the subspace we get the continuity of j. By the
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after applying singular homology functor produces the following zigzag persistence mod
ule

H (X1, T1 ) - H (X1, T1 1 --------- H(d1) > H (X2, T2V )<----------2-------------------  •••
V , V  ̂ V , V1 n f-1(V2)) V , ■

-------------H(Xn-2) > h (Xn-1, TY1 H(Kn-1) h(Xn-1, T -1 1 V-(dn—1)H (Xn, Tn ) .V Vn-Y Vn-1 n f--1(Vn) J V ’ Vn)



construction, TV,W is a finer topology than TV (DV,W ). It follows by Proposition 1.4.1 that 
map i is also continuous. Hence, /3 is continuous as a composition of continuous maps.

Now, let A E TW. It follows that there exists a U E TY such that A = U A UM(W). 
Since f is continuous we have f-1(U) E TX. Thus,

7-1(A) = f-1(A) A Dv,w = f-1(U) A f-1(Dw) A Dv,w = f-1(U) A Dv,w E Tv,w, 

because DV,W C f-1(DW). This proves that y is continuous. □

Using Proposition 5.2.1 we construct the comparison diagram between Morse decom
positions for arbitrary multivector fields V and W:

(DV, TV) — (DVW, TV,W) —(DW, TW)

Now, consider a sequence of finite topological spaces (Xi, Ti)in=1 with corresponding 
combinatorial multivector fields Vi and connecting continuous maps f : Xi Xi+1. We 
use the notation as in the Proposition 5.2.1. Then the diagram

(DVi , TV1 ) < (DVi,V 2 , TV1,V2 )  (DV 2 , T ) < —------- (DV2,V 3 , TV 2 ,V 3 ) -----~> •" 

after applying singular homology functor produces the following zigzag persistence module 
of the minimal Morse decomposition

H (Dv 1, Tvi) H (Dvi,V2, Tvltv,) HM > H (Dv2, Tv,)<------—------------

••• H (7n-2\ H DVn-1 , TVn-1 (DVn-i,Vn , (DV.. , TV.. ) ■

Note that theorems in this and the previous section are more general than we need for 
computational purposes presented in the next chapter. In the next chapter, among others, 
we will study the behavior of a dynamical system with respect to the change of equation 
or algorithm parameter. Space X will stay fixed, and only a multivector field will be 
changing. Thus, X = Y and the map f : X Y will always be identity. Therefore, the 
assumption f (nV(x)) C nW(f (x)) from Section 5.1 simplifies to nV(x) C nW(x). Thus, 
in terms of multivector fields it suffices to assume that V is a finer multivector field than 
W, that is V C W.

Note also that in this chapter, we study the homology of a (weak) Morse set M that 
is H(M). This homology group coincides with the Conley index Con(Inv M) only if M 
is an attractor. Nevertheless, H(M) carries information on whether M contains an orbit 
or a fixed point, but we lose the information if it is an attracting or repelling set. Let us 
note that the study of the persistence of the Conley index itself is undertaken in [8].
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Chapter 6

Numerical experiments

In this chapter we present some possible applications of the multivector field theory. 
Here, as data, we take vector clouds sampled from differential equations. Previous chap
ters provided us with the theoretical background. However, there is still a crucial gap 
that has not been covered yet. Namely, there is an open question, how to construct a 
multivector field from a vector cloud? There is no canonical answer to that. In [7] we 
introduces a greedy algorithm dependent on an angle parameter. A non-parametric algo
rithm is mentioned in [13]; however, its details are not published. In this thesis we focus 
on the greedy algorithm.

6.1 From a vector cloud to a multivector field

Table 6.1 presents the greedy algorithm CVCMF that computes a multivector field 
from a cloud of vectors. The input for the algorithm consists of:

- a simplicial complex K with vertices in a cloud of points P = {pi | i = 1, 2, . . . , n} C 
Rd,

- the associated cloud of vectors V := {VJ | i =1, 2,... ,n} C Rd such that vector VJ 

originates from point pi (vectors are assumed to be normalized),
- an angular parameter a.
The algorithm builds a map m : K K that sends simplex to one of its co-faces. The 

family of preimages {m-1(a) : a G K} provides the requested multivector field. The idea 
is to map simplices consistently with the input vectors. The angular parameter controls 
the algorithm's tendency to assign simplices to lower-dimensional simplices — the higher 
the parameter, the "flatter" a multivector field is. The map m is initialized as the identity 
map, and the algorithm consists of three main steps of refining it:

• The first loop assigns a simplex a to a toplex in the star of a pointed by the vector
computed as a mean of vectors in vertices spanning a. To determine this toplex, 

we attach to the barycenter of a (see Figure 6.1).
• The second loop focuses on assigning vertices. It decides if a vector VJ assigned 

to pJ should be aligned with a lower-dimensional co-face. Namely, if a vector VJ is 
almost parallel to a subspace spanned by some co-face of pJ, then it is aligned with
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1:
2:

3:

4:

5:
6:

7:

8:

9:

10:
11:

12:

procedure CVCMF[7](K, V, a)
m an identity map idK : K K. > Initialization of a map
for all a E K do > Initial assignment to toplexes

m(a) — any toplex in the star of a pointed by mean of { vl E V | pl Z a }

for all i =1, 2,... ,n do > Aligns vectors
S < { (dima, Z(a, vl),a) | a G K and pi Z a and Z(a, vl) < a }

S' sort S using lexicographical order on first two positions > (dim, Z, _)
(_, _, a) first element of S'
m[pi] a

for all a E K in descending dimension do > Remove convexity conflicts
while exists t Z a s.t. t Z a Z m(r) and m(r) = m(a) do

m(r) a and m(a) a

13: V<< {m--1(a) | a E K}

14: return V.

Table 6.1: An algorithm constructing a combinatorial multivector field from a sampled 
vector field. By Z(a, vl) we denote the angle between a vector vl and the hyperplane 
spanned by a simplex a. Notation (_, _, a) means that we only retrieve the third element 
of the returned triple.

this subspace. The "almost" is determined by the angular parameter a, that is vl 

is flattened to t if the angle between the vector vl and the hyperplane spanned by 
simplex a is less than a. (see Figure 6.2).

• The last loop handles the convexity issue. If there is a simplex a such that t < a < 
m(t) then both simplices are remapped to a. In particular, this operation deals 
with conflicts presented in Figure 6.3.

Finally, we obtain the multivector field V = {m-1(a) : a E K}. Note that since simplices 
can be assigned only to their co-faces, the algorithm produces a partition into multivectors 
with a unique maximal element. This means that the resulting multivector field satisfied 
the more restrictive definition of multivector field considered in [21].

Proposition 6.1.1. Algorithm presented in Table 6.1 terminates and produces a multi
vector field V. Moreover, every multivector V E V have a maximal element.

Proof. The first loop (line 3) iterates over all simplices assigning them a maximal-dimen
sional coface. Similarly, the second loop (line 5) iterates over all vertices. The value of 
m(a), where a is a vertex, may be changed to some other coface of a.

Note that the nested while-loop (line 11) terminates for any simplex a E K. In the 
extreme case it sets m(t) = m(a) = a to all faces t of a. Thus, the third for-loop also 
terminates because it iterates over all simplices of K.

The goal of the third loop (line 10) is to make sure that

(6.1)

89



Figure 6.1: We attach vector v0 + v1 to the barycenter of e0 in order to determine the 
value of m(e0) in the first loop of the algorithm. The pointed toplex in this example is t0.

Figure 6.2: The vectors originating in vertices are flattened out if they are almost aligned 
with a lower dimensional simplex. In this case, vector V1 is flattened to e0 because 
Z(V1, e0) < a, where a is an angular parameter.

Figure 6.3: Third loop of the algorithm resolves convexity conflicts. Consider the case 
as in the figure with a map m(p0) = t0, m(pi) = ti, and m(e0) = ti. We will get 
p0 -< e0 -< m(v0) = t0 that will be resolved by setting m(p0) = m(e0) = e0. In the next 
step we will also set m(pi) = m(e0) = e0.
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We will show that (6.1) is achieved after the third loop is finished. It processes 
simplices in descending order given by simplices' dimension. Consider a G K and assume 
that n := dim a = dimK. The condition (6.1) restricted to K{n} hold trivially. Since 
there is no simplex u G K such that a -< u the conditions in line 11 are never satisfied. 
Consequently, no reassignment in line 12 of the algorithm is performed. Inductively, 
assume that dima = k < n and that (6.1) holds for all simplices in K \ Kk (that is 
simplices of dimension higher than k). Let u G K \ Kk such that a -< u. The case 
when u m(a) would be resolved while processing u. In particular the algorithm would 
set m(a) = m(u) = u. Thus (6.1) holds for K \ Kk-1 before processing k-dimensional 
simplices. While processing k-dimensional simplex a it may happen that the algorithm 
sets m(a) = a if there exists some t a such that a m(r) and m(a) = m(r). 
Nevertheless, in that case, for any u G K \ Kk such that a u we have a = m(a) u. 
Hence, (6.1) is not disrupted for K\ Kk-1. This proves that after finishing the third loop 
the condition (6.1) is satisfied.

Let a G K. We will show that V-, := m 1(a) has maximal element if it is non-empty. 
At each step of the algorithm only faces of a can be assigned to a, that is m(t) = a where 
t a. It follows that if V-. = 0 then for every t G V, we have t a. Thus a is maximal 
in Va.

The condition (6.1) guarantees that V := {m-1(a) : a G K} is a multivector field. To 
see that assume the contrary. Then there exists a G K such that m-1(a) is not convex. 
It follows that there exists t, u G K such that t u m(r) = a and m(u) = a but this 
contradicts (6.1). □

6.2 Experimental setup

In the next section, we present examples of computations based on the developed 
theory. The first example presents the generation of the Morse-Conley graph from a 
sampled vector field. Thus, for a given simplicial complex K, sampled vector field V and 
angle parameter a, we use algorithm 6.1 to get multivector field V. Then, according to 
results in Sections 4.4.1 and 4.4.2, it is enough to extract strongly connected components 
of the graph Gv and filter out those corresponding to a single regular multivector to obtain 
the minimal Morse decomposition for V. The partial order on the collection of Morse sets 
is given by connections between them. Conley index for a Morse set M is computed using 
simplicial homology as HA(K(cl M), K(mo M)). We can summarize this as the following 
simple procedure

1: V < CVCMF(K,V,a)
2: (M,G) < MC-graph(K,V)

In the first line, we use the algorithm presented in Table 6.1. The second line captures 
the procedure of obtaining Morse decomposition described above. It returns two elements: 
M - the obtained minimal Morse decomposition (family of subsets of K) and G - the 
corresponding Morse-Conley graph.
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Experiments 2-4 present some of the possible applications of the persistence of Morse 
decomposition. To this end, we use the pipeline presented in Table 6.2. The input for 
this procedure is a simplicial complex K and a sequence of pairs {(Vi, ai)}n=o consisting 
of sampled vector fields and values of the angle parameter used by the greedy algorithm. 
In Experiments 2 and 4, we keep the angle parameter fixed across the sequence. In 
Experiment 3, we specifically test the influence of the angle parameter, and therefore 
the sampled vector field is fixed across the sequence. The first for-loop (line 3) of 6.2 
computes the sequence of multivector fields Vi, corresponding Morse decompositions Mi 

and McCord complex Xi corresponding to DV, = M(Vi). In the second for-loop (line 7), 
we create McCord complexes corresponding to the intermediate spaces DV,W (see Section 
5.2). In particular, we need them for the comparison diagram between two consecutive 
Morse decompositions. Let us recall that K(K, 7^(M)) stands for the order complex of 
a finite topological space K (we consider simplicial complex as a finite topological space) 
with the disconnecting topology on K induced by the topology given by a face relation 
T^ and M. Finally, we compute the persistence barcodes for the sequence of complexes. 
The zigzag persistence is obtained with Dionysus software [20]. The greedy algorithm 
(6.1) and Morse-Conley graphs computations are part of RedHom library [14].

1: procedure MDPersistence(K, {(Vi, q,)}”^1)

2:
3:

4:

5:

6:

7:

8:

9:

X [2n + 1] Initialize an empty array of simplicial complexes of size 2n + 1
for all i = 0, 1, ..., n - 1 do

V CVCMF(KViau)
(M, _) MC-graph(K,V)
X[2i] ^K(UM,T<(M))

for all i = 0, 1, ..., n - 2 do
X [2i + 1] X [2i] n X [2i + 2]

PB ZigZagPersistence({Xi}2^1)

> Compute Morse decompositions

> Compute McCord complex

> Compute the intermediate spaces

10: return PB.

Table 6.2: A pipeline for computing persistence of Morse decomposition for a given se
quence of sampled vector fields.

We sample the following vector fields to obtain data for our experiments: 
1. the double periodic orbit:

fx' = cy - x(x2 + y2 - a)(x2 + y2 - b) 

\y' = -cx — y(x2 + y2 — a)(x2 + y2 — b)

2. Lotka-Volterra prey-predator model (see [5, Chapter 2, equations (2.13) and (2.14)]):

ix' = x (1 -x} - ab+xy , .- k - b+x , (6.3)
\y' = 1+ - gy

where a1 = (1 — (b + 1) and a2 = g(b + 1).
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3. Sel'kov glycolysis model (see [23, Example 7.3.2 and 7.3.3]):

fx' = -x + ay + x2y
| / L 2 . (6.4)
[y = b - ay - x'y

We construct complexes used in the experiments by first building a regular triangular 
mesh, and then we perturb vertices. Next, for every vertex we compute the associated 
vector and we normalize it. This procedure guarantees a vaguely uniformly distributed 
cloud of vectors with some randomness introduced.

6.3 Experiments

6.3.1 Experiment 1: Morse-Conley graph

The first example presents a simple computation of the Morse-Conley graph for the 
multivector field derived from equation (6.2). The angular parameter a in the algorithm 
in 6.1 is set to 21 degrees, and the equations parameters are a = 2, b = 1 and c = 1.4.

The outcome is presented in Figure 6.4. We see that both periodic orbits and their 
Conley indices are correctly retrieved. The attracting point at the origin gets divided 
into two Morse sets: M3 (green) and M4 (purple) with the Conley index of an attracting 
periodic orbit and a repelling stationary point, respectively. At first glance, this may 
look incorrect. However, by merging M3 and M4 into a single Morse set M3 U M4 we get 
an isolated invariant set with the index of an attracting fixed point. If we zoom in and 
analyze the vector field close to the origin, we will notice a strong rotation (see Figure 
6.5). With the given mesh resolution and the assumption that we do not know the real 
equation, the outcome with two Morse sets is acceptable.

6.3.2 Experiment 2: influence of noise

In the second experiment, we test the influence of noise on the Morse decomposition 
reconstruction. We analyze the system (6.2), and we set again the angle parameter to 
a = 21. We fix a simplicial complex and we normalize vectors as before. Then, we perturb 
every vector by taking vl = vl + el * r, where el is a randomly chosen vector such that 
||el|| < 1 and r E [0,1] is a noise level. We get a sequence of vector fields by changing 
the value of r. In the next step we use the algorithm to build a sequence of multivector 
fields and then a sequence of Morse decompositions. We summarize the analysis with the 
persistence of this sequence.

Results are presented in Figure 6.6. As one can expect, the higher the noise level, the 
more artificial Morse sets emerge, and the less accurate reconstruction of the dynamic 
is. Below the noise level r = 0.37, we can see that results are consistent with the Morse 
decomposition obtained in the Experiment 1. There are four 0-dimensional generators 
responsible for four Morse sets. Since three of those sets are periodic orbits, we get 
three 1-dimensional generators. At r = 0.4 both periodic orbits merge together and split
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Figure 6.4: Experiment 1: Morse-Conley graph. Top: Four Morse sets detected by the 
algorithm. Bottom: computed Morse-Conley graph.
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Figure 6.5: Zoom to the stationary attracting point for the example in Figure 6.4. Green 
simplices corresponds to Morse set M3 (attracting periodic orbit) and the purple simplex 
corresponds to set M4 (repelling stationary point). The given resolution and strong rota
tion around the attracting point do not facilitate the proper distinction of the attracting
point.

again at r = 0.45. Above r = 0.71, the noise dominates, and one of the periodic orbits 
disappears completely. The additional "hole" (1st-dimensional generator) emerges above 
r = 0.75 because a new critical cell is created within a periodic Morse set.

The outcome of this experiment would vary significantly depending on the random 
seed. We use it just to demonstrate the noise impact.

6.3.3 Experiment 3: angle parameter

In the third experiment , we study the Lotka-Volterra model (6.3) with parameters 
a = 3. 9, b = 1 .2, and c = 0.5. We vary the angle parameter from 0 to 40 in steps of 2 to 
obtain another Morse decompositions sequence. Using persistence, we try to analyze the 
robustness of Morse sets. Moreover, we can observe the algorithm's behavior depending 
on the angular parameter a.

The barcode (Figure 6.7, bottom-right) shows that three generators, two 0-dimensional
and one 1-dimensional, survive the entire filtration. Indeed, they correspond to the re
pelling stationary point in the center and the attracting periodic orbit. We can see other
short-living orbits in the intermediate steps (Figure 6.7, top-right and middle-right). How
ever, they have a trivial Conley index, which confirms them as the algorithm's artifacts.

Note that the small values of the angle parameter produce a thin and more precise
orbit. However, it also increases the chances of producing small, critical multivectors -
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Figure 6.6: Experiment 2: noise influence. Morse sets detected by the algorithm for the
double periodic orbit equation (6.2). Noise level by rows starting from top-left: r = 0.2,
r = 0.4, r = 0.6, r = 0.8, r = 1.0. Bottom-right: persistence barcode for Experiment 2
with coordinates on X-axis given by the noise level; red bars correspond to persistence
pair of dimension 0, while blue bars correspond to the 1st dimension.
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artifacts, as in the center and the bottom left part of the top-right panel in Figure 6.7. 
On the other hand, increasing the parameter leads to more expansive multivector fields, 
where the orbit is highly overestimated.

6.3.4 Experiment 4: Hopf bifurcation

In the last experiment , we study the evolution of a system going through the Hopf 
bifurcation. The Hopf bifurcation refers to the situation where a periodic orbit emerges 
from a stationary point [23, Chapter 8.2]. For a fixed parameter a = 0.08, Syl'kov system 
(equation 6.4) admits an attracting limit cycle for approximately b G (0.346, 0.848) with 
a repelling stationary point in the middle [23, Example 7.3.3]. At the boundary values of 
this interval, the orbit collapses into an attracting fixed point. Thus, sliding the parameter 
b from 0 to 1.3, we should observe the Hopf bifurcation twice.

A few steps of the filtration for selected values of a are presented in Figure 6.8. In 
the barcode, we can see a long single 0-dimensional generator that survives most of the 
filtration and a single 1-dimensional interval [0.425, 0.95]. Both of them are responsible for 
a detected periodic orbit. The 1-dimensional generator persists for a shorter time because 
as the continuous vector field evolves, the multivector field generated by the algorithm 
changes in a discrete fashion. For some transitions, orbits may differ significantly. As 
a result, the intermediate multivector fields created for the comparison diagram (see 
Chapter 5) may fail to detect continuation of an orbit. Nevertheless, the interval in 
which the orbit is the most stable, approximately coincides with the expectations from 
the analytical computations. Moreover, for the higher values of the parameter a, where we 
know that the periodic orbit does not exists, the rotation still dominates the attraction. 
Consequently, we can still observe a Morse set with the Conley index of an attracting 
orbit (Figure 6.8, bottom-left). This is a similar case to the one observed in Experiment 
1.

Note that this framework could be used to analyze the evolution of a dynamical system 
in time. The X-axis of the barcode may be interpreted as a timeline, and persistent 
barcodes represent the long-lasting isolated invariant sets that form during the evolution.

6.4 Further research

Experiment 3 shows that the angle parameter used by algorithm 6.1 can significantly 
affect the results. The low values of the parameter lead to large multivectors containing 
maximal-dimensional simplices. Such a multivector field tends to create an expanding 
combinatorial flow, which may highly overestimate the real flow as presented in Figure 6.9. 
On the other hand, too aggressive aligning (i.e., small values of the angular parameter) 
may fail to detect periodic orbits or create artificial critical multivectors. Figure 6.10 
shows an example where aligning vectors to lower-dimensional simplices misinterprets a 
simple passing-through flow.
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Figure 6.7: Experiment 3: angular parameter. Morse sets detected by the algorithm for the
Lotka-Volterra model (6.3) for different values of angular parameter. Starting from top-left:

a = 34, a = 24, a = 18, a = 16, a = 6. Bottom-right: persistence barcode for Experiment 3
with coordinates on X-axis given by values of the angular parameter; red bars correspond to
persistence pair of dimension 0, while blue bars correspond to the 1st dimension.
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Figure 6.8: Experiment 4: Hopf bifurcation. Morse sets detected by the algorithm for the
Sel'kov model (6.4) for different values of parameter a. Starting from top-left: a = 0.225,
a = 0.5, a = 0.75, a = 0.925, a = 1.225. Bottom-right: persistence barcode for Experiment 4
with coordinates on X -axis given by values of parameter a; red bars correspond to persistence

pair of dimension 0, while blue bars correspond to the 1st dimension.
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The above observations raise the question if a more efficient, adaptive and possibly 
parameterless algorithm for constructing a multivector field from data is possible. This 
would be especially useful in the framework of Experiment 4 where we can use the idea 
of persistence of Morse decomposition to study the evolution of a dynamical system in 
time.

Algorithm 6.1 creates a multivector field in the sense of [21]. Another natural step 
in developing the algorithm is a modification that will allow for constructing the gener
alized multivector fields. As explained in this thesis, it should provide more flexibility in 
modeling dynamical systems.

With the generalized theory of multivector fields and the tools it provides, it should 
be easier to investigate the topic of continuation in the combinatorial setting raised in 
[21] and mentioned briefly at the end of Section 3.2.2.
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Figure 6.9: An effect of the expansion caused by large multivectors. Both pictures present 
a multivector field for a parallel flow. For low values of the angular parameter we get 
large multivectors that allow solution less consistent with the actual flow (blue, vertical 
trajectory). Flattened vectors (right) produce a more adequate representation.

Figure 6.10: Artificial critical cells may be produced with too aggressive flattening of 
vectors. In the picture we can see a simple flow with no invariant sets, yet aligning 
vectors leads to creating an attractor and a saddle.
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relative group, 23
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singular, 25
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singular, 26

chain group
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singular, 25
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combinatorial multivector field, 40, 43 
combinatorial vector, 40
comparison diagram, 85, 87 
Conley index, 35, 64 
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connection, 74 
convex set, 10 
covered point, 10

death time, 31

dimension, 18, 20
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direct product, 15
direct sum

of zigzag modules, 31 
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domain, 8 
down set, 10 
dynamical system, 38

combinatorial, 38
continuous, 34
dual, 38

embedding map, 20
epimorphism, 16
equivalence class, 9
essentially recurrent point, 50 
exact sequence, 16 
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face, 18
field, 17
flow, 34

Forman's combinatorial vector field, 39
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group, 15
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homology, 23
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map
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module, 17
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zigzag, 31 

monomorphism, 16 
Morse decomposition, 75

minimal, 76 
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Morse set, 36, 75, 80 
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mouth, 12 
multiset, 8 
multivector, 40, 43, 46 

critical, 48 
regular, 48 
ultimate, 68

multivector field, 46
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nerve, 20 
n-simplex, 18 

abstract, 20 
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open hull, 12 
open set, 11 
order complex, 20 
orientation, 22
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p-cycles, 22 
partial order, 10 
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abstract, 20 
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star, 18
strongly connected component, 10 
strongly connected digraph, 10 
subcomplex, 19, 20 
subgroup, 15
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support, 20

Alexandrov, 13 
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McCord, 27 

toplex, 19 
topological space, 11
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topology, 11
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dual, 12 
Hausdorff, 12

Kolmogorov, 12 
transitive closure, 9

upper set, 10

V -compatible set, 47
V -hull, 70 

vector space, 17 
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zigzag persistence module
of the weak Morse decomposition, 84 
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