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RESEARCH

CTpathway: a CrossTalk‑based pathway 
enrichment analysis method for cancer research
Haizhou Liu1†, Mengqin Yuan1†, Ramkrishna Mitra2†, Xu Zhou1, Min Long1, Wanyue Lei1, Shunheng Zhou1, 
Yu‑e Huang1, Fei Hou1, Christine M. Eischen2* and Wei Jiang1* 

Abstract 

Background:  Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes 
and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, 
existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular 
interactions, and network topologies, resulting in many risk pathways that remain uninvestigated.

Methods:  To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a 
global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcrip‑
tion factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and 
crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the 
risk genes.

Results:  Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpath‑
way outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibil‑
ity, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported 
critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways 
across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, 
the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict 
both cancer tissue and cell type-specific risk pathways with higher accuracy.

Conclusions:  Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer 
research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed 
here http://​www.​jiang​lab.​cn/​CTpat​hway/. The stand-alone program can be accessed here https://​github.​com/​Biocc​
jw/​CTpat​hway.

Keywords:  Pathway enrichment analysis, Pathway crosstalk, Risk pathway, Molecular interaction, Network analysis
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Background
Over 15 years, significant efforts have been made to 
annotate the functions of individual genes and con-
struct higher order functional knowledgebases, such as 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) [1, 2]. However, it still remains 
quite challenging to systematically interpret biological 
meaning from the expression changes of thousands of 
genes in a specific model system, such as disease versus 
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control. To determine this, a routinely used method is the 
screening of differentially expressed genes (DEGs) fol-
lowed by pathway enrichment analysis (PEA).

PEA methods could be categorized into four gen-
erations [3]. First-generation methods (e.g., DAVID [4], 
WebGestalt [5], and several others [6–8]) usually con-
duct over-representation analysis (ORA) using a hyper-
geometric or Fisher’s exact test to assess whether the 
number of input DEGs is significantly higher than that 
of the genes expected by chance. However, these ORA 
methods have several limitations. Based on an arbitrary 
threshold, these methods only select the DEGs that have 
large expression fold changes (FC) or significant P-values 
and treat each selected gene equally. Consequently, these 
methods achieve highly inconsistent results with small 
changes (e.g., 1.5 FC versus 2.0 FC) in thresholds.

To address these limitations, the second-generation 
methods called functional class scoring (FCS) were 
developed [9]. FCS methods hypothesize that even 
though changes of individual genes are small in magni-
tude, their coordinated expression changes may have a 
greater impact in modulating a pathway/gene set [10, 11]. 
A well-known FCS method is the gene set enrichment 
analysis (GSEA) [11]. GSEA first ranks genes by differ-
ential expression FC. Enrichment scores (ESs) are then 
calculated for predefined gene sets (pathways or func-
tional gene sets) by considering how well the gene sets 
are enriched at the top or bottom of the ranked gene lists, 
which indicate their activation or repression, respec-
tively. Therefore, FCS methods address the limitations of 
ORA methods.

Previous studies hypothesized that genes with differ-
ent topological properties have different weights for the 
linked pathways [12–14]. Because topology information 
of pathways was used, pathway topology-based (PT) 
approaches were demonstrated to perform better than 
the previous approaches and regarded as the third gener-
ation of PEA methods [15]. The method CePa calculated 
the weight of a pathway node based on the network cen-
tralities [13]. SPIA considered the influence of the neigh-
boring nodes [14]. TPEA integrated the global upstream/
downstream positions and the degrees of all nodes in 
pathways [12]. A significant drawback of PT methods is 
that they analyze pathways independently and neglect 
pathway crosstalk, a common and critical event in biol-
ogy and disease development.

From the perspective of systems biology, genes may 
iteratively affect many other genes that exist in multi-
ple pathways, causing pathway crosstalk that accounts 
for the phenotypes, such as crosstalk between ERK and 
WNT signaling in tumorigenesis [16]. The latest gen-
eration of the PEA method is network topology-based 
(NT) approaches, which consider pathway crosstalk 

systematically in a network, such as latent pathway 
identification analysis (LPIA) [17] and pathways based 
on network information (PathNet) [18]. LPIA regarded 
each pathway as one node to construct an edge-weighted 
pathway network based on shared GO functions and 
DEGs. LPIA identified pathways by random walk algo-
rithm according to network topology. Although LPIA 
considered pathway crosstalk, it ignores internal topol-
ogy property within the pathway. PathNet integrated 
direct evidence (gene differential expression) and indirect 
evidence (neighbor gene differential expression), which 
considered gene interactions in both inter- and intra-
pathway, as combined evidence for genes to assess their 
impacts on pathways. However, the gene interactions 
only depended on directed neighbors in the pathway net-
work, and it ignored the impact of other genes.

As more biological knowledge was gained, protein-
protein interaction (PPI) network and gene expression 
data were used to detect crosstalk between pathways [19, 
20]. Recently, by integrating pathway information, PPI 
network and gene expression data, Kelder et al. identified 
indirect associations between pathways in insulin-resist-
ant mouse liver [21]. However, in addition to PPI, tran-
scription factor (TF) regulations also provide additional 
valuable information about molecular interactions. Addi-
tionally, these methods performed enrichment analysis 
mostly based on KEGG or GO, while numerous high-
quality pathways or functional gene sets were also pub-
licly available, such as Reactome [22], PANTHER [23], 
HumanCyc [24], INOH [25], NetPath [26], PID [27], and 
WikiPathways [28]. Moreover, NT methods consume 
more time and more space because of their complexity. 
For example, LPIA may consume several hours for one 
test. Therefore, although commonly and widely used, 
current PEA methods have significant limitations, posing 
barriers to discovery.

In this study, we provided a new NT method for gene 
enrichment analysis called CTpathway: a crosstalk-based 
PEA method in a global pathway crosstalk map (GPCM) 
(Fig.  1). To obtain better speed, our method was opti-
mized for running time to less than 1 min. Compared 
with existing methods, including DAVID, GSEA, TPEA, 
PathNet, and LPIA, CTpathway outperformed in terms 
of accuracy, robustness, and running time. In addition, 
CTpathway identified several important cancer path-
ways, which were not identified by other methods. Fur-
thermore, CTpathway was useful even for data sets with 
fewer DEGs. By applying CTpathway for several cancer 
types of different stages (I, II, III, and IV), cancer target 
pathways were identified in early-stage tissues and blood 
samples. For breast cancer (BRCA) single-cell RNA-seq 
(scRNA-seq) data, CTpathway could identify the cell 
type-related pathways. We also developed an online web 
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tool (http://​www.​jiang​lab.​cn/​CTpat​hway/) and the stand-
alone program (https://​github.​com/​Biocc​jw/​CTpat​hway) 
[29], which allows users to simply upload the gene sym-
bols or entrez gene IDs with log2FC or P-values to iden-
tify risk pathways in a specific condition (e.g., disease) by 
performing the CTpathway method.

Methods
Pathway data
We collected eight knowledgebases of human pathways 
including KEGG [1], PANTHER [23], Reactome [22], 
HumanCyc [24], INOH [25], NetPath [26], PID [27], and 
WikiPathways [28]. The interactions of gene and gene 
products in pathways of Reactome, HumanCyc, INOH, 

NetPath, PID, and WikiPathways were obtained from 
Pathway Commons version 10 [30]. Because the infor-
mation of KEGG and PANTHER in Pathway Commons 
was not updated, we extracted the interactions in KEGG 
and PANTHER in March 2019. For KEGG pathways, we 
downloaded KGML files of 299 pathways and extracted 
interaction information by iSubpathwayMiner R pack-
age [31]. For PANTHER pathways, we downloaded Bio-
PAX files of 138 pathways, and NetPathminer R package 
[32] was used to extract interaction information. For the 
other six sources of pathways, we used gene interactions 
in Pathway Commons. In total, we obtained 375,256 
interactions, including 11,556 genes from 2563 pathways 
involved in eight pathway databases (details in Table 1).

Fig. 1  The workflow diagram for CTpathway. a GPCM and crosstalk effect matrix construction. GPCM was constructed by integrating pathway, 
TF regulation, and PPI information. Then, we evaluated the crosstalk effects in GPCM by applying the multi-RWR algorithm to calculate a crosstalk 
effect matrix C. b Gene differential expression (DE) score calculation. We integrated FC and P-value to calculate DE scores. Next, risk score (RS) for 
each gene and pathway score (PS) for each pathway were calculated to identify the significant risk pathways. c Visualization of significant pathways 
by bar graph, bubble plot, and enrichment map

http://www.jianglab.cn/CTpathway/
https://github.com/Bioccjw/CTpathway
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TF‑gene regulation data
We obtained experimentally validated TF-gene regu-
lations from the TRANSFAC Professional database 
(release: February 2014) [33]. TF-gene regulations, of 
which at least one node belongs to a pathway, were 
retained, including 491 TFs, 1614 genes, and 4657 pairs 
of regulation (Table 1).

PPI data
We obtained PPIs from 12 sources (Additional file  1: 
Table  S1) collected by previous researchers [34, 35]. To 
obtain more reliable information, PPIs included in ≥2 
sources were retained. Furthermore, we used interactions 
of which at least one of the interacting nodes belongs to 
a pathway. Finally, 79,262 PPIs, including 11,054 genes, 
were used for the next analysis (Table 1).

Constructing a global pathway crosstalk map (GPCM)
To consider pathway enrichment more systematically, we 
integrated three kinds of interactions including pathways, 
PPIs, and TF regulation for constructing a GPCM to 
simulate natural pathway crosstalk and adding biological 
knowledge. We used the union of pathway, PPI, and TF-
gene information described above. For simplicity here, it 
was regarded as an undirected network. In total, the net-
work includes 15,292 nodes and 442,439 edges (details in 
Table 1).

Gold standard data sets
For comparing CTpathway accuracy with other PEA 
methods, we used gold standard data sets from the KEG-
GdzPathwaysGEO R package [36]. It contained 24 data 
sets involving 12 diseases and 12 target pathways (Addi-
tional file  1: Table  S2). One disease is corresponding to 
one target pathway. This data set was widely used as the 
gold standard for benchmarking in other methods [15, 
36, 37]. In addition, to test whether CTpathway could 
be applied in data sets with fewer DEGs, we analyzed 12 

of 24 gold standard data sets with different numbers of 
DEGs (details in Additional file 1: Table S3).

Cancer data sets from Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) databases
To evaluate reproducibility, we used both microarray 
data from the GEO database [38] and RNA-seq data from 
the TCGA database [39] for each of four cancer types 
(COAD, LIHC, LUAD, and OV). We downloaded eight 
gene expression data of four cancer types from the GEO 
database (GSE100179 [40], GSE101685 [41], GSE116959 
[42], GSE9891 [43]) and TCGA database (Additional 
file 1: Table S2). Each data set includes case (cancer) and 
control (normal) samples (details in Additional file  1: 
Table S2).

Furthermore, to test whether CTpathway could be 
applied in early-stage cancer samples, we analyzed ten 
data sets consisting of different cancer types available 
in TCGA or GEO (GSE20189; peripheral blood samples 
of LUAD patients [44]) database. Each data set includes 
cancer samples of different cancer stages (I, II, III, and 
IV) and normal samples (details in Additional file  1: 
Table S2).

To test whether CTpathway could be applied in scRNA-
seq data, we downloaded breast cancer (BRCA) scRNA-
seq data from the GEO database (GSE118389 [45]) 
(Additional file 1: Table S2). The BRCA scRNA-seq data 
contains 1112 cells from six triple-negative breast can-
cer patients. Here, we used cell type annotation results 
according to the previous study [45] including B cell, T 
cell, endothelial cell, epithelial cell, macrophage, and 
stromal cell. More details about the data sets are shown 
in Additional file 1: Table S2.

Differential expression
For the GEO microarray data set, we performed differen-
tial expression analysis by R package limma [46] to obtain 
FC and P-value. For the TCGA RNA-seq data set, we 
used R package DESeq2 [47] to obtain FC and P-value. 
OV data differential expression profile was from a previ-
ous study [48]. For BRCA scRNA-seq data, we performed 
differential expression analysis between one cell type and 
the others using function "FindAllMarkers" in R package 
Seurat V3.2.2 [49]. For some compared methods, which 
need a set of genes as input, such as DAVID, genes with 
FC > 2 or FC < 0.5 and P-value < 0.05 were used for func-
tional enrichment analysis. For LPIA, |log2FC| value was 
used as differential expression score.

Gene differential expression score
The FC and P-value are both important indexes to reflect 
the differential expression level of genes. Previous studies 
demonstrated that incorporating FC and P-value could 

Table 1  Summary of data source information in GPCM

Source of interactions #Pathways #Genes #Interactions

KEGG 299 5686 60,576

HumanCyc 238 1658 20,746

INOH 153 939 19,374

NetPath 27 1195 3727

PANTHER 129 2149 26,810

PID 212 2589 21,210

Reactome 1491 9990 266,500

WikiPathways 14 70 97

PPI - 11,054 79,262

TRANSFAC - 1947 4657

Total 2563 15,292 442,439
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provide significant improvement to meet the practical 
needs [50, 51]. We calculated a gene differential expression 
score to represent the impact of its disrupted expression on 
pathways. P-value ranges from 0 to 1. In order to make the 
FC value between 0 and 1, and keep genes with an FC value 
with n and 1/n having the same contribution weight, the 
gene differential expression score was calculated by Eq. (1).

When P-value (or FC) is available or not, α (or β) equals 
to 1 or 0. DE is the differential expression score, repre-
sented as a vector:

where L is the intersection number of genes in the 
expression profile and genes in the GPCM.

Risk score (RS)
Here in GPCM, for one gene, we calculated a risk score 
integrating all  the nodes (genes) impact on this node 
(gene). The GPCM was defined as a simple undirected 
graph G = (V, E), where a v ∈ V represents a gene and a 
e ∈ E represents an edge. First, one gene in the expression 
file was taken as a seed (i.e., i), and given an initial weight 
score of 1. Then, a random walk with restart (RWR) algo-
rithm [52] was used to simulate the propagation process of 
crosstalk effect Ci from one to others.

where C1
i = Ni , r is the restart coefficient, t is iteration 

times, W was a |N| × |N| column-normalized adjacent 
matrix of graph G, and Ni is a |N| × 1 vector with ith 
element equal to 1 and others all equal to 0. Next, with 
respect to all the genes in the expression file, we iter-
ated over each gene as a seed. This process was called a 

(1)DE =
(1− P)α × 1− (FC)−

1
2

β

, FC ≥ 1

(1− P)α × 1− (FC)
1
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multiple random walk with restart (multi-RWR) algo-
rithm (Fig.  2). Here, we measured the magnitude of 
change between states t and t-1 as the sum of the abso-
lute difference of the Ct and Ct-1. The threshold was set 
as 10−10 to control the iteration times. When it was less 
than 10−10, the iterative computation would stop. Finally, 
we obtained a crosstalk effect for all genes, named as the 
crosstalk effect matrix, represented as a matrix:

where Cij represents the crosstalk effect of gene j 
impacted by gene i. Last, we integrated C matrix and DE 
vector to calculate the risk score (RS) as follows:

For example, we calculated an RS of gene j impacted by 
gene i as follows:

where RSji represents the risk score of gene j impacted 
by gene i and DEi represents the differential expression 
score of gene i.

For gene j, we integrated scores impacted by all genes 
as the final gene risk score (RSj) as follows:

where L is the intersection number of genes in the 
expression profile and genes in the GPCM.

The pathway enrichment score
We obtained RS of each gene in GPCM. For a pathway 
k, we calculated a pathway enrichment score PSk as the 
average of RS values for the genes in pathway k. The for-
mula is as follows:

(4)C =
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(5)RS = C × DE

(6)RSji = Cij × DEi

(7)RSj =

L
∑

i=1

RSji

(See figure on next page.)
Fig. 2  CTpathway algorithm diagram including Multi-RWR. First, gene 1 in the expression profile was taken out as a seed and RWR was used to 
obtain the crosstalk effect C1 on all nodes in the network. Next, another gene i was chosen to repeat this progress and obtained Ci. Finally, we 
obtained the crosstalk effect matrix C after all genes in the profile were taken out as a seed. We also calculated the differential expression (DE) score 
by integrating FC and P-value. Using both crosstalk and differential expression, we obtained the risk score RSji of gene j impacted by gene i. We 
integrated the risk score of gene j impacted by all genes as gene j risk score RSj. Finally, we obtained a pathway risk score (PS) by averaging all gene 
risk scores in a pathway and calculated the significance level by permutation
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Fig. 2  (See legend on previous page.)
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where n represents the number of genes in pathway k.

Identification of significant pathways
We performed the permutation analysis to estimate 
the significance of the pathway. First, we shuffled genes 
in the differential expression profile. Then, we calcu-
lated the pathway enrichment score for each pathway. 
The background distribution was generated after per-
forming h permutations. For a pathway, the empiri-
cal P-value was defined as the proportion of random 
pathway enrichment scores (PSrandom) larger than 
the real pathway enrichment score (PS): P-value = (

NPSrandom>PS

)

/

h , where NPSrandom>PS was the number of 
random pathways that had larger scores than the real 
pathway. Here, h was 1000. However, because of the 
limited number of permutations, it often produces a 
P-value of 0. To solve this problem, we estimated the 
exact P-value by using the generalized Pareto distribu-
tion (GPD) [53]. Because many pathways were involved 
in this analysis, it was necessary to perform multiple 
hypothesis testing methods to control the proportion 
of false positives. We applied the false discovery rate 
(FDR) to account for false positives [54]. The pathways 
with FDR < 0.01 were considered as significant path-
ways. In addition, CTpathway automatically clusters 
significant pathways into non-redundant groups. Pair-
wise similarities between any two significant pathways 
are computed based on a Jaccard similarity coefficient. 
According to user’s input cutoff of Jaccard similarity 
coefficient, a pathway similarity network is constructed. 
A default coefficient of 0.3 was set up in this study, 
which could be customized by the users using our web 
server. The Markov Cluster (MCL) algorithm [55] was 
employed to perform clustering process. CTpathway 
chooses the most significant (lowest FDR) pathway 
within each cluster to represent the cluster. To obtain a 
better visualization, CTpathway shows the top 20 non-
redundant pathways or clusters with low FDR, if there 
are more than 20 clusters or pathways. For each clus-
ter, the top 10 pathways with lower FDR are shown in 
the enrichment map if there are more than 10 pathways 
which are within one cluster.

Rank difference (DR) and time difference (DT) values
DR value was calculated to represent the rank difference 
(before and after optimization) of the target pathway as 
follows:

(8)PSk =
1

n

n
∑

j=1

RSj

where Rbm represents the rank of the target pathway in 
data set m before optimization and Ram represents the 
rank of the target pathway in data set m after optimiza-
tion. M is the number of data sets. K is the number of 
total KEGG pathways. Here, M is 24 and K is 299.

DT value was calculated to represent the running time 
difference (before and after optimization) as follows:

where Tbm represents the running time in data set m 
before the optimization, and Tam represents the running 
time in data set m after the optimization.

Rank ratio (RR) value
RR value was used as the criteria to compare the accuracy 
of different tools. Each data set m had an RR value for its 
target pathway, represented as RRm, which was the rank 
ratio of the target pathway in data set m, and calculated 
as follows:

where Ram and M were described as above. To make it 
comparable between different methods, we used KEGG 
pathways as candidate pathways.

Stability (S) value
S value was used as the criteria to compare the stability or 
reproducibility of different tools. First, for eight data sets 
of four cancer types, each of which has microarray data 
and RNA-seq data, we identified risk pathways by using 
different methods. For each cancer type, we compared 
shared significant pathways identified from microarray 
data and RNA-Seq data. Because compared methods just 
identified few pathways or no pathways when using rou-
tine FDR or adjusted P-value as a cutoff, pathways with 
P-value < 0.05 were identified as significant pathways for 
all methods here. S value was calculated as follows:

where Jd represents the Jaccard similarity coefficient of 
different data sets of cancer type d and D represents the 
number of all cancer types. In this study, D is 4.

(9)DR =

M
∑

m=1

∣

∣Rbm − Ram

∣

∣

K
/M

(10)DT =

M
∑

m=1

Tbm − Tam

Tbm

/M

(11)RRm =
Ram

M

(12)S =

D
∑

d=1

Jd

D
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Statistics analysis
Differential expression analysis was performed by R pack-
age limma for the GEO data set and R package DESeq2 
for the TCGA data set. P-value < 0.05 was considered 
to be statistically significant for DEGs. For CTpathway, 
permutation analysis was performed to estimate the 
significance of the pathway; FDR < 0.01 was considered 
as significant. For GSEA, FDR < 0.01 was considered as 
significant. For other compared methods, P-value < 0.05 
was considered as significant because few pathways or 
no pathways were identified when using routine FDR or 
adjusted P-value as a cutoff.

Benchmarking
In this study, CTpathway was compared with five widely 
used tools, including DAVID, GSEA, TPEA, LPIA, and 
PathNet, in terms of accuracy, reproducibility, and run-
ning time. For accuracy, we compared RR values for each 
method using 24 gold standard  data sets (Additional 
file  1: Table  S2). For reproducibility, we compared the 
S value calculated for four cancer types (COAD, LIHC, 
LUAD, and OV) based on different sources (TCGA 
RNA-seq data and GEO microarray data) of eight gene 
expression data (Additional file 1: Table S2). For the run-
ning time, we used simulated data sets of 500, 1000, 5000, 
10,000, and 20,000 genes. Because most of these meth-
ods only focused on the pathways defined in KEGG, we 
used KEGG pathways for comparative analysis when 
benchmarking.

Hardware platform
All benchmarks were performed on a computer with 
2*Intel Xeon E5-2609 V4 Processor, 2*64G DDR4 
RDIMM, 8 DIMM slots, 1*128G SSD 2.5, 1*2TB SATA 
3.5, and 2*1080Ti.

Code availability
CTpathway web server is available at http://​www.​jiang​lab.​
cn/​CTpat​hway/. The CTpathway stand-alone program is 
available at https://​github.​com/​Biocc​jw/​CTpat​hway [29]. 
Other custom codes used in this study are available from 
the corresponding authors upon reasonable request.

Results
Global pathway crosstalk map (GPCM) and its properties
By integrating three kinds of interactions including 
the regulation of TFs to genes from TRANSFAC [33], 
the PPIs from multiple sources in previous studies [34, 
35], and the pathways from eight databases (KEGG [1], 
Reactome [22], PANTHER [23], HumanCyc [49], INOH 
[25], NetPath [26], PID [27], and WikiPathways [28]), we 
constructed a GPCM that included 15,292 nodes and 
442,439 edges (Fig. 3a and Table 1). Next, we investigated 

the topological properties of the GPCM. The degree dis-
tribution approximately displayed a power law distribu-
tion (Fig. 3b), indicating the network satisfied scale-free 
topology, a general concept for biological networks. 
There are some well-known signaling and transcription 
factor genes with a high degree in the GPCM, such as 
EGFR, AKT, MYC, and p53 (Additional file 1: Table S4). 
The gene with the highest degree in the network is GNB1, 
a subunit of G proteins, which are modulators or trans-
ducers in various transmembrane signaling pathways and 
included in 234 pathways. In addition, we determined 
that ~75% (n > 8800) of the  genes participate in more 
than one pathway (Fig. 3c). Density distribution of path-
ways showed a positively skewed distribution, which sug-
gested that only a few pathways include a higher number 
of genes (Fig. 3d). Most of the genes participate in mul-
tiple pathways, which suggest that crosstalk exists. Path-
way crosstalk was represented by integrating molecular 
interactions and pathways into a GPCM.

Crosstalk effect evaluation and pathway identification
Pathways are usually affected by each other in the process 
of performing functions due to crosstalk [16]. We evalu-
ated the crosstalk effects in GPCM by applying a multi-
RWR algorithm to calculate a crosstalk effect matrix, C, 
which exploits the complete network topology (Fig.  2) 
(details in the “Methods” section). Then, we integrated 
FC and P-value as gene differential expression score (DE) 
to reflect the disturbed level of gene expression (details 
in the “Methods” section). Next, we integrated the C 
matrix and differential expression score (DE) to calculate 
a risk score (RS) as the impact of the gene on the path-
ways (Fig. 2, details in the “Methods” section). For gene 
i, RSi reflects the risk score of the node i in the context 
of GPCM. We further tested the relationship between RS 
and |log2FC| based on a lung adenocarcinoma (LUAD) 
data set (Additional file 1: Table S2) available in the GEO 
database (GSE116959 [42]). Despite a higher positive cor-
relation (Pearson correlation coefficient R ≈ 0.84) (Addi-
tional file 2: Fig. S1), we determined several known lung 
cancer-associated genes with high RS and low |log2FC| 
(Table 2 and Additional file 2: Fig. S1), such as TRIM28, 
APP, ESR1, MYC, and EGFR [56–59]. However, these 
genes would be overlooked by most of the existing PEA 
methods because they only consider significant DEGs or 
high |log2FC| genes.

Additionally, we questioned whether RS would reflect 
gene risk better than |log2FC|. First, we downloaded can-
cer causal genes (CCGs) from the Cancer Gene Census 
(CGC) [60]. We obtained CCGs for four cancer types 
(COAD, LIHC, LUAD, and OV) separately (Additional 
file  1: Tables S2 and S5). Then, we obtained two gene 
expression data sets for each of these cancer types from 

http://www.jianglab.cn/CTpathway/
http://www.jianglab.cn/CTpathway/
https://github.com/Bioccjw/CTpathway
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two independent sources (TCGA and GEO, Additional 
file  1: Table  S2) and performed differential expression 
analysis. For each data set, we ranked genes according 
to their |log2FC| and RS from high to low, separately. 
Next, we evaluated if CCGs were located in the top of the 

rank list by the GSEA method [11]. The results showed 
that CCGs were significantly located in the top of the RS 
rank list for all 8 data sets at a significance level of FDR 
<0.1, whereas all |log2FC|-based FDRs were >0.1 (Addi-
tional file 2: Fig. S2 and Additional file 1: Table S6). Here, 

Fig. 3  Overview and characteristics of the GPCM. a GPCM. Different colors represent different kinds of nodes. Gray dots represent genes from at 
least two kinds of interactions (pathway, PPI, or TF regulation). b The degree distribution of GPCM. c The cumulative distribution of the number of 
genes in pathways. The pie chart shows the proportion of genes in one pathway and in more than one pathway. d The density distribution of the 
number of pathways

Table 2  The representative 10 genes with high RS and low |log2FC| value in LUAD (GSE116959)

Gene symbol EntreZ ID |log2FC| value DE value RS Reference (PMID)

TRIM28 10155 0.3854 0.1186 2.3781 33091876

APP 351 0.3965 0.1244 1.4413 25502341

SP1 6667 0.2215 0.0690 1.2031 22158040

GRB2 2885 0.3315 0.1051 1.0874 26693065, 27449805

PPP1CA 5499 0.2363 0.0686 0.8904 29285244

POT1 25913 0.3106 0.0485 0.7578 19285750

ESR1 2099 0.0278 0.0013 0.7493 11929836, 16033821

MYC 4609 0.3150 0.0947 0.7396 22941188, 28089889

CDK2 1017 0.3184 0.1035 0.7185 25301183

EGFR 1956 0.0841 0.0091 0.6921 8391303, 10767376
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the CCGs with low |log2FC| achieved high RS through 
crosstalk with those high |log2FC| genes in GPCM. These 
results indicated that RS was a better index for identify-
ing casual genes, and thus, pathways enriched with high 
RS genes are likely to have important roles. Moreover, 
the proportion of risk genes in the top 100 of the RS rank 
list with |log2FC| <1 varied from 17 to 60% for eight data 
sets. This set of high-risk genes would have been over-
looked if only considering the DEG analysis (Additional 
file 2: Fig. S3).

Finally, we calculated a pathway enrichment score, PS, 
by integrating the RS of all nodes in the pathway. We took 
the average of the RS values in a pathway k as PSk. By per-
mutation, we identified the significant dysregulated path-
ways (details in the “Methods” section).

Parameter optimization and improved performance 
compared to existing tools
We tested the performance of different r values based on 
24 gold standard data sets involving 12 human diseases 
(Additional file 1: Table S2). In general, there was a slight 
variance on the performance with different r values. In 

this study, r was set as 0.7 because CTpathway had the 
best performance (Fig.  4a). In addition, we only kept 
ε digits and set values smaller than 10−ε to 0 for the C 
matrix to improve running speed. Here, the threshold 
ε was set to 3, which consequently completes the job in 
less than 50 s (86.3% reduction of running time) without 
compromising the quality of the results (rank difference 
= 0.018) (Fig. 4b).

To illustrate the effectiveness of the proposed method 
in identifying dysregulated pathways, our results were 
compared with five widely used tools, including DAVID 
(first-generation method) [4], GSEA (second-generation 
method) [11], TPEA (third-generation method) [12], 
LPIA (fourth-generation method) [17], and PathNet 
(fourth-generation method) [18]. Because most of these 
methods only focused on the pathways defined in KEGG, 
we used KEGG pathways for this comparative analysis 
(details in the “Methods” section).

First, accuracy was compared by using 24 gold standard 
data sets (Additional file 1: Table S2) [36]. We compared 
the RR values of the target pathways obtained from differ-
ent tools (Fig. 4c). CTpathway had the significantly lower 

Fig. 4  CTpathway outperforms other methods. a Box plot of target pathway RR values for different r values. b The impact of different ε values 
(x-axis) on DT (left y-axis) and DR (right y-axis) values. c–f Comparative analysis of the performance of different methods in terms of accuracy (RR 
and ROC curve), reproducibility, and running time, respectively. “*” represents two-sided t-test P-value < 0.05; “**” represents P-value < 0.01; “***” 
represents P-value < 0.001; ns represents not significant
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RR values than other methods (no significant change 
compared to PathNet), indicating that our method was 
more accurate. Moreover, the comparisons of ROC 
curves and AUC values also indicated CTpathway had 
the best performance (Fig. 4d).

Reproducibility is also very important. Currently, most 
of the PEA methods are not sufficiently reproducible 
because of only using DEGs and insufficiently using path-
way topology and molecular interaction information. To 
evaluate the stability of the methods, we calculated the S 
value (details in the “Methods” section) for four cancer 
types (COAD, LIHC, LUAD, and OV) based on differ-
ent sources (TCGA RNA-seq data and GEO microarray 
data) of eight gene expression data sets (Additional file 1: 
Table S2). The results showed that CTpathway achieved 
the highest S value in all comparisons (Fig. 4e). Therefore, 
our data showed that CTpathway outperformed other 
tools in generating reproducible results.

Next, we compared the running time of CTpathway 
with other methods such as GSEA, TPEA, PathNet, and 
LPIA. Because DAVID was used on the web server, the 
running time of which might be interfered by the internet 
connection speed, it was excluded. We used simulated 
data sets of 500, 1000, 5000, 10,000, and 20,000 genes. 
Our results demonstrated that CTpathway outperformed 
other methods, particularly as gene number increased. 
As the number of genes rose, increased running time 
was observed in TPEA, PathNet, and GSEA, whereas 
no change in running time occurred in CTpathway and 
LPIA (Fig.  4f ). However, LPIA running time was days 
compared to CTpathway, which took less than  50 s to 
analyze one set of data regardless of gene number, dem-
onstrating that our method was independent of gene set 
size. Taken together, our data show that CTpathway has 
greater accuracy, higher reproducibility, and less running 
time compared to other methods.

CTpathway identifies risk pathways in cancers
To demonstrate the utility of CTpathway, we firstly 
applied it to eight gene expression data sets of four tumor 
types (COAD, LIHC, LUAD, and OV; Additional file  1: 
Table S2). In eight pathway databases, we identified sig-
nificant pathways for the four tumor types at a signifi-
cance level of FDR < 0.01 (Fig. 5a and b, and Additional 
file 1: Table S7-S14). The number of identified pathways 
in different pathway databases differed. In general, the 
number of identified pathways in the Reactome database 
was relatively higher because of more candidate path-
ways. The total number of significant pathways for the 
eight gene expression data varied from approximately 
300 to 500, accounting for 11.7~19.5% of all candidate 
pathways (Fig.  5b). Some well-known cancer pathways 
were significant in more than one cancer type (Fig.  5a 

and Additional file  1: Table  S7-S14). For example, the 
“AP-1 transcription factor network” was identified as a 
significant pathway across four cancer types over all eight 
data sets. The AP-1 transcription factor is involved in a 
wide range of biological processes, such as cell growth, 
proliferation, differentiation, apoptosis, migration, and 
invasion [61–64]. “FOXM1 transcription factor network,” 
“Degradation of the extracellular matrix,” and “Activa-
tion of matrix metalloproteinases” appeared in seven 
data sets. Many previous studies have demonstrated 
that these pathways are altered in multiple cancer types, 
indicating their pan-cancer regulation potential [65–70]. 
We also identified pathways unique to a single cancer. 
For example, transport-related pathways (“Transferrin 
endocytosis and recycling” and “Passive transport by 
Aquaporins”) were reproducibly identified in COAD in 
both the GSE100179 [40] and TCGA patient cohort and 
not in other cancers. Many metabolism-linked pathways 
(“Pyruvate metabolism,” “Glycerolipid metabolism,” “Gly-
cogen degradation II,” “Acetate conversion to acetyl-CoA,” 
and “Caffeine metabolism”) were specifically identified in 
LIHC patient cohorts in TCGA and GEO (GSE101685 
[41]). Previous reports demonstrated that a large num-
ber of metabolic processes are dysregulated in LIHC to 
fuel tumorigenesis [71], suggesting our method accu-
rately identifies dysregulated pathways in cancer. Several 
transcription or signal transduction-related pathways 
(“RUNX1 regulates transcription of genes involved in dif-
ferentiation of HSCs,” “NOTCH1 Intracellular Domain 
Regulates Transcription,” “Constitutive Signaling by 
NOTCH1 PEST Domain Mutants”) were shared by GEO 
(GSE116959 [42]) and TCGA LUAD patient cohorts, but 
not in other cancers. In OV, immune and EMT/migra-
tion/invasion-related pathways were observed, such as 
“TCR,” “IL3,” “E-cadherin signaling in the nascent adhe-
rens junction,” “RUNX2 regulates genes involved in cell 
migration,” “Adherens junction,” and “Stabilization and 
expansion of the E-cadherin adherens junction” path-
ways. Importantly, these pathways have been reported to 
impact cell and/or organ functions and/or tumorigenesis 
[72–82]. Collectively, our results show that CTpathway 
accurately identifies well-known cancer risk pathways.

Most of the pathways are previously verified known 
risk pathways for the individual cancer types, indicating 
CTpathway is a highly reliable tool for prioritizing the risk 
pathways. Taking GEO LUAD and OV data sets as exam-
ples, all the top 10 pathways for LUAD and nine of the top 
10 pathways for OV have been reported (Fig. 5c, Table 3 
and Additional file 1: Table S15-S19). We also compared 
risk pathways identified by different methods. We deter-
mined that all of the top 10 risk pathways for both LUAD 
and OV in CTpathway were also identified by other 
methods (Table  3 and Additional file  1: Table  S15-S19). 
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Fig. 5  CTpathway accurately identifies well-known cancer risk pathways. a The comparison of identified pathways in four cancers for eight data 
sets. Gray color represents identified pathways across multiple cancer types (AC). Other colors represent cancer type-specific identified pathways. 
GT represents both GEO and TCGA data sets; TS and GS represent TCGA specific and GEO specific, respectively. For cancer type-specific identified 
pathways, the proportion of pathways for different data sets is shown as pie charts. b Heatmap of pathways identified for eight cancer data sets by 
CTpathway in eight pathway databases. The number of candidate pathways for each database is indicated in parentheses. c The bar graph shows 
the top 10 KEGG pathways

Table 3  Top 10 significant pathways identified by CTpathway based on the GSE116959 LUAD data set

a D DAVID, G GSEA, T TPEA, P PathNet, L LPIA

ID Pathway name #Node PS P-value FDR Da Ga Ga Pa La

hsa05200 Pathways in cancer 454 0.187 1.37×10−8 2.52×10−6 √ √ √

hsa05152 Tuberculosis 175 0.164 1.69×10−8 2.52×10−6 √ √

hsa05140 Leishmaniasis 72 0.233 2.58×10−8 2.57×10−6 √ √ √ √ √

hsa05133 Pertussis 52 0.239 1.03×10−7 3.09×10−6 √ √ √ √

hsa04110 Cell cycle 124 0.237 6.88×10−8 3.09×10−6 √ √ √ √

hsa04510 Focal adhesion 199 0.201 4.49×10−8 3.09×10−6 √

hsa05166 Human T-cell leukemia virus 1 infection 233 0.196 9.77×10−8 3.09×10−6 √ √

hsa04512 Ascorbate and ECM-receptor interaction 81 0.181 8.56×10−8 3.09×10−6 √ √

hsa04610 Complement and coagulation cascades 55 0.171 8.71×10−8 3.09×10−6 √ √ √ √

hsa05150 Staphylococcus aureus infection 39 0.171 8.20×10−8 3.09×10−6 √ √ √
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However, four of the top 10 pathways for LUAD or OV 
were identified by only one or two existing methods 
(Additional file 1: Table S15-S19), such as “Tuberculosis,” 
“Focal adhesion,” and “ECM-receptor interaction,” which 
play critical roles in cancer pathogenesis or progression 
[83–85]. Moreover, we determined the pathways only 
identified by CTpathway for OV (Table 4 and Additional 
file 1: Table S17-S19), and most of these pathways were 
cancer-related such as “MAPK signaling pathway” [86, 
87], “Wnt signaling pathway” [88], and “Hippo signaling 
pathway” [89]. We also determined that these pathways 
had a lower proportion of DEG (Additional file  2: Fig. 
S4). For example, CTpathway identified “MAPK signal-
ing pathway” (Table 4), which has important roles in the 
development and survival of many cancer types including 
ovarian cancer [86, 87]. Also, there is a crosstalk between 
“MAPK signaling pathway” and “ECM-receptor interac-
tion” (Fig.  6a), which had been demonstrated to aid in 
EMT/migration/invasion process [90–92]. Five of six 
methods including CTpathway identified “ECM-receptor 
interaction” as a risk pathway (Table  3); however, all of 
the other compared methods were unable to determine 
“MAPK signaling pathway” as a risk pathway in EMT in 
OV. Furthermore, we determined that there was a lower 
proportion of DEGs in the “MAPK signaling pathway” 
(1.4% [4/295]) than that in the “ECM-receptor interac-
tion” pathway (18.5% [15/81]); thus, most methods will 
identify “ECM-receptor interaction” instead of “MAPK 
signaling pathway.” Because the “MAPK signaling path-
way” has crosstalk with “ECM-receptor interaction,” with 
most DEGs (14/15) in the “ECM-receptor interaction” 
having a direct connection with the “MAPK signaling 
pathway,” most “MAPK signaling pathway” genes have 
high RS (Fig.  6a, b). Therefore, only our method identi-
fied “MAPK signaling pathway” as a risk pathway. More-
over, we determined that, in the top 100 of the RS rank 
list, there are 36 EMT genes [93], of which seven have 

low |log2FC| (|log2FC| < 1) (Fig. 6c and Additional file 1: 
Table S20). These genes were easily overlooked by other 
methods that only considered DEGs as risk genes. Taken 
together, CTpathway could identify cancer risk pathways 
that were identified by existing methods, and impor-
tantly, also significant pathways and risk genes that were 
overlooked by other methods.

CTpathway identifies risk pathways in data sets with fewer 
DEGs
Because of its algorithmic properties, we postulated that 
CTpathway would be useful for data sets with a small 
number of DEGs. To test this, we screened DEGs for 
24 gold standard data sets at a level of |log2FC| > 1 and 
FDR < 0.1 and selected 12 representative gold stand-
ard data sets with different numbers of DEGs ranging 
from 0 to 1702 (Fig. 7a and Additional file 1: Table S3). 
We compared KEGG pathways identified by CTpath-
way with those by other five methods (DAVID, GSEA, 
TPEA, PathNe, and LPIA) at a significance level of 
FDR-corrected P-value < 0.05 (Fig.  7a). The number of 
significant pathways identified by CTpathway was inde-
pendent from the number of DEGs. For data sets with 
fewer DEGs, CTpathway could identify more pathways 
than all other methods. However, other methods, includ-
ing DAVID, GSEA, and TPEA, showed a greater depend-
ency on the number of DEGs. They could only identify a 
small number of significant pathways for data sets with 
fewer DEGs (e.g., GSE6956C [94] and GSE1297 [95]). 
Furthermore, CTpathway could identify target pathways 
for most (9/12) of the data sets, whereas other methods 
had a lower rate of identification and overlooked them, 
especially for data sets with fewer DEGs. We also com-
pared significant pathways at a level of nominal P-value 
< 0.05 (Additional file 2: Fig. S5), and CTpathway could 
identify target pathways independent on the number 
of DEGs. These results demonstrated that CTpathway 

Table 4  Top 10 significant pathways only identified by CTpathway based on the GSE9891 OV data set

ID Pathway name #Node PS P-value FDR DEG proportion

hsa04072 Phospholipase D signaling pathway 118 0.096 1.44×10−7 1.65×10−6 0.025

hsa04010 MAPK signaling pathway 295 0.085 3.14×10−7 2.47×10−6 0.014

hsa04550 Signaling pathways regulating pluripotency 
of stem cells

109 0.109 7.30×10−7 5.08×10−6 0.037

hsa04310 Wnt signaling pathway 144 0.096 1.45×10−6 8.85×10−6 0.028

hsa05202 Transcriptional misregulation in cancer 19 0.140 1.85×10−6 1.11×10−5 0.053

hsa05212 Pancreatic cancer 75 0.126 2.60×10−6 1.49×10−5 0

hsa01521 EGFR tyrosine kinase inhibitor resistance 79 0.113 4.28×10−6 2.35×10−5 0.038

hsa05225 Hepatocellular carcinoma 168 0.093 9.76×10−6 5.12×10−5 0.006

hsa04390 Hippo signaling pathway 153 0.090 1.15×10−5 5.85×10−5 0.032

hsa05224 Breast cancer 145 0.096 3.42×10−5 1.49×10−4 0.014
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outperformed other methods for target pathway identi-
fication, particularly when there are a small number of 
DEGs.

CTpathway identifies risk pathways in early‑stage cancer
Cancer diagnosis relies on detecting symptoms fol-
lowed by histology/pathology evaluation. Identifica-
tion of altered pathways indicative of pre-malignancy 
or early-stage cancer is critical for disease prevention 
and earlier treatment, leading to improved outcomes 
for patients. Early-stage cancers usually show smaller 
changes at the molecular level than late-stage can-
cers. We tested whether CTpathway could identify risk 

pathways for early-stage disease in cancer patients. 
First, samples of 10 cancer types that included stages I, 
II, III, and IV were obtained from TCGA. We selected 
the KEGG annotated ten pathways specific for the ten 
cancer types (Additional file  1: Table  S2). For each 
cancer type of each stage, pathway enrichment analy-
sis was performed by CTpathway and other methods. 
The P-values of target pathways were compared by 
different methods. The results showed that CTpath-
way performed better than the other methods for tis-
sue samples (Fig.  7b, c and Additional file  2: Fig. S6). 
In general, the CTpathway P-values of target path-
ways were smaller than those of other methods. Even 

Fig. 6  “MAPK signaling pathway” aid in EMT in OV. a Crosstalk between “MAPK signaling pathway” and “ECM-receptor interaction.” The red nodes 
represent DEGs and the gray nodes are non-DEGs. Fourteen of 15 DEGs in the “ECM-receptor interaction” pathway have a direct connection with 
the “MAPK signaling pathway.” b The risks of genes in the “MAPK signaling pathway.” Risks were measured by FC, FDR, DEG, and RS. c The bar graph 
shows EMT genes in the top 100 of the RS rank list in OV
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in the early-stage (stage I) patients, 9/10 target path-
ways of cancer types could be identified by CTpath-
way at a significance level of P-value < 0.05, whereas 
all but one other method could either not identify any 
or only identified one target pathway in early-stage 
patients for one cancer type (Fig.  7b). In addition, 
we also evaluated blood samples, which are easier to 
obtain from patients as compared to tissue samples. 
CTpathway was applied to the data sets of the blood 
samples (GSE20189 [44]) from LUAD patients of dif-
ferent stages (I, II, III, and IV), and it identified the 
target pathway in the early stage as well as performed 
better than the other methods across all cancer stages 
(Fig.  7d). These results demonstrate that CTpathway 
may be useful for early disease diagnosis.

CTpathway identifies cell type‑related pathways 
in scRNA‑seq data
Due to characteristics of scRNA-seq data such as drop-
out events and low library sizes, the number of DEGs for 

a subgroup or cell type is typically low. Because CTpath-
way is not limited by DEG number, we postulated it could 
be utilized in scRNA-seq data. To test this, we obtained 
BRCA scRNA-seq data (GSE118389 [45]). Cell types 
were annotated (B cell, T cell, macrophage, endothe-
lial cell, epithelial cell, and stromal cell) according to the 
reported study [45]. Differential expression analysis was 
performed between one cell type and the others by Seu-
rat V3.2.2 [49]. Then, CTpathway was applied to each 
cell type. The pathway enrichment results showed that 
CTpathway could identify known cell type-related path-
ways in each cell type (Fig. 8). For example, “B cell recep-
tor signaling pathway” was significant in B cell (FDR = 
1.48×10−6) [96]; “Neurophilin interactions with VEGF 
and VEGFR” was significant in endothelial cell (FDR 
= 5.06×10−6) [97]; “Toll-like receptor signaling path-
way” was significant in macrophage (FDR = 6.47×10−6) 
[98]; “ECM-receptor interaction” was significant in stro-
mal cell (FDR = 1.61×10−6) [99]; “TCR” was significant 
in T cell (FDR = 6.21×10−7) [100]. Compared to other 

Fig. 7  CTpathway identifies significant pathways in data sets with few DEGs and early-stage cancer patients. a The comparison of identified 
pathways for data sets with a different number of DEGs in six methods. The bar graph shows the number of DEGs for 12 representative data sets. 
The heatmap shows the number of significant pathways at the significance level of FDR < 0.05, identified by different methods for data sets with 
a different number of DEGs, divided by the number of all candidate pathways. The target pathways are marked as green stars. b The heatmap of 
enrichment results (P-value) for the target pathways of 10 early-stage cancer types using different methods. c, d Enrichment results (P-value, y-axis) 
for the target pathways of TCGA COAD data sets of tissue samples (c) and LUAD blood samples (d) of different stages using different methods. The 
dashed line represents a cutoff (P-value = 0.05)
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methods, CTpathway showed the lowest RR value for the 
“B cell receptor signaling pathway” in B cell (Additional 
file 2: Fig. S7). These results demonstrated that CTpath-
way could effectively identify cell type-related functions 
or pathways in scRNA-seq data.

Reduction of pathway redundancy
Redundancy is a frequently neglected problem for most 
PEA methods. Pathways sharing genes lead to functional 
similarities. As a result, it is difficult to extract represent-
ative pathways from redundant information [7, 101, 102]. 
CTpathway automatically clusters enriched pathways into 
non-redundant groups. Briefly, we constructed a similar-
ity network after obtaining significant pathways based on 
a particular cutoff of the Jaccard similarity coefficient for 
shared genes among all significant pathway pairs. MCL 
clustering algorithm [55] was employed to absorb most 
redundancies into representative clusters. Each cluster 
was renamed as the name of the most significant pathway 
in this cluster. Taking TCGA COAD stage I patient sam-
ples as an example (Additional file 2: Fig. S8), we deter-
mined some clusters with two or more pathways, and our 

method enables robust identification of the remaining 
single node clusters, indicating that these risk pathways 
reveal potentially targetable pathways, as they have the 
least amount of crosstalk with other pathways. Therefore, 
CTpathway is designed to obtain non-redundant path-
way information to better interpret pathway enrichment 
results, and this is dictated according to the needs of the 
user who input a cutoff of the Jaccard similarity coeffi-
cient on the web server.

Web‑based implementation of CTpathway
We provided an online web tool for users to perform 
pathway enrichment analysis with CTpathway (Addi-
tional file 2: Fig. S9). Users can input data including gene 
(gene symbol or entrez ID), both log2FC and P-value 
or either. By selecting several parameters, input Email 
address, and clicking the “run” button (Additional file 2: 
Fig. S9a and b, more details in the Web Manual page), 
CTpathway returns enrichment results shown in the 
table in the result page of the web server. The results 
are also visualized by a bar graph, a bubble plot, and an 
enrichment map (Additional file 2: Fig. S9c-e). Users can 

Fig. 8  CTpathway identifies cell type-related pathways in BRCA scRNA-seq data. The heatmap of enrichment results (PS value) of pathways in each 
cell type determined by CTpathway
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choose any or all results according to their needs. In the 
web server, results only take a few minutes.

Discussion
PEA is a useful method for exploring gene set func-
tion. However, most existing methods did not consider 
pathway crosstalk and priori knowledge. In this study, 
we designed and provided to the research community 
CTpathway, a crosstalk-based PEA method through a 
global pathway crosstalk map (GPCM) by using multiple 
sources of pathways and priori knowledge in human.

First, we collected TF-gene regulation, PPI, and gene-
gene interaction and constructed a GPCM. The topologi-
cal property analysis showed that the degree distribution 
approximately displayed a power law distribution, which 
was similar to most biological networks. Then, we inte-
grated FC and P-value for each gene from differen-
tial expression analysis as gene differential expression 
score (DE). Next, we obtained a crosstalk effect matrix 
by the multi-RWR algorithm and calculated a final risk 
score (RS) by integrating the DE and crosstalk effects. 
By enrichment analysis of the CGC genes, we demon-
strated that RS was a better index for identifying risk 
genes, and identified important genes with a high RS 
and low |log2FC| that were overlooked by other methods 
that relied on |log2FC|. Finally, we calculated a pathway 
enrichment score by averaging RS for genes in the path-
way and identified significantly dysregulated pathways by 
permutation. Our optimization process reduced ~86.3% 
of the original running time. Furthermore, the perfor-
mance of CTpathway is significantly better compared 
with existing methods in terms of accuracy (RR and AUC 
value), reproducibility, and running time. In addition, by 
applying CTpathway to cancer patient samples, we deter-
mined that CTpathway could identify critical pathways, 
which were not identified by other methods. For the data 
sets with a small number of DEGs, CTpathway was also 
useful and outperformed the other methods. Notably, 
CTpathway outperformed other methods in identifying 
target pathways in early-stage cancer tissues and blood 
samples. For scRNA-seq data, which can have small DEG 
numbers, CTpathway could effectively identify cell type-
related pathways. Our results demonstrate that CTpath-
way could be applied in disease analysis, and especially 
for data sets with fewer DEGs, early cancer diagnosis, 
which may lead to starting treatment earlier, and scRNA-
seq data. We also developed an online web tool to allow 
users to easily and freely perform PEA with CTpathway.

This study provides a new useful PEA method, CTpath-
way, for over 2500 pathways in eight pathway databases, 
and showed that CTpathway performed better than 
other widely used methods. We evaluated CTpathway 

performance using the commonly used standard 
data  sets. However, these data  sets are limiting because 
there are only 24 target pathways for 24 diseases, indicat-
ing a need in the field for more gold standard data sets for 
the evaluation of pathway enrichment analysis methods. 
If the data sets contained additional known risk pathways 
for diseases, the methods could be evaluated more pre-
cisely using the precision-recall curve and AUPRC. In 
addition, CTpathway still has limitations related to repro-
ducibility, which is consistent with PEA methods overall. 
For example, when different data sets belonging to the 
same disease serve as input, the results may differ. While 
differences in samples and sample handling and process-
ing between different labs contribute to reproducibility 
challenges, CTpathway was more reproducible than the 
other methods, showing ~35% overlap between different 
data sets tested.

Of note, the NT methods are highly dependent on the 
information of interactions, such as TF-gene regulations, 
PPIs, and gene-gene interactions, and thus, incomplete 
information will limit the development of these meth-
ods. In this study, TF-gene regulations come from the 
TRANSFAC database. Recently, several other resources 
of TF-gene regulation have been provided [103, 104]. 
Adding more TF-gene regulations might lead to a poten-
tial improvement of CTpathway. Notably, CTpathway 
could be extended to predict non-coding RNA (ncRNA) 
functions by adding ncRNA regulations or interac-
tions into GPCM. Moreover, CTpathway only focuses 
on Homo sapiens in this version. Through constructing 
GPCM for other species, CTpathway could be used to 
identify risk pathways of other species. Although future 
studies will be needed to investigate these areas, CTpath-
way provides a new publicly available method that should 
result in new discoveries in multiple fields of biology and 
disease research.

Conclusions
This study presents a novel pathway crosstalk-based 
method, CTpathway, for performing pathway enrichment 
analysis. CTpathway outperformed existing methods on 
accuracy, reproducibility, and speed. CTpathway exclu-
sively identified critical pathways in several cancer types. 
Furthermore, CTpathway was useful even for data sets 
with few differentially expressed genes and could iden-
tify target pathways in early-stage cancer patient sam-
ples, which could lead to earlier treatment, and identify 
cell type-related pathways for scRNA-seq data. Finally, 
we provide an interactive and easy-to-use web server 
so users can conveniently perform pathway enrichment 
analysis and discover disease-risk pathways.
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