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SOLUTION OF THE TWO-DIMENSIONAL TELEGRAPH EQUATION

VIA THE LOCAL RADIAL BASIS FUNCTIONS METHOD

SEPIDEH NIKNAM1, HOJATOLLAH ADIBI1, §

Abstract. In the present study, we utilize the local meshless method for solving sec-
ond order hyperbolic partial differential equation in two dimensions. First we apply the
Crank-Nicolson difference scheme for the time derivative and the local radial basis func-
tions (LRBFs) collocation method for the spatial derivative. The local approach breaks
down the problem domain into subdomains and results small matrix system for each
data. Some numerical examples are included to verify the computational efficiency of
the proposed method.
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1. Introduction

Meshless (mesh-free) methods, as numerical techniques are used to analyze a wide range
of industrial and engineering applications. In these methods, only scattered nodes are re-
quired to approximate unknown functions [1]. RBF is an interpolation method used for
scattered data approximation. The coefficient matrix of global RBF functions will be full
and large and usually it is ill-conditioned so to construct the approximation function by
local radial basis functions, the only points are used fallen within local influence domain.
Therefore, much less computational work and the well-conditioned interpolation matrix
are advantages of LRBFs. While a great number of investigations have been developed
to estimate solution of partial differential equations, including FDM [7], FEM [8], BEM
[9] and FVM [10], researchers’ attention has recently drawn to RBF. Ronald Hardy first
introduced RBF methods in 1968 [13]. Then, Richard Franke [15], Charles Micchelli [14]
and Edward Kansa respectively in 1979, 1986 and 2000 extended the RBF’s theory. Var-
ious advantages for RBF method have been reported frequently in previous studies.
In the present study we are dealing with the linear second order hyperbolic partial differ-
ential equation in two space dimensions [2]

∂2u

∂t2
+ 2α(x, y)

∂u

∂t
+ β2(x, y)u = A(x, y)

∂2u

∂x2
+B(x, y)

∂2u

∂y2
+ f(x, y, t), (1)

1 Department of Applied Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
e-mail: sniknam.math@gmail.com; ORCID: https://orcid.org/ 0000-0003-2579-1913.
e-mail: adibih@aut.ac.ir; ORCID: https://orcid.org/ 0000-0002-8167-5020.

§ Manuscript received: December 26, 2019; accepted: January 20, 2021.
TWMS Journal of Applied and Engineering Mathematics, Vol.12, No.1 © Işık University, Department
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where α(x, y) > 0, β(x, y) > 0, A(x, y) > 0 and B(x, y) > 0 are known variable coefficients.
Eq. (1) represents the two dimensional telegraph equation when α and β are constant and
α > β > 0, A = B = 1.
The telegraph equation has been repeatedly studied in previous works. Telegraph equa-
tions are commonly used in the study of wave propagation of electric signals [32] and also
in wave phenomena [33]. In [17], polynomial differential quadrature method was used to
solve two dimensional hyperbolic telegraph equation under Dirichlet and Neumann bound-
ary conditions. Dehghan and Shokri introduced additional meshless method for solving
this equation using radial basis functions of thin plate splines at collocation points [20,5,3].
In [31], the advantages of local weak and strong forms of meshless method were combined.
In this method, local Petrov–Galerkin weak form was applied only to the nodes onto the
Neumann boundaries while a meshless collocation method based on the strong form of the
equation was applied on the interior nodes and those located on the Dirichlet boundaries.
All these attempts resulted in acceptable accuracy of the solutions. Recently, the numer-
ical schemes via the operational matrices of differentiation and integration have received
considerable attention for solving PDEs [34-36].
This paper includes 4 sections as follows: In Section 2: a preliminary of RBF’s approxima-
tion technique and explanation of implementing the local radial basis functions (LRBFs)
are introduced. In Section3: time discrete scheme utilizing Crank-Nicolson finite differ-
ence scheme is used. In Section 4: some test problems are presented to demonstrate the
efficiency of the scheme. Section 5 includes conclusion.

2. A brief review of radial basis functions (RBFs)

Radial basis functions (RBFs) method is an efficient and a truly mesh free technique for
interpolation of multidimensional scattered data for solving partial differential equations
(PDEs). The local RBF method utilizes only the nodal points in the influence domain
of in computing step, in order to have a sparse and better-conditioned linear system
[2,17,20,21,22,23]. The most widely used RBFs are:

Multiquadric:
√

1 + (εr)2

Inverse Multiquadric: 1√
1+(εr)2

Inverse quadric: 1
1+(εr)2

Generalized multiquadric: (1 + (εr)2)β

Gaussian: e−(εr)2

A function Φ : Rd → R is called to be radial if there exists a univariate function
φ : [0,∞)→ R, such that
Φ(x) = ϕ(r). Where r = ‖x‖ and ‖.‖ is some norm on Rd , usually the Euclidean norm.
The approximation of a solution u(x), may be written as a linear combination of N radial
functions as:

u(x) '
N∑
j=1

λjϕ(x, xjx, xjx, xj) + ψ(xxx) xxx ∈ Ω ⊂ Rd, (2)

where N is the number of data points, x = (x1, x2, ..., xd) , d stands for the dimension of
the problem, λ′s are coefficients to be determined and ϕ is the radial basis function. In this

article, we use multiquadrics functions, ϕ(x, xj) = ϕ(rj) =
√
c2 + r2

j where rj = ‖x− xj‖
is the Eucliden norm. Equation (2) may be written without the additional balancing poly-
nomial ψ . If so, ϕ must be unconditionally positive definite in order to guarantee the
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solvability of the resulting system (e.g., Gaussian or inverse multiquadrics). More specif-
ically, when ϕ is conditionally positive definite, i.e., has a polynomial growth to infinity,
then ψ is usually required. Examples are thin plate splines and multiquadrics.
If P dq denotes the space of d-variate polynomials of order not exceeding q, and the polyno-

mials P1, ..., Pm be the basis of P dq in Rd , then the polynomial ψ(x) in Eq. (2), is usually
written as:

ψ(xxx) =
m∑
i=1

ξiPi(xxx), (3)

where m = (q − 1 + d)!/(d!(q − 1)!).
To determinate the coefficients (λ1, ..., λN ) and (ζ1, ..., ζm) , the collocation method is
used, where, in addition to the N equations obtained from (2) at the N points, another
m extra equations are required. This is insured by the m extra side conditions for (2),

N∑
j=1

λjPi(xjxjxj) = 0 i = 1, ...,m. (4)

If so, for linear partial differential operator L in (2),Lu can be approximated by

Lu(x) '
N∑
j=1

λjLϕ(x, xjx, xjx, xj) + Lψ(xxx). (5)

Now having (N-3) interpolation points, then un(x, y) can be approximated by

un(x, y) '
N−3∑
j=1

λnj ϕ(rj) + λnN−2x+ λnN−1y + λnN . (6)

To determine the interpolation coefficients λj , (j = 1, 2, . . . , N) , the collocation method
is used at every point (xi, yi), i = 1, 2, ..., N − 3. Thus we have

un(xi, yi) ≈
N−3∑
j=1

λnj ϕ(rij) + λnN−2xi + λnN−1yi + λnN , (7)

where

ϕ(rij) =
√
c2 + (xi − xj)2 + (yi − yj)2 (MQRBF ). (8)

The additional conditions are also written as:
N−3∑
j=1

λnj =

N−3∑
j=1

λnj xj =

N−3∑
j=1

λnj yj = 0, (9)

where un = [un1 u
n
2 u

n
3. ...u

n
N−3 0 0 0]T , [λ]n = [λn1 λ

n
2 ... λ

n
N ]T and A = [aij , 1 ≤ i, j ≤ N ] is

given by

A =



ϕ11 · · · ϕ1(N−3) x1 y1 1
...

. . .
...

...
...

...
ϕ(N−3)1 · · · ϕ(N−3)(N−3) xN−3 yN−3 1
x1 · · · xN−3 0 0 0
y1 · · · yN−3 0 0 0
1 · · · 1 0 0 0


(10)

Then

[u]n = A[λ]n, (11)
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so

[λ]n = A−1[u]n. (12)

2.1. The local RBF. In LRBF, the procedure is the same as RBF except for that instead
of using all N points through the domain, only n points of the influence domain of the
point x is used. Hence, the interpolation LRBF un(x) is obtained as:

un(x, y) ≈
m−3∑
j=1

λnj ϕ(rj) + λnm−2x+ λnm−1y + λnm, (13)

Accordingly,

[U ]n = A[Λ]n. (14)

can be computed if the scattered points in the influence domain are assumed to be distinct.
We only use the nodal points, where the procedure is exactly the same as in RBFs in the
computing step, noting that every shape function is obtained in the local sense.
Some attractive advantages of the proposed method which make it compareble with other
schemes for solving PDEs are as follows:
1. The method requires no domain elements.
2. The method is simple and also computationally attractive.
3. The method could be easily extended to higher dimension problems.
4. The scheme while using much fewer volume computing in compared with other methods,
obtains more accurate results.
5. The scheme is more flexible for solving various partial differential equations.

2.2. Error analysis. Consider the finite-dimensional subspaces SN ⊂ H1(Ω) of the form
[28,29]

SN = span{Φ(0− x1), ...,Φ(0− xN )}+ Pdm (15)

where Φ : Rd → R is a radial basis function, Pdm denotes the space of polynomials of
degree less than m and X = {x1, ..., xN} ⊆ Ω is a set of distinct nodes.
The RBF interpolant uI to a function u ∈ C(Rd) on the set X is represented by

uI =
N∑
j=1

αjΦ (x− xj) + p (x) (16)

where p is a polynomial of degree less than m. It is shown that [2] there always exists an
uI which satisfies the condition

uI (xj) = u (xj) , 1 ≤ j ≤ N, (17)

N∑
j=1

αjp(xj) = 0, p runs through a basis ofPdm. (18)

Now consider the RBF Φ whose Fourier transform Φ̂ has the property

Φ̂ (w) ∼ (1 + ‖ |w| ‖−2β). (19)

We denote the global data density

h = hX,Ω ≡ sup
x∈Ω

min
1≤j≤N

‖x− xj‖2. (20)
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Lemma 2.1. Assume u ∈ Hk(Ω),Φ satisfies (20) with β ≥ k > d/2 + m . Let SN be
given by (15). Then there exists a function s ∈ SN such that for x ∈ ω, the estimate

‖u− s‖m ≤ Chk−m‖u‖k, xxx ∈ Ω, (21)

is valid if is sufficiently small [4].
As a conclusion, increasing the number of nodes in numerical method has no significant
effect on the error and the proposed scheme will be of high algebraic convergence rates
when the method utilizes infinitely smooth conditionally strictly positive definite functions.

2.3. Aim of this paper. In this work we use the local radial basis functions colloca-
tion technique to overcome the drawback of global radial basis functions that when using
multiquadric basis functions produces ill-conditioning in the matrix system.

3. Time discrete schemes

We start considering the following linear second order hyperbolic partial differential
equation in two space dimensions

∂2u

∂t2
+ 2α(x, y)

∂u

∂t
+ β2(x, y)u = A(x, y)

∂2u

∂x2
+B(x, y)

∂2u

∂y2
+ f(x, y, t), (22)

with u(x, y, t) in the region Ω = {(x, y), L0
x < x < L1

x, L
0
y < y < L1

y}, t > 0 where that
α(x, y), β(x, y), A(x, y) and B(x, y) are known variable coefficients.
The initial conditions associated with Eq.(22) will be assumed to be as:

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (23)

with the initial velocity

∂u

∂t
(x, y, 0) = g(x, y), (x, y) ∈ Ω, (24)

Also the Dirichlet boundary conditions are assumed to be given by:

u(x, y, t) = h(x, y), (x, y) ∈ ∂Ω , and t > 0. (25)

First, we discretize Eq.(22) by virtue of the following θ-weighted scheme[6],

un+1 − 2un + un−1

(δt)2 + 2α (x, y)
un+1 − un−1

2δt
+ θ

(
β2 (x, y)un+1 −A (x, y)un+1

xx −B (x, y)un+1
yy

)
+ (1− θ)

(
β2 (x, y)un −A (x, y)unxx −B (x, y)unyy

)
= fn+1 (x, y) (26)

where un = u(x, y, tn), tn = tn−1 + δt, δt is the time step size and 0 ≤ θ ≤ 1. Simplifying
Eq. (26) gives

(1 + αδt+ θ(δt)2β2)un+1 − θ(δt)2 (
Aun+1

xx +Bun+1
yy

)
= (2− (1− θ) (δt)2β2)un

+ (1− θ) (δt)2 (Aunxx +Bunyy
)

+ (αδt− 1)un−1(δt)2fn+1. (27)

4. Numerical experiments

In this section we solve several numerical examples for different values of t, with the
proposed method and compute the following error norms: [21]

L2 =

√√√√δx
N∑
i=1

(
U exacti − Unumericali

)2
(28)
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L∞ = max
i
|U exacti − Unumericali | (29)

RMS =

√√√√ N∑
i=1

1

N

(
U exacti − Unumericali

)2
(30)

Remark: We solve these problems with the method just presented with shape parameter
c = 1 at different final times t = 1, 3, 6, and c = 2.4 for the first example. We also show
errors obtained for the presented method with the time step size δt = 0.001 for three test
problems at different final times with N = 421 interpolation points and m = 5 the number
of selected nearest neighboring points for a specified collocation point. We compare the
mentioned method with the global RBF method used in [2]. The results obtained from
the local method are acceptable in comparison with the global method, given that only a
limited number of points in the sub-domain are used and the resulting matrices are not
ill- conditioned. Moreover, according to results, reported to the tables, we can see that
as time goes ahead, the results obtained via LRBFs method get better than GRBF, i.e,
LRBFs method seems superior to GRBFs method.

Example 4.1. In this example we consider the second order hyperbolic Eq.(22) with α =
β = A = B = 1.

∂2u

∂t2
+
∂u

∂t
+ u =

∂2u

∂x2
+
∂2u

∂y2
+ f (x, y, t) , (31)

with the analytical solution

u(x, y, t) = ex+y−t, 0 ≤ x, y ≤ 2, t > 0. (32)

the initial conditions are given by{
u (x, y, 0) = ex+y, 0 ≤ x , y ≤ 2

ut (x, y, 0) = −ex+y, 0 ≤ x , y ≤ 2
(33)

We extract the right-hand side function f(x, y, t) and boundary conditions from the exact
solution. 

u(0, y, t) = ey−t

u(2, y, t) = e2+y−t

u(x, 0, t) = ex−t

u(x, 2, t) = e2+x−t

t > 0. (34)

And

f(x, y, t) = −2ex+y−t (35)

First, we discretize Eq.(31) according to θ-weighted scheme and assume that θ = 1/2.

un+1 − 2un + un−1

(δt)2 +
un+1 − un−1

2δt
+

1

2

(
un+1 − un+1

xx − un+1
yy

)
+

1

2

(
un − unxx − unyy

)
= fn+1(x, y), (36)

where un = u(x, y, tn), tn = tn−1 + δt, δt is the time step size and

(1 + δt+
1

2
(δt)2)un+1 − 1

2
(δt)2 (un+1

xx + un+1
yy

)
= (2− 1

2
(δt)2)un +

1

2
(δt)2 (unxx + unyy

)
+ (δt− 1)un−1 + (δt)2fn+1 (x, y) . (37)
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We consider the approximation

un (xi, yi) '
N−3∑
j=1

λnj ϕ (rij) + λnN−2xi + λnN−1yi + λnN . (38)

Substituting (38) in the governing equation (37), we have

(
1 + δt+

1

2
(δt)2

)N−3∑
j=1

λn+1
j ϕ (rij) + λn+1

N−2xi + λn+1
N−1yi + λn+1

N

−
1

2
(δt)2

N−3∑
j=1

λn+1
j (ϕxx (rij) + ϕyy (rij))

 =

(
2− 1

2
(δt)2

)N−3∑
j=1

λnj (ϕxx (rij) + ϕyy (rij))

+

1

2
(δt)2

N−3∑
j=1

λnj ϕ (rij) + λnN−2xi + λnN−1yi + λnN

+ (δt− 1)

N−3∑
j=1

λn−1
j ϕ (rij) + λn−1

N−2xi + λn−1
N−1yi + λn−1

N

+ (δt)2fn+1 (xi, yi) (39)

For initial time step, we have

(1 + δt+
1

2
(δt)2)u1 − 1

2
(δt)2 (u1

xx + u1
yy

)
= (2− 1

2
(δt)2)u0 +

1

2
(δt)2 (u0

xx + u0
yy

)
+ (δt− 1)u−1 + (δt)2f1 (x, y) (40)

To approximate u−1(x, y), we utilize fram,

u1 − u−1

2δt
= −ex+y ⇒ u−1 (x, y) = u1 (x, y) + 2 (δt) ex+y. (41)

So, for n = 0 we have

(1 + δt+
1

2
(δt)2)u1 − 1

2
(δt)2 (u1

xx + u1
yy

)
= (2− 1

2
(δt)2)ex+y +

1

2
(δt)2 (ex+y + ex+y

)
+ (δt− 1) (u−1 + 2(δt)ex+y) + (δt)2 − 2ex+y,

(42)

[u]n = A[λ]n ⇒ [λ]n = A−1[u]n ⇒ [λ]1 = A−1[u]1. (43)

The L2, L∞ and RMS errors are obtained in Table 1 for t = 1, 3 , and 6. In Table 2 errors
for the problem are shown with the global method [2]. The graph of analytical and estimated
functions and absolute error for t = 3 and t = 6, also analytical and estimated solutions
and absolute error with global scheme at t = 5, with dt = 0.001 and dx = dy = 0.1, are
demonstrated in Fig.1, Fig.2 and Fig.3 respectively. In table 3 we supposed c = 2.4 and
the L2, L∞ and RMS errors are obtained and absolute error for t = 3 are shown in Fig.4.
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Table 1. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1

t L2 L∞ RMS
1 1.824e− 01 2.77e− 2 8.7e− 03
3 1.38e− 02 3.1e− 03 6.5812e− 04
6 9.2796e− 04 1.6232e− 04 4.4189e− 05

Table 2. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1 with the global RBF method

t L2 L∞ RMS
1 1.6184e− 03 1.0382e− 2 4.9441e− 04
3 4.3229e− 04 4.3017e− 03 2.0484e− 04

Figure 1. Analytical solution and the absolute error of estimated so-
lutions for all three cases at t = 3 with dt = 0.001 and dx = dy =
0.1, u(x, y, t = 3), for Example 1.
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Figure 2. Analytical solution and the absolute error of estimated so-
lutions for all three cases at t = 6 with dt = 0.001 and dx = dy =
0.1, u(x, y, t = 6), for Example 1.

Figure 3. Analytical and estimated solutions and absolute error with
global RBF at t = 5, withdt = 0.001 and dx = dy = 0.1.

Table 3. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1 for c = 2.4

t L2 L∞ RMS
1 1.177e-01 1.68e-02 5.6e-03
3 8.7364e-04 1.3264e-04 4.1602e-05
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Figure 4. Analytical solution and the absolute error of estimated so-
lutions for all three cases at t = 3 with dt = 0.001 and dx = dy =
0.1, u(x, y, t = 3), for Example 1 with c = 2.4.

Example 4.2. Considering the second order hyperbolic Eq.(22) with α = β = 1, and
A = B = 1. The initial conditions are given by

u(x, y, 0) = sin(x) sin(y), 0 ≤ x, y ≤ π, (44)

ut(x, y, 0) = − sin(x) sin(y), 0 ≤ x, y ≤ π, (45)

and the exact solution is

u(x, y, t) = e−t sin(x) sin(y), 0 ≤ x, y ≤ π, t > 0. (46)

The L2, L∞ and RMS errors are obtained in Table 4 for t = 1, 3, and 6, also in Table
5, L2, L∞ and RMS errors, for constant coefficient problem with dt = 0.001, and dx =
dy = 0.1 with the global method.The graph of analytical and estimated functions and
absolute error for t = 3 and t=6 are shown in Fig.5 and Fig.6 respectively. In addition,
in Fig.7, analytical and estimated solutions and absolute error at t = 2, with dt = 0.001
and dx = dy = π/16, are shown with the global RBF.

Table 4. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1

t L2 L∞ RMS
1 1.34e-02 1.7e-3 7.8572e-04
3 3.1e-03 3.8581e-04 1.8155e-04
6 1.7036e-04 2.1364e-05 1.0021e-05
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Table 5. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1 with the global method.

t L2 L∞ RMS
1 4.943e-04 4.7889e-3 2.8170e-04
2 4.3304e-04 3.1237e-03 1.8375e-04

Figure 5. Analytical solution and the absolute error of estimated so-
lutions for all three cases at t = 3 with dt = 0.001 and dx = dy =
0.1, u(x, y, t = 3), for Example 2.

Figure 6. Analytical solution and the absolute error of estimated solu-
tions for all three cases at t = 6 with dt = 0.001 and dx = dy = 0.1, for
Example 2, with c = 1.
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Figure 7. Analytical and estimated solutions and absolute error at t = 2,
with dt = 0.001 and dx = dy = π/16, for Example 2, with the global RBF.

Example 4.3. As in the previous examples, we have the second order hyperbolic Eq. (22)
with α = β = 1, and A = B = 1. The initial conditions are given by

u(x, y, 0) = x2 + y2, 0 ≤ x, y ≤ 1 (47)

ut(x, y, 0) = x2 + y2 + 1, 0 ≤ x, y ≤ 1 (48)

and the exact solution is

u(x, y, t) = x2 + y2 + t, 0 ≤ x, y ≤ 1, t > 0. (49)

The right hand side function is

f(x, y, t) = −2 + x2 + y2 + t (50)

The boundary conditions can be obtained from the exact solution. The L2, L∞ and RMS
errors are given in Table 6 for t = 1, 3 and 6 and in Table 7 the results from the global RBF
scheme are given. The graph of analytical and estimated solutions and absolute error for
t = 3 and 6 are shown in Fig. 8, Fig.9, and in Fig. 10, analytical and estimated solutions
and absolute error at t = 10, with dt = 0.001 and dx = dy = 0.1, with the global RBF.
The computational region is [0, 1]× [0, 1].

Table 6. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1

t L2 L∞ RMS
1 1.34e-02 1.7e-3 7.8572e-04
3 3.1e-03 3.8581e-04 1.8155e-04
6 1.7036e-04 2.1364e-05 1.0021e-05
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Table 7. L2, L∞ and RMS errors, for constant coefficient problem with
dt = 0.001, and dx = dy = 0.1 with the global method

t L2 L∞ RMS
1 1.8056e-04 1.2439e-3 1.1309e-04
3 1.4585e-04 9.9849e-04 9.0772e-05
5 1.4544e-04 1.0265e-03 9.3322e-05

Figure 8. Analytical solution and also the absolute error of estimated
solutions for all three cases at t = 3 with dt = 0.001 and dx = dy =
0.1, u(x, y, t = 3), for Example 3.

Figure 9. Analytical solution and also the absolute error of estimated
solutions for all three cases at t = 6 with dt = 0.001 and dx = dy = 0.1,
for Example 3.
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Figure 10. Analytical and estimated solutions and absolute error at t =
10, with dt = 0.001 and dx = dy = 0.1, for Example3, with the global
RBF.

As shown in examples via local radial basis function we can obtain desired accuracy in
comparing with the global method [2] and also on an average desktop computer, the global
method cannot be implemented with a large number of centers, due to memory restraints
when the dense matrix is formed and every element has to be stored. Using the local
method, sparse matrices are stored, and we can obtain desired accuracy.

5. CONCLUSION

This paper deals with solving two-dimensional hyperbolic telegraph equation. The
solution method is based on local radial basis functions (LRBFs). Both global and local
methods can be used when working with radial basis functions but the coefficient matrix
of global RBF will be full and large and usually it is ill-conditioned, because require
thousands of data points for centers. The local method overcomes these issues by allowing
the user to select small stencils of points [14]. In the approximation function by local radial
basis functions, the only points are used fallen within local influence domain. Therefore,
much less computational work and the well-conditioned interpolation matrix are obtained.
Besides, numerical examples are provided to validate applicability and efficiency of the
method. The results demonstrate that by using the proposed method, higher accuracy as
well as less computational cost are achieved.
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