A Short Proof of the Size of Edge-Extremal Chordal Graphs

Mordechai Shalom
Department of Computer Engineering. Işık University, Istanbul, Turkey

Article Info

Keywords: Chordal graphs, Edgeextremal graphs, Matching number 2010 AMS: 05C35, 05C62
Received: 16 January 2022
Accepted: 19 March 2022
Available online: 30 August 2022

Abstract

Blair et. al. [3] have recently determined the maximum number of edges of a chordal graph with a maximum degree less than d and the matching number at most v by exhibiting a family of chordal graphs achieving this bound. We provide simple proof of their result.

1. Introduction

Consider a graph $G=(V, E)$ with maximum degree $\Delta(G)<d$ and matching number v. Vizing's theorem states that there exists a coloring of E using at most $\Delta(G)+1 \leq d$ colors. Each color class contains at most v edges, since it constitutes a matching. Therefore, G has at most $d \cdot v$ edges, i.e., bounding both the matching number and the maximum degree of a graph bounds the number of its edges. We want to note that none of the parameters d and v alone is sufficient to bound the number of edges of G, as the following examples show. The graph $m K_{2}$ that is a matching with m vertices has maximum degree 1 and an unbounded number of edges. On the other hand, the graph $K_{1, m}$ which is a star with m leaves has matching number 1 and an unbounded number of edges.
This observation gives rise to the following two questions

- What is the maximum number $m(d, v)$ of edges of a graph with matching number at most v and maximum degree less than d ?
- What is the set $\mathscr{M}(d, v)$ graphs with maximum degree less than d and matching number at most v that contain (exactly) $m(d, v)$ edges?

The first question is resolved in the work [1] and the second is resolved later in the work [2] that provided a constructive proof.
The same questions can be posed by confining ourselves to any graph class \mathscr{C}, therefore defining:

- $m_{\mathscr{C}}(d, v)$ as the maximum number of edges of a graph $G \in \mathscr{C}$ with maximum degree $\Delta(G)<d$ and matching number at most v, and
- $\mathscr{M}_{\mathscr{C}}(d, v)$ the set of graphs $G \in \mathscr{C}$ with maximum degree $\Delta(G)<d$, matching number at most v having $m_{\mathscr{C}}(d, v)$ edges.

A graph $G \in \mathscr{M}(d, v)\left(\right.$ resp. $\left.G \in \mathscr{M}_{\mathscr{C}}(d, v)\right)$ is said to be edge-extremal (resp. edge-extremal- \mathscr{C}).
The authors of [3] consider the class of chordal graphs, and determine the number $m_{\text {Chordal }}(d, v)$ by exhibiting a set of edge-extremalchordal graphs. In this work we provide a short proof of their following result.
Theorem 3.3. [3] There exists an edge-extremal graph in $\mathscr{M}_{\text {Chordal }}(d, v)$ that is a disjoint union of cliques and stars.
The result is obtained by showing that all the minimal elements of a carefully chosen preorder on the set of minimal representations of the graphs in $\mathscr{M}_{\text {Chordal }}(d, v)$ have this property. Namely, they are disjoint unions of cliques and stars.

2. Preliminaries

A vertex v of a graph G is simplicial if its neighbourhood is a clique and universal if its closed neighbourhood is the entire graph. A star is a tree with at most one non-leaf vertex. A d-star is a star with maximum degree d. Any total order on a set A defines a corresponding lexicographic order on the set A^{*} of all sequences over the elements of A. In a way similar to a dictionary, the order between two distinct elements a, b of A^{*} in the lexicographic order is determined by the order of the entries $a_{i}, b_{i} \in A$ where i is the lowest index such that $a_{i} \neq b_{i}$.

Observation 2.1. A simplicial vertex of a graph G is of maximum degree if and only if G is a complete graph.

A graph G is factor-critical if every subgraph obtained by the removal of a single vertex from G admits a perfect matching. It is easy to see that a factor-critical graph is odd and connected.

Definition 2.2. A graph class \mathscr{C} is special hereditary if

- \mathscr{C} is closed under the vertex deletion and disjoint union operations, and
- \mathscr{C} contains all stars and cliques.

We will use the following theorem proven in [2].
Theorem 2.3. [2] Let \mathscr{C} be a special hereditary graph class. Let $G \in \mathscr{C}$ be an edge-extremal graph having the maximum possible number of connected components that are stars. Then every other connected component of G is factor-critical.

Chordal graphs and subtree representations: A hole of a graph is an induced cycle of at least four vertices. A graph is chordal if it does not contain a hole.
Consider a forest T and a set $\mathscr{T}=\left\{T_{1}, \ldots, T_{n}\right\}$ of n subtrees of T. Without loss of generality we assume that every edge of T is used by at least one tree in \mathscr{T}. In other words, T is the union of the trees in \mathscr{T}. We denote by $G(\mathscr{T})$ the intersection graph of these subtrees, i.e., the graph with vertex set $[n]=\{1,2, \ldots n\}$ such that two vertices $i, j \in[n]$ of G are adjacent if and only if T_{i} and T_{j} intersect (in at at least one vertex of T). Given a graph G, a set \mathscr{T} of subtrees such that $G(\mathscr{T})=G$ is termed a subtree intersection representation of G. In the rest of this work we refer to the vertices of T as nodes to distinguish them from the vertices of G. It is well known that a graph is chordal if and only if it has a subtree intersection representation [4]. Note that the set of trees of the forest T is in one-to-one correspondence with the connected components of $G(\mathscr{T})$.
Minimal representations and maximal cliques: For a node v of T, let $\mathscr{T} \subseteq \mathscr{T}$ be the set of subtrees in \mathscr{T} that contain the node v, and let K_{v} be the set of vertices of G that correspond to the subtrees \mathscr{T}_{v}. It follows from the definitions that K_{v} is a clique. Moreover, it is known that a chordal graph G has a subtree representation \mathscr{T} in which the nodes of T are in one-to-one correspondence with the maximal cliques of G. Such a representation is termed minimal (see also [5]) and the forest T is termed a clique forest of G. By definition, $K_{u} \backslash K_{v} \neq \emptyset$ and $K_{v} \backslash K_{u} \neq \emptyset$ for any two maximal cliques K_{u} and K_{v} of a graph G. In particular, this holds whenever G is chordal and $u v$ is an edge of a clique forest T of G.
Let $u v$ be an edge of T where u is a leaf. From the above definitions and facts, it follows that every vertex in $K_{u} \backslash K_{v} \neq \emptyset$ is simplicial. We term such a vertex as leaf-simplicial vertex of \mathscr{T}.

3. The Short Proof

We start with definitions that are needed for our proof.
Given a minimal representation \mathscr{T} of a chordal graph G with T being the union of the subtrees in \mathscr{T} we denote:

- by $d 2(\mathscr{T})$ the number of degree-two nodes of T,
- by $L(\mathscr{T})$ the set of leaves of T,
- by $\ell(\mathscr{T}) \stackrel{\text { def }}{=}|L(\mathscr{T})|$ the number of leaves of T,
- by $k(\mathscr{T}) \stackrel{\text { def }}{=} \max _{u \in L(\mathscr{T})}\left|K_{u}\right|$, the maximum size of a clique of G that corresponds to a leaf of T, and
- by $s(\mathscr{T})$ the number of leaf-simplicial vertices of \mathscr{T}.

We associate with every minimal representation \mathscr{T} a quadruple $Q(\mathscr{T}) \stackrel{\text { def }}{=}(\ell(\mathscr{T}),-k(\mathscr{T}),-d 2(\mathscr{T}), s(\mathscr{T}))$. Denote by $\prec_{L E X}$ the lexicographic order on \mathbb{Z}^{4} and by $\preceq_{L E X}$ its reflexive closure. We write $\mathscr{T} \prec_{L E X} \mathscr{T}^{\prime}$ (resp. $\mathscr{T} \preceq_{L E X} \mathscr{T}^{\prime}$) as a shorthand for $Q(\mathscr{T}) \preceq_{L E X} Q\left(\mathscr{T}^{\prime}\right)$ (resp. $Q(\mathscr{T}) \preceq_{L E X} Q\left(\mathscr{T}^{\prime}\right)$).

Lemma 3.1. Let d, v be two integers. If all the graphs in $\mathscr{M}_{\mathrm{Chordal}}(d, v)$ are factor-critical then $K_{2 v+1} \in \mathscr{M}_{\mathrm{Chordal}}(d, v)$.
Proof. Among all minimal representations of graphs in $\mathscr{M}_{\text {Chordal }}(d, v)$ let \mathscr{T} be one such that $Q(\mathscr{T})$ is minimum in $\preceq_{L E X}$. Let $G=G(\mathscr{T})$ and let T be the union of the subtrees in \mathscr{T}. By the assumption of the lemma G is factor-critical, thus contains $n=2 v+1$ vertices.
If T consists of one node then G has one maximal clique, i.e., G is a clique and the proof is completed. If T has exactly two nodes, then they are necessarily adjacent, i.e., G consists of two maximal cliques with at least one common vertex. Then this vertex is universal and has degree at most $d-1$. Therefore, $n-1<d$, i.e., $n \leq d$. Then, the clique K_{n} on n vertices is a chordal graph with matching number v, maximum degree less than d and more edges than G contradicting the assumption that $G \in \mathscr{M}_{\text {Chordal }}(d, v)$. In the rest of the proof we assume that T has at least three nodes.
We will now present two successive transformations on \mathscr{T} by which we obtain two minimal representations \mathscr{T}^{\prime} and $\mathscr{T}^{\prime \prime}$ such that

$$
\begin{equation*}
\mathscr{T}^{\prime \prime} \preceq_{L E X} \mathscr{T}^{\prime} \prec_{L E X} \mathscr{T} . \tag{3.1}
\end{equation*}
$$

Denote $G^{\prime}=G\left(\mathscr{T}^{\prime}\right), G^{\prime \prime}=G\left(\mathscr{T}^{\prime \prime}\right)$. The transformations will preserve the number of subtrees, thus the number of vertices of the graphs. Therefore, the graphs G^{\prime} and $G^{\prime \prime}$ will be chordal graphs on $n=2 v+1$ vertices. As such, their matching numbers are at most v.
The transformations ensure that G^{\prime} is obtained by adding one edge $i j$ to G where j is a simplicial vertex of G, and $G^{\prime \prime}$ is obtained from G^{\prime} by removing one edge $i j^{\prime}$. The only vertex whose degree increases after these transformations is j. Since j is simplicial in G it does not have maximum degree. Therefore, $\Delta\left(G^{\prime \prime}\right) \leq \Delta(G)<d$. Clearly, G and G^{\prime} have the same number of edges. Then $G^{\prime \prime} \in \mathscr{M}_{\text {Chordal }}(d, v)$. Since $\mathscr{T}^{\prime \prime} \prec_{L E X} \mathscr{T}$, this is a contradiction to the way \mathscr{T} is chosen.
We now describe the first transformation: Let $u \in L(\mathscr{T})$ be a leaf of T such that $\left|K_{u}\right|=k(\mathscr{T})$ and let v be the unique neighbour of u in T. Let also $\bar{T}=T \backslash\{u, v\}$ be the forest obtained by removing the nodes u and v from T. If K_{v} contains a simplicial vertex i then it is not of maximum degree. Then adding the edge $i j$ to G will not violate the degree restriction, contradicting the fact that $G \in \mathscr{M}_{\text {Chordal }}(d, v)$.

Figure 3.1: The first transformation

Therefore, K_{v} does not contain simplicial vertices. Consider a vertex $i \in K_{v} \backslash K_{u}$. Since i is not simplicial, it has at least one neighbour in $G \backslash K_{u} \backslash K_{v}$ In other words, the subtree $T_{i} \in \mathscr{T}$ that corresponds to vertex i has a non-empty intersection with the forest \bar{T}.
We consider four disjoint and complementing cases. Consult Figure 3.1 for illustrations.
(a) $K_{u} \backslash K_{v}=\{j\}$ and $K_{v} \backslash K_{u}=\{i\}$: In this case we contract the edge $u v$ to obtain a node w and set $K_{w}=K_{u} \cup K_{v}=K_{u} \cup\{j\}$. If w is not a leaf then $\ell(\mathscr{T})$ decreases. Otherwise, w is a leaf and $\left|K_{w}\right|=\left|K_{v}\right|+1$, i.e., $\ell(\mathscr{T})$ remains intact and $k(\mathscr{T})$ increases.
(b) $K_{u} \backslash K_{v}=\{j\}$ and $K_{v} \backslash K_{u} \supsetneq\{i\}$: In this case we add i to K_{u}, leaving the number of leaves intact and increasing $k(\mathscr{T})$ by one.
(c) $K_{u} \backslash K_{v} \supsetneq\{j\}$ and $K_{v} \backslash K_{u}=\{i\}$: In this case we add j to K_{v} decreasing $s(\mathscr{T})$ and leaving the rest of the parameters intact.
(d) $K_{u} \backslash K_{v} \supsetneq\{j\}$ and $K_{v} \backslash K_{u} \supsetneq\{i\}$: In this case subdivide the edge $u v$ by adding a new node w and set $K_{w}=\left(K_{u} \cap K_{v}\right) \cup\{i, j\}$. This does not affect $\ell(\mathscr{T})$ and $k(\mathscr{T})$ and increases $d 2(\mathscr{T})$ by one.
In all the above cases we have $\mathscr{T}^{\prime} \prec_{L E X} \mathscr{T}$ as required.
We now proceed with the second transformation. Let u^{\prime} be a leaf of $T_{i} \cap \bar{T}$ that is most distant from v. Let v^{\prime} be the unique neighbour of u^{\prime} in $T_{i} \cap \bar{T}$ (possibly $v^{\prime}=v$) and let j^{\prime} be a vertex of $K_{u^{\prime}} \backslash K_{v^{\prime}}$. By definition $i \in K_{u^{\prime}} \cap K_{v^{\prime}}$. We consider two disjoint and complementing cases. Consult Figure 3.2 for illustrations.
(a) $K_{u^{\prime}} \backslash K_{v^{\prime}}=\left\{j^{\prime}\right\}$: In this case we remove i from $K_{u^{\prime}}$, effectively removing the edge $i j^{\prime}$ from G^{\prime}. Note that this transformation does not disconnect G^{\prime} since we assume that all the graphs in $\mathscr{M}_{\text {Chordal }}(d, v)$ are factor-critical, thus connected. Therefore, T is not affected by the transformation, leaving $\ell(\mathscr{T})$ and $d 2\left(\mathscr{T}^{\prime}\right)$ intact. Since i is not simplicial, $s(G)$ is left intact too.
(b) $K_{u^{\prime}} \backslash K_{v^{\prime}} \supsetneq\left\{j^{\prime}\right\}$: In this case we subdivide the edge $u^{\prime} v^{\prime}$ by adding a new node w^{\prime} and set $K_{w^{\prime}}=K_{u^{\prime}} \backslash\{i\}$. As in the previous case this modification does not disconnect G^{\prime}. The transformation leaves $\ell\left(\mathscr{T}^{\prime}\right)$ intact and increases $d 2\left(\mathscr{T}^{\prime}\right)$.
Since the transformation does not modify K_{u} and $\left|K_{u}\right|=k\left(\mathscr{T}^{\prime}\right)$ does not decrease. In both of the cases above we have $\mathscr{T}^{\prime \prime} \preceq_{L E X} \mathscr{T}^{\prime}$ as required.

Observation 3.2. Let \mathscr{C} be a special hereditary graph class, and d, v two positive integers, and let G be a graph of $\mathscr{M}_{\mathscr{C}}(d, v)$ with maximum number of connected components that are stars and maximum number of connected components subject to this constraint. Let $v^{\prime}>1$ be the matching number of a connected component G^{\prime} of G. Then all the graphs in $\mathscr{M}_{\mathscr{C}}\left(d, v^{\prime}\right)$ are factor-critical.

Proof. Suppose that $\mathscr{M}_{\mathscr{C}}\left(d, v^{\prime}\right)$ contains a graph $G^{\prime \prime}$ that is not factor-critical. By replacing G^{\prime} by $G^{\prime \prime}$ in G we obtain a graph in $\mathscr{M}_{\mathscr{C}}(d, v)$. If $G^{\prime \prime}$ contains a connected component that is a star then the resulting graph has one star more than G. If $G^{\prime \prime}$ is not connected then the resulting graph has one more connected component than G. If $G^{\prime \prime}$ is connected it contradicts Theorem 2.3.

We are now ready to prove the main result.
Theorem 3.3. There exists a graph $G \in \mathscr{M}_{\text {Chordal }}(d, v)$ that is the disjoint union of $(d-1)$-stars and odd cliques.
Proof. Let G be a graph in $\mathscr{M}_{\text {Chordal }}(d, v)$ with maximum number of stars and maximum number of connected components subject to this condition. Clearly, every connected component of G that is a star, is a $(d-1)$-star, since otherwise we can add at least one edge to G. Let G_{1}, \ldots, G_{k} be the connected components of G that are not stars, and let v_{i} be the matching number of G_{i} for every $i \in[k]$. It is easy to verify that the class of chordal graphs is special hereditary. By Observation 3.2, all the graphs in $\mathscr{M}_{\text {ChordaL }}\left(d, v_{i}\right)$ are factor-critical. By Lemma $3.1, G_{i}$ can be replaced by a $K_{2 v_{i}+1}$.

Figure 3.2: The second transformation

4. Conclusion

We have presented a short proof of the number of edges of an edge-extremal chordal graph. The simplicity of our technique opens room for further improvements. We believe that this proof may be further enhanced to characterize the edge-extremal chordal graphs.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] V. Chvatal, D. Hanson, Degrees and matchings, J. Comb. Theory., Ser. B, 20(2) (1976), 128-138.
[2] N. Balachandran, N. Khare, Graphs with restricted valency and matching number, Discrete Mathematics, 309 (2009), 4176-4180.
[3] J. R. S. Blair, P. Heggernes, P. T. Lima, D. Lokshtanov, On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number, Proceeding of the 14th Latin American Symposium on Theoretical Informatics (LATIN 2009), (2020), 600-612.
[4] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory., 16 (1974), 47-56.
[5] T. Ekim, M. Shalom, O. Şeker, The complexity of subtree intersection representation of chordal graphs and linear time chordal graph generation, J. Comb. Optim., 41(3) (2021), 710-735.

