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CONCORDANCE OF DYNAMIC FRACTIONAL INEQUALITIES

INTERCONNECTED ON TIME SCALES

M. J. S. SAHIR1, §

Abstract. In this work, we present an extension of dynamic reverse Minkowski’s in-
equality by using the time scale Riemann–Liouville type fractional integrals. By using
the definitions of delta and nabla time scales Riemann–Liouville type fractional integral
operators, we find other general dynamic fractional inequalities. Our findings unify and
extend some continuous, discrete and quantum analogues.
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1. Introduction

Bougoffa [11] proved the following result concerning reverse of Minkowski’s inequality.
Let f and g be positive functions satisfying

0 < m ≤ f(y)

g(y)
≤M, ∀y ∈ [a, b].

Then (∫ b

a
fp(y)dy

) 1
p

+

(∫ b

a
gp(y)dy

) 1
p

≤ Ω1

(∫ b

a
(f(y) + g(y))p dy

) 1
p

, (1)

where p ≥ 1 and Ω1 = M(m+1)+M+1
(m+1)(M+1) .

The following result is given in [17].

Let f, g ∈ Lp(a, b) be two positive functions, with p ≥ 1. If 0 < m ≤ f(y)
g(y) ≤ M ,

∀y ∈ [a, b] for m,M ∈ (0,∞), then(∫ b

a
fp(y)dy

) 2
p

+

(∫ b

a
gp(y)dy

) 2
p

≥ Ω2

(∫ b

a
fp(y)dy

) 1
p
(∫ b

a
gp(y)dy

) 1
p

, (2)

where Ω2 = (m+1)(M+1)
M − 2.
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In 2012, Sulaiman [20] proved an integral inequality as follows:

Let f, g > 0. If p ≥ 1 and 1 < m ≤ f(y)
g(y) ≤M for all y ∈ [a, b], then

M + 1

M − 1

(∫ b

a
(f(y)− g(y))p dy

) 1
p

≤
(∫ b

a
fp(y)dy

) 1
p

+

(∫ b

a
gp(y)dy

) 1
p

≤ m+ 1

m− 1

(∫ b

a
(f(y)− g(y))p dy

) 1
p

. (3)

We will investigate the unification and extension of the above given results on time
scales. The theory of time scales (initiated by Stefan Hilger [13]) is applied to combine
results in one comprehensive and hybridized form. The theory of time scales is more
general in its nature and is utilized to unify differential calculus, difference calculus, and
quantum calculus. The three main partitions of the theory of time scales are delta calculus,
nabla calculus, and diamond–α calculus. Generalizations, refinements and extensions of
the theory and applications of dynamic inequalities concerning the calculus of time scales
have been recently explored.

The usual notation [a, b]T denotes the intersection of a real interval with the given time
scale with a, b ∈ T and a < b. Moreover, we suppose that all considerable integrals exist
and are finite.

2. Preliminaries

We recall basic results related to the delta calculus. The concepts of delta calculus are
derived from monographs [8, 9].

A time scale T is an arbitrary nonempty closed subset of the real numbers. For t ∈ T,
the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T → R+
0 = [0,+∞) such that µ(t) := σ(t) − t is called the forward

graininess function. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

The mapping ν : T → R+
0 = [0,+∞) such that ν(t) := t − ρ(t) is called the backward

graininess function. If σ(t) > t, we say that t is right–scattered, while if ρ(t) < t, we say
that t is left–scattered. Also, if t < supT and σ(t) = t, then t is called right–dense, and if
t > inf T and ρ(t) = t, then t is called left–dense. If T has a left–scattered maximum M ,
then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows:
Let t ∈ Tk. If there exists f∆(t) ∈ R such that for all ε > 0, there is a neighborhood U

of t, such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the delta
derivative of f at t.

A function f : T → R is said to be right–dense continuous (rd–continuous), if it is
continuous at each right–dense point and there exists a finite left–sided limit at every
left–dense point. The set of all rd–continuous functions is denoted by Crd(T,R).

The next definition is given in [8, 9].
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Definition 2.1. A function F : T → R is called a delta antiderivative of f : T → R,
provided that F∆(t) = f(t) holds for all t ∈ Tk. Then the delta integral of f is defined by∫ b

a
f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [7, 8, 9].
If T has a right–scattered minimum m, then Tk = T − {m}, otherwise Tk = T. A

function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative f∇(t),
if there exists f∇(t) ∈ R such that given any ε > 0, there is a neighborhood V of t, such
that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,
for all s ∈ V .

A function f : T → R is said to be left–dense continuous (ld–continuous), provided it
is continuous at all left–dense points in T and its right–sided limits exist (finite) at all
right–dense points in T. The set of all ld–continuous functions is denoted by Cld(T,R).

The next definition is given in [7, 8, 9].

Definition 2.2. A function G : T → R is called a nabla antiderivative of g : T → R,
provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is defined by∫ b

a
g(t)∇t = G(b)−G(a).

The following definition is taken from [4, 6].

Definition 2.3. Let f ∈ Crd. For α ≥ 1, the time scale ∆–Riemann–Liouville type
fractional integral is defined by

Iαa f(t) =

∫ t

a
hα−1(t, σ(τ))f(τ)∆τ, (4)

which is an integral on [a, t)T, see [10] and hα : T×T→ R, α ≥ 0 are the coordinate wise
rd–continuous functions, such that h0(t, s) = 1,

hα+1(t, s) =

∫ t

s
hα(τ, s)∆τ, ∀s, t ∈ T. (5)

Notice that

I1
af(t) =

∫ t

a
f(τ)∆τ,

which is absolutely continuous in t ∈ [a, b]T, see [10].

The following definition is taken from [5, 6].

Definition 2.4. Let f ∈ Cld. For α ≥ 1, the time scale ∇–Riemann–Liouville type
fractional integral is defined by

J αa f(t) =

∫ t

a
ĥα−1(t, ρ(τ))f(τ)∇τ, (6)

which is an integral on (a, t]T, see [10] and ĥα : T×T→ R, α ≥ 0 are the coordinate wise

ld–continuous functions, such that ĥ0(t, s) = 1,

ĥα+1(t, s) =

∫ t

s
ĥα(τ, s)∇τ, ∀s, t ∈ T. (7)
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Notice that

J 1
a f(t) =

∫ t

a
f(τ)∇τ,

which is absolutely continuous in t ∈ [a, b]T, see [10].

We need the following results.
The following Minkowski’s inequality [3] holds:
Let w, f, g ∈ Crd ([a, b]T,R) and p > 1. Then(∫ b

a
|w(x)||f(x) + g(x)|p∆x

) 1
p

≤
(∫ b

a
|w(x)||f(x)|p∆x

) 1
p

+

(∫ b

a
|w(x)||g(x)|p∆x

) 1
p

. (8)

The following Young’s inequality [3] holds:

a
1
p b

1
q ≤ a

p
+
b

q
, (9)

where a, b ≥ 0 and 1
p + 1

q = 1 with p > 1.

3. Main Results

To present our main results, first we give a simple proof for an extension of dynamic
reverse Minkowski’s inequality on time scales by using the ∆–Riemann–Liouville type
fractional integral.

Theorem 3.1. Let w, f, g ∈ Crd ([a, b]T,R) be ∆–integrable functions, hα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

(Iαa (|w(x)||f(x)|p))
1
p + (Iαa (|w(x)||g(x)|p))

1
p

≤ Ω3 (Iαa (|w(x)| (|f(x)|+ |g(x)|)p))
1
p , (10)

with some positive constants m1, m2, M1 and M2 such that m1
M2
≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M1
m2

on the set

[a, x]T, ∀x ∈ [a, b]T, where Ω3 = M1(m1+M2)+M2(M1+m2)
(M1+m2)(m1+M2) .

Proof. From the given conditions, we obtain

|f(y)|p ≤
(

M1

m2 +M1

)p
(|f(y)|+ |g(y)|)p (11)

and

|g(y)|p ≤
(

M2

m1 +M2

)p
(|f(y)|+ |g(y)|)p , ∀y ∈ [a, x]T. (12)

Multiplying by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T on both sides of
inequality (11) and integrating with respect to the variable y, we get∫ x

a
hα−1(x, σ(y))|w(y)||f(y)|p∆y

≤
(

M1

m2 +M1

)p ∫ x

a
hα−1(x, σ(y))|w(y)| (|f(y)|+ |g(y)|)p ∆y. (13)
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Thus, it follows from (13)

(Iαa (|w(x)||f(x)|p))
1
p ≤ M1

M1 +m2
(Iαa (|w(x)| (|f(x)|+ |g(x)|)p))

1
p . (14)

Similarly, we get from (12)

(Iαa (|w(x)||g(x)|p))
1
p ≤ M2

m1 +M2
(Iαa (|w(x)| (|f(x)|+ |g(x)|)p))

1
p . (15)

Adding (14) and (15), we get the desired claim. �

Next, we give an extension of dynamic reverse Minkowski’s inequality on time scales by
using the ∇–Riemann–Liouville type fractional integral.

Theorem 3.2. Let w, f, g ∈ Cld ([a, b]T,R) be ∇–integrable functions, ĥα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

(J αa (|w(x)||f(x)|p))
1
p + (J αa (|w(x)||g(x)|p))

1
p

≤ Ω3 (J αa (|w(x)| (|f(x)|+ |g(x)|)p))
1
p , (16)

with some positive constants m1, m2, M1 and M2 such that m1
M2
≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M1
m2

on the set

[a, x]T, ∀x ∈ [a, b]T, where Ω3 = M1(m1+M2)+M2(M1+m2)
(M1+m2)(m1+M2) .

Proof. Similar to the proof of Theorem 3.1. �

Remark 3.1. Let α = 1, T = R, x = b, w ≡ 1, f, g ∈ (0,+∞), m = m1
M2

and M = M1
m2

.

Then (10) reduces to (1).

Theorem 3.3. Let w, f, g ∈ Crd ([a, b]T,R) be ∆–integrable functions, hα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

(Iαa (|w(x)||f(x)|p))
2
p + (Iαa (|w(x)||g(x)|p))

2
p

≥ Ω4 (Iαa (|w(x)||f(x)|p))
1
p (Iαa (|w(x)||g(x)|p))

1
p , (17)

with some positive constants m1, m2, M1 and M2 such that m1
M2
≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M1
m2

on the set

[a, x]T, ∀x ∈ [a, b]T, where Ω4 = (M1+m2)(m1+M2)
M1M2

− 2.

Proof. Multiplying (14) and (15), we have that

(Iαa (|w(x)||f(x)|p))
1
p (Iαa (|w(x)||g(x)|p))

1
p

≤ M1M2

(M1 +m2)(m1 +M2)
(Iαa (|w(x)| (|f(x)|+ |g(x)|)p))

2
p . (18)

By applying dynamic Minkowski’s inequality similar to (8) on right–hand side of (18), we
obtain

(Iαa (|w(x)||f(x)|p))
1
p (Iαa (|w(x)||g(x)|p))

1
p

≤ M1M2

(M1 +m2)(m1 +M2)

{
(Iαa (|w(x)||f(x)|p))

1
p + (Iαa (|w(x)||g(x)|p))

1
p

}2
. (19)

Inequality (19) directly yields (17). �
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Theorem 3.4. Let w, f, g ∈ Cld ([a, b]T,R) be ∇–integrable functions, ĥα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

(J αa (|w(x)||f(x)|p))
2
p + (J αa (|w(x)||g(x)|p))

2
p

≥ Ω4 (J αa (|w(x)||f(x)|p))
1
p (J αa (|w(x)||g(x)|p))

1
p , (20)

with some positive constants m1, m2, M1 and M2 such that m1
M2
≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M1
m2

on the set

[a, x]T, ∀x ∈ [a, b]T, where Ω4 = (M1+m2)(m1+M2)
M1M2

− 2.

Proof. Similar to the proof of Theorem 3.3. �

Remark 3.2. Let α = 1, T = R, x = b, w ≡ 1, f, g ∈ (0,+∞), m = m1
M2

and M = M1
m2

.

Then (17) reduces to (2).

Theorem 3.5. Let w, f, g ∈ Crd ([a, b]T,R) be ∆–integrable functions, hα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

M + 1

M − c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p

≤ (Iαa (|w(x)||f(x)|p))
1
p + (Iαa (|w(x)||g(x)|p))

1
p

≤ m+ 1

m− c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p , (21)

with some positive constants c, m and M such that 0 < c < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M on the set

[a, x]T, where ∀x ∈ [a, b]T.

Proof. We note that

m− c ≤
∣∣∣∣f(y)

g(y)

∣∣∣∣− c ≤M − c, ∀y ∈ [a, x]T.

Therefore (
|f(y)| − c|g(y)|

M − c

)p
≤ |g(y)|p ≤

(
|f(y)| − c|g(y)|

m− c

)p
, ∀y ∈ [a, x]T. (22)

Multiplying by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T on both sides of
inequality (22) and integrating with respect to the variable y, we get

1

M − c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p ≤ (Iαa (|w(x)||g(x)|p))

1
p

≤ 1

m− c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p . (23)

To obtain similar analogue, we have that

1

c
− 1

m
≤ 1

c
−
∣∣∣∣ g(y)

f(y)

∣∣∣∣ ≤ 1

c
− 1

M
, ∀y ∈ [a, x]T.

(
M

M − c

)p
(|f(y)| − c|g(y)|)p ≤ |f(y)|p ≤

(
m

m− c

)p
(|f(y)| − c|g(y)|)p , (24)
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∀y ∈ [a, x]T. Multiplying by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T on
both sides of inequality (24) and integrating with respect to the variable y, we get

M

M − c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p ≤ (Iαa (|w(x)||f(x)|p))

1
p

≤ m

m− c
(Iαa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p . (25)

Combining (23) and (25), we get the desired claim. �

Theorem 3.6. Let w, f, g ∈ Cld ([a, b]T,R) be ∇–integrable functions, ĥα−1(., .) > 0 and
p ≥ 1. Then for α ≥ 1, we have

M + 1

M − c
(J αa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p

≤ (J αa (|w(x)||f(x)|p))
1
p + (J αa (|w(x)||g(x)|p))

1
p

≤ m+ 1

m− c
(J αa (|w(x)| (|f(x)| − c|g(x)|)p))

1
p , (26)

with some positive constants c, m and M such that 0 < c < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M on the set

[a, x]T, where ∀x ∈ [a, b]T.

Proof. Similar to the proof of Theorem 3.5. �

Remark 3.3. Let α = 1, T = R, c = 1, x = b, w ≡ 1 and f, g ∈ (0,+∞). Then (21)
reduces to (3).

Theorem 3.7. Let w, f, g ∈ Crd ([a, b]T,R) be ∆–integrable functions, hα−1(., .) > 0,

α ≥ 1 and p ≥ 1. If 0 < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤M , for M ≥ 1 on the set [a, x]T, ∀x ∈ [a, b]T, then

(Iαa (|w(x)||f(x)|p))
1
p + (Iαa (|w(x)||g(x)|p))

1
p ≤ 2 (Iαa (|w(x)|Λp (|f(x)|, |g(x)|)))

1
p , (27)

with

Λ (|f(y)|, |g(y)|) = max

{
M

((
M

m
+ 1

)
|f(y)| −M |g(y)|

)
,
(m+M)|g(y)| − |f(y)|

m

}
.

Proof. It follows from given hypothesis that

0 < m ≤ m+M −
∣∣∣∣f(y)

g(y)

∣∣∣∣ ≤M, ∀y ∈ [a, x]T.

Therefore

|g(y)| ≤ (m+M)|g(y)| − |f(y)|
m

≤ Λ (|f(y)|, |g(y)|) , ∀y ∈ [a, x]T. (28)

Multiplying by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T on both sides of
inequality (28) and integrating with respect to the variable y, we get

(Iαa (|w(x)||g(x)|p))
1
p ≤ (Iαa (|w(x)|Λp (|f(x)|, |g(x)|)))

1
p . (29)

It also follows from given hypothesis that

1

M
≤ 1

m
+

1

M
−
∣∣∣∣ g(y)

f(y)

∣∣∣∣ ≤ 1

m
, ∀y ∈ [a, x]T.

Thus,

|f(y)| ≤
(
M

m
+ 1

)
|f(y)| −M |g(y)| , ∀y ∈ [a, x]T,
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and

|f(y)| ≤M
((

M

m
+ 1

)
|f(y)| −M |g(y)|

)
≤ Λ (|f(y)|, |g(y)|) , ∀y ∈ [a, x]T. (30)

Multiplying by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T on both sides of
inequality (30) and integrating with respect to the variable y, we get

(Iαa (|w(x)||f(x)|p))
1
p ≤ (Iαa (|w(x)|Λp (|f(x)|, |g(x)|)))

1
p . (31)

Combining (29) and (31), we get the desired claim. �

Theorem 3.8. Let w, f, g ∈ Cld ([a, b]T,R) be ∇–integrable functions, ĥα−1(., .) > 0, α ≥ 1

and p ≥ 1. If 0 < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤M , for M ≥ 1 on the set [a, x]T, ∀x ∈ [a, b]T, then

(J αa (|w(x)||f(x)|p))
1
p + (J αa (|w(x)||g(x)|p))

1
p ≤ 2 (J αa (|w(x)|Λp (|f(x)|, |g(x)|)))

1
p , (32)

with

Λ (|f(y)|, |g(y)|) = max

{
M

((
M

m
+ 1

)
|f(y)| −M |g(y)|

)
,
(m+M)|g(y)| − |f(y)|

m

}
.

Proof. Similar to the proof of Theorem 3.7. �

Remark 3.4. Let α = 1, T = R, x = b, w ≡ 1 and f, g ∈ (0,+∞). Then (27) reduces to(∫ b

a
fp(y)dy

) 1
p

+

(∫ b

a
gp(y)dy

) 1
p

≤ 2

(∫ b

a
Λp (f(y), g(y)) dy

) 1
p

, (33)

where

Λ (f(y), g(y)) = max

{
M

((
M

m
+ 1

)
f(y)−Mg(y)

)
,
(m+M)g(y)− f(y)

m

}
.

The inequality (33) may be found in [20].

Theorem 3.9. Let w, f, g ∈ Crd ([a, b]T,R) be ∆–integrable, hα−1(., .) > 0 and 1
p + 1

q = 1

with p > 1. Then for α ≥ 1, we have

Iαa (|w(x)||f(x)g(x)|) ≤ Ω5

2
{Iαa (|w(x)||f(x)|p) + Iαa (|w(x)||g(x)|p)}

+
Ω6

2
{Iαa (|w(x)||f(x)|q) + Iαa (|w(x)||g(x)|q)} , (34)

with some positive constants m and M such that 0 < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M on the set [a, x]T,

∀x ∈ [a, b]T, where Ω5 = 2p

p

(
M
M+1

)p
and Ω6 = 2q

q

(
1

m+1

)q
.

Proof. From 0 < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤M , ∀y ∈ [a, x]T, we have that

|f(y)| ≤ M

M + 1
(|f(y)|+ |g(y)|) (35)

and

|g(y)| ≤ 1

m+ 1
(|f(y)|+ |g(y)|) . (36)
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By applying Young’s inequality (9), we get∫ x

a
|w(y)||f(y)g(y)|∆y

≤ 1

p

∫ x

a
|w(y)||f(y)|p∆y +

1

q

∫ x

a
|w(y)||g(y)|q∆y

≤ 1

p

(
M

M + 1

)p ∫ x

a
|w(y)| (|f(y)|+ |g(y)|)p ∆y

+
1

q

(
1

m+ 1

)q ∫ x

a
|w(y)| (|f(y)|+ |g(y)|)q ∆y

≤ 1

p

(
M

M + 1

)p
2p−1

∫ x

a
|w(y)| (|f(y)|p + |g(y)|p) ∆y

+
1

q

(
1

m+ 1

)q
2q−1

∫ x

a
|w(y)| (|f(y)|q + |g(y)|q) ∆y,

we have used the elementary inequality, such that

(β + γ)p ≤ 2p−1(βp + γp), p > 1, β, γ ∈ [0,+∞).

Replacing |w(y)| by hα−1(x, σ(y))|w(y)|, where hα−1(x, σ(y)) > 0, ∀x ∈ [a, b]T, we con-
clude the desired result. �

Theorem 3.10. Let w, f, g ∈ Cld ([a, b]T,R) be ∇–integrable, ĥα−1(., .) > 0 and 1
p + 1

q = 1

with p > 1. Then for α ≥ 1, we have

J αa (|w(x)||f(x)g(x)|) ≤ Ω5

2
{J αa (|w(x)||f(x)|p) + J αa (|w(x)||g(x)|p)}

+
Ω6

2
{J αa (|w(x)||f(x)|q) + J αa (|w(x)||g(x)|q)} , (37)

with some positive constants m and M such that 0 < m ≤
∣∣∣f(y)
g(y)

∣∣∣ ≤ M on the set [a, x]T,

∀x ∈ [a, b]T, where Ω5 = 2p

p

(
M
M+1

)p
and Ω6 = 2q

q

(
1

m+1

)q
.

Proof. Similar to the proof of Theorem 3.9. �

Remark 3.5. Let α = 1, T = R, x = b, w ≡ 1 and f, g ∈ (0,+∞). Then (34) reduces to∫ b

a
f(y)g(y)dy

≤ Ω5

2

{∫ b

a
fp(y)dy +

∫ b

a
gp(y)dy

}
+

Ω6

2

{∫ b

a
f q(y)dy +

∫ b

a
gq(y)dy

}
. (38)

The inequality (38) may be found in [17].

4. Conclusion

By using the definition of a fractional integral, recently proposed by Katugampola, many
generalized Minkowski type fractional inequalities are proved, see [18]. By using the defini-
tion of the Riemann–Liouville fractional integral, some new results of integral inequalities
related to the Minkowski inequality are also established, see [12]. The integral inequality
concerning reverse of Minkowski’s inequality is proved in generalized form in [19]. Some
inequalities involving Hadamard–type k–fractional integral operators are proved in [1]. An
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extension by means of ω–weighted classes of the generalized Rieman–Liouville k–fractional
integral inequalities is explored in [2].

By considering an axiomatic definition of fractional calculus on time scales, many results
have been developed concerning the time scale Riemann–Liouville type fractional integrals,
see [4, 5, 6, 14, 15, 16].

In the future research, we may generalize several classical inequalities and their appli-
cations on time scales. If a result is established on time scales, then we get its discrete
version by setting T = N and continuous version by setting T = R. Further, we get
quantum form of a result by general setting of T = qN0 = {qt : t ∈ N0}, where q > 1.
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