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Abstract

With this paper, we present a vibration prognosis method based on finite impulse responses.

The impulse responses are identified using measurement data from an existing building and consider

a multiple-input/multiple-output topology.

Vibration prognosis in urban buildings is becoming increasingly important, since more and more

buildings are being constructed close to urban infrastructure. Combined with modern and ecological

choices of building materials and the low vibration levels required by current standards, serviceabil-

ity in terms of structural dynamics becomes an issue. Sources of vibration in urban settings include

railway and metro lines as well as road traffic. This work focuses on a method especially suited to

the three-dimensional vibration state encountered in modern timber buildings. Under the assump-

tion of linear time-invariant structural dynamic behaviour, we develop a time-domain identification

approach. The novelties of this contribution lie in the formulation of a numerically efficient method

to identify multiple-input finite impulse response filters and its application to measurement data of

a timber building.

We validate this data-driven prognosis method using measurement data from a building con-

structed from cross-laminated timber, considering the three-dimensional vibration behaviour. The

accuracy and limitations are assessed using railway-induced vibrations as a typical source of distur-

bance by infrastructure. We show that vibration data from the foundation can be used for effective

prognosis of the top floor slabs considering train types not included in the identification data set.

Based on the prognosis method, a virtual sensor concept for long-term monitoring is presented.
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1. Introduction

With an increasing demand for housing, many new building projects are planned in the vicin-

ity of urban centres and the associated transport infrastructure. Active railway lines as well as

underground metro tunnels induce significant vibrations into the soil at these sites [1]. This dy-

namic excitation is transmitted through the soil into buildings, which can lead to excessive floor5

slab vibrations. For high-value real estate near the city centres, a high comfort level is required

by the awarding authority. To ensure that structural damage and discomfort to the inhabitants do

not occur, standards, such as the German DIN 4150-2 [2], provide acceptable vibration levels by

means of guideline values. These values are determined from long-time experience and represent a

conservative approach. The German standard VDI 2038-1 [3] provides further guidelines concerning10

the application of traditional methods for vibration prognosis.

In recent years, cross-laminated timber has become a viable construction material for regular

urban housing [4]. This trend towards ecological materials is reflected by an increased demand for

cross-laminated timber on the market [5]. However, timber construction features unique challenges

with respect to vibration susceptibility. Due to the lower horizontal stiffness when compared to15

reinforced concrete buildings or steel skeleton structures [6], a three-dimensional vibration behaviour

arises. Thus, not only vertical floor vibrations can become critical, but also horizontal movements of

the whole building [7]. Additionally, the light weight of the structures leads to an increasing dynamic

excitability of timber buildings compared to conventional concrete or masonry buildings. These

circumstances can lead to elevated vibration levels which may become severe enough to disturb the20

inhabitants. Several experimental studies were thus recently conducted involving structures made

from cross-laminated timber. These include a detailed modal study of a floor panel by Kawrza et

al. [8] as well as the measurment of the three-dimensional dynamics of w whole building by Mugabo

et al. [9].

Since standards are in place which regulate the maximum permissible vibration levels [2], liability25

issues can arise when limits are exceeded. Due to the variability associated with dynamic excitation

sources in urban centres, accurate prognosis can be a challenging task. A vibration prognosis

method suitable for the aforementioned context should therefore allow for the prognosis of previously

unknown types of excitation, for example different types of trains. Additionally, the method should
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yield prognosis data for the vertical and the horizontal directions and should enable a virtual sensing30

to extend the time frame and increase the acceptability of measurement campaigns. Further, the

vibration estimation model needs to handle a wide variety of excitation scenarios, which can have

both transient as well as stationary signal characteristics. Timber buildings exhibit complex three-

dimensional vibration states, so the method should include data from multiple sensor positions and

measurement directions at once to enable a robust and stable prognosis. Since horizontal vibration35

modes of the whole building as well as vertical modes of the floor slabs have to be considered, a large

number of vibration modes are in the frequency range of interest, which need to be captured by the

method of choice. Finally, the residents usually occupy their apartments during the measurement

time frame, so signal contamination is inevitable. A common cause of signal contamination in

such a setting is the vibration caused by persons walking on the floor slabs of their apartments.40

Hence, vibration prognosis methods need to be robust against signal contamination caused by events

unrelated to the railway-induced vibration. Additionally, timber buildings are complex mechanical

structures consisting of many individual parts connected by a large amount of fasteners. A finite

element model-based approach would thus be very time-consuming due to the large number of

engineering details which would need to be considered during modelling.45

To date, much experimental experience has been gained in the field of rail traffic vibrations. For

example, Tao et al. [10] published detailed vibration and noise measurements in a typical 28-story

residence and a 4-story steel-framed office building during train pass-by events in a metro depot.

Measured points were set at ground level adjacent to the building support structures as well as on

upper floors. Transmissibiliy functions for soil-structure interactions were studied by Kouroussis et50

al. [11] focusing on vibrations caused by metro lines. A number of authors have researched vibration

and noise prediction methods for buildings excited by train traffic based on the finite element (FE)

method. Ibrahim and Nabil [12] presented a detailed FE analysis and parameter study conducted

on a ten-story reinforced concrete framed structure resting on a raft foundation. Train loads are

modelled using moving point sources considering varying distances between excitation source and55

the building as well as varying train track spacing and train speeds. To overcome the problem of

computational inefficiency, Amando-Mendes et al. [13] introduced a coupled approach to model

the interaction between trains, tracks, tunnels and the soil by solving the elastic 2.5D problem

with the meshless Method of Fundamental Solutions (MFS) in combination with an FE approach.

The latter was used to discretise the embedded structure, whereas MFS was adopted to model the60
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unbounded soil. As an important result, the model delivers free-field responses as possible input

data for subsequent prediction models for buildings. A similar approach was proposed by Zou et

al. [14]. For the analysis of complex vibro-acoustic systems, Cicirello and Langley [15] proposed a

hybrid method consisting in a combination of Statistical Energy Analysis (SEA) subsystems and

FE components by assuming the FE components to have fully deterministic properties, while the65

SEA subsystems have a high degree of randomness. The SEA subsystems ensemble is dealt with

analytically, while the effect of the additional FE components ensemble was approximated using

Monte Carlo simulations.

For a model-based vibration prognosis, Eftekhar et al. [16] proposed a dual Kalman filtering

approach for the input and vibration estimation of a 39-story building. In their study, the Kalman70

filter was formulated using a reduced-order finite element model. A similar approach was followed

by Maes et al. [17] for Kalman filter-based virtual strain sensing on an offshore wind turbine tower.

A method which directly incorporates the mode shapes resulting from the finite element model for

virtual sensor estimation is known as modal expansion [18, 19]. Further, Kullaa [20] extended the

modal expansion method using a Bayesian approach to increase its robustness and verified it using75

a finite element model of a frame structure. While finite element-based approaches can achieve

highly accurate results, both modelling and analysis of a whole building can be time consuming.

Moreover, model updating strategies are required to match the dynamic behaviour of the regarded

structure with the finite element model [21]. In some cases, such as for Kalman filtering, model

reduction needs to be applied to enable an online processing of the simulation model. Thus, data80

driven approaches are preferable to avoid the labour-intensive physical modelling.

In parallel to the development of FE-based, hybrid FE-MFS or FE-SEA approaches, transfer

functions in combination with simplified analytical impedance models form another research branch

in the field of vibration forecast for buildings. The main advantage of analytical approaches is

the high computational efficiency and a good forecasting ability, when the analytical models are85

validated by measurements and applied to structures with similar excitation, transmission and

receiver characteristics. Sanayei et al. [22, 23] presented an analytical method to calculate the

transfer properties of columns and floor slabs inside a building. In their method, the impedance

of various structural parts of the building is calculated and the results are combined to obtain the

transfer functions. In the work of Zou et al. [24], transfer functions for multi-story buildings were90

derived from analytical 1D and 2D impedance models and validated by measured railway-induced
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vibrations at the foundation level and on upper floors in 14-story and 25-story buildings. Auersch

[25] follows a similar methodology using a physically-based prediction scheme consisting of transfer

matrices for the rail and the building. The soil is modelled using a homogeneous half-space with a

frequency-dependent wave velocity.95

In addition to methods based on physically motivated modelling, purely data-driven approaches

for vibration estimations have been proposed. The main advantage of these methods is that no

knowledge about the mechanical properties of the building is needed in order to apply them for

vibration estimation. A data-driven approach employing multiple-input transfer functions presented

by Weijtjens et al. [26] is based on solving for the spectral contributions of multiple sensors to the100

measured signal of another sensor. This is enabled by using a H1 or H2 estimation technique

[27]. However, the frequency-domain identification is limited to cases where multiple uncorrelated

excitation sources are present [28], which is not generally the case for buildings subjected to traffic-

induced vibration. Tarpø et al. [29] proposed to use mode shapes identified using operational

modal analysis in a modal expansion scheme. Another data-driven estimation method is described105

by Peeters [30], in which a state-space model is obtained using stochastic subspace identification.

By coupling the estimated state-space model to a Kalman filter, vibration estimation and virtual

sensing are enabled [31]. While operational modal analysis is a widely used technique in structural

dynamics, it often requires additional tools like stabilisation diagrams, increasing the complexity

of this strategy. The assumption of a white noise excitation as well as white noise measurement110

disturbance, which operational modal analysis methods share with Kalman filtering [32, 33], is

often invalid for traffic-induced vibrations of buildings. Further, modal analysis techniques perform

best with sufficiently long measurements and well-observed structures that exhibit modes which are

well-separated in terms of their frequency [34]. From a modal analysis standpoint, the identification

of high-order mode shapes of complex buildings with few sensors is therefore a vague and tedious115

endeavour.

In this work, in an effort towards a robust data-driven vibration prognosis method, an approach

based on multiple-input finite impulse response (FIR) filters is presented. Special consideration is

given to the numerical performance of the identification procedure. The basic idea for multiple-input

FIR filters was presented by Powell et al. [35]. An advanced method for data-driven identification120

of such filters was introduced by Chen et al. [36] and is incorporated in MATLAB [37]. Filters

with thousands of coefficients are required to accurately describe the vibration behaviour of the
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building investigated in this paper. However, existing approaches such as the MATLAB function

impulseest [37] require a prohibitive amount of computational effort for these extreme filter orders.

Concerning the earlier-mentioned requirements for estimation of railway-induced vibration in125

timber buildings, FIR filters are well suited due to their ability to accurately describe both transient

and stationary vibration events over a broad frequency range [38]. The adopted multiple-input

topology is able to cope with the complex three-dimensional vibration state of the building and the

robust data-driven identification scheme suppresses signal contamination and disturbances. Further,

short-term vibration measurement data of floors of an existing building can be used to derive FIR130

filter models. These FIR filters can then be applied to obtain virtual sensor vibration time series

using only measurement data from a small subset of sensors. In addition to its application for

vibration prognosis, the FIR filter has been applied to observers in controller design [39, 40] and

digital signal processing [41, 42].

To validate the proposed method, vibration measurement data obtained from a timber building135

is used. The building is situated close to train tracks and data sets of various train types were

captured using vibration velocity sensors. A preliminary study to estimate the optimal filter order

is conducted. Subsequently, the prognosis accuracy is evaluated using various combinations of train

types and sensors.

Therefore, the first novelty of this work is the usage of an interpolation scheme, which allows140

for computing times on a manageable level for data-driven vibration prognosis. The second nov-

elty relates to the application of this scheme to vibration prognosis of a timber building using

measurement data.

This paper is divided into three main sections: First, a derivation of a numerically efficient

multiple-input/multiple-output FIR identification method as well as an automated procedure for145

model selection is given. Second, the measurement setup and acquired data of a timber structure

are presented. Finally, the results obtained using the new method and the measurement data are

shown and discussed.

2. Identification of multiple-input/multiple-output impulse responses

In digital filter theory, FIR filters are used to model the response of linear time-invariant systems.150

Using these filters, a vibration time series recorded at one position of a structure can be transformed

into another time series, representing the vibration time series at a different location [43]. Figure 1
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shows a schematic figure of a building with two measurement positions x and y, which represent the

measurement channels at the input and output of a prognosis filter. In this example, the vertical

measurement direction is indicated by an arrow at the respective measurement positions.155

y

x

Figure 1: Schematic diagram showing a structure next to train tracks as well as soil measurement position x and

floor slab measurement position y with vertical measurement directions.

The equations of motion of a damped linear mechanical system with multiple degrees of freedom

can be stated as [44]

Mü(t) +Cu̇(t) +Ku(t) = p(t), (1)

where u(t) is the displacement vector associated with the degrees of freedom, M is the mass matrix,

C is the damping matrix, K is the stiffness matrix and p(t) is the vector of external forces. This

mechanical formulation can be transformed to the state-space representation to make it more readily160

tractable using control theory u̇(t)

ü(t)

 =

 0 I

−M−1K −M−1C


︸ ︷︷ ︸

Au

 u(t)

u̇(t)

+

 0

M−1


︸ ︷︷ ︸

Bu

p(t) (2a)

v(t) =
[
0 I

]
︸ ︷︷ ︸

Cu

 u(t)

u̇(t)

+
[
0
]

︸ ︷︷ ︸
Du

p(t). (2b)

Equation 2a is the state equation which is equivalent to Equation 1. Equation 2b is the output

equation, which is used to extract the vibration velocities v(t) from the state vector in this case.

The matrices Au, Bu, Cu and Du can be further employed to find the impulse response of the

mechanical system. One can show that for a steady state, the velocities can also be expressed as165
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[45]

v(t) =

∫ t

t0

G(t− τ)p(τ)dτ (3a)

G(t) = Cue
AutBu, (3b)

where G(t) is the matrix of impulse response functions. The impulse responses can be obtained

using the Equation 3b. Using the convolution integral shown in Equation 3a, the dynamic response

of the mechanical system can be modelled solely the impulse response and the external forces. Since

the external forces are often unknown in structural dynamics, vibration data acquired using sensors170

affixed to the structure can be used as a proxy. A vibration prognosis of position y can thus be

carried out by feeding vibration data recorded at position x into an appropriately identified FIR

filter. This filter structure can also be expressed by the system model

x b ŷ
,

where the filter coefficients b represent the transfer function from the input to the output. Through-

out this paper, the ’hat’ notation indicates that ŷ is an estimated value as opposed to y which175

represents measured data at the output.

The mathematical definition of the FIR filter resembles the discrete convolution [38]

ŷ[i] =

M∑
j=0

b[j] x[i− j], (4)

where input and output time series are represented by the vectors x and ŷ, respectively. Equation

4 therefore resembles the single-input/single-output discrete formulation analogous to Equation 3a.

The parameter M represents the filter order and the vector b therefore consists of M + 1 filter

coefficients where j represents an index to this vector. The index i denotes a sample in the output180

time series ŷ as well as an offset in the input time series x. With the formulation according to

Equation 4, we imply causality of the filter, which means that changes at the output ŷ must not

temporally precede changes in the input x.

2.1. Single-input finite impulse response identification

A FIR filter is identified by finding a vector of filter coefficients b, which transforms the input185

signal x, so that it approximates the measured output signal y as good as possible. This means that
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the residual signal power between the filter response ŷ and the measured output y signal has to be

minimised. Filter identification also requires that the time series x and y have to be recorded using

a fixed sampling rate and be synchronised to prevent temporal drift over time. The unconstrained

linear least squares optimisation problem yielding b can be expressed as [43]190

minimise
b

m∑
i=M+1

y[i]− M∑
j=0

b[j] x[i− j]

2

, (5)

where m denotes the number of samples in the time series x and y. In order to make this problem

tractable using linear algebra, Equation 4 is rewritten using a matrix-vector multiplication [43]

T · b = ŷ, (6)

where T is a (m−M −1)× (M +1) Toeplitz matrix containing data from m measurement samples.

The matrix contains the samples of the filter input x[i] shifted to the respective temporal positions

to result in a FIR filter, so that195

Tij = x[i− j]. (7)

Equation 6 assumes the form of an over-determined system of equations, when the number of

samples m is larger than the order of the FIR M . To attenuate the influence of measurement

noise and signal contamination, it is beneficial to derive the coefficients b with m�M , so that an

average solution is achieved.

Using the Moore-Penrose pseudoinverse, a least-squares optimal solution to Equation 5 is ob-200

tained, which is known as the Affine Projection Algorithm [46]

b =
(
T TT

)−1
T Ty. (8)

Equation 8 however does usually not yield a usable filter in practice, since measurement noise

can deteriorate the quality of the identification. This can be mitigated in part by providing large

amounts of measurement data from diverse excitation states. However, the high-frequency response

usually contains artefacts caused by overfitting, since the signal-to-noise ratio worsens in the high-205

frequency domain for measurements of buildings.

The effects of overfitting can be reduced by employing the Tikhonov regularisation [47], which

results in a regularised form of the Affine Projection Algorithm [48]
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b =
(
T TT + λI

)−1
T Ty, (9)

where λ is a regularisation parameter and I is the identity matrix. Low values of λ lead to solutions

close to those obtained without any regularisation applied. High values lead to very smooth spectra,210

while underestimating the vibration level significantly. An automated procedure for determining

the numerical value of the regularisation parameter is discussed in Section 2.4.

The smoothing effect of the regularisation parameter λ depends on the filter order and the

amplitude of the input signal. Hence, we propose a normalised formulation

λ = λ0

∥∥T TT
∥∥

F
M + 1

, (10)

where || · ||F indicates the Frobenius norm and λ0 ∈ R+ is the normalised regularisation parameter.215

The Frobenius norm is linked to the energy of the input signal, hence λ becomes proportional to

the signal amplitude according to Equation 10. The Frobenius norm is defined as

‖A‖F :=

√∑
i

∑
j

|Aij |2, (11)

where Aij are the elements of a matrix A.

The smoothing is thus invariant to the number of samples considered in the Toeplitz matrix T .

To eliminate the dependency on the filter order as well, Equation 10 includes a division by M + 1.220

2.2. Expansion to multiple-input/multiple-output identification

The motion of buildings excited by environmental vibrations is inherently three-dimensional.

When a train passes close to a building, the soil, foundations and building floors vibrate in both

horizontal and vertical directions. These spacial motions can be captured using triaxial sensors,

as schematically illustrated in Figure 2. An uncoupling of movements in different directions is225

only possible for simple mechanical structures. In residential buildings, the motions are coupled in

complex ways, which depend on the modal parameters as well as on the wave propagation properties

of the structure. To efficiently utilise the information contained in the recorded signals, the filter

identification method is thus extended to account for coupling effects from all spacial directions.

A multiple-input concept for estimation of multiple-input/multiple-output FIR filters was pre-230

sented by Chen et al. [36]. The transfer characteristics can be expressed as
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y

x

Figure 2: Schematic diagram showing triaxial vibration measurement positions in the soil and on a floor slab. Triaxial

sensors x and y used as the input and output, respectively.


x1

x2

x3




b11 b12 b13

b21 b22 b23

b31 b32 b33




ŷ1

ŷ2

ŷ3


,

where we consider the 1, 2 and 3 measurement directions of triaxial sensors. The filter coefficient

matrix is generally unsymmetrical, thus identifications have to be carried out individually for each

filter in the matrix. For the sake of convenience, we assume a triaxial case in this derivation,

however, the formulation can be readily extended to account for any number of input and output235

channels. For example, measurement data from two triaxial sensors could be used as the inputs

x1...6, and data from only one triaxial sensor could be used as the outputs y1...3.

Similar to Equation 6, there is also an equivalent matrix expression that is conducive to the

solution by a pseudoinverse

T · b =
[
T1 T2 T3

]
·


b11 b12 b13

b21 b22 b23

b31 b32 b33

 = Ŷ , (12)

where T1 denotes the shift matrix associated with the first input channel, T2 denotes the second240

channel and so forth. The time series of the outputs are denoted using the matrix Ŷ , which has

a size of (m −M − 1) × ny, where ny denotes the number of output channels. The coefficients of

the impulse responses b11 through b33 can therefore be determined simultaneously, as shown in the

single-input case. In the case of one triaxial input and one triaxial output, the filter coefficients are

obtained using245

11




b11 b12 b13

b21 b22 b23

b31 b32 b33

 =




T T
1

T T
2

T T
3

 · [ T1 T2 T3

]
+ λI


−1

·


T T
1

T T
2

T T
3

 · Y . (13)

The normalised regularisation parameter λ0 as defined in Equation 10 also applies to the

multiple-input case. Since the matrix T has more elements in the multiple-input case compared to

the single-input case, the numerical value of its matrix norm increases. Consequently, the value of

the regularisation parameter λ according to Equation 10 increases and thus, the smoothing effect of

the regularisation remains constant. Equation 13 can be used to identify FIR filter for dynamically250

loaded structures with arbitrary excitation sources. As alluded to in Section 1, an identification

of multiple-input filters in the frequency domain, as presented by Weijtjens et al. [26], can not be

achieved unconditionally [28].

In the following sections, the equations are derived without loss of generality using the single-

input/single-output system to simplify the notation.255

2.3. Interpolated finite impulse response filters

It is possible to solve Equation 13 efficiently by exploiting the Toeplitz structure of the matrix T

to evaluate the expression T TT . However, the computer memory required to store the square matrix

T TT is in many cases prohibitively large. Therefore, the numerical filter identification can be further

improved by considering a filter topology with less coefficients. Sparse finite impulse response filters,260

also known as ’tap delay’ filters [38], can significantly reduce the numerical complexity of FIR filters

while maintaining a high fidelity. Instead of identifying M + 1 filter coefficients for the full model

order, a smaller number of N + 1 coefficients is used. The non-zero coefficients are referred to as

filter ’taps’ while the remaining coefficients are usually set to zero.

The achievable sparsity depends on the high frequency damping of the system, where strongly265

damped systems are conducive to high reduction ratios. For band-stop filter design, a reduction of

non-zero coefficients exceeding 50% can be achieved in practice [49].

To achieve the best possible sparse filter quality, it is advisable to place the filter taps where the

amplitude of the dense filter coefficients is highest. Generally, in mechanical systems with viscous

damping, high frequency components decay faster than low frequency components. This means270

that most of the energy and high-frequency oscillation is contained in the beginning of the impulse

response. The filter taps should thus be placed densely at the beginning of the impulse response,
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in order to be able to capture the high frequency content. The taps in the tail of the filter should

be placed at larger distances, since low-frequency signals dominate in this section [49]. For this

purpose, we propose a quadratic function to place the filter taps275

tk = k + (M −N)

(
k − 1

N

)2

, (14)

where k ∈ [1, 2, ..., N +1] denotes the filter tap index and tk is the corresponding tap position. The

tap position for the index k = N +1 coincides with the filter coefficient M +1, placing the last tap

at the end of the filter.

The tap positions tk resulting from Equation 14 are real-valued. For a direct application of

sparse filters, they would have to be rounded to the next integer. However, the direct application of280

sparse filters leads to a poor spectral signal quality. This can be overcome by employing interpolated

finite impulse response filters (IFIR) [50]. IFIR filters are based on interpolation functions, which

are assigned to each filter tap. Thereby, a bandwidth limitation is achieved which improves the

spectral quality. The weighting coefficients resulting from the interpolation functions are combined

in the interpolation matrix H, which has the size M ×N . By applying the matrix H to the sparse285

filter coefficients b̃, the dense filter coefficients are recovered

b = Hb̃. (15)

We further constrain the interpolation coefficients to have a unit sum for each sparse coefficient k

∞∑
j=−∞

Hjk
!
= 1. (16)

This leads to a normalisation of the signal content in each of the sparse coefficients. The filter

coefficients b are only defined in the interval [0,M ], but the interpolation functions may extend

beyond this interval. The sum in Equation 16 is thus defined over the interval [−∞,∞] to achieve290

a consistent formulation.

The expression in Equation 6 can be rewritten using Equation 15

Tb = THb̃ = y, (17)

again representing an overdetermined system of equations. The order of multiplications in Equation

17 is modified
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T̃ = TH =⇒ T̃ik =

M∑
j=0

Hjk x[i− j], (18)

where the shift matrix T is eliminated and replaced by a convolution of the input x with the295

interpolation matrix H to yield the sparse shift matrix T̃ . A similar scheme was put forward for

adaptive IFIR filters by Wu et al. [51]. By substituting T for T̃ and b for b̃, Equation 9 can be

rewritten to yield the sparse filter coefficients

b̃ =
(
T̃ TT̃ + λI

)−1
T̃ Ty. (19)

The normalised regularisation parameter λ0 also applies for interpolated filters, since the signal

energy content in T and T̃ is roughly the same. This is the case, since the constraint in Equation300

16 forces the interpolation filters to have a unit gain in the passband.

The choice of the interpolation functions influences the achievable quality of the identification.

While triangular interpolation functions, also known as Bartlett windows, are often used for compu-

tational resource efficiency in real-time processing [52], we propose employing Gaussian functions.

The latter allow for smoother interpolations than Bartlett windows in exchange for slightly higher305

computing times.

The centres of the Gaussian windows µk are placed at the real-valued tap positions, such that

µk = tk. We propose a parametrisation of the window using

σk =
tk+1 − tk−1

4
, (20)

where σk is the standard deviation of the Gaussian interpolation function associated with the k-th

filter tap positioned at tk. This way, neighbouring tap positions tk±1 have a distance of approxi-310

mately two standard deviations. Since the area under the curve of a Gaussian distribution is always

one, the constraint given in Equation 16 is readily fulfilled. An illustration of the interpolation ma-

trix H is shown in Figure 3. The figure depicts the overlap resulting from the parameterisation

given in Equation 20. The shape of a single interpolation function taken from the matrix H is

shown in Figure 4 .315

A benefit of Gaussian window functions is the theoretically infinite side lobe suppression in the

frequency domain [53]. The frequency response of the interpolation function displayed in Figure 4

is indicated in Figure 5, where the flat section of the graph indicated for the Gaussian window close

to −250 dB is caused by numerical round-off error. To reduce the number of non-zero elements in
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Figure 3: Matrix of interpolation coefficients with

N = 10 and M = 40. Individual interpolation functions

are each highlighted with a different colour.
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Figure 4: Interpolation coefficients of a single interpola-

tion function shown using a stem plot.

the interpolation matrix H and thus minimise the number of multiplications required to compute320

the sparse shift matrix (Equation 18), we propose a truncation of the Gaussian functions. This

truncation is carried out by setting the interpolation matrix coefficients Hjk with values below 10−5

to zero, which results in a side lobe suppression greater than −100 dB. The spectrum resulting from

truncation is superimposed in Figure 5.
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Figure 5: Frequency response spectrum for the Gaussian interpolation function shown in Figure 4. A truncation of

the interpolation function leads to the emergence of side lobes.

2.4. Filter order selection325

This section introduces a procedure to automatically determine the three parameters, which

govern the process of filter identification. The first parameter M relates to the filter order which

determines how many coefficients comprise the finite impulse response. The second parameter

N relates to the number of taps of the sparse filter and thus dictates the accuracy of the sparse
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approximation. Finally, the normalised regularisation parameter λ0 controls how much smoothing330

is applied to the filter coefficients.

The statistical methods employed to select appropriate parameters are based on the estimation

error of the identified multiple-input/multiple-output filter model. The error between estimated

data Ŷ (M,N, λ0) and measured data Y is expressed using the mean squared error (MSE) [54]

MSE =
1

m

(
Ŷ (M,N, λ0)− Y

)T
·
(
Ŷ (M,N, λ0)− Y

)
, (21)

where the mean value of the difference between the time series of the estimated output and the335

measured output is obtained with a division by the number of data samples m. The resulting MSE

is a square matrix of the size ny×ny with ny being the number of output channels. Without loss of

generality, λ0 is initially set to 0 in the following, as it its optimal value is unknown at first. Based

on the MSE, the log-likelihood function can be expressed as [54]

ln(L̂(M,N)) = −m
2
(ln(det(MSE(M,N))) + 1 + ny ln(2π)) . (22)

Using the log-likelihood function, the quality of the estimation is assessed by employing the

Akaike information criterion (AIC)

AIC = −2 ln(L̂) + 2(M +N)nxny (23)

where (M + N)nxny denotes the number of model parameters. The term nxny expresses the340

number of distinct finite impulse response filters as the product of input channels nx multiplied by

the number of output channels ny. Since interpolated FIR filters are employed, it is not entirely

clear which value to use for the model order of the individual filters. We propose utilising the

sum M +N that relates to the dense filter order and the number of sparse filter taps as stated in

Equation 23. Since M � N , the addition of N can be interpreted as a penalty applied to models345

with excessively large numbers of filter taps.

It should be noted at this point that, similar to the AIC, other filter order selection or information

criteria can be employed [55]. Nevertheless, we propose the using the AIC, as, in the presented

applications, it led to the most reasonable models. To obtain values for the parameters M and

N , a sweep through the parameter space is conducted by application of a grid sampling. At every350

sampling point, the identification method is applied and subsequently the AIC is evaluated. The

resulting AIC values yield a two-dimensional convex surface as a function of M and N . The global
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minimum of this surface then yields the parameters with the minimum associated information loss

and thus the optimal model.

In a second step, the last free identification parameter λ0 is determined based on the previously355

determined values of M and N . To this end, the generalised cross-validation (GCV) [56]

GCV(λ) =

∣∣∣∣∣∣Ŷ (λ0)− Y
∣∣∣∣∣∣2∣∣∣∣tr(I − T̃

(
T̃ TT̃ + λI

)−1
T̃ T

)∣∣∣∣2
(24)

is employed. The GCV function has a global minimum at the value for λ0 which is the best

compromise between accuracy and avoidance of overfitting. To obtain this minimum, a sweep over

the parameter λ0 is conducted and the setting associated with the minimal GCV is selected.

2.5. Computational performance360

The evaluation of Equation 19 is computationally intensive, due to the matrix multiplication

T̃ TT̃ . The computational complexity is of the order O(mN2), where m is the number of mea-

surement data samples and N is the number of filter taps. Due to the quadratic influence N , the

number of filter taps should be as low as possible to minimise computing times. This is valid under

the assumption that the number of measurement data samples is much greater than the filter order,365

i.e. m�M .

Further, the shift matrix T̃ takes up more memory than typically available on a desktop com-

puter, even for small numbers of measurement samples. This slows down the computation of T̃ TT̃ ,

because the speed of this matrix multiplication is limited by the memory bandwidth. To reduce

the size of the shift matrix T̃ , Equation 18 is computed in a batch operation for small chunks of370

measurement data. The terms T̃ TT̃ as well as T̃ Ty can thus be summed up iteratively to minimise

the computing time. Hence, the batches can be processed independently, which enables parallel

computation and thus increases the efficiency on many-core computers.

Due to the relatively low dimension of T̃ TT̃ , the matrix inversion in Equation 19 has an in-

significant impact on the computing time when long measurement data time series are employed.375

Hence, no special consideration of performance aspects is required for the matrix inversion.

2.6. System theoretical considerations

The system properties stability, controllability, observability and invertability are important for

the practical usefulness of the multiple-input/multiple-output IFIR filter topology. Since the filter
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structure utilised in the identification process is based on FIR filters, most of its properties are380

identical to FIR filters. In terms of the z-transformation, the structure of a single-input/single-

output FIR filter can be expressed as

G(z) =
b[0] + b[1]z−1 + b[2]z−2 + . . .+ b[M ]z−M

1
, (25)

where G(z) is the transfer function and b[0...M ] are the coefficients of the FIR filter. The denom-

inator of the transfer function is unity, which indicates that the filter has no poles and is thus

unconditionally stable. To examine the controllability and observability, the state-space model of385

a single-input/single-output system is formulated

xss[i+ 1] = Assxss[i] + bssx[i]

y[i] = cTssxss[i] + dssx[i],
(26)

where Ass is the (M × M)-dimensional state matrix, bss is the input vector, cTss is the output

vector and dss is the feedthrough factor. The input time series x and the output time series y are

incorporated into the system using the time step i. In order to represent a FIR filter, the parameters

are set to

Ass,kl = δk−1,l bss,k = δk,1

cTss,l = b[l + 1] dss = b[0],
(27)

where the Kronecker delta function δ is used to describe the contents of Ass and bss. In this

formulation, the state space matrix Ass has ones on the lower secondary diagonal and is zero

otherwise. This means that the entire internal state is shifted in each time step. The input

vector bss feeds the most recent input x[i] to the beginning of this delay line. The output vec-390

tor cTss contains the coefficients b[j] of the FIR filter, starting from the second coefficient. Since

the first coefficient b[0] of the filter needs to be applied without any delay, it is contained in the

feedthrough factor dss. The controllability matrix following from this state space representation is

C = [bss Assbss · · · AM
ss bss] = I, meaning that the output is unconditionally controllable. The

observability matrix O = [css AT
sscss · · · (AM

ss )
Tcss]

T only has full rank if all filter coefficients395

are non-zero, in which case the system is observable as well.

Since there are no restrictions imposed on the filter coefficients contained in css, the zeros of

Equation 25 are usually not bounded to the unit circle. This means that an inverse filter obtained

by flipping the numerator and denominator of the transfer function is generally unstable. However,
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it is possible to obtain a stable least-squares optimal inverse finite impulse filter using Equation 8400

[35].

3. Structural measurements of a timber building

To validate the identification scheme outlined in the previous sections, measurement data was

obtained from a timber building under construction. The building shown in Figure 6 has six floors,

of which the first floor slab is built from concrete and the upper floor slabs are made from cross-405

laminated timber. The walls of the upper floors are carried out using a timber frame construction.

The ceiling height is 2.7m and the total height of the building is 23m. As illustrated in Figure 7,

the building is situated close to several railway tracks, with traffic from commuter and long-distance

trains. Figure 7 contains the site plan including some dimensions for reference.

Figure 6: Photograph of the timber building and the railway

embankment in Berlin, Germany.

8
 m

20 m

Figure 7: Site overview with railway tracks and

floor plan of the building.

In Section 3.1 we introduce the sensor positions and the data acquisition setup which was used410

for the in-situ measurement. Further, in Section 3.2 we characterise the structural dynamics by

examining the structural eigenmodes of individuals floors and of the building as a whole. The data

sets captured using the measurement setup as well as the train types are discussed in Section 3.3.
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3.1. Measurement setup

During the measurement campaign, the building was equipped with a measurement setup con-415

sisting of multiple triaxial as well as uniaxial geophone sensors. The sensor distribution inside the

building is similar to those presented in previous studies, such as Sanayei et al. [23] or Mugabo et

al. [9]. Triaxial geophones were placed in the soil, on the ground level and on several floors. The

structure was additionally equipped with uniaxial sensors which measure vibrations in the vertical

direction.420

The sensors are aligned according to a global coordinate system depicted in Figure 8. The

measurement directions d1 and d2 cover vibrations in the horizontal plane, while d3 points in the

vertical direction. Figure 8 also shows the placement of the sensors on the ground level and on the

fourth and fifth floor. For the measurement of soil vibrations, one triaxial geophone is positioned

in the soil at position G near the east corner of the building. The building has no basement, so425

the foundations coincide with the ground level floor, which is a reinforced concrete slab. A triaxial

geophone is thus placed at location E on the ground floor close to the soil geophone to capture the

difference between soil and foundation vibrations. Two additional uniaxial geophones are placed

on the ground level near load-bearing walls at locations S and N. The floors four and five are each

equipped with two triaxial geophones at the location S and W on the two main ceiling panels of430

the building, as marked in Figure 8. On the second floor, one triaxial geophone was located at

location W and additionally three uniaxial sensors were installed. The first floor is constructed

using reinforced concrete, so it is of minor interest to the topic at hand. Hence, only two vertical

measurement channels are present at the N and S positions on the first floor. The 32 measurement

channels, the sensor configuration and their distribution are summarised in Table 1.435

The geophone sensors are of type SM-6 and have a sensitivity of 27Vs/m. Due to the physical

measurement principle, different versions are required for the horizontal and vertical measurement

directions. The sensors have a cut-off frequency of 4.5Hz and are connected to equalising pre-

amplifiers to achieve a linear frequency response down to 1.0Hz. The pre-amplifiers are connected

to a central data acquisition system, which synchronously records all 32 channels at a sampling fre-440

quency of 1000Hz. Calibration of individual sensors is achieved using adjustable gain and frequency

response settings of the pre-amplifiers.

Photographs of triaxial soil and floor sensor measurement setups are displayed in Figure 9.

The three spacial directions are measured separately using individual sensors, which are manually
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Ground Floor

4th and 5th Floor

Triaxial

Uniaxial

d1

d2

d3

E

W

EG

N

S

S

Figure 8: Measurement positions in the soil, on the ground floor, the fourth and the fifth floor of the building. The

locations are marked for soil (G), west (W), east (E), north (N) and south (S). The global coordinate system is

indicated by a triad.

aligned according to the global coordinate system. The soil sensors are anchored using a 50 cm long445

pole driven into the ground. The individual geophone sensors are equipped with mounting plates

featuring three spikes to establish a firm connection with the floor slabs.
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Table 1: Sensor setup for soil and individual building floors, sensor placement indicated using capital letters.

Level Uniaxial Vertical Triaxial Number of Channels

Soil - 1× 3 (G) 3

Ground Floor 2 (S,N) 1× 3 (E) 5

1st Floor 2 (S,W) - 2

2nd Floor 3 (S,E,E) 1× 3 (W) 6

4th Floor 2 (S,E) 2× 3 (E,W) 8

5th Floor 2 (S,E) 2× 3 (E,W) 8

Total 11 7× 3 32

Figure 9: Photographs of triaxial measurement positions. Left image shows setup placed on a pole at location G.

Right image shows setup on the floors.

3.2. Structural dynamics

The building exhibits two families of vibration modes as illustrated in Figure 10. One family of

modes is linked to the vertical vibration of the floor slabs. In these modes, the floor panels vibrate450

vertically on each floor of the building, causing almost no movement of the walls. The second family

of modes includes the shear modes of the building, in which the building floor slabs move in the

horizontal plane as rigid bodies, causing the walls to bend. This assertion stems mainly from the

observations made using the filters identification discussed in the proceeding chapters. However,

in preliminary studies not included in this paper, the modal behaviour of the structure was also455

validated using operational modal analysis.
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Figure 10: Sketch of the main mode shapes of a building. Structure at rest shown in black, deformed structure

shown in red. Left panel: vertical floor slab mode sectional view. Centre panel: horizontal shear mode sectional

view. Right panel: torsional mode top view.

Due to the placement of load-bearing walls and beams, the floor slabs have a complex frequency

response. Some modes are localised to individual panels, other modes correspond to movements

across the whole floor slab. This means that no single mode can be identified as the main mode of

vibration in the vertical direction.460

The horizontal behaviour of the structure is dominated by two pronounced modes at about

2Hz and 6Hz. The corresponding modeshapes resemble bending modes of a cantilever beam as

shown in the centre panel of Figure 10. However, these horizontal modes also exhibit rotational

movement of the floor slabs which leads to additional torsional and shear deformations. Similar

results were obtained by Mugabo et al. [9] when studying the eigenfrequencies of a cross-laminated465

timber structure.

3.3. Measurement data sets

Several measurement time series of varying length were obtained, each containing data from

one or more passing trains. The measurement was carried out during ongoing interior fitting

construction work, so the data also contains vibrations originating from construction machinery as470

well as floor slab vibrations induced by personnel working at the site. Such a signal contamination

is typical for dynamic measurements in buildings, where vibration sources are not as controllable

as in laboratory setups.

There are two train types present in the data, which were recorded with a high quality: long-

distance trains and commuter trains. The data sets captured during the measurement campaign475

are summarised in Table 2. Some regional trains also passed by during the measurement campaign,
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Table 2: Data sets recorded during measurement campaign.

Train type Number of trains Accumulated measurement time in s

Long-distance 5 360

Commuter 14 993

Total 19 2170

however, due to a high variability in the configuration of the trains and poor data quality due to

several trains passing at the same time, these are left out of the analysis. The train tracks were ob-

served visually from the construction site, however no accurate information about the configuration

of the trains, or the properties of the tracks was available for this study.480

4. Filter identification

The measurement data is used to obtain multiple-input/multiple-output FIR filters considering

the selected train types as vibration sources. Using the method presented in Section 2, we identify

filter coefficients which model the transmission from the soil to individual building floor slabs,

as well as the transmission from the foundation to the building floor slabs. Since the multiple-485

input/multiple-output identification generates an immense number of individual FIR filters, in

the following sections, the properties of the identification method are presented using exemplary

measurement channels only. Nonetheless, we verified our conclusions by analysing the results for

the full set of channels and filters.

To discuss the filter identification, we limit ourselves to a setup with a triaxial input and a490

triaxial output. The triaxial soil geophone is therefore chosen as the input of the filter model the

triaxial geophone on the west side of the fifth floor is chosen as the output, which are marked as G

and W in Figure 8. This sensor combination represents the longest path of transmission through

the building and thus exhibits a complex transfer behaviour. The identification is carried out using

a concatenation of the time-domain measurement data sets for long-distance trains.495

To obtain frequency-domain data, Welch’s power spectral density estimation [43] is used for time

series data as well as for filter coefficients. We consistently apply a window size of 2048 samples

and an overlap of 1024 samples to obtain high-resolution spectra with sufficient smoothing.

In this section, measured sensor signals as well as identified impulse response filters are discussed
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in detail. We analyse the results both in the time domain and in the frequency domain. The filter500

order selection is detailed in Section 4.1 and the numerical performance is discussed in Section 4.4.

Section 4.3 discusses the stability of the identification with respect to the parameters M , N and

λ0. Finally, Section 4.2 is about the identification of filter coefficients and the structural dynamic

interpretation.

4.1. Filter order selection505

In this section, we analyse how the identification parametersM , N and λ0 influence the resulting

finite impulse responses using measurement data obtained for long-distance trains. The parameters

M and N are determined by searching for a minimum of the AIC. As illustrated in Figure 11,

the location of the minimum AIC value is located at M = 6500 and N = 550. To determine the

normalised regularisation parameter λ0, the GCV approach is used. The GCV function displayed in510

Figure 12 shows that the minimum is close to λ0 = 1.0. The AIC and GCV functions were sampled

using a uniform grid, as displayed in Figures 11 and 12. The minima were then determined by

searching for the minimum value among the sampled points.
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Figure 11: Plot of the AIC over the identification param-

eters M and N . The minimum is highlighted by a red

dot.
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Figure 12: Plot of the generalised cross validation

over the regularisation parameter λ0.

The coefficients of an exemplary identified FIR filter for the transmission from the soil d2-

direction to the fifth floor d1-direction are shown in Figure 13. As the impulse response has decayed515

significantly up to coefficient 6000, the automatically determined parameter M = 6500 seems to be

a reasonable choice.
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Figure 13: Effect of filter order M + 1 on the impulse response and filter order determined using AIC (M = 6500).

Spectra for several settings of the parameter N are shown in Figure 14 to illustrate its influence

on the high frequency response. The number of filter taps N+1 should be chosen as low as possible

because of its high impact on the computational performance. However, when the density of filter520

taps is too low, the high-frequency response drops off significantly. Hence, the filter model will

underpredict the actual vibration amplitude, as evident in the graph shown for N = 275 in Figure

14.
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Figure 14: Effect of the number of filter taps N + 1 on the frequency response of the identified filters.

The normalised regularisation parameter λ0 has to be selected such that high-frequency artefacts

are suppressed without significantly reducing the amplitude of the prognosis time series. This is525

illustrated in Figure 15, where both the impulse response time series as well as the power spectral

density of different settings are compared. The application of smoothing leads to a decrease in

high-frequency response, which is desired to remove overfitting, as shown for the λ0 = 1.0 case

in Figure 15. However, if too much smoothing is applied, the low-frequency response diminishes
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as well, which leads to an underprediction of the vibration level by the identified filters. This is530

illustrated by the λ0 = 10 graphs in Figure 15, where significant power is missing above 20Hz.
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Figure 15: Influence of the normalised regularisation parameter λ0 on the identified filters, in terms of time-domain

as well as frequency-domain response.

In conclusion, the choice of parameters is of major importance for obtaining good identification

results. A reasonable set of parameters can be provided automatically by the procedure outlined

in Section 2.4.

4.2. Identification of multiple-input/multiple-output filters535

The 3×3 array of impulse responses identified between the two triaxial sensor positions is shown

in Figure 16. Each row in this plot belongs to one measurement direction of the soil geophone. The

columns belong to the directions of the fifth-floor geophone marked with aW in Figure 9. In all of the

impulse responses, the signal amplitude decays over time, as is expected for a damped mechanical

system. Each of the fifth-floor measurement directions has a different dominant resonance frequency.540

These resonance frequencies correspond to the eigenmodes of the floors and the shear modes of the

building, as discussed in Section 3.2. The cycle duration of the vertical d3-direction is much shorter,
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when compared to the horizontal directions. The reason for this difference is that it belongs to a

floor slab resonance frequency, which is considerably higher than the frequencies of the horizontal

shear modes.545
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Figure 16: Coefficients of the impulse response filters contributing to the prognosis of a fifth-floor triaxial sensor.

The input signal is taken from the triaxial soil geophone.

The frequency-domain response of the filters is depicted in Figure 17. For the horizontal d1

and d2-directions on the fifth floor, a sharp peak can be observed near 3Hz, which belongs to the

building’s shear modes. The spectra for the d3-direction indicate several resonance peaks in the

range between 10Hz and 20Hz, which belong to individual floor vibration modes.
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Figure 17: Spectra corresponding to the impulse response filters shown in Figure 16.

4.3. Robustness of IFIR coefficient identification550

The robustness of the proposed identification method is assessed by conducting a Monte Carlo

variation of the identification parameters. Therefore, each of the parameters M , N and λ0 is

randomised using a uniform distribution of ±10% of the original values. The filter coefficients are

identified for the resulting multi-variate parameter distribution using 20 realisations. Figure 18

illustrates the distribution of the impulse responses, highlighting the stability of the identification555

method.

The detail view in Figure 18 shows that an appreciable amount of statistical scatter is introduced.

However, considering the FIR filter as a whole, the sensitivity with respect to the variation of the

identification parameters is quite low. In case of transient impulses at the inputs, the peak output

amplitude of the identified filters varies by about ±5%. For the practical applicability of the method,560

we deduce that it is adequately stable, meaning that it is not necessary to put too much time and

effort into determining the numerical values of the identification parameters.
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Figure 18: Identified filter coefficients (left) and detail view (right) considering Monte Carlo variation of the identi-

fication parameters.

4.4. Numerical performance

The numerical performance of the presented identification approach for dense and interpolated

FIR filters is compared to the impulseest function from the MATLAB System Identification tool-565

box [37], which implements the identification algorithm described by Chen et al. [36]. The same

data as used in Section 4.1 is employed for this purpose. As the numerical complexity of the identifi-

cation procedure is mainly dependent on the number of FIR filter coefficientsM+1, this parameter

is used as the baseline for the comparison. The runtime of the impulseest function, a dense FIR

estimation and the interpolated FIR estimation with N = 0.1M is shown in Figure 19.570
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Figure 19: Comparison of numerical performance of MATLAB’s impulseest function with the presented methods.

The comparison was carried out using a quad-core processor running at 3.3GHz. The results

show that the interpolated FIR method has to be employed to reach the optimal filter order M =
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6500 with manageable computing times. Both the dense estimation as well as the MATLAB function

impulseest exhibit an insufficient numerical performance for such high numbers of filter coefficients.

As demonstrated in Figure 20, the estimation quality is mainly dependent on the number of filter575

coefficients employed. Hence, the high numerical performance of the IFIR method yields the lowest

estimation errors.
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Figure 20: Mean squared error comparison of MATLAB’s impulseest function with the presented methods.

5. Vibration prognosis

In this section, the multiple-input/multiple-output identification method is used to perform

vibration prognosis based on the measurement data sets. In Section 5.1, we examine how accurate580

the prognosis can potentially become in case of high numbers of input channels. A discussion on the

difference in the prognosis accuracy, which is achieved when using soil or ground floor vibrations

as an input, can be found in Sections 5.2 and 5.3. Further, we investigate whether vibration

transfer models derived for a specific type of train are transferable to another train type in Section

5.4. Finally, in Section 5.5, we introduce a virtual sensing concept using the vibration prognosis585

method.

5.1. Prognosis using high numbers of input channels

To assess the potential accuracy of a prognosis based on multiple-input FIR filters, we employ

a very high number of input channels. The filter models are derived using all data sets that were

obtained for passing commuter trains since most data sets are available for this train type. Every590

sensor installed below the fifth floor is used as an input channel in order to obtain a prognosis for

the fifth-floor triaxial sensor located at the west side of the building. This way, impulse responses
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for 24 input channels and three output channels are derived, leading to a filter model consisting of

72 individual FIR filters.

We use data from a different train type for verification of the prognosis and for the identification.595

This way, we make sure that potential overfitting issues are easily discovered. Since the filter model

is identified using commuter train data, an excerpt of the time series measured for long-distance

trains is used to demonstrate the numerical results. Figure 21 shows a comparison of the prognosis

and the triaxial measurement data corresponding to the maximum amplitudes recorded from a

passing long-distance train. As can be expected from the spectra shown in Figure 17, the vertical600

d3-direction exhibits a much higher fundamental vibration frequency than the horizontal directions.

The prognosis time series matches almost perfectly to the measurement in all channels, suggesting

a very high prognosis accuracy.
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Figure 21: Measured data and prognosis for the fifth floor, considering 24 input channels and excitation by a long-

distance train. The filter model used for the prognosis is identified using commuter train data.

Of course, this numerical example is rather academic, since such a vast array of sensors would

hardly be implemented in practice. However, it demonstrates that the prognosis based on IFIR605

32



filters indeed can become very accurate, when enough information about the vibration state of the

structure is available. The accuracy of the prognosis is also reflected in the frequency domain,

as shown in Figure 22. Especially in the frequency range below 20Hz, where the power spectral

density is the highest, the prognosis is in very good agreement with the measurement.
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Figure 22: Spectra for measured and prognosis data of the vertical d3-direction of the fifth floor triaxial sensor

located at the west side of the building considering 24 input channels.

In Figure 23, the influence of the number of input channels is examined using the mean squared610

estimation error. The estimation error drops and converges towards higher numbers of input chan-

nels. Above approximately 15 input channels, no significant improvement is achieved. Figure 23

also shows that the estimation error of a single-input prognosis is about six times higher compared

to the 15 sensor case, which demonstrates the advantage of the multiple-input topology.
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Figure 23: Mean squared error (MSE) metric of the fifth floor triaxial sensor channels on the west side with respect

to the number of input channels used for the identification. Channels are sorted based on the floor number, starting

at the soil/ground level. MSE is reported for both ascending and descending order.

5.2. Prognosis based on soil vibration data versus ground floor vibration data615

In this section, a more practical case is regarded, where we use soil and ground floor vibration

data as an input for the prognosis of the second floor time series. Therefore, we investigate the

influence of the position of input measurement sensors on the accuracy of the resulting prognosis.

To eliminate any influence of the train types, the prognosis is carried out using the same commuter

train data as for the identification. The second floor sensor is chosen as the output to exemplify620

the horizontal shear modes of the building.

The comparison is carried out using input data from the soil and ground floor triaxial sensors,

indicated as G and E in Figure 9. The sensors are located only a few metres apart, however the

ground floor sensor is directly coupled to the structure and thus able to capture more information

about the vibrational state of the building. We illustrate this assertion in Figure 24 using the625

measured and predicted power spectral density spectrum of the second floor in the horizontal d2-

direction. The left panel of the figure shows a detailed view of the range from 0Hz to 20Hz, which

is most relevant for vibration assessment, as is contains the peaks belonging to the two dominating

shear modes. These peaks are very pronounced since the low-frequency horizontal modes exhibit

significantly less damping than the vertical floor slab modes. The right panel shows the spectrum630

up to 100Hz, where much of the vibration signal is caused by construction machinery present at

the site. While both prognoses systematically underpredict the measured spectrum, the prognosis

based on the ground floor sensor matches the measured signal better than the prognosis using the
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soil sensor. The difference is small up to 10Hz and increases with higher frequencies.
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Figure 24: Comparison of second-floor horizontal measured spectra with those obtained from prognosis using a

triaxial soil sensor and triaxial ground floor sensor, respectively. The filter model is identified using and applied to

commuter train data.

5.3. Time-domain analysis for different input sensor locations635

In this section, the estimation performance is assessed in the time domain according to the

vibration assessment criterion defined by the German standard DIN 4150-2 [2]. In this standard,

the weighted vibration signal KBF is used to classify the comfort level based on a measured vibration

time series. It is calculated by initially applying a frequency weighting to the vibration velocity,

which models human perception of the disturbance caused by the vibration. In the discrete-time640

z-transform representation, the velocity time series y(z) is weighted using a first-order high-pass

filter with a cutoff frequency of 5.6Hz

αHP = e−2π·5.6Hz/fS (28)

KB(z) =
αHP − αHPz

−1

1− αHPz−1
y(z), (29)

where αHP is the time-discrete filter coefficient, fS is the sampling frequency and KB(z) is the

weighted signal. The time series KB is used to obtain a first-order low-pass filtered effective ampli-

tude, which results in the KBF time series645

αLP = e−1/(fS ·0.125 s) (30)

KBF
2(z) =

1− αLP

1− αLPz−1
KB2(z), (31)

35



where αLP is the low pass filter coefficient based on a time constant of 0.125 s. The squaring of

KB(z) and KBF(z) serve to obtain a moving average of the absolute amplitude instead of the signed

amplitude. The KBF values are obtained by taking the square root of KBF
2(z), resulting in a time

series relating to the vibrational energy contained in the signal.

To exemplify the time-domain prognosis, a KBF time series is computed for the signal recorded in650

the vertical d3-direction of the fourth floor triaxial sensor at the east side of the building considering

commuter train data. A sensor position in the east corner of the building is chosen as the output

in this example because the ground floor sensors are also concentrated in the east corner of the

building. Therefore the sensors used as the input channels for the filter model are located close

to the load bearing components which transfer vibration energy to the upper floor slabs which655

enhances the prognosis quality. An excerpt containing the vibration caused by a passing train and

the subsequent decay of the signal is depicted in Figure 25.
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Figure 25: Time series of KBF vibration assessment criterion for fourth-floor (E) triaxial sensor vertical d3-direction

considering commuter train data. Estimation based on triaxial soil sensor, triaxial ground floor sensor and all five

ground floor sensors, respectively.

In addition to the measured signal, the estimation based on the soil triaxial sensor, the ground

floor triaxial sensor as well as based on all five ground floor sensors is shown. As discussed in the

previous section, the estimation based on the ground floor triaxial sensor fits the measured data660

better than the estimation based on the soil triaxial sensor. However, both estimations based on the

triaxial sensors exhibit an underestimation of the KBF amplitude by about a third when compared

to the measured data. By taking the two additional vertical sensor positions of the ground floor

into account, the estimated time series fits considerably better to the measured data.
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5.4. Influence of different train types665

A question that often arises in the context of vibration prognosis is whether a transfer model

derived for one specific excitation source can be utilised when different types of excitation are

present. Section 5.1 demonstrates that a highly accurate prognosis can be achieved for long-distance

train data when using filters based on commuter train data. However, the number of input channels

used in that example is prohibitively high for practical vibration prognosis. In this section, we670

investigate whether the filter models are transferable using signals recorded for different train types

and considering a more practical sensor setup. To characterise the dynamic excitation caused

by different train types, we concatenate the time-domain measurement data sets related to long-

distance trains and we proceed equally for data associated with commuter trains. Two spectra

corresponding to the vertical and a horizontal vibration time series of the ground floor triaxial675

sensor are shown in Figure 26.
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Figure 26: Power spectral density of ground floor triaxial sensor for different train types, a) vertical d3-direction b)

horizontal d1-direction
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The maximum of the signal power is present around 7Hz for both train types while the power

continually drops off towards higher frequencies. The long-distance train spectrum features some

peaks below 40Hz which are not present for the commuter train. In addition to train-induced

vibrations, the recorded data contains contamination arising from road traffic vibrations as well as680

from construction machinery above 60Hz. Further, a peak at 50Hz in both data sets indicates cross-

talk from power grid wiring, which is most probably caused by poor shielding of the measurement

cables.

In the next step, we explore the suitability of filters derived for one train type for the prognosis

of a different type of train. For this purpose, we identify FIR filters using long-distance train685

data and all five ground floor measurement channels as an input. For reference, FIR filters are

also identified using the commuter train data. Hence, the commuter train vibration recordings

and the long-distance train recordings can be referred to as the training and validation data sets,

respectively. In such a setup, it can be expected that the prognosis based on filters derived using

commuter train data will be in good agreement with the measurement data. However, the prognosis690

based on filters derived using long-distance train data will only exhibit correlation with the data if

the filter model adequately represents the structural dynamics of the examined timber building.

The fourth-floor triaxial sensor located at the east side of the building is used as the data source for

the output signals. A comparison of the measured spectra with the prognosis spectra is depicted

in Figure 27.695

The spectrum for the vertical d3-direction exhibits the maximum amplitude close to 10Hz, which

corresponds to one of the floor eigenfrequencies. In the spectrum for the horizontal d1-direction, the

main peak is close to 5Hz, which corresponds to a building shear mode. Regarding both directions,

a good match between measurement and prognosis is achieved up to about 30Hz. The prognosis

based on filters identified using the commuter train data fits better to the measured commuter train700

spectrum, as can be expected. In the higher frequency range, the vibration levels are much lower

and the prognosis accuracy deteriorates.
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Figure 27: Comparison of measured commuter train spectra with prognosis based on filters identified using commuter

(training set) and long-distance train (validation set) data. Filter models identified for transfer from ground floor to

fourth floor. Panel a) shows the vertical d3-measurement direction, panel b) shows the horizontal d1-direction.

5.5. Virtual sensing and signal contamination

By exploiting the vibration prognosis outlined in the previous chapters, we propose a virtual

sensing approach, which can overcome many of the challenges associated with in-situ vibration705

assessment of buildings. Since the proposed method allows for a high fidelity prognosis considering

only the ground floor sensors as an input, it is possible to calculate virtual vibration time series for

all other sensor positions. A long-term monitoring campaign can thus be conducted with only the

sensors at the ground level being actually equipped and measured. The foundations of buildings are

often accessible with minimal intrusion to the apartments, which makes this an acceptable solution710

for monitoring campaigns which last several days. By monitoring the structure for such extended

time periods, the reliability of the vibration assessment can be increased [57], especially when a

high variability of excitation is present such as a heavily loaded freight trains passing by night [58].
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Since the virtual sensors are based on data recorded at the building foundation, signal contami-

nation by the residents of upper floor apartments is avoided. An example for a signal contamination715

by walking excitation and the prognosis of the corresponding virtual sensor is displayed in Figure

28. The first part of the time series shows that the prognosis and the measured data are largely

coincident, as expected for a virtual sensor. A person walks close to the sensor in the highlighted

part of the time series, causing a strong vibration event. Figure 28 shows that the ambient vibra-

tion has peak amplitudes of about 0.05mm/s, while the contamination reaches peaks in excess of720

0.2mm/s. Since the vibration signals of the building foundations are not influenced by the person

walking on another floor of the building, the virtual sensor is unaffected and thus able to recover

the uncontaminated signal.
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Figure 28: Time series of measured vertical vibration signal of the fifth floor (E) triaxial sensor compared to virtual

sensor based on foundation sensor signals. A signal contamination is present in the region highlighted in yellow.

Figure 29 shows the KBF time series associated with the signal contamination event shown in

Figure 28. This time series was obtained from the velocity measurements using Equation 31. In725

this example, the KBF value of the uncontaminated vibration level stays well below 0.05mm/s,

which is considered to be an excellent comfort level. The measured and the virtual sensor signal

align very well in the first part of the time series, indicating that the identified filters accurately

capture the vibration response of the building. The contamination in the measured signal leads to

a massive increase of the KBF value, peaking at 0.13mm/s, which does not occur in the virtual730

sensor data.

Such measurement errors are usually identified in a manual process and are subsequently ex-

cluded from the vibration assessment. Using the virtual sensing approach, a time series data with

less contamination can be obtained which facilitates assessment of long-term monitoring data with
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Figure 29: Time series of KBF vibration assessment criterion for signal contaminated by person walking close to

sensor.

a high degree of automation. Another possible application of the virtual sensing approach is to735

provide assistance in the detection of signal contamination. As demonstrated in Figures 28 and 29,

the difference between the virtual sensor and the measured signal increases significantly in case of

contamination, which can be used as in indication for possible distortion of the recorded data.

6. Benefits and Limitations

The multiple-input/multiple-output filter model adopted for vibration prognosis in this paper is740

able to generate vibration prognoses, which match measurements much better than prognoses based

on a single-input topology, as demonstrated in Section 5.1. However, a drawback of the formulation

is the relatively high numerical cost of the filter coefficient identification, especially with large

numbers of input channels. The performance was significantly increased by using interpolation

functions, as demonstrated in Section 4.4, but improvements may be achieved by further exploiting745

the mathematical structure of the underlying least squares problem.

The IFIR identification scheme is non-parametric and data-driven, which results in some bene-

fits. For example, a detailed understanding of the structural mechanics, as needed in the methods

proposed by Mendes et al. [13] and Sanayei et al. [23], is not required. Further, several previ-

ously proposed methods require operational modal analysis [29, 31], which is circumvented by the750

presented method.

As the presented method is purely data-driven, it can only be used to create vibration prognosis

time series for structural designs, which have already been built. This is the case since measurement
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data of the actual structure is needed to identify the impulse response filters. Thus, in most practical

cases, the presented method can not be used to produce a prognosis during the design phase.755

Impulse response filters are based on the assumption of linear time-invariant behaviour. In

terms of structural dynamics, this mainly means that amplitude-dependent damping effects are

not considered [59]. The soil-structure interaction is also greatly simplified by this assumption

[60]. Time-invariance can be justified, as ambient excitation exist predominantly, the observation

periods are rather short, and within that time, exogenous effects on the dynamics are negligible.760

This conclusion is substantiated by the excellent accuracy achieved in Section 5.1.

The analysis in Section 5.2 and 5.3 shows that vibration estimation based on ground floor mea-

surement signals leads to significantly increased quality as compared to soil measurement signals.

In addition to complex soil-structure interactions which exacerbate accurate prognosis based on soil

sensor data, the assumption of time invariance also increases the errors. A passing train changes765

its location relative to the building while moving on its tracks, so the transmission characteristics

change over time. The filter identification method however can only capture the transmission of

signals in a time-averaging sense, which inevitably leads to an inaccurate model. This is contrasted

by the transmission from the ground floor to the upper levels: Due to the high stiffness of the

foundation, its vibrations are much more coherent with the floors of the building than those of the770

surrounding soil. Hence, the position of the train barely influences the transmission characteristics,

so that filters derived on the basis of ground floor vibrations can provide a significantly better

prognosis.

When only few sensors are used for the input, the method exhibits a systematic underprediction

of the signal amplitude, as evident from the spectra shown in Section 5. This underprediction775

originates from the least-square identification scheme and is thus inherent to the method. As the

number of sensors in a given measurement setup is finite, there is always some contribution of vi-

bration energy which is not captured by any of the sensors. Consequently, the missing energy in the

input channels leads to an underprediction of the energy at the output channels. From the stand-

point of vibration assessment, this is not ideal, since a conservative method which overestimates the780

vibration level would be preferable. In practice, this problem can be overcome by estimating the

relative prognosis error from a representative measurement data set and by subsequently deriving

a safety factor to correct the error.
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7. Conclusion and outlook

In this paper, we presented a novel identification method multiple-input/multiple-output IFIR785

filters. Vibration measurement data was obtained from an existing timber building using sensor

positions in the soil, on the ground floor and several upper level floors. The validation of the vibra-

tion prognosis using the FIR filters shows that the prognosis method yield adequate accuracy for

practical vibration assessments. We were able to identify filter models that can generate reasonable

vibration prognosis data for train types, which were not included in the identification data set. The790

quality of the results shows that the method is reliable even for contaminated data recorded at a

construction site. Further, the prognosis method allows the calculation of virtual sensor signals

based on real sensors located on the foundations of the building. These virtual sensors enable

long-term monitoring campaigns with accurate vibration estimations for all levels of the building.

In future work, the identified FIR filters can be used for the validation of finite element models of795

timber structures. Such validations can be achieved by directly comparing the impulse response of

the simulation model with the FIR filters identified from measurement data. The validated models

subsequently enable an improvement of modelling approaches for structural design. Beyond the

scope of timber buildings, the identification method is also applicable to other problems involv-

ing dynamically loaded engineering structures. For example, the virtual sensor prognosis can be800

employed for applications such as structural health monitoring and damage localisation [61].
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