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Read! in the name of your Lord who created Man from a clinging
substance.

Read: Your Lord is most Generous,– He who taught by the pen–
Taught man that which he knew not.

Al-Quran 96:1-5

Knowledge is of no value unless you put it into practice.
Anton Chekhov
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A B S T R A C T

Because of their excellent specific strength and stiffness properties, fiber-reinforced
polymers (FRPs) have become increasingly material of choice for advanced industries
such as aerospace and wind turbines. One of the design limiting factors in FRPs is
their lower compression strength in comparison to their tensile strength. Microbuck-
ling (MB) is the dominant failure mode in unidirectional FRPs under predominant
compression loads. The main factors dictating failure under compression dominated
loads are the fiber misalignment and the nonlinear material behavior. Because of high
sensitivity of MB failure to the fiber misalignment, the MB strength shows uncertainty.
To enable reliable failure prediction, a quantification of the strength uncertainty is re-
quired.
The current investigation aims for a probabilistic prediction of MB failure under axial
compression and combined compression-shear loads. Using a newly in-house devel-
oped combined loading fixture, a statistically significant number of specimens was
tested under aforementioned load cases. Using the experimental strain measurements,
a probabilistic failure envelope in strain space is presented. Results of the axial com-
pression load case are interpreted in the context of the notion of the effective misalign-
ment angle using an analytical model. A failure envelope in stress space is derived
using an analytical solution for the combined compression-shear load cases and the
effective global misalignment angle calculated from the measurements. Other experi-
mental aspects of the problem are also investigated such as the material characteriza-
tion and measurements of the fiber misalignment.
To represent the fiber misalignment in numerical models for the prediction of MB
strength while preserving the spatial correlation information, the spectral representa-
tion method is employed in this investigation. A large number of realizations were
developed based on spectral densities calculated from the measurements of the fiber
misalignment. The numerically determined probabilistic failure envelopes in stress
and strain spaces are presented with lower percentiles of distributions of failure. The
failure enveloped are also compared against classical failure criteria from the litera-
ture to highlight the limitations of the classical criteria.
Since the sizes of the model and the experimental specimen were different, a compari-
son of numerically predicted strengths against experimentally obtained results under
the axial compression loads was performed on the basis of a scaling law. A discus-
sion on differences in the shape of the failure envelopes is provided. Conclusions are
drawn at the end and an outlook for further research on the topic is given.

keywords : Fiber-reinforced polymers (FRPs); Microbuckling (MB); Compression
and Shear; Probabilistic failure envelopes; Statistical properties/CT analysis
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Z U S A M M E N FA S S U N G

Faserverstärkte Verbundwerkstoffe (CFK/GFK) sind aufgrund ihrer ausgezeichneten
spezifischen Festigkeits- und Steifigkeitseigenschaften zunehmend zum bevorzugten
Material für hochentwickelte Industrien wie die Luft- und Raumfahrt und Wind-
kraftanlagen geworden. Einer der konstruktionsbegrenzenden Faktoren bei CFK/GFK
ist ihre geringere Druckfestigkeit im Vergleich zu ihrer Zugfestigkeit. Microbuck-
ling (MB) ist die vorherrschende Versagensart bei unidirektionalen CFK/GFK unter
vorherrschenden Druckbelastungen. Die Hauptfaktoren, die das Versagen bei Druck-
belastungen diktieren, sind die Faserimperfektionen und das nichtlineare Materialver-
halten. Aufgrund der hohen Empfindlichkeit des MB-Versagens gegenüber der Faser-
imperfektionen ist die MB-Festigkeit mit Unsicherheit behaftet. Um eine zuverlässige
Versagensvorhersage zu ermöglichen, ist eine Quantifizierung der Festigkeitsunsicher-
heit erforderlich.
Die aktuelle Studie zielt auf eine probabilistische Vorhersage des Versagens von MB
unter axialer Druck- und kombinierter Druck-Schub-Belastung ab. Unter Verwen-
dung einer neu entwickelten kombinierten Prüfvorrichtung wurde eine statistisch
signifikante Anzahl von Proben unter den vorgenannten Lastfällen geprüft. Anhand
der experimentellen Dehnungsmessungen wird eine probabilistische Versagenskurve
im Dehnungsraum dargestellt. Die Ergebnisse des axialen Druckbelastungsfalls wer-
den im Zusammenhang mit dem Begriff des effektiven Versatzwinkels anhand eines
analytischen Modells interpretiert. Unter Verwendung einer analytischen Lösung für
den kombinierten Druck-Schub-Lastfall und des aus den Messungen berechneten ef-
fektiven globalen Versatzwinkels wird eine Versagenshüllkurve im Spannungsraum
abgeleitet. Andere experimentelle Aspekte des Problems werden ebenfalls untersucht,
wie z. B. die Materialcharakterisierung und Messungen der Faserimperfektionen.
Um die Faserimperfektionen mit Berücksichtigung auf räumliche Korrelationsinfor-
mation in numerischen Modellen zur Vorhersage der MB-Festigkeit darzustellen, wird
in dieser Untersuchung die Methode der spektralen Darstellung verwendet. Auf der
Grundlage von Spektraldichten, die aus den Messungen der Faserverschiebung berech-
net wurden, wurde eine große Anzahl von Realisierungen erstellt. Die numerisch
ermittelten probabilistischen Versagenskurven in Spannungs- und Dehnungsräumen
werden mit unteren Perzentilen der Versagensverteilungen dargestellt. Die probabilis-
tische Versagenskurven werden auch mit klassischen Versagenskriterien aus der Lit-
eratur verglichen, um die Grenzen der klassischen Kriterien aufzuzeigen.
Da die Größen des Modells und der experimentellen Probe unterschiedlich waren,
wurde ein Vergleich der numerisch vorhergesagten Festigkeiten mit den experimentell
ermittelten Ergebnissen unter den axialen Druckbelastungen auf der Grundlage eines
Skalierungsgesetzes durchgeführt. Es wird eine Diskussion über die Unterschiede
in der Form der Versagenskurven geführt. Abschließend werden Schlussfolgerun-
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gen gezogen und ein Ausblick auf weitere Forschungsaktivitäten zu diesem Thema
gegeben.

schlagworte : Faserverstärkte Verbundwerkstoffe; Microbuckling (MB); Druck
und Schub; Probabilistische Versagenskriterien; Statistische Eigenschaften/CT-Analyse
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1
G E N E R A L I N T R O D U C T I O N

1.1 motivation and aim

Advanced structural components are increasingly being made out of fiber reinforced
polymers (FRPs) because of their exceptionally high strength and stiffness to weight
ratios. The fields of applications of FRPs include highly loaded components in ad-
vanced engineering structures such as blades of wind turbines, structural components
of modern rockets, and fins, rudders and fuselage panels of modern aircrafts, among
others [20, 102]. Economic and environmental factors are the main driving factors
behind this rapid shift in industry from metals and alloys towards composites. The
advantages of using FRPs in advanced structures are typified by modern aircrafts such
as Airbus A380 and Boeing 787 Dreamliner with more than half of their structures by
weight comprising of FRPs, see Fig. 1.1.

The structures are generally made of multidirectional (MD) laminates undergo-
ing complex stress states during service. Unidirectional (UD) layers are the building
blocks of the MD laminates. The UD layers mainly support axial loads in the nominal
fiber direction of the layer. However, the compression strength of UD layers can be
as low as 60% of their tensile strength [24]. Because of this reason, strength under
compression is a highly relevant mechanical property.

During the early days of commercial usage of FRPs, the strength under compression
was predicted based on simple assumptions of fibers considered as straight beams
supported by elastic matrix. Such predictions differed significantly from experimen-
tal observations of compression strength. These differences in combination with vary-
ing values of experimentally observed strengths lead to highly conservative design
practices.

Fibers and matrix comprise different materials with differences in their thermal
properties. Different manufacturing techniques, such as prepreg lamination or resin
transfer moulding (RTM) or 3D printing, are employed for manufacturing compo-
nents from FRPs. The matrix is cured in all the techniques by application of heat and
pressure, either in autoclaves or through other means such as laser heating. Heating
and cooling during these manufacturing processes expands and contracts fibers and
matrix at different rates. This gives rise to misalignment of fibers which in turn is a
decisive factor in lower value of strength under compression dominated loads along
with material nonlinear shear behavior. With this knowledge at hand, the prediction
models for compression behavior improved over time. With the rapid advances in
computing and rise of numerical modeling, the effects of different parameters were
explored further in detail. The effects of fiber misalignment on variation in strength

1



2 general introduction

(a) Carbon fiber reinforced polymers (b) Aluminum

Figure 1.1: Usage of different materials in Boeing 787 Dreamliner. Dark colors represent com-
ponents made of the corresponding material [20].

were also researched. However, mostly idealized or random representation of the fiber
misalignment was modeled. For quantification of compression failure in an accurate
manner, realistic representation of the fiber misalignment in the numerical models is
needed .

In order to perform highly detailed analysis, the exact information about the extent
of the fiber misalignment in the volume of a material is required. Modern scanning
techniques such as confocal laser microscopy or computer tomographic scans allow
for performing volumetric measurements over significant sizes for quantifying the
fiber misalignment. Using a suitable scanning technique, the material imperfections
in the form of the fiber misalignment can be characterized and used in prediction
tools for failure under compression dominated loads.

Since failure under compression loads is a stochastic quantity, therefore, quantifica-
tion of the variation in strengths under compression loads is of utmost importance.
The variation of strengths is not only limited to axial compression loads, but also
affects the failure under combined loads where compression is dominant. The non-
linear shear behavior of FRPs, specifically the local yielding of the matrix material, is
decisive in compression failure. Hence, failure under combined compression-shear ap-
plication of loads becomes of high interest. Therefore, detailed failure analyses under
these load cases need to be performed.

Experimental investigation generally serve as a reference. For this purpose, detailed
experimental testing under combined compression-shear loads is needed to round off
this work.

The main aim of this work, therefore, is the development of an experimental and a
numerical methodology to determine the probabilistic failure envelopes under com-
bined compression-shear loads for unidirectional fiber reinforced polymers. Using the
peak load carrying capacity (i.e. strength) of the UD layers, the probabilistic failure
envelopes are determined in the form of criterion. The strength of the material under
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predominant compression loads is at the core of the current work. Other post peak
related phenomenon of the MB failure, such as band orientation, band width, lock-up
angle, band propagation stress, are out of scope of this work.

In this thesis, different aspects of the problem ranging from characterization of the
fiber misalignment to realistic representation of said misalignment in numerical mod-
els are tackled. Detailed numerical analyses as well as experimental testing under
combined loading were carried out to come up with the descriptions of probabilis-
tic failure envelopes. The proposed methodologies are meant to expand the existing
knowledge about failure under compression and combined compression-shear loads
on one hand, and to quantify the uncertainties of the failure under aforementioned
loads on the other, to finally exploit the true potential of FRP based structures to their
full extent.

1.2 structure of the thesis

This thesis is divided into eight chapters.
After the brief introduction in chapter 1, chapter 2 presents a detailed overview of

the current state of the art. First, the phenomenology of failure under compression
loads is stated. Modeling of compression failure using different approaches is dis-
cussed next, followed by the measurements of material imperfection in the form of
the fiber misalignment. The history of experimental testing of failure under pure axial
compression is briefly discussed. The different approaches employed by researchers
for investigating failure under combined compression-shear loads are presented. Fi-
nally, the open questions from the state of the art and the related objectives of the
current work are listed.

Chapter 3 starts of with the choice of the material investigated and the specimen
manufacturing technique. It is followed by the characterization of mechanical proper-
ties of the material, including the nonlinear shear behavior. Since the fiber misalign-
ment along with nonlinear shear behavior of the material are the key factors affecting
failure under compression dominated loads, three dimensional measurements of the
fiber misalignment using computer tomography scans are presented.

In chapter 4, the statistical properties of the fiber misalignment are quantified in
the form of spectral densities. Spectral densities have an additional advantage of pre-
serving spatial correlation of a quantity over the commonly used representation of
mean and standard deviations. Using the spectral representation method with the
characterized spectral densities as an input, the topologies of the fiber misalignment
are generated for 3D and 2D.

Chapter 5 and 6 can be considered as the core work of this thesis. In chapter 5,
the experimental determination of failure is investigated. Building on the existing
methods for testing of failure under compression, a novel testing concept for failure
under combined compression-shear is presented. Besides pure axial compression, two
distinct cases of combined compression-shear loads are considered. Experiments are
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carried out in a probabilistic manner and results are shown in different forms, such
as a comparison of the resulting failure stresses of different load cases, among others.
Failure envelopes in stress and strain spaces based on experimental testing to failure
are presented and the expression forms of failure envelopes are given.

Chapter 6 focuses on the numerical modeling aspects of the work. It starts of by
presenting the representative finite element model and discussing the material model
employed. A comparative investigation on using 2D and 3D modeling using homoge-
nized modeling approach is presented. Comparison of 3D models based on different
inputs of spectral densities of the measurements of the fiber misalignment is followed
by a comparison of the stress-strain behavior of a representative 3D model under dif-
ferent load cases. Finally, failure envelopes in strain and stress spaces using numerical
modeling are presented. Using the results of numerical modeling, functional forms of
failure envelopes are defined. A color code to represent the probability of failure is
also given in the figures representing numerical failure envelopes.

Chapter 7 provides a comparison of the results from the experimental and the
numerical approaches. Since the sizes of specimens in experimental testing and nu-
merical modeling are different, the comparison of failure under axial compression is
carried out using a scale law. This is followed by a discussion of differences in the
shapes of the resulting failure envelopes from both approaches. The effects of a shift
in mean fiber misalignment on failure prediction using the numerical model are also
presented.

Chapter 8 rounds off the work by drawing conclusions and summarizing major
findings. At the end, open questions are shortly discussed, giving an outlook into
further investigations for future works.



2
S TAT E O F T H E A RT

Fiber reinforced composite structures generally comprise multidirectional (MD) lami-
nates loaded in complex stress states during their lifetime. The MD laminates consists
of unidirectional (UD) layers. The UD layers support axial loads in the nominal fiber
direction of the corresponding layers. Therefore, failure of UD layers is the of pri-
mary importance. Hence, a literature review on the failure analysis of unidirectional
fiber reinforced polymers (FRPs) plies under predominant compression loads is given
in this chapter. Different aspects related to the compression failure of unidirectional
FRPs are reviewed, such as experimental characterization and testing, analytical and
numerical modeling. Open questions and objectives are finally drawn based on the
literature review. At first, the basic terminologies relevant to the compression failure
are presented.

2.1 phenomenology

Before reviewing further details related to modeling, imperfection measurements, and
testing to failure of FRPs, the phenomenology pertaining to the failure under compres-
sion loads is presented. Since FRPs display compression strengths significantly lower
than the tensile strengths, compression failure becomes a critical design criterion. Typ-
ical FRPs comprise stiff fibers (carbon, glass, ceramic etc.) embedded in compliant ma-
trix. Ideally, in unidirectional FRPs, the fibers should be completely aligned with the
nominal fiber direction. However, the misalignment is introduced in the fibers during
manufacturing. This misalignment, besides the material nonlinearities, is responsible
for the lower compression strengths compared to their tensile strength.

The most common failure mode for FRPs under compression loads is known as
microbuckling (MB). Rosen [92] stated that, in principle, MB can transpire along two
competing modes as shown in Fig. 2.1. In the transverse extensional mode, the neigh-
boring fibers deform in opposite directions resulting in a half wavelength phase shift
in-between the fibers as sketched in Fig. 2.1a. In the shear mode of MB failure, all the
fibers deform in the same direction and the resulting deformed fibers are without a
phase shift as can be seen in Fig. 2.1b. In modern industrial grade FRPs with high
fiber volume fractions, only shear mode of MB is relevant. A schematic representation
of different stages of the shear mode MB failure is shown in Fig. 2.2. In an idealized
form, the misalignment is represented as an initial angle θo as shown in Fig. 2.2a.
When compression load is applied, misaligned fibers rotate and induce shear stresses
in the matrix. With increasing amount of compression loads, the material hardens and
the shear stresses localize in the form of a shear band (also known in literature as kink
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(a) (b)

Figure 2.1: Fibre buckling modes according to Rosen [92]. In Fig. 2.1a the ‘extensional’ or
‘symmetrical’ mode is shown. It is only of theoretical interest for high volume
fraction FRPs. In Fig. 2.1b the ‘shear’ mode is depicted. Shear mode is relevant MB
failure mode in high volume fraction FRPs.

band), see schematic in Fig. 2.2b and an optical microscopy image by Sun et. al. [105]
near peak load. When the geometrical softening in the misaligned region out paces
the material hardening in the incipient shear band, failure occurs with a sudden drop
in applied load [24, 36, 46]. The carried peak load at which failure occurs defines
the compression strength of the material. The MB failure shows a sharp snap-back
behavior in the stress-strain response [16]. The fibers break in bending at both ends
of the shear band way past the peak load resulting in compression and tension sur-
faces of the failed fibers, see schematic in Fig. 2.2c and an optical microscopy image
after peak load in Fig. 2.2e. The compression strength of the material is at the core of
the current work. Other terminologies associated with the MB failure mode, such as
band orientation, band width, lock-up angle, band propagation stress, are related to
post peak analysis and are hence, out of scope of this work. Further discussions and
elaborations on these terminologies can be found in the cited literature [33, 46].

Although shear mode MB is the most common failure mode for frequently used
glass or carbon fiber FRPs, other failure modes can be observed for some loading
conditions or typical composites. Such an example can be found in the works of Piggot
[88], who observed failure in the form of fiber crushing for weak fibers embedded in
strong matrices along with longitudinal debonding of fiber matrix interfaces. Oguni
and coworkers [86] investigated 50% E-glass/Vinylester laminates and found failure
mode transitioning from only splitting to MB upon change of load from uniaxial to
multi-axial loading as seen in Fig. 2.3. Splitting was also shown to initiate MB failure
as shown in Fig. 2.3b. Prabhakar and Waas [90] analyzed competing failure modes of
MB and splitting through micromechanical models at different model sizes. Although
there are no hard defined limits of existence of different failure modes in FRPs, fiber
crushing and splitting tend to occur in FRPs comprising weak fibers in stronger matrix
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θ0

(a)

θ

(b) (c)

(d) (e)

Figure 2.2: Representation of key stages in the microbuckling (MB) failure. Manufacturing
induced initial misalignment θo induces shear in the matrix leading to material
hardening, see Fig. 2.2a. Fibers rotate at the location of initial misalignment under
compression loads, leading to a localization into a shear band (also known as kink
band) around peak load increasing the angle θ, see schematic in Fig. 2.2b and an
optical microscopy image by Sun et. al. [105] near peak load in Fig. 2.2d. After or
at peak load, debonding and/or fiber fracture occurs as sketched in Fig. 2.2c and
shown by an optical microscopy image after peak load in Fig. 2.2e [105].
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(a) Failed specimen with only longitudinal splitting (b) Longitudinal splitting induced kink
band formation

Figure 2.3: Splitting failure mode in the experiments of Oguni and coworkers [86]

and for low to medium fiber volume fractions. Hence, fiber crushing and splitting as
competing modes of failure need to be considered for such materials.

2.2 modeling of compression failure

The failure of industrial grade high volume fraction FRPs is a complex multi-staged
phenomenon. The complexities and high relevance for industrial applications led to
extensive research on the topic over the course of multiple decades. The modeling of
compression failure has been done extensively using analytical and numerical tech-
niques. A concise review of the literature with a focus on these modeling techniques
for compression failure is carried out below.

2.2.1 Analytical models

The lower compression strength compared to tension strength was first observed by
Dow and Gruntfest [83]. This observation rose interest in modeling the failure under
compression for FRPs. The first modeling prediction using a closed form analytical
solution is credited to Rosen [92]. Two modes of MB failure were defined by Rosen,
namely the transverse extensional mode and the shear mode. The model is based on
the assumption of perfectly aligned elastic fibers embedded inside an elastic matrix
material. Failure is considered to be the elastic buckling of the fibers and a simple
empirical solution for compression strength was suggested as:

σc
11 =

Gm

1− v f
(2.1)

where σc
11 is the compression strength, Gm is the shear modulus of the matrix and v f is

the fiber volume fraction. This model overestimates strength by a factor of as much as
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4 [21]. Moreover, the experimentally observed strength variations can not be explained
through this model. Other similar models considering failure under compression to
be an elastic MB phenomenon can also be found in literature [57, 58, 64, 96], however,
these models add minor improvements on the pioneering analysis of Rosen [92].

Argon [8] realized the importance of initial misalignment of fibers θo and the shear
behavior of the matrix for prediction of strength under compression. Based on the
argument of plastic microbuckling of initially misaligned elastic fibers embedded in a
matrix with elastic-perfect plastic shear behavior having yield strength τy, the strength
under compression was given by the Eq. 2.2a. Refining Argon’s model further to
include the effects of shear nonlinearity of matrix τ12(γ) as a function of shear angle
γ, Budiansky [21, 23] presented a generalized solution given in Eq. 2.2b. In this model,
the total fiber rotation is given by the initial fiber misalignment θo and the matrix
shear deformation γ. The matrix nonlinearity is modeled generally by ideal plasticity
or a nonlinear Ramberg-Osgood plasticity model. In case of nonlinear plasticity, the
compression strength is given by solving the maximization problem over γ. In case of
ideal plasticity, Budiansky’s model of Eq. 2.2b regresses to Argon’s model of Eq. 2.2a.

σc
11 =

τy

θo
(2.2a)

σc
11 = max

γ

(
τ12(γ)

θo + γ

)
(2.2b)

The variation in experimental outcomes of testing for compression strength can be
explained by dependence on initial misalignment θo as suggested by Argon’s and
Budiansky’s models.

Building on the previous works of Rosen and Budiansky, among others, Steif [103,
104] presented a theoretical model to investigate failure under compression. Using a
single misaligned fiber as a representative, analysis was carried out in two parts. In
the first part of the analysis [103], the strain at the failure was calculated and found
to be similar to experimentally observed failure strains in FRPs. In the second part of
the analysis [104], the focus was on the calculation of strains at final failure. It was
argued by Steif that the fibers break in tension at the ends of the kink band, and the
fiber breakage was recognized to be the limiting step in failure under compression.
Experimental evidence [52] and numerical analysis [16] by later authors suggests that
fibers break in bending with tension and compression surfaces.

Effect of fiber bending stiffness on the compression failure was studied analytically
by Fleck et. al. [47]. Using a smeared representation of homogenized fiber-matrix
material, the corresponding equation system was developed. Fiber diameters were
introduced as an intrinsic length scale, giving rise to couple stresses. Considering or
neglecting fiber bending stiffness gave rise to classification of the terms ‘kinking the-
ory’ and ‘bending theory’, respectively. Detailed analysis using these models showed
that for typical undulations of fibers found in common composites, fiber bending stiff-
ness has negligible effect on prediction of compression strength and can be neglected.
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Fiber bending stiffness is, however, important for prediction of other aspects of the
compression failure, such as kink band width and kink band orientation. Further
comprehensive reviews on analytical modeling can be found in the cited literature
[24, 33, 46, 97].

2.2.2 Numerical models

With the availability of computational capabilities and use of numerical techniques
such as finite element modeling, the numerical prediction of failure under compres-
sion loads became common since the 90s. Numerical modeling of compression failure
can be broadly categorized into two types of approaches namely, micromechanical
approaches and homogenized approaches.

2.2.2.1 Micromechanical numerical models

2D and 3D micromechanical models represent a section of a single UD-ply with layers
of fiber and matrix sections. These models result from the intent of direct microme-
chanical representation of involved mechanisms at microscale. Such models allow for
accurate representation of different failure mechanisms, such as MB, splitting, and
fiber crushing. The key challenges with such approaches are associated with diffi-
culty in characterizing the material properties of constituent fiber, matrix and their
interfaces separately. A summary of micromechanical approaches is presented in Ta-
ble 2.1.

Following their experimental outcomes on compression failure [70, 71], Kyriakides
and coworkers modeled the FRPs as alternating periodic layers of imperfect fibers
inside a matrix in 2D to predict the failure under compression loads [69, 71]. Differ-
ent variations of the model with linear and nonlinear material properties for fiber
and matrix were analyzed. The effect of fiber nonlinearity was found to be negligible,
whereas the nonlinearity of the matrix material modeled as elastic-plastic isotropic
solid (J2 flow theory of plasticity) had significant effects on failure prediction. These
predictions were in line with the earlier analytical predictions [21]. The effects of the
fiber misalignment were studied by modeling the fibers as a uniform idealized sinu-
soidal (infinite band), and as a sinusoidal misalignment with decaying amplitudes
in the transverse direction starting at different locations of the model. Strong depen-
dence of compression failure on the fiber misalignment was found. The same group
of Kyriakides et. al. continued the analysis further on failure under compression. The
differences between the predictions of 2D and 3D models were analyzed by Hsu et.
al. [59]. The effect of matrix compressibility was investigated by Vogler et. al. [117]
through a 3D model by using a dilatant Drucker-Prager material model, and it was
found to affect kink band properties. More importantly, it was found out that the
nonlinear material properties of the pure matrix resin differ from those of the in-situ
matrix. Transversal propagation of kink band originating from a local imperfection at
an edge was also studied in this model. The phenomena in post peak response relat-
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ing to plateau stress and band broadening were investigated by Hsu et. al. [60] using
a 3D plane strain micromodel with periodic boundary conditions.

Micromechanical approaches generally assume a periodic arrangement of alternat-
ing fibers and matrix layers in the models. To verify the effects of this idealistic mod-
eling assumption about fiber topology, Lee and Waas [72] modeled non-uniform fiber
spacing and found it to have an insignificant effect on the prediction of the compres-
sion strength. Following this work, Yerramalli and Waas [136] compared modeling
of 2D plane strain and 3D model of a cylindrical specimen. Fibers were modeled as
orthotropic, whereas matrix was modeled with J2-plasticity. Matrix hardening curves
were calibrated to the torsion response from an experimental specimen. It was con-
cluded that the fiber bending stiffness and the complex 3D stress state in the matrix
have significant effects on the peak load prediction. Since the model dimensions used
were below half a millimeter, these results are in line with the bending theory of Fleck
et. al. [47]. These results showing effects of the fiber bending stiffness have a theoret-
ical importance, but the undulations found in common composites are on the order
of a few millimeters at which scale the kinking theory of Fleck et. al. [47] becomes
relevant and fiber bending stiffness can be neglected, see Section 2.2.1.

Feld et. al. [44] investigated the dependence of the peak load and dissipated ener-
gies on the initial fiber misalignment using a simplified 2D micromechanical model.
The model considered the influence of a shear pre-stress in combination with an in-
elastic constitutive behavior of the matrix modeled using the damage theory. The
dependence of the peak load on the fiber misalignment and the shear pre-stress was
shown via statistical analysis. Wind at. al. [129] used a finite strain model, based on
the work of Jensen and Christoffersen [63], in a plane strain micromechanical setting
to investigate the relationship between fiber rotation and kink band angle. The band
angle was found to be dependent on the width of the region of initial misalignment. It
was also found that the condition of the volumetric incompressibility in the laminate
holds approximately i.e. band angle was half of the observed fiber rotations.

Although most of the micromechanical models found in literature focus on model-
ing fibers and matrix with plasticity theory, some authors opted for interface debond-
ing and matrix damage. Matrix damage and debonding between fibers and matrix
can be considered as a diffuse phenomenon at a microscopic scale, either distributed
over a region of the model or in a localized space. Prabhakar and Waas [90] mod-
eled interaction between kinking and splitting failure through the use of a 2D stripes
model with cohesive interfaces depicting mode I and mode II debonding. The matrix
nonlinearity was accounted for using J2-plasticity. Parametric studies were performed
by varying the interface strengths for mode I and mode II. The results showed that
when lower values of interface strength of mode II were used, fiber matrix debonding
competed with MB failure. It was concluded that in such cases, splitting failure mode
in the form of fiber matrix debonding should also be accounted for in addition to
kinking failure mode. Pimenta et. al. [89] also investigated the effects of debonding
competing with MB failure in their 2D plane strain models. Bishara et. al. [16] per-
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Figure 2.4: Longitudinal stress against longitudinal strain under pure compression for differ-
ent global misalignment values by Bishara et. al. [16]. Symbol λ represents ampli-
tude of the modeled sine wave, and L represents model length. The figure shows
typical snap-back response observed in modeling of the compression failure of
FRPs and the dependency of the peak load on the modeled fiber misalignment.

formed progressive failure analyses using 3D micromechanical models representing
a slice of the material. It was revealed that fibers fail under bending at the edges
of the kink band with resulting tension and compression surfaces on failed cross-
section of the fibers. A strong correlation between fiber tensile strength and the band
angle, anticipated analytically by Budiansky et. al. [22], was shown to exist in the nu-
merical models. Parametric studies on local and global wavelengths and their effects
on the resulting compression strength and kink band properties were investigated
in detail, see Fig. 2.4 for a representative stress-strain response under longitudinal
compression. In Ref. [17], the authors combined the micromechanical model of the
0◦ layer with the neighboring layers in a micro-meso hybrid approach. The off-axis
plies were considered as a continuum represented by a transversely isotropic consti-
tutive model. The interaction of different failure mechanism and the effects of matrix
failure in the neighboring plies on the MB failure in 0◦ plies were explored. Sun et.
al. [105, 106] modeled failure under compression on similar lines to Bishara et. al.
[16]. In this model, voids were also considered, besides the fiber misalignment, as
an additional initiation point for the kink band localization. Model predictions were
compared against experimental results. Initial results of micromechanical models for
loading under combined compression-shear were also presented. Another interesting
micromechanical analysis incorporating the fiber misalignment and interface defects
can be found in Ref. [108].

The micromechanical models presented heretofore represent the fiber misalignment
either as an infinite band of misalignment transverse to the nominal fiber direction or
an elliptical/circular patch of misalignment. These idealistic assumptions are not very
well founded. The micrographs highlighted that the fibers have a rather correlated
behavior with typical wavelengths [87]. On top of that, the values of misalignment
angles or the amplitudes of misalignment are subject to significant variations within
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UD plies [87, 137] and hence, it is unclear how single input values of the misalignment
can be extracted from physical measurements. Occasionally, some authors assume an
‘effective’ misalignment angle and relate the experimental strengths with a certain
percentile of the measured distribution of the fiber misalignment [127].

Recently, there has been growing interest in the scientific community to account
for the aforementioned variations of the fiber misalignment in the micromechanical
models. An interesting contribution to incorporate randomness of the fibre misalign-
ment into the micromechanical model is from Bednarcyk et. al. [13, 91]. By using a
High-Fidelity Generalized Method of Cells micromechanical model (HFGMC) and
probability-weighted averaging of the stress concentration tensor of the subcell based
on probability density function representation of the fibre misalignment, effective ma-
terial moduli and damage initiation envelopes under varying input properties were
predicted. Sebaey et. al. [98] presented an approach to transfer the misalignment mea-
sured experimentally into a micromechanical model. Varandes et. al. [114] presented a
micromechanical approach, based on the algorithm by Sebaey et. al. [98] and Catalan-
otti and Sebaey [26], which can account for variations of the initial fiber misalignment
via a combination of stochastic process and an optimization procedure. Linear elastic
cylindrical fibers with varying fiber misalignment were modeled inside a damage de-
gradeable matrix to be a representative volume element (RVE). It was found that the
variation of the fiber misalignment only affects failure under longitudinal compres-
sion, whereas longitudinal tension was indifferent to these uncertainties. Camarena
et. al. [25] presented a deterministic FE micromechanical model which was found to
be highly sensitive to the initial fiber misalignment. The physically measured fiber
misalignment was then added to the micromechanical model and the model predic-
tions were compared against experimental testing results. A comparison of square and
hexagonal packing of fibers in micromechanical model and their comparison with the
test data was also presented. Other approaches to account for the variations of the
fiber misalignment, such as kriging and surrogate modeling, have also been recently
presented [37].

2.2.2.2 Homogenized numerical models

Analytical and micromechanical approaches discussed so far led to the understand-
ing of the mechanisms of failure under compression, the interaction between differ-
ent failure modes, and the morphology of the resulting kink band. However, they
are limited in representation of the realistic fiber misalignment observed in physical
measurements and hence cannot capture the strength variations under compression
for realistic materials. Although some micromechanical modeling approaches have
recently accounted for the variations at the microscale [25, 26, 98, 114], prohibitively
high computational costs, the possibility to model only limited sizes, and comparative
difficulties involved in generating such micro models with inclusion of fiber misalign-
ment variations makes them weaker contenders for detailed probabilistic analysis of
FRPs.
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Driven on the basis of closed-form micromechanical methods of preserving simpli-
fied representation of the constituents, an alternate class of computational approaches
can be found in the literature. Such approaches are modeled using homogenized or
smeared material representation. A handful of these approaches consider an idealis-
tic representation of the fiber misalignment and focus on the peak load prediction,
the aspects related to the kink band morphology, and the plateau stress for energy
dissipation because of failure under compression. A short summary of homogenized
approaches found in literature is given in Table 2.2.

Investigations by Morais and coworkers [80, 82] used a unit cell comprising a single
fiber and the surrounding matrix for prediction of the peak load. Roles of the ma-
terial nonlinearity and the fiber misalignment were considered to be a fundamental
aspect. Following FE modeling in 2D and 3D, a simplified closed form solution was
also provided [81]. Davidson and Waas [36] used a 2D model similar to Morais and
coworkers to show that sufficient shear hardening can offset geometrical softening
because of fiber rotation, and that the MB failure doesn’t happen at first yielding of
the matrix. Extending the earlier works of Guimard et. al. [53], Feld et. al. [45] used
a homogenization strategy based on energy consumption and defined energetic po-
tential for a composite ply. The works of Wadee and coworkers [120, 121] and later
Völlmecke et. al. [119, 138] used abstract representation of the composite through a
set of rheological elements. These contributions focused on representation of perfectly
aligned fibers in combination with modeling nonlinearities, either material nonlinear-
ity using damage theory [45, 53] or geometric nonlinearity using rheological elements
[119–121, 138], to predict the band properties and post peak response, hence, the peak
load corresponded to Rosen’s prediction.

To account for the statistics of misalignment in the numerical models based on
homogenized or smeared approaches, a series of contributions were presented by
Fleck’s group [48, 76, 100]. Fleck and Shu [48] considered a 2D model with an el-
lipsoidal region of misaligned fibers using a smeared Cosserat continuum material
model. The results of the models with the ellipsoidal misalignment were found to be
stiffer than the models with the infinite band of misalignment. Using 1D bending the-
ory, Slaugter and Fleck [100] presented a model accounting for the variations in the
fiber misalignment. A stochastic distribution of the amplitudes of misalignment was
modeled using spectral representation method with assumed forms of spectral densi-
ties. Spectral representation method uses a given spectral density of a distribution to
generate multiple distributions, preserving statistical properties as well as the spatial
correlation properties of the original distribution. Multiple correlated random realiza-
tions of the distributions of the fiber misalignment were modeled in a 1D couple stress
problem to perform Monte Carlo analysis. The resulting peak load distribution was
found to closely match a 2-parameter Weibull distribution. It was concluded that the
model is controlled by its weakest link, i.e. the largest fiber misalignment. Liu et. al.
[76] extended the earlier 1D model to 2D finite element model. Spectral representation
method was used to model distributions of the fiber misalignment assuming different
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shapes of the power spectrum. The conclusions of the 2D analysis corroborated with
the conclusions of the 1D model from before.

Lemanski and Sutcliffe [73] also used a homogenized representation of fiber and
matrix, albeit devising a different technique to implement it in the FE models. Instead
of using Cosserat continuum, fibers were represented as reinforcements via rebars
and beams embedded inside a matrix material in the respective plane stress and shell
models. Using this approach allowed for representation of nonlinear composite be-
havior solely through matrix properties. This investigation focused on placing the
misalignment in different regions of the model. Fiber bending stiffness was not con-
sidered in this approach, as it was argued that it has no effect at larger wavelengths.
The argument to neglect fiber bending stiffness was based on earlier analytical works
of Fleck et. al. [47] and later numerical work of Liu et. al. [76], who had shown that
fiber bending stiffness has an effect only for wavelengths below a millimeter. Since
measurements showed that wavelengths are on the order of a few millimeters in FRPs
[110], fiber bending stiffness was neglected by Lemanski and Sutcliffe [73] in their
numerical models. A followup work by Sutcliffe [109] featuring distributions of the
misalignment investigated edge effects. The misalignment was modeled by artificially
smoothing a random spread of amplitudes of the misalignment to achieve the de-
sired autocorrelation. The findings confirmed and extended the conclusions drawn in
earlier works of Liu et. al. [76].

Extending the work of Feld et. al. [45], Allix et. al. [7] presented a homogenized
model with a distribution of the fiber misalignment for the prediction of failure under
compression load. The composite was represented via a diffuse continuum damage
model. A cell approach was used to represent geometry of the model, where sizes
of the cells were dictated by a priori known kink width and ply thickness. The fiber
misalignment sampled from a distribution was randomly assigned as the material ori-
entation of the cells without any consideration of correlation, see Fig. 2.5a. Fig. 2.5b
shows the force displacement response of the model under different boundary con-
ditions for a UD ply. The model was also capable of predicting failure for open hole
specimen and notched specimen.

Recent work of Daum et. al. [34] used a 2D micropolar homogenized approach to
model MB failure in FRPs. Micropolar solid theory is applied to regularize the mi-
crobuckling failure mode. The nonlinearity was modeled in a total-Lagrangian finite
strain plasticity theory framework for the micropolar solid, whereas the infinite band
assumption of the fiber misalignment was considered. Fiber bending stiffness only
plays an important role in compression strength prediction for small wavelengths of
the fiber misalignment. Even in the models where the compression strength is un-
affected by the fiber bending stiffness, the post peak response cannot be accurately
modeled without considering the fiber curvature and fiber bending stiffness. The
main advantage of the micropolar approach is consideration of fiber curvature and
fiber bending stiffness. Thus, not only compression strength but also the post peak
response of the MB failure was modeled accurately.
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(a) Cell model with random misalignment (b) Force-displacement curve of a UD ply in
compression

Figure 2.5: A model by Allix et. al. [7] with random distribution of the fiber misalignment
spread over the volume without consideration of correlation and corresponding
response of the model under axial compression

2.3 measurements of material imperfections

There is a consensus that the material imperfections reduce strength under compres-
sion loads [7, 8, 23, 46, 69]. The biggest contributor to the material imperfections is
the unavoidable fiber misalignment. The fiber misalignment occurs during manufac-
turing. Whether the component is manufactured using Prepregs, RTM, or some other
manufacturing technique, there are significant temperature gradients during heating
and cooling processes involved in curing of the matrix. The thermal properties of
fibers and matrix materials are significantly different. Heating and cooling steps in-
volved in curing of the matrix during manufacturing give rise to different rates of
expansion and contraction of fibers and matrix, resulting in wavy fibers in the lami-
nate. Because of such fundamental importance of the fiber misalignment in prediction
of failure under compression, it is of utmost importance to measure and characterize
them. The problem of measuring the fiber misalignment is, however, cost intensive
and difficult.

The methods for measurements of the fiber misalignment can be broadly divided
into the following: (i) in a plane perpendicular to fiber direction or at a slight angle to
this plane, (ii) in a plane parallel to fiber direction, and (iii) through structural tensor
calculation from voxel data of CT-scans. The first group of methods can be found
in literature in the earlier contributions. They are characterized by measurements
over limited sizes and destructive testing such as contributions by Yurgartis [137] and
Paluch [87], but are also performed through non-destructive testing such as works of
Clarke et. al. [29]. The second and third group of methods are non-destructive and
can cover larger sizes [31, 68, 85, 126]. A summary of different methods of the fiber
misalignment measurements is provided in Table 2.3.
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The first investigation of the fiber misalignment of FRPs commonly available in
literature is the one by Yurgartis [137]. Yurgartis [137] assumed the fibers to have a
perfectly cylindrical shape, i.e. fibers have a perfectly circular cross section. Whenever
a circle is projected on another plane which is at an angle to the normal of the plane
in which the circle exist, the projection appears as an ellipse. Given the radius of the
original circle and the major axis value of it’s ellipsoidal projection at an angled plane,
the angle between the two planes can be calculated. This principle was exploited by
Yurgartis [137] to measure the fiber misalignment by successively sectioning the ma-
terial at angled planes. The micrographs of the material were obtained through the
thickness in the nominal fiber and in the transverse direction by carefully grinding the
material at fixed distances, giving a 3D description of the misalignment. The results
showed Gaussian distributions of the fiber misalignment for the in-plane and the out-
of-plane angles. It was also observed that the misalignment is axially symmetric in the
plies, however, it changed when measured after lamination. Paluch [87] investigated
regularly spaced cut-out section using a microscope to measure the fiber misalign-
ment in a 3D manner. The fiber paths were reconstructed by stitching all the studied
sections and following the centers of the fibers from each section. This method allowed
to investigate non-circular fibers too, which was not possible in Yurgartis’ method. 3D
view reconstruction of misaligned fibers was also possible with this technique. The
results were provided as distributions of misalignment angles. Additionally, the corre-
lations between the in-plane and the out-of-plane misalignment were also calculated.
It was concluded that the fibers interact only at very short distances, and idealistic
representation of all fibers undulating in phase is unrealistic. Clarke and coworkers
[29] presented a non-destructive technique of measuring the fiber misalignment in a
volumetric sense using a confocal laser scanning microscope. The limitations of con-
sidering straight fibers over longer distances in Yurgartis’ method [137] and the limita-
tion of translational shifts between adjacent cut section in Paluch’s method [87] were
pointed out. The measurement of the fiber misalignment over the scanned volume was
performed through an automated process. The determination of the fiber orientation
followed the principle employed by Paluch i.e. following centers of fibers over succes-
sive images/micrographs. Results were provided in the forms of distributions of the
misalignment for FRPs. It was shown that the technique is also applicable to short
fiber reinforced polymers. Following measurements of the fiber misalignment, Clarke
et. al. [28] characterized the misalignment as power spectral densities of amplitudes
of the misalignment in a separate contribution. This was done following the work of
Slaughter and coworkers [100] discussed earlier, which highlighted the importance of
power spectral density as an input to predictive tools of compression strength.

Creighton et. al. [31] presented a simpler technique called Multiple Field Image
Analysis (MFIA) for the measurement of distribution of the fiber misalignment and
used the results in an FE analysis to explain strength reduction in different FRPs [30].
Micrographs taken parallel to fiber direction through optical microscope were divided
into several domains, and the light intensity of the domains was compared to find av-
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erage orientation within each domain. Measurement of higher misalignment angles,
such as in porous materials, which could not be captured by previous methods, were
possible. Results were provided as a distribution and a contour plot of misalignment
angles. The method is extendable to 3D if the micrographs through the thickness are
available. The application of the MFIA to 3D measurement was successfully shown
by Sutcliffe et. al. [74, 110]. Kratmann and coworkers [68] presented an alternate way
of measuring the misalignment from micrographs called Fourier Transform Misalign-
ment Analysis (FTMA). Individual domains were Fourier transformed and a power
spectrum of the light intensity was calculated. Through filtering the frequencies, im-
ages were cleared to track individual fibers. It was shown that the method is more
robust and provides better results. The FTMA was used for the measurement of the
misalignment in combination with experimental testing to investigate the compres-
sion prediction models [111]. Wilhelmsson and Asp [126] presented High Resolution
Misalignment Analysis (HRMA) for tracing individual fibers in micrographs. Micro-
graphs were divided into smaller units called cells, binarized to simplify the image,
fibers were traced, and finally the misalignment was measured through regression. Al-
though orientation of individual fibers can be measured, the number of fibers could
be different in each cell. Hence, average orientation of each cell was given as a mea-
sure of misalignment. The results of the method were compared against those using
MFIA and FTMA. When the cell sizes were reasonably small, the accuracy of the
method was on par with earlier methods with higher computational efficiency. The
HRMA method has an advantage in its ease of implementation compared to MFIA
and FTMA.

Nguyen et. al. [85] presented an alternate methodology for measurement of the
misalignment using structural tensors. The fiber orientations were measured by calcu-
lation of orientation vectors from the micro computer tomography data as an eigenvec-
tor of the three dimensional structural tensor. Using this technique, the misalignment
of multiple plies in a laminate was measured.

2.4 experimental testing under axial compression

Unidirectional FRPs have exceptionally high mechanical properties, such as strength
and modulus in fiber direction. On the other hand, the fibers do not offer support
in transverse directions, resulting in a high degree of anisotropy. Such a mechanical
behavior of unidirectional FRPs makes it quite challenging to perform experimental
testing. The task becomes even more difficult when testing under axial compression
because of the possibility of global buckling. The crux of the matter lies in on how to
transfer applied loads into the gauge section of the specimen with minimal external
effects. With all these factors to consider, different mechanism of transferring applied
loads to the gauge section of the specimen have been devised over the course of time.
Since flat specimens are the representative of the most common applications of the
FRPs and the standard tests are performed on them, the focus of the discussion will
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be on them. Testing for failure under applied axial compression can be categorized
into three groups based on the method of load introduction from a fixture into a test
specimen. A schematic representing possible mechanisms of load transfer into flat
specimens is shown in Fig. 2.6.

The load is transferred through the end surfaces of the flat specimens via contact
forces normal to the surface in the end loaded methods, see schematic in Fig. 2.6a. Gen-
erally, the specimen is supported laterally through some form of anti-buckling mecha-
nism to avoid global buckling. The contact of specimen with the buckling plate/device
can introduce unwanted frictional forces in the specimen. These types of fixtures are
also limited to testing of composites with low to medium modulus as invalid failure
in form of end crushing can occur in high modulus composites. End loaded fixtures
are easy to use with added benefit of alignment of the specimen in the fixture through
end contact. Examples of this type of fixture include ASTM standard D-695 [4], Mod-
ified standard D-695 [18, 19], and NASA short block.

To avoid the possible failure at the location of load introduction in end loaded meth-
ods, load can be introduced through shear, as shown in Fig. 2.6b. In shear loaded meth-
ods ASTM standard D-3410 [2] and German DIN-65 380, load is introduced into the
gauge section of the specimen through shearing of the sides of tabs/specimen held
in the jaws of the fixture. The main issues with these fixtures can be in gripping
surfaces and in the alignment of specimen. However, they allow testing of high mod-
ulus and strength composites. Examples of the fixtures falling under this category are
IITRI compression test fixture, Celanese compression test fixture, German DIN 65 380

Celanese compression, and their different modifications.
Combining the advantages of the end loading and shear loading methods, a Combined

Loading Compression (CLC) method was developed at the university of Wyoming [6,
122, 124]. In the CLC method, load is introduced into the specimen through a combina-
tion of aforementioned methods of load introduction, as shown in Fig. 2.6c. The main
advantage is limiting stress concentrations in the specimen, along with the possibil-
ity of introducing higher loads than earlier methods. The corresponding standard is
called ASTM D-6641 [3] and the fixture following the CLC method is labeled Wyoming
Combined Loading Compression test fixture.

2.5 failure under combined compression-shear loads

The focus of most of the investigations found in the literature is on the failure under
pure axial compression. For practical engineering applications, however, it is impor-
tant to have the characterization of failure under combined load cases. MB is the
dominant failure mode under pure axial compression, as well as under combined
compression-shear loads where compression part of the load is dominant. The in-
vestigations to characterize/predict failure under combined compression-shear are
discussed below.
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(a) End loading (b) Shear loading (c) Combined load-
ing

Figure 2.6: Schematic of load transfer methods common in compression testing

2.5.1 Experimental testing to failure under combined compression-shear

The literature on experimental testing of failure of FRPs under multi-axial loading is
quite limited. Vogler et. al. [116, 118] devised a technique for combined compression-
shear testing of flat specimens of unidirectional FRPs. Specimens were prepared in
such a way that the edges of the specimen were parallel to the nominal fiber direction.
The loading was done sequentially by using two separate load actuators, i.e. compres-
sion load followed by shear or vice versa. Load transfer to the gauge section appears
to be through combined end and shear mechanisms, as in ASTM D-6641 standard. It
was shown that MB is the dominant failure mode even at significantly high values of
the applied shear in combination with moderate values of the applied compression
load. The results proved useful for development of an experimental failure envelope
under combined compression-shear loads. Although some scatter was observed in
the experimental results, the failure envelope was provided in terms of a determin-
istic criterion. There was no consideration of variation in failure strengths because
of the underlying fiber misalignment. A drawback of this technique seems to be the
lack of simultaneous loading. A schematic representation of the test setup and the
resulting failure envelope are shown in Fig. 2.7.

Bing and Sun [14, 15] devised an alternate technique to investigate failure under
combined compression-shear load. Applied combined compression-shear loading was
achieved by using off-axis specimens. In the off-axis specimens, the nominal fiber di-
rection was oriented at an angle to the specimen edges. In this investigation, blocked
shape specimens were used instead of the more commonly used flat coupon speci-
mens. Block shape specimens have a small difference in dimensions in all three direc-
tions compared to large difference in dimensions of the more common flat specimens,
e.g. Bing and Sun [14, 15] used specimens with dimensions of 10×7×6. The load
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(a) Side view of the test setup (b) Failure envelope

Figure 2.7: Schematic of the test setup and the resulting failure envelope by Vogler et. al. [116,
118]. Experimental results are shown as markers in Fig. 2.7b whereas FE predic-
tions using 2D and 3D modeling are shown through the lines. The horizontal axis
represents applied shear stress and the vertical axis represents applied axial com-
pression.

transfer to the gauge section was through loading the ends of the specimens. Cutting
the specimens at an angle to the nominal fiber direction allowed for introduction of
multi-axial loading without need for additional actuators. However, a drawback of
this technique appears to be the non-uniform length of fibers in the gauge section. It
apparently promoted longitudinal splitting instead of MB failure in the off-axis spec-
imens. It was concluded from this observation that splitting is the dominant failure
mode at higher off-axis angles. Edgren et. al. [42] used a similar technique to Bing and
Sun [15] to test non-crimp fabric (NCF) composites under combined compression-
shear loading using flat specimens. The nominal fiber direction was oriented at an
angle to the specimen edges, allowing for multi-axial load states using a single load
actuator. Specimen preparation was made easy through the use of flat specimens. Re-
sults were provided as deterministic failure envelopes in the compression-shear plane,
and a failure criterion was presented based on the experimental results.

Another alternative to obtain combined compression-shear loading using single ac-
tuators was through the use of tubular specimens. These investigations [78, 101, 135]
were driven by the renowned World Wide Failure Exercise (WWFE) for FRPs. The
load transfer from the fixture to the gauge section was through the ends of the spec-
imens in these approaches. The tubular geometry of the specimen loaded in axial
direction induced combined compression-shear loads in the laminates. Based on the
resulting failure stresses, failure envelopes were presented by the authors. The degree
of complexity involved in the preparation and the handling of the non-flat specimens
in these approaches is quite challenging. Recently, Gan et. al. [50] devised an Arcan
like fixture for testing multidirectional laminates under different combinations of com-
bined loads. Since the fixture was seemingly designed for butterfly specimens, failure
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was induced in the corresponding area. Thus, there seems to be a limited focus on
quantifying the strength variations under multi-axial load states. The placement of
guide pins near the specimen on the rotatable plates seemingly limits them to work
only against in-plane bending. The load transfer appears to be through the shear
mechanism.

2.5.2 Analytical and numerical modeling of failure under combined compression-
shear

Deterministic forms of failure envelopes defined by analytically developed failure cri-
teria are most common because of requirements of a limited number of experimental
tests for calibration to a particular material. A simple stress based failure criterion
developed analytically was presented by Edge [41]. The relationship between axial
and shear stresses was considered to be linear. Starting from the analytical formula
for compression failure under applied far-field compression and shear loads from
Fleck’s group [21, 99], Edgren and coworkers [42] derived a failure criterion for the
NCF composites. Incidentally, this criterion is the same as the linear criterion of Edge
[41]. Quadratic forms of failure criterion developed analytically are more common,
e.g. Tsai-Wu criterion [77]. Such criteria also take into account the combined effect of
different stresses on failure. An analytical approach on failure envelopes under multi
axial loading was performed by Whiteside et. al. for stochastic ply failure of unidirec-
tional composites through parallelized Monte Carlo Simulation of a physically based
quadratic failure criteria [125]. The uncertainties because of the fiber misalignment
were accounted for in their analysis, however, the spatial correlation of the distribu-
tions of the fiber misalignment was neglected.

Besides the experimental and the analytical investigations, failure analyses through
numerical modeling under combined compression-shear loads can also be found in
the literature. Following their experiments, Vogler et. al. [116, 117] used numerical
modeling to predict failure under combined compression-shear loads. Using 2D and
3D finite element modeling, effects of the initial misalignment as well as material non-
linearities were investigated. Models were based on the idealistic form of misalign-
ment. The resulting failure envelopes for different values of initial misalignment were
compared to the analytical prediction using the formula by Budiansky and Fleck [21].
The misalignment was modeled to be ‘cooperative’ with the applied far-field shear
stress. By having opposing misalignment and the applied shear, the models showed
strengthening effects under combined loads. On similar lines to Vogler and cowork-
ers [116], Basu et. al. [10] used a micromechanical model to present a deterministic
failure envelope under combined compression-shear loads. Based on the direction of
the applied shear compared to the direction of the initial misalignment, the concept of
positive and negative shear was introduced. The result was a non-symmetrical failure
envelope around the axial stress axis. Tsai and Sun [112, 113] performed an analysis
to investigate strain rate dependency of failure in specimens loaded under combined
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compression-shear. It was concluded that the compression strength is rate sensitive
and the applied in-plane shear can significantly reduce compression strength. Follow-
ing their analyses using micromechanical modeling on the mechanisms of MB failure
[55, 56], Gutkin et. al. [54] presented a deterministic failure envelope under combined
compression-shear loads. The failure envelope was defined by two regions, i.e. one
where failure was controlled by the compression strength of the fibers and the re-
maining was defined by MB and splitting failure modes. The effects of different shear
behaviors were analyzed, and it was concluded that the linear and nonlinear compos-
ite shear behavior result in corresponding linear and nonlinear shapes of the failure
envelope. Using their micromechanical model [106], Sun and coworkers [107] pre-
sented numerically developed failure envelopes under combined compression-shear
loads at different values of the initial fiber misalignment, along with failure envelopes
for other combined load cases. The terms for the initial fiber misalignment and the
fiber volume fraction were introduced as an update into the definition of the Tsai-Wu
failure criterion.

2.6 aims and objectives of the work

The problem of failure under compression dominated load of unidirectional fibers
reinforced polymers has been extensively investigated for more than half a century
using different approaches ranging from analytical modeling to numerical modeling
and experimental testing. Although the basic mechanisms of failure under compres-
sion dominated loads are well understood, there are still hosts of open questions
about quantification of failure uncertainty. Based on the literature review carried out
above, following open questions and corresponding objectives are outlined:

1. The importance of the fiber misalignment in failure under compression domi-
nated loads for unidirectional FRPs is well established. Therefore, it is required
for investigations of failure to measure the fiber misalignment in the material
under consideration. For this purpose, non-destructive scanning over larger vol-
umes using a CT scan machine is carried out. The HRMA method, which was
originally developed for 2D micrographs, is applied to 3D in order to measure
the in-plane and the out-of-plane fiber misalignment. It is followed by subse-
quent representation of the in-plane and the out-of-plane misalignment fields in
three dimensional space. The results are also presented as distributions of the
misalignment angles and their relevant statistical information.

2. Different researchers have shown, through analytical and numerical modeling,
the importance of nonlinear material behavior on compression failure. Although
basic material properties such as stiffness moduli and Poisson’s ratio are pro-
vided by the material suppliers. Nonetheless it is advisable to carry out the
required standard tests for mechanical properties characterization. Most impor-
tantly the complete characterization of the nonlinear shear stress strain curve for
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MB failure analysis is required. Hence, the mechanical tests required for model-
ing of failure under compression dominated loads are carried out in the current
investigation.

3. The literature review has shown that the statistical as well as spatial correlation
properties of the fiber misalignment can be preserved when they are character-
ized as spectral densities. Therefore, the measured in-plane and the out-of-plane
fiber misalignment is characterized in the form of spectral densities dependent
on three spatial frequencies.

4. To represent the fiber misalignment realistically in numerical models, different
approaches can be found in literature as discussed in the state of the art review.
It was found that the spectral representation method offers an excellent solution
for the generation of virtual distribution of the fiber misalignment which can in
turn be used in numerical models. Using this method with an input of spectral
density characterized in previous step, not only the usual statistical properties
such as mean and standard deviation but also the spatial properties, such as
the correlation of the distributions of the fiber misalignment, can be preserved
in the virtual generated distributions. In literature, the examples of using spec-
tral representation method for 1D and 2D problems are available. Herein, the
method is extended to 3D for generation of the virtual distributions of the corre-
lated random fiber misalignment, taking the characterized spectral densities as
the input.

5. Most of the existing analytical, numerical as well as experimental approaches
to failure under combined compression-shear loads are not associated with sur-
vival probabilities, i.e. probability distributions of the strengths under compres-
sion and combined compression-shear loads. For better design practices, the
quantification of failure probabilities because of the underlying variations of the
fiber misalignment needs to be done. Therefore, the focus of the current inves-
tigation is on development of novel probabilistic failure envelopes under com-
pression and combined compression-shear load cases at different percentiles of
failure. For this purpose, a novel testing concept combining the advantages of
the Arcan type fixtures and the ASTM D-6641 standard CLC fixture is developed.
The load transfer in the gauge section is through the ends and through shearing
of sides of the specimens. The multi-axial load states are achieved by rotating
the internal disc of the fixture at an angle to the loading axis of the machine. The
testing concept allows the use of easy to manufacture flat specimens in which
the nominal fiber direction is parallel to the edges of the specimen. Based on the
results of the testing campaign, failure envelopes in strain and stress spaces are
presented. Median and percentiles are relatively unbiased statistical measures
compared to mean and standard deviation because of their lower susceptibility
to outliers. Moreover, the percentile representation is more common in engi-
neering design practices and is rather easy to understand. Hence, the failure
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envelopes are also given in expression forms and the expression forms are fitted
to median and certain percentiles of failure. The results of testing to failure are
discussed in lieu of the well-known analytical formula of Budiansky.

6. From the literature of numerical modeling approaches, it is realized that the ho-
mogenized representation of fiber and matrix in numerical models allows for
ease of modeling and computational efficiency over significantly larger model
sizes. The homogenized (continuum) modeling approach has been applied in
2D or pseudo 3D manner in literature as the representation of the fiber misalign-
ment was done only for the in-plane fiber misalignment dependent on two spa-
tial directions. Herein, a fully 3D numerical modeling framework incorporating
both the in-plane and the out-of-plane distributions of the fiber misalignment,
each dependent on three spatial directions, is presented. The limitation in using
anisotropic homogenized models because of inconsistent material axis rotation
is alleviated by extending the material model by including the effect of shear on
the rotation of the material axis. The verification of the numerical model against
the analytical prediction of failure under axial compression is carried out. Using
the 3D numerical model equipped with a complete and realistic representation
of the fiber misalignment, failure envelopes in stress and strain space are de-
veloped. Numerical modeling offers a cheap solution for performing a large
number of analyses. Taking full advantage of these capabilities of numerical
modeling, much lower percentiles of failure than the experimental testing based
failure envelope are presented. The expression forms of failure envelope are also
presented based on results of numerical modeling, and the resulting envelopes
are compared to the failure criteria commonly found in literature. Fig. 2.8 shows
a schematic representation of the numerical modeling approach. Moreover, use
of functional forms of spectral density for generating virtual distributions of the
fiber misalignment is also investigated.

7. For validation purposes, the predictions of numerical modeling are compared
against the results of the experimental testing. Since the sizes of the specimens
tested in experiments and the sizes of the numerical models differed signifi-
cantly, a scaling law is employed to compare the results of the two approaches.
Although the complete failure envelopes from numerical and experimental ap-
proaches cannot be compared directly because of differences in specimen sizes,
the reasons behind the differences in shapes of the resulting failure envelopes
are explored.
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(a) Frequency domain (b) Space domain (c) Stress/Strain space

Figure 2.8: Schematic of the numerical modeling framework. The fiber misalignment charac-
terized as spectral densities in frequency domain are used as an input to gener-
ate distributions of the misalignment in the spatial domain. The distributions are
mapped onto a FE model, and the models are simulated under different load con-
ditions to generate probabilistic failure envelopes in stress and strain spaces.





3
M AT E R I A L S A N D M E A S U R E M E N T S

A suitable model for prediction of onset/initiation of MB in fiber reinforced compos-
ites (FRPs) can be constituted using the nonlinear shear response and the mechanical
properties of the composite [76, 100, 109]. To quantify the uncertainty in the failure
prediction under compression loads, measurements of the fiber misalignment are re-
quired. These characterizations and measurements are essential for numerical model-
ing of microbuckling (MB) failure presented in later parts of the work. In this chapter,
characterization of mechanical properties and measurements of material imperfec-
tions are presented.

Most structural applications such as aircraft fuselages and rotor blades of wind
turbines of the FRPs, whether unidirectional, multidirectional or NCF composites, in-
volve prepreg lamination or resin transfer molding (RTM) as the manufacturing tech-
niques. The fiber misalignment resulting from either of the manufacturing processes
show quite similar behavior [110]. Because of simplicity and flexibility of prepreg
lamination process, a unidirectional prepreg based material is an optimal choice for a
representative investigation. Moreover, the prepreg unidirectional FRPs found in most
of the advanced industrial applications have fiber volume fractions ranging from 50%-
60%. Therefore, considering the aforementioned observation about commonly used
unidirectional FRPs, prepreg UD300 high strength carbon fibers with M79 Hexply
epoxy resin Hexcel1 system was chosen as an optimum representative material for
the current investigation. In this material, a resin content of 34% results in the fiber
volume fraction v f of 55% according to the supplier. The UD300 corresponds to 300

g/m2 density of the fibers. The mean cured ply thickness of the material is 0.30 mm.
The material was delivered in the form of a roll with 1300 mm width. For manu-

facturing of the specimens, required sizes of the material were cut for lamination into
plates. Each plate contained multiple specimens. The exact lamination sequence for
each specimen’s manufacturing will be given with the discussion of the correspond-
ing test series. For specimen preparation for all the test series, the curing cycle in the
autoclave suggested by the supplier was used.

3.1 mechanical properties characterization

test standards : The mechanical material properties of the material under con-
sideration i.e. carbon fiber UD300/M79 epoxy system were characterized using three
standard tests. Material characterization in fiber direction was performed following
the DIN EN 2561 standard. The transverse tension characterization was done using

1 supplied by Lange+Ritter Faserverstärkte Kunstoffe GmbH, Germany
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the method outlined in DIN EN 2597 standard. For material characterization in shear,
the tests were performed following the EN ISO 14129, ASTM D3518, DIN 65466 stan-
dard. This particular shear characterization test is performed as a tension test on a
[+45/− 45]2s specimen. It has the advantages of easy testing and cheaper manufac-
turing of specimens compared to the other shear characterization tests, such as ASTM
D5379 standard test, ASTM D4255 standard test, or 10◦ tension test for shear charac-
terization, while still giving accurate results.

specimen preparation : The specimens for the material characterization tests
were prepared in a single batch using the autoclave cure cycle suggested by the
supplier. The lamination sequences of [06] and [906] were used for preparing the
specimens for the axial tension and the transversal tension tests, resulting in an aver-
age specimen thickness of 1.81 mm. Similarly, for the shear characterization tests, a
lamination sequence of [+45/− 45]2s was used, which resulted in an average speci-
men thickness of 2.39 mm. Tabs made of [+45/− 45]2s glass fiber reinforced polymer
(GFRP) were applied on each cured plate using 3M’s DP490 adhesive with a 90◦ tab
taper angle. Plates were subsequently cut into the required specimen dimensions, as
stated by the corresponding test standards. In order to enable measurements using a
digital image correlation (DIC) system, a black speckle pattern on a white background
was applied on the gauge section surfaces of the specimens with matt spray paints.
The sizes of the speckles were kept proportional to the specimen dimensions for the
speckle pattern to stay in the suitable range for measurements of DIC system.

testing procedure : The mechanical tests were performed on a 100 kN servo-
hydraulic universal testing machine from Sincotec. The specimens were mounted in
the flat grips of the machine and aligned with the machine axis. The specimens were
tested using a displacement controlled load at the constant rate of 1 mm/min. The
measurements for applied force were obtained through a 100 kN load cell attached
to the upper crosshead of the testing machine. The Aramis 12M Adjustable 3D2 sys-
tem was employed for the measurement of the strain fields on the surface of the
specimens. The region of interest in the post processing software GOM Correlate for
measuring strain fields on the surface of the gauge section in the characterization
tests was defined with facets sized 19 pixels placed 16 pixels apart from one another
[49]. The virtual extensometer feature of GOM Correlate was used to measure average
strains ε on the surfaces of the specimens. The virtual extensometer of the DIC system
functions like a physical extensometer. Additionally, physical extensometers were em-
ployed on the specimens in the characterization tests for measurement of strains in
the loading direction. The strains measured through both physical and virtual exten-
someters were compared to obtain confidence in the results. The strain measurements
from both methods showed matching values with a maximum deviation of 1.5% near

2 from GOM GmbH
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Figure 3.1: Stress-strain response

the end of the test. It is to be noted that the engineering definitions of strains and
stresses are used throughout this work.

results : For the material characterization in the fiber direction, eight specimens
were prepared and tested. Seven tests were successful in this series, whereas one
specimen got damaged during test preparation. Since the failure strength under axial
tension load is not of interest, the axial tension tests were performed up to 50 kN
load only. The resulting stress-strain curves of the axial tension tests are plotted in
Fig. 3.1a. The stiffness modulus in the fiber direction E11 is calculated by taking the
initial slope of the stress-strain curves. Additionally, the Poisson’s ratio is calculated
from this series of tests. For this purpose, strains in the transverse direction ε22 and
the strains in the fiber direction ε11 were obtained using the DIC system. Taking the
ratio ε22/ε11 gives the Poisson’s ratio ν12. The resulting values of E11 and ν12 are listed
in Table 3.1.

Eight specimens were prepared for transverse tension tests, of which three were de-
stroyed unsuccessfully during test setup because of high brittleness of transverse test
specimens while loading in the machine grips. For the five successfully carried out
transverse tension tests, the resulting stress-strain curves are plotted in Fig. 3.1b. The
stiffness moduli in the transverse direction E22 is calculated by taking the initial slope
of the stress-strain curves. The material shows brittle behavior in the transverse di-
rection. The resulting elastic stiffness modulus E22 as well transverse tension strength
R22 obtained directly from the characterization tests are listed in Table 3.1. Generally
in the literature, transversal isotropic material behavior is assumed for the unidirec-
tional FRPs. Hence, the equivalences E22=E33 and R22=R33 of the material properties
mentioned in the Table 3.1 are based on this assumption of transversal isotropy.

Eight specimens were prepared and successfully tested for the shear characteriza-
tion tests using the [+45/ − 45]2s specimen loaded in tension. Fig. 3.2b shows the
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E11 E22(=E33) R22(=R33) G12(=G13) ν12

[GPa] [GPa] [MPa] [GPa] [-]

118.43 7.03 44.19 3.88 0.299

Table 3.1: Material properties from the characterization tests. The values E11, E22, R22, G12, and
ν12 were obtained from the characterization tests. The equivalences E22=E33, R22=R33,
and G12=G13 are based on the assumption of transversal isotropy.
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Figure 3.2: Results of the shear characterization tests

typical failure pattern of the shear characterization tests. The damage builds gradu-
ally in the specimen and it is distributed over the length of the gauge section. Final
failure of the specimen occurs in the gauge section of the specimen around the mid-
section of the specimen. It can be seen that the failure mode is clearly shearing of
the material. In this particular shear test, the shear stress and the shear strain are
calculated as follows:

σ12 =
F

2wt
(3.1a)

ε12 =
εax − εtr

2
(3.1b)

where F is the force measured by the machine load cell, w and t are the specimen
width and thickness, and εax and εtr are the strains in the axial and the transversal
directions of the specimen. The strains εax and εtr were measured using the DIC
system on the surfaces of the specimens.

Fig. 3.2a shows the stress-strain response of the shear characterization tests, along
with the mean curve. The elastic stiffness moduli G12 is calculated as the initial slope
of the stress-strain curves and are given in Table 3.1. Based on the aforementioned
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Figure 3.3: Schematic of the misalignment angles. Angles θ̃i
k,l,m and φ̃i

k,l,m are the misalignment
in 1− 2 and 1− 3 planes, respectively. The angle ψ̃i

k,l,m shows the combined effect
of θ̃i

k,l,m and φ̃i
k,l,m.

transversal isotropy assumption, the equivalence G12=G13 is given in Table 3.1. The
drops in the stress-strain curves present in two of the curves are because of the inter-
mittent unloading, and hence, are not considered in the mean curve. It can be seen
that the shear response is highly nonlinear, with final failure strains of approximately
9.57[%]. The variation in stress-strain curves at large strain levels is expected as the
damage starts at multiple locations in the gauge section, only one of which matures
to be the final failure location. For microbuckling prediction models, the initial shear
response is of utmost importance. Large shear strains as those at the tail end of the
characterization tests are not expected to play a major role in the prediction of failure
under compression dominated loads. Hence, the variations in the shear stress-strain
curves are not detrimental for prediction models of compression failure. Therefore,
the mean curve can be used for such modeling purposes.

3.2 fiber misalignment measurements

The question arises, how many angles would be needed to represent a three dimen-
sional misalignment of a fiber in space from its mean direction. If one follows the
Euler angles representation and considers that the fiber rotation around its own axis
does not affect MB failure, then it suffices to have two independent angles for repre-
senting the fiber misalignment in FRPs. These two angles correspond to the in-plane
misalignment angle θ̃i

k,l,m and the out-of-plane misalignment angle φ̃i
k,l,m of a fiber.

This assumption is consistent with the transverse isotropic behavior of the material.
Hence, these two angles are sufficient for a complete volumetric representation of the
total misalignment ψ̃i

k,l,m from the nominal fiber direction i.e. 1-direction, see Fig. 3.3.

scanned sample : To measure the fiber misalignment of the material, computed
tomography (CT) scans were carried out. Three dimensional scans were performed
in order to obtain volumetric measurements of the fiber misalignment. With the goal
to obtain a statistically independent measure of the fiber misalignment, the scans
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were performed on two specimens. The specimens with dimensions of 15×15×1.15

mm were cut at two different locations from two separate plates. These plates were
prepared for obtaining specimens for testing to failure series for strength characteriza-
tion under compression and combined compression-shear. The testing to failure series
will be discussed in Chapter 5. It is to be noted here that performing scans on a larger
number of specimens would further improve the confidence in the measurements of
the fiber misalignment. However, scanning of only two specimens was carried out in
the current investigation because of the high costs associated with it for the required
resolution. The size of the scanned volume is similar to the dimensions of the gauge
section of the specimen for the testing to failure series. Moreover, the topologies of
the in-plane misalignment and the topologies of the out-of-plane misalignment were
measured independently. Therefore, these scans are deemed sufficient for the mea-
surements of the fiber misalignment in the current investigation.

misalignment angle measurements : The volumetric scans were performed
by the institutes for Building Materials (IfB) and Wind Energy Systems (IWES) of Leib-
niz University Hannover (LUH) using the X-ray microscope Zeiss Xradia 410 Versa with
80 kV voltage, 6 W power and a 10x magnification setting. This device can perform
scans of a cylindrical volume in space with very fine resolutions. The diameter and
the height of the resulting scanned cylindrical volume are dictated by the scan reso-
lution and the scan time. To ensure that the algorithms for measurements of the fiber
misalignment in the form of misalignment angles can differentiate between the matrix
and the fiber materials, a fine enough resolution with voxel size smaller than the fiber
diameter is required. The fiber diameter of the UD300 carbon is approximately 5.6-5.8
µm, therefore, a voxel resolution of 1.902 µm was selected. The selected resolution
limited the diameter of the scanned cylinder to approximately 2 mm. The resulting
scanned volume is approximately 2×7×1.15 mm, cf. schematic in Fig. 3.4.

Briefly recalling Section 2.3 from the state of the art, there are three main methods
for the measurements of misalignment angles of unidirectional FRPs: (i) following
fiber cross sections in planes perpendicular to the mean fiber direction, as measured
by Yurgartis [137], Paluch [87], and Clarke [29]; (ii) following measurements in planes
parallel to the mean fiber direction, as investigated by Creighton [31], Kratmann [68],
and Wilhelmsson [126]; (iii) through the calculation of a structural tensor from the
measured voxel data of volumetric/surface CT-scans, such as the investigation by
Nguyen et. al. [85]. The second group of methods gives accurate results with addi-
tional benefit of very high efficiency [127]. It also offers the possibility to measure
the misalignment over longer distances because of the measurement scheme. Some
fibers may be broken in the scanned volume or spread out of the ordinary across the
layers. Such fibers can not be measured with this group of methods, as they do not
allow following an individual fiber endlessly. However, such broken and randomly
spread fibers are relatively rare. Therefore, they can be neglected for the purposes
of predicting compressive strength [29]. Moreover, it is well accepted now that mea-
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Figure 3.4: Schematic of the specimen for scanning, along with the dimensions of the scanned
cylindrical volume

surements of the fiber misalignment can be performed separately in the form of the
in-plane and the out-of-plane misalignment, with either of the aforementioned meth-
ods of measurements. Therefore, it was decided to measure the fiber misalignment in
the form of the in-plane misalignment and the out-of-plane misalignment using the
second group of methods.

It was not possible to obtain cuboid volumes for measurements over the whole thick-
ness of specimens because of the cylindrical shape of the scanned volumes as seen in
Fig. 3.4. Hence, it was decided to extract micrograph images over cuboid shapes for
the in-plane and the out-plane misalignment with dimensions given in Table 3.2 from
the cylindrical CT-scans measurements of both specimens. An extracted cuboid vol-
ume of the CT measurement marked with planes of view is shown in Fig. 3.5a. The
1-2 planes in Fig. 3.5a marked in green color represent locations of micrograph im-
ages for the measurement of the in-plane misalignment on a cuboid volume, whereas
the 1-3 planes marked in red color represent the locations of images for the measure-
ment of the out-of-plane misalignment. As the samples were not perfectly aligned
in the scanning machine, the resulting cylindrical measurements were also slightly
tilted from the global coordinate system defined in the machine software. Therefore,
the cuboid volumes obtained from these measurements in the machine coordinate
for each plane of view, i.e. the in-plane (1-2 plane) and the out-of-plane (1-3 plane),
had slight differences in the cuboid dimensions as seen in Fig. 3.4. The scanned vol-
umetric data stored by Xradia in the format ’.txm’ was read into commercial software
Avizo for the extraction of the required cross-sectional images. The images for each
plane of view, i.e. the in-plane and the out-of-plane, were extracted in ’.tif’ format, cf.
Fig. 3.5. The images were extracted in such a way that the image stacking direction
corresponds to either direction 3 (for the in-plane misalignment) or direction 2 (for
the out-of-plane misalignment), see Fig. 3.5a. The distance between the neighboring



38 materials and measurements

Number of Number of cells Volumetric dimensions
images in an image 1-2-3 [mm]

In-plane
measurement section 1-2 516 70×12 6.657×1.141×0.979

Out-of-plane
measurement section 1-3 702 70×10 6.657×1.329×0.951

Table 3.2: Dimensions of the scanned volume

images in the stacking direction is equal to the length of a voxel edge, i.e. 1.902 µm,
see Fig. 3.5b. Dimensions of the resulting cuboids are presented in Table 3.2.

algorithm for measurement of angles : The High Resolution Misalign-
ment Analysis (HRMA) method proposed by Wilhelmsson [126], which is the latest
from the second group of methods for measurement of misalignment, was used for
the calculation of misalignment angles from the extracted cross-sectional images. The
HRMA method is faster because of a simpler algorithm in comparison to the similar
methods such as the Multiple Field Image Analysis (MFIA) by Creighton [31] and the
Fourier Transform Misalignment Analysis (FTMA) by Kratmann [68], and produces
accurate results. The HRMA method is chosen here because of its direct approach, in
which fiber paths are calculated by tracing them over the image.

(a) A volumetric scanned image (b) Schematic of the HRMA method

Figure 3.5: The 3D nature of the fiber misalignment is shown by Fig. 3.5a. The extracted cross
sectional planes are marked on the scanned volume in Fig. 3.5a. Direction 1 indi-
cates fiber direction, direction 2 represents the in-plane transversal direction and
direction 3 points to the out-of-plane transversal direction. Stacking directions are
marked in corresponding color of arrows of the coordinate system. (The original
image of the scanned volume was provided by IfB, LUH). Fig. 3.5b shows schematic
of the HRMA method for the measurements of the fiber misalignment on the im-
ages extracted from the scanned 3D volume.
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As mentioned earlier, each specimen gave two sets of micrograph images, i.e. one
in 1-2 plane for the in-plane misalignment and one in 1-3 plane for the out-of-plane
misalignment. The algorithmic steps of the HRMA method were implemented in the
commercial software Matlab for measurement of the misalignment on the four sets
of extracted micrograph images. For the application of the HRMA method on each
set of image data, each cross-sectional 2D image from each set was further divided
into small subdivisions called cells, see Fig. 3.5b. Different authors had pointed the
observation of the minimum wavelengths of the fiber misalignment in unidirectional
FRPs to be >0.5 mm [29, 110]. Hence, square cells with edge lengths of 50 pixels (i.e.
95.1µm) were chosen, which gives at least five measurement points for the shortest
expected wavelength. Within the cells, fibers are assumed to be approximately straight.
Each individual cell contains four to seven fibers with an average of five fibers.

A schematic of the in-plane misalignment θ̃i
k,l,m and the out-of-plane misalignment

φ̃i
k,l,m measurements on a single fiber is shown in Fig. 3.3. Misalignment angles can be

calculated using the start point coordinate of the fiber xai
1/2/3 and the end point coordi-

nate of the fiber xbi
1/2/3 via Eq. 3.2a for each tracked fiber with index i inside a cell with

index k, l, m. The indices k, l, and m are the location indices of a cell in a micrograph
image for direction 1, 2, and 3, respectively. An equivalent angle ψ̃i

k,l,m representing a
combined effect of the in-plane misalignment θ̃i

k,l,m and the out-of-plane misalignment
φ̃i

k,l,m is also defined via Eq. 3.2a. Subsequently, the mean in-plane misalignment θk,l,m
and the mean out-of-plane misalignment φk,l,m for each cell k, l, m were calculated via
Eq. 3.2b. The mean angle within a cell was calculated by averaging misalignment of
all fibers within that cell. The mean angles θk,l,m and φk,l,m of each cell were stored
in respective matrices corresponding to their spatial positions. The resulting number
of cells for images in each cross section, i.e. 1-2 cross section for the in-plane mis-
alignment and 1-3 plane for the out-of-plane misalignment, are given in Table 3.2.
After running the HRMA method on all sets of images and assembling the average
misalignment of fiber within each cell in the corresponding spatial positions of each
cell for each specimen and plane of view, two matrices of the in-plane misalignment
with 70×12×516 data points and two matrices of the out-of-plane measurements with
70×702×10 data points were obtained. The 3D matrices exhibit complete 3D represen-
tation of the in-plane and the out-of-plane misalignment angles.

θ̃i
k,l,m = tan−1

(
xbi

2 − xai
2

xbi
1 − xai

1

)
k,l,m

, φ̃i
k,l,m = tan−1

(
xbi

3 − xai
3

xbi
1 − xai

1

)
k,l,m

(3.2a)

and ψ̃i
k,l,m :=

√(
θ̃i

k,l,m

)2
+
(

φ̃i
k,l,m

)2

θk,l,m =
1
n

n

∑
i=1

θ̃i
k,l,m and φk,l,m =

1
m

m

∑
i=1

φ̃i
k,l,m (3.2b)
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In-plane θk,l,m Out-of-plane φk,l,m

Specimen 1 Specimen 2 Specimen 1 Specimen 2

s [◦] 0.6458 0.6995 0.5652 0.4147

P1 [◦] -1.375 -2.050 -1.116 -0.812

P99 [◦] 2.558 1.432 1.654 1.291

Table 3.3: Statistics of the measurements of the fiber misalignment angles before shifting
means of the misalignment to zero

results : If a specimen made of unidirectional plies of a FRP material is perfectly
cut in the mean fiber direction and it is also perfectly aligned with the coordinate
frame of the CT-device during the measurements, the resulting mean of the measured
misalignment angles would be 0

◦. However, the mean values of the measured in-plane
misalignment θk,l,m and the out-of-plane misalignment φk,l,m are 1.3426

◦ and 0.2512
◦

for specimen 1 and -0.2230
◦ and 0.2405

◦ for specimen 2, respectively. It is to be noted
that the non zero mean values of misalignment are not indicative of the manufacturing
induced fiber misalignment. They are rather the global alignment errors of the spec-
imen that may have occurred during sawing of the specimens or positioning of the
specimens in the CT-device. The focus of the campaign is on measuring the fiber mis-
alignment from the nominal fiber direction intrinsic to the material which causes MB
failure under compression loads, and avoiding any additional inputs to the misalign-
ment measurements from the global alignment errors of the specimen. Therefore, the
misalignment data of each specimen for each measurement plane of view was shifted
to obtain zero mean misalignment in order to eliminate the global alignment errors.
This was done by subtracting/adding the measured mean values from each corre-
sponding data set, since subtraction/addition of a constant value does not change
the spread of a distribution. The statistics of the misalignment angles before shifting
means of the distributions of the misalignment to zero are provided in Table 3.3. The
standard deviations of the in-plane misalignment angles are higher than those of the
out-of-plane misalignment angles.

The resulting data sets of the measurements of the fiber misalignment θk,l,m and
φk,l,m after shifting the mean of each data set to zero are plotted in the form of 3D
contour plots in Fig. 3.6 and Fig. 3.7 using the commercial software Mathematica
[134] with the plotting functionality ListSliceContourPlot3D, respectively. The distance
of 1.902 µm between neighboring images is too small for any noticeable changes
in the contours of the fiber misalignment. In order to reduce noise in the contour
lines of the Fig. 3.6 and Fig. 3.7 and to get a clearer picture of the topologies of the
misalignment angles, the measurement data of every 50

th image is used in the 3D
contour plots. Comparing Fig. 3.6a and Fig. 3.6b with Fig. 3.7a and Fig. 3.7b, it is
recognizable that the misalignment topologies of the in-plane misalignment θk,l,m and
the out-of-plane misalignment φk,l,m are completely independent to each other. This
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is because the underlying waviness behavior which gave rise to the misalignment of
fiber has independent behavior in 1-2 and 1-3 planes, i.e. the in-plane misalignment
and the out-of-plane misalignment. A similar observation on the independence of
the in-plane and the out-of-plane misalignment was made by Yurgartis [137]. It can
also be seen that the topologies of the in-plane misalignment have a bias towards
longer wavelengths in the 1-direction which is visible in the form of longer contours
of misaligned regions in Fig. 3.6. Additionally, rather large misaligned regions at the
layer interfaces can be observed in the topologies of the in-plane misalignment, cf.
Fig. 3.6b. Matrix material is an excess at the interface regions and fibers are not tightly
packed as inside the plies, It allows the fibers at the interface regions to expand rather
freely, giving rise to larger regions of misalignments seen in Fig. 3.6. On the other
hand, wavelengths of the topologies of the out-of-plane misalignment are quite evenly
spread in all three spatial directions as can be seen in Fig. 3.7. The reasons behind such
a biased behavior of the in-plane misalignment compared to the uniform behavior
of the out-of-plane misalignment can be found in the lamination and the subsequent
curing processes. Pressure in the autoclave acts normal to the lamination plane during
the curing process. The pressure during curing gives fibers a higher possibility to
spread out in this plane. On the contrary, compaction limits the misalignment out-of-
plane. Hence, the observation of the relatively even spread of the misaligned regions
in the out-of-plane topologies is the natural outcome. Since the prepreg layers are laid
out over one another in-plane during the lamination process, it becomes an additional
driving factor in the development of the observed long regions of imperfections.

The misalignment angles are also plotted in the more commonly found form of
histograms in Fig. 3.8. Histograms show that the spread of the misalignment angles is
approximately mirrored around the mean values for all the data sets of the measure-
ments. Consequently, each measurement data set is fitted with a normal distribution
based on the observation of the spread of data around corresponding mean values,
which are in turn plotted along with the histograms in Fig. 3.8. The larger spread
of the in-plane distributions, which arises because of the reasons explained earlier, is
also reflected in the larger width of the fitted normal distributions. It is to be noted
that normal distribution implies possibility of an existence of infinitely large values of
misalignment angles. In reality, the maximum/minimum values of the misalignment
angles are only up to a few degrees. A fit to a normal distribution is shown here only
to highlight the nature of the distribution of misalignment angles. The probability of
extreme values predicted by the normal distributions in this case is quite low. More-
over, only standard deviations and the selected percentiles of the misalignment angles
are required for models of MB failure prediction, hence, a fit to a normal distribution
for the misalignment angles can be accepted here as an approximation.

Some statistical properties of the misalignment angles θk,l,m and φk,l,m after trans-
forming the mean of each data set to zero are given in Table 3.4 for further reference.
There, the symbol s denotes the standard deviation and the symbols P1 and P99 denote
1

st and 99
th percentiles of the real numbered measurements of the fiber misalignment,
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(a) In-plane angles specimen 1

(b) In-plane angles specimen 2

Figure 3.6: 3D contour plots of the in-plane misalignment θk,l,m . Results shown here were
measured over the cuboid-shaped domains extracted from the scanned cylindrical
volumes. The dimensions of the cuboids are listed in Table 3.2. To view the inte-
rior of the topologies of the misalignment, 1/8

th of the domains are not shown.
One can observe that the topologies of the misalignment angles show clear three
dimensional behavior.
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(a) Out-of-plane angles specimen 1

(b) Out-of-plane angles specimen 2

Figure 3.7: 3D contour plots of the out-of-plane misalignment φk,l,m. Misalignment angles were
measured over the cuboid-shaped domains extracted from the scanned cylindrical
volumes. The dimensions of the cuboids are provided in Table 3.2. To highlight the
interior of the topologies of the misalignment, 1/8

th of the domains are cut out. It
is clearly observable that topologies of the misalignment angles show clear three
dimensional behavior.



44 materials and measurements

In-plane θk,l,m Out-of-plane φk,l,m
Specimen

1

Specimen
2 Average

Specimen
1

Specimen
2 Average

s [◦] 0.6458 0.6995 0.6726 0.5652 0.4147 0.4899

P1 [◦] -2.178 -1.827 -2.002 -1.367 -1.052 -1.209

P99 [◦] 1.215 1.655 1.435 1.403 1.050 1.226

P99(|θk,l,m|)
P99(|φk,l,m|) [◦] 2.445 2.230 2.337 1.572 1.227 1.399

Table 3.4: Statistics of the measurements of the fiber misalignment angles after shifting means
of the misalignment to zero. It is to be noted that the standard deviation of the θk,l,m
and φk,l,m for both specimens remain unchanged as shifting the mean of a distribu-
tion does not change it’s spread i.e. standard deviation. Moreover, the average values
of θk,l,m and φk,l,m have only meaning to them when the mean of the corresponding
data sets has been transformed to zero.

respectively. Since some analytical solutions for prediction of failure under compres-
sion loads use a single representative effective angle considering absolute values of an-
gles |θk,l,m| and |φk,l,m| such as the investigation by Wilhelmsson [127], the respective
99

th percentiles P99(|θk,l,m|) and P99(|φk,l,m|) are also tabulated for all measurement
data sets. The average s=0.6726

◦ for the in-plane misalignment θk,l,m is significantly
higher than that of the out-of-plane misalignment φk,l,m having a value of s=0.4899

◦.
A similar trend can be seen in the percentile statistics. There are some extreme values,
as high as 8

◦, at the tail end of the measured distribution of the in-plane misalignment.
This observation further solidifies the argument presented earlier to explain the differ-
ences in the spread of the in-plane and the out-of-plane misalignment that the fibers
are more prone to imperfections in the in-plane directions because of the lamination
and the curing process in a prepreg based material. It is interesting to observe from
statistics given in Table 3.4 that the standard deviation of the in-plane misalignment
angle θk,l,m of specimen 1 is lower compared to that of specimen 2. On the other hand,
the standard deviations of the out-of-plane misalignment angle φk,l,m of specimen 1

is higher compared to that of specimen 2. It again provides further support for the
Yurgartis’s observation about the independence of the in-plane and the out-of.plane
misalignment distributions from one another.
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(a) In-plane (b) Out-of-plane

Figure 3.8: Histograms of the in-plane misalignment θk,l,m and the out-of-plane misalignment
φk,l,m, along with the corresponding fits to the normal distributions. All data sets
were transformed to zero mean, i.e. mean fiber direction. Note that the out-of-plane
misalignment is more closely related to the normal distribution compared to the
in-plane misalignment.
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Q U A N T I F I C AT I O N O F S TAT I S T I C A L P R O P E RT I E S O F T H E
F I B E R M I S A L I G N M E N T

theoretical basics Of the different approaches available in the literature for
generating topologies of the misalignment, the spectral representation method is the
most promising one [76, 100]. The representation of the fiber misalignment through
the spectral representation method provides a procedure to define both the statistical
distribution as well as the correlation properties observed experimentally in unidirec-
tional FRPs. The spectral representation method applies to stationary random fields.
The term stationary implies that the spectral characteristics of the field are indepen-
dent of spatial interval in which they are measured/sampled/modeled, and hence
can be accounted as a material characteristics. Assuming that a misalignment angle
f (x) (with x being a spatial dimension) is a stationary random field, the spectral
density S(ω) of the fiber misalignment angle f (x) can be used to represent the ran-
dom correlated field through the spectral representation method [76, 100]. Similar
approaches have also been successfully employed in other engineering problems such
as surface generation for contact mechanics [27, 61], and sea surface generation for
visual imagery or optical analysis [43, 67], among others.

The spectral representation method is based on Fourier analysis. Fourier analy-
sis yields a representation of a function in terms of an infinite series of superposed
harmonic functions of different wavelengths and amplitudes. Fourier transform of a
topology of the fiber misalignment angels f (x) is given by:

F(ω) =
1

2π

∫ ∞

−∞
f (x)dx (4.1)

and the inverse Fourier transform is given by:

f (x) =
∫ ∞

−∞
F(ω)dω (4.2)

For a fiber having an infinite length, the autocorrelation function for the fiber mis-
alignment in the nominal fiber direction is defined as:

R(τ) =
∫ ∞

−∞
f (τ) · f (x + τ)dx (4.3)

The autocorrelation function R(τ) defines by how much the values of a function
are correlated with itself over a lag distance τ. Examples of the autocorrelation func-
tions for some standard functions are given in Fig. 4.1 for a better understanding. In
Fig. 4.1a, Fig. 4.1b, and Fig. 4.1c three basic functions are shown i.e. a sine wave, a

47
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Figure 4.1: Examples of some standard functions and their autocorrelation R(τ). The τ axis
in the bottom row plots represents number of total discrete points over which the
function has been sampled and corresponds to the lag distances.

square wave, and random values sampled from a standard normal distribution, re-
spectively. In Fig. 4.1d, Fig. 4.1e, and Fig. 4.1f, the autocorrelation functions R(τ) of
the plots in Fig. 4.1a, Fig. 4.1b, and Fig. 4.1c are shown. The autocorrelation functions
of an infinite sine and an infinite square wave are an infinite cosine and an infinite
triangular wave with constant amplitude, respectively. However, when the autocorre-
lation is calculated over a finite distance following Eq. 4.3, the autocorrelation function
slowly decays to zero. The plotted functions in Fig. 4.1 are over a finite range (i.e. 5π

in these examples), therefore, the decay of the autocorrelation function R(τ) can be
seen in the plots in Fig. 4.1d and Fig. 4.1e. For the random functions, it can be seen
easily that after a spike at zero lag (i.e. τ=0) the correlation becomes approximately
0 over a very short lag distance. This implies that the points are independent of each
other, which is true for random sampling. Additionally, it can be noted that the au-
tocorrelation takes positive and negative values. Looking at the example of the sine
wave, it is clear that any given point is perfectly correlated with itself. The correlation
decreases with increasing lag distance τ, and when the original function changes sign
the correlation becomes negative.
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Spectral density S(ω) is defined as the Fourier transform of the autocorrelation R(τ)
of a function. Mathematically, it can be written as:

S(ω) =
1

2π

∫ ∞

−∞
R(τ) · e−ιωτdτ (4.4)

Spectral density provides information about the amplitudes of the harmonic func-
tions associated with different frequencies ω (or wavelengths λ) in that function. One
can find different definitions of frequencies in terms of either the angular frequency
ω or in terms of the ordinary frequency f =ω/2π in the literature. In the current im-
plementation, the angular frequencies ω=2π/λ are considered. Angular frequency ω

is the number of waves contained in 2π units of dimensions.
Spectral density can also be related to the Fourier transform of the original function

F(ω) and the conjugate of the Fourier transform F(ω)∗ by Eq. 4.5, [84].

S(ω) =
1

2π
F(ω)∗F(ω) (4.5)

This relationship is useful in discrete calculations as will be explained in next sub-
section. The total area under the spectral density curve Ξ equals the mean square of
the function (see Eq. 4.6). The mean square value Ξ is a material characteristic quantity
in the current representation [28, 76, 100].

Ξ =
∫ ∞

−∞
S(ω)dω (4.6)

4.1 spectral analysis of the measured fiber misalignment

In this section, the discrete spectral analysis on the measured topologies of the fiber
misalignment is presented. Since the misalignment was measured over a volume in
space, the corresponding volumetric representation of the spectral densities is given.
Moreover, the deficiencies of characterizing the spectral density in 2D frequency do-
main of the measured 3D misalignment are discussed.

4.1.1 Characterization of spectral densities in 3D frequency domain

The misalignment is measured over finite distances L1, L2, and L3 in a discrete man-
ner in the experimental investigations. Hence, for the characterization of the fiber
misalignment in the form of spectral densities, the discrete definitions of the Fourier
analysis are followed. In the experimental investigations, the misalignment is mea-
sured ∆1, ∆2, and ∆3 distances apart from each other for N1, N2, and N3 times. The
intervals between the measurement points are defined as ∆1=L1/N1, ∆2=L2/N2, and
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∆3=L3/N3. The topologies of the in-plane misalignment angle θ and the out-of-plane
misalignment angle φ can be represented as follows:

θk,l,m = θ(1xk,2 xl,
3 xm) = f θ

k,l,m (4.7a)

φk,l,m = φ(1xk,2 xl,
3 xm) = f φ

k,l,m (4.7b)

where 1xk=k∆1, 2xl=l∆2, and 3xm=m∆3 (for k={0, 1, . . . , N1− 1}, l={0, 1, . . . , N2− 1},
and m={0, 1, . . . , N3 − 1}). The rest of the equations will be shown only for θk,l,m and
they hold analogously for φk,l,m. The discrete Fourier transform of f θ

k,l,m is given by:

Fθ
k,l,m =

1
N1N2N3

N1−1

∑
r=0

N2−1

∑
s=0

N3−1

∑
t=0

f θ
r,s,t exp

(
−2πι

(
kr
N1

+
ls
N2

+
mt
N3

))
(4.8)

It is necessary to take the number of sampling points N1 > ωc1 L1/π, N2 > ωc2 L2/π,
and N3 > ωc3 L3/π to avoid aliasing which is an accuracy eroding artifact in Fourier
analysis [84]. The symbols ωc1 , ωc2 , and ωc3 correspond to the maximum components
of frequencies (proportional to minimum wavelengths λmin1 , λmin2 , and λmin3) present
in the fiber misalignment field f θ

k,l,m. It is to be noted that the minimum wavelengths
that can be measured on a specimen are twice the distance between measurement
points in the respective direction i.e. λmin1=2∆1, λmin2=2∆2, and λmin3=2∆3. Spectral
densities can then be calculated in discrete form by Eq. 4.9, see also Ref. [84].

Sθ
k,l,m = Sθ(ωk, ωl, ωm) =

L1L2L3

(2π)3 Fθ∗
k,l,mFθ

k,l,m =
L1L2L3

(2π)3 |F
θ
k,l,m|

2 (4.9)

where Fθ∗
k,l,m is the complex conjugate to Fθ

k,l,m. For f θ
k,l,m=θk,l,m and f φ

k,l,m=φk,l,m, the

sum of the respective spectral densities Sθ
k,l,m and Sφ

k,l,m will be subsequently related to

the standard deviations of f θ
k,l,m and f φ

k,l,m. For this purpose, the mean square spectral
density Ξθ (analogously Ξφ) is introduced in Eq. 4.10.

Ξθ =
N1−1

∑
k=1

N2−1

∑
l=1

N3−1

∑
m=1

Sθ(ωk, ωl, ωm) (4.10)

Parseval’s identity given in Eq. 4.11 provides the relation between the fiber mis-
alignment and its Fourier transform components.

1
N1N2N3

N1−1

∑
k=0

N2−1

∑
l=0

N3−1

∑
m=0
| f θ

k,l,m|
2 =

N1−1

∑
r=0

N2−1

∑
s=0

N3−1

∑
t=0
|Fθ

r,s,t|2 (4.11)

The quantity on the left in Eq. 4.11 equals the variance (square of standard deviation
sθ) of a distribution with zero mean. This is the case here, since the nominal fiber
direction i.e. 1-direction is identified with the mean of the random fiber misalignment.
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Hence, the relation between the mean square spectral density Ξθ and the standard
deviation sθ of a distribution of misalignment angles comes out to be:

Ξθ =
L1L2L2

(2π)3

(
sθ
)2

(4.12)

Ideally, an ensemble averaged value of the spectral density has to be calculated by
measuring the misalignment experimentally in a statistical manner for the spectral
density of the fiber misalignment to be a material characteristic. However, only two
specimens were scanned for the characterization of spectral densities in the experi-
mental campaign because of the steep costs per CT-scan. The resulting voxel data was
used to determine both the topologies of the in-plane misalignment angle θk,l,m and
the topologies of the out-of-plane misalignment angle φk,l,m via the image processing
technique High Resolution Misalignment Analysis (HRMA) proposed by Wilhelms-
son and Asp [126], see Section 3.2 for a more detailed description of this process
and the corresponding results. Image processing using the HRMA method rendered
70×12×516 matrices for the misalignment angle θk,l,m over measurement volumes of
6.657×1.1412×0.979 mm and 70×702×10 matrices for the misalignment angle φk,l,m
over measurement volumes of 6.657×1.329×0.951 mm.

The cuboids for the in-plane and the out-of-plane measurements in Section 3.2 have
slight differences in the dimensions due to the cylindrical nature of the scans and the
corresponding image extraction from the CT-scan data. For the numerical analysis,
same volumes with same number of sampling points are required for both θk,l,m and
φk,l,m misalignment angles. Moreover, the distance of 1.902 µm between neighboring
images is too small for any noticeable changes in the the fiber misalignments θk,l,m
and φk,l,m, hence, every 50

th image’s data is used in the 3D calculation of the spectral
densities. This resulted in distances between measurement points ∆1, ∆2, and ∆3 of
95.1 µm (i.e. 50 pixels) for both topologies θk,l,m and φk,l,m. Therefore, the volume of
6.657×1.1412×0.951 mm with 70×12×10 sample points was chosen for all measure-
ment data sets. A schematic of a cuboid volume selected from a cylindrical scanned
volume is shown in Fig. 4.2. The viewing planes in 1-2 and 1-3 planes, i.e. the in-plane
and the out-of-plane, are marked in green and red colors, respectively. A real extracted
cuboid CT scan volume is shown in Fig. 3.5a with location of planes for the in-plane
and the out-of-plane images marked in green and red colors, respectively. Subsequent
discrete Fourier transformation on the misalignment data sets rendered 70×12×10

matrices for the corresponding spectral densities Sθ(ωk, ωl, ωm) and Sφ(ωk, ωl, ωm).
Since the calculated spectral densities are dependent on three spatial/frequency

variables, it is not straightforward to plot them meaningfully. When analyzing the
matrices of spectral densities Sθ(ωk, ωl, ωm) and Sφ(ωk, ωl, ωm), it was observed that
the spectral densities have highest values at the lowest frequencies, i.e. larger wave-
lengths. The values of the spectral densities reduced sharply moving away from the
origin, eventually approaching zero towards higher frequencies. Hence, the most rep-
resentative plots are on planes ω1=0, ω2=0, and ω3=0. Therefore, the results are plot-
ted for the spectral densities Sθ(ωk, ωl, ωm) and Sφ(ωk, ωl, ωm) of the in-plane and
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Figure 4.2: Sketch of a cuboid volume selected from a scanned cylindrical volume. The cylin-
drical scanned volume was obtained over a cuboid shape [0]4 unidirectional FRP
laminate by performing a CT scan.

the out-of-plane measurements, and the corresponding averages over specimen 1 and
2 on planes ω1=0, ω2=0, and ω3=0 in Fig. 4.3. Since the nominal fiber direction was
along the 1-axis, the misalignment angle for the infinite wavelength λ∞ (which cor-
responds to zero frequency) is equal to zero i.e. Sθ(0, 0, 0)=0 and Sφ(0, 0, 0)=0. The
range of the non-zero frequencies ωR1 , ωR2 , and ωR3 spans from the fundamental fre-
quencies ω f1 , ω f2 , and ω f3 to the Nyquist frequencies ωN1 , ωN2 , and ωN3 for each case,
cf. [94]. Subsequent frequencies are mirrored aliases, hence, the spectra are plotted
till ωN in Fig. 4.3. Analyzing the spectral density Sθ(ωk, ωl, ωm) depicted in Fig. 4.3a,
Fig. 4.3b, and Fig. 4.3c closely, it can be seen that highest values of Sθ(ωk, ωl, ωm)
are close to origin and show an anisotropic behavior. This is a characterization of
the measured misalignment angles of Section 3.2 in spectral domain, where the con-
tour plots of the in-plane misalignment angles showed an anisotropic behavior. On
the other hand, the spectral density Sφ(ωk, ωl, ωm) plotted in Fig. 4.3d, Fig. 4.3e, and
Fig. 4.3f show a rather uniform spread in the spectral domain. This is because the cor-
responding measured out-of-plane angles seen in Fig. 3.7 showed a uniform spread
in physical space. Additionally, the figures of Sθ(ωk, ωl, ωm) and Sφ(ωk, ωl, ωm) show
that the spectral values at higher frequencies (i.e. small wavelengths) are either zero
or close to zero. Based on this observation of near zero values of Sθ(ωk, ωl, ωm) and
Sφ(ωk, ωl, ωm) at higher frequencies (i.e. small wavelengths), it can be concluded that
the smaller wavelengths have negligible contribution to the the fiber misalignment in
physical space.

One might notice that plots of Sθ
k,l,m and Sφ

k,l,m for each specimen in Fig. 4.3 show

rather spiky data whereas the average plots of Sθ
k,l,m and Sφ

k,l,m are comparatively
smooth. Similar spiky data was observed in spectral characterization of a 2D misalign-
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Direction 1 2 3
Length
L [mm] 6.657 1.1412 0.951

Sampling points
N [-] 70 12 10

Fundamental frequency
ω f =2π/L [mm−1] 0.943846373 5.505770511 6.606924613

Nyquist frequency

ωN= Nπ
L =

Nω f
2 [mm−1] 33.03462307 33.03462307 33.03462307

Frequency interval

∆ω=ω f =
ωN−ω f
N/2−1 [mm−1] 0.943846373 5.505770511 6.606924613

Frequency range
ωR=ωN −ω f [mm−1] 32.09077669 27.52885256 26.42769845

Minimum wavelength
λmin= 2π

ωN
[mm] 0.1902 0.1902 0.1902

Table 4.1: Calculation of different frequency values for the lengths of the measured volume
and corresponding number of sampling points

ment data in Fig. 3 of Ref. [35]. The relatively smooth average plots of Sθ
k,l,m and Sφ

k,l,m
in Fig. 4.3 indicate that further CT scans would yield reasonably smoother spectra of
the spectral densities. It is to be noted that the spiky data of the spectral densities
does not affect the accuracy of the evaluation. This argument is supported by the
use of these characterized spectral densities in generation of the virtual topologies of
the fiber misalignment which resulted in smooth contours of the fiber misalignment
angles seen in Fig. 4.6b and Fig. 4.6d.

The values of different frequencies in each direction of the measured volume in the
current investigation are given in Table 4.1. The minimum measurable wavelengths
in the current investigation are considerably lower than the minimum wavelengths
observed in unidirectional FRP materials [28, 127], therefore, the measurements can
be considered representative of the misalignment in FRPs.

Although 1D plots of the spectral densities are not useful for modeling purposes
because of a lack of complete volumetric characterization of the 3D misalignment,
they can still give insights into the wave behavior in each direction. Therefore, in
addition to the 3D plots of spectral densities in Fig. 4.3, the more commonly found in
literature [28, 127] form of 1D spectral illustration of the fiber misalignment is shown
in Fig. 4.4. Since the calculation of the spectral density was performed in a discrete
manner, the plots in Fig. 4.4 are made in the form of staircases. The 1D plot depicts
the spectral density Sθ/φ(ω1/2/3) in each direction in ranges ω f1/2/3

to ωN1/2/3 for both
measurements of the misalignment angles θk,l,m and φk,l,m over specimens 1 and 2,
and averages thereof. These plot are drawn on the axes ω1, ω2, and ω3. The axes
corresponds to waviness behavior λ1, λ2, and λ3 in directions 1, 2, and 3, respectively.
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(a) In-plane specimen 1 (b) In-plane specimen 2

(c) In-plane average (d) Out-of-plane specimen 1

(e) Out-of-plane specimen 2 (f) Out-of-plane average

Figure 4.3: Spectral density plots from the 3D spectral density data on planes ω1=0, ω2=0,
and ω3=0. Spectral densities were calculated from the 3D fields of the in-plane
misalignment angle θk,l,m and the out-of-plane misalignment angle φk,l,m.
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Figure 4.4: Spectral density plots from the 3D spectral density data on axes ω1, ω2, and ω3.
Spectral densities were calculated from the 3D fields of the in-plane misalignment
angle θk,l,m and the out-of-plane misalignment angle φk,l,m.
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The spectral densities of the out-of-plane misalignment have a consistent trend in
all three directions, see Fig. 4.4d, Fig. 4.4e, and Fig. 4.4f. They show higher values of
spectral densities at smaller frequencies (i.e. larger wavelengths) which reduce con-
sistently towards larger frequencies (i.e. smaller wavelengths). This uniform behavior
of spectral densities in all three directions in the spectral domain is illustrative of the
uniform spread of the out-of-plane misalignment angles φk,l,m in the physical domain,
see Fig. 3.7. Similarly, the spectral density of the in-plane misalignment in direction
1 also shows a peak at smaller frequencies (i.e. larger wavelengths), although with a
faster decline of the spectral density value towards zero in comparison. The spectral
density of the in-plane misalignment in directions 2 and 3 shown in Fig. 4.4b and 4.4c,
however, depict different behavior. They show a peak in the middle frequencies. The
spectral density of the in-plane misalignment angle in direction 1 has highest values
at lower frequencies (i.e. larger wavelengths) and almost negligible values at higher
frequencies (i.e. smaller wavelengths). The values of spectral densities of the in-plane
misalignment angle in directions 2 and 3 are more uniform. The anisotropy in the
spectral behavior of the in-plane misalignment angle is indicative of the anisotropic
nature of the measured in-plane misalignment angles, see contour plots of the in-plane
misalignment angles in Fig. 3.6.

It is, however, to be stated that there are only a small number of sampling points for
the plots in directions 2 and 3 for both the in-plane and the out-of-plane misalignment
angles. Further scans over larger volumes could still improve the characterization.

The mean square values Ξθ and Ξφ of the spectral densities of the in-plane θk,l,m and
the out-of-plane φk,l,m three dimensional measurements for both specimens and the
corresponding averages over the specimens are given in Table 4.2. The standard devia-
tions sθ and sφ of the misalignment angles measured over the volume of 6.657×1.1412×0.951

mm with 70×12×10 sample points, which are linked to Ξθ and Ξφ via Eq. 4.11, are
also provided. The mean misalignment of each distribution is 0. Since there is a direct
relation between the mean square of spectral densities Ξθ and Ξφ and the standard
deviation of the misalignment angles sθ and sφ as given in Eq. 4.12, a larger spread of
the in-plane misalignment angles compared to the out-of-plane misalignment angles
indicated by large values of sθ result in large values of Ξθ. Alternatively said, large
values of the mean square of spectral densities means that the misalignment angles in
physical space have a large spread.

4.1.2 Deficiency of characterizing spectral densities in 2D frequency domain

From the measurements of the fiber misalignment presented in Section 3.2 and the
corresponding spectral analysis presented in Section 4.1.1, it is evident that the mis-
alignment is a truly three dimensional phenomenon. However, different misalignment
measurements and spectral analysis of FRPs found in literature tend to represent
them in a two-dimensional space [28, 29, 127]. Herein, the deficiencies of character-
izing spectral densities in 2D frequency domain will be highlighted. It is stated for
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In-plane θk,l,m Out-of-plane φk,l,m
Specimen

1

Specimen
2 Average

Specimen
1

Specimen
2 Average

Ξθ [◦
3
] and

Ξφ [◦
3
] 0.0112 0.0166 0.0139 0.0094 0.0047 0. 0071

sθ [◦] and
sφ [◦] 0.6214 0.7560 0.6920 0.5667 0.4038 0.4920

Table 4.2: Statistics of the 3D fiber misalignment angles and the corresponding spectral param-
eters

clarity that the 2D calculation is only a detour for comparative purposes and it can
not capture the complete picture of a real three-dimensional misalignment field.

The misalignment in 2D form can be measured using the extracted micrograph
images from the volumetric scan using the HRMA method [126]. This can be done
independently for the in-plane and the out-of-plane misalignment fields. For this pur-
pose, the HRMA algorithm was used to measure the in-plane misalignment on 516

images in 1-2 plane from each specimen where each image was divided into 70×12

cells. The location of images in 1-2 plane are sketched in green color on a volumetric
scanned image shown in Fig. 3.5a. For the measurement of the 2D out-of-plane mis-
alignment on 702 images in 1-3 plane from each specimen usign the HRMA method,
each image was divided into 70×10 cells. The location of images in 1-3 plane are
sketched in red color on a volumetric scanned image shown in Fig. 3.5a.

After removing the global misalignment of each specimen from the measured 2D
in-plane and the 2D out-of-plane misalignment, spectral densities were calculated for
each image separately. The resulting discrete matrices of spectral densities from the
in were averaged over each specimen i.e. 702 matrices of θ2D

k,l and 516 matrices of φ2D
k,l

from each specimen were averaged to find the corresponding 2D spectral density ma-
trix of each specimen. The 2D spectral densities of θ2D

k,l and φ2D
k,l from each specimen

were also used to find the average of the in-plane and out-of-plane spectral densi-
ties over both the specimens. The resulting data sets are used to depict 2D spectral
densities as surface plots in Fig. 4.5. The spectral densities are plotted till Nyquist
frequencies. Similar to the 3D depiction, the 2D diagrams show maximum values of
spectral densities at lowest frequencies which gradually decrease away from the ori-
gin. It again highlights that the largest frequencies (i.e. smallest wavelengths) have
minimum to negligible contribution to the overall misalignment. It can be observed
that with large data-sets for each plane-of-view, the resulting spectral density calcula-
tions give smooth plots. This is indicative that a larger number of volumetric CT-scans
would also result in smooth characteristic spectral density plots in 3D space.

When comparing the 2D spectral plots in-lieu of the earlier presented 3D spectral
plots, it is obvious that the 2D representation doesn’t give a complete characteriza-
tion of the underlying 3D misalignment fields. Moreover, the anisotropy observed in
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(a) 2D in-plane specimen 1 (b) 2D in-plane specimen 2 (c) 2D in-plane average

(d) 2D out-of-plane specimen 1 (e) 2D out-of-plane specimen 2 (f) 2D out-of-plane average

Figure 4.5: 2D spectral density plots. Spectral densities were calculated from the 2D fields of
the in-plane misalignment angle θ2D

k,l and the out-of-plane misalignment angle φ2D
k,l .

the 3D measurements of the i-plane misalignment, which were easily observable in
the 3D spectral representation in Fig. 4.3a, Fig. 4.3b, and Fig. 4.3c, does not appear
in the 2D spectral density characterization. For sake of completeness, the standard
deviations sθ2D

, sφ2D
and the mean square spectral densities Ξθ2D

, Ξφ2D
are also given

in Table 4.3. Higher values of Ξθ2D
compared to those of Ξφ2D

indicate a larger spread
of the in-plane misalignment compared to the out-of-plane misalignment. It is to be
noted that the values of sθ2D

, sφ2D
are same as those of the complete 3D data-sets given

in Table 3.4, since the complete CT scan data was subdivided into separate images for
the 2D calculations of the spectral densities. However, the relation given in Eq. 4.12 be-
tween the mean square spectral density and the standard deviation of the underlying
distribution does not hold for the 2D calculation. This is because the of the reduction
of 3D misalignment fields into separate 2D fields. All these limitations highlight the
importance of the complete 3D characterization of spectral densities.

4.2 generation of topology of the fiber misalignment using spectral

representation method

In this section, the virtual generation of the topologies of the fiber misalignment is
presented. Since the misalignment was measured over a volume in space and sub-
sequently characterized in three dimensional frequency domain, the corresponding
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Ξθ2D
[◦

2
] sθ2D

[◦] Ξφ2D
[◦

2
] sφ2D

[◦]

Specimen 1 1.2706e-04 0.6458 9.7026e-05 0.5652

Specimen 2 1.4906e-04 0.6995 5.1986e-05 0.4147

Average 1.3806e-04 0.6726 7.4506e-05 0.4899

Table 4.3: Statistics of the 2D fiber misalignment angles and the corresponding spectral param-
eters. The standard deviations of the in-plane and the out-of-plane misalignment are
same as the complete data-sets given in Table 3.4 as the complete CT scan data was
used in 2D calculations.

generation of topologies of the misalignment is performed for a volume in space. Ad-
ditionally, the 2D generated topologies of the misalignment using an algorithm from
the literature are also presented along with examples of corresponding 2D measure-
ments.

4.2.1 Generation of the volumetric misalignment topology

The algorithms for generating topologies of the misalignment for FRPs from a given
spectral density function are available in the literature for 1D [100] and 2D [76], which
are based on the algorithm developed by Newland [84]. Herein, a modified version of
the algorithm for a 3D representation is presented [93].

In the 3D extension, the spectral density and the generated topologies of the mis-
alignment are dependent on three frequency and three spatial variables, respectively.
The algorithm for generating a 3D topology of the fiber misalignment, along with all
the steps for implementation, is given in the Appendix A. The algorithm takes discrete
matrices of spectral densities Sθ

k,l,m and Sφ
k,l,m of either the in-plane or the out-of-plane

misalignment as input. The spectral density matrices can either be sampled from a
functional form of the spectral density or they can be calculated directly from the
measurements of the misalignment, as was done in Section Section 4.1.1. To generate
different virtual topologies having preserved statistical as well as spectral quantities,
a random angle βk,l,m is used. The random angle βk,l,m introduces phase shifts in
contributing frequencies. βk,l,m is sampled with certain conditions mentioned in Ap-
pendix A from a uniform distribution [0, 2π]. Discrete Fourier transforms FΘ

k,l,m and
FΦ

k,l,m of the resulting topologies can then be calculated using the method explained
in the Appendix A. Taking inverse Fourier transforms of FΘ

k,l,m and FΦ
k,l,m gives spatial

topologies of the misalignment angles θk,l,m and φk,l,m. As measurements were done
in a discrete manner, it is to be noted that the spectral representation method has cer-
tain limitations, such as limits on minimum wavelengths (corresponding to Nyquist
frequencies) and maximum modeled wavelengths (corresponding to fundamental fre-
quencies). These wavelengths are based on the sampling density and model lengths,
respectively, cf. Table 4.1.
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Using the calculated 3D spectral densities Sθ
k,l,m and Sφ

k,l,m from Section 4.1.1 as input,
topologies for the in-plane misalignment and the out-of-plane misalignment were
generated through the algorithm given in Appendix A. Since there are three sets of
spectral densities each for the in-plane and the out-of-plane measurements, one from
each specimen and one average thereof, three series of topologies each were generated
for the in-plane and the out-of-plane misalignment. The aim was to compare the axial
compression strengths from each series and select the appropriate series for further
investigations in Chapter 6.

Fig. 4.6 shows selected realizations of measured versus generated topologies for
the in-plane misalignment angles and the out-of-plane misalignment angles as 3D
contour plots. The in-plane as well as the out-of-plane misalignment are spread out
over the volume in a correlated random manner. The in-plane misalignment from the
measurements of a specimen plotted in Fig. 4.6a shows an anisotropic behavior. The
regions of in-plane misalignment are elongated in the 1-axis direction. A virtually
generated topology of the in-plane misalignment using the spectral representation
method is shown in Fig. 4.6b. The virtually generated topology of the in-plane mis-
alignment replicates the anisotropy observed in the measurements. On the other hand,
the measured out-of-plane misalignment shown in Fig. 4.6c shows a uniform spread
of the regions of misalignment. The virtually generated topology of the out-of-plane
misalignment using the spectral representation method is shown in Fig. 4.6d. Again,
the uniform spread of the misaligned regions in the measured topology of the out-
of-plane misalignment is replicated in the virtually generated topology. It should be
noted that if one uses only probability distribution functions of the misalignment an-
gles as a basis for the model generation procedure without any consideration of the
correlation, the aforementioned differences in the spatial distribution of misalignment
topologies can not be modeled.

4.2.2 Generation of the planar misalignment topology

For sake of completeness, topology of the misalignment in 2D planes is also presented.
The algorithm for generation of a misalignment topology dependent on two spatial
direction is available in literature [76]. Using this algorithm from literature, misalign-
ment topologies for the planar in-plane misalignment θ2D

k,l and the planar out-of-plane
misalignment φ2D

k,l were generated.
Fig. 4.7 shows selected realizations of the θ2D

k,l and the φ2D
k,l topologies, along with

exemplary 2D measurements on extracted micrographs from the original volumetric
scan data. It is obvious that 2D topologies of either the θ2D

k,l or the φ2D
k,l can only rep-

resent waviness within that plane. They are also unable to represent effects of the 3
rd

dimension on the waviness behavior of the θ2D
k,l and the φ2D

k,l topologies.
Analyzing the 2D contour plots given in Fig. 4.7, a similar behavior to 3D contour

plots of Fig. 4.6 can be observed. The in-plane misalignment regions in 2D also show
anisotropic behavior, cf. Fig. 4.7a and Fig. 4.7b. The contours of in-plane misalignment
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(a) Measured contours of the in-plane misalign-
ment angle from a specimen

(b) Contours of a virtually generated realization of
the in-plane misalignment angle

(c) Measured contours of the out-of-plane misalign-
ment angle from a specimen

(d) Contours of a virtually generated realization of
the out-of-plane misalignment angle

Figure 4.6: Measured and virtually generated 3D contour plots of the in-plane misalignment
angle θk,l,m and the out-of-plane misalignment angle φk,l,m. Measurements were
performed using CT scans and the angles were calculated using the HRMA method
[127], also see Section 3.2. The spectral representation method was used for the
generation of virtual topologies of the misalignment angles. It is evident that the
misalignment fields depend on all three coordinate directions.
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are elongated in 1-direction. On the other hand, the 2D out-of-plane misalignment
topologies depicted in Fig. 4.7c and Fig. 4.7d show uniform spread of regions of mis-
alignment. The reasons behind the differences in the θ2D

k,l and the φ2D
k,l topologies stem

from the lamination and subsequent compaction during curing process as explained
in Section 3.2.
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(a) Measured contours of the θ2D
k,l from a specimen
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(b) Virtually generated contours of the θ2D
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(c) Measured contours of the φ2D
k,l from a specimen
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(d) Virtually generated contours of the φ2D
k,l

Figure 4.7: Measured and virtually generated 2D contour plots of the θ2D
k,l and the φ2D

k,l . Mea-
surements were performed using CT scans and the angles were calculated us-
ing the HRMA method [127] from the micrographs. The spectral representation
method given by Liu et. al. [76] was used for the generation of virtual topologies
of the 2D misalignment angles.





5
E X P E R I M E N TA L D E T E R M I N AT I O N O F FA I L U R E U N D E R
C O M B I N E D C O M P R E S S I O N - S H E A R L O A D S

Failure of composites under compression dominated loads is a complex phenomenon
as has been shown in different investigations over past half a century. The experimen-
tal determination of failure serves as an independent approach in itself for character-
izing failure under certain conditions. It also provides information for validation of
numerical analysis. Over the decades, there has been pronounced interest in testing to
failure under multi-axial loads for unidirectional fiber reinforced composites [50, 116,
118]. The term load case refers to a certain loading direction where a multi-axial load
state can be achieved, either through loading at an angle to the specimen nominal
direction or by specific geometry of the specimen. In addition to testing to failure of
simple axial compression, experimental investigations of complex load cases can also
prove helpful for design engineers giving more confidence in exploiting the FRPs to
their maximum potential. Moreover, quantification of the uncertainties expected in
failure under compression dominated loads is also of great interest. In this regard, a
new approach for failure under combined compression-shear load is developed. In
this new testing to failure approach, combined compression-shear loads can be trans-
ferred to the specimen gauge section simultaneously through a combination of shear
and end load transfer mechanisms similar to the currently accepted compression test-
ing standard. The new testing to failure approach accommodates easy to manufacture
flat specimens, where mean fiber direction is same as the nominal specimen direction.
Tests to failure were performed over statistically significant number of samples to
characterize the failure uncertainty. This chapter presents the methodology of testing
to failure in details followed by the discussions on the outcomes of the investigation.

5.1 methodology

As motivated in Section 2.6 after a comprehensive review of the state of the art, the
focus of this contribution lies in the development of failure envelopes under axial
compression and combined compression-shear loads using a simple testing concept.
Therefore, developing further on previous investigations available in the literature, a
new testing approach using flat specimens is introduced in this study. The details of
the new approach to testing to failure are discussed in this section.

65
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5.1.1 Specimen geometry

Microbuckling strength of fiber reinforced composites shows uncertainty with changes
in component size. This phenomenon is called size effect and is a major topic of in-
terest in research [109, 130, 132]. In defining the specimen geometry for the current
investigation, the size effect phenomenon was also taken into account. Motivated by
the intention to increase sizes of the specimens for the follow-up size effect investi-
gations, the dimensions of the gauge section for the current investigation were kept
smaller compared to the ranges suggested in different compression testing standards.
The nominal value of the compression strength given by the supplier was 1165 MPa.
The load range required for the gauge section under the axial compression in the cur-
rent investigation was estimated to be 6 kN, ±2-3 kN to account for expected varia-
tion in strength because of the underlying manufacturing induced fiber misalignment.
Based on the load range, the dimensions of the gauge section required for the current
investigation were calculated to be 5×5 mm with a thickness of 1.15 mm. The total
length of specimen was designed to be 105 mm for a resolute placement in the fixture
during testing. These gauge section dimensions were chosen to consider subsequent
volumetric increase in sizes to 15×15×2.30 mm and 30×30×3.45 mm. These larger
sizes would require loads of approximately 35-45 kN and approximately 105-115 kN,
respectively.

Moreover, the typical wavelengths of the fiber misalignment measured by different
authors in literature [29, 110] are of the order of a few millimeter. Similar range of
wavelengths was observed in the measurements of the misalignment performed in
the current work in Section 3.2 and the corresponding spectral analysis in Section 4.1.
The major contribution to the misalignment is from wavelengths of the order of a few
millimeters. The resulting regions of the misalignment are of the order of 1 mm in
size as depicted by the sizes of the contours in the 3D plots in Fig. 3.6 and Fig. 3.7.
Hence, the in-plane dimensions of 5×5 mm cover the range of typically observed
wavelengths of the fiber misalignment.

The calculation of minimum specimen thickness required to avoid global Euler
buckling under boundary conditions of a pin-ended column for a gauge length of 5

mm using the formula given in ASTM D6641 standard resulted in a value of 0.68 mm.
This is well below the thickness of the specimens, thus the designed specimen with
an average thickness of 1.15 mm is not susceptible to the global Euler buckling.

The prepreg was laminated in four layers [0]4 giving an average thickness of 1.15

mm. Since FRPs have very low transverse strength (see Table 3.1), a single large sized
cured plate with only four layers for manufacturing all the specimens in a single at-
tempt would be prone to transverse breaking during handling. Therefore, four plates
of 150×300×1.15 mm area were manufactured for preparation of specimens of testing
to failure series. For ease of applying tabs, the manufactured plates were subdivided
into smaller ones of approximately 150×80×1.15 mm area. Although 90

◦ tab taper an-
gle is relatively common due to ease of specimen preparation for compression testing,
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Figure 5.1: Schematic of the jig design for tabbing the testing to failure specimens. The jig
proved helpful in achieving very high accuracy of the required gauge length. The
location of a specimen to be cut is shown with dotted lines. A schematic of the
specimen at the cross-section A-A is shown in Fig. 5.2.

End tabs
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50 mm 5 mm
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1
m
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Figure 5.2: Schematic of the testing to failure specimen with adhesive and tabbings. The cross
section A-A of the Fig. 5.1 indicates the viewing direction. The outline of the jig is
represented by the blue dashed lines.

45
◦ tab taper angle is an optimum choice to reduce invalid failure modes driven by

stress concentrations at the tab ends. An investigation to affirm the use of 45
◦ tab taper

angle (see Fig. 5.2) over the other available choices of 60
◦ and 90

◦ tab taper angle was
carried out before final testing to failure series. The results of the study on tab taper
angle along with other design parameters will be discussed later in Section 5.2.1.

For the specimens of testing to failure series, [+45/ − 45]2s GFRP tabs with 45
◦

tab taper angle were applied with 3M’s DP490 adhesive on each plate subdivision
of 150×80×1.15 mm dimension. A small jig shown in Fig. 5.1 was designed for the
tabbing process. The jig helped in achieving very high accuracy of the required gauge
length which is not possible when tabbing is done without any jig. Such mechanical
jigs have proven to be useful in accurate specimen manufacturing [40, 79]. A total of
99 specimens with the schematic shown in Fig. 5.2 for testing to failure series were
then cut into required dimensions with a rotary cutter. The cutter has a diamond tip
and can cut with a precision of 0.01 mm.
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Figure 5.3: Assembled view of the fixture design

5.1.2 Fixture development

The newly developed Combined Loading Modified Arcan Fixture (CLMAF) for test-
ing under axial compression and combined compression-shear loads is shown in
Fig. 5.3. The fixture is based on the principles used in the standard Arcan fixture
and the Combined Loading Compression (CLC ASTM D6641) fixture. The standard
Arcan fixture allows for adjustable load angles by rotating the internal part of the fix-
ture. This advantage can be exploited for applying multi-axial loads in a specimen as
was done by Gan et. al. in their modified Arcan fixture [50]. The current compression
testing standard CLC ASTM D6641 fixture has an advantage of transferring loads
into the gauge section of a specimen through combined end and shear load transfer
mechanisms. This allows for testing of high strength FRPs using easy to manufacture
rectangular specimens. By combining these two advantages of the standard Arcan fix-
ture and the compression testing standard CLC ASTM D6641 fixture, a new fixture
is developed for testing high strength FRPs under axial compression and combined
compression-shear loads.

The fixture consists of a pair of central rotateable plates (red shaded parts in Fig. 5.3
and Fig. 5.4a). The rotateable plates can be positioned at specified angular positions to
obtain required load cases, see Fig. 5.4a and 5.4b. The test specimen is placed in pre-
cisely milled grooves in the rotateable plates in such a way that it has end, and front
and back contact. The specimen is subsequently fixed in place with the help of a pair
of smaller holding plates (green). Such a placement of the specimen allows for a com-
bined end and shear load transfer mechanism defined in the ASTM D6641 standard,
see schematic in Fig. 2.6. The holding plates have grit surfaces. Grit surfaces of the
holding plates enhance frictional contact and consequently transfer shear loads into
the specimen. The holding plates are secured in place with the help of six screws each.
A small study was carried out for finding the optimum bolt torque value to tighten
the screws of holding plates, the details of which will be discussed in Section 5.2.1.
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The optimum value of the bolt torque value for the testing to failure series turned out
to be 2.5 Nm. This value is also suggested by the ASTM D6641 standard which gives
the required 1:2 ratio of end to shear loading. The pair of rotateable plates is fixed
in the outer blocks (yellow) with the help of pairs of pins for each plate having tight
tolerance at the desired loading angle.

The upper block of the fixture is fixed and aligned to the upper crosshead of the
machine with the help of a cylindrical part (silver) and a screw. The upper and the
lower blocks of the fixture are aligned with one another with the help of 30 mm di-
ameter alignment rods, see Fig. 5.4a. The alignment rods are fixed in the lower block
of the assembly, and are free to move in the bushings. The alignment rods can move
only in the global loading direction inside low friction bushings, thus preventing
global buckling or the out-of-plane movement of the assembly. The external assem-
bly of alignment rods, outer blocks, and the cylinder with spherical head is also to
counter any misalignments in the machine movements, thus avoiding any unwanted
loads in the specimen. Both the outer blocks are kept perfectly aligned because of the
alignment rods. If the bottom cross-head of the machine does not move exactly in
the global 1’ direction, the cylinder with spherical head (which is fixed with bottom
cross-head of the machine) adjusts the contact with lower part of the outer block. This
way, the load applied from the machine on the outer blocks of the fixture, and conse-
quently in the gauge section of the specimen, is always in the global 1’ direction. As
the lower block is only upheld over a cylindrical part (silver) having a spherical head
and the upper block is fixed in the machine crosshead, two adjustment plates (blue)
with L-shaped holes are employed holding upper and lower blocks together to avoid
the fixture falling apart under gravity in-between the tests, see Fig. 5.3. The adjust-
ment plates containing L-shaped holes are specific for each load case. The L-shaped
holes are 1 mm larger than the screws used there to avoid any contact while loaded,
and allow for up to 15 mm axial movement of the assembly. As the displacement to
failure in the current specimen sizes is much less than 1 mm, this range of movement
is more than sufficient, and allows for ease of specimen replacements for testing of
multiple specimens.

A cylindrical part (silver) having a spherical head is clamped in the lower part
of the machine, and transfers load into the lower block of the fixture by coming in
contact with a hardened plate (dark gray). The spherical head is made in this part
in order to mitigate any angular misalignment in load introduction from the testing
machine. Both, the upper cylindrical part fixed with a screw and the lower cylindrical
part having a spherical head fixed in the machine jaws, are employed for the universal
testing machine in the current testing campaign. It is worth noting that the fixture can
also be employed without these cylindrical parts, just as in the case of the standard
ASTM D6641 fixture. It is to be noted that the fixture is not limited to the pure axial
compression and combined compression-shear load cases, but can also be used for the
pure axial tension and combined tension-shear load cases. A cylindrical part, similar
to the one on the upper part, can be screwed to the bottom head of the fixture for
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(a) Exploded view of the fixture design (b) Different loading positions

Figure 5.4: Exploded view of the fixture along with different loading positions. Load was
applied in global 1′ direction. The local directions are defined on the specimen
where 1 is in the nominal fiber direction, and 2 and 3 are the in-plane and the
out-of-plane transverse directions, respectively. The rotations in case A and B are
30
◦ and 45

◦, respectively.
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(a) Testing setup (b) Zoomed view of the fixture

Figure 5.5: The newly developed CLMAF for the axial compression and combined
compression-shear load cases. In these images, a specimen is being tested under
the combined compression-shear case B i.e. 45

◦ load case.

applying tension loads for such applications. However, the interest of the current
investigation lies in testing to failure under compression and combined compression-
shear load cases only.

5.1.3 Testing procedure

The tests to failure were carried out using the CLMAF with the following procedure.
The fixture was mounted into the machine with the central rotateable plates set in
the required loading positions, as shown in the setup Fig. 5.5. The specimen was then
placed in the grooves, brought in contact with the upper end, and the upper holding
plate was loosely screwed on top. After that, the lower end of the fixture was moved
upwards slowly until contact was established, which was verified by a change of
approximately 30-40 N in the force signal. Then the lower holding plate was screwed
on top of the specimen, and all twelve screws of the holding plates were tightened in
a zigzag manner with a torque of 2.5 Nm.

The calibrated cameras of the DIC system were then brought into place, and the
test was carried out at a rate of 1.3 mm/min until failure was achieved. A preliminary
study on the testing speeds in range of 0.25-1.5 mm/min and the torque in range of
2.5-5.0 Nm required for tightening the holding plates of the fixture was carried out,
since the specimen dimensions were non-standard. The resulting optimum speed and
torque values of 1.3 mm/min and 2.5 Nm coincide with the parameters suggested by
the ASTM D6641 standard.

Since the fixture is a new design, it was deemed necessary to confirm the suffi-
cient rigidity of the fixture. Any unwanted out-of-plane displacement of the fixture
in global 3’-direction might lead to undesirable bending of the specimen. The rigidity



72 experimental determination of failure

0 500 1000 1500 2000

-1

0

1

2

3

4

5

Figure 5.6: Twice the out-of-plane displacements d3 normalized by the average thickness t of a
specimen during a test under the axial compression load at three points along the
length of a specimen i.e. near the upper and lower clamps and at the middle of the
specimen. The out-of-plane displacements were extracted using the DIC system on
the surface of the specimen. The horizontal axis correspond to the image number
captured during the DIC measurement.

of the fixture was confirmed by tracking the movement of the fixture using the DIC
system. The movement of the fixture was tracked for three initial tests under axial
compression load showing approximately 3-4% displacements in the transverse out-
of-plane direction compared to the displacements in the nominal fiber direction. This
verification was repeated on multiple samples in the testing to failure series, this time
tracking the motion of specimens.

The specimen gauge sections were too small to employ back to back strain gauges
as recommended by the standard. Hence, the in-plane strains were measured using
the DIC system directly at the specimen front surface, as elaborated in the next para-
graph. Moreover, the DIC system can also track out-of-plane movements and hence, it
was used to measure the out-of-plane displacements. Fig. 5.6 shows the out-of-plane
displacements d3 multiplied by 2 and normalized by the average thickness t of a
specimen loaded under axial compression measured on the surface at three differ-
ent points i.e. near the top clamp, near the bottom clamp, and at the middle of the
specimen. Since the d3 measurements were performed on only the front surface of
specimens, hence, the normalization of evolution of d3 in Fig. 5.6 was done by half of
thickness t. It resulted in Y-axis term of Fig. 5.6 to be 2d3/t. It can be seen in Fig. 5.6
that the normalized out-of-plane displacements along the length of the specimen in
the testing to failure were fairly close to each other and were approximately 3-4%
at final failure, hence ruling out undue bending during the tests. Since the bottom
cross-head of the machine moves applying load from the bottom of the specimen, the
bottom point in Fig. 5.6 shows highest values of 2d3/t during the test followed by
middle and top points.
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The region of interest of approximately 2.5×2.5 mm for the testing to failure series
for measuring strain fields in the DIC system was defined at the center of the gauge
sections of the specimens. The region of interest was defined in the GOM Correlate
software by facets sized 14 pixels placed 2 pixels apart from one another on the im-
ages captured during the DIC system measurements. Since the aim of the current
investigation is development of failure envelopes for far field strains and stresses in
the specimen coordinate frame, the values of strains and stresses used throughout
the work represent the averaged far field quantities, unless stated specifically other-
wise. The tensorial symbols ε11 and ε12 are used to represent the far field axial and
the far field shear strains, respectively. In order to obtain far field strains in the spec-
imen coordinate frame, the coordinate system of the DIC measurement system was
aligned with the testing to failure specimens in such a way that the 1-axis was in the
nominal fiber direction and the 2-axis was in the in-plane transverse direction. The
far field axial strains ε11 and the far field shear strain ε12 in the specimen coordinate
frame were extracted using two methods of measurements (a) arithmetic mean of the
local strains in the defined region of interest, and (b) using the virtual extensometers.
Virtual extensometers are defined in the GOM Correlate software of the DIC system
on the captured images of the DIC measurement. The virtual extensometer works
like a physical extensometer and provides the averaged measure of the strains over
the length of the extensometer. All strain values extracted through either method of
measurement refer to the engineering/technical definition of strains. The far field
shear strains ε12 and the far field shear angles γ12 are related in the usual way, i.e.
γ12=2ε12. The shear strains ε12 from the virtual extensometers were calculated using
the half rosette bridge concept. Two equal length virtual extensometers at +45 and -45

angle from the 2-axis were used for this purpose. This resulted in a configuration of
the virtual extensometers 90

◦ apart from each other with 2-axis being their bisector.
The shear strains using the half rosette bridge concept are then calculated using the
relation ε12=(ε−45− ε+45)/2. The reason behind using two methods of strain measure-
ments was to avoid measurement errors, and verify them against one another giving
higher confidence in the results.

5.2 results and discussions

In the following section, the results of the testing to failure campaign under compres-
sion and combined compression-shear will be discussed. It starts with presentation of
the results of design variables of the new approach to testing to failure. A closer look
at the failure mode is followed by a comparison of failure strengths under different
loading directions. The localization in the form of a shear band leading to microbuck-
ling failure and kink band formation is shown with the help of the DIC system. Using
failure strains measured on surfaces of the specimens, a failure envelope in strain
space is presented. The results of the axial compression case are interpreted using
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the analytical solution of Budiansky [21, 23]. A derived approximation of the failure
envelope in the stress space is presented at the end of the chapter.

5.2.1 Design variables for testing to failure

Since non standard dimensions of the gauge section were designed in the current
investigation, it was deemed necessary to investigate the effects of design variable
such as tab taper angle, testing speed, and value of bolt torque on the strength under
the axial compression load. The results of these investigation are discussed briefly
below.

bolt torque and testing speed : To verify the applicability of by standard
ASTM D-6641 suggested values of the testing speed and the bolt torque required
for tightening the screws of the holding plate for the current investigation, a small
study was carried out. These tests were carried out with specimens having a 45

◦ tab
taper angle. The summary of these tests is given in Table 5.1. There, torque and speed
parameters of each test are listed along with the resulting failure mode. The validity
of the tests is also marked and the resulting values of the observed peak loads are
listed for comparison. The test validity is defined based on the valid/invalid failure
of compression testing given in ASTM D-6641 standard. In the current investigation,
all the valid tests showed microbuckling failure mode inside the gauge section. Other
valid failure modes defined in ASTM D-6641, such as brooming of fibers inside the
gauge section or the longitudinal splitting inside the gauge section, were not observed
in the current investigation.

Two values of torque on the screws of the holding plate of the fixture were used for
all six testing speeds considered. Torque value of 5 Nm on the screws of the holding
plate of the fixture resulted in lower strengths due to stress concentrations near the
tab ends of the gauge section compared to torque value of 2.5 Nm for all testing
speeds. Six testing speeds, i.e. 0.25, 0.50, 0.75, 1.00, 1.25, and 1.30 mm/min speed
of the machine cross-head, were considered for choosing an optimum value for the
newly developed fixture. Lower values of testing speeds tended to incur failure in the
tabbed region leading to an invalid failure mode. Lower speeds of testing apparently
did not transfer loads completely into the gauge section, which resulted in stress
concentration inside the tabbed region near ends of specimen. The description of
failure modes and location for each test is given in Table 5.1 Delamination and/or kink
band formation inside tabbed region was deemed invalid based on failure definitions
given in ASTM D-6641 standard. It was concluded that the torque value of 2.5 Nm
and the testing speed of 1.3 mm/min suggested by the standard ASTM D-6641 are
also the best choice for the current investigation. These value are used in all the tests
to follow.
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Torque Speed
Failure mode Validity

Peak load
[Nm] [mm/min] [MPa]

2.5 0.25 Delamination of tabs X 1086.67

5.0 0.25 MB inside tabbed region X 554.91

2.5 0.50 MB inside tabbed region X 1007.56

5.0 0.50 MB in gauge section near tab X 940.53

2.5 0.75 MB in gauge section near tab X 938.56

5.0 0.75 MB in gauge section near tab X 704.54

2.5 1.00 MB inside tabbed region X 809.07

5.0 1.00 MB in gauge section near tab X 701.36

2.5 1.25 MB in gauge section near tab X 1037.96

5.0 1.25 MB in gauge section near tab X 893.47

2.5 1.30 MB in gauge section X 1184.59

5.0 1.30 MB in gauge section near tab X 1055.71

Table 5.1: Effect of bolt torque and testing speed on failure under the axial compression. The
best choice values used in the rest of the testing to failure campaign are shown in
the dark green color.

tab taper angle : It has been shown in the literature that specimens with tapered
tab, although have a longer unsupported length, generally result in higher strengths
under the axial compression because of a reduction in stress concentrations at the
tab end [5, 40]. The current standard testing method for compression ASTM D-6641,
however, suggests the use of untapered tabs as the increase in strength is considered
negligible in-lieu of the increased complexity for preparation of the tapered tabs. The
current investigation considers a smaller gauge length i.e. 5mm compared to the stan-
dard range of compression testing specimens i.e. 10-13 mm. The smaller gauge section
with untapered tab could lead to a number of invalid tests with failure propagating
inside the tabbed region due to stress concentrations.

To investigate the effect of the tab taper angle on the compression strengths, an
investigation with three different tab taper angles i.e. 90

◦, 60
◦, and 45

◦ was carried
out. Eight specimens each were prepared with a tab taper angle of 90

◦ and 60
◦, and

an initial eight specimens with a tab taper angle of 45
◦. According to the ASTM D-

6641 compression testing standard, a test is valid if the failure occur inside the gauge
section. In the current investigation, the only microbuckling failure mode was ob-
served inside the gauge section. Other valid failure modes, such as brooming inside
the gauge section or longitudinal splitting inside the gauge section, were not observed
in any test. Six, four, and five tests from specimens with 90

◦, 60
◦, and 45

◦ tab taper
angle, respectively, resulted in a valid MB failure inside gauge sections of specimens.
The compression strength of all valid tests from this study are plotted in Fig. 5.7
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Figure 5.7: Effect of tab taper angle on the strength under axial compression load

against tab taper angle. Failure in specimens with 90
◦ tab taper angle tended to occur

near the tab ends with a lower rate of successful tests, and a lower median strength. In
specimens with 45

◦ tab taper angle, the failure was more central which is indicative of
failure due to the misalignment. The results of the specimens with 60

◦ tab taper angle
were somewhat in-between. It is concluded that the median strength increases with a
decrease in tab taper angle as seen in Fig. 5.7. Although effects of stress concentration
due to tabbing can not be completely eliminated, higher compression strength values
of specimens with 45

◦ tab taper angle indicate a minimum effect of stress concentra-
tion. Based on these outcomes, a tab taper angle of 45

◦ was chosen for further tests.
Further tests were carried out under axial compression and combined compression-
shear loads to obtain 25 valid tests for each load case. The results of those tests are
used for the development of failure envelopes, see Section 5.2.3, Section 5.2.5, and
Section 5.2.7.

5.2.2 Mode of failure in different load cases

In order to develop experimental failure envelopes, failure tests were performed
under three distinct load cases as defined earlier i.e. axial compression, combined
compression-shear load case A (30

◦ load case), and combined compression-shear load
case B (45

◦ load case). Tests were performed on a large number of specimens in or-
der to obtain a statistically significant sample sizes of valid test results for each load
case. Only the tests which showed valid microbuckling failure according to the failure
modes defined in the standard ASTM D6641 were considered. In total, 99 specimens
were tested out of which 44 (25 valid) were under the axial compression, 30 (23 valid)
were under the combined load case A, and 25 (25 valid) were under the combined
load case B. All the tests where failure occurred inside the tabbed region were con-
sidered invalid. The lower success rate in the axial compression case was expected
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(a) Axial compression (b) Compression-shear case A (c) Compression-shear case B

Figure 5.8: Gauge sections of the failed specimens showing microbuckling failure mode. (a),
(b) and (c) show a specimen each from the axial compression series (0◦ load case),
the combined compression-shear case A series (30

◦ load case), and the combined
compression-shear case B series (45

◦ load case), respectively. The white spots are
reminiscent from the paint used to create speckle pattern for the DIC system mea-
surements.

as stress concentrations near the tab ends and the small gauge section tend to incur
failure propagation inside the tabs, making a portion of the tests invalid.

Representative gauge sections of a failed specimen each from the axial compression,
the combined compression-shear case A, and the combined compression-shear case B
series are shown in Fig. 5.8. The direction of the applied displacement load and the
mean fiber direction of each representative gauge section is also marked with arrows
in Fig. 5.8. When the failure pattern of each representative gauge section is compared
to the guide given in the ASTM D-6641 standard for compression testing, it is evident
that the failure mode is microbuckling.

To give further evidence about microbuckling being the mode of failure under the
combined compression-shear load cases, the surface of a specimen from the com-
bined compression-shear case B series was scanned using a Keyence laser microscope
at the Institut für Werkstoffkunde, LUH. The fractographic features, visible on the
surfaces of the broken fibers shown in Fig. 5.9(a), depict the morphology particular to
microbuckling failure [52]. Across each fiber’s face is a chop-mark like line, which rep-
resents a neutral axis of the fibers as they undergo bending. Bundles of fibers collapse
in the same direction at the ends of the localized kink band resulting in the align-
ment of the neutral axis as seen in Fig. 5.9(a). This alignment of the neutral axes is a
demonstration of the so-called ’domino’ fracture which occurs during the microbuck-
ling failure. Microbuckling may occur on several planes resulting in a series of steps
on the fracture surface [52]. A closer look at the failed fiber surfaces shows that the
fibers break at the ends of the kink band in bending, resulting in a tension surface
and a compression surface on either side of the neutral axis, cf. Fig. 5.9(b). Further
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Figure 5.9: Fracture surface of a specimen from the combined compression-shear case B series
(45
◦ load case). The laser scan was performed by the Institut für Werkstoffkunde,

LUH.

discussion and interpretation of results of testing to failure under compression and
combined compression-shear are presented in subsections to follow.

5.2.3 Comparison of failure stresses for different load cases

It is suggested in literature that the load applied in the global 1′-direction as can
be seen in Fig. 5.4, which is measured using one load cell only, can be divided into
its components for the combined load cases using simple trigonometric relations [50].
This seems appropriate only, when the material behavior has a linear relation between
the load components. However, the material behavior of the unidirectional FRPs under
the axial compression is approximately linear up to failure whereas highly nonlinear
in shear as shown in Fig. 3.2a, also see Figs. 5a and 5b in [116]. Hence, it is proposed
that such a division of applied loads without consideration of the material behavior
can not be carried out. The reason for that is the lack of a one to one relation up to
failure between compression and shear response of the material.

Moreover, the testing was displacement controlled in the current investigation. There-
fore, the stresses in the machine coordinate frame σ1′1′ , σ2′2′ , and σ1′2′ as well as the
stresses in the specimen coordinate frame σ11, σ22, and σ12 have non zero values in
the combined compression-shear load cases. One would assume that using the usual
transformation matrices, stress components maybe transformed from the machine co-
ordinate frame to the specimen coordinate frame in the combined compression-shear
load cases. The load was only measured with one load cell in the global machine
loading direction 1′ giving only σ1′1′ stress component. The stress components σ2′2′

and σ1′2′ are unknown in the machine coordinate frame, therefore, transformation
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Figure 5.10: Comparison of the applied far field stresses in the loading direction σ1′1′ . (a) repre-
sents empirical probability of survival of the applied stress σ1′1′ for all three load
cases. The values of σ1′1′ were measured using the load cell of the machine. (b)
shows the respective probability density functions fitted to each load case.

of stresses using the usual stress transformation matrices from the machine coordi-
nate frame to the specimen coordinate frame in the combined compression-shear load
cases cannot be done.

However, failure loads of different cases can be compared in the form of applied
stresses σ1′1′ in the global loading direction 1′ i.e. applied force/initial area perpendic-
ular to the fiber direction, see Fig. 5.4b. The initial area was calculated by a product of
the average thickness and the average width for each specimen, where thickness and
width were measured at two locations, each, in the gauge section of each specimen.
As the loading was in the mean fiber direction of the specimens, the relation σ1′1′=σ11
holds for the axial compression load case.

Fig. 5.10a shows the empirical probability of survival of the applied stress σ1′1′ mea-
sured in all three load cases. As expected, introduction of the shear load along with
the compression load in the specimen coordinate frame reduces σ1′1′ of the machine
coordinate frame significantly for the combined compression-shear load cases com-
pared to the pure axial compression load case. A quick glance at the plots in Fig. 5.10

shows that the spread of the strengths σ1′1′ around corresponding mean values is sig-
nificantly higher for the axial compression case. The reason behind a larger variation
in the applied stresses in the axial compression case is the dependence on the un-
derlying fiber misalignment. When the compression stress σ11 proportion of the total
applied stress σ1′1′ is reduced, the effect of the fiber misalignment is also reduced. The
consequential result is the lower variation of the applied stresses σ1′1′ in the combined
load cases.
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The σ1′1′ values for all three cases are fitted with a normal distribution and 2/3-
parameter Weibull distributions using the maximum likelihood method. The plots
are shown in corresponding colors in Fig. 5.10b. The parameters for fits of different
distributions are reported in Table 5.2 for each load case. The parameters referring
to the 2-parameter Weibull fit are represented with an over-script tilde symbol. For
all fitted distributions, the goodness of fit (gof) was determined via Pearson’s χ2-test.
The normal distribution shows a high value of the gof for all load cases. If one was
to consider a normal distribution of the σ1′1′ values, a prediction of zero strength and
infinitely large strength also has a probability to occur. The strength of a material can-
not be zero or infinitely large, hence, the normal distribution can be rejected based
on this fact that it gives probability to infinitely extreme values which is physically
impossible. Experimental investigation [62] and numerical analysis [76, 100] in the
literature propose that the axial compression strength closely fits to the 3-parameter
Weibull distribution. In the current investigation, the gof value of 34% suggest a loose
fit of the axial compression load case for the 2-parameter Weibull whereas a slightly
better fit with a gof value of 46% for the 3-parameter Weibull. The spread of the axial
compression strengths in the current investigation resembles the results of Jelf and
Fleck [62], where the authors proposed a 3-parameter Weibull fit. σ1′1′ for the load
case A shows a high gof for the 2-parameter Weibull and a moderate gof value for
the 3-parameter Weibull distribution. In load case B, the trend is similar to the axial
compression where the 3-parameter Weibull shows a better fit. Although the values
of gof for the 2-parameter and 3-parameter Weibull distributions for all load cases
are moderate, these distributions do not predict infinitely extreme values unlike nor-
mal distribution. Therefore, from the physical interpretation of the problem, Weibull
distribution is a better choice. Based on these observations, it is concluded that the
3-parameter Weibull model is better suited to all load cases among the three distribu-
tions discussed here, as expected.

5.2.4 Observing the formation of the kink band using DIC system

It is clear from post mortem inspection that the failure under the compression dom-
inated loads is caused by microbuckling, which is a shear localization phenomenon.
It is generally quite difficult to observe the dynamic progression of this phenomenon
[16, 17]. In the current investigation, the maximum temporal resolution possible on
the current specimen size for the DIC system is approximately 90 Hz. This was not
enough for observing the shear localization in the axial compression case, as the speed
to failure under the axial compression was quite fast. However, the speed to failure in
the combined load cases is slower. This allowed an insight into the shear localization
phenomenon.

An example of observing the formation of the kink band using the DIC system is
shown in Fig. 5.11 for the load case B. The figure shows snapshots just before the
peak load and after the failure has occurred. Green arrows of the coordinate frame in
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Load case
Axial

compression
Comb. comp.-
shear case A

Comb. comp.-
shear case B

Normal
distribution fit

mean 1139.89 497.22 381.44

[MPa]
s 188.28 65.83 74.70

[MPa]
gof 69 72 84

[%]

2-parameter
Weibull fit

shape m̃ 7.11 8.22 5.06

[1]
scale R̃o 1219.76 526.40 412.72

[MPa]
gof 34 80 34

[%]

3-parameter
Weibull fit

shape m 2.74 2.53 1.69

[1]
scale Ro 521.31 173.76 139.48

[MPa]
thresh. Rt 677.58 343.11 256.65

[MPa]
gof 46 55 61

[%]

Table 5.2: The table lists fit parameters of the three probability distributions on each load case,
and the corresponding goodness of fit (gof) in percentage. The gof highlights the
probability of a data set belonging to the respective probability distribution function.



82 experimental determination of failure

(a) Near peak load (b) Post peak load

2´

1´
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Figure 5.11: Images taken at different stages of a test under the combined compression-shear
load case B (i.e. 45

◦ load case), along with the shear strain field. The applied
displacement was in 1′ direction. (a) shows the frame just before the peak load.
Localization of the in-plane shear in the form of a band is apparent from the
contour plot. (b) shows the post peak failed specimen. The final failure location is
in the same place as the localized shear band in (a).

the sub-figures point in the fiber direction whereas red arrows point in the in-plane
transverse direction in the specimen coordinate frame. Applied loading was in the
global 1′ direction in the machine coordinate frame. Just approaching the peak load,
shear has begun to localize in the form of a band at certain angle to the axial direction
of the specimen. After failure, the fracture shown in Fig. 5.11b can be seen at the exact
same location as the incipient shear band apparent in Fig. 5.11a. Since the defined
region of interest in the DIC system vanished because of the damage to the black and
white speckle pattern caused by a sudden release of energy in microbuckling failure,
the strain field can not be tracked anymore in Fig. 5.11b after failure has occurred.

5.2.5 Failure envelope in the strain space

Typically, failure envelopes are defined in the stress space. For this purpose, the ap-
plied forces must be measured for each loading direction under consideration. As
argued in Section Section 5.2.3, the applied force in the 1′-direction can not be subdi-
vided into its components in the specimen coordinate frame without consideration of
the nonlinear material behavior. In contrast to the stress components, strain compo-
nents can be measured directly at the specimen level for each direction using the DIC
system. Hence, the primary failure envelope representation from the experimental
results is done in the strain space.
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Only the intersection of the failure envelope with the ε11-ε12 plane is considered
here. For this purpose, axial and shear strains were extracted from the DIC measure-
ment system from all the specimens of the testing to failure series. The details of
strain extraction method are detailed in Section 5.1.3. It is observed from the results
that the strain ratios at failure in combined compression-shear case A and case B are
not as intended. One of the possible reasons for it could be that the holding plates of
the fixture were not rigid, as they were held only by screws. Since screws only have
a line contact along screw threads compared to surface contact of other parts of the
fixture, such as guide pans and holding blocks, they are prone to slight slippage. As a
consequence, the strain ratios deviated from the intended compression to shear ratios
of
√

3 : 1 and 1 : 1 for case A and case B, respectively. However, the failure modes
were valid according to the ASTM D6641 standard albeit at a mix of strain ratios at
failure in the combined load cases. Additionally, the strains at failure were measured
directly on the specimens using the DIC system, hence, these values are admissible
for the development of a failure envelope. The shear strains of case B are negative in
the current coordinate convention. However, the shear behavior is symmetric around
the axial direction, henceforth, absolute values of shear strain are taken.

The resulting 75 data points are plotted as a scatter in Fig. 5.12. For the failure strain
under the pure in-plane shear, the mean value from the shear characterization tests
mentioned in Section 3.1 is employed. This mean value of the in-plane shear failure
strain is 9.57[%] which is taken as deterministic, as the spread thereof is negligible as
can be seen in the experimental results depicted in Fig. 3.2a. The axial compression
case shows the highest spread having mean and standard deviation values of -1.11[%]
and 0.24[%] of the axial strain. The spread reduces with increasing value of the applied
shear load and becomes deterministic quantity under the pure in-plane shear load
as can be seen in Fig. 5.12. The shear behavior in FRPs is independent of the fiber
misalignment and only the axial compression is dependent on the fiber misalignment.
In case of combined compression-shear cases, an increase in the shear load and a
simultaneous decrease in the compression load compared to the axial compression
case reduces overall spread of the failure strains. Therefore, with reduced ratio of
applied compression loads, the spread of failure strains reduces compared to the pure
axial compression case.

The envelopes were defined in terms of the median and percentiles since they pro-
vide a relatively unbiased statistical measure compared to the mean and the standard
deviation. Moreover, the percentile representation is easier to understand and imple-
ment in an engineering design. Eq. 5.1 represents failure envelopes fi associated with
certain percentiles of distribution of failure. This particular form of the equation for
failure envelopes is chosen as it provides the best fit for each percentile with least
amount of complexity. Other common functions for fitting failure strain data, such as
Fourier series, exponential function, power law, and sum of sines, were also tried but
they either did not provide a good fit or resulted in increased complexity. The func-
tional form of the failure envelope in Eq. 5.1 was fitted to the respective percentiles
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i pi q ri

25
th percentile -1.5244

0.1042

0.9681

Median -0.8598 0.9088

75
th percentile -0.6583 0.6847

Table 5.3: Fit parameters of Eq. 5.1 for median, 25
th, and 75

th percentile of distribution of
failure envelopes in ε11-ε12 plane

of distributions of the failure strains of each load case to identify constants pi and
ri for each envelope fi, delimiting the i= 25

th, 50
th, 75

th percentile of distribution of
failure. The functions fi were fitted with a gof of 99.9% for each percentile. The param-
eters of Eq. 5.1 are enumerated in Table 5.3, and the equations are plotted on top of
scatter points in Fig. 5.12. The ith percentile of distribution of failure is reached when
corresponding function fi(ε11, ε12) becomes equal to zero. The green 25

th percentile
line indicates 25% chance of failure or alternatively 75% chance of survival at these
load levels. Similarly, blue and red lines represent 50% (median) and 75% chances of
failure respectively.

fi(ε11, ε12) = piε11ε12 + qε12 − riε11 − 1 (5.1)

Generally, failure envelopes or yield surfaces are convex. These surfaces/envelopes
generally define either the start of yielding or activation of a failure mode. However,
the strain based failure envelope here is not convex, and represents the ultimate failure
of specimens. The reason behind the concave shape can be understood in differences
of failure behaviors of the axial compression and the pure shear cases. Under the axial
compression, failure is brittle and the activation of failure coincides with the ultimate
load carrying capacity. On the contrary, the shear failure is progressive and the final
failure occurs after considerable yielding of the matrix, cf. 3.2a. Such ductile behavior
under shear stretches failure under the combined loads outwards, giving the failure
envelope a concave shape. If one was to gather data for the activation of failure, e.g.
through intermittent loading/unloading, the failure envelope based on the activation
might still be convex.

5.2.6 Interpretation of the axial compression load case results in-lieu of an analytical
formula

Results for the axial compression load case are further interpreted by referring to ana-
lytical estimates of the peak load. There are different models available in the literature
for predicting the axial strength of FRPs under compression [8, 21, 23, 75], but only
the classical model proposed by Budiansky et. al. shall be considered further. The ex-
pressions for the compressive strength predicted by this model are stated as Eq. 5.2,
see also Eq. 62 in [21]. The model in Eq. 5.2b provides a relation among the applied
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Figure 5.12: Failure envelope in ε11-ε12 plane based on the experimental results. Scatter points
represent strains of corresponding specimens at failure for each load case. The
solid lines are based on fitted equations at 25

th, 50
th(median), and 75

th percentiles
of distributions of failure.

far field compressive stress σ∞
11, the magnitude of the in-plane misalignment ψ=|θ|,

the applied far field shear stress σ∞
12 and/or the applied far field shear strain γ∞

12, con-
sidering the nonlinear in-plane shear response of the material. The function τ(γ12)
represents the nonlinear shear response under the uniaxial shear, i.e. τ(γ12)=σ12(γ12)
as shown in Fig. 3.2a. Symbol γ12 denotes the in-plane shear angle where γ12=2ε12
in the usual sense. In this model, the misalignment angle ψ is representative of a
single positive valued misalignment without consideration of any spatial variability.
Solving for the maximization problem, as stated in Eq. 5.2c, provides the prediction
of the compressive strength σc

11. Eq. 5.2 assumes plane strain with respect to 1− 2
plane and does not consider any out-of-plane deformations, hence, the magnitude of
misalignment ψ is defined in terms of the in-plane misalignment θ only, see Eq. 5.2a.

ψ = |θ| (5.2a)

σ∞
11 =

τ(γ12)− σ∞
12

ψ + γ12 − γ∞
12

(5.2b)

σc
11 = max

γ12
(σ∞

11) = max
γ12

(
τ(γ12)− σ∞

12
ψ + γ12 − γ∞

12

)
(5.2c)

In this section only pure compression case will be considered, although, mixed com-
pression/shear load cases A and B will be considered further down in Section 5.2.7.
There is no applied far field shear load for the special case of the pure axial compres-
sion, hence, σ∞

12= 0 and γ∞
12=0. In this case, a straightforward extension of Budiansky’s

plane strain model to account for the effect of the out-of-plane misalignment φ is ob-
tained by redefining ψ as given by Eq. 3.2. In Eq. 5.3, angles ψ and γ refer to the
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misalignment and the shear, respectively, in a common plane in between the 1− 2
plane and the 1− 3 plane.

σc
11 = max

γ
(σ∞

11) = max
γ

(
τ(γ)

ψ + γ

)
(5.3)

The modified Budiansky model given in Eq. 5.3 links the compressive strength σc
11

to a single misalignment angle ψ i.e. given the compressive strength and material prop-
erties, the angle ψ can be calculated by performing an inverse analysis using Eq. 5.3
as explained below. A similar analysis using Argon’s analytical formula [8] to obtain
inferred values of ψ corresponding to the experimental strengths was performed by
Jelf and Fleck, see Figs. 9(a) and 9(b) in [62]. Taking advantage of Budiansky’s ana-
lytical solution given in Eq. 5.3, an analysis is performed to find the misalignment
angles ψ associated with the experimentally obtained strength values. Results of this
analysis are shown in Fig. 5.13. Red line in Fig. 5.13b represents the generalized an-
alytical solution of Eq. 5.3 for a range of ψ using nonlinear shear relation shown in
Fig. 3.2a. Each experimentally observed strength result is projected from the vertical
axis onto the red curve of Fig. 5.13b, and subsequently onto the horizontal axis. This
procedure renders a histogram (in red color in Fig. 5.13c) of an inferred misalignment
angle ψ from the histogram of the experimentally observed strength values plotted as
histogram in Fig. 5.13a. The resulting data set of ψ, plotted as a histogram in Fig. 5.13c
(red line), has a median value of Q50(ψ)=1.13

◦ with maximum and minimum values
of 2.09

◦ and 0.77
◦, respectively.

The misalignment angles ψ implied by Eq. 5.3 in conjunction with peak loads ob-
served experimentally can be compared to the measurement data of distributions of
misalignment angles presented earlier in Section 3.2. Results of the measurements of
the fiber misalignments presented in Section 3.2 clearly indicate that a single represen-
tative angle is an overly simplistic approximation, nonetheless, one may consider an
angle to be derived in some manner from the actual distributions of the misalignment
angles for comparison with ψ. In this sense, an equivalent to ψ may be considered as
the effective misalignment for the purpose of applying Eq. 5.3.

In this spirit, an effective misalignment angle ηk,l,m:=
√

θ2
k,l,m + φ2

k,l,m is defined in
terms of the measured in-plane θk,l,m and the out-of-plane φk,l,m misalignments. In a
Monte Carlo approach, values for θk,l,m and φk,l,m were randomly sampled from the
normal distributions reported in Table 3.4 for j=1 · · · 107 to obtain the distribution of
ηk,l,m.

Generally, the analytical solution considers the maximum magnitude of the fiber
misalignment angle. Since there are extreme outliers in the measurements of the fiber
misalignment due to some rare broken fibers or spurious angles associated with the
method of measurement, as presented in Section 3.2, identifying ψ with maximum
of distribution of ηk,l,m would result in unrealistically high values. Therefore, identi-
fying ψ with a certain percentile of distribution of the effective misalignment angle
ηk,l,m appears as a reasonable assumption. A similar procedure was carried out by
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Wilhelmsson et. al. [127] for non crimp fabric (NCF) composites. In that investigation,
ψ was identified with the 99

th percentile of the absolute values of the measured dis-
tribution of the in-plane fiber misalignment angle. In the current investigation, the
99

th percentile P99(ηk,l,m)=2.45
◦ turns out to be quite far off from the median mis-

alignment angle of Q50(ψ)=1.13
◦. Hence, the 99

th percentile P99(ηk,l,m) gives a very
conservative prediction of the median value of the compressive strength. The 90

th

percentile P90(ηk,l,m)=1.17
◦ is however, in good agreement with the median value of

Q50(ψ)=1.13
◦.

Thus, the percentile level used to define the effective angle from the measurements
of the fiber misalignments for the prediction of median value of the compressive
strength appears as an undetermined tuning parameter. Its dependencies are unclear
and readjustments may be required for different materials. It should be noted that
the prediction of the median strength was the goal. Hence, the magnitude of the
misalignment angle ψ related to the median strength i.e. Q50(ψ) was compared with
the identified percentile P90(ηk,l,m) of the measured effective misalignment angle ηk,l,m.

Some authors employed the assumption of elastic-perfect plastic material behavior
in shear for using analytical solution of Eq. 5.3 [109, 127]. Considering Fig. 3.2a, it is
not clear what could be an equivalent representative value of the shear yield stress
σ

y
12 in an idealization of perfect plasticity yield behavior. In lieu of a well defined

yield stress σ
y
12, the shear modulus changes significantly at the value of 55 MPa. Ad-

ditionally, σ
y
12=35 MPa is also considered. In Fig. 5.13b, the prediction by Eq. 5.3 for

the axial compression strength against ψ for aforementioned values of yield stress
under assumptions of elastic-perfect plastic behavior is also plotted. Again projecting
the experimentally observed peak stresses from Fig. 5.13a on the elastic-perfect plas-
tic behavior based solutions, the corresponding values of ψ are inferred. Histograms
of inferred misalignment angles ψ at σ

y
12=35 MPa and σ

y
12=55 MPa are plotted in

Fig. 5.13c in colors green and blue, respectively. It can be seen that the perfect plas-
ticity solution at σ

y
12=35 MPa is closest to the generalized nonlinear solution, which

is neither at the start of matrix nonlinearity value of 21 MPa nor at the value of 55

MPa where it seems logical from the shear stress-strain curve. This finding highlights
that for materials with nonlinear shear behavior, the assumption of perfect plasticity
is overly simplistic and can not predict compression strength accurately.

5.2.7 An approximation of the failure envelope in the stress space

As argued earlier in Section 5.2.5, a direct determination of the failure envelope in
the stress space from the current series of experiments is not possible. However, an
approximate representation through an indirect calculation can be carried out. The
strength values under the pure axial compression and under the pure in-plane shear
are directly available, see Sections Section 5.2.3 and Section 3.1. To also obtain data
points for mixed load cases A and B, a simple estimate via an equation system involv-
ing a further modification of the classical Budiansky model is considered in the fol-
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Figure 5.13: Analytical solutions of Eq. 5.3. (a) shows the histogram of the strength under the
axial compression σc

11. (b) shows prediction of the compression strength against
the misalignment angles implied by one of the two considered solution methods
for Eq. 5.3. Projecting (a) on (b) yields (c). Image (c) shows the histograms of
the inferred misalignment angles using Eq. 5.3 pertaining to the experimentally
obtained strengths.
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lowing. For this purpose, the far field applied in-plane shear strains εc
11 and γ∞

12=2ε∞
12

are directly available from measurements. The first Eq. 5.4a is provided by the linear
relation between σc

11 and εc
11. It can be used here as the behavior under the pure axial

compression load case is approximately linear up to failure. The second equation is
provided via Eq. 5.4b. The original form in Eq. 5.2c neither accounts for the out-of-
plane misalignment φ nor for any out-of-plane shear γ13. Here, this is accepted as
a simplification and it is assumed that contributions of the out-of-plane quantities
are negligible in the mixed load cases A and B. This simplification appears justified,
since the expression is dominated by the far field applied in-plane shear strain γ∞

12.
The misalignment angle ψ with the simplified assumption of the in-plane behavior is
identified as the 90

th percentile P90 of absolute values of measured distribution of the
in-plane angles |Θk,l,m|.

σc
11 = E11εc

11 (5.4a)

σc
11 = max

γ12

(
τ(γ12)− σ∞

12
ψ + γ12 − γ∞

12

)
(5.4b)

γ ≈ γ12 γ13 ≈ 0 (5.4c)
ψ = P90(|Θj|) = 1.11◦ (5.4d)

Solving equation system given in Eq. 5.4 numerically for σ∞
12 in terms of given val-

ues for εc
11 and γ∞

12 renders respective data points for mixed load cases A and B in
stress space. The median values of numerically calculated σc

11 and σ∞
12 for cases A and

B, along with experimentally obtained median value of the pure axial compression σc
11

and the value for the pure in-plane shear are plotted as blue dots in Fig. 5.14. These
four points fall approximately on a straight line. Therefore, they are fitted with a linear
function gi, see Eq. 5.5. There, R12 is the strength under the pure in-plane shear. The
symbol Ri

11 represents 25
th, 50

th (median) and 75
th percentiles of strengths under the

pure axial compression with R25th
11 =974 MPa, R50th/median

11 =1192 MPa, and R75th
11 =1304

MPa. There, symbol R12=77 MPa represents the in-plane shear strength. The failure
envelope based on Eq. 5.5 for the median strengths is plotted by a solid yellow line
in Fig. 5.14. In the current investigation, the failure envelope in stress space shows
a linear trend, which is in line with the experimentally obtained failure envelopes
reported in the literature [10, 116]. The linear relation between σc

11 and σ∞
12 as found

out in the current investigation is also proposed by the analytical solution of Eq. 5.2
under combined compression-shear loads [21]. Similar to the median strengths, a lin-
ear relation can be assumed for other percentiles of strengths for failure envelopes in
stress space. In such a scenario, only the percentiles of the axial compression strength
are needed to construct the failure envelopes for a given percentile of failure, as the
shear strength is deterministic. Under this assumption, the 25

th and 75
th percentiles

of the distribution of failure envelope in stress space are also plotted in Fig. 5.14 with
dotted green and red lines, respectively.
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Figure 5.14: Derived failure envelope in σ11-σ12 plane based on the experiments. Yellow scatter
points represent median strengths for each load case. The solid (yellow) line is
based on the fitted equation on median strengths, whereas dashed lines represent
approximations for 25

th and 75
th percentiles of distribution of failure.

gi(σ11, σ12) =
σ11

Ri
11

+
σ12

R12
− 1 (5.5)



6
N U M E R I C A L M O D E L I N G O F P R O B A B I L I S T I C FA I L U R E
E N V E L O P E S

As highlighted in the previous chapter through the results of the experimental cam-
paign in Section 5.2.2, the leading failure mode in unidirectional FRPs under com-
pression dominated loads is microbuckling (MB). MB is highly sensitive to material
imperfections and nonlinear material behavior. Material imperfections are spread in
the form of the fiber misalignment in the volume of the material as shown by measure-
ments of the fiber misalignment in Section 3.2. The spectral representation method is
employed in this work to represent the misalignment in numerical models for the
prediction of MB strength while preserving the spatial correlation information, see
Section 4.1 and Section 4.2. The MB strength shows uncertainty because of a high
sensitivity to the fiber misalignment. Quantification of uncertainty in MB failure is
essential for reliable design practices. Therefore, the aim of the current chapter is
the probabilistic prediction of MB failure under axial compression and combined
compression-shear loads using numerical modeling. Different series of 3D models,
each containing a large number of realizations, were developed based on spectral
densities calculated from the measurements of the fiber misalignment from different
specimens, cf. Section 4.1.1. The resulting distributions of strengths under the axial
compression load case from these model series are compared and a suitable model
series was chosen for further analysis. The stress-strain response under different com-
binations of combined compression-shear loads is discussed. Finally, the numerically
determined probabilistic failure envelopes in stress and strain spaces are presented
with lower percentiles of distributions of failure compared to the experimentally de-
termined failure envelopes. The failure envelopes are also compared against classical
failure criteria from the literature to highlight the limitations of the classical criteria.

6.1 modeling methodology

The review of the state of the art given in Section 2.6 shows that the homogenized
representation of fiber and matrix materials in numerical models allows for ease of
modeling and computational efficiency over large model sizes, which are necessary
characteristics to perform statistically significant number of numerical simulations for
quantifying the uncertainties of MB strength. Therefore, the extension of the available
2D homogenized modeling approaches to 3D as well as the details of the material
model used herein are presented in this section in a concise manner.
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Figure 6.1: Schematic of the FE model geometry used for the development of probabilistic
failure envelopes. (a) depicts a [0]4 laminate with large in-plane dimensions com-
pared to the thickness in 3-direction. The laminate consists of representative vol-
umes which are periodic in directions 1 and 2. One such volume is marked in dark
blue color. (b) illustrate the geometry of the representative volume used in numer-
ical modeling. The contour of an in-plane distribution of the fiber misalignment
angles is plotted on the back planes of the cuboid shaped volume. The direction
1 is the nominal fiber direction, and 2 and 3 are the in-plane and the out-of-plane
transverse directions, respectively. The FE mesh is shown with the grid on the back
planes of the cuboid with blue lines.

6.1.1 Model geometry

For the development of failure envelopes using numerical modeling, 3D models were
constructed in the form of cuboids representing a region of a unidirectional FRP lam-
inate. Fig. 6.1 illustrates the schematic of the FE model geometry used in the cur-
rent work. Nominal fiber direction is parallel to the 1-axis, whereas 2 and 3 are the
in-plane and the out-of-plane transverse directions, respectively. The nominal dimen-
sions of the FE models for the development of the probabilistic failure envelopes
under combined compression-shear were 6.657×1.1412×0.951 mm in 1-2-3 directions,
respectively. The FE model dimensions and the discretization were kept same as the
volumetric dimensions and the discretization of the virtually generated topologies
of the in-plane and the out-of-plane misalignment through the spectral representa-
tion method presented in Section 4.2.1. The dimensions and the discretization of the
virtually generated topologies were based on the volumetric dimensions and the dis-
cretization of the experimentally measured topologies of the in-plane and the out-
of-plane misalignment. The CT measurements of the in-plane and the out-of-plane
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misalignment were performed on two specimens. CT scan of each specimen provided
a measure of the in-plane misalignment as well as of the out-of-plane misalignment.

3D models were meshed using cubic three dimensional fully integrated 20 node
C3D20 elements in the commercial software Abaqus. The resulting mesh comprised
70×12×10 cubic elements with 0.0951 mm edge length, each. The 3D topologies of
the fiber misalignment generated using the method presented in Section 4.2.1 were
mapped onto the integration points of each element of the corresponding mesh as the
material orientations.

Since the FE models were considered as a representative cutout region from a uni-
directional FRP laminate based structure with same thickness but larger in-plane di-
mensions, periodic boundary conditions were used in directions 1 and 2 only. Both the
surfaces perpendicular to direction 3 had traction free boundary conditions. To sup-
press rigid body motions, corner node C5 was constrained in all directions and corner
node C8 and C6 were fixed in both transverse directions and in-plane transverse
direction, respectively. The axial compression and the combined axial-compression-
in-plane-shear loads were applied in the form of displacements u1 and u2 at the
corner node C1. Node C1 was coupled to the whole of the right surface, therefore, the
load applied on node C1 got transferred to whole of the right surface. The simulated
displacement ratios were arctan(u2/u1) = 0◦, 30◦, 45◦, 75◦, 85◦, and will from here on-
ward labeled as 0◦ load case, 30◦ load case etc. Additionally, node C1 was constrained
in direction 3 for the compression-shear load cases and directions 2 and 3 for the axial
compression load case as the failure envelope in strain space ε11-ε12 was the primary
focus.

It is well established in the literature, that the failure under compression loads for
unidirectional FRPs is MB caused by geometrical and material non-linearities. The
response of FRPs until the peak load in MB failure is approximately linear. MB failure
in FRPs is unstable with a snap-back response. Thus, the peak load was defined as
the failure point of the model. Hence, the peak load was considered as the primary
result for the development of the probabilistic failure envelopes in stress and strain
spaces. Therefore, the analyses were terminated when reaction force RF1 in the direc-
tion 1 at the control node C1 dropped by 5% from the peak load with the help of
URDFIL user subroutine of Abaqus. The solution was performed in two load steps
for higher efficiency. The 1

st step up to approximately 40% of the expected mean fail-
ure strain was solved with larger sub-steps as the response was linear in this range.
Both the implicit dynamic and the arc-length based Riks′ solver gave the same predic-
tion. The major advantage of the arc-length method is the prediction of the snap-back
response, which is out of scope of the current work. The arc-length method suffers
from convergence problems whereas the implicit dynamic solver is more reliable and
shows convergence past the peak load. With the implicit dynamic method, there was
the added advantage of easier post processing because the reaction forces RF1, RF2
and displacements u1, u2 from multiple steps could be extracted simultaneously. This
was not possible in the Riks′ arc-length method in Abaqus. Therefore, the implicit
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dynamic solver was deemed better suited for probabilistic simulations. Hence, the ge-
ometrically non-linear dynamic implicit solver with quasi static load application was
employed [1].

Engineering definitions of stresses σ and strains ε are used in this work. Since dis-
placement loads u1 and u2 were applied at the reference node C1, resulting applied
stresses were defined by the reaction forces RF1 and RF2 at the node C1 divided
by the initial cross sectional area perpendicular to the nominal fiber direction A1 i.e.
σ11=RF1/A1 and σ12=RF2/A1 where A1=1.1412× 0.951 mm2 for the models employed
for development of the probabilistic failure envelopes. Similarly, strains were defined
as the displacement of control node C1 divided by the initial length in the nominal
fiber direction L1 i.e. ε11=u1/L1 and ε12=u2/L1 where L1=6.657 mm for the model
series used in the development of probabilistic failure envelopes. To calculate percent-
age strains, they were multiplied by the factor 100. For the sake of brevity, the peak
load for the axial compression load case was given a special symbol i.e. σc

11:=min(σ11).

6.1.2 Material model

As discussed in the state of the art in Section 2.6, homogenized approaches offer ease
of modeling over larger sizes with lower computational effort when choosing from
a variety of approaches available to model FRPs numerically for failure prediction
under compression. The fiber orientation in homogenized approaches is usually rep-
resented via the vector of the preferred material axis at the integration point of a
finite element. In the current work, the homogenized material was modeled using
a transversely isotropic material model in which geometrical nonlinearities were ac-
counted for using a co-rotational formulation [39]. The model is an extension of the
small strain transversely isotropic material model for unidirectional FRPs [115] and
provides a modified yield and plastic potential function definitions Along with ac-
counting for the geometrical nonlinearities, the modified model allows for an easier
calibration of the yield surface and plastic potential function with the experimental
data. The material model provides an explicit expression for the algorithmic consis-
tent tangent moduli and has been implemented in the commercial software Abaqus.
The details about mathematical formulation and numerical implementation of the ma-
terial model can be found in the Ref. [39], also see [115]. For the sake of completeness,
the constitutive formulation of the model is summarized below.

6.1.2.1 Constitutive formulation

The constitutive formulation of the anisotropic invariant-based model for FRPs is pre-
sented in this section. The constitutive model proposed here is a modification of the
small strain model presented by Vogler et. al. [115]. The modifications include new
forms of the yield and the plastic potential functions along with the inclusion of the
geometrical nonlinearities in the model. It should be noted that the constitutive equa-
tions of the material model are formulated with respect to the co-rotational frame.
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Figure 6.2: Schematic of a fiber (in black color) misaligned from the nominal fiber direction 1
to direction 1′

transversely isotropic free-energy Transversely isotropic materials are char-
acterized by a preferred direction vector a′, which in case of FRPs is the fiber direction.
This implies that the material response is invariant with respect to arbitrary rotations
around the preferred direction a′, to reflections at fiber parallel planes, and with re-
spect to the reflection at the plane whose normal is a′.

Fig. 6.2 shows a schematic of the preferred direction vector a′ in black with the
initial in-plane misalignment θ and the initial out-of-plane misalignment φ contribut-
ing to the total initial misalignment ψ. Here the nominal, i.e. perfectly aligned fiber
direction, corresponds to the 1-direction.

From the modeling standpoint, the anisotropic mechanical response admits a tensor-
based representation in the free energy definition through a second order structural
tensor A′ in the rotated frame. The structural tensor represents the anisotropic mate-
rial inherent structure and is defined as:

A′ := a′ ⊗ a′ (6.1)

where preferred direction vector a′ is in the rotated frame.
The total strain tensor ε is additively decomposed into elastic εe and plastic εp parts

based on the hypothesis of the flow theory of plasticity as follows:

ε = εe + εp (6.2)

The existence of a Helmholtz free-energy function, Π (εe, A′, v), is assumed for the
constitutive formulation. This free-energy is a function of the structural tensor A′, the
elastic strain εe, and the internal variable set v that accounts for the inelastic material
response along the deformation process:

Π
(
εe, A′, v

)
=

1
2

εe : Ce : εe + Πhard (A′, v
)

(6.3)
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where Ce is the constitutive elastic tensor and Πhard (A′, v) is the hardening part of
the free-energy function due to plastic effects.

With the free energy function definition being available, the constitutive stress ten-
sor σ is obtained as the first derivative of the free energy function with respect to the
elastic strain tensor, while the elastic constitutive operator Ce is defined as the second
derivative of the free energy with respect to elastic strain tensor:

σ :=
∂Π
∂εe = Ce : εe (6.4)

For transversely isotropic materials, the constitutive transversely isotropic elasticity
tensor is represented as follows:

Ce :=
∂2Π

∂εe∂εe = λ1⊗ 1 + 2µTI+ α(1⊗A′+ A′⊗ 1) + 2(µL− µT)IA′ + βA′⊗A′ (6.5)

where I refers to the fourth-order identity tensor, whereas IA′ = A′imIjmkl + A′jmImikl,
and λ, α, β, µT and µL are the elastic constants. Their definition and relationship to
the engineering constants are given in Ref. [38].

thermodynamics considerations The second-law of thermodynamics restricts
the constitutive equations in the form of the Clausius–Duhem inequality. Under the
assumption of isothermal deformations, this inequality reads the following for inter-
nal energy dissipation Dint:

Dint = σ : ε̇− Π̇ ≥ 0 (6.6)

Recalling the previous definitions, the restriction over the internal dissipation im-
plies:

Dint = σ : ε̇p + Γ ∗ v̇ ≥ 0 (6.7)

where Γ denotes the so-called hardening force and ∗ stands for any arbitrary product.

yield function The elastic domain E, assuming the maximum dissipation prin-
ciple, is defined as:

E = {(v, ε̄p) | F (σ, A′, ε̄p) ≤ 0} (6.8)

where ε̄p identifies the equivalent plastic strain. The definition of the equivalent plastic
strain in the present formulation is given by:

ε̄p :=

√
1
2
‖εp‖ (6.9)

The construction of a transversely isotropic yield surface F (σ, A′, ε̄p), which ac-
counts for the pressure-dependency and plastic-inextensibility in FRPs along the fibre
direction, yields:

F (σ, A′, ε̄p) = ζ1 I1 + ζ2 I2 + ζ3 I3 + ζ4 I2
3 − 1 ≤ 0 (6.10)
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Ii (i = 1, 3) are the stress invariants which symbolize the integrity basis of an
isotropic tensor function representing a transversely isotropic response:

I1 =
1
2
(tr[σpind])2 − tr[A′(σpind)2]; I2 = tr[A′(σpind)2]; I3 = tr[σ]− tr[A′(σ)] (6.11)

where σpind is the plasticity-inducing stress:

σpind := σ − 1
2
(tr[σ]− a′σa′)1 +

1
2
(tr[σ]− 3a′σa′)A′ (6.12)

Here, ζi(ε̄
p) (i = 1, 4) refers to four yield parameters which together with their

corresponding invariants represent different loading states. A compact representation
of the yield function takes the form:

F (σ, A′, ε̄p) =
1
2

σ : K : σ + L : σ − 1 ≤ 0 (6.13)

where

K := ζ1Ppind + (ζ2 − ζ1)P
pind
A′ + 2ζ4(1−A′)⊗ (1−A′); L := ζ3

(
1−A′

)
(6.14)

where the operators Ppind and Pind
A′ are defined as:

Ppind = I− 1
2
(1⊗ 1) +

1
2
(
A′ ⊗ 1 + 1⊗A′

)
− 3

2
(
A′ ⊗A′

)
P

pind
A′ := P

pind
A′ijkl = A′imP

pind
mjkl + A′mjP

pind
imkl (6.15)

In comparison to the six-parameter yield surface definition used in the earlier iter-
ation of the model given in Ref. [115], this model considers a four-parameter yield
surface. This allows for an easier calibration of the yield surface and reduces the ex-
perimental effort. Nevertheless, the six-parameter yield function definition regards a
better description of biaxial stress states which is crucial for accurate modeling of
FRPs undergoing high hydrostatic pressures. This was achieved in Ref. [115] via the
case differentiation concerning the invariant I3 based on its sign.

plastic potential function To predict realistic plastic deformations, a non-
associative flow rule is assumed. The construction of a non-associative transversely
isotropic plastic potential function G(σ, A′) yields:

G(σ, A′) = ς1 I1 + ς2 I2 + ς3 I2
3 − 1 (6.16)

where ςi (i = 1, 3) denotes the plastic potential parameters. A condensed expression
of the plastic flow potential is given by:
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G(σ, A′) =
1
2

σ : M : σ − 1 ≤ 0 (6.17)

where the fourth-order tensor M is expressed as:

M := ς1Ppind + (ς2 − ς1)P
pind
A′ + 2ς3

(
1−A′

)
⊗
(
1−A′

)
(6.18)

evolution equations The evolution equations of the internal variables (εp and
v) are expressed as follows:

ε̇p = γ̇
∂G(σ, A′, ε̄p)

∂σ
= γ̇nG = γ̇M : σ with nG = M : σ (6.19)

v̇ = γ̇
∂G(σ, A′, ε̄p)

∂Γ
(6.20)

where γ represents the so-called plastic multiplier. As customary, the Kuhn–Tucker
loading/unloading conditions are defined by:

γ̇ ≥ 0; F (σ, A′, ε̄p) ≤ 0; γ̇F (σ, A′, ε̄p) = 0 (6.21)

and the consistency condition as:

γ̇Ḟ (σ, A′, ε̄p) = 0 (6.22)

parameter identification and calibration In addition to the elastic ma-
terial constants, the yield function parameters ζi (i = 1, 4) and the plastic potential
parameters ςi (i = 1, 3) are to be determined. The parameters ζi (i = 1, 4) control the
size and shape of the elastic domain E as a function of the equivalent plastic strain
variable ε̄p. For each parameter, the relation ζi(ε̄

p) is determined from an indepen-
dent experiment, thus a total of four different experiments is required for calibration.
For instance, the following four experiments can be used for calibration: (i) in-plane
shear test, (ii) transverse shear test, (iii) uniaxial transverse tension test, and (iv) uni-
axial transverse compression test. The corresponding yield stress states are denoted
as σ

y
is, σ

y
ts, σ

y
tt, and σ

y
tc, respectively. Similar to the procedure in [115], the four parame-

ters ζi(σ
y
is, σ

y
ts, σ

y
tt, σ

y
tc) (i = 1, 4) can then be obtained by entering the stress states from

each experiments above in Eq. 6.10 and setting the yield function state to yielding i.e.,
F = 0. Accordingly, the coefficients ζi (i = 1, 4) are explicitly given in the following.

From the transverse shear test the first coefficient ζ1 is expressed as:

ζ1 =
1

σ
y
ts

2 (6.23)

and from the in-plane shear test the second coefficient ζ2 is given by:
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ζ2 =
1

σ
y
is

2 (6.24)

The third coefficient ζ3 controls the tension-compression yield asymmetry and
therefore is expressed in terms of the uniaxial transverse tension and uniaxial trans-
verse compression tests as:

ζ3 = − 1
σ

y
tc
+

1
σ

y
tt

(6.25)

Lastly, the coefficient ζ4 is associated with transverse loading, hence is expressed
as:

ζ4 = − 1

4σ
y
ts

2 +
1

σ
y
tcσ

y
tt

(6.26)

To comply with the maximum dissipation principle, the convexity of the yield sur-
face must be insured. This imposes the following restrictions to the relations ζi(ε̄

p)
(i = 1, 4) which must hold for any ε̄p:

σ
y
tt ≤

4σ
y
ts

2

σ
y
tc

. (6.27)

Similarly, the parameters ςi (i = 1, 3) control the size and shape of the plastic poten-
tial surface. However, one of these parameters is a scaling parameter and can be set to
any value since the size of the plastic potential has no inherent physical meaning. Ac-
cordingly, there are only two remaining parameters to be determined and to associate
with experimental data. In the present case, ς1 is arbitrarily set to unity.

As mentioned above, the motive behind employing a non-associative plasticity
scheme is to model realistic plastic deformation behavior as compared to associative
plasticity, especially with regard to contractility/dilatancy effects resulting in different
behavior under compression and tension as it is observed in fiber reinforced compos-
ites the identification of the so-called plastic Poisson coefficients. Hence, the evolution
of the plastic strains is not governed by the gradient of the yield surface. Accord-
ingly, the parameters ςi (i = 2, 3) are used to enforce certain plastic Poisson’s ratios
ν

p
23 = ε

p
22/ε

p
33 and plastic distortion behavior through the relation µ

p
12 = ε

p
12/ε

p
23:

ς1 = 1 (6.28)

ς2 = µ
p
12 (6.29)

ς3 =
−1 + ν

p
23

4(1 + ν
p
23)

(6.30)
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ζ1 ζ2 ζ3 ζ4

0.00612503 0.00552784 0.00615730 0.00304666

Table 6.1: Yielding parameters ζi at the onset of yielding for the carbon fiber UD300/M79

epoxy material

ς1 ς2 ς3

1.0 1.0 -0.083333

Table 6.2: Plastic potential parameters ςi for the carbon fiber UD300/M79 epoxy material

Similarly, for the plastic potential function G, the following must hold:

µ
p
12 ≥ 0∧−

−1 + ν
p
23

4(1 + ν
p
23)
≥ 0 (6.31)

In contrast to the time-consuming iterative procedure presented in [115] for the
determination of the plastic potential parameters, the aforementioned explicit expres-
sions for the parameters are used. Using these expressions, the material model was
calibrated for the material under consideration i.e. carbon fiber UD300/M79 epoxy.
The elastic material properties are reported in Table 3.1. The yield function parame-
ters ζi (i = 1, 4), that characterize the onset of yielding, were obtained by utilizing
Equations (6.23)–(6.26) and are listed in Table 6.1. Furthermore, the plastic potential
function parameters ςi (i = 1, 3) are provided in Table 6.2. These values were de-
termined based on the plastic Poisson’s ratio ν

p
23 = 0.4 and plastic distortion ratio

µ
p
12 = 1.0. Due to the lack of experimental data concerning the transverse shear and

the uniaxial transverse compression for the material under consideration, reasonable
assumptions were made for the corresponding parameters based on the experimental
data of similar class of materials available in the literature [66].

6.1.2.2 Abaqus limitation

Since the numerical modeling was performed in the commercial software Abaqus, it
was important to ensure that the model is able to represent the large rotations ob-
served in unidirectional FRPs when loaded under compression. Wisnom [133] high-
lighted a limitation of using a homogenized material representation for FRPs in the
commercial software Abaqus. By default, Abaqus ignores the effect of shear strains
on the material axes rotation. It considers the material axes rotation to be identical
with the in-plane ∆θi and the out-of-plane ∆φi rigid body rotations. Since the effect of
shear strains on the material axes rotation during loading is crucial in case of compres-
sion, the default implementation in Abaqus gives inaccurate results. To overcome this
problem, the material model from Ref. [39] presented above was modified to account
for the rotation of the material axes due to shear strains. The shear strains εi

12=γi
12/2
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Figure 6.3: Generalized schematic of the deformed preferred direction in an element of a FE
model. Dotted black line illustrates the preferred direction of the misaligned fiber
a′ before the rigid body rotations and the shear rotations. The solid black line de-
picts the preferred direction of the misaligned fiber b′ after applying the combined
effect of the in-plane ∆θi and the out-of-plane ∆φi rigid body rotations and the
shear rotations εi

12 and εi
13.

and εi
13=γi

13/2 from the previous load step i were considered as Euler angle rotations.
The preferred direction a′ of the fibers in the misaligned frame 1′− 2′− 3′ is given
by Eq. 6.32a. The preferred direction a′ was rotated further by the shear strains to
b′ via Eq. 6.32b. Fig. 6.3 depicts the misaligned fiber before shear rotations as a′ and
after applying shear rotations as b′.

a′ = [1 0 0] (6.32a)

b′ = [cos(εi
12) · cos(−εi

13) cos(−εi
13) · sin(εi

12) − sin(−εi
13)] (6.32b)

6.1.2.3 Model verification

A verification investigation of the material model using a FE model loaded under
axial compression load (0o load case) against the prediction using the Budiansky’s an-
alytical model [21] was carried out. For ease of understanding, Budiansky’s analytical
model is presented again below in Eq. 6.33. The analytical model predicts compres-
sion strength σc

11 given the initial in-plane misalignment ψ and the nonlinear shear
behavior of the material σ12(γ12).

σc
11 = max

γ12

(
σ12(γ12)

ψ + γ12

)
(6.33)

The FE model representing a homogenized fiber matrix composite consisted of a
single C3D20 element in commercial software Abaqus, cf. Fig. 6.4a. The initial mis-
alignment was given as the material axis orientation. To suppress rigid body motions
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Figure 6.4: Compression strength prediction of a single element model against the prediction
using the analytical model. The results in (b) show that the prediction using the
FE model with the aforementioned shear rotation correction of the material model
shows a very good match with the prediction of the analytical model. This result
verifies the accuracy of the FE model for prediction of compression strength, hence,
it can be employed for later analyses incorporating complex topologies of the fiber
misalignment.

in the FE model, corner node C5 was constrained in all directions and corner node C8

and C6 were fixed in both transverse directions and in-plane transverse direction only,
respectively. The axial compression load was applied in the form of displacement u1 at
the corner node C1. Node C1 was coupled to the whole of the right surface, therefore,
the load applied on node C1 got transferred to whole of the right surface. Periodic
boundary conditions were applied in the 1 and the 2 directions. Displacements were
not allowed in the 3 direction to replicate the in-plane conditions of the Budiansky’s
analytical model. Since Budiansky’s model only accounts for the in-plane misalign-
ment, the verification investigation was carried out for a range of the initial in-plane
misalignment i.e. ψ = θ, φ = 0. Fig. 6.4b shows the predictions of Budiansky’s ana-
lytical solution given in Eq. 2.2b along with the numerical predictions from the single
element model. It can be seen that the numerical model over-predicted strength by a
significant amount without the aforementioned correction of the material axis rotation,
whereas the shear rotation corrected model shows very good prediction in compar-
ison to the analytical model. This results verifies the applicability of the FE model
incorporating the shear rotation corrected material model for the prediction of com-
pression strength. Hence, this modeling scheme can be used for numerical analyses to
develop failure envelopes in which the realistic topologies of the fiber misalignment
are used.
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6.2 results and discussion

Results of numerical modeling under axial compression and combined compression-
shear will be discussed in this section. Firstly, simple homogenized models containing
single sine waves as the misalignment in 2D and 3D will be discussed to highlight the
importance of 3D modeling. This is followed by a comparison of different model series
containing the realistic modeling of the misalignment using the spectral representa-
tion method under the axial compression load. Once a model series has been selected
to be representative, a comparison of different load cases on a selected realization is
presented. Afterwards, numerically developed failure envelopes in stress and strain
space are presented. The chapter is rounded off with a discussion on the use of an
empirical function form of the spectral density for model generation.

6.2.1 Effect of the misalignment dimensionality on prediction of the compression
strength

The deficiencies of characterizing the real 3D fiber misalignment into 2D were dis-
cussed in Section 4.1.2. It was shown that the generated 2D fields cannot capture the
complete information of the fiber misalignment of the real structures and materials,
cf. Section 4.2.2. In order to show the effect of the fiber misalignment dimensionality
on the strength prediction, a comparative analysis using simple 2D and 3D models
containing simple sinusoidal undulation only are considered here.

Four models, two in 2D with 4×2 mm dimensions and two in 3D with 4×2×2 mm
dimensions, were generated for the purpose of comparing the effect of underlying
undulation dimensionality on prediction of the compression strength. The first 2D
model contains a single sine wave undulation, in which the undulation is dependent
on 1-direction only. This was achieved by only sampling a single harmonic in the
input spectral density at the fundamental frequency, i.e. the wavelength is equal to
the model length in that particular direction. The resulting contour plot of the undu-
lation is shown in Fig. 6.5a. The second 2D model contains an undulation with two
sine waves, each with the fundamental frequency in that particular direction, and the
resulting contour plot of the undulation is shown in Fig. 6.5b. Both 2D models con-
tained periodic boundary conditions in directions 1 and 2. A compression load in the
form of displacement was applied in 1-direction.

The first 3D model also contains a 2D undulation i.e. it contains fundamental fre-
quency sine waves in direction 1 and 2, see Fig. 6.5c. The second 3D model contains a
fully three dimensional undulation with a fundamental frequency sine wave in each
direction. The resulting contour plot of the undulation is shown in Fig. 6.5d. The undu-
lation of both 3D models are given as the in-plane misalignment in the FE models for
a direct comparison with the 2D models. The 3D models contained periodic boundary
conditions in directions 1 and 2 and compression load in the form of displacement
was applied, whereas no displacements were allowed in 3 to obtain the in-plane con-
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Figure 6.5: Contour plots of 1D and 2D sine waves for 2D modeling, and 2D and 3D sine
waves for 3D modeling of the in-plane misalignment angle θ. The maximum mis-
alignment in each case is 2.5◦ and the minimum misalignment in each case is -2.5◦.

Model Ξθ [◦
2
] or [◦

3
] sθ [◦] max |θ| [◦]

2D model with 1D sine wave 0.6355 1.7720 2.5

2D model with 2D sine wave 0.3178 1.2532 2.5

3D model with 2D sine wave 0.1012 1.2532 2.5

3D model with 3D sine wave 0.0674 1.0221 2.5

Table 6.3: Statistics of the fiber misalignment angles and the corresponding spectral parame-
ters. The mean value in all cases is 0

◦. Mean square spectral density Ξθ is a measure
of fiber misalignment in frequency domain, and it is directly proportional to square
of the standard deviation sθ of the misalignment angle θ, cf. Eq. 4.12.
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ditions in the FE models for a direct comparison with the aforementioned 2D models.
The maximum and minimum value of the angle in the undulation in all the models
are 2.5◦ and -2.5◦, respectively. The mean value in all the models is 0

◦. The correspond-
ing statistics of the fiber misalignment angles and the spectral densities of each of the
four models are given in Table 6.3.

The resulting stress-strain behavior of all four models are plotted in Fig. 6.6. Strength
prediction using the Budiansky’s analytical model given in Eq. 2.2b with an initial mis-
alignment angle of 2.5◦ is also plotted as a dotted line in Fig. 6.6. The analytical model
considers a single angle with a unidirectional undulation commonly known in literate
as the infinite band assumption. Solving the maximization problem of the analytical
model with the given initial misalignment angle and the experimentally characterized
shear behavior of the material, the strength prediction turns out to be 721 MPa. The
result of the 2D model with a 1D sine wave coincides with the prediction of the ana-
lytical model, as it resembles the misalignment assumptions of the analytical model.
Counter-intuitively, the 2D model with same maximum and minimum values of the
misalignment angle, i.e. the 2D model with a 2D undulation shows an increase in
strength with a value of 1051 MPa. Similarly, 3D model with an in-plane 2D undula-
tion and in-plane boundary conditions shows an equivalent prediction with a value of
1063 MPa to the 2D model with a 2D undulation. The 3D model with an in-plane 3D
undulation and in-plane boundary conditions shows the stiffest response among four
models with a strength value of 1326 MPa. The higher strengths of the models with
a higher dimensional misalignment albeit with the same absolute value of the maxi-
mum angle can be understood from the statistics of the misalignment. The standard
deviations sθ of the misalignment angle from the models containing higher dimen-
sional wave are smaller whereas mean value of misalignment angle in all the models
is zero. This is due to the fact that a misaligned region with different waves contribut-
ing to it results in a smaller region in space as seen in Fig. 6.5d. In spatial sense, it
means that only a few fibers are misaligned with a bigger portion of straight fibers
providing support around the misaligned region. This shows that the use of absolute
maximum value of angle alone for the prediction has significant drawbacks. Other
factors such as the standard deviation sθ of the misalignment angle θ and the mean
square of the spectral density Ξθ also needs to be taken into account. Moreover, these
results again highlight the limitations of modeling the misalignment in FRPs in 2D,
and point towards the need for realistic modeling where the misalignment topologies
contain 3D characteristics.

6.2.2 Comparison of compression strength prediction of 3D numerical models

In order to find the characteristic model series for further investigations of the proba-
bilistic failure envelopes, three model series were first investigated. Each model series
contained 250 realizations. Each model series was derived from a different measure-
ment of the fiber misalignment. The first series contained misalignment topologies
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Figure 6.6: Comparison of results for compression strength σc
11 from 2D and 3D models each

containing a sinusoidal undulation with 1D, 2D and 3D characteristics

generated from the calculated in-plane and the calculated out-of-plane spectral densi-
ties of the specimen 1. Similarly, the second series was based on the spectral densities
of the specimen 2. The averaged spectral densities shown in Fig. 4.3c and Fig. 4.3f
were used to create the third series of models. Monte Carlo analysis was performed
on each series for the failure prediction under the axial compression load.

The peak loads under axial compression σc
11 for each series are plotted in the form

of empirical probability of survival P(σc
11) in Fig. 6.7. These empirical distributions

were fitted with the 2-parameter Weibull distribution given in Eq. 6.34 using the
maximum-likelihood method and are also plotted in Fig. 6.7. The shape parameter
m and the scale parameter Ro of the Weibull distribution obtained from the fittings
are reported in Table 6.4. As the names suggest, the scale parameter Ro defines the
width of a Weibull distribution and the shape parameter m (also known as Weibull
slope) defines the shape of a Weibull distribution. A positive value of m indicates an
increasing failure rate with an increase of the applied load σ11. Models derived from
the measurements of specimen 1 (s1) and specimen 2 (s2) show significant difference
in the mean probability of survival, although the spread of the failure distributions
seems quite similar. Statistics of corresponding means and standard deviations s are
also given in Table 6.4. The difference in the mean values of the compression strengths
σc

11 is approximately 180 MPa whereas the standard deviation values of both model
series differ only by 6 MPa. The mean values of the fiber misalignment angles θk,l,m
and φk,l,m for all model series are 0

◦. Although standard deviation of the in-plane mis-
alignment θk,l,m of specimen 2 given in Table 4.2 is larger than that of specimen 1, the
stronger response of FE model from specimen 2 can be attributed to the lower stan-
dard deviation of the out-of-plane misalignment φk,l,m compared to that of specimen
1. Since the FE models were not constrained in direction 3, the out-of-plane misalign-
ment has a stronger influence on the strength prediction. The strength prediction of
FE models derived from the average (avg) spectral densities of the fiber misalignment
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Figure 6.7: Empirical probability of survival P(σc
11) over the compression strength σc

11 along
with the fitted 2-parameter Weibull distributions

Mean s scale Ro shape m
[MPa] [MPa] [MPa] [-]

Model based on avg 1424.54 61.96 1452.96 25.77

Model based on s1 1366.64 66.52 1397.12 23.38

Model based on s2 1546.66 60.55 1575.50 27.52

Table 6.4: Statistics of the axial compression strengths σc
11 for different numerical models

lie in-between the results of the other two models, as expected. With availability of
further scans and corresponding spectral data, the results of the (avg) model could be
further refined to be a better average response of the material. For further discussions,
only the avg model will be considered.

P(σc
11) = exp

[
−
(

σc

Ro

)m]
(6.34)

6.2.3 Stress-strain behavior of representative models under axial compression and
combined compression shear

As mentioned in Section 6.1.1, failure was defined as the peak load carrying capacity
and the solution process was terminated just past the peak load. It is of interest to
see the stress-strain response up to the peak load under different combined load
cases. Fig. 6.8 shows model responses for a realization from each load case. Since
the model showed a distinct peak and a sudden drop afterwards in all load cases,
failure in all load cases is categorized as the MB failure. Although the ratios of the
applied displacements u2/u1 are constant, the resulting reaction forces (stresses) have



108 numerical modeling of probabilistic failure envelopes

0 0.5 1 1.5

0

200

400

600

800

1000

1200

1400

1600

(a) Axial compression behavior

0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

30

40

50

(b) Shear behavior

Figure 6.8: Stress stain response of the model

a nonlinear relationship because of the underlying differences in the material and the
geometrical response of the laminate. The response in the global axial direction σ11-
ε11 was essentially linear up to peak load except in load case 85◦, in which case the
applied axial displacement (strain) was negligible compared to the shear counterpart.
The shear response σ12-ε12 was initially linear, but eventually became nonlinear in all
load cases. There was no applied shear in the 0◦ load case, hence no resulting shear
curve. The amount of shear nonlinearity in the shear response depends on the ratio
of the applied shear displacements to the applied axial displacements i.e. the higher
the amount of the applied shear, the higher the shear nonlinearity before the ultimate
failure. This result shows that the shear response of the material is nonlinear not only
at the local level i.e. material points, but also at the global level.

Just like the responses in the global axial direction σ11-ε11, the global shear re-
sponses σ12-ε12 also show a sudden drop after the peak load, see Fig. 6.8b. In all the
cases, the maximum value of shear stresses is well below the ultimate shear strength
value of 77.11 MPa, hence, matrix fracture can be ruled out as the cause of the drop
in stress. Matrix fracture might happen post peak, however, post peak response was
not modeled in this investigation. Similarly, splitting failure is also not modeled as it
is not expected to occur in high fiber volume fraction FRPs loaded homogeneously
under compression dominated loads.

6.2.4 Probabilistic failure envelope in stress space using numerical modeling

The model series based on the avg spectral density was used to develop numerical
failure envelopes in the σ11-σ12 plane. Similar to the axial compression load case, 250

realizations each were carried out for all load cases in order to sample the σ11-σ12
space. The resulting failure stresses of all realization are plotted in Fig. 6.9 as black
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Figure 6.9: Probabilistic failure envelope in stress space. Results of all realizations from each
load case are plotted as black dots which fuse to form curve segments. The me-
dian of each load case is shown with hollow circles on the curve segments. The
envelope was divided into two regions and functional forms of failure envelopes
were defined for each region. A dashed line, which passes through median value
of load case 45

◦, shows division between failure envelope regions MB1 and MB2.
Using the functional forms of MB1 and MB2 given in Eq. 6.35a and Eq. 6.35b, a
color code depicting the probability of failure P( fi) is plotted.

dots denoting the respective far field stress coordinate at the instant of failure. In
this instant, both the compression and the shear stresses attain their peak values and
collapse is initiated, cf. Fig. 6.8. Because of the large number of realizations, the dots
fuse to form a curve segment. Perpendicular bars at the ends of the curve segments
denote the span between the lowest and the highest strength of the corresponding
load cases. The median values of each load case are highlighted by hollow circles.
The highest spread was shown by the axial compression case with a median value
σc

11=1424.54 MPa and a standard deviation value s=61.96 MPa. Overall, the spread
of failure stresses reduced with increasing values of applied shear and finally became
deterministic when reaching the shear axis. This behavior is expected in unidirectional
FRPs, since only compression behavior is dependent on misalignment. The value of
the ultimate shear strength is 77.11 MPa, which was taken from the mean curve of the
shear characterization tests given in Fig. 3.2a.

It is apparent from the failure strengths in the σ11-σ12 plane that the envelope de-
noting MB failure can be divided into two regions. Hence, a division was made at
load case arctan(u2/u1)=45

◦ as shown by the dotted line in Fig. 6.9. MB1 is the
compression dominated failure region and spans from pure axial compression un-
til arctan(u2/u1)= 45◦. On the other hand, MB2 is the shear dominated region and



110 numerical modeling of probabilistic failure envelopes

ai bi ci

1st percentile -1.0525e-06 -0.00210 -0.01303

Median -1.0712e-06 -0.00222 -0.01291

99th percentile -1.0748e-06 -0.00233 -0.01296

Table 6.5: Fit parameters of 6.35 for 1
st, 50

th (median) and 99
th percentile of distribution of the

failure envelope in the σ11-σ12 plane

spans from arctan(u2/u1)= 45◦ until the pure shear failure. The change in the behav-
ior of the failure envelope can be attributed to the ductile behavior under far field
applied shear stress compared to the brittle behavior under the far field applied pure
axial compression stress. Functional forms of the failure envelope, which were defined
by the authors for both regions MB1 and MB2 of the numerical results, are given in
Eq. 6.35. Parameters for both regions of the failure envelope for 1

st, 50
th (median), and

99
th percentiles are provided in Table 6.5.

f MB1
i (σ11, σ12) = σ12 − aiσ

2
11 − biσ11 + 1 (6.35a)

f MB2
i (σ11, σ12) = σ11σ12 + ciσ12 + 1 (6.35b)

The ith percentile of the distribution of failure is reached when the function f MB1/MB2
i (σ11, σ12)

becomes zero. To aid the understanding, a color code illustrating the probability of
failure P( fi) is plotted in Fig. 6.9. Well below 1

st percentile of distribution of failure,
the material is considered safe and hence, the color code is green. The color changes
gradually from green to yellow until the 50

th percentile of the distribution of failure.
The yellow color code depicts median strength, i.e. P( fi)=0.5. The color changes again
gradually from yellow to red from the 50

th percentile of the distribution of failure on-
ward. The red color above P( fi)=0.99 denotes a stress state that is considered highly
likely to result in failure. It is to be noted that the uncertainty of failure in the region
MB1 is of the foremost interest here. In region MB2 failure is almost deterministic,
since the transition from P( fi) ≈ 0 to P( fi) ≈ 1 is very rapid. The functional form
(Eq. 6.35b) of the failure envelope in region MB2 is motivated by mathematical sim-
plicity and the data points for load cases arctan(u2/u1)= 75◦ and arctan(u2/u1)= 85◦

are intercepted only approximately.
For comparison purposes, classical deterministic failure envelopes by Edge [41],

Tsai-Wu [77], and Sun [107] are also plotted. These classical failure envelopes con-
sider microbuckling failure under pure axial compression and shear driven matrix
cracking failure under pure shear. The region of combined compression-shear load
is generally mathematically interpolated between the compression strength and the
shear strength in these classical failure envelopes. For illustrating the deterministic
failure envelopes in Fig. 6.9, these envelopes were calibrated using the median value
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of the axial compression strength from the avg numerical model and the ultimate
shear strength. The quadratic failure envelopes by Tsai-Wu [77] and Sun [107] are
non-conservative which is more prominent near the ultimate shear strength. The lin-
ear interaction proposed by Edge [41] is closer to the numerical prediction, however, it
can not predict the changes in the shape of the envelope. Generally, failure envelopes
or yielding envelopes are meant to be convex to satisfy Drucker’s postulate [51] such
as the classic failure envelopes shown from literature in Fig. 6.9. These definitions are
based on either the activation of a failure mode or the start of yielding. Here, however,
the numerically defined envelope denotes ultimate failure and exhibit non-convex
shape. For pure compression load case, the initiation of nonlinearity and the ultimate
failure are quite close, see Fig. 6.8a. Conversely, there is a large difference between
the initiation of nonlinearity and the ultimate failure for the shear dominated loading,
see Fig. 6.8b. Moreover, some examples of materials exhibiting non-convex failure or
yield envelopes can be found in the literature [128].

It is to be stated that the numerically developed failure envelope is valid for the
model size Vmodel=6.657×1.1412×0.951 mm which was determined by the scanned
volumes of the specimens on which both the in-plane misalignment and the out-of-
plane misalignment were measured. The shear strength is deterministic and does not
change with size as is not affected by the fiber misalignment. Compression strength
on the other hand, is uncertain and scales based on size as will be explained in the
next chapter. Assuming the shape of the failure envelope is the same over different
sizes and only compression axis scales with the Weibull scaling, one can generate
failure envelopes for other model sizes by simply scaling the strength under the pure
axial compression load. To verify whether the shape of the failure envelope stays
the same for scaled sizes, the simulations would need to be repeated given that the
misalignment data for larger volumes is available.

6.2.5 Probabilistic failure envelope in strain space using numerical modeling

Similar to failure envelope in the σ11-σ12 plane, a probabilistic failure envelope in the
ε11-ε12 plane is presented. Failure strains of all realizations of the avg model from
all load cases are plotted as black dots in Fig. 6.10. Because of the large number of
realizations, the dots merge to form lines. These lines are straight, unlike the slightly
curved segments in stress space, because of the constant ratio of applied strains for
each load case. Perpendicular lines to the results’ lines are drawn to highlight the
maximum and minimum failure strains of each load case. The median values for each
load case are highlighted by hollow circles. Again, the spread was highest for the axial
compression load case and gradually diminished with the increasing amount of the
applied shear. The ultimate failure strain for pure shear with a value of 9.57[%] was
taken from the results of the shear characterization tests given in Fig. 3.2a. Similar
to the σ11-σ12 failure envelope, a division of the ε11-ε12 envelope into two region was
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Figure 6.10: Probabilistic failure envelope in strain space. Failure strains of all realizations
from each load case are plotted as black dots which fuse to form line segments.
The median of each load case is shown with hollow circles. The failure envelope
in strain space was divided into regions MB1 and MB2 by a white dashed line
passing through the median value of load case 45

◦. The black dashed lines depict
the loading direction of load cases arctan(u2/u1)=30

◦, 75
◦, and 85

◦. A color code
depicting the probability of failure P(gi) is plotted using the functional forms of
MB1 and MB2 given in Eq. 6.36a and Eq. 6.36b.

made. Functional forms of the ε11-ε12 failure envelope, which were defined for both
regions MB1 and MB2 of the numerical results, are given in Eq. 6.36.

gMB1
i (ε11, ε12) = ε12 − piε

2
11 − qiε11 + 1 (6.36a)

gMB2
i (ε11, ε12) = ε11ε12 + rε12 − siε

2
11 − tiε11 + 1 (6.36b)

Parameters, for fitting the numerical results to Eq. 6.36 defining both regions of the
envelope for 1

st, 50
th (median), and 99

th percentiles, are provided in Table 6.6. The
ith percentile of distribution of failure is reached when the function gMB1/MB2

i (ε11, ε12)
becomes equal to zero. Using these percentiles of the distribution of failure, a color
code for the probability of failure P(gi) is given with a gradual change of color from
green to yellow and yellow to red.

The shape of the ε11-ε12 envelope is similar to the σ11-σ12 failure envelope, however,
the MB2 portion of strain based envelope is more elongated. It can be traced back
to the strongly nonlinear behavior of the laminate under pure shear, see Fig. 3.2a.
The difference of the strains from start of yielding till failure in pure shear is higher
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pi qi r si ti

1st percentile -1.5522 -2.5619

-0.1045

-0.7215 -1.2785

Median -1.4859 -2.6102 -0.8222 -1.3991

99th percentile -1.5234 -2.7658 -0.8135 -1.4080

Table 6.6: Fit parameters of Eq. 6.36 for 1
st, 50

th (median) and 99
th percentile of distribution of

the failure envelope in the ε11-ε12 plane

than the difference of the corresponding stresses. These differences are apparently
transferred to the failure envelopes under combined compression-shear loads. For
comparison with classical failure criteria, the strain based variant of the classical Tsai-
Wu failure criterion is also plotted in Fig. 6.10. The Tsai-Wu failure criterion considers
microbuckling failure under axial compression, shear driven matrix cracking failure
under pure shear, and a mathematical interpolation between these compression and
shear strengths. The overestimation of the Tsai-Wu analytical failure criterion is even
more so in the ε11-ε12 plane as seen in Fig. 6.10. This is because of the consideration
of only the ultimate failure stress/strain values in analytical formulations, and lack
of consideration of the effects of fiber misalignment on failure under combined load
cases. These limits were not reached in the numerical analysis of combined load cases,
and MB failure occurred before any of the ultimate limits was reached.

6.2.6 Assumption of functional forms for spectral densities

Previous authors considered the idea of a functional form of spectral density for gen-
erating virtual distributions of the fiber misalignment. Herein, the previous assump-
tions in 1D by Slaughter et. al. [100] and 2D by Liu et. al. [76] are extended to 3D.
Moreover, some further aspects of such an assumption for the spectral density are
explored.

spectral density functions : Two forms of spectral density were considered
namely, the square function Ssquare given in Eq. 6.37 and the exponential function Sexp
given in Eq. 6.38.

Ssquare = S(ω1, ω2, ω3) =

So if |ω1| ≤ ωc1 and |ω2| ≤ ωc2 and |ω3| ≤ ωc3

0 if |ω1| > ωc1 or |ω2| > ωc2 or |ω3| > ωc3

(6.37)

Sexp = S(ω1, ω2, ω3) = exp−
((

ω1

ωc1

)2

+

(
ω2

ωc2

)2

+

(
ω3

ωc3

)2
)

(6.38)

where ωc1, ωc2, and ωc2 are the cutoff frequencies in direction 1, 2, and 3, respec-
tively. The spectral density functions were scaled by the parameter So, called the ini-
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(a) Square form of spectral density (b) Exponential form of spectral density

Figure 6.11: Plots of assumed functional forms of spectral densities. The figures show spectral
densities in plane ω1 − ω2 with anisotropic cutoff values of the frequencies i.e.
ωc1 not equal to ωc2. The cutoff frequencies as well as the initial value of spectral
density are also marked in the figures. In these figures ω3=0, and is disregarded
to allow 3D plots.

tial spectral density. The mean square of the spectral density was used for compar-
ing Ssquare and Sexp based models with each other, and the subsequent comparison
with the avg spectral density based model driven from the CT measurements of the
fiber misalignment. A section of the spectral density functions in plane ω1 −ω2 with
anisotropic cutoff values of the frequencies, i.e. where ωc1 was not equal to ωc2, are
illustrated in Fig. 6.11. The fundamental difference between the square and the ex-
ponential forms of the spectral density can be observed in Fig. 6.11a and Fig. 6.11b.
The square form gave an equal weightage to all the underlying frequencies (wave-
lengths) in the virtually generated topologies of the fiber misalignment. On the other
hand, the exponential form of spectral density gave a higher weightage to smaller fre-
quencies (larger wavelengths) in virtually generated topologies of the misalignment,
which appears closer to the experimentally characterized spectral density given in
Section 4.1.1.

models based on functional forms of spectral densities : In order to
understand the effects of the parameters as well as the shape of the functional forms of
the spectral densities on the prediction of the compression strength, different virtual
topologies of the in-plane misalignment θk,l,m and the out-of-plane misalignment φk,l,m
were generated. The dimensions of the models were kept same as the avg model
which was employed for the development of the failure envelopes numerically i.e.
6.657×1.1412×0.951 mm with equal discretization of 0.0951 mm in each direction.
The models had same boundary conditions as the avg model, and axial compression
load was applied in the form of displacements.
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The virtual topologies of the misalignment for θk,l,m and φk,l,m were generated in
such a way that the mean square spectral densities Ξθ and Ξφ for each misalignment
correspond to the experimentally measured value given in Table 4.2. The first model
series considered no cutoff frequency which implies that the model contained all pos-
sible frequencies from fundamental frequency (largest wavelength) to the Nyquist
frequency (smallest wavelength) in each direction. Fig. 6.12a and Fig. 6.12c show 3D
contour plots of θk,l,m for a realization each using square and exponential forms of
the spectral density without a cutoff frequency, respectively. Similarly, contour plots
of φk,l,m for a realization each are shown in Fig. 6.13a and Fig. 6.13c using square and
exponential forms of spectral density, respectively. It can be seen that without using
a reasonable cutoff in the discrete sampling of the spectral densities, the resulting
virtual topologies of the misalignment show a noise in the pattern which is unlike
the experimentally measured topologies shown in Section 3.2 and virtually generated
topologies based on experimentally characterized spectral densities presented in Sec-
tion 4.2.1. The noise in the pattern results in much smaller regions of misalignment
compared to the experimentally measured and subsequent virtually generated topolo-
gies in Section 3.2 and Section 4.2.1. This is due to the effect of very small wavelengths
contributing to the pattern of the virtually generated topologies where no cutoff is con-
sidered in functional forms of spectral densities. Moreover, the anisotropic behavior
observed in the measurements of the topologies of θk,l,m can not be modeled in cases
without a cutoff as the Nyquist frequency controlled by the discretization length of
0.0951 mm is equal in all directions.

To improve on the topologies generated using empirical functional forms of spectral
density without a cutoff, a second model series with certain cutoffs was considered.
For this purpose, cutoff frequencies of ωc1=6.28 (corresponding to λ1min=1 mm) and
ωc2=ωc3=12.56 (corresponding to λ2min=λ3min=0.5 mm) were used for the in-plane
misalignment θk,l,m. For the out-of-plane misalignment φk,l,m, cutoff frequencies of
ωc1=ωc2=ωc3=12.56 (corresponding to λ2min=λ3min=0.5 mm) were used. These values
of the cutoff frequencies are approximately equal to the values observed in the exper-
imentally measured topologies of the fiber misalignment and their virtual generated
counterparts in Fig. 4.6. One can see in the contour plots of the misalignment angles in
Fig. 4.6 that the regions of misalignment are approximately 1 mm long in 1-direction
and 0.5 mm long in 2, 3-directions for the in-plane misalignment θk,l,m whereas the
regions of misalignment are approximately 0.5 mm in size in all directions for the
out-of-plane misalignment φk,l,m. A realization each from the resulting virtually gen-
erated topologies of θk,l,m using square and exponential functional forms of spectral
densities are plotted in Fig. 6.12b and Fig. 6.12d, respectively. Similarly, Fig. 6.13b and
Fig. 6.13d show a realization each of φk,l,m using square and exponential spectral den-
sities, respectively. It can be observed through comparing the sizes of the regions of
the misalignment that by using appropriate cutoff frequencies when discretizing the
spectral density functions, the generated topologies resembles quite closely the exper-
imentally measured topologies and their virtually generated counterparts of Fig. 4.6.
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(a) Contour plot of θk,l,m based on Ssquare without
cutoffs

(b) Contour plot of θk,l,m based on Ssquare with an
anisotropic cutoff

(c) Contour plot of θk,l,m based on Sexp without cut-
offs

(d) Contour plot of θk,l,m based on Sexp with an
anisotropic cutoff

Figure 6.12: Virtually generated 3D contour plots of the in-plane misalignment angle θk,l,m us-
ing empirical forms of the spectral density as an input. The spectral representation
method was used for the generation of virtual topologies of misalignment angles.
For comparison with a virtually generated topology based on the experimentally
characterized spectral densities, see Fig. 4.6b.
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Additionally, the anisotropic behavior in θk,l,m of the resulting pattern in the virtually
generated topologies can now be modeled. Moreover, it shows that the cutoff frequen-
cies are not necessarily equal in all directions as assumed by the previous authors in
literature.

effect of cutoff frequencies on the compression strength predic-
tion : In order to investigate the effect of the cutoff frequencies ωc1, ωc2, and ωc3 on
the resulting numerical prediction of the compression strength, 250 realization of each
model series were simulated. The resulting probabilities of survival of each model are
plotted in Fig. 6.14. Additionally, the probability of survival of the model based on
avg spectral density, derived from the measurements of the fiber misalignment, is also
plotted in Fig. 6.14. At a sufficiently low load, all the realizations survive. As the ap-
plied far field load σ11 increases, the proportion of the realizations failing increases.
At a sufficiently high value of σ11, all realizations fail giving a P(σc

11) of 0. The mean
and standard deviation values of all the models are provided in Table 6.7.

The first impression of the Fig. 6.14 already shows that even though the mean
square spectral densities Ξθ and Ξφ of the models with and without cutoffs are equal,
the resulting strength predictions vary widely. The models without any cutoff fre-
quencies have a sizeable proportions of larger frequencies sampled from the func-
tional forms of the spectral densities, which result in a sizeable proportion of small
wavelengths in each direction. It results in a large number of weak regions typified by
the numerous and sudden changes in the contours of the misalignment angles, which
consequently result in a decrease of approximately 16-18% in the mean compression
strength compared to the reference avg model based on CT scanned driven spectral
densities S. The models with the appropriate cutoff frequencies on the other hand
show survival probabilities of compression strength very close to the survival proba-
bility of the reference avg model. This results highlights that in addition to the mean
square spectral density of the misalignment, the frequency range of the misalignment
also needs to be preserved in virtually generated models. It is to be noted that the
ideal scenario is to model virtual topologies of the fiber misalignment using experi-
mentally characterized spectral densities, which is the case here with the reference avg
model. However, the results of the Fig. 6.14 show that in case of absence of discrete
matrices of the experimentally characterized spectral densities, one can use functional
forms of spectral densities with the constraints discussed earlier for an approximation
of the distribution of the compression strength.

Looking at the range of the results using the corresponding standard deviations
of each model’s strength distributions, some further observations can be made. All
the models show standard deviations of predicted compression strength close to the
reference avg model, except the model based on Ssquare with cutoffs. Seemingly, when
there are no cutoffs, the results of the model series based on Ssquare and Sexp are almost
identical. When appropriate cutoffs are applied, the mean strengths of both model
series are still very close but the standard deviations vary significantly. The standard
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(a) Contour plot of φk,l,m based on Ssquare without
cutoffs

(b) Contour plot of φk,l,m based on Ssquare with an
isotropic cutoff

(c) Contour plot of φk,l,m based on Sexp without cut-
offs

(d) Contour plot of φk,l,m based on Sexp with an
isotropic cutoff

Figure 6.13: Virtually generated 3D contour plots of the in-plane misalignment angle φk,l,m
using empirical forms of the spectral density as an input. The spectral representa-
tion method was used for the generation of virtual topologies of the misalignment
angles. For comparison with a virtually generated topology based on the experi-
mentally characterized spectral densities, see Fig. 4.6d.
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Figure 6.14: Empirical probability of survival P(σc
11) over the compression strength σc

11 for
models with cutoff frequencies and models without cutoff frequencies. The sur-
vival probability using the reference avg model is also plotted for comparison.

Model
Mean s
[MPa] [MPa]

Model from avg CT scanned based S 1424.54 61.96

Model with empirical Ssquare: no cutoffs 1158.76 62.27

Model with empirical Ssquare: with cutoffs 1402.43 51.53

Model with empirical Sexp: no cutoffs 1164.54 62.30

Model with empirical Sexp: with cutoffs 1394.39 62.86

Table 6.7: Mean and standard deviations of different models using functional forms of spectral
densities with and without cutoff frequencies
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deviation of the model series based on Sexp is almost identical to that of the reference
avg model. But the standard deviation of the model series based on Ssquare is lower,
showing a lower spread of the compression strength prediction. The reason behind
this peculiar behavior can be understood in the discretized spectral densities. The
experimentally measured spectral densities show larger values at lower frequencies
as seen in Fig. 4.3 and in Fig. 4.4. The model based on Sexp also discretize the spectral
density in a similar fashion, with which the smaller frequencies get larger weightage
of the spectral power. On the other hand, the model based on Ssquare discretizes the
spectral density with equal weightage for all discretized frequencies. This apparently
translates into lower spread of the resulting distribution of the numerically predicted
compression strength. It is concluded based on this observation that in addition to
the statistical parameters of the distributions, the spectral parameters including the
shape of spectral density curve need to be preserved for accurate prediction of the
distribution of the compression strength.

effect of scaling mean square spectral densities on the prediction

of the compression strength : Mean square spectral densities Ξθ and Ξφ

quantify the misalignment angle in the frequency domain. Mean square spectral den-
sities Ξθ and Ξφ are directly proportional to the square of the standard deviations sθ

and sφ of the misalignment angles θ and φ, see Eq. 4.12. In order to investigate the
effect of scaling mean square spectral densities Ξθ and Ξφ on the resulting numerical
prediction of the compression strength σc

11, three scaled models series with each of
them using both square and exponential forms of spectral densities were made. The
values of Ξθ and Ξφ were scaled by factors of 0.25, 4, and 9, resulting in six new model
series. Scaling Ξθ and Ξφ by factors of 0.25, 4, and 9 resulted in sθ and sφ being scaled
by factors of 0.5, 2, and 3, respectively. Using the models resulting from scaled Ξθ and
Ξφ, 250 realization of each model series were simulated. The resulting probabilities
of survival P(σc

11) of scaled model series are plotted in Fig. 6.15 along with the un-
scaled models based on the average experimentally determined values of Ξθ and Ξφ.
The mean and standard deviation values of the compression strength from all these
model series are provided in Table 6.8.

Solid lines in Fig. 6.15 depict results of model series based on Ssquare forms of spec-
tral density whereas dotted lines illustrate results of model series based on Sexp for
both θk,l,m and φk,l,m. When the values of Ξθ and Ξφ were increased, the resulting
distributions of σc

11 were shifted towards lower values and vice versa. This is because
increasing values of Ξθ and Ξφ means higher values of misalignment angles θk,l,m and
φk,l,m, resulting in lower values of the compression strength σc

11.
Some further observations can be made when analyzing the range of the results us-

ing the corresponding means and standard deviations of distribution of compression
strength from each model series given in Table 6.8. Not only does the mean value
of each model decreases with an increasing scaling of Ξθ and Ξφ, but the standard
deviation values also decrease for both Sexp and Ssquare models. The larger the mis-
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Figure 6.15: Empirical probability of survival P(σc
11) over the compression strength σc

11 for
models with cutoff frequencies and different scaled values of the mean square
spectral densities Ξθ and Ξφ.

Scaling of mean square spectral density
Sexp based models Ssquare based models
Mean s Mean s
[MPa] [MPa] [MPa] [MPa]

0.25× Ξθ, 0.25× Ξφ
1964.93 76.65 1977.90 63.64

Ξθ, Ξφ
1394.39 62.86 1402.43 51.53

4× Ξθ, 4× Ξφ
967.21 42.93 967.83 35.84

9× Ξθ, 9× Ξφ
782.85 31.23 778.59 26.67

Table 6.8: Mean and standard deviations of the compression strength σc
11 for models based on

functional forms of the spectral densities with cutoff frequencies. Mean squares of
the spectral densities were scaled to observe effects of resulting mean and standard
deviation of numerically predicted distributions of the compression strength.
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alignment is, the more severe certain regions of the misalignment become, resulting
in a smaller range of the distributions of σc

11. It is to be noted that scaling Ξθ and Ξφ

only changes the values of the misalignment angles. The topologies of the misalign-
ment in scaled models are same as the realizations of the unscaled models depicted
in Fig. 6.12 and Fig. 6.13 albeit with different limits of the values of the misalignment
angle. This is because the topology is dependent on the functional forms and cutoff
frequencies which are same in scaled and unscaled models of the analysis in this sec-
tion. Going back to the predicted compression strengths, it is interesting to note that
the standard deviation of Ssquare based model becomes comparable with that of the
reference avg model when Ξθ and Ξφ are scaled by a factor of 0.25. It again highlights
that the exponential form of the empirical spectral density is more suitable in light of
the measured spectral densities presented earlier in Section 4.1.1.

Using the results of Fig. 6.15, a relation for different percentiles of distribution
of compression strength pσc

11(SF) as a function of scaling factor SF of Ξθ and Ξφ

was defined. The relation is applicable to all the percentiles of the distribution of the
compression strength and is written as:

pσc
11(SF) =p σ

c−re f
11 SFa (6.39)

where a is defined by 3/4
th of the product of standard deviations of the misalign-

ment of the reference avg model, i.e. a=3/4×sθ × sφ, see Table 4.2 for values of sθ and
sφ. The symbol pσ

c−re f
11 represents the ith percentile of the distribution of the compres-

sion strength of a reference model, which in current case are the unscaled Sexp and
Ssquare based models. The Sexp and Ssquare based models can be scaled using the p val-
ues of the corresponding reference Sexp and Ssquare models, respectively. The relation
given by the Eq. 6.39 is plotted in a double logarithmic plot for both Sexp and Ssquare
based model series in Fig. 6.16 for 1

st, 50
th (median), and 99

th percentiles of the distri-
bution of σc

11. Corresponding values of percentiles of the distribution of σc
11 from each

case are given in Table 6.9. These values are also plotted as scatter points on top of
the curves of Eq. 6.39 in Fig. 6.16. The defined empirical relation fits quite well with
the numerical results of the Ξθ and Ξφ scaled models for both Sexp and Ssquare based
models. It shows that the strength decreases with a power law with an increasing
scaling of Ξθ and Ξφ.
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(b) Ssquare based models

Figure 6.16: 1
st, 50

th (median), and 99
th percentiles of the distribution of the compression

strength σc
11 as a function of Ξ based on results of models with cutoff frequen-

cies and different scaled values of the mean square spectral densities Ξθ and Ξφ.
The corresponding values from each cases are plotted as scatter points on each
curve.

Model parameters
Percentiles of distribution of σc

11

1
st

50
th

99
th

[MPa] [MPa] [MPa]

Sexp, 0.25× Ξθ, 0.25× Ξφ
1767.12 1973.73 2103.31

Sexp, Ξθ, Ξφ
1223.35 1400.44 1520.04

Sexp, 4× Ξθ, 4× Ξφ
863.29 966.46 1057.73

Sexp, 9× Ξθ, 9× Ξφ
707.44 785.52 846.28

Ssquare, 0.25× Ξθ, 0.25× Ξφ
1821.97 1987.84 2103.28

Ssquare, Ξθ, Ξφ
1269.96 1407.20 1505.05

Ssquare, 4× Ξθ, 4× Ξφ
890.82 970.99 1044.81

Ssquare, 9× Ξθ, 9× Ξφ
720.86 779.93 .832.57

Table 6.9: 1
st, 50

th (median), and 99
th percentiles of the distribution of the compression

strength σc
11 for different models
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C O M PA R I S O N O F E X P E R I M E N TA L A N D N U M E R I C A L
A P P R O A C H E S

Comparison of results from the experimental testing to failure presented in Chap-
ter 5 and results from the numerical modeling given in Chapter 6 under compression
dominated loads is discussed in this chapter. A comparison of results under the axial
compression load from both approaches will be discussed with the help of a scal-
ing law. Finally, a discussion about differences in shapes of failure envelopes from
experimental and numerical approaches will be presented.

7.1 comparison of experimental results under axial compression load

versus numerical predictions using weibull scaling

Homogeneously loaded FRPs show immediate sudden collapse in a transient dy-
namic manner during MB failure initiation, and the redistribution of load is insub-
stantial. Several experimental [62, 65, 131] and numerical [35, 109] investigations have
shown that strength under axial compression in FRPs decreases with increasing size.
Because of extreme difficulties associated with compression testing of FRPs, some in-
conclusive results have also been reported [130]. Nonetheless, a strength reduction in
testing to failure under axial compression load in FRPs is expected due to stochastic
considerations [11, 12, 130]. This decrease is attributed to the increasing number of
the fiber misalignment induced defects in larger sizes based on the Weibull statistic
driven weakest link model [123], similar to the phenomenon observed in brittle ma-
terials such as ceramics [11]. To separate the fiber misalignment driven size effect in
homogeneously loaded FRP specimens from other size effects, such as hole or notch
driven size effects, it is labelled as the statistical size effect.

The reasoning behind the statistical size effect in FRPs is similar to the now well
understood size effect in brittle materials with random flaws such as ceramics. The
overall strength in brittle materials is controlled by the weakest location, i.e. failure ini-
tiated at the weakest location triggers a global catastrophic failure. With an increasing
size of the component, the chance of encountering a weakest link increases, giving rise
to the statistical size effect. The probability of survival P of a volume V with respect to
the applied far field compression load σ11 is given by Eq. 7.1 based on a weakest link
model. The compression strength is defined by the maximum of the applied far field
load, i.e. σc

11 := max(σ11). There, Po is the survival probability in a reference specimen
with a volume Vo

P (σc
11) = exp

(∫
V

ln (Po (σ
c
11))

dV
dVo

)
(7.1)

125
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A further assumption regarding P
(
σc

11
)

is required to obtain a scaling law model
[139]. Generally, a power law proposed by Weibull given in Eq. 7.2 is used for this
purpose, although the power law assumption by Weibull is not based on any physical
arguments which also leads to some criticism [9, 32].

P0 (σ
c
11) = exp

(
−
〈

σc
11 − Rt

Ro

〉m)
(7.2)

where Ro and m are the scale and the shape parameters of the Weibull distribu-
tion, and the symbol Rt refers to the threshold parameter. The threshold parameter
is optional, below which probability of failure is zero. The parameter Rt is positive
for the 3-parameter variant of the Weibull distribution. The 2-parameter variant is ob-
tained by setting the threshold Rt equal to zero. The angled brackets denote Macauley
brackets, i.e. 〈x〉=x if x > 0 else 〈x〉=0.

Eq. 7.3 is obtained by combining the weakest link model given in Eq. 7.1 and the
Weibull power law model given in Eq. 7.2.

P (σc
11) = exp

(
−
∫

V
ln
(〈

σc
11 − Rt

Ro

〉m) dV
dVo

)
(7.3)

Given a homogeneously applied far field stress σ11, Eq. 7.3 implies the scaling law
given in Eq. 7.4. Writing Eq. 7.3 for each σc

11=σc
i and V=Vi with i = [model, exp], and

subsequently equating the probability yields Eq. 7.4.

σc
model
σc

exp
=

(
Vmodel

Vexp

)−1/m
(7.4)

where σc
model and σc

exp are strengths from model predictions given in Section 6.2.2
and experimental results given in Section 5.2.3, and m is the Weibull modulus or the
shape parameter of the Weibull distribution.

The gauge section dimensions of the numerical models were limited to a volume
of 6.657×1.1412×0.951 mm because of the limited volume of the CT-scans, see Sec-
tion 6.1.1. Modeling at sizes larger than the scanned volume is not possible as the
misalignment measurements and subsequent spectral characterization for any such
size is unavailable. One can not assume apriori the form of spectral density curves for
larger sizes from available scans of a small volume. Since the volume of the gauge sec-
tion of the experimental specimens Vexp=28.75 mm3 and the volume of the numerical
models Vmodel=7.2247 mm3 were significantly different from each other, a direct com-
parison between both results cannot be made. In order to compare numerical results
under axial compression against the experimental results, some form of scaling law is
required. Therefore, numerical predictions for the axial compression load case were
compared against experimental results using the Weibull scaling law given in Eq. 7.4
for the median strengths, i.e. at the cumulative probability of failure of 0.5.

The values of the parameter m for all three series of numerical models are given
in Table 6.4. The value of m is 7.11 for the experimental results. Fig. 7.1 shows the
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Figure 7.1: Comparison of σc
11 from numerical models against experimental results using the

Weibull scaling law. Parameter m is known as the Weibull modulus or the shape
parameter. The Weibull scaling law is implied by, but not to be confused with,
the Weibull strength distribution itself. The fitted Weibull strength distribution
to the experimentally determined σc

11 is presented in Fig. 5.10b and numerically
calculated σc

11 is plotted in Fig. 6.7.

aforementioned two parameter form of the scale law for all three model series as
well as experiments. The inclination of the scale law is based on the respective m
parameter. The scaling law appears as a straight line because of the double logarithmic
scale in the figure. To aid the comparison, another variant of the scaling law for 0.5
cumulative probability of failure is included in the plot with a dotted line. For this
variant, the line starts at the median strength of the experimental results and the
parameter m was adjusted so that it passes through the median strength of the avg
model. The corresponding value for m is 7.75 which is very close to the value 7.11 of
the distribution fitted to the experimental results. This result indicates that given the
m value for a volume, e.g. from the experimentally determined σc

11, one can predict
the mean σc

11 for any other volume using the Weibull scaling law.
Results in Fig. 7.1 indicate that there is a significant increase in the predicted me-

dian strength with smaller model sizes compared to the experiments, as expected
based on the Weibull scaling law. The value m=7.75 can predict the numerical median
strength of the avg model quite accurately, given the median experimental strength.
The improvement in the prediction of the median strength value using the avg model
with the availability of further CT-scans could lead to even closer comparison to the
experimental median strength. The m values from the numerical models on the other
hand are quite high due to less scatter in corresponding probability distributions. The
high m values from numerical models here can be partially attributed to periodic
boundary conditions limiting edge driven failure. Similar high values of m parameter
were observed by previous investigations in the literature [109]. The variants based on
3-parameter Weibull scaling were very similar over the considered ranges and hence,
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are not shown in Fig. 7.1. The complete distributions of the numerically predicted
strengths and the experimental strengths are also plotted using error bars in Fig. 7.1.

It is to be noted that the comparison based on the Weibull scaling law is not a
direct validation and is a comparison with the underlying assumption of an existence
of a scale law. Moreover, the Weibull shape parameter m based extrapolation is still
considered an open question and further experiments at different sizes are needed for
a complete validation of the scale law. The straight line scale law shown in Fig. 7.1
may not be representing the exact refined shape of the scale law. The Weibull based
scale law could even be a curve in double logarithmic plot. Further experiments and
numerical simulation at different sizes are required for a verification of the exact shape
of the scale law.

7.2 comparison of failure envelopes obtained from experimental and

numerical results

The failure envelopes determined through the experimental approach were found for
a gauge section volume of Vexp=28.75 mm3, see Chapter 5. On the other hand, the
numerically determined failure envelopes given in Chapter 6 are valid for a gauge
section volume of Vmodel=7.2247 mm3. Because of the differences in the gauge section
volumes and the existence of size effects discussed earlier in Section 7.1, a direct
comparison of the failure envelopes is to be carefully analyzed under consideration
of the scaling law.

The shear behavior of FRPs is deterministic and does not change with size as is
not affected by the fiber misalignment. Compression behavior on the other hand, is
uncertain and scales based on size as explained in Section 7.1. Material response un-
der combined compression-shear is complicated, and also scales with the size of the
gauge section due to the underlying fiber misalignment. Only a limited number of
specimens could be tested in experimental testing to failure due to steep costs of test-
ing and associated difficulties, however, numerical modeling allowed for simulating
the response of the material at a lot more combinations of the combined compression-
shear. The limited number of experimental data points resulted in a less refined form
of the failure envelope in strain spaces which is presented in Fig. 5.12. A much detailed
strain space envelope was obtained through numerical modeling which illustrated in
Fig. 6.10. Both the numerically obtained and the experimentally determined failure
envelopes in strain space are plotted together in Fig. 7.2 for a direct visual illustra-
tion. Failure strain from experiments are slightly lower overall due to size effects of
larger volume of the experimental gauge section compared to the volume of the nu-
merically modeled gauge section. As a result, the experimentally determined failure
envelope shows lower failure strains as expected. Moreover, due to larger number of
realizations in numerical modeling compared to the experimentally tested specimens,
more extreme percentiles of distribution of failure could be found. An important as-
pect to notice is the shape of the failure envelopes. When comparing the two failure
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Figure 7.2: Comparison of experimentally and numerically determined failure envelopes in
ε11-ε12 plane. The experimentally determined failure envelope was presented in
Fig. 5.12 and the numerically obtained failure envelope was plotted in Fig. 6.10.
The color code depicting the probability of failure P(gi) is based on numerical
results and represents the numerical failure envelope. The solid lines represent ex-
perimental failure envelope at 25

th (in color magenta), 50
th(white), and 75

th (black)
percentiles of distributions of failure.

envelopes, it is obvious that the intricate shape of the failure envelope could be found
more precisely through numerical modeling as more load cases were considered in
numerical modeling.

Failure envelope in stress space through experiments could not be directly found
as only single load cell was available for force measurements, see detailed discussion
in Section 5.2.7. Hence, only an approximation of the median failure envelope giving
a linear shape of the envelope could be found through experimental testing to failure.
Because of the ability to calculate stresses at failure in numerical modeling, the fail-
ure envelope in stress space could be determined in more detail with accuracy. For
a comparison of the experimentally approximated and the numerically determined
failure envelopes in stress space, they are plotted together in Fig. 7.3. Strengths were
only available directly for the axial compression and the pure shear load cases. One
can observe the size effect in the median prediction of the failure envelopes at the σ11
axis in Fig. 7.3 due to larger volume of experimental gauge section compared to the
numerically modeled volume. It is interesting to observe that the shape of stress based
failure envelope determined through numerical modeling is similar to corresponding
strain based envelope. The complicated shape of the envelope was again obtained in
detail through numerical modeling. This was not possible in the approximation of the
failure envelope through experimental results in stress space.
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Figure 7.3: Comparison of experimentally and numerically determined failure envelopes in
σ11-σ12 plane. The experimentally determined failure envelope was presented in
Fig. 5.14 and the numerically obtained failure envelope was plotted in Fig. 6.9.
The color code depicting the probability of failure P( fi) is based on numerical
results and represents the numerical failure envelope. The solid lines represent
ann approximation of the experimental failure envelope at 25

th (in color magenta),
50

th(white), and 75
th (black) percentiles of distributions of failure.

Although numerical modeling can provide results in a lot more detail, experimental
testing is still required for validation purposes for acceptance of such results. More-
over, results of the experimental testing confirmed microbuckling to be dominant
mode of failure under combined compress-shear loads as explained in Section 5.2.2.

The shear strength of the FRPs is deterministic as shear failure is dependent on
matrix properties. Compression behavior, however, is not only probabilistic but also
scales with the size. The comparison of the failure envelope shown before highlights
that probabilistic and scale effects are not limited to pure axial compression but also
appear in combined compression-shear part of the envelope. Assuming the shape of
the failure envelope would remain same over different volumes and only compression
part of the combined compression-shear load scales due to size effects as explained
earlier, one can generate failure envelopes for other model sizes by simply scaling
1-axis of the failure envelope. For this purpose, the Weibull scaling law can be used
to predict the axial compression strength at other model sizes. It is to be noted that
investigations need to be performed to verify whether the shape of the failure enve-
lope stays the same for scaled sizes. Numerical simulations would need to be repeated
with availability of misalignment data for larger volumes. Furthermore, validation of
the size effects under the axial compression loads through experimental testing to
failure in future investigations would confirm the exact scaling law. These advances
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would also allow for verification of the scaling for whole failure envelopes at different
sizes.





8
C O N C L U S I O N S A N D O U T L O O K

The conclusions of the investigations performed in this work are summarized in this
chapter. The outlook for future work is also outlined, along with a schematic repre-
sentation of possible directions of future works.

8.1 conclusions

For best utilization of FRP based structures, the prediction of failure uncertainties is
a fundamental requirement. Microbuckling (MB) is the dominant failure mode under
axial compression and combined compression-shear loads for unidirectional FRPs.
The underlying uncertainties in MB failure lead to conservative design practices. This
motivated the development of experimental and numerical methodologies for quanti-
fying the uncertainties in MB failure. Present study elucidates use of these approaches
for a stochastic investigation of MB failure in unidirectional fiber reinforced compos-
ites under compression and combined compression-shear loads. Different aspects of
the problem were investigated in this regard. Following conclusion can be drawn
based on these investigations:

1. The fiber misalignment was realized as a defining factor for the failure predic-
tion under compression and combined compression-shear loads. The first open
question presented in the state of the art Section 2.6 discussed the need of mea-
suring these misalignment. By performing CT scans and analyzing the results,
it is shown that the misalignment is indeed dependent on all three spatial direc-
tions and volumetric measurements are necessary for a representative measure-
ment of imperfections.

2. The importance of the matrix non-linearity in shear is imperative for prediction
of MB failure based on a review of the state of the art. The second open question
argues about need of characterizing nonlinearity of material’s shear behavior
along with other test for characterization of mechanical properties. To fulfil these
requirements, standard tests were performed. The resulting material constants
and the stress-strain curves from standard tests are presented in Section 3.1.

3. The third open question indicates the need of characterizing the spatial distribu-
tion of the fiber misalignment in addition to the usual statistical properties. In
this regard, the spectral representation method was employed for characterizing
the fiber misalignment in the frequency domain in form of spectral densities
of the in-plane and the out-of-plane angles in Section 4.1.1. By highlighting the
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deficiency of characterizing spectral densities in 2D frequency domain in Sec-
tion 4.1.2, it was concluded that the commonly used 2D forms of the spectral
density cannot preserve the complete 3D nature of the fiber misalignment.

4. The next item in the open questions talks about the representation of the fiber
misalignment in numerical models and identified the spectral representation
method as an excellent choice. Using the extended form of the spectral represen-
tation method, 3D topologies for the in-plane and the out-of-plane misalignment
angles were generated in Section 4.2.1. By comparison of the 3D topologies and
2D topologies, it was confirmed that the true nature of the fiber misalignment
can only be captured through 3D modeling.

5. The central open question deals with the development of novel probabilistic fail-
ure envelopes under compression and combined compression-shear load cases
at different percentiles of failure. Using the results of testing to failure performed
on a novel fixture which can apply combined compression-shear loads simulta-
neously, a probabilistic failure envelope in strain space ε11-ε12 was constructed
and a mathematical definition of failure envelopes at 25

th, 50
th, and 75

th per-
centiles is presented, see Section 5.2.5 and 5.2.7.

A comparison of the applied stresses in the loading direction σ1′1′ is shown
in Section 5.2.3 highlighting the fact that the pure axial compression load case
shows highest variation in strength. This result emphasizes the dependency of
the compressive behavior on the fiber misalignment. By fitting σ1′1′ with nor-
mal and 2/3 parameter Weibull distributions, it is concluded that 3 parameter
Weibull distribution shows the best fit among them. As capturing the develop-
ment of shear band localization leading to microbuckling failure in combined
compression-shear load cases is an interesting aspect, it was done through the
DIC measurements. Moreover, evidence of MB as the failure mode in combined
compression-shear load case was further shown in Section 5.2.2 by fractographic
analysis.

Results obtained for the axial compression load case were assessed against an
analytical prediction model by Budiansky [21] in Section 5.2.6. The magnitude
of the misalignment angles ψ were calculated and compared against the actual
measurements of the in-plane misalignment angle θk,l,m and the out-of-plane
misalignment angle φk,l,m through a calculated distribution of the effective global
misalignment angle ψk,l,m. The definition of the effective global misalignment an-
gle ψk,l,m has been improved in comparison to the earlier efforts by including the
effects of out-of-plane misalignments. It is concluded in the present case that the
90

th percentile of the ψk,l,m gives a better approximation of the median strength
prediction whereas earlier investigations [127] suggested the 99

th percentile as
appropriate for NCF materials. It appears that the percentile level defining the
effective misalignment angle is not transferable without further adjustments. It
is also shown that the elastic-perfect plastic material behavior assumption for the
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axial compression strength prediction using analytical solutions is not suitable
for a material with nonlinear shear behavior.

Finally, using the identified effective misalignment angle and the analytical equa-
tion system, median strengths were calculated indirectly for combined load
cases. These were then used for defining a failure envelope in stress space σ11-
σ12, which shows a linear interaction of stress components as expected, see Sec-
tion 5.2.7.

6. The second part of the central open question addresses the probabilistic failure
investigation under combined compression-shear loads using numerical model-
ing. An inconsistency of the material axis rotation in Abaqus for homogenized
representation was rectified by introduction of additional shear rotation to the
preferred material direction in the material model, see Section 6.1.2.2. Effect of
the misalignment dimensionality on the compression strength prediction was
investigated using simpler sinusoidal misalignment topologies in the homoge-
nized approach. It was shown in Section 6.2.1 that the maximum misalignment
angle alone is not the deciding factor but rather the whole topology of the mis-
alignment modeled in appropriate dimension plays a major role in prediction of
compression strength.

Using the homogenized representation, probabilistic simulations were carried
out under the axial compression loads for different model series. The results
based on average spectral densities shown in Section 6.2.2 lie in-between those
dependent on individual measurements of scanned specimens, as expected. There-
fore, the avg model series was considered for further investigations. By analyz-
ing the results of a realization from different load cases given in Section 6.2.3, it
was established that MB failure occurred not only under the pure axial compres-
sion load, but also under combined compression-shear loads. The differences
between the linear axial response and the nonlinear shear response under com-
bined loads were discussed.

Failure envelopes in stress and strain spaces were developed using results ob-
tained via probabilistic analysis of different load cases of combined compression-
shear, see Section 6.2.4 and 6.2.5. The failure envelopes were divided into two
regions, i.e. the compression dominated MB1 and the shear dominated MB2.
Functional forms of failure envelopes were defined and the parameters for 1

st,
50

th (median), and 99
th percentiles were identified. For comparison, established

failure criteria were plotted on top of the numerical results. Failure criteria from
literature either overestimated the failure, since they do not account for the ef-
fects of the fiber misalignment on combined load cases, or they can not model
the change in shape of the failure envelopes.

Finally, the assumption of functional forms of spectral densities for generation of
virtual topologies of the fiber misalignment was investigated. The results of this
investigation given in Section 6.2.6 concludes that functional forms of spectral
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density can be assumed as an approximation. It was shown that proper cutoff
frequencies need to be used for accurate prediction of compression strength. By
analyzing the effect of scaling mean square spectral densities on the prediction of
the compression strength, an empirical relation for scaled mean square spectral
densities is provided. It was concluded that the exponential form of spectral
density compared to the square form of spectral density gave better prediction
for whole distribution of the compression strength for the material investigated
in the current work.

It is expected that the presented experimental and numerical methodologies and
corresponding results of the novel probabilistic definitions of failure envelopes
can help in the further exploration of uncertainty quantification in FRPs. Even-
tually, it may enable more reliable design practices. Additionally, the proposed
methodologies offer an easy path to the development of the probabilistic failure
envelopes for new fiber reinforced materials.

7. The final open question stated in Section 2.6 discusses the need of a scaling
law for comparing experimental and numerical predictions of the compression
strength. Hence for validation, the numerical strength prediction of the pure
compression load case was compared to the experimental results in Section 7.1.
The dissimilar specimen sizes of the measurements and subsequent numerical
models on one hand and the experiments on the other required the consideration
of a scaling law. For this purpose a Weibull scale law was calibrated using the
shape parameter m of experimental results under the pure axial compression
load. Accounting for size effects, results of the numerical model are in good
agreement with the experimental reference. By comparing the failure envelopes
determined experimentally against those obtained numerically, it was concluded
that the probabilistic and scale effects also exist under combined compression-
shear loads. Given that only the compression behavior scales with change in
volumetric size and assuming that the shape of failure envelopes remains same,
it is suggested that one can scale the failure envelope using the Weibull scaling
law.

8.2 outlook

The main aim of the numerical and the experimental approaches presented in this
work is to understand and quantify uncertainties in failure of FRPs under axial com-
pression and combined compression-shear loads due to the underlying fiber misalign-
ment. The goal is a push for reliable design practices of light-wight structures when
using FRP materials with lower factors of safety. In context of further realization of
this goal, some prospective works for future are suggested.

A schematic of possible areas of exploration is shown in Fig. 8.1. An interesting
open question is that of statistical size effects in strength distribution under compres-
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Figure 8.1: Schematic of follow-up works. [Fig. (a) →(b)] Numerical determination of a statis-
tical scaling law. [Fig. (a) and (b) →(d) →(e)] Development of a Stochastic First Ply
Failure (FPF) criterion for homogeneously stressed laminate plates. [Fig. (a) →(b)
→(c) →(f)] Numerical determination of a scaling law in the geometrical and the
transition regimes.

sion loads. By performing numerical simulations at different sizes, informed by the
measurements of the fiber misalignment at corresponding sizes, statistical scale law
can be defined. The numerical methodology presented here can be used for such a
purpose. A corresponding validation of the results by performing experiments under
axial compression for unnotched specimens needs to be performed. The combination
of such an analysis can result in not only statistical scale law, not only for median
strength prediction but also for different percentiles for the distribution of compres-
sion strength.

Another topic of interest is the extension of scale laws to multidirectional FRPs
where the misalignment in 0

◦ layer might control the failure of the whole laminate.
A possible path for such an analysis is shown in Fig. 8.1. By a combined use of the
scaled failure envelopes of different layers of the laminate for a particular size and the
use of composite laminate theory, a simple methodology for defining a safe region in
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the N11-N12 plane can be defined. N11 and N12 are the loads in the global coordinate
frame.

In notched specimens, microbuckling typically originates at a location of stress con-
centration near the structural detail. After initiation, stress can redistribute and hence,
a gradual growth of the microbuckle is observed at increasing far field load, similar
to stable crack growth in notched metal structures under tension. Eventually, the mi-
crobuckle grows to a critical length beyond which load redistribution can no longer
offset the local softening, and propagation turns into an unstable dynamic process.
In an abstract sense, this behavior is similar to the growth of tensile cracks, with the
modification that the microbuckle corresponds to a negative crack opening. In fracture
mechanics the critical crack length, i.e. the crack length at which propagation turns
unstable, is linked to the critical energy release rate which is a material property. Thus,
the critical crack length, or rather the critical microbuckling length, also defines an in-
trinsic length and introduces an associated scale effect. This is the second type of scale
effect under consideration in this text, and it is termed as the geometrical size effect.
In addition to the statistical size effects, FRPs also exhibit so-called geometrical size
effects. The initiation and final failure of such geometrical size effects can be analyzed
using linear elastic fracture mechanics and numerical modeling.

In typical engineering composites sub-components, both statistical and geometrical
scaling laws are present at the same time and compete. Actual strength of a compo-
nent containing such sub-components is thus generally lower of either the statistical
or geometrical limit case models. Hence, the applicability of these scaling laws is rel-
evant in certain particular size ranges. Towards the lower limits of length scales of
the sub-component, statistical size effect is dominant, see Fig. 8.1. In such cases, fail-
ure is catastrophic, showing a snap-back response and the structure is unable to bear
extra load through stress redistributions. On the other extreme of larger structural
details, the geometrical scaling laws take precedent. In such cases, as discussed ear-
lier in geometrical scaling law section, the increase in releasable energy overpowers
the statistical effect. Hence, the ultimate load is controlled by the geometrical scaling
law. This can be seen in testing of not only composites with notches or holes, but also
other materials such as concrete. Mere proportional up-scaling of some specimen with
a notch or cut-out can change the failure regime from scattered statistical dominated
to deterministic geometric dominated, cf. insets in Fig. 8.1. However, the transition
is not sudden and in between the two limit cases, a stochastic transition regime for a
particular geometric detail overtaking the corresponding statistical size effect exists. A
probabilistic scaling law for specific laminated sub-components, not only in statistical
and geometrical regimes, but also in transition regime, would allow for more efficient
and less over-conservative designs. Through nonlinear numerical progressive damage
analysis on suitable models, the distribution for both initiation and ultimate loads ob-
tained via stochastic methods forms the basis to formulate an empirical scaling law
for the transition regime. These results can serve as a reference for possible further
developments and generalizations.



A
A P P E N D I X

a.1 algorithm for generation of topologies of the 3d fiber misalign-
ment from spectral densities

Herein, the extension of the artificial generation of 1D and 2D correlated random pro-
cesses to 3D is presented. The method is based on Fourier transformation principles.
It was initially developed for the time dependent signal processing theory. Cebon
[27] and Newland [84] employed it for the artificial generation of correlated random
isotropic road surfaces. It was later used for microbuckling analysis of unidirectional
FRPs in 1D [100] and in 2D [76] considering correlated random topologies of the fiber
misalignment.

Consider a 3D topology function f (1xk,2 xl,3 xm) dependent on spatial variables
1xk, 2xl, and 3xm sampled discretely over the intervals [0, L1], [0, L2], and [0, L3], re-
spectively. The topology is periodic over the intervals 1xk=[0, L1], 2xl=[0, L2], and
3xm=[0, L3]. It is represented in discrete form as fk,l,m= f (1xk,2 xl,3 xm), where 1xk=k∆1,
2xl=l∆2, and 3xm=m∆3, with k=0, 1, . . . , N1− 1, l=0, 1, . . . , N2− 1, and m=0, 1, . . . , N3−
1, and with ∆1=L1/N1, ∆2=L2/N2, and ∆3=L3/N3. Consequently, the discrete Fourier
transform (DFT) Fk,l,m of fk,l,m is given by:

Fk,l,m =
1

N1N2N3

N1−1

∑
r=0

N2−1

∑
s=0

N3−1

∑
t=0

fr,s,t exp
(
−2πι

(
kr
N1

+
ls
N2

+
mt
N3

))


k = 0, 1, ..., N1 − 1

l = 0, 1, ..., N2 − 1

m = 0, 1, ..., N3 − 1

(A.1)

ωc1 , ωc2 , and ωc3 are the components of the maximum spatial frequencies (wave
numbers) present in the topology fk,l,m= f (1xk,2 xl,3 xm) corresponding to the min-
imum wavelengths λ1min , λ2min and λ3min , where ωc1=2π/λ1min , ωc2=2π/λ2min , and
ωc3=2π/λ3min . The number of sampling points in each direction must fulfill the cri-
teria N1 > ωc1 L1/π, N2 > ωc2 L2/π, and N3 > ωc3 L3/π to avoid aliasing which is a
well known accuracy eroding artifact in Fourier transformation of the periodic sam-
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pled topologies. Some important properties of Fk,l,m worth mentioning considering
the ensuing algorithm steps are:

F−k,−l,−m, = F∗k,l,m FN1+k,N2+l,N3+m = Fk,l,m FN1−k,N2−l,N3−m = F−k,−l,−m

FN1−k,l,m = F−k,l,m FN1−k,N2−l,m = F−k,−l,m FN1−k,l,N3−m = F−k,l,−m

Fk,N2−l,m = Fk,−l,m Fk,N2−l,N3−m = Fk,−l,−m Fk,l,N3−m = Fk,l,−m (A.2)

The spectral density Sk,l,m of the topology function fk,l,m is defined as the Fourier
transform of its autocorrelation function. The spectral density is sampled discretely
over the intervals 1xk=[0, L1], 2xl=[0, L2], and 3xm=[0, L3] as Sk,l,m=S(ωk, ωl, ωm), where
ωk=2πk/L1, ωl=2πl/L2, ωm=2πm/L3 and k=0, 1, . . . , N1− 1, l=0, 1, . . . , N2− 1, m=0, 1,
. . . , N3 − 1. The discrete spectral density is related to Fk,l,m by:

Sk,l,m ≈
L1L2L3

(2π)3 F∗k,l,mFk,l,m =
L1L2L3

(2π)3 | Fk,l,m |2 (A.3)

It follows from (A.2) and (A.3) that:

S−k,−l,−m = S∗k,l,m SN1+k,N2+l,N3+m = Sk,l,m SN1−k,N2−l,N3−m = S−k,−l,−m

SN1−k,l,m = S−k,l,m SN1−k,N2−l,m = S−k,−l,m SN1−k,l,N3−m = S−k,l,−m

Sk,N2−l,m = Sk,−l,m Sk,N2−l,N3−m = Sk,−l,−m Sk,l,N3−m = Sk,l,−m (A.4)

The condition (A.4) implies that the spectral density is symmetric hence, it is uniquely
defined only in the region k=[0, N1/2], l=[0, N2/2] and m=[0, N3/2].

Following the procedure outlined in [27, 84], the correlated random realizations of
the discrete topology fk,l,m= f (1xk,2 xl,3 xm) are generated for a given spectral density
function Sk,l,m=S(ωk, ωl, ωm) through following steps:

1. Identify cut-off frequencies ω1c , ω2c , and ω3c considering physical constraints
above which Sk,l,m is zero (or approximately zero). Choose even integers N1, N2
and N3 for desired refinement and satisfying the aliasing avoiding conditions
N1 > ωc1 L1/π, N2 > ωc2 L2/π, and N3 > ωc3 L3/π.
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2. Sample the spectral density, meanwhile enforcing the constraint (A.4) to obtain:

Sk,0,0 = S
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2πk
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, 0, 0
)
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(A.5)
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3. Calculate the magnitude of Fk,l,m given by relation (A.3) as:

| Fk,l,m |=

√
(2π)3

L1L2L3
Sk,l,m (A.6)

(A.2) needs to be fulfilled hence, the phase angle of Fk,l,m must be periodic in in-
tervals k=[0, N1], l=[0, N2], m=[0, N3] and antisymmetric with respect to k=N1/2,
l=N2/2, m=N3/2. The phase angle βk,l,m is otherwise chosen randomly from a
uniform distribution in range [0, 2π]. The Fk,l,m is thus given by:

Fk,l,m =

√
(2π)3

L1L2L3
Sk,l,m exp (ιβk,l,m) (A.7)

4. To fulfill the aforementioned criterion for the phase angle, following steps are
defined for sampling phase angle:

β0,0,0 = βN1/2,0,0 = βN1/2,N2/2,0 = βN1/2,0,N3/2 = 0
β0,N2/2,N3/2 = β0,0,N3/2 = β0,N2/2,0 = βN1/2,N2/2,N3/2 = 0
βk,0,0 is random, k = 0, 1, 2, ..., N1/2
βN1−k,0,0 = −βk,0,0, k = N1/2 + 1, ..., N1 − 1
β0,l,0 is random, l = 0, 1, 2, ..., N2/2
β0,N2−l,0 = −β0,l,0, l = N2/2 + 1, ..., N2 − 1
β0,0,m is random, m = 0, 1, 2, ..., N3/2
β0,0,N3−m = −β0,0,m, m = N3/2 + 1, ..., N3 − 1
βk,l,m is random, k = 1, 2, ..., N1/2, l = 1, 2, ..., N2 − 1,

m = 1, 2, ..., N3 − 1
βN1−k,N2−l,N3−m = −βk,l,m, k = 1, 2, ..., N1/2, l = 1, 2, ..., N2 − 1,

m = 1, 2, ..., N3 − 1 (A.8)

5. By taking the inverse DFT of Eq. A.7, the correlated random discrete topology
is obtained as:
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k = 0, 1, ..., N1 − 1

l = 0, 1, ..., N2 − 1

m = 0, 1, ..., N3 − 1
(A.9)

Using Fast Fourier Transform (FFT) algorithms, the discrete Fourier transform
(A.9) can be efficiently calculated. The resultant real valued realization of gen-
erated topologies are random correlated, with approximately zero mean de-
pending on the numerical round-off errors. They are also periodic over the
intervals k=(0, N1), l=(0, N2) and m=(0, N3) i.e. f0,l,m= fN1,l,m (l=1, 2, . . . , N2 − 1,
m=1, 2, . . . , N3 − 1) etc.
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It is to be noted that the steps 1. and 2. in the above procedure can be skipped if
the discrete spectral density Sk,l,m is available directly from the measurements of the
topology fk,l,m such as a fiber misalignment topology.
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