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Adjoint maps between implicative
semilattices and continuity of localic maps

Marcel Erné, Jorge Picado and Aleš Pultr

Abstract. We study residuated homomorphisms (r-morphisms) and their
adjoints, the so-called localizations (or l-morphisms), between implicative
semilattices, because these objects may be characterized as semilattices
whose unary meet operations have adjoints. Since left resp. right adjoint
maps are the residuated resp. residual maps (having the property that
preimages of principal downsets resp. upsets are again such), one may not
only regard the l-morphisms as abstract continuous maps in a pointfree
framework (as familiar in the complete case), but also characterize them
by concrete closure-theoretical continuity properties. These concepts ap-
ply to locales (frames, complete Heyting lattices) and provide generaliza-
tions of continuous and open maps between spaces to an algebraic (not
necessarily complete) pointfree setting.
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1. Introduction

A basic tool in order theory with countless applications in other fields of math-
ematics is provided by adjoint pairs of maps between partially ordered sets
(posets): given posets A,B and maps h : A−→B and f : B −→ A related by
the equivalence

ha ≤ b ⇔ a ≤ fb,
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f is the (right orupper) adjoint of h, and h the coadjoint (left or lower adjoint)
of f (we omit parentheses if maps are applied to elements). Either partner of an
adjunction is uniquely determined by the other. The letter h has been chosen
because in our investigations h often will be an algebraic homomorphism,
whereas f will represent certain continuous functions. In Section 5, g will stand
for the left (French: gauche) adjoint of h, provided it exists. In other contexts,
it is more common to denote a left adjoint by f and its (right) adjoint by g;
accordingly, in the categorical version of adjointness [1,22], left adjoint functors
generalize free functors , and their adjoints grounding functors . Some authors
use the opposite order ≥, so that an upper adjoint g stands on the left side of
the inequality gb ≥ a [19].

The adjoining equivalence allows to shift parts of one side of an inequality
to the other side in a very convenient way. It is well known and easy to see that
a map is coadjoint (left adjoint) iff it is residuated, i.e., preimages of principal
downsets

↓c = {b ∈ B | b ≤ c}

are again principal downsets, and a map is (right) adjoint iff it is residual, i.e.,
preimages of principal upsets

↑c = {a ∈ A | c ≤ a}

are again principal upsets. Residuated maps preserve all existing joins, and
residual maps all existing meets. In particular, both kinds of maps are isotone
(order-preserving). Moreover, a map between complete lattices is residuated
(resp. residual) iff it preserves arbitrary joins (resp. meets). The most impor-
tant fact in the theory of (Galois) adjunctions is that any adjoint pair of maps
induces mutually inverse isomorphisms between their ranges. Note also that
one partner of an adjunction is idempotent iff so is the other, that it is injective
iff the partner is surjective, and that passing to adjoints inverts composition;
see [8,13,19].

A basic instance of an adjunction is obtained as follows. Every map
f : S −→ T between sets induces an adjoint pair of maps between the power
sets PS and PT : the image map f→ with f→U = fU = f [U ] = {fu | u ∈ U}
and the preimage map f← with f←V = f−1[V ] = {s ∈ S | fs ∈ V }. They are
related by the equivalence

f→U ⊆ V ⇔ U ⊆ f←V.

Topologies are prototypes of so-called frames or locales [22,37], that is,
complete lattices in which binary meets distribute over arbitrary joins. The
category Frm of frames has as morphisms the frame homomorphisms, that
is, maps which preserve arbitrary joins and finite meets, while the opposite
category Loc of locales has the same objects but as morphisms the adjoints of
frame homomorphisms, so-called locale morphisms or localic maps. Denoting
for any topological space T its topology, regarded as a frame resp. locale, by
OT , we obtain for every continuous map f : S −→T between topological spaces
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an adjoint pair of maps

O←f : OT −→OS, V 
−→ f←V,

O→f : OS −→ OT, U 
−→(f→(U c))−c

where − denotes closure and c set-theoretical complement; the preimage map
is now the left (i.e. lower) adjoint partner:

O←f V ⊆ U ⇔ U c ⊆ f←V c ⇔ (f→(U c))− ⊆ V c ⇔ V ⊆ O→fU.

(Working with closed sets would be more natural, as demonstrated in [11]).
Then O→ is an adjoint functor from the category Top of topological spaces to
the category Loc, and O← is a contravariant functor from Top to Frm.

Top

�
�

���

O← O→�
�

���
Frm Loc� �op

This may be regarded as the “starting point of pointfree topology” (cf.
Johnstone [23]). Comprehensive references to themes of pointfree topology are
Dowker and Papert [10], Isbell [21], Johnstone [22,23,24], Picado, Pultr and
Tozzi [36,37,39], and Simmons [41,42,43].

For the important special case where S is a subspace of a space T and e
is the inclusion map from S into T , the above construction yields an adjoint
pair of maps

O←e : OT −→ OS, V 
−→ S ∩ V,

O→e : OS −→ OT, U 
−→ S →U,

where S → U = T � (S �U)− (closure in T ). By the machinery of Galois
adjunctions, the induced topology OS = {S ∩ V | V ∈ OT} is isomorphic to

OTS = S∼ = {S →U | U ∈ OS},

which is a meet-closed and left→-closed subset, that is, a sublocale of OT [36,
37]. In this sense, one may say that sublocales represent subspaces; however,
the map OT from PT to the coframe of all sublocales is neither one-to-one nor
onto in general. For topological characterizations of those spaces for which OT

is injective, surjective or bijective, respectively, see [37] and [41].
In view of the connections between spaces and locales, categorically in-

spired authors refer to localic maps (or to the opposite arrows of frame homo-
morphisms [22]) as “continuous maps”. This raises the question of whether
that kind of maps may be characterized by certain concrete continuity proper-
ties in the closure-theoretical sense (preimages of closed subobjects are closed,
and the formation of preimages commutes with complementation). We shall
give an affirmative answer to that question; the explicit characterization of
localic maps in terms related to continuity is, however, a bit delicate: the com-
plements of closed sublocales have to be formed in the lattice of all sublocales
and not set-theoretically as in classical topology.
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Motivated by the previous observations, we shall study, more generally,
implicative semilattices, that is, meet-semilattices with top elements in which
the unary meet operations λa = a∧ − have adjoints αa = a→−. The frames
resp. locales are just the complete implicative semilattices, and the frame ho-
momorphisms are nothing but the residuated semilattice homomorphisms pre-
serving the top elements. Our arguments are often shorter than those found in
the literature for the case where joins exist, and nevertheless provide proper
extensions to the setting of semilattices; new ideas are required when certain
joins or meets are not available.

If we wish to have Frm resp. Loc as full subcategories of two respective
dual categories whose objects are implicative semilattices, we have to consider
as morphisms not the usual implicative homomorphisms (which preserve finite
meets and the binary residuation →) but the residuated top-preserving semi-
lattice homomorphisms, briefly referred to as r-morphisms, and in the opposite
direction their adjoints, the so-called localizations (Bezhanishvili and Ghilardi
[6]) or l-morphisms. Thus,

r-morphisms have right adjoints and preserve finite meets,
l-morphisms have left adjoints that preserve finite meets,

and the respective categories are duals of each other via Galois adjunction.
For continuous maps f between spaces, O←f is an r-morphism and O→f its
adjoint l-morphism.

Under the point of view we adopt in the present paper, it is reasonable to
regard implicative semilattices as algebras (A,∧,, α), where α is the family
of all unary residuations or relative pseudocomplementations αa (a ∈ A). Here
we leave the classical area of varieties, because the signature depends on A,
and the subalgebras are those subsemilattices which are closed under each αa;
we call them l-ideals. Now, all unary meet operations become r-morphisms,
and the image (but not the preimage) of an l-ideal under an l-morphism is
always an l-ideal. Those subsets for which the inclusion map is an r- resp.
l-morphism will be referred to as r- resp. l-domains. In the complete case of
frames/locales, the r-domains are the subframes, whereas the l-domains are
the sublocales. In our general setting, they are still nothing but the ranges of
nuclei, that is, closure operations preserving finite meets.

The idea to characterize algebraic homomorphisms and their categorical
duals by continuity properties is central in the development of general Stone
duality [14], and also in the present context, morphisms receive a concrete topo-
logical flavor: regarding principal upsets as basic closed sets renders adjoint
maps “basic continuous”: preimages of basic closed sets are basic closed. More
precisely, we justify the term “continuous” for locale morphisms by showing
that the l-morphisms between implicative semilattices are characterized by the
following continuity condition: the preimage of the zero ideal (the least basic
closed set) is zero, the preimage of any basic closed set is basic closed, and
its complement in the lattice of l-ideals is contained in the preimage of the
complement—a triviality in the counterpart of set-theoretical complements,
but an unavoidable additional condition in the lattice-theoretical setting.
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In the complete case of locales, the prefix “basic” is omitted, since the
basic closed sets then form a closure system, that is, a collection of sets closed
under arbitrary intersections (with

⋂
∅ being the entire ground set). The closed

sublocales and their lattice-theoretical complements, the open sublocales, rep-
resent (via OT ) closed resp. open subspaces. In a suitable categorical frame-
work, they also correspond to Isbell’s abstract open resp. closed parts [21]. If
for an l-morphism f : B −→A and an l-domain C of A there is a greatest l-
domain D of B contained in f←C then D is called the localic preimage of C.
Such localic preimages exist in the complete case of locales, but not in general.
Four questions arise immediately:
(1) Is any adjoint map whose preimages of opens are open an l-morphism?
(2) Is any adjoint map with open localic preimages of opens an l-morphism?
(3) Are the set-theoretical preimages of opens under any l-morphism open?
(4) Are the localic preimages of opens under any l-morphism open?

Even in the complete case, only (4) has a positive response.

Example 1.1. In boolean locales (and only in these), all sublocales are open
and closed [22,39]. Hence, every residual map has here the property that pre-
images of open sublocales are again open. But not all residuated maps preserve
binary meets, and consequently, their adjoints need not be localic.

Example 1.2. For l-morphisms between bounded chains, preimages of basic
open sets are basic open, because complements of basic closed sets are formed
almost set-theoretically, adding the top. But for an l-morphism from a frame
B to a three-element chain A, the preimage of the open l-ideal {⊥A,A}
need not be an l-ideal: for the chains 2 = {0, 1} and 3 = {0, 1, 2}, deleting
the element (0, 2) from the product 2 × 3 leaves a frame

�
♦� �

�

�

� for which the
projection onto the second coordinate is an l-morphism, but the preimage of
the open l-ideal {0, 2} fails to be an l-ideal.

Concerning (basic) open morphisms and quasi-open morphisms (having
the property that the image of any basic open set is contained in a least basic
open set of the codomain), we extend the Joyal–Tierney Theorem [26] about
open localic maps to the non-complete situation, by establishing a dual iso-
morphism between the category of implicative semilattices with basic open l-
morphisms as morphisms and the category having the same objects but as mor-
phisms those implicative maps which are biadjoint, that is, both adjoint and
coadjoint; in fact, these are just the coadjoints of the basic open l-morphisms.
More generally, via Galois adjunction, arbitrary biadjoint maps correspond to
the quasi-open l-morphisms. Similar phenomena have been observed in other
contexts (cf. Erné [12], Hofmann and Mislove [20]).

Finally, in order to bring together all pieces of the puzzle, we introduce a
category of basic zero-dimensional spaces, similar to categories considered in
[11] and [14]. The objects are closure spaces with a distributive closure system
containing a specified meet-base of complemented members. All the categories
discussed here, and many more, like that of TD-spaces (Aull and Thron [2]),
front spaces (Skula [44]), and of course, Stone spaces and the more general
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zero-dimensional spaces (Johnstone [22]), are embedded in the category of
basic zero-dimensional spaces. Hence, that category might be an interesting
subject of future research.

2. Closure operations, closure ranges and adjunctions

Let A be a partially ordered set (poset), ≤ its order relation, and Aop the dual
poset. We write b = a ∨ c if b is the least upper bound (supremum, join), and
dually b = a∧ c if b is the greatest lower bound (infimum, meet) of {a, c}. This
convention also applies when not all binary suprema resp. infima exist (that
is, not only in lattices but in arbitrary posets). Recall that completeness is
a self-dual property: all subsets have joins iff all subsets have meets. A least
element (bottom) of A is denoted by ⊥ or ⊥A, and a greatest element (top) by
 or A. If a ∨ c =  and a ∧ c = ⊥ then c is a complement of a.

A (unary) operation on A is a map from A into A. Any set of opera-
tions on A is ordered pointwise. A closure operation or hull operation is an
isotone (order-preserving), inflationary (extensive) and idempotent operation.
The dual notion is coclosure or kernel operation. Closure operations j may be
characterized by the single equivalence

x ≤ jy ⇔ jx ≤ jy.

We call a subset C of A a closure range if for each a ∈ A there is a least c ∈ C
with a ≤ c. Other names for such subsets are closure system, partial ordinal [3],
or relatively meet-closed set [18,45]. Indeed, any closure range is closed under
all existing meets, and the closure ranges of a complete lattice are exactly its
meet-closed subsets. We reserve the term “closure system” for sets that are
closed under intersections and consequently complete lattices with respect to
the inclusion order. Recall that a closure system is topological if it is closed
under finite unions, and algebraic if it is closed under directed unions. The
term “closure range” is justified by the following fact [3,13,33]:

Proposition 2.1. Sending each closure operation to its range, one obtains a
dual isomorphism between the pointwise ordered set of all closure operations
on A and the set of all closure ranges in A, ordered by inclusion.

Every map h : A−→ B naturally factors into its surjective corestriction
h0 : A−→ hA and the inclusion map h0 : hA−→B. Note that h is a closure
operation iff h0 is adjoint to h0, and h is a homomorphism iff h0 and h0 are
homomorphisms. For easy reference, we record the main connections between
closure operations and adjoint maps (Blyth and Janowitz [8], Erné [13,15]).

Proposition 2.2. Any residuated map h : A−→ B with range D and its adjoint
f : B −→ A with range C satisfy the equations f = fhf and h = hfh. Hence,
C is the range of the closure operation g = fh, D is the range of the coclosure
operation k = hf, and i = h0|C : C −→ D is an isomorphism with h = k0ig0.
This provides a factorization of h into a surjective, a bijective and an injective
residuated map. A dual factorization f = g0i−1k0 into residual maps holds in
the opposite direction.
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Proposition 2.3. Let h : A−→ B be a residuated map and f : B −→A its ad-
joint. For any closure operation j on B with range C, the “image” fjh is
a closure operation on A with range fC. Hence, residual maps send closure
ranges to closure ranges.

3. Morphisms between implicative semilattices

By a semilattice we always mean a ∧-semilattice with top element. As mor-
phisms between semilattices we take residuated maps that preserve finite
meets, called r-morphisms ; their adjoints are referred to as localizations or
l-morphisms. Note that if the codomain of an injective r- or l-morphism is
complete then so is the domain, and in the opposite direction, if the domain
of a surjective r- or l-morphism is complete then so is the codomain.

An implicative semilattice [6,7,34] (or Brouwerian semilattice [27,28]) is
a semilattice whose unary operations λa = a∧ − have adjoints αa = a→−:

a ∧ x ≤ y ⇔ x ≤ a→y.

As announced in the introduction, we regard implicative semilattices as alge-
bras (A,∧,, α) with the family α = (αa : a ∈ A) of unary residuations. Recall
that each of the corestricted maps λa : A −→ ↓a is an r-morphism. Observe
that an r-morphism between implicative semilattices preserves not only joins
but also complements, to the extent they exist.

Deviating from [40], we reserve the terms Heyting semilattice and Heyting
lattice for bounded implicative semilattices resp. lattices (having a least ele-
ment ⊥). In the lattice case, (A,∨,∧,,⊥,→) is a Heyting algebra. All these
algebraic structures are equationally definable (see, e.g., Esakia [18] or Köhler
[27,28]). In Heyting semilattices, the element ¬ a = a→⊥, also denoted by a⊥

or a∗, is the pseudocomplement or negation of a. From now on,
A denotes an implicative semilattice with top element .

By an interior operation we mean a kernel operation preserving finite meets.
On the other hand, a nucleus (see, for example, Bezhanishvili and Ghilardi [6],
and for the complete case, Banaschewski [4], Johnstone [22], Simmons [43]) is
a closure operation j preserving finite meets; instead of the latter condition,
it suffices to postulate the seemingly weaker but equivalent inequality

x ∧ jy ≤ j(x ∧ y).

There is a description of nuclei on implicative semilattices by one equation,
due to Macnab [31], who calls nuclei on Heyting algebras modal operators:

x→jy = jx→jy.

Notice that every nucleus j fulfils the inequality

j(x→y) ≤ jx→jy

but equality need not hold, that is, j need not be implicative (preserve the
formal implication →). An inner characterization of the ranges of nuclei is
provided by the next definition: a nuclear range [16] (modal subalgebra in [31],
strong ideal in [40]) is a closure range C that is left →-closed, or l-closed,
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i.e. closed under the unary operations αa, which means that a→c ∈ C for all
a ∈ A and c ∈ C. As a closure range contains all existing meets of subsets, every
nuclear range is an l-ideal, that is, an l-closed subsemilattice (total subalgebra
in [28], ideal in [40]). By definition, the l-ideals are left ideals with respect
to the operation →; all order-theoretical filters (dual ideals), i.e. nonempty
∧-closed upsets, are l-ideals, but not conversely.

We denote by T A the algebraic closure system of all l-ideals (total sub-
algebras), by SlA its ∨-subsemilattice of those l-ideals that are closure ranges,
and by NA the same set, but ordered by dual inclusion. Notice that SlA need
not be a closure system if A is not complete. The zero ideal 0 = {} is the least
element of SlA but the greatest element of NA. The subsequent description
of the members of SlA resp. NA is familiar in the more restricted theory of
frames and locales, where they are known as sublocales [22,37]. The case of
Heyting algebras, due to Macnab [5,30,31], extends without any alteration to
implicative semilattices.

Proposition 3.1. Sending each nucleus to its range yields an isomorphism be-
tween the semilattice NA of all nuclei and the semilattice NA of all nuclear
ranges. Hence, these are not only the ranges of nuclei but also the l-domains,
that is, those subsets for which the inclusion map into A is an l-morphism.

Analogously, by an r-domain we mean a subset for which the inclusion
map is an r-morphism. In light of our general remarks on adjunctions in Sec-
tion 2, we draw the following conclusions:

Theorem 3.2. Let h : A−→ B be an r-morphism between implicative semilat-
tices with range C and f : B −→ A its adjoint l-morphism with range D. Then
g = fh is a nucleus, k = hf is an interior operation, and h has an extremal
epi-mono-factorization h = k0ig0, where

g0 : A−→ C is the corestriction of a nucleus, hence an r-epimorphism,
i : C −→D is an isomorphism, hence an r-epi- and -monomorphism,

k0 : D −→ B is the inclusion of an r-domain, hence an r-monomorphism.

A dual extremal epi-mono-factorization into l-morphisms holds for f .

Corollary 3.3. The extremal r-epimorphisms, i.e., the surjective r-morphisms,
are up to ismorphisms the surjective corestrictions of nuclei. On the other
hand, the extremal l-monomorphisms, i.e., the injective l-morphisms, are up to
isomorphisms the inclusion maps of l-domains (nuclear ranges).

Corollary 3.4. The poset of r-morphisms between implicative semilattices A
and B is dual to the poset of l-morphisms from B to A, and isomorphic to the
poset of isomorphisms between l-domains of A and r-domains of B.

Proposition 3.5. For an l-morphism f : B −→A adjoint to an r-morphism h : A
−→B, the “image” fjh of a nucleus j on B is a nucleus on A whose range is
the image of the range jB under f . Hence, l-morphisms map l-domains (that
is, nuclear ranges) to l-domains.
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In the complete case of frames resp. locales, the r-domains are just the
subframes, and on the other hand, the l-domains are just the sublocales. Cat-
egorically thinking people mean by a sublocale an extremal l-monomorphism
between locales or an extremal r-epimorphism between frames [21,22,39]. In
view of Corollary 3.3 all three interpretations are well compatible.

Let us recall a few facts concerning T A and SlA (cf. [22,31,37] for the
case of frames, where SlA is a closure system). Binary joins in T A and SlA
are given by

C ∨ D = {x ∧ y | x ∈ C, y ∈ D}.

The next proposition from [16] generalizes results in [28] and [40].

Proposition 3.6. For l-ideals C and Di (i ∈ I) of A, the distributive law

C ∨
⋂

i∈I Di =
⋂

i∈I(C ∨ Di)

holds whenever I is finite or C is a nuclear range. In particular,
(1) T A is an algebraic frame,
(2) SlA is a coframe whenever it is a closure system.

Hence, in the latter case, the isomorphic lattices NA and NA are frames.

For each a ∈ A, the adjoint map αa = a → − is known to be a nucleus
(see, e.g., Macnab [31]), and its range is

aa = { a→x | x ∈ A}
= {x ∈ A | x = a→x}
= {x ∈ A | (a→x)→x = }.

The following results are from [40] (cf. [37] and [39] for the case of locales):

Proposition 3.7. The map aA = a is an embedding of A in SlA; it preserves
finite meets (though SlA need not be a ∧-semilattice) and all existing joins.

There is also a canonical embedding cA = c of A in (T A)op, sending a to
the principal upset ca = ↑a, which is always an l-ideal but need not be nuclear
unless A is a lattice, in which case γa = a ∨ − is the associated nucleus. We
record a result that is known for Heyting algebras [31] and frames [37,40]; it
extends, by a different argument given in [16], replacing a∨x with (a→x)→x,
to implicative semilattices.

Proposition 3.8. For each a ∈ A, the l-ideal ca is the complement and so
the pseudocomplement of the nuclear range aa in T A, hence also the com-
plement in SlA and in NA if A is a lattice. The embedding cA of A in (T A)op

resp. in NA preserves finite meets and existing joins, hence also complements.
If A is a Heyting lattice then cA : A−→ NA is an r-morphism whose adjoint
sends C ∈ NA to ⊥C.

In view of Proposition 3.8 and the resemblance to the situation of topo-
logical spaces, the sets aa are said to be basic open, and the sets ca basic closed
(apertus = latin for open, clusus = latin for closed). Of course, the complete
case is more intuitive: here, the basic closed sets are merely called closed, since
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they form a closure system, and their lattice complements open, though the
system of all open sets need not be closed under unions. However, via OT ,
the open subspaces of a topological space T are mapped to open sublocales,
and closed subspaces to closed sublocales. Observe that even for frames A, the
lattice-theoretical complements in T A, in SlA and in its dual NA differ from
the set-theoretical complements; see [16,37] for details.

4. l-morphisms as continuous maps

We now turn to a more thorough investigation of r-morphisms and their ad-
joints, the l-morphisms.

Proposition 4.1. If a map f : B −→A between implicative semilattices is ad-
joint to h : A−→B then the following conditions on an element a ∈ A are
equivalent:
(a) h(a ∧ c) = ha ∧ hc for all c ∈ A.
(b) f(ha→b) = a→fb for all b ∈ B.
(c) f(aha ∩ ab) = aa ∩ fab for all b ∈ B.
(d) faha ⊆ aa, that is, aha ⊆ f←aa.

Proof. (a)⇒ (b) follows from the equivalences

c ≤ f(ha→b) ⇔ hc ≤ ha→b ⇔ ha ∧ hc = h(a ∧ c) ≤ b

⇔ a ∧ c ≤ fb ⇔ c ≤ a→fb.

(b)⇒ (c): The inclusion f(aha ∩ ab) ⊆ aa ∩ fab is clear from (b). Conversely,
for any d = a→d = f(b→c) ∈ aa∩ fab we have

d = a→f(b→c) = f(ha→(b→c)) = f((ha ∧ b)→c).

By Proposition 3.7, (ha∧ b)→c ∈ a(ha∧ b) = aha∩ab, hence d ∈ f(aha∩ab).
(c)⇒ (d): faha = f(aha ∩ a) = aa ∩ fa ⊆ aa.
(d)⇒ (a): Given c ∈ A, put b = h(a ∧ c). By (d), f(ha→ b) = a→d for some
d ∈ A. Then a ∧ c ≤ fb and b ≤ ha → b, hence fb ≤ f(ha → b) = a → d,
a ∧ c ≤ a ∧ fb ≤ d, c ≤ a→d = f(ha→ b) and so hc ≤ ha→ b, ha ∧ hc ≤ b =
h(a ∧ c) ≤ ha ∧ hc, since h is istone. �

Proposition 4.2. The image of an l-ideal (l-domain) under an l-morphism f is
an l-ideal (l-domain). For injective f the preimage of an l-ideal is an l-ideal.
For surjective f, a set is basic closed iff its preimage under f is basic closed.

Proof. Let f : B −→ A be an l-morphism with coadjoint h, and let D be an
l-ideal of B. The image fD is a subsemilattice of A (as f preserves meets).
For a ∈ A and b ∈ D, we get a → fb = f(ha → b) ∈ fD by Proposition 4.1.
Thus, fD is an l-ideal. By Propositions 2.3 and 3.5, fD is a closure range resp.
l-domain if D is one.

If f is injective then h is surjective. For each l-ideal C of A, the preimage
f←C is an l-ideal, being a subsemilattice such that for b, c ∈ B with fb ∈ C
there is an a ∈ A with c = ha, hence f(c→ b) = f(ha→ b) = a→fb ∈ C and
c→b ∈ f←C.
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Now, suppose f is surjective and f←C is basic closed, say f←C = ↑b.
Then, for a = fb we get fha = a ∈ C, hence b ≤ ha, and then

a ≤ x ⇒ b ≤ ha ≤ hx ⇒ hx ∈ f←C ⇒ x = fhx ∈ C ⇒ a = fb ≤ fhx = x.

Thus, C = ↑a is basic closed. �
The following example demonstrates that the preimage of an l-domain

under an injective l-morphism need not be an l-domain.

Example 4.3. Like every bounded chain, the rational chain A = {± 1
n | n ∈ N}

(with N the chain of positive integers) is a Heyting lattice. It is easy to see
that in the semilattice NA (the dual of SlA), the subset {B,C} with

B = { 1
n | n ∈ N} ∪ {− 1

2n−1 | n ∈ N} and C = { 1
n | n ∈ N} ∪ {− 1

2n | n ∈ N}
has no join, and the nuclear l-ideal D = {− 1

n | n ∈ N} ∪ {1} has neither in
SlA nor in NA a pseudocomplement [16]. Define maps f and g on A by

f( 1
n ) = g( 1

n ) = 1
n , f(− 1

n ) = g(− 1
2n−1 ) = g(− 1

2n ) = − 1
2n .

f and g are l-morphisms with range C, but the preimage of the l-domain B is
in both cases the filter F = { 1

n | n ∈ N}, which is not an l-domain. While f is
injective but not a nucleus, g is not injective but a nucleus.

In analogy to semilinear maps between vector spaces, modules and alge-
bras, we call a map f : B −→A semilinear with respect to binary operations
on A and B, both denoted by ∗, if it has a coadjoint h : A−→B satisfying the
Frobenius identity (cf. [9,29,32,36])

a ∗ fb = f(ha ∗ b).

In that case, we also say f is ∗-semilinear. From Proposition 4.1, we deduce
one algebraic and one closure-theoretical characterization of the adjoints of
residuated ∧-homomorphisms (which need not preserve the top elements).

Theorem 4.4. A map f : B −→A between implicative semilattices is →-semi-
linear, or equivalently, adjoint to a ∧-homomorphism, iff each basic closed
subset of A has a basic closed preimage whose complement in T B is a subset
of (but not necessarily equal to) the preimage of the complement in T A.

Proof. If f : B −→A is adjoint to a ∧-homomorphism h : A−→B then pre-
images of basic closed sets ca are basic closed: f←ca = cha. By Proposition 3.8,
aa is the complement ¬ ca of ca in T A, and by Proposition 4.1, we have

¬ f←ca = ¬ cha = aha ⊆ f←aa = f←¬ ca.

That proper inclusion may occur is witnessed by Example 1.2.
Conversely, assume that f←ca is basic closed and ¬ f←ca ⊆ f←¬ ca

for all a ∈ A. The first condition just expresses that f is adjoint to a map
h : A−→B with f←ca = cha. From the second condition, it follows as above
that

aha = ¬ f←ca ⊆ f←¬ ca = f←aa.

Thus, by Proposition 4.1, f is → -semilinear, or equivalently, adjoint to a ∧-
homomorphism. �
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A map f between topped posets is called codense if fb =  implies
b = . If f is adjoint to h then preservation of top elements by h is equivalent
to codensity of f :

h =  ⇔ (fb =  ⇒ b = ) ⇔ f←0 = 0.

If for an l-morphism f : A−→B and some C ∈ SlA there is a greatest
D ∈ SlB contained in the preimage f←C then this D is called the localic
preimage of C and denoted by f←C. For the complete case, one finds the
following result in [37] (where f [D] stands for fD and f−1[C] for f←C):

Proposition 4.5. Let f : B −→A be a localic map between locales. For each
D ∈ SlB the image f→D belongs to SlA, for each C ∈ SlA the localic pre-
image f←C exists, and this provides an adjunction between SlB and SlA :

f→D ⊆ C ⇔ D ⊆ f←C.

For categorically versed readers: the l-inclusion map of the localic pre-
image under a localic map f is the pullback of the l-inclusion map along f [38],
and one defines localic preimages of extremal l-monomorphisms, regarded as
sublocales, by taking pullbacks [21,22,39]. Non-complete situations are less
comfortable, as Example 4.3 shows: there is no greatest l-domain contained in
the preimage of the l-domain C under the injective l-morphism f .

We come to the main characterization of l-morphisms in closed and open
terms:

Theorem 4.6. For a map f : B −→ A between implicative semilattices, the fol-
lowing conditions are equivalent:

(a) f is an l-morphism.
(b) f is codense and →-semilinear.
(c) f←0 = 0, preimages of basic closed sets are basic closed and have com-

plements in T B contained in the preimages of the complements in T A.
(d) f is isotone with f←aA = aBh and f←cA = cBh for a map h : A−→B.
(e) f is isotone, localic preimages of basic open sets exist, are basic open, and

their complements are the preimages of the complements in T A.

Proof. Theorem 4.4 assures the equivalence of (a), (b) and (c).
(b)⇒ (d): By (b)⇒ (a), f has a coadjoint h, whence f←cA = cBh, and f
is isotone. By (b)⇒ (d) in Proposition 4.1, aha is contained in f←aa. On
the other hand, if D is any l-ideal of B with D ⊆ f←aa, then for d ∈ D
and b = (ha → d) → d, we have ha ≤ b ∈ D and so fb ∈ fD ⊆ aa; thus,
fb = a→fb = f(ha→ b) = f = , and (ha→d)→d = b =  by codensity,
whence d ∈ aha. Thus, D ⊆ aha. This proves the equation f←aa = aha.
(d)⇒ (c): For isotone f , the identity f←cA = cBh makes f adjoint to h:

ha ≤ b ⇔ cb ⊆ cha = f←ca ⇔ f→cb ⊆ ca ⇔ fb ∈ ca ⇔ a ≤ fb.

Further, f←0 = 0, as h ∈ ch = ¬ ah = ¬ f←a = ¬ f←A = ¬B = {}.
(d)⇔ (e) is straightforward, using the fact that aB is injective. �
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Note that a map f : B −→ A is an l-morphism iff it is codense and there
exists any map h : A−→B satisfying the Frobenius identity for → , because
that entails

ha ≤ b ⇔ ha→b =  ⇔ f(ha→b) =  ⇔ a→fb =  ⇔ a ≤ fb,

so that h is necessarily coadjoint to f .
To make the condition (e) in Theorem 4.6 more “symmetric”, one may

add that localic preimages of basic closed sets are basic closed. An obvious
question is whether condition (d) is tantamount to the weaker condition

(d’) f←aA = aBh and f←cA = cBh for some map h : A−→B.
It is true that any such map h has to be isotone on account of the implications

a ≤ b ⇒ cb ⊆ ca ⇒ f←cb ⊆ f←ca ⇒ chb ⊆ cha ⇒ ha ≤ hb,

and that h has to commute with all existing complements:

ch¬ a = f←c¬ a = f←aa = aha = ¬ cha, whence h¬ a = ¬ha.

However, condition (d’) does not imply that f is isotone, not even if h is the
identity map on an eight-element boolean algebra B:

Example 4.7.

�
�� ��

� �
��� ��	

�

�fixpoints
�

�� ��
� �
�� ��

�

The sketched map f is extensive and idempotent but not isotone, and satisfies

f←cb = cb, f←ab = f←c¬ b = c¬ b = ab for all b ∈ B.

This example also shows that in condition (c) of Theorem 4.6 it does not
suffice to postulate localic preimages of basic closed sets to be basic closed.
But isotone maps may also be characterized by a continuity condition, namely
with respect to the topologies formed by all unions of basic closed sets.

Let us summarize the main conclusions for the case of locales (where the
l-domains are the sublocales) and stress the analogy but also the differences to
the classical case of topological spaces. Applying Theorem 4.6 to the complete
case shows the localic maps in a very pleasing light, namely as a natural
analogue of the topologically continuous functions. In accordance with [37,
Ch. III-4] we have for any localic map that

the set-theoretic image of a sublocale is always a sublocale,
the set-theoretic preimage of a closed sublocale is a closed sublocale,
the set-theoretic preimage of an open sublocale need not be a sublocale,
the localic preimage of an open sublocale is an open sublocale,
the localic preimage map is adjoint to the image map between sublocales.
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Recall that a map between locales for which preimages of closed resp. open sets
are closed resp. open need not be localic. Open sublocales are complementary
to closed sublocales (in the lattice of all sublocales). Now, the characterization
of localic maps in “terms of continuity” reads as follows:

Corollary 4.8. A function f between the underlying sets of locales B and A is
a localic map from B to A iff the preimage of zero is zero and for all closed C
in A, f←C is closed in B and satisfies ¬ f←C ⊆ f←¬C.

Here ¬ denotes the complement in the coframe of sublocales. The inclusion
for the set-theoretic preimage in the last formula replaces equality for the
localic preimage, as the standard set-theoretic preimage f←¬C need not be a
sublocale; the displayed inclusion avoids any reference to localic preimages.

Boolean lattices may be characterized in terms of basic closed resp. open
subsets (see [16,31], and for the case of locales, [22,39]).

Proposition 4.9. A Heyting lattice A is a boolean lattice iff the l-domains are
the basic closed sets, or equivalently, the l-domains are the basic open sets.

Let BA denote the boolean sublattice of (T A)op generated by the basic
closed resp. basic open sets. Without proof we cite from [17]:

Proposition 4.10. Every Heyting lattice A has the free boolean extension BA,
and c : A−→BA is an r-embedding with adjoint l : BA−→A, C 
−→⊥C.

This provides a categorical description of basic closed sets in Heyting
lattices:

Theorem 4.11. For a Heyting lattice A and C ⊆ A the following are equivalent:

(a) C is a basic closed set.
(b) All preimages of C under l-morphisms are l-domains.
(c) The preimage of C under the l-morphism l : BA−→A is an l-domain.
(d) f←C ∈ SlB for some l-morphism f from a boolean lattice B onto A.
(e) f←C is basic closed for some surjective l-morphism f : B −→A.

Proof. (a)⇒ (b): Theorem 4.6.
(b)⇒ (c)⇒ (d): Proposition 4.10.
(d)⇒ (e): Proposition 4.9.
(e)⇒ (a): Proposition 4.2 (last sentence). �

Corollary 4.12. A subset of a locale A is closed iff all its preimages under
localic maps are sublocales iff its preimage under l : BA−→ A is a sublocale.

By Theorem 4.6, the r-morphisms h between implicative semilattices with
adjoints f are those isotone maps for which this diagram commutes:
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5. Biadjoint morphisms

By a biadjoint map between posets we mean one that is both adjoint and
coadjoint. A biadjoint map preserves not only all existing joins, but also all
existing meets. Hence, a biadjoint map between semilattices is certainly an
r-morphism; and a map between complete lattices is biadjoint iff it preserves
arbitrary joins and meets, in other words, it is a complete homomorphism.

Let us consider some further Frobenius identities:

Proposition 5.1. For a biadjoint map h : A−→B between implicative semilat-
tices with adjoint f and coadjoint g, the following conditions are equivalent:
(a) For all a ∈ A and c ∈ A, h(a→c) = ha→hc.
(b) For all a ∈ A and b ∈ B, g(ha ∧ b) = a ∧ gb.
(c) For all c ∈ A and b ∈ B, f(b→hc) = gb→c.

Proof. The claim is immediate from the following chains of equivalences:

b ≤ h(a→c) ⇔ gb ≤ a→c ⇔ a ∧ gb ≤ c ⇔ a ≤ gb→c

b ≤ ha→hc ⇔ ha ≤ b→hc ⇔ g(ha ∧ b) ≤ c ⇔ a ≤ f(b→hc). �

A map between (topological or closure) spaces is called quasi-open if
for each open set in the domain there is a least open set in the codomain
containing its image (Erné [12], Hofmann and Mislove [20]). It is easy to see
that a continuous map f : S −→ T is quasi-open iff the preimage map O←f is
not only adjoint but also coadjoint, hence biadjoint. In full analogy, we call an
l-morphism f : B −→A quasi-open if for each basic open set U in B there is
a least basic open set in A containing the image of U ; and we say f is basic
open if images of basic open sets are again such.

Theorem 5.2. An r-morphism is (bi)adjoint iff its adjoint is quasi-open. Hence,
via Galois adjunction, the category of implicative semilattices and biadjoint
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maps as morphisms is dual to the category with the same objects but quasi-
open l-morphisms.

Proof. For any r-morphism h : A−→B with adjoint f : B −→ A, we have by
Theorem 4.6 and Proposition 3.7:

fab ⊆ aa ⇔ ab ⊆ f←aa ⇔ ab ⊆ aha ⇔ b ≤ ha.

Thus, if h has a coadjoint g then the equivalence gb ≤ a ⇔ b ≤ ha yields
fab ⊆ aa ⇔ agb ⊆ aa, whence agb is the least basic open set containing fab.
Conversely, if such an agb exists for each b ∈ B, then we obtain

gb ≤ a ⇔ agb ⊆ aa ⇔ fab ⊆ aa ⇔ b ≤ ha,

i.e., g is coadjoint to h. �

We are ready for a generalized version of the Joyal–Tierney Theorem
[26] about open localic maps between frames/locales (cf. [37] for the sublocale
version):

Theorem 5.3. The basic open l-morphisms are precisely the adjoints of the
implicative biadjoint maps between implicative semilattices. Hence, by virtue
of Galois adjunction, the category of implicative semilattices and implicative
biadjoint maps as morphisms is dual to the category with the same objects and
basic open l-morphisms.

Proof. If f is a basic open l-morphism adjoint to h then, by Theorem 5.2, h
has a coadjoint g such that agb = fab, and by Propositions 3.7 and 4.1,

a(a ∧ gb) = aa ∩ agb = aa ∩ fab = f(aha ∩ ab) = fa(ha ∧ b) = ag(ha ∧ b),

hence g(ha ∧ b) = a ∧ gb; so by (b)⇒ (a) in Proposition 5.1, h preserves →.
Conversely, assuming that h is coadjoint to f , adjoint to g, and preserves →,
we use (a) ⇒ (c) in Proposition 5.1 twice to prove fab = agb, which will show
that f is basic open. For d = b → d ∈ ab and a = fd we get ha ≤ d and
gb → a = f(b → ha) ≤ f(b → d) = a ≤ gb → a, hence a = gb → a ∈ agb.
Thus, fab ⊆ agb. And each gb→ c ∈ agb is equal to f(b→hc) ∈ fab, whence
agb ⊆ fab. �

6. Closure in Heyting lattices and interior in locales

The formation of closure and interior in topological spaces has strict analogues
for frames/locales (but not for implicative semilattices, as certain completeness
properties are required in order to guarantee the existence of the embedding c
of A in NA and of localic preimages; see Propositions 3.8 and 4.5). Some of the
results below are folklore in pointfree topology; the formulation via concrete
sublocale sets (cf. [35]) makes the involved concepts more handy.

Let A be a Heyting lattice. Recall that the embeddings a : A−→SlA and
c : A−→NA = (SlA)op preserve finite meets and all existing joins. In fact, by
Proposition 3.8, c is an r-embedding with adjoint

l : NA−→A, C 
−→ ⊥C,
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whence the dualized composite map

cl : SlA −→ SlA, C 
−→C = ↑⊥C

is a closure operation (cl !) preserving finite joins. On the other hand, if A is
complete then a : A−→SlA is a frame embedding with adjoint

u : SlA −→A, C 
−→
∨

{a | aa ⊆ C},

and one obtains an interior operation

au : SlA −→ SlA, C 
−→C◦ = auC.

Note that for the l-domain D in Example 4.3, neither uD nor auD exists.

Lemma 6.1. If A is a locale and C ∈ SlA has a complement ¬C in SlA then

(¬C)◦ = ¬C and ¬C = ¬C◦.

Proof. The equation u¬C =
∨

{a | aa ⊆ ¬C} =
∨

{a | C ⊆ ca} = ⊥C gives
au(¬C) = alC = ¬ clC; replacing C with ¬C gives cl(¬C) = ¬ auC. �

With respect to closure and interior, localic maps between locales behave
quite similar to but not completely like continuous maps between spaces. In-
deed, from the equivalence (a)⇔ (d)⇔ (e) in Theorem 4.6 one easily derives
a further characterization of localic maps in terms of continuity:

Theorem 6.2. An isotone map f : B −→ A between locales is localic iff the
localic preimages f←C of all sublocales C ∈ SlA exist and satisfy

f←C◦ ⊆ (f←C)◦, f←C ⊆ f←C,

f←¬C◦ = ¬ f←C◦, f←¬C = ¬ f←C.

Theorem 6.3. A localic map f : B −→A between locales is (basic) open iff

f←C◦ = (f←C)◦ for all C ∈ SlA.

Proof. For b ∈ B, ab ⊆ f←C means fab ⊆ C, which for open f entails
fab ⊆ C◦, that is, ab ⊆ f←C◦, whence ab ⊆ f←C◦, as ab belongs to SlB. In
particular, for b = uf←C, this amounts to (f←C)◦ = auf←C ⊆ f←C◦.

Conversely, if (f←C)◦ ⊆ f←C◦ for all C ∈ SlA then, since for each open
sublocale ab of B the image fab is a sublocale of A, we get

ab ⊆ (f←fab)◦ ⊆ f←(fab)◦ ⊆ f←(fab)◦, hence fab ⊆ (fab)◦.

In other words, fab is open. �

The following characterization of boolean l-ideals is given in [16] (for the
complete case see [37]):

Proposition 6.4. For a subset B of an implicative semilattice A and an element
b ∈ A, the following conditions are equivalent:
(a) B = bb := {a→b | a ∈ A}.
(b) B is the least nuclear range in A containing b.
(c) B is an l-ideal of A and a boolean lattice with least element b.

Using this fact, we prove:
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Proposition 6.5. If f : B −→ A is a basic open l-morphism between Heyting
lattices with coadjoint h then

hC ⊆ f←C ⊆ hC ⊆ ↑hC = f←C = f←C for all C ∈ SlA.

Proof. By Theorem 5.3, h is adjoint to a map g. For all b ∈ B and c ∈ C,
Proposition 5.1 yields f(b→hc) = gb→c ∈ C, that is,

bhc = {b→hc | b ∈ B} ⊆ f←C.

From hc ∈ bhc ∈ SlB it follows that hc ∈ f←C, showing hC ⊆ f←C. Since
f is adjoint to h, we get for d = ⊥C: f←C = f←↑d = f←↑d = ↑hd = ↑hC.
Theorem 6.2 assures f←C ⊆ f←C. Conversely, putting b = ⊥f←C and a = gb,
we obtain b ≤ ha and f←ca = cha ⊆ cb = f←C. For c ∈ C, we have hc ∈ f←C,
hence b ≤ hc and a = gb ≤ c, that is, c ∈ ca. Thus, C ⊆ ca, C ⊆ ca, and so
f←C ⊆ f←ca ⊆ f←C. In all, this gives f←C = f←C. �

Summarizing the previous results, we arrive at the following closure-
theoretical characterization of open localic maps:

Theorem 6.6. An isotone map f : B −→A between locales is localic and open
iff the localic preimages f←C of all sublocales C ∈ SlA exist and satisfy

f←C◦ = (f←C)◦, f←C = f←C,

f←¬C◦ = ¬ f←C◦, f←¬C = ¬ f←C.

In contrast to the situation with spaces, a localic map f satisfying

f←C = f←C

for all sublocales C need not be open, as the following reasoning shows:

Example 6.7. Consider a locale A and

B = b⊥ = {a→⊥ | a ∈ A},

the smallest sublocale of A containing the bottom element ⊥. This is the
so-called booleanization of A, which is rarely open, whence the l-embedding
e : B −→ A is rarely an open map. For instance, if A is a chain and B is open
then it has a closed complement ca, and a has to be the unique atom of A.
Nevertheless, the embedding e : B −→ A always satisfies the above closure
equation, since every sublocale C of the boolean locale B is closed and thus

e←C = e←C = B ∩ C = B ∩ C = e←C,

where − refers to A. Indeed, any a → ⊥ ∈ C = ↑⊥C must already be in C,
since a→⊥ ≥ ⊥C implies a→⊥ = a→(a ∧ ⊥C) = a→⊥C ∈ C.

For a thorough investigation of localic maps satisfying the above closure
equation and related conditions (referred to as hereditarily skeletal maps) in a
more categorical environment see Johnstone [25].
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7. Basic zero-dimensional spaces

Our results suggest to consider so-called basic zero-dimensional (closure) spaces.
These are triples S = (X, C,D) where

D is a closure system on X that is distributive as a lattice,
C is a subset of D, X ∈ C, and each C ∈ C has a complement ¬C in D,
B = {B ∨ ¬C | B,C ∈ C} is a meet-base of D , which means that

D = {
⋂

X | X ⊆ B}.

By distributivity, complements in D coincide with the pseudocomplements and
are therefore unique. We call the members of C basic closed and their comple-
ments basic open; but notice that C need not be a closure system. Putting

|S| = X, AS = {¬C | C ∈ C}, BS = B, CS = C, DS = D,

we observe that Sc = (|S|,AS,DS) is a basic zero-dimensional space, too, the
complementary space of S; indeed, Scc = S.

A basic continuous map between basic zero-dimensional spaces S and T
is a map f : |S| −→ |T | such that the preimage of

⋂
DT is

⋂
DS, preimages

of basic closed sets are basic closed, and their lattice complements in DS are
contained in the preimages of the complements in DT :

C ∈ CT implies f←C ∈ CS and ¬ f←C ⊆ f←¬C.

After having checked the composition law for basic continuous maps, one ob-
tains a category B0ds of basic zero-dimensional spaces.

Here are a few prominent instances.

(1) Each TD-closure space (X, C) (in which {x}� {x} is closed for all x ∈ X,
see [11], and for the topological case [2,37]) may be regarded as a basic
zero-dimensional space (X, C,PX); indeed, C is a meet-base for PX on
account of the equation X � {x} = B ∪ (X � C), where B = {x} � {x}
and C = {x} are in C. Then one checks that the category of TD-closure
spaces with the usual continuous maps is fully embedded in B0ds.

(2) More generally, consider any closure space (X, C) together with the topo-
logical closure system D consisting of all closed sets with respect to the
topology generated by the differences C � D with C,D ∈ C. The triple
(X, C,D) is then a basic zero-dimensional space in which complements
are formed set-theoretically. In the case of a topological closure system
C, the topological space associated with (X,D) is known as the front
space of (X, C) and its topology as the Skula topology ; see [37,44].

(3) Viewing each zero-dimensional topological space as a triple (X, C,D)
where D is the system of closed sets and C consist of all clopen sets,
one obtains another category fully embedded in B0ds, namely that of
zero-dimensional spaces and maps such that preimages of clopen sets are
clopen—an important tool, e.g., in Stone duality. Recall that for boolean
spaces (Stone spaces in [22]), that is, compact zero-dimensional Hausdorff
spaces, the basic continuous maps are just the continuous ones.
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(4) If A is an implicative semilattice with underlying set X then, for the
closure system MA generated by BA, the triple (X, cA,MA) is a basic
zero-dimensional space. By Theorem 4.6, the l-morphisms are just the
basic continuous maps between them. Thus, the category of implicative
semilattices and l-morphisms is fully embedded in B0ds. Specifically, in
boolean lattices, the fact that all l-domains are basic open and closed
considerably simplifies the situation: here, MA is merely the MacNeille
completion of A. On the other hand, in the case of frames, MA coincides
with NA.

These examples may suffice for the moment to motivate future investigation
of basic zero-dimensional spaces and suitable morphisms between them.
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[12] Erné, M.: The ABC of order and topology. In: Herrlich, H., Porst, H.-E. (eds.)
Category Theory at Work, pp. 57–83. Heldermann, Berlin (1991)
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