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Abstract

In this work, the systematic validation of a deterministic finite element (FE) model updating procedure for dam-
age assessment is presented using a self-developed modular laboratory experiment. A fundamental, systematic
validation of damage assessment methods is rarely conducted and in many experimental investigations, only
one type of defect is introduced at only one position. Often, the damage inserted is irreversible and inspections
are only performed visually. Thus, the damage introduced and, with it, the results of the damage assessment
method considered are often not entirely analyzed in terms of quantity and quality. To address this shortcom-
ing, a modular steel cantilever beam is designed with nine reversible damage positions and the option to insert
different damage scenarios in a controlled manner. The measurement data is made available in open-access form
which enables a systematic experimental validation of damage assessment methods.

In order to demonstrate such a systematic validation using the modular laboratory experiment, a determinstic
FE model updating procedure is applied, which was previously introduced by the authors. The results show a
precise localization within ±0.05 m of the nine different damage positions and a correct relative quantification
of the three different damage scenarios considered. With that, this work demonstrates that the opportunity
to introduce several reversible damage positions and distinctly defined types and severities of damage into the
laboratory experiment presented enables the systematic experimental validation of damage assessment methods.

Keywords: Experimental validation, FE model updating, damage assessment, numerical
optimization, modal analysis

1. Introduction1

Monitoring engineering structures has become a vital part of civil engineering [1, 2] and a variety of different2

methods are applied in structural health monitoring (SHM) [3, 4, 5, 6]. The goal of monitoring is the identi-3

fication of damage, which Worden et al. [7] defined as changes to the material, geometric properties, or both4

of these. Thus, in order to identify damage, the changes in the structural properties have to be identified by5

comparing at least two different states of the structure considered. Rytter [8] determined four categories which6

describe the level of damage identification: detection, localization, assessment (i.e., quantification) and conse-7

quence (i.e., remaining life-time prediction). Evidently, these levels increase in difficulty and each subsequent8

level requires the results of the previous one. The focus of this contribution is the introduction of a modular9

laboratory experiment with reversible damage mechanisms for the validation of SHM procedures addressing the10

third level – damage assessment, including the detection, localization and quantification of damage.11

In order to examine and validate SHM methods, numerous experimental studies and real-life testing have12

been conducted over the years. Doebling et al. [9] give a comprehensive overview of applications of damage13

identification methods organized according to the type of structure. Examining the various experimental studies,14

it is noticeable that a great number of the implemented damage scenarios induce material degradation by the15

application of static loads (cf. e.g., [10, 11]) or by the introduction of saw cuts or kerfs (cf. e.g., [12, 13, 14]) into16

the structure under consideration. These damage mechanisms are irreversible in nature. Hence, usually only17

one fixed geometric damage location is analyzed in most experiments. However, the damage can be gradually18

increased in severity, so that different damaged states can be realized at the otherwise predetermined location(s).19

Regarding the inspection and thus the quantifiability of these common damage scenarios, a kerf can be sawn20
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and measured precisely, whereas the progress of fatigue or creep damage due to loading is difficult to assess.21

Often, the inspections are only performed visually and the results obtained by the various SHM methods are22

typically only evaluated regarding the location of the defect inserted, and not its size or shape. The analysis of23

SHM applications to real-life structures in operation (cf. e.g., [1, 15, 16]) is limited, because there is normally24

no deliberate, precise defect insertion allowed. If damage is present in a particular structure, it is difficult to25

inspect thoroughly enough to determine the size and shape of the defects. Again, the results are typically only26

evaluated in terms of damage localization. Additionally, it is not always given that measurement data from27

operating structures are available in states before and after the damage event occurred, or there is no clear28

distinction between these states possible because the damage has occurred gradually.29

In conclusion, although SHM methods have been validated in various experimental studies and real-life30

testing on operating structures, many of these application examples do not provide the opportunity for a31

thorough analysis and evaluation of the SHM methods considered. Especially in terms of the third level of32

damage identification, including damage detection, localization and quantification, comprehensive studies are33

still missing. With regard to the comparability of different SHM methods, another impairment of many of the34

publications examined is that they do not make the data from their application examples available. Thus, only35

the described results of the particular SHM method considered are published, leaving no opportunity for a fair36

comparison of different methods.37

Of course, some benchmark problems with open-access raw data in the area of SHM already exist, which38

provide data for the comparison and analysis of different SHM methods. Prominent laboratory benchmark39

problems are the three-story building at the Los Alamos National Laboratory (LANL) [17, 18] or the four-40

story steel frame at the University of British Columbia (UBC) [19, 20]. Widely used benchmark problems41

involving full-scale engineering structures under environmental and operational conditions (EOCs) are the Z2442

bridge in Switzerland [21, 22], the rotor blade of the Vestas V27 wind turbine at the Technical University43

of Denmark [23, 24, 25] and the recently introduced lattice mast structure LUMO at the Leibniz University44

Hanover [26, 27]. However, these benchmark problems represent rather complicated application examples and45

are not always suitable when a basic, systematic validation of different SHM methods is sought to be performed.46

All in all, the available benchmark problems provide the possibility for a validation and a comparison of dif-47

ferent SHM methods. However, they are characterized by rather difficult boundary conditions that complicate48

a basic validation of different damage assessment methods. This leads to the focus of this contribution, which is49

the presentation of a modular laboratory steel cantilever beam designed to facilitate a fundamental, systematic50

experimental validation of damage assessment methods in an entirely controlled setup. The modular experiment51

is conceptualized with several reversible damage positions and the option to insert different, accurately defined52

damage scenarios. The motivation for the design of the steel cantilever beam presented was to create a rather53

simple experiment, in which the structural behavior is entirely comprehensible and different SHM methods can54

be evaluated and compared at a fundamental level. In addition to the detailed description of the proposed55

experimental setup, the measurement data is made available in open-access form (see Data Availability State-56

ment) to ensure the opportunity for comparison. To demonstrate the application of the laboratory structure57

presented, an example systematic experimental validation of an FE model updating procedure addressing the58

third level of damage identification is outlined. Thereby, a detailed motivation and description of the FE model59

updating scheme utilized is presented.60

This paper consists of six sections. Section 2 gives a detailed description of the experimental setup and the61

derived FE model used for the model updating procedure. Following this, the modal analysis technique utilized62

and an analysis of the modal data extracted from the measurements is described in Section 3. In addition,63

a comparison of the dynamic properties of the initial FE model against the extracted modal data from the64

measurements is highlighted. FE model updating is further introduced in Section 4 and the herein considered65

deterministic FE model updating procedure and the optimization scheme utilized are described in detail. The66

results are displayed, analyzed and discussed in Section 5. Finally, Section 6 gives a summary and an outlook.67

2. Experimental setup68

The steel cantilever beam considered is a modular setup of a central beam structure with nine screwed-on69

fishplates. The fishplates are used to implement a variable, reversible damage mechanism. A schematic overview70

and a photograph of the modular beam structure are given in Figures 1 and 2.71

The central beam and the screw-on fishplates are fabricated from rectangular stainless-steel bar stock. As72

depicted in Figure 1 and visible in Figure 2, the fishplates are screwed on in alternating positions above and73

below the central beam structure with an overlap of 10 mm. The M5 screws utilized have a uniform separation of74

20 mm, yielding a total of sixty screws to connect the fishplates to the center line of the central beam. Thus, each75
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Figure 1: Schematic overview of the steel cantilever beam.

Figure 2: Photograph of the steel cantilever beam.

fishplate is held in place by seven screws, whereby the overlapping fishplates share one screw at each respective76

end. To ensure a repeatable fishplate connection stiffness, the screws are tightened with a consistent assembly77

torque of 5 Nm. The fishplates and screw connections are dimensioned to yield contact pressure sufficient to78

suppress shear movement between the central beam structure and the fishplates by friction. The dimensions of79

the central beam and the fishplates are listed in Table 1. In addition, a close-up of the tip of the steel cantilever80

beam is shown in Figure 3, where the accelerometers, wiring and M5 screws are visible.81

Table 1: Dimensions of the central beam structure and
the screwed-on fishplates.

Dimension Value in mm
Length 1205

Central beam Width 60
Thickness 5.15
Length 130

Fishplates Width 20
Thickness 4.85

Figure 3: Close-up of the tip of the steel cantilever beam.

The central beam with nine undamaged screw-on fishplates represents the reference state of the considered82

experiment. The reversible damage mechanism is activated by swapping the intact fishplates with damaged83

fishplate specimens (see Section 2.2 for photographs of the damaged fishplate specimens). Since the fishplates84

are fixed using screws, the mechanism can be activated and deactivated without causing permanent alterations85

to the structure or the fishplates. As a result, the particular experimental setup with a reversible damage86

mechanism and different variable damage positions allows for the consideration of a variety of damage scenarios.87

2.1. Sensors, measurement system and type of excitation88

As the experimental structure is relatively small and light, the sensors are chosen accordingly. A total of89

fifteen miniature IEPE accelerometers with a dynamic range of ±500 m
s2 are connected to the central beam90
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structure. The sensors weigh only 5 g each and are attached along the steel beam with a uniform separation of91

80 mm using integrated M3 screw connectors. The placement alternates between the right and left side of the92

beam, as indicated in Figure 1. This way, also torsional mode shapes can be identified. The accelerometers are93

connected to the measurement system using enameled copper wires, leaving from the sensors as demonstrated94

in the close-up view shown in Figure 3. A terminal block next to the fixed end of the beam is used to connect95

the enameled copper wires to the measurement lines. The sensors are powered using IEPE current supplies,96

which are connected to a 24-bit measurement system. Thereby, the use of IEPE sensors ensures rejection of97

grid hum and a high signal-to-noise ratio [28]. The sampling frequency of the measurement system was set to98

1200 Hz.99

The steel cantilever beam is excited using a proprietary, contact-free electromagnetic shaker placed at the100

root of the beam (black square in Figure 1). All measurements were conducted with broadband white-noise101

excitation up to 250 Hz using a signal-generating computer and a digital-to-analogue converter connected to102

a power amplifier. Utilizing broadband white noise ensures the excitation of all eigenmodes in the chosen103

frequency range.104

2.2. Damage scenarios and experimental procedure105

For the representation of realistic damage scenarios, structural damage is assumed to manifest itself as106

stiffness deviations in a certain geometric area of a structure. In the laboratory experiment conducted, damage107

is introduced by sawing cuts into a fishplate specimen. This locally weakens the cross-section of the fishplate.108

In this work, three different damage scenarios are considered, subsequently named as "discrete", "Gaussian109

distributed" and "uniformly distributed" damage. Figure 4 shows a photograph of each damaged fishplate.110

(a) Discrete. (b) Gaussian distributed. (c) Uniformly distributed.

Figure 4: Photographs of the three differently damaged fishplates.

The damaged fishplates are designed to have the same weight of 91 g as the undamaged fishplates. Since each111

saw cut has a width of approximately 1 mm, some material is removed. To compensate for this, the damaged112

fishplates are fractions of a millimeter wider than the undamaged ones. This is necessary to guarantee that the113

changes introduced in the structural dynamic behaviour are only due to stiffness variations and not due to mass114

differences.115

The experimental procedure comprises three measurement series - one series for each damage scenario (i.e.,116

discrete, Gaussian and uniformaly distributed). Each measurement series involves screwing the respective117

damaged fishplate specimen onto all nine fishplate positions in sequence. In addition, before the measurement118

of each damaged state of the cantilever beam, the reference state is restored and a measurement of this intact119

state is conducted. Thus, every measurement series consists of 9 ·2 = 18 measurements, with each measurement120

comprising 1 hour of data. Table 2 gives an overview of the configuration of the experiments.121

For the three measurement series conducted with 18 measurements of 1 hour each, this results in a total of 54122

hours of measurement data. Hence, the experiment was conducted over several weeks, resulting in small changes123

in the environmental conditions at the experimental site over this time period. Although the experiment was124

performed in a laboratory, temperature changes and environmental influences like other machinery operating in125

the laboratory or even small events like people passing the experiment, thus causing vibrations in the laboratory126

floor, have an effect on the measurements. Additionally, several scientists were involved in the execution and127
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Table 2: Experimental procedure and measurement times.

Measurement Scenario Fishplate position
series 1 2 · · · 9
1 Reference state 1 h 1 h 1 h

Discrete damage 1 h 1 h 1 h
2 Reference state 1 h 1 h 1 h

Gaussian distributed damage 1 h 1 h 1 h
3 Reference state 1 h 1 h 1 h

Uniformly distributed damage 1 h 1 h 1 h

recording of the measurements, resulting in slight differences in the screw-on mounting of the fishplates or the128

adjustment of the shaker excitation. However, the measurement setup, the setup of the recording measurement129

system and the method of extraction of the modal data remained identical throughout the whole experiment.130

In summary, as is the case for all practical experiments to a greater or lesser degree, there were some131

influences which affected the measurements that could not be excluded, even though great attention was given132

to achieving the same conditions for all measurements in all three measurement series. Nevertheless, these133

influences only caused marginal changes and uncertainties in the measurement and, as a result, in the extracted134

modal data.135

The measurement data used in this work including a comprehensive documentation is uploaded to a public136

data repository of the Leibniz University Hanover and can be reached under the following link:137

https://doi.org/10.25835/123gy6gm.138

2.3. Finite element model139

The aim of the FE model updating procedure considered in this work is damage localization and quantifica-140

tion along the length of the steel cantilever beam. To fulfil this aim, a beam model is chosen as a representation of141

the steel cantilever beam, as it is sufficient for the task and computationally inexpensive. The later is important142

since the FE model updating procedure represents an optimization process, in which the computational costs143

of multiple evaluations of the underlying numerical model become an issue. With this rather small FE model144

incorporating few degrees of freedom, the modal analysis step takes only seconds. Thus, extensive numerical145

studies are made possible.146

The varying sectional properties along the beam structure are assigned to the beam elements using general147

cross-sectional parameters. Three sections are defined for the fishplates positioned above and below the central148

beam and where two fishplates overlap (cf. Figure 1). The sectional properties assigned are listed in Table149

3. The material properties of stainless steel are utilized, and the omitted mass due to the screw holes and the150

additional mass of the sixty screws connecting the fishplates to the central beam are taken into account by151

adjusing the density of the standard material (7900 kg
m3 ). Given that the screw holes have an average diameter152

of 5 mm and the average mass of a screw and a nut is 5.1 g, the density is increased to a value of 8500 kg
m3 . The153

weight of the enameled copper wiring is neglected as this is an insignificantly low weight relative to the bulk of154

the steel cantilever beam.155

Table 3: Sectional properties assigned to the beam elements of the FE model.

Section Description of Area I11 I22 J Offset center line
fishplate position in mm2 in N

mm2 in N
mm2 in N

mm2 in mm
1 Above central beam 406 2719 959 5504 1.2
2 Below central beam 406 2719 959 5504 −1.2
3 Overlap 503 5913 992 9526 0

The miniature accelerometers have a mass of 5 g each and are simulated as point masses at the corresponding156

locations along the beam (cf. Figure 1). The offset of the sensor positions is taken into account by placing157

additional nodes ±20 mm orthogonally from the centre line of the beam, alternating to the left and right,158

and assigning the point masses to these offset nodes. A kinematic constraint couples the offset nodes to the159

corresponding nodes of the model. At the root of the steel cantilever beam, all degrees of freedom are set to160

zero, representing the fixed support.161
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The beam model represents the reference model of the intact steel cantilever beam and is used as the basis162

for the following FE model updating procedure. The simulations are conducted using the FE analysis software163

Abaqus.164

3. Modal analysis165

In order to ensure high-quality modal data as an input for the FE model updating procedure, an advanced166

identification method is used for the extraction of modal data from the measurements.167

3.1. Identification method168

The identification method chosen is based on the frequency domain decomposition (FDD) [29]. A singular169

value decomposition is performed on the power spectral density (PSD) matrix Gyy of the structural responses170

Gyy(fk) = UkSkU
H
k , (1)

where fk is the frequency, Uk is a unitary matrix of the singular vectors uki and Sk is a diagonal matrix of the171

singular values ski. In the case of well-separated modes and white-noise excitation, only one mode dominates172

in the vicinity of the natural frequency f0. As a consequence, the largest singular value dominates close to an173

eigenfrequency. Peak picking is used to determine the natural frequency and the eigenmode is identified from174

the corresponding singular vector. The singular value curve in the vicinity of the mode corresponds to the175

curve of a PSD of a single-degree-of-freedom (SDOF) oscillator [30]. Therefore, a more accurate identification176

of the natural frequency is achieved by fitting the theoretical PSD h of an SDOF to the measured singular value177

spectrum. For acceleration signals, the PSD is178

h(f0, ζ, S, e, fk) =
(2πfk)4S2

(4ζ2 − 2)η2k + η4k + 1
+ e , ηk =

fk
f0

, (2)

where ζ is the damping ratio, S is the modal force and e denotes the model error. The model error and the179

modal force are assumed to be constant across the frequency range considered. The model error represents the180

measurement noise and signal components which do not match the SDOF spectrum. The identification of the181

four parameters is achieved using numerical optimization. The resulting least-squares problem is182

min

(
ku∑
k=kl

(
h(f0, ζ, S, e, fk)2 − s2k1

))
, (3)

where kl and ku are the indices of the lower and upper frequency limits of the range under consideration.183

3.2. Extracted modal data184

Before a detailed overview of the extracted modal properties in both the reference state and the different185

damaged states is given in the following two subsections, an insight into the identification settings used for186

the extraction of the modal data is presented. As the attached accelerometers measure only in the vertical187

direction, horizontal mode shapes are not recorded properly. Occuring torsional modes can be identified due to188

the alternating placement of the accelerometers (cf. Section 2). Nevertheless, horizontal and torsional modes189

are not sufficiently excited for a distinct identification using the FDD, because the excitation applied to the steel190

cantilever beam exclusively operates in the vertical direction. Thus, only the modal properties corresponding to191

pure vertical bending modes are included in the subsequent FE model updating procedure and all other modes192

are neglected in this work. The alternating sensor positions were chosen anticipatory as subsequent applications193

might include a differing excitation.194

Table 4 lists the frequency ranges applied for the first four extracted eigenfrequencies related to pure vertical195

bending mode shapes and in Table 5 other identification settings regarding, e.g., the sampling rate, measurement196

time and window length are given. As the measurement time is chosen differently in the subsequent evaluations,197

it is listed as a value t.198

3.2.1. Reference state and comparison to the finite element model199

According to the design of the experiments outlined in Table 2, the reference state of the cantilever beam was200

reconstituted and measured for a total of 9 ·3 = 27 times, resulting in 27 hours of measurement data. As already201

mentioned in Section 2, some environmental conditions and personal influences affected the measurement data.202
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Table 4: Frequency range used
for the extraction of the modal data.

Eigenfrequency fl fu
no. in Hz in Hz
1 3 5
2 22 25.5
3 60 80
4 195 235

Table 5: Identification settings used
for the extraction of the modal data.

Setting Assignment
Sampling rate 1200 Hz
Measurement time t in s
Window Hanning
Window length 1200 Hz · t
Zero padding 0
Overlapping data points 0

This is why the extracted modal data from the 27 hours of measurement in the reference state show small203

variance, which is presented and analyzed in the following.204

Table 6 gives an overview of the statistical data of the four eigenfrequencies identified from all 1 h-measurements205

in the reference state (i.e., t = 3600 s). Furthermore, the corresponding eigenfrequencies calculated with the206

previously introduced FE model are listed together with their percentage deviation (∆f) from the median value207

of the respective eigenfrequency extracted from the measurements. Thereby, the corresponding eigenmodes are208

selected by employing the well-known modal assurance criterion (MAC) defined by Allemang [31]. The MAC209

determines the degree of similarity between two mode shape vectors, returning a value of one if the mode shapes210

compared are linearly dependent, and a value of zero if they are linearly independent. Naturally, the allocation211

of the simulated mode shapes to the measured ones is decided with respect to the highest MAC value. Figure212

5 visualizes the MAC values of the vertical mode shape deflection at the fifteen sensor positions shared by the213

four measured and the first ten simulated mode shapes in the reference state.214

Table 6: Quartile values of the first five extracted eigenfrequencies from all 1 h-measurements in the reference state
and a comparison to the corresponding modal properties calculated with the FE model.

Eigen- Measurement FE model Comparison
frequency First quartile Median Third quartile ∆f MAC
no. in Hz in Hz in Hz in Hz in % -
1 3.931 3.934 3.940 3.90 −0.86 0.9989
2 24.478 24.503 24.516 24.44 −0.26 0.9984
3 68.251 68.353 68.406 68.43 0.11 0.9965
4 218.644 218.851 219.127 221.39 1.16 0.9848

7



Figure 5: MAC values of the vertical mode shape deflection at the fifteen sensor positions shared by the measured and simulated
mode shapes in the reference state.

As is evident from Figure 5, the matching of the simulated mode shapes to those extracted from the215

measurements based on the MAC value alone gives a conclusive result for the first, third and fourth measured216

mode shapes. The second measured mode shape shows a high correlation to both the second and third simulated217

mode shapes. Here, a distinct selection can be reached by considering the deflection direction of the simulated218

modes. As the second simulated mode shape has its main deflection amplitude in the horizontal direction,219

this horizontal bending mode can be eliminated, despite showing a high MAC value with respect to the second220

measured shape. The actual deflection shapes of the first four bending modes extracted from the measurements221

in the reference state are shown in Figure 6. In conjunction with Table 6, Figure 6 depicts the 1 h-median222

values of the normalized vertical deflection amplitude at the fifteen sensor positions. Furthermore, the values223

of the normalized vertical deflection amplitude at the fifteen (simulated) sensor positions of the corresponding224

simulated mode shapes are added. To support the visualization, the discrete values at the sensor positions are225

connected by linear interpolation.226
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Figure 6: Comparison of the normalized vertical deflection amplitude of the first four bending modes extracted from all measure-
ments in the reference state with the selected simulation results at the fifteen sensor positions.

3.2.2. Damaged states227

The damaged states are obtained by swapping the intact fishplates with damaged fishplate specimens in228

sequence. Thus, a total of 27 different damaged states were measured (cf. Table 2). Thereby, each geometric229

position and each damage scenario influences the modal properties of the steel cantilever beam in a different230

way.231

In order to provide an overview of the effect of the different damaged states, the alteration of the first232

and second eigenfrequency is considered in more detail. For an increase of the statistical evidence, all 1 h-233

measurements of the different damaged states are divided into six 10 min-data sets. Figures 7 and 8 show234

the boxplots of the first and second eigenfrequency extracted from the discrete and the uniformly distributed235

damage state, using the 10 min-data sets. To render the variations of the damaged states with respect to the236

reference state, a solid line is added to indicate the median value and two dashed lines are added to indicate the237

first and third quartile values of the corresponding eigenfrequencies extracted in the reference state (cf. Table238

6).239
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Figure 7: Boxplots of the first eigenfrequency extracted from the discrete and the uniformly distributed damage scenario. The solid
line indicates the median value and the dashed lines indicate the first and third quartile values of the corresponding eigenfrequency
in the reference state.
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Figure 8: Boxplots of the second eigenfrequency extracted from the discrete and the uniformly distributed damage scenario.
The solid line indicates the median value and the dashed lines indicate the first and third quartile values of the corresponding
eigenfrequency in the reference state.

First of all, an observation of the eigenfrequency deviations in Figures 7 and 8 clearly reveals a stiffness240

reduction of the beam caused by a screw-on of the damaged fishplate specimens: The eigenfrequencies extracted241

from the damage scenarios are primarily lower than the median value of the corresponding eigenfrequencies242

extracted in the reference state.243

As the damage scenarios considered range from small to more severe stiffness alterations (cf. Figure 4), their244

influence on the modal properties of the steel cantilever beam differ respectively. In the following, the intensity of245

the influence of each damage scenario is examined using the example of the alteration of the first eigenfrequency246

and the damaged fishplate position 9. Table 7 lists the median value of the first eigenfrequency extracted from247

the 10 min-data sets of each damage scenario of fishplate position 9. In addition, the percentage deviation with248

respect to the corresponding median value of 3.934 Hz is listed, calculated using all 27 1 h-measurements in the249

reference state (cf. Table 6).250
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Table 7: Median values of the first eigenfrequency extracted from the 10min-data sets of the three damage scenarios of fishplate
position 9 and comparison with the respective median value of 3.934Hz extracted from all measurements in the reference state.

Damage scenario Median ∆f
in Hz in %

Discrete 3.895 −0.99
Gaussian distributed 3.877 −1.45
Uniformly distributed 3.784 −3.81

Table 7 clearly demonstrates that the increasing severity of the three damage scenarios is reflected in the251

intensity of the eigenfrequency deviation. Whereas the deviation caused by the Gaussian distributed damage252

only slightly increases with regard to the deviation caused by the discrete damage, the uniformly distributed253

damage yields a deviation more than twice as large as the other two damage scenarios.254

In addition to the severity of the damage, its geometric position along the length of the beam plays an255

important role regarding the influence on the modal properties. Thereby, the influence of each geometric position256

additionally varies with regard to the eigenfrequency considered. An observation of Figures 7 and 8 reveals that,257

for instance, a damage position near the bearing (i.e., fishplate position 9) greatly affects the first eigenfrequency258

but has no noticeable effect on the second eigenfrequency. This is explained by the deflection shape: With the259

corresponding measured mode shapes in mind (cf. Figure 6), it is evident that a high eigenfrequency deviation260

occurs at the geometric positions where the corresponding mode shapes show a high curvature. Geometric261

positions with a low curvature - i.e., the geometric positions of the zero crossings - show a low deviation in the262

eigenfrequency extracted.263

This observation emphasizes the well-known need for the inclusion of several eigenfrequencies in the objective264

function of the FE model updating procedure for the localization of all damaged fishplate positions along the265

length of the steel cantilever beam: The geometric position of the damage evidently possesses different effects266

on the different eigenfrequencies.267

4. Finite element model updating268

As part of the vibration-based non-destructive damage assessment methods, the basic assumption of FE269

model updating is that damage-induced variations in the mechanical properties cause detectable changes in270

the structural dynamic behavior [32, 33]. Thus, in order to detect, locate and quantify damage, vibration271

measurement data is analyzed and damage features are extracted. In a second step, an FE model is updated272

to match the structural behavior observed. Most often, this is done in terms of stiffness deviations [34]. As273

hands-on trial and error approaches are time consuming and not feasible for complex engineering structures, the274

problem is formulated indirectly as an optimization problem [35, 15]. Thereby, the objective function compares275

the dynamic behavior of the numerical model to a target (i.e., damaged) state and an optimization algorithm is276

used to find a model to match this target state by modifying stiffness parameters of the respective parameterized277

FE model. As the excitation forces are not known for output-only measurement setups in civil engineering278

applications, the measured time domain data is of little use for FE model updating approaches. Thus, the279

objective function generally comprises the difference of modal parameters or transfer functions, extracted from280

the measured data using signal processing and modal analysis techniques.281

A variety of applications of different FE model updating methods on numerical examples and experimental282

investigations has been conducted over the last years [3, 32, 33], pointing out and aiming to overcome several283

difficulties of model updating. Many issues arise due to two major sources of uncertainty affecting the model284

updating process.285

One source of uncertainty is the measurement data itself, including further processing of the gathered data.286

Due to the inevitable spatial sparsity and noisiness of the measured data and also due to imperfections in the287

measurement equipment and setup, measured data is always a source of errors and uncertainty [36]. By careful288

planning of the measurement system and sensor setup, possible error sources might be discovered and removed.289

Considering incomplete and noisy measurement data, many attempts are made to generalize or regulate this290

source of uncertainty [37]. However, the fact remains that measurement uncertainty can merely be minimized,291

but never be fully eliminated. Even more uncertainty is introduced during the subsequent signal processing292

and extraction of modal characteristics of the physical structure [34]. Thereby, the outcome depends on the293

choice and application of the modal analysis technique [38]. This source of uncertainty can be addressed by294

applying uncertainty quantification. Examples for uncertainty quantification in model updating are probabilisitc295

Bayesian approaches [39, 40, 41] and non-probabilistic fuzzy approaches [42, 43, 44]. However, in this work, FE296
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model updating is applied solely in the deterministic sense. Uncertainties due to measurement noise or further297

signal processing is sought to be minimized by using a low-noise measurement setup (cf. Section 2.1) and an298

advanced identification method for the extraction of modal data (cf. Section 3.1).299

The second major source of possible uncertainties is the FE model used in the updating procedure. Mot-300

tershead et al. [15] classified the sources of modelling uncertainties into reducible and irreducible by model301

updating. By their definition, reducible sources are erroneous assumptions for model parameters, like material302

or geometric properties. Thus, the correction of these properties is the aim of every model updating procedure.303

Irreducible sources are discretization errors and idealization errors made, e.g., in the process of simplifying the304

mechanical behaviour. The requirement derived from these assessments is that numerical models need to be305

validated prior to their use for updating, so that at the end of the model updating process all three kinds of306

modelling uncertainties are minimized. In this work, this recommendation is adapted by validating the FE307

model prior to the model updating process. Thereby, the introduced FE model described in Section 2.3 was308

examined and enhanced, e.g., regarding the consideration of the mass increase due to the wiring and sensors.309

As oftentimes a constant systematic difference between the simulated modal quantities of the initial but vali-310

dated FE model and the extracted modal quantities of the measurement remains, a formulation of a normalized311

relative objective function is chosen in this work. This enables the mitigation of inherent constant systematic312

errors between model and measurement.313

Regarding the correction of the model parameters, a variety of different approaches exists [34]. Commonly,314

design variables are mapped directly to structural properties such as stiffness values of individual finite elements.315

If the defect location is unknown, this procedure usually entails a large amount of design variables, resulting316

in an objective value space with many local minima [45]. Thus, many authors aim to keep the amount of317

design variables as low as possible. A common example is to divide the numerical model into groups of FEs318

and mapping one design variable per structural property of these formed FE groups [46, 47]. Another example319

is to observe only a geometrically restricted area of the model, whereby, naturally, a prior assumption of the320

defect location is required [48, 14]. Additionally, if the design variables are not constrained, the updating might321

result in oscillatory stiffness values which can produce almost the same response as correct values, despite being322

physically unrealistic [46, 49].323

In order to address this problem, the application of a parameterized damage distribution function was324

previously introduced by the authors [50, 51] and is utilized and extended in this work. The FE model updating325

approach proposed using a damage distribution function is independent of the FE mesh resolution and of prior326

assumptions about the defect location while only needing few design variables. By formulating the mapping of327

the considered structural properties to the finite elements using a cumulative distribution function, a smooth,328

realistic distribution is ensured. This forces the model updating process to focus on global structural dynamics329

instead of over-fitting local deviations. As different damage scenarios like a cut or a stiffness degradation330

have diverging effects on the stiffness properties of the structure, the method is extended by the possibility to331

exchange different damage distribution functions. This offers the opportunity to imitate the damage behavior332

and, with that, the damage scenario as good as possible. In addition, using different damage distribution333

functions and a relative formulation of the objective function, many of the mentioned issues of common FE334

model updating procedures are addressed. Thereby, the goal is to obtain a numerically efficient, well-posed335

optimization problem, which can handle irreducible modelling errors. Other approaches, that are also motivated336

by smoothly distributed structural properties and the reduction of the number of design variables, are analyzed337

and successfully used in [11, 47, 52, 53]. Contrary to the approach proposed by the authors, these methods use338

linear or quadratic functions to describe a so-called damage function. In addition, FEs are still grouped in these339

approaches which is no longer necessary using the method subsequently presented in detail.340

4.1. Design variables341

The formulation of the design variables strongly depends on the problem to be solved using model updating.342

Since the aim of this work is damage localization along the length of the steel cantilever beam and damage343

quantification, the parameterization should be able to identify the geometric location of the damage and its344

intensity.345

As no prior knowledge about the defect location is assumed for the procedure proposed, an updating of the346

stiffness property of all n elements along the length of the numerical model is chosen by adapting the initial347

Young’s modulus E0 with a corresponding scaling factor θi348

Eθi = θi · E0 , i ∈ [1, n]. (4)

The modular setup of the presented damage assessment method is demonstrated by the use of two different349

damage distribution functions, whereby their application to the three different damage scenarios is analyzed.350
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The possibility to use different damage distribution functions allows the best possible replication of the damage351

scenario and a comparison between the results. In this work, a Gaussian and a continuous uniform damage352

distribution function are considered.353

Both distribution functions are defined along one control variable - the length of the beam L - and described354

by the three design variables355

x = (µ σ D)
T . (5)

In the design variable vector x, µ represents the geometrical position of the distribution function’s center point356

along the length, σ represents the width of the distribution and D represents the intensity of the damage. The357

particular affiliations of the design variables corresponding to the two different damage distribution functions are358

depicted in Figure 9 for the example design variable vector x = (0.4 m 0.1 m 0.025)
T. Thereby, the definitions359

of D and µ are similar while the definition of σ varies slightly. Regarding the continuous uniform distribution360

function, 100 % of the realizations correspond to ±σ. Regarding the Gaussian distribution function, only 68.27 %361

of the realizations correspond to ±σ and 95.45 % correspond to ±2σ. This association represents the definition362

of a standard Gaussian distribution function.363
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Figure 9: Affiliations of the three design variables demonstrated for the example design variable vector x = (0.4m 0.1m 0.025)T

for the two damage distribution functions considered.

The damage intensity can be described as364

D =
1

L

∫
L

1− θ(sL) dsL, (6)

where L is the total length of the steel cantilever beam, sL is the control variable along the beam length and365

θ(sL) is the stiffness scaling factor at position sL. Relating this to the FE model, a stiffness scaling factor θi366

is assigned to each element. Thus, the discrete damage intensity can be expressed as the sum over the total367

number of elements along the length368

D =
1

L

NL∑
i=1

(1− θi)(sL,i+1 − sL,i). (7)

Thereby, the term sL,i+1 − sL,i is the actual length of every element. For the calculation of the stiffness369

scaling factor θi for each element, the respective cumulative distribution functions F (sL,i|µ, σ) of the damage370

distribution functions considered are truncated to the interval 0 ≤ sL,i ≤ L371

θi = 1−DL F (sL,i+1|µ, σ, 0,L)− F (sL,i|µ, σ, 0,L)

sL,i+1 − sL,i
. (8)

Figure 10 shows the distribution of the stiffness scaling factors θi calculated for the same example design372

variable vector and an example FE segmentation along the beam length. Additionally, the respective cumulative373
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distribution functions are displayed with values circled at each element position sL,i.374
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Figure 10: Distributions of the stiffness scaling factors θi and the corresponding cumulative distribution function F
(
sL,i|µ, σ, 0,L

)
with values circled at each element positions sL,i for the example design variable vector x = (0.4m 0.1m 0.025)T.

4.2. Objective function375

In this work, the FE model updating is based on eigenfrequencies, since these can be obtained experimentally376

and under operational conditions in high quality. Only Nfreqs = 4 eigenfrequencies with a significant amplitude377

in vertical direction are considered, as described in detail in Section 3. To evaluate the difference between the378

relevant measured (i.e., target) and simulated eigenfrequencies, the root mean square error is utilized379

ε(x) =

√√√√ 1

Nfreqs

Nfreqs∑
k=1

(
fSD,k(x)− fSR,k

fSR,k
− fMD,k − fMR,k

fMR,k

)2

. (9)

In this equation, the eigenfrequencies f are denoted with a subscript (·)S for simulated and (·)M for measured380

data. In addition, the subscript (·)D refers to the damaged state, while (·)R refers to the undamaged reference381

state. Thereby, the design variable vector x only influences the simulation results of the damaged states, while382

all other terms of Equation 9 remain constant during the optimization run. With this relative formulation383

of the objective function a constant initial error between the simulation and the measurement results in their384

respective reference states can be taken into account.385

As the value range of the stiffness scaling factors is not restricted to positive values by Equation 8, negative386

values for θi can arise for low values of σ, leading to meaningless FE results. To avoid this issue, all FE models387

with negative stiffness values are rejected prior to the FE calculation. Since this approach creates a discontinuity388

in the objective function, a constraint is added in order to facilitate the optimization process. Therefore, the389

minimum stiffness scaling factor is used to formulate an inequality constraint which acts to restrict values below390

15 % of the original stiffness. This leads to the formulation of the bounded and constrained single-objective391

optimization problem392

minimise ε(x)

s.t.
[
0 m 0 m −0.1

]T ≤ x ≤
[
1.205 m 0.2 m 0.1

]T
s.t.min

i
(θi) > 0.15.

(10)

The constraint is enforced using the exterior linear penalty method [54].393

4.3. Optimization scheme394

The in-house object-oriented optimization framework EngiO [55] is utilized for the numerical optimization.395

For the optimization procedure, the deterministic Global Pattern Search algorithm [56] is chosen, as this algo-396

rithm was previously tested and performed well on various similar FE model updating procedures [51, 50]. The397

14



connection between the optimization framework - written in Matlab programming syntax - and the FE calcula-398

tions using Abaqus is also implemented using Matlab. Thereby, the input file of the FE model is adapted with399

the new design variable vector of each optimization step as described in Section 4.1. Next, the FE calculation400

is started and afterwards the result file containing the simulated eigenfrequencies is evaluated and the objective401

function is calculated. Based on the result, a new design variable vector is provided by the optimization algo-402

rithm and the procedure is repeated. In order to ensure comparability of the different optimization runs, the403

maximum number of the objective function evaluations is set to 1500 for all data sets.404

5. Results405

As introduced in Section 3, the 1 h-measurements are divided into six 10 min-data sets each. This division406

is also employed for the application of the FE model updating procedure. For each of the 27 damaged states407

(i.e., 3 damage scenarios times 9 fishplate positions), six optimization runs are conducted. Therefore, the408

eigenfrequencies used as input for the calculation of the objective function (cf. fMD,k in Equation 9) are the409

six 10 min-median values extracted from the considered 1 h-measurements. This results in 27 · 6 optimization410

results per damage distribution function applied. The eigenfrequencies of the reference state (fMR,k) used in411

Equation 9 are the respective median values of all 1 h-measurements in the reference state listed in Table 6.412

Before the optimal results are shown, two different example convergence behaviors are given using the Gaus-413

sian distributed damage scenario of fishplate positions 1 (tip) and 9 (clamp). For these examples, the Gaussian414

damage distribution function is employed. Figure 11 depicts the convergence behavior of the corresponding best415

objective function values and Figures 12 and 13 show the convergence behavior of the three design variables for416

the two damaged states considered.417
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Figure 11: Convergence behavior of the best objective function value of the six optimization runs for the Gaussian distributed
damage scenario of fishplate positions 1 and 9 using the Gaussian damage distribution function.
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Figure 12: Convergence behavior of the three design variables of the six optimization runs for the Gaussian distributed damage
scenario of fishplate position 1 (tip) using the Gaussian damage distribution function.
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Figure 13: Convergence behavior of the three design variables of the six optimization runs for the Gaussian distributed damage
scenario of fishplate position 9 (clamp) using the Gaussian damage distribution function.

Comparing the varying convergence behavior of the design variables and the best objective function value418

for the two damaged fishplate positions, the influence of the geometric position of the damage along the length419

of the steel cantilever beam is clearly visible. All six optimization runs regarding fishplate position 9 (clamp)420

result in almost equivalent design variables and objective function values, presenting a conclusive localization421

and quantification of this damage scenario. In contrast, the results concerning fishplate position 1 (tip) differ422

partially significantly from each other. In Figure 12, the design variable µ, for instance, converges in only423

three of the six optimization runs towards the correct value of 0.075 m while values between 0.6 m and 1 m are424

mistakenly found to be optimal in optimization runs 2 to 4. Additionally, the optimal values found for the425

design variable σ vary within a range of 0.05 m, representing 25 % of the bounded space for this design variable.426

Only the damage intensity converges to an equivalent value in all six optimization runs. However, this seemingly427

optimal value is approximately 0, which is incorrect.428
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This inconclusive convergence behavior concerning the results for fishplate position 1 (tip) indicates a difficult429

design variable space with multiple local minima. In comparison to the conclusive results regarding fishplate430

position 9 (clamp), this reveals the difficulty to locate and quantify a damage at a geometric position very431

close to the tip of the steel cantilever beam compared to the seemingly simple assessment of a damage near the432

bearing. This conclusion matches the observations and thus the expectations from Section 3, where the modal433

properties of the different damaged states were studied in detail. A damage positioned near the tip of the steel434

cantilever beam has no significant influence on the stiffness properties and therefore on the structural behavior,435

whereas a damage positioned near the bearing has a considerable effect. Thus, even adapting the stiffness of436

all FEs along the beam length using a comparison of modal properties - as it is employed in the utilized and437

in most other FE model updating procedures - is naturally limited by the effect a damage has on the (global)438

stiffness properties and thus the global dynamic behavior of the structure considered.439

To present the final results, the 9 ·3 ·6 optimal distributions of the stiffness scaling factor θ resulting from the440

respective optimal design variable vectors are displayed in Figures 14 and 15 for the two damage distribution441

functions utilized. Thereby, one color is used per damage scenario as depicted in the legend.442
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Figure 14: 9 ·3 ·6 optimal distributions of the stiffness scaling factor θ for the nine fishplate positions and the three different damage
scenarios for the Gaussian damage distribution functions.
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Figure 15: 9 ·3 ·6 optimal distributions of the stiffness scaling factor θ for the nine fishplate positions and the three different damage
scenarios for the continuous uniform damage distribution functions.

Overall, the results of the FE model updating procedure using only eigenfrequencies as the damage sensitive443

feature demonstrate a conclusive localization of the nine different damage positions (i.e., fishplate positions)444

and a distinct quantification between the three damage intensities employed. As already mentioned with regard445

to Figures 11 to 13, the results for the damaged fishplate position 1 (tip) are especially inconclusive as this is446

a position where damage has no significant effect on the global dynamic behavior of the steel cantilever beam.447

Thus, the identification, localization and quantification of a defect at this particular position is very difficult448

using the proposed or any other FE model updating procedure. Regarding the final results in Figures 14 and449

15 for this position, only the fishplate with the most severe damage (i.e., the uniformly distributed damage)450

is located correctly, whereas the other two damage scenarios are not found at all. This is the reason why the451

results for fishplate position 1 at the tip of the steel cantilever beam are not included in the following detailed452

discussion of the results.453

Figure 16 allows for a precise observation of the results of the damage localization (i.e., design variable µ)454

for fishplate positions 2 to 9. The figure shows the difference between the optimal design variables obtained455

using the FE model updating procedure and the actual measured (i.e., expected) values, depicted as dotted456

black lines.457
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Figure 16: Comparison of the expected values to the optimal values obtained for the design variable µ for each damage scenario of
fishplate positions 2 to 9 using the two damage distribution functions considered.

The geometric positions of the discrete damage scenario (blue diamonds) are misidentified in some cases,458

which is also visible in Figures 14 and 15. This observation unveils that, naturally, the localization of the discrete459

damage scenario, having the least damage severity, is more difficult than the identification of the other two more460

severe damage scenarios. In addition, the localization results using the Gaussian damage distribution function461

(cf. Figure 16a) are slightly more consistent than the results using the continuous uniform damage distribution462

function (cf. Figure 16b). Overall, however, it is evident that the employment of both damage distribution463

functions yield accurate localization results, in most cases within ±0.05 m of the expected geometric position of464

the different damage scenarios. Thus, a successful localization of all fishplate positions considered is achieved.465

The correct values expected for the design variable σ are equal for all fishplate positions per damage scenario466

as the width of the damage is constant per damage scenario. Thereby, the width of the discrete damage is467

0.001 m. The width of the Gaussian and the uniformly distributed damage is the same with a value of 0.093 m468

ranging from the first to the last saw cut. Only the damage intensity differs for these two damage scenarios469

due to the differing lengths of the saw cuts (cf. Figure 4). Figure 17 displays these expected values, depicted470

as dotted lines in the color of the respective damage scenario, alongside the optimal values found for the design471

variable σ obtained by the application of the two damage distribution functions considered. Because of the472

definition of the design variable σ in the damage distribution functions (cf. Section 4.1 and Figure 9), the473

optimal values for the design variable are multiplied by two so the expected values are compared to ±σ.474
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Figure 17: Comparison of the expected values to the optimal values obtained for the design variable ±σ for each damage scenario
of fishplate positions 2 to 9 using the two damage distribution functions considered.

Regarding the results for the Gaussian and the uniformly distributed damage scenarios (green circles and red475

crosses), most of the optimal values obtained vary within a range of 0.06 m to 0.16 m. Only the values obtained476

for fishplate positions 2 and 4 show more variation, which is again also visible in Figures 14 and 15. Thus, the477

width of the two more severe damage scenarios is, in most cases, identified close to the actual width measured478

to 0.093 m from the first to the last saw cut. This is why the identification of the damage width concerning the479

Gaussian and the uniformly distributed damage scenario is considered to be successful. It is noticeable that the480

width of the discrete damage (blue diamonds) is misidentified in all damage positions. As this damage scenario481

represents a rupture of only 1 mm width in the fishplate specimen (cf. Figure 4), the results obtained for σ482

between 0.075 m and 0.2 m regarding this particular damage scenario are clearly incorrect. Again, this reveals483

the difficulty to identify this least severe damage scenario correctly.484

As with the design variable σ, the design variable D is also expected to be equal for all fishplate positions485

per damage scenario as the intensity of the damage is also constant per damage scenario. For the calculation of486

the expected values regarding the damage intensity, it is assumed that the alteration of the moment of inertia is487

propotional to the alteration of the stiffness properties due to the different saw cuts into the fishplate specimens.488

Hence, the stiffness scaling factor θi in Equation 7 is exchanged with a scaling factor for the moment of inertia489

of each finite element and the values for D are calculated for the three different damage scenarios, respectively.490

The calculated values for D are 0.0005 for the discrete damage scenario, 0.0013 for the Gaussian distributed491

damage scenario and 0.0024 for the uniformly distributed damage scenario. Compared to the optimal values492

obtained using the FE model updating procedure, the analytically calculated values are off approximately by a493

factor of ten. In the case of the Gaussian and uniformly distributed damage scenarios, this is due to the fact494

that the calculation on the basis of the altered moment of inertia only considers six altered FEs as there are495

six saw cuts in the respective fishplate specimens (cf. Figure 4). This rather underestimates the damage to496

the structure as the impact on the stiffness properties is not locally limited to these six FEs. In contrast, the497

damage distribution functions utilized in the FE model updating process are designed to identify a damaged498

area. If the moment of inertia of all FEs between the first and last saw cut are scaled according to the induced499

saw cuts, the values obtained for D are 0.021 for the Gaussian and 0.037 for the uniformly distributed damage500

scenario. Hence, these values are similar to the optimal values obtained using the model updating procedure.501

The optimal results for the damage intensity (i.e., design variable D) are displayed in Figure 18. All results are502

normalized to the results of the Gaussian distributed damage scenario. This enables a direct comparison of the503

relative differences in D between the optimization-based solutions and the results for the analytical (moment504

of inertia-based) calculations. The normalized analytical values for D (0.38 for the discrete, 1 for the Gaussian505

distributed and 1.85 for the uniformly distributed damage scenario) are depicted as dotted lines in the color of506
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the respective damage scenario.507
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Figure 18: Comparison of the normalized analytical values to the optimal values obtained for the normalized design variable D for
each damage scenario of fishplate positions 2 to 9 using the two damage distribution functions considered. All values are normalized
to the results of the gaussian distributed damage scenario.

As expected, the optimal values obtained using the FE model updating procedure are fairly consistent508

for each damage scenario. In addition, the increasing intensity of the three different damage scenarios is509

distinctly visible for both damage distribution functions utilized as already discernible in Figures 14 and 15. The510

percentage increase of the optimal results is close to the analytically calculated increase in damage severity. For511

example, the normalized values for D are approximately by a factor of 1.85 higher for the uniformly distributed512

compared to the Gaussian distributed damage for the analytical as well as the optimization-based results. Only513

the damage intensity of the discrete damage scenario is slightly overestimated by the model updating procedure.514

Altogether, also the quantification of the different damage severities introduced is considered successful. In515

particular, it is possible to qunatify the relative change in damage intensity which is, for example, relevant when516

cracks are growing.517

6. Conclusions and outlook518

With this work, the laboratory experiment of a modular steel cantilever beam with the option to insert519

different damage scenarios at different positions is presented in detail and the measurement data is made520

available in open-access form. In addition, a systematic experimental validation of a deterministic FE model521

updating procedure using four eigenfrequencies as damage sensitive features is demonstrated.522

The results presented in Section 5 evidently show the successful precise localization of the nine different523

damage positions within ±0.05 m of the correct geometric positions along the 1.2 m-long beam. Also, the quan-524

tification regarding the width and the intensity of the three different damage scenarios are found accurately.525

The distinctive results emphasize the advantages of the parameterization chosen for the design variables within526

the model updating process regarding robustness and applicability. In addition, the experimentally validated527

formulation of the objective function using only eigenfrequencies enables the usage of a minimal sensor con-528

cept for damage assessment. Furthermore, the demonstration of the experimental validation of the FE model529

updating approach utilized reveals the applicability of the laboratory experiment presented for the validation530

of SHM procedures addressing damage assessment. With the experimental setup enabling the opportunity to531

introduce reversible damage scenarios of differing damage severities at a total of nine different damage positions,532

a fundamental evaluation and comparison of different SHM methods is possible.533

Looking more closely, naturally, some difficulties occurred and some observations are made regarding the534

outlook of this work. The damage position at the tip of the steel cantilever beam was difficult to localize and535
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quantify correctly as a damage at this position has no significant influence on the stiffness properties and, thus,536

on the structural behavior of the steel cantilever beam. As a result, this particular damage scenario differs537

only marginally from the reference state, which results in a difficult design variable space, making it almost538

impossible for the optimization algorithm applied to find a correct solution. However, this finding represents a539

difficulty for all damage assessment methods based on modal parameters as they rely on the variation of the540

global structural behavior. In addition, the results of the discrete (i.e., the least intense) damage scenario show541

more variance with regard to the correct values than the other two more severe damage scenarios. Especially542

the width of this damage scenario is clearly overestimated. Further studies will include additional or different543

damage sensitive features potentially in a second objective function in order to analyze possible improvements544

enabled by multi-objective optimization.545

Another interesting next step is the inclusion of the uncertainty regarding the modal properties. Therefore,546

the experiment is especially suited since the uncertainties are distinctly quantifiable in the laboratory experiment547

designed using the long 1 h-measurements of the different damage scenarios and the respectively following548

repetitions of the measurements in reference state.549
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