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Abstract
Measuring the spectral irradiance of solar radiation is required in many fields of science and
technology. In this work, we present an in-depth discussion of the measuring procedure and
required corrections for such measurements. We also describe our measurement uncertainty
analysis, which is based on a Monte-Carlo procedure in accordance with the Guide to the
expression of uncertainty in measurement (JCGM, Paris, 2008). For this purpose, fifteen
uncertainty sources are identified, analyzed and described analytically. As a specific application
example, we describe the instrumentation and procedure for determining the spectral irradiance
of a solar simulator at the ISO/IEC 17 025 accredited solar cell calibration laboratory ISFH
CalTeC and the corresponding measurement uncertainty analysis. Moreover, we provide a
Python implementation for this calculation along with the paper. We show that for
state-of-the-art instrumentation, significant uncertainty contributions arise from the reference
lamp (primary calibration standard), stray light and signal-to-noise ratio. If sharp spectral
features are present (which is common, e.g. for Xenon lamps), spectral bandwidth and
wavelength uncertainty also contribute significantly to the overall uncertainty.

Keywords: spectral irradiance, solar radiation, measurement uncertainty analysis, spectrometer,
spectroradiometer, calibration, solar simulator

(Some figures may appear in colour only in the online journal)

1. Introduction

Measuring the spectral irradiance of solar radiation is required
in many fields of science and technology such as meteorology
or solar energy. Accordingly, many laboratories routinely

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

operate spectrometers for the acquisition of spectral irradiance
data, and a variety of different instruments are in use. Array
spectrometers are frequently chosen for this purpose due to
their compactness and their ability to acquire the spectral irra-
diance over a widewavelength rangewithin just a few seconds.
However, the measured spectral irradiance distribution is
influenced by several effects that eventually require a correc-
tion, e.g. distance adjustment of the measuring head, changes
of the detector temperature, non-linearities or stray light.
These effects are often pronounced when using array spectro-
meters compared to grating monochromator systems. Recent
intercomparisons of solar spectral irradiance measurements
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between different laboratories show deviations of the order of
10% [1–3], emphasizing the significance of deviations occur-
ing during such measurements and the need for a thorough
analysis of the measured data in order to facilitate a correct
interpretation.

The interpretation of measurement results is supported
by substantiated estimates of the corresponding measure-
ment uncertainty. Results of uncertainty analyses for spectral
irradiance measurements have been presented in the literat-
ure [4–16]. However, these publications either focus on the
characterization of specific instruments or only give a brief
explanation of the underlying methodology. In this work, we
therefore focus on the methodology rather than specific instru-
mentation in order to provide a guide to the implementa-
tion of the measurement and uncertainty analysis procedure.
Since spectral irradiance data are often further processed in
spectral integrals (e.g. for the calculation of the spectral mis-
match correction factor used in solar cell calibration), cor-
relations of the data with respect to wavelength need to be
taken into account by the uncertainty analysis. This is ensured
by the procedure laid out in this work, which is based on a
Monte-Carlo approach according to the Guide to the Expres-
sion of Uncertainty in Measurement (GUM) [17] (supplement
1). Although the paper mainly addresses indoor measurements
in the laboratory (solar simulator) using array spectrometers,
which is a typical application case, the methodology can be
generalized to outdoor measurements of solar radiation and
scanning grating monochromator systems as long as similar
measurement geometries prevail, e.g. if direct radiation is con-
sidered.

In the first part of the paper, we discuss the measur-
ing procedure and present an in-depth discussion of required
corrections to the measured data and the quantification of
measurement uncertainty contributions. In the second part of
the paper, we describe the procedure and uncertainty analysis
for the measurement of the spectral irradiance of the solar sim-
ulator at the ISO/IEC 17 025 accredited solar cell calibration
laboratory ISFH CalTeC as a specific application example. We
ensure the traceability of the measurement results to national
standards by calibrating the spectrometer and present a sens-
itivity analysis for the various uncertainty contributions in
order to identify the dominant sources of uncertainty. Python
code containing the uncertainty calculation for our application
example will be made available under an open source license
by the time of publication on the website of ISFH CalTeC,
allowing everyone to reproduce the results presented in this
work and to adapt the procedure to own requirements.

2. Measuring procedure

The spectral irradiance EDUT
λ (λ) of the device under test

(DUT, which is a solar simulator or the Sun in this paper) at
wavelength λ is determined with a calibrated spectrometer.
In general, the spectrometer calibration is carried out using
a reference lamp with known spectral irradiance ERef

λ (λ).
For practical reasons, the spectrometer calibration normally
determines the radiometric correction function K(λ) for the

Figure 1. Sketch of the measuring geometry.

spectrometer, which is stored as a data set and applied to
the DUT measurements carried out later on, instead of per-
forming a direct substitution measurement. It is common for
many laboratories to determine K(λ) themselves. Thus, we
describe the procedure for (a) the reference measurement for
the determination of the radiometric correction function and
(b) the spectral irradiance of the DUT. Both measurements
have to be corrected for various effects in order to determine
EDUT
λ (λ) correctly, as outlined in the following.

2.1. Reference measurement / Radiometric correction
function

The determination of the radiometric correction function K(λ)
requires the acquisition of the detector signal SRef1 (λ)when the
measuring head of the spectrometer is irradiated by the refer-
ence lamp. For this purpose, the distance between the refer-
ence lamp and the measuring head needs to be adjusted to the
distance dRef for which ERef

λ (λ) is specified in the lamp’s cal-
ibration certificate. For the reference lamp, the reference plane
for the distance measurement is usually defined by an adjust-
ment aid (jig) or the lamp holder. This information is contained
in its calibration certificate. The optical reference plane of the
measuring head does not necessarily coincide with its front
surface, which is often used for the distance measurement,
but may lie inside the measuring head as sketched in figure 1.
There are two options for taking the offset ∆d between front
surface and optical reference plane into account during the
determination of SRef1 (λ): First, the distance between reference
plane of the lamp and the front surface of the measuring head
can be adjusted to the effective distance

deff = dRef −∆d , (1)

so that the actual distance between the optical reference planes
is dRef. Second, if a distance adjustment is not possible, amath-
ematical correction of SRef1 (λ) can be performed by applying a
multiplicative correction factor cdist later in equation (10). An
option for the experimental determination of ∆d is described
in appendix B.
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In order to take measurement noise into account, SRef1 (λ)
is usually acquired N times and the average signal is used.
As discussed in section 3, N≥ 25 should be chosen. This
yields

SRef1 (λ) =
1
N

N∑
i=1

SRef1,i (λ) . (2)

Next, the spectrometer signal must be corrected for detector
dark signal and external stray light from the surrounding by
subtracting these signal contributions. Some spectrometers
also require a correction of the measured signal with respect to
detector temperature. The dark signal SRefdark(λ) can be acquired
by placing a cap on the measuring head of the spectrometer.
Many instruments also feature an internal shutter for this pur-
pose. A common approach for determining the external stray
light signal SRefstray,ext(λ) is placing a beam block in the beam
path, which blocks only the light coming directly from the
reference lamp. Both measurements are carried out using the
same integration time as for SRef1 (λ). As for SRef1 (λ), the meas-
urements are repeated N times in order to take measurement
noise into account. It is usually advantageous to acquire a com-
bined background signal

SRefbgnd(λ) = SRefdark(λ)+ SRefstray,ext(λ) (3)

if such a measurement is facilitated by the spectrometer. For
the purpose of temperature correction, a multiplicative correc-
tion factor ctemp(TRef

1 ,λ) can be applied to the background-
corrected signal, which depends on the wavelength λ and
the detector temperature TRef

1 during the measurements in
general. If SRef1 (λ) and SRefstray,ext(λ) have units of digital
counts, the signal is subsequently normalized to integration
time (tRefint ) in order to enable the use of a different integ-
ration time later on for the DUT measurement described
in the next section. Expressed mathematically, the corrected
signal is

SRef2 (λ) =
SRef1 (λ)− SRefbgnd(λ)

tRefint

· ctemp(λ,T
Ref
1 ) . (4)

The temperature correction procedure assumes that the
detector temperature is constant during the measurements
of SRef1 (λ) and SRefbgnd(λ), which is usually justified when using
array spectrometers with integration times of the order of
milliseconds or seconds and performing the measurements
in direct succession. The temperature correction factor needs
to be determined for each individual instrument. One option
for the experimental determination of this factor is measuring
the signal change under artificial heating of the instrument
while the measuring head is irradiated by a stable light source.
This procedure is described in more detail in appendix C. For
spectrometers with temperature-controlled detectors, the cor-
rection is often negligible, i.e. ctemp ≡ 1 can be assumed. If
the spectrometer outputs the signals in units of digital counts
per time, i.e. the normalization is already performed by the
instrument, the division by tRefint is omitted in the latter equa-
tion. There are instruments which determine the detector dark

signal automatically for each measurement using an internal
shutter and thus do not facilitate a combined background
signal measurement. For such instruments, a separate meas-
urement of the external stray light signal SRefstray,ext(λ) must be
performed, which requires an additional dark signal measure-
ment Sstraydark (λ) and thereby introduces additional measurement
noise.

Having obtained the background and temperature
corrected signal SRef2 (λ), non-linearity corrections with
regard to irradiance level and integration time tint may be
required for some spectrometers. These corrections can
again be expressed by multiplicative correction factors
clin,irr

(
SRef2 (λ)

)
and clin,tint(tRefint ,λ), which depend on the

measured signal and the integration time and need to be
determined experimentally for each individual instrument
(see appendix D). Application of the correction factors
yields

SRef3 (λ) = SRef2 (λ) · clin,irr
(
SRef2 (λ)

)
clin,tint(t

Ref
int ,λ) . (5)

For state-of-the-art spectrometers, both corrections are often
negligible, i.e. clin,irr ≡ 1 and clin,tint ≡ 1.

Next, the spectrometer signal SRef3 (λ) needs to be corrected
for internal (also called spectral) stray light and subsequently
for spectral bandwidth. A widely applied method for the cor-
rection of internal stray light was developed by Zong et al [18].
It consists of a multiplication of the signal vector SRef

3 (which
is the signal SRef3 (λ) written as a vector, i.e. element i of the
vector represents SRef3 (λi)), with a spectral stray light correc-
tion matrix Ccorr:

SRef
4 = CcorrS

Ref
3 . (6)

The stray light correction matrix Ccorr is determined from
measurements with monochromatic irradiation of the meas-
uring head, from which the stray light response of the spectro-
meter can be assessed. After stray light correction, the signal
vector SRef

4 is converted back into a signal function SRef4 (λ).
For the correction of spectral bandwidth effects, several

methods have been proposed in the literature [19–22]. These
corrections can be expressed mathematically as a multiplica-
tion of the spectrometer signal SRef4 (λ)with a correction factor
cbw(∆λ,λ), which depends on the spectral bandwidth ∆λ,
giving

SRef5 (λ) = SRef4 (λ) · cbw
(
SRef4 (λ),∆λ

)
. (7)

In this paper, we define the spectral bandwidth ∆λ as the
wavelength interval [λ−∆λ/2, λ+∆λ/2] around the nom-
inal wavelength λ, within which the transmittance of the
monochromator (slit function) is greater then zero. We use the
analytical formula [21]

cbw(S,∆λ) = 1− S(λ−∆λ/2)+ S(λ+∆λ/2)− 2S(λ)
12S(λ)

(8)
for spectral bandwidth correction, where S(λ) is the detector
signal. Equation (8) assumes a triangular bandpass function,
which holds for an ideal monochromator (see discussion in
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section 3.3.7). The derivation of this formula is outlined in
appendix E.

Having performed all corrections as described above, the
distance correction factor cdist is finally applied to SRef5 (λ).
Under the assumption that the reference lamp can be regarded
as a point light source, i.e. the lateral extension of the reference
lamp is small compared to dRef,

cdist =
(d+∆d

dRef

)2
(9)

follows from the inverse square law for point light sources,
where d is the actual measuring distance.. If d is adjusted to deff
for the measurement as described above, cdist ≡ 1 holds. With
the distance correction, the radiometric correction function of
the spectrometer finally follows as

K(λ) =
ERef
λ (λ)

SRef5 (λ)
· cdist . (10)

Note that the distance correction may be omitted, i.e. cdist ≡ 1,
if only a relative spectral irradiance of the DUT is required
(e.g. in spectral mismatch calculations for solar cell calibra-
tions according to the IEC 60 904-7 standard [23]).

2.2. Spectral irradiance of DUT

In order to obtain the spectral irradiance EDUT
λ (λ) of the DUT,

the measuring head of the spectrometer is now placed in the
light field and the signal SDUT1 (λ) is acquired. As for the refer-
ence measurement, SDUT1,i (λ) is acquired N times, temperature
corrections are eventually applied and themean value SDUT1 (λ)
is used for further calculations. A similar sequence of correc-
tions as for SRef1 (λ) has to be applied to SDUT1 (λ). However,
external stray light is not corrected here because the intention
of the measurement is to acquire the spectral irradiance in the
measuring plane ‘as is’. Therefore, only the detector dark sig-
nal SDUTdark (λ) is subtracted. Note that additional corrections for
the angular sensitivity of the measuring head may be required
if radiation incident from a solid angle much larger than during
the referencemeasurement is considered, which is the case, for
instance, when measuring global spectral irradiance of natural
sunlight [24–26]. This is, however, beyond the scope of this
paper. Also, note that as for the reference measurement, the
measuring plane is defined by the optical reference plane of
the measuring head. In analogy to equations (4) through (8),
we obtain

SDUT2 (λ) =
SDUT1 (λ)− SDUTdark (λ)

tDUTint

· ctemp(λ,T
DUT
1 ) ,

SDUT3 (λ) = SDUT2 (λ) · clin,irr
(
SDUT2 (λ)

)
clin,tint(t

DUT
int ) ,

SDUT
4 = CcorrS

DUT
3 ,

SDUT5 (λ) = SDUT4 (λ)cbw
(
SDUT4 (λ),∆λ,λ

)
.

(11)

The spectral irradiance EDUT
λ (λ) then finally follows as

EDUT
λ (λ) = SDUT5 (λ)K(λ) =

SDUT5 (λ)

SRef5 (λ)
cdistE

Ref
λ (λ) . (12)

3. Measurement uncertainty analysis

3.1. Methodology

Determining themeasurement uncertainty is an integral part of
a calibration. The measurement uncertainty analysis presen-
ted in the following is based on the methodology specified
in the GUM [17]. We conduct an uncertainty analysis based
on a Monte-Carlo approach as described in the GUM sup-
plement 1. The basic idea of this approach is the recalcula-
tion of the measurement result EDUT

λ (λ) many times, while
all input quantities are altered on each iteration according to
their uncertainties, the uncertainty distribution functions and
the underlying model of impact on EDUT

λ (λ). The resulting
distribution of EDUT

λ (λ) then directly yields an estimate of its
uncertainty.

Figure 2 shows an Ishikawa diagram of all identified
sources of uncertainty for the determination of EDUT

λ (λ). Each
of these components affects the result of the measurement in
a specific way, which can mathematically be expressed by a
multiplicative f -factor, namely:

• Measurement noise fX(λ)noise ,

• internal background (dark signal) fX(λ)dark ,
• external stray light fRefstray,ext(λ),

• internal (spectral) stray light fX(λ)stray,int,
• non-linearity of the detector with respect to irradiance
levels and integration times fX(λ)lin,irr, f

X(λ)
lin,tint,

• spectral bandwidth fX(λ)bw ,

• wavelength accuracy fX(λ)wl ,
• tilt of the measuring head with respect to the optical axis
fXtilt,

• uncertainty of the known spectral irradiance of the refer-
ence lamp fEref(λ) (usually stated in its calibration certific-
ate),

• distance adjustment during the reference measurement fdist,
• stability and adjustment uncertainty of reference lamp oper-
ating current fcur(λ),

• reproducibility of the radiometric correction frep(λ),
• temperature effects of the detector ftemp(λ),
• lateral non-uniformity of the light field fDUTnon−u(λ) and
• temporal stability of the DUT fDUTstab−t(λ).

Some of the factors are different for the reference and DUT
measurement, indicated by a superscript. Factors marked with
X refer to both measurements (X= {Ref,DUT}). Most of the
factors are wavelength dependent, indicated by (λ). The indi-
vidual f -factors can be combined into a factor fMC(λ), which
is recalculated on each Monte-Carlo iteration i. The determ-
ination of the f -factors is discussed in detail in the following
section 3.3. According to the Ishikawa diagram in figure 2 and
equation (12),

4
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Figure 2. Ishikawa diagram of the measurement uncertainties that contribute to the calibration of the spectral irradiance measurement of the
DUT. The lower branch describes the measurement uncertainties of the radiometric correction function K(λ).

fMC,i(λ) =
fDUTnoise(λ) f

DUT
dark (λ) f

DUT
stray,int(λ) f

DUT
lin,irr(λ) f

DUT
lin,tint(λ) f

DUT
bw (λ) fDUTwl (λ) fDUTtilt

fRefnoise(λ) f
Ref
dark(λ) f

Ref
stray,ext(λ) f

Ref
stray,int(λ) f

Ref
lin,irr(λ) f

Ref
lin,tint(λ) f

Ref
bw (λ) fRefwl (λ) f

Ref
tilt

× fEref(λ) fdist fcur(λ) frep(λ) ftemp(λ) f
DUT
non−u(λ) f

DUT
stab−t(λ) . (13)

We then calculate the spectral irradiance EDUT
λ,i (λ) in each

Monte-Carlo iteration as

EDUT
λ,i (λ) = EDUT

λ (λ) · fMC,i(λ) , (14)

where EDUT
λ (λ) is the measured spectral irradiance of the solar

simulator according to equation (12) and already contains all
corrections mentioned in section 2. Note that the sources of
uncertainty listed here refer to state-of-the-art spectrometers
as typically used in calibration laboratories. Especially when
using low-cost spectrometers, there may be additional uncer-
tainty contributions or additional corrections that need to be
included in the evaluation.

3.2. Correlations

For the correct determination of uncertainty, it is important to
consider that some uncertainty contributions affect the whole
measured spectral distribution in a similar manner, while oth-
ers have a different effect at eachwavelength. Uncertainty con-
tributions that affect the whole spectral distribution in a sim-
ilar manner introduce correlations with respect to wavelength.
This holds for the contributions due to detector linearity, tilt
of the measuring head, distance adjustment, operating current
of the lamp, temporal stability of the radiometric correction
(reproducibility), temperature effects, lateral non-uniformity
and temporal stability of the DUT light source. Moreover,
wavelength calibration and spectral bandwidth of the spectro-
meter introduce wavelength dependent correlations between

5
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reference and DUTmeasurement. Accounting for such correl-
ations is important for further processing in spectral integrals,
e.g. for solar simulator spectral mismatch correction accord-
ing to the IEC 60 904-7 standard [23]. In order to correctly
take correlations into account in the Monte-Carlo analysis, the
f -factors have to be calculated in the correct order and correct
places in the algorithm as shown in the flow chart in figure 3.
The Monte-Carlo analysis implements two nested loops, one
for the N Monte-Carlo iterations and an inner one for loop-
ing over wavelength λ. Depending on whether an uncertainty
contribution affects the whole spectral distribution or not, the
random number defining the specific value of the correspond-
ing f -factor is obtained before or within the inner loop. In order
to account for correlations between reference and DUT meas-
urement, the same random numbers are used for the corres-
ponding f -factors. In total, 20 random numbers are drawn in
each Monte-Carlo iteration using a random number generator.
Details on the generation of random numbers can be found
in the relevant literature, e.g. [27] and [28]. Depending on the
type of uncertainty contribution, the random numbers have dif-
ferent probability distributions as discussed in the following
section. In the flow chart, this is represented by greek letters ρ,
ν and τ . Having determined the specific values of all f -factors
in Monte-Carlo iteration i, EDUT

λ,i (λ) is calculated according to
equation (14). Having finished the Monte-Carlo runs, a histo-
gram is calculated from EDUT

λ,i (λ). Mean value and width of
this distribution correspond to the result of the calculation and
its combined uncertainty, respectively. In the usual case that a
normal distribution results from the Monte-Carlo analysis, the
result EDUT

λ,MC(λ) and its combined uncertainty uc
(
EDUT
λ,MC(λ)

)
can be calculated by the standard formulas

EDUT
λ,MC(λ) =

1
N

N∑
i=1

EDUT
λ,i (λ) (15)

and

uc
(
EDUT
λ,MC(λ)

)
=

√√√√ 1
(N− 1)

N∑
i=1

(
EDUT
λ,i (λ)−EDUT

λ (λ)
)2

.

(16)
From this combined uncertainty, the expanded uncertainty
U= kuc is obtained by multiplication with a suitable expan-
sion factor k (often 2). Having finished theMonte-Carlo calcu-
lation, it should be tested that EDUT

λ,MC(λ) is similar to EDUT
λ (λ)

as directly following from themeasurement according to equa-
tion (12). Significant deviations between these two quantit-
ies may point towards too small a number of Monte-Carlo
iterations. Moreover, it should be tested that the distribution
of EDUT

λ,i (λ) is well defined, i.e. the discrete distribution can
be approximated by a continuous function, so that meaning-
ful results are deduced from the Monte-Carlo analysis. Some
guidance on choosing the number of Monte-Carlo iterations is
provided in the GUM supplement 1.

Figure 3. Flow chart for Monte-Carlo analysis. The dice
symbolizes the determination of random numbers using a random
number generator. Factors depending on the same random numbers
are highlighted by coloring. The dice and calculator icons are
provided by simpleicon.com and freesvg.org.
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3.3. Uncertainty contributions

In a Monte-Carlo analysis, different probability distributions
for the input quantities are taken into account by generating
random numbers with the corresponding probability distribu-
tion. In this work, we use the symbol ν for normally distrib-
uted random numbers with mean 0 and standard deviation 1.
The symbol ρ represents random numbers which are rectan-
gularly distributed on the interval (−1, 1), whereas τ repres-
ents triangularly distributed random numbers on the interval
(−1, 1). The following considerations sometimes refer to both
SRef(λ) and SDUT(λ). In this case, SX(λ) is used as a synonym
for both quantities.We consider the following uncertainty con-
tributions:

3.3.1. Measurement noise. Spectrometer measurements
generally suffer from photon noise, thermal noise of the
detector and noise of the measurement amplifier electronics.
In order to take this statistical noise into account, N repeated
measurement are usually performed. From these measure-
ments, the mean value

SX(λ) =
1
N

N∑
i=1

SXi(λ) (17)

and the standard uncertainty of the mean value

uXnoise(λ) =

√√√√ 1
N(N− 1)

N∑
i=1

(
SXi(λ)− SX(λ)

)2
(18)

can be determined, where the latter equation represents
the standard deviation of the mean value SX(λ). Note that
the above equations assume normally distributed quantities,
whereas a limited number of measurements is rather described
by the Student’s t-distribution. However, the t-distribution
approaches the normal distribution for a large number ofmeas-
urements. For 25 repetitions, the deviation between the t-
distribution and the normal distribution is already of the order
of only 5% rel. A number of 25 repetitions is thus advised to be
a good trade-off between measurement time and accuracy. If a
drift of the signal occurs during the course of the N measure-
ments, this must be corrected in order to obtain a meaningful
standard deviation. One option for this is monitoring the drift
by using an additional detector, e.g. a photodiode, and using
the ratio ofmonitor and spectrometer signal. Note that thismay
introduce additional noise.

Uncertainties due to measurement noise apply independ-
ently to all measurements carried out during the measur-
ing procedure, i.e. SRef1 (λ), SRefbgnd(λ), S

DUT
1 (λ) and SDUTdark (λ).

We thus calculate combined noise uncertainty contributions
uRefnoise(λ) and uDUTnoise(λ) for the corrected signals SRef4 (λ)
and SDUT4 (λ), respectively, which enter the calculation of
EDUT
λ (λ). According to equations (2) through (11) and the

GUM formalism [17],

uRefnoise(λ) =
√
u2
SRef
1
(λ)+ u2

SRef
bgnd

(λ) ,

uDUTnoise(λ) =
√
u2
SDUT
1

(λ)+ u2
SDUT
dark

(λ) . (19)

With these combined uncertainties, we obtain the f -factors

fRefnoise(λ) = 1+
uRefnoise(λ)

SRef2 (λ)
· ν Ref

noise ,

fDUTnoise(λ) = 1+
uDUTnoise(λ)

SDUT2 (λ)
· ν DUT

noise (20)

for the Monte-Carlo analysis. The random numbers ν Ref
noise and

ν DUT
noise are drawn inside the inner loop of the Monte-Carlo
algorithm in order to reflect that noise is uncorrelated with
respect to wavelength. Note that in equation (19), u2SRef

bgnd
(λ) is

replaced by u2SRef
dark
(λ)+ u2SRef

stray,ext
(λ) if a separate measurement

of the external stray light is performed as discussed in section
2. In this case, uSRef

stray,ext
(λ) must contain the noise contribution

from the additional dark signal measurement for determining
SRefstray,ext(λ).

3.3.2. Internal background. The dark signal is the resid-
ual signal measured by the spectrometer if incident light is
completely blocked, e.g. by putting a cap on the measuring
head. Some spectrometers feature an internal shutter, which
facilitates an automatic dark signal acquisition. The dark sig-
nal must be corrected for as outlined in section 2. In gen-
eral, the magnitude of the dark signal depends on the integ-
ration time chosen for the measurement. It may also depend
on the wavelength and may show a drift over time. Therefore,
it is necessary to perform a dark signal measurement directly
before or after measuring the spectral irradiance. A drift in the
dark signal between these twomeasurements will cause a devi-
ation in SX2 (λ) according to equations (4) and (11) and must
thus be taken into account in the uncertainty budget.

The drift of the dark signal can be assessed experiment-
ally by a series of consecutive dark signal measurements
Sdark(t1, t2, ...) at different times ti over a certain time period
under typical measurement conditions. From this measure-
ment, the dark signal drift

∆Sdark(λ, ti) =
Sdark(λ, ti)− Sdark(λ, ti−1)

ti− ti−1
(21)

can be calculated. The uncertainty related to the dark signal
drift can then be approximated conservatively by

udark(λ) = tdrift ×max
(
∆Sdark(λ, ti)

)
, (22)

where tdrift is the typical time between the measurements of
SX1 (λ) and the dark signal SXdark(λ). In the Monte-Carlo ana-
lysis, drifting of the dark signal is then represented by the
factors

fRefdark(λ) = 1+
udark
SRef2 (λ)

· ρRef
dark ,

fDUTdark (λ) = 1+
udark

SDUT2 (λ)
· ρDUT

dark . (23)
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Note that using max
(
∆Sdark(λ, ti)

)
is a feasible approach as

long as udark is no limiting contribution in the uncertainty
budget, which is usually the case for state-of-the-art spectro-
meters (compare section 4). Otherwise, more effort may be
required for treating this uncertainty contribution, e.g. dark
signal measurements before and after the illuminated meas-
urement.

3.3.3. External stray light. External stray light refers to light
incident onto the spectrometer’s measuring head that does
not originate directly from the light source but is reflected or
scattered in the surrounding. This causes an additional sig-
nal SRefstray,ext(λ) during the determination of K(λ), which is not
covered by the known spectral irradiance of the reference lamp
and must therefore be corrected according to equation (4). The
impact of external stray light can be determined experiment-
ally by placing a beam block in between the light source and
the spectrometer’s measuring head. The geometry and position
of the beam block shall be chosen such that its shadowmatches
the dimensions of the optically active area of the measuring
head. Note that this area does not necessarily coincide with
the dimensions of the entrance pupil or diffusor optic.

The beam block method provides a good estimate for
external stray light. However, the beam block changes the
optical properties of the measurement setup, especially for
light which is reflected by objects on the optical axis, such as
the rear wall of the room. This results in a remaining uncer-
tainty about external stray light, which could be assessed, for
instance, by optical simulations of the measurement setup.
An option for the experimental assessment of the remaining
uncertainty is a variation of the distance between light source
and measuring head, while keeping the distance between light
source and beam block constant. Having obtained the uncer-
tainty contribution uRefstray,ext(λ), it is included in the Monte-
Carlo analysis by

fRefstray,ext(λ) = 1+
uRefstray,ext(λ)

SRef4 (λ)
· ρRef

stray,ext . (24)

Using a random number between−1 and 1 reflects that the cor-
rection may overestimate as well as underestimate the external
stray light due to misalignment of the shadow on the measur-
ing head. External stray light is only considered for the refer-
ence measurement and not for the DUT measurement (com-
pare section 2).

3.3.4. Internal stray light. Light scattering inside the spec-
trometer may lead to a signal contribution at wavelengths dif-
ferent from that of the incident light. This type of stray light is
commonly denoted as spectral or internal stray light. Internal
stray light can lead to deviations in the measured signal [18],
especially in measurement regimes of low spectral irradiance.
The significance of this effect is a property of the specific
spectrometer system and of the measured spectral distribution.
Unlike external stray light, internal stray light effects cannot
be compensated by the measurement procedure. The impact of
internal stray light can be quantified and corrected rigorously

if the stray light matrix is known [18, 29]. The stray light mat-
rix, which is a unique property of the spectrometer system,
is determined by subsequently illuminating the spectrometer
with monochromatic light of several wavelengths and meas-
uring the signal at all other wavelengths. If there is evidence
for effects due to spectral stray light, but the effort for a rig-
orous stray light characterization is too high, approaches for
reducing the experimental effort related to the correction and
its evaluation [30–33] might be considered or a set of edge fil-
ters might be used for estimating the impact of spectral stray
light in different wavelength regions.

The implementation and uncertainty analysis of spectral
stray light correction according to the widely used method by
Zong et al [18] has been discussed in [33]. The methodology
presented in these references can be applied for performing a
stray light correction and determining the uncertainty contri-
butions uRefstray,int(λ) and u

DUT
stray,int(λ), which are included in the

uncertainty budget by

fRefstray,int(λ) = 1+
uRefstray,int(λ)

SRef4 (λ)
· ρRef

stray,int , (25)

fDUTstray,int(λ) = 1+
uDUTstray,int(λ)

SDUT4 (λ)
· ρDUT

stray,int . (26)

Note that due to the correlations introduced by the correction
[33], the random numbers ρRef

stray,int and ρ
DUT
stray,int are determined

in the outer loop of the Monte-Carlo algorithm (see figure 3).

3.3.5. Non-linearity of the detector with respect to irradiance.
The uncertainty of non-linearity corrections imposes uncer-

tainty for the spectral irradiance of the DUT. This holds inde-
pendently from the order of magnitude of the correction and
especially if the correction is neglected, i.e. clin,irr(λ)≡ 1. The
uncertainty ulin,irr

(
SX2 (λ)

)
of the non-linearity correction fol-

lows from experimental uncertainties during the determination
of the correction factor (see appendix D for an example). For
state-of-the-art spectrometers with negligible non-linearities,
it is common not to apply a correction and to use a conservative
estimate of maximum non-linearity as uncertainty ulin,irr(SX2 ),
where the wavelength dependence is neglected for reasons of
simplicity (see section 4 for an example). Having determined
the uncertainty of the correction, we take it into account in the
Monte-Carlo analysis by the factors

fReflin,irr(λ) = 1+
ulin,irr

(
SRef2 (λ)

)
clin,irr

(
SRef2 (λ)

) · ρlin,irr ,
fDUTlin,irr(λ) = 1+

ulin,irr
(
SDUT2 (λ)

)
clin,irr

(
SDUT2 (λ)

) · ρlin,irr .
(27)

Non-linearities are a property of the spectrometer and affect
both reference and DUT measurement in the same way. This
is reflected by using the same random number ρlin,irr for both
measurements. Since non-linearities with respect to irradiance
are assumed to affect themeasured signal in the sameway at all

8
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Figure 4. Impact of the bandwidth correction on a simulated
spectral irradiance (Etrue, black solid line) with strong spike features
as present in Xenon lamps.

wavelengths, the random number ρlin,irr is drawn in the outer
loop of the Monte-Carlo algorithm.

3.3.6. Non-linearity of the detector with respect to integration
time. Non-linearities with respect to integration time are
treated similarly to the previous subsection. The uncertainty
ulin,tint

(
SX2(λ)

)
of the non-linearity correction follows from

experimental uncertainties during the determination of the cor-
rection factor. For state-of-the-art spectrometers, the correc-
tion can often be neglected (clin,tint ≡ 1) and a maximum non-
linearity can be used as uncertainty ulin,irr(SX2), where the
wavelength dependence is neglected for reasons of simplicity.
The uncertainty is then taken into account in the Monte-Carlo
analysis by the factors

fReflin,tint(t
Ref
int ,λ) = 1+

ulin,tint
(
tRefint ,λ

)
clin,tint

(
tRefint ,λ

) · ρlin,tint ,
fDUTlin,tint(t

DUT
int ,λ) = 1+

ulin,tint
(
tDUTint ,λ

)
clin,tint

(
tDUTint ,λ

) · ρlin,tint .
(28)

3.3.7. Spectral bandwidth. The spectral bandwidth ∆λ of
a monochromator characterizes the wavelength interval [λ−
∆λ/2, λ+∆λ/2] around the nominal wavelength λ, within
which the transmittance is greater then zero. It is determined,
for instance, by the geometry of the grating and the slit width.
Typically, it depends on the wavelength. Array spectrometers

often feature a spectral bandwidth that exceeds the spectral
sampling, meaning that sharp spectral lines are detected by
several pixels.

Spectral bandwidth generates an additional detector sig-
nal Sbw(λ) due to light incident at adjacent wavelengths and
leads to a broadening of sharp spectral features, as illustrated
in figure 4. This figure shows a simulated spectral irradiance
(Etrue, black solid line) with strong spike features as present,
for instance, in Xenon lamps. The blue curve Emeas repres-
ents the measured spectral irradiance. It is calculated by fold-
ing Etrue with a triangular slit function with ∆λ= 10 nm. The
green and red curves show the results of the application of
two different bandwidth corrections (assuming a triangular
and rectangular slit function, respectively) to the blue curve
in order to reconstruct Etrue out of Emeas. For the correction,
we use the analytical formula equation (8). A derivation of
the formula is given in appendix E. Figure 4 demonstrates that
this correction restores the sharp spectral features, but also
leads to some falsification, especially in the valleys between
the sharp spectral features. In some cases, the correction may
also enhance statistical noise.

The spectral bandwidth correction according to equa-
tion (8) assumes a triangular bandpass function, which holds
for an ideal monochromator [34]. However, real spectromet-
ers usually feature a bandpass function that is rather gaussian-
shaped or even almost rectangular. The exact shape of the
bandpass function is often unknown, especially for array spec-
trometers. Gaussian or rectangular bandpass functions lead
to an increased signal Sbw(λ) compared to a triangular band-
pass function and hence require a modified correction function
(see appendix E). Furthermore, the proposed spectral band-
width correction formula only takes adjacent data points into
account. This mathematical simplification is, strictly speaking,
only applicable for spectral bandwidths that are approximately
of the same order of magnitude as the spectral sampling, which
is often not the case for the spectrometers used throughout
the laboratories. For uncertainty treatment using Monte-Carlo
methods, we therefore propose to randomly vary around the
triangular bandpass correction (ideal case) between no band-
width correction (delta-shaped bandpass function) and cor-
rection using a rectangular bandpass function (worst case).
In figure 4, this would lead to corrected spectral irradiance
curves lying between the blue curve (measured data) and the
red curve (corrected for a rectangular bandpass function). We
choose the distribution function of the corresponding random
number to be triangular. This reflects that the actual bandpass
function is most probably located somewhere around the tri-
angular bandpass function, whereas the probability for having
a delta-shaped or rectangular bandpass function is zero. For a
rectangular bandpass function, the correction function is twice
the correction function for a triangular bandpass function (see
appendix E). Hence, the variation between no correction and
rectangular bandpass correction can be included in the Monte-
Carlo analysis by the factors

fRefbw (∆λ,λ) = 1+
(
cbw(∆λ,λ)− 1

)
· τbw ,

fDUTbw (∆λ,λ) = 1+
(
cbw(∆λ,λ)− 1

)
· τbw . (29)
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Note that Sbw(λ) is correlated between reference and DUT
measurement, which is reflected in the Monte-Carlo analysis
by using the same random number τbw for both fRefbw (λ) and
fDUTbw (λ).

3.3.8. Wavelength accuracy. In order to obtain the spec-
trometer signal as a function of wavelength λ, the rela-
tion between grating position and selected wavelength of the
monochromator (or pixel number and wavelength for array
spectrometers, respectively) must be established. This is usu-
ally achieved by using spectral calibration lamps. These spec-
tral calibration lamps produce narrow, intense lines of ultravi-
olet (UV) to infrared (IR) wavelengths due to the excitation of
various rare gases and metal vapors, for which the wavelength
is known [35, 36]. Since only a limited number of spectral
lines is available for the wavelength calibration, a paramet-
rization function is usually fitted to the measured data. For
grating monochromators, linear functions are often sufficient,
whereas for array spectrometers, higher-order polynomials are
frequently used.

From the wavelength calibration, a wavelength uncertainty
uwl(λ) can be derived, which depends on the wavelength in
general. Basically, there are two options for dealing with
the wavelength uncertainty within the Monte-Carlo analysis:
First, the wavelength scale can be changed according to uwl(λ)
in each Monte-Carlo iteration. Afterwards, the resulting sig-
nals are interpolated to specific grid points (e.g. the nominal
wavelengths of the signals SX(λ)) in order to enable the calcu-
lation of EDUT

λ,i (λ) and its distribution. This approach is a rig-
orous treatment of wavelength calibration uncertainties; how-
ever, by changing the wavelength scale on each Monte-Carlo
iteration, complexity is added to the evaluation. The second
option is propagating the wavelength uncertainty uwl(λ) to a
change of the signals SX(λ). This can be done, for instance, by
calculating the slope

sX(λi) =
∂SX(λ)
∂λ

∣∣∣
λi

≈ SX(λi+1)− SX(λi−1)

λi+1 −λi−1
(30)

of the curve. The right hand side of the latter equation rep-
resents a numeric approximation of the derivative for discrete
data. The maximum signal change due to wavelength devi-
ations is then

∆SXwl(λ)≈ sX(λ)uwl(λ) (31)

and the uncertainty of the wavelength calibration is included
in the Monte-Carlo analysis using the factors

fRefwl (λ) = 1+
∆SRefwl (λ)

SRef4 (λ)
· ρwl ,

fDUTwl (λ) = 1+
∆SDUTwl (λ)

SDUT4 (λ)
· ρwl . (32)

This approach is used in our application example presen-
ted in the next section. Note that correlations between refer-
ence and DUT measurement are reflected by using the same
random number ρwl for both factors. Also note that ρwl is

determined in the outer loop of the Monte-Carlo algorithm
because we assume that a misalignment of the grating (or the
pixel number-to-wavelength relation for array spectrometers,
respectively) affects both reference and DUT measurement in
the same way. This assumption is usually justified. However,
there may be situations where a different treatment is neces-
sary, e.g. if there are movable components inside the spectro-
meter that affect thewavelength scale and cannot be positioned
reproducibly or move upon changes of the device temperature.

3.3.9. Spectral irradiance of reference lamp. The uncertainty
of the spectral irradianceERef

λ (λ) of the reference lamp is taken
from its calibration certificate. The values given there usu-
ally refer to a coverage factor k= 2 and a normal distribution.
Hence, the uncertainty uERef(λ) is obtained by dividing these
values by 2. We include the uncertainty of ERef

λ (λ) in our ana-
lysis with the factor

fEref(λ) = 1+
uERef(λ)

ERef
λ (λ)

· νERef . (33)

If the calibration certificate states relative uncertainties, which
is often the case, the division with ERef

λ (λ) has to be omitted.
The point of determination of the random number νERef within
theMonte-Carlo algorithm depends onwhetherERef

λ (λ) is cor-
related with respect to wavelength or not. In the first case, νERef

is determined in the outer loop; in the second case, it is determ-
ined in the inner loop. Partial correlations can be considered by
using the value of an additional random number for deciding
whether to use correlation or no correlation in each Monte-
Carlo cycle. In general, information about wavelength correl-
ations of ERef

λ (λ) needs to be provided by the calibration insti-
tution in order to account for them properly in the uncertainty
analysis.

3.3.10. Distance adjustment. The uncertainty of the dis-
tance adjustment udist is determined by two components: The
uncertainty of the distance measurement and the uncertainty
of the distance offset correction factor cdist. The uncertainty
of the distance measurement depends on the accuracy of the
measuring instrument (e.g. a micrometer gauge), which can
be obtained from its calibration certificate, and the alignment
accuracy of the measuring instrument. The alignment uncer-
tainty can often only be estimated and is usually larger than
the uncertainty of the instrument’s calibration. For measur-
ing heads with ∆d > 0, however, the uncertainty of ∆d is
often the dominant contribution to udist. One option for the
determination of this uncertainty component is performing a
Monte-Carlo analysis for the evaluation of ∆d according to
equation (B5). Afterwards, all uncertainty components can be
combined into udist using the standard GUM formalism.

In order to take udist into account for the uncertainty budget
of EDUT

λ (λ), we model the impact of distance variations using
the inverse square law for point light sources,

E(d) =
I
d2

, (34)
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where I denotes (spectral) radiant intensity directly at the light
source. If a small deviation δd from d occurs, Taylor series
expansion of equation (34) around d yields

E(d+ δd)≈ E(d)
(
1− 2δd

d

)
. (35)

In the Monte-Carlo analysis, δd is calculated on each iteration
according to δd= udist · ρdist, where udist defines the maximum
deviation from d according to the analysis described above.
Inserting this relation into the latter equation, we obtain the
distance correction factor

fdist = 1− 2udist
d

· ρdist (36)

for use in the Monte-Carlo analysis. This correction factor is
not wavelength dependent. The random number ρdist is there-
fore drawn in the outer loop of the Monte-Carlo algorithm.
Note that the uncertainty of ∆d as resulting from the Monte-
Carlo analysis may be normally distributed. If this is the
dominant component of udist, fdist should be calculated using a
normally distributed random number νdist instead of ρdist. Also,
note that there are measuring heads that feature a wavelength-
dependent offset, which may require a different treatment.

3.3.11. Accuracy of lamp operating current. The spectral
irradiance ERef

λ (λ) of the reference lamp is given for a specific
operating current, at which the lamp must be operated. Any
deviations from this nominal current lead to a change of the
temperature of the filament, which in turn leads to a deviation
of the spectral irradiance ERef

λ (λ) from the values tabulated in
the calibration certificate.

In order to estimate the change in ERef
λ (λ) due to operat-

ing current variations, we model the reference lamp as a black
body radiator with the spectral irradiance [37]

Ebb(λ,T)∝
hc
λ5

[
exp

(
hc
λkT

)
− 1

]−1

, (37)

where h denotes the Planck constant, c the speed of light in
vacuum, k the Boltzmann constant and T the temperature of
the filament (in units of Kelvin). In section 4, the validity of
this approach is demonstrated. The operating temperature Top
of the filament is estimated using the linear approximation

R(Top) = R0
(
1+α(Top −T0)

)
(38)

for the resistance R of the filament, which can be solved
for Top. In the latter equation, R0 denotes the resistance at
room temperature T0 and α is the temperature coefficient of
the filament, which can be taken from literature. The resist-
ance R0 at room temperature can be determined with a multi-
meter, whereas the resistance R(Top) at operating temperature
is approximated from voltage and current measurements at the
terminals of the lamp during operation at the nominal voltage
Vop and current Iop using Ohm’s law:

R(Top) =
Vop

Iop
. (39)

Laboratories usually perform these measurements anyway
in order to monitor the temporal stability of the lamp. The
dependence of the filament temperature on small variations δI
of the operating current can be calculated approximately by
combining equation (39) and equation (38), solving for T and
performing a Taylor series expansion around Top. This yields

T≈ Top − δT , (40)

where

Top =
Vop + IopR0(T0α− 1)

IopR0α
, (41)

δT =
Vop

I2opR0α
· δI . (42)

With equations (37) through (42), the change of the spectral
irradiance is

δEbb(λ,Top, δT) = Ebb(λ,Top ± δT)−Ebb(λ,Top) . (43)

In the Monte-Carlo analysis, δI is calculated on each itera-
tion according to δI= ucur · ρcurr, where ucur is the uncertainty
of the current measurement, i.e. defines the maximum devi-
ation from Iop. It must be determined by a separate uncertainty
analysis and depends on the instrumentation for operating the
lamp. In summary, the temperature variation on each Monte-
Carlo iteration is

δT=
Vop

I2opR0α
· ucurρcurr (44)

and we obtain a factor

fcur(λ) = 1+
δEbb(λ,Top, δT)

Ebb(λ,Top)
(45)

for use in the Monte-Carlo analysis. Note that we assume a
rectangular distribution for δI because themeasurement uncer-
tainty of the multimeter, which is rectangularly distributed,
is usually the dominant uncertainty component. A different
treatment might be necessary if δI is not rectangularly dis-
tributed. The random number ρcurr is determined in the outer
loop of the Monte-Carlo analysis in order to reflect that vari-
ations of the operating current cause correlations with respect
to wavelength in the measured spectral irradiance.

Another possibility for quantifying the uncertainty related
to the lamp operating current is measuring the signal SRef5 (λ)
while tuning the operating current close to its nominal value
Iop. Thereby, the factor

fcur(λ) = 1+
ucur

SRef5 (λ)

∂SRef5 (λ)

∂I

∣∣∣
Iop

· ρcurr . (46)

can be determined experimentally.
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3.3.12. Long term reproducibility. Uncertainty contribu-
tions that lead to deviations in the radiometric correction func-
tion K(λ) over time are summed into this contribution. This
covers, for instance, aging effects of the instrument, mech-
anical instabilities that may result from transport or storage
and possibly non-reproducible instrument settings such as
fibre connections. Moreover, ageing of the reference lamp is
covered by this contribution. Ageing of reference lamps is
discussed in more detail in appendix A. Deviations of the
radiometric correction function can be evaluated experiment-
ally, for instance, by comparing different measurements of
the radiometric correction function over time, which are per-
formed under the same conditions and with an identical setup.
From these data, the mean radiometric correction function
K(λ) and its uncertainty urep(λ) can be calculated. This uncer-
tainty contribution is then taken into account in the uncertainty
budget by the factor

frep(λ) = 1+
urep(λ)

K(λ)
· ρrep . (47)

3.3.13. Temperature effects. Temperature dependent prop-
erties of several spectrometer components can affect the meas-
ured signal. For instance, the spectral responsivity of the
detector can have a wavelength dependent temperature coef-
ficient. Moreover, mechanical parts in the spectrometer (such
as slits or optical gratings) could move upon temperature vari-
ations and thereby affect the measured signal. Changes of the
instrument’s temperature can arise not only from changes of
the ambient temperature, but also from radiative heating by the
light source or from internal heating caused by the electron-
ics. For this reason, state-of-the-art spectrometers often fea-
ture temperature-controlled detectors. If temperature affects
the measured signal, a correction is required as outlined in
section 2 and appendix C. The uncertainty utemp of this cor-
rection, which follows from experimental uncertainties during
the determination of the temperature correction factor ctemp,
imposes uncertainty for the spectral irradiance of the DUT (see
section 4 for an example). This also holds if the correction is
neglected (i.e. ctemp ≡ 1). Having determined the uncertainty
of the correction factor, we take it into account in the Monte-
Carlo analysis by the factor

ftemp(λ) = 1+
utemp(λ)

ctemp(λ)
· ρtemp . (48)

The random number ρtemp is determined in the outer loop of
the Monte-Carlo algorithm because we assume that changes
of the temperature affect the measurement in the same way
at all wavelengths. This usually holds for array spectromet-
ers, which are widely used throughout the laboratories. For
slow scanning spectrometers, a different treatment might be
necessary.

3.3.14. Tilt of the measuring head. For the measurements,
the measuring head needs to be adjusted such that the optical
axis runs perpendicularly through its center, i.e. the angle θ

between its surface normal and the optical axis is 0. Any devi-
ation from θ= 0 will lead to deviations of the signal SX5 (λ).
The uncertainty uXtilt of the angle adjustment can be estimated,
for instance, by using a laser beam which is adjusted parallely
to the optical axis and irradiates the measuring head from a
large distance. From the lateral displacement of the reflected
beam, the tilt angle can then be calculated using trigonomet-
rical relations.

In order to model the impact of tilt on the spectrometer sig-
nal, we note that in the vicinity of θ= 0, the angular response
of typical measuring heads can be described by the cosine
relation

S(θ)
S0

= cosθ , (49)

where S0 is the signal under perpendicular incidence of light.
If a small deviation δθ from 0 occurs, Taylor series expansion
of the latter equation around 0 yields

S(δθ)
S0

≈ 1− δθ2/2 . (50)

In the Monte-Carlo analysis, δθ is calculated on each iteration
according to δθ = uXtilt · ρXtilt. Inserting this into the latter equa-
tion, we obtain the factors

fReftilt = 1− (uReftilt )
2

2
· ρRef

tilt ,

fDUTtilt = 1−
(uDUTtilt )2

2
· ρDUT

tilt . (51)

for use in the Monte-Carlo analysis. These factors are not
wavelength dependent because we assume that δθ affects the
signal in the same way at all wavelengths. This assumption is
approximately fulfilled for typical measuring heads. The ran-
dom numbers ρRef

tilt and ρDUT
tilt are therefore determined in the

outer loop of the Monte-Carlo analysis. Note that δθ and uXtilt
are specified in units of radians here.

3.3.15. Non-uniformity of the light field and temporal stability
of the DUT. The spectral irradiance of the DUT is determ-
ined at a position (x0,y0) in the light field at a certain point
t0 in time. Spatial and temporal variations of the spectral irra-
diance may lead to deviations if the measurement position is
changed or if the measurement is repeated at a later point in
time. It depends on the purpose of the measurement whether
these contributions should be considered or not. If the intention
of the measurement is the determination of the spectral irradi-
ance ‘as is’ at the moment and position of measurement, they
can be ignored. If the intention is a comparison between dif-
ferent instruments that do not measure simultaneously or not
at the same position, these uncertainty contributions should be
included. They could be estimated experimentally by carrying
out measurements of SDUT4 (λ) at different positions in the light
field (giving uDUTnon−u(λ)) and/or at different points in time (giv-
ing uDUTstab−t(λ)). From these measurements, correction factors

fDUTnon−u(λ) = 1+
uDUTnon−u(λ)

SDUT4 (λ)
· ρDUT

non−u , (52)
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Figure 5. ISFH CalTeC’s current-voltage characteristic
measurement facility for solar cells. The solar simulator (WACOM
WXS-156 S-L2) provides a light field of 170× 170 mm2.

fDUTstab−t(λ) = 1+
uDUTstab−t(λ)

SDUT4 (λ)
· ρDUT

stab−t (53)

can be obtained. fDUTnon−u(λ) is especially important for large-
area solar simulators and fDUTstab−t(λ) is especially important for
pulsed solar simulators. The spectral irradiance of a pulsed
solar simulator can vary during ignition, on the plateau and
during the decay phase of the pulse. Such variations can be
evaluated by measuring the spectral irradiance with a spec-
troradiometer featuring an integration time much smaller than
the pulse duration. Furthermore, the reproducibility of such
measurements should be carefully evaluated.

4. Application example

As an application example, we specifically describe the pro-
cedure for determining the spectral irradiance of ISFH Cal-
TeC’s solar simulator, which is used for certified measure-
ments of solar cells. The solar simulator forms part of a
current-voltage characteristic (IV) measuring facility, which
is shown in figure 5. It is a two lamp system (Xenon and Halo-
gen) from WACOM (WXS-156 S-L2) and produces a spec-
tral irradiance similar to the AM1.5G distribution as tabulated
in the IEC 60 904-3 standard [38]. The size of the quadratic
light-field is 170× 170 mm2. The solar simulator is rated as
AAA (rating for: spectral match to AM1.5G, non-uniformity
of irradiance and instability of irradiance) according to the
IEC60 904-9 standard [39]. For a convenient and fast determ-
ination of the spectral irradiance, an array spectrometer (see
next section) is integrated on a motorized stage.

Figure 6. CompactSpec spectrometer (demounted from the IV
measuring facility) used for measuring the spectral irradiance of the
solar simulator.

4.1. Instrumentation and measurement procedure

The spectral irradiance of the solar simulator is acquired for
each solar cell calibration measurement and thus very often.
In order to achieve short measurement times of the order of
seconds, we use a custom-made CompactSpec array spectro-
meter manufactured by tec5, which is shown in figure 6. The
spectrometer features a silicon array detector (Zeiss, MCS
55 UV-NIR) and an indium gallium arsenide array detector
(Zeiss, PGS-NIR 1,7) and is sensitive in the wavelength range
from 200 nm to 1700 nm. As can be seen in the picture, the
measuring head of the instrument (transmission diffuser) is
attached to the housing in order to avoid problems with mov-
ing optical fibers. At the IV measurement facility, the spec-
trometer is mounted on a motorized stage, which allows to
move it into the light field of the solar simulator automatic-
ally as shown in figure 5. The measuring head of the spectro-
meter is equipped with a software-controllable optical shutter.
The InGaAs detector is temperature-controlled. The Si-CCD
detector does not feature a temperature control. However, a
Pt1000 temperature sensor is attached to the detector in order
to monitor its temperature, which is used as input for a tem-
perature correction as described in the next section. A spectral
stray light correction matrix according to the method by Zong
et al [18] was determined for the instrument using the PLA-
COS facility at PTB [40] upgraded with a new nanosecond-
OPO operating at 1 kHz repetition rate. The spectral stray light
correction and its uncertainty have been discussed in detail
in [33].

A schematic of the calibration facility for our spectrometer
is shown in figure 7. The facility consists of an optical table
with an area of 100× 300 cm2, on which the components are
mounted. The reference lamp is mounted on a lamp holder,
which can be adjusted using a y-z-φ stage. We use 250 W
quartz tungsten halogen (QTH) lamps, usually of the types
BN-LH250-BC (Gigahertz Optik) or HLX 64 654 (Osram).
The spectral irradiance of these lamps is calibrated at the PTB.
Figure 8 depicts the typical spectral irradiance of a reference
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Figure 7. Schematic of the measurement facility for determining the
radiometric correction function K(λ) of spectrometers at ISFH
CalTeC. The housing made of black molton fabric is not shown in
the figure.

Figure 8. Typical spectral irradiance of a reference lamp (250 W
QTH lamp) at a distance of 300 mm and corresponding uncertainty
(k= 2) as given by PTB.

lamp at a distance of 300 mm and the corresponding measure-
ment uncertainty (k= 2). Using 250 W lamps instead of 1000
W FEL lamps (the common type of reference lamp in many
laboratories) is advantageous with respect to limited space in
our laboratory because the measurement facility can be con-
structed more compact and the heat input into the room is
reduced. On the other hand, the shorter measuring distance
requires a more accurate distance adjustment. Between the ref-
erence lamp and the measuring head of the spectrometer, an
aperture and a beam block are positioned. The beam block
(width 15mm) is motorized to carry out automatic background
signal measurements.

The lamp is operated by a precision power supply (Hein-
zinger, PTNhp 125-10) which is capable of providing the lamp
operating current Iop of 9.7A with a deviation of not more than
±0.7 mA (0.007%) according to our measurement uncertainty
analysis. Twomultimeters (Fluke 8845A) are used for measur-
ing the lamp operating voltage Vop directly at the terminals and
the voltage drop over the measurement shunt (Isabellenhütte,
RUG-Z-R100-0.1-TK10) to determine the lamp current Iop.
The measurement shunt is connected in series to the lamp

Figure 9. Alignment of reference lamp and measuring head on the
optical axis using the bidirectional alignment laser.

and the power supply. It is attached to the table for cool-
ing purposes. During the operation of the lamp, the computer
continuously monitors operating voltage, current and power
Pop = Vop · Iop as well as the temperature of the measurement
shunt. The shunt temperature is monitored using a Pt1000
temperature sensor, which is attached to the shunt and con-
nected to a ZILA DTM5080 measurement controller plugged
to the computer. We consider the lamps stable if the operat-
ing power does not vary by more than 0.5 W after calibra-
tion. This threshold value results from the analysis outlined in
appendix A.

The spectrometer is mounted on an x-stage rail, such that
the distance between the reference lamp and the detector head
can be precisely adjusted. For this purpose, we use an inside
micrometer gauge (Mitutoyo, 339-301) with an accuracy of
±1 µm. Thereby, we are able to adjust the distance with an
accuracy of±100 µm. This value follows from the uncertainty
of the length calibration and the reproducibility of the distance
adjustment. The precise alignment of the reference lamp and
the measuring head of the spectrometer on the optical axis is
facilitated by a bidirectional alignment laser (Bosch GPL5C
Professional), which is placed in between the lamp and the
detector head (see figure 9).

The nominal distance, for which the spectral irradiance of
our 250WQTH reference lamps is specified in the calibration
certificate, is 300 mm. According to a distance variation meas-
urement as described in appendix B, the offset of the spectro-
meter’s measuring head is determined to be (1.96± 0.78)mm.
We thus set the micrometer gauge to 298.04 mm (compare
figure 1) and take the uncertainty of this correction plus the
uncertainty of the distance adjustment (100 µm) into account
as udist.

After a sufficient warm-up time for the spectrometer elec-
tronics (2 h) and the reference lamps (20 min), the radiometric
correction function K(λ) of the spectrometer is determined by
relating the detector signal to the known spectral irradiance of
the reference lamp as described in section 2. We apply the cor-
rectionsmentioned there and repeat themeasurement 25 times.
External stray light and detector dark signal are measured sim-
ultaneously bymoving the beam block into the beam path. The
overall measurement time is of the order of 50 s. Since drifting
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Table 1. Input parameters for the uncertainty analysis.

Parameter Si detector InGaAs detector

udark 9.865× 10−6 s−1 5.733× 10−7 s−1

ustray,ext 5.5× 10−4 5.5× 10−4

ulin,tint 6.785× 10−4 1.809× 10−4

ulin,irr 4.536× 10−4 3.163× 10−3

∆λ 3.5 nm 7 nm
uwl 0.15 nm 0.15 nm
ucur 0.7 mA 0.7 mA
urep 4.374× 10−3 1.951× 10−3

udist 0.88 mm 0.88 mm
uXtilt 0.01 rad 0.01 rad
utemp 0.3

◦
C 0.3

◦
C

uXnoise standard deviation of 25 repeated measurements
utemp · cT(λ) see figure 10
uRefstray,int(λ) see figure 10
uDUT
stray,int(λ) see figure 10
uERef(λ) see figure 10

of the dark signal is negligible on this time scale, we are able
to apply a sequential measurement mode (25 sequential meas-
urements without beam block, afterwards 25 measurements
with beam block). For convenience, we store the resulting
K(λ) in a file that is loaded and directly applied in the soft-
ware controlling the IV measurement facility. The radiometric
correction function of our instrument is stable on time scales
of months. A recalibration is performed every six months.
Additionally, the stability is routinely checked in between
the recalibrations using a field calibrator light source (CMS
Schreder, KS-J1011), which can be used without demounting
the spectrometer from the IV measurement facility.

4.2. Measurement uncertainty evaluation

This section summarizes the experimental determination of
the parameters used for the measurement uncertainty analysis
according to the methodology outlined in section 3. The res-
ulting values are listed in table 1 and figure 10.

4.2.1. Measurement noise. is taken into account by repeat-
ing all measurements 25 times and using mean values and
standard deviations for the calculations.

4.2.2. Drift of the dark signal. This uncertainty contribu-
tion is experimentally determined from a series of dark sig-
nal measurements over the course of several hours under typ-
ical measurement conditions. From these data, the maximum
drift∆Sdark(λ) is obtained andmultiplied with the typical time
between illuminated and dark measurements (50 s).

4.2.3. External stray light. We estimate the efficiency of
the external stray light correction (beam block method) in
our setup by ray tracing simulations using the ray tracer
DAIDALOS [41]. The simulation allows to distinguish
between direct light rays from the light source and indirect

Figure 10. Spectrally dependent input parameters for the
uncertainty analysis.

rays, i.e. rays that undergo at least one reflection within the
setup before hitting the measuring head and thus represent
external stray light. Hence, the simulation allows to investig-
ate deviations of the the measured signal Smeas with external
stray light correction from the ideal signal Sid (only direct
rays). From the simulation, we deduce a relative uncertainty
of SRef4 (λ) of

uRefstray,ext = 0.0005 (54)

for all wavelengths, which we include in theMonte-Carlo ana-
lysis using the factor

fRefstray,ext = 1+ uRefstray,ext · ρRefstray,ext . (55)

Details about the ray tracing simulation are given in
appendix F.

4.2.4. Internal stray light. The uncertainty contribution due
to spectral stray light correction is evaluated as outlined in a
previous publication [33]. This analysis yields a rectangularly-
distributed uncertainty contribution for the spectral stray light
correction. The correction introduces correlations over the
wavelength intervals 250 nm to 300 nm, 300 nm to 950 nm and
950 nm to 1700 nm. These correlations are taken into account
in the uncertainty analysis for EDUT

λ (λ) by using three random
numbers for the corresponding wavelength intervals instead of
one for the calculation of fRefstray,int(λ) and f

DUT
stray,int(λ).

4.2.5. Detector non-linearities. We measure non-linearities
with respect to irradiance level using the two lamps-method
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as described in appendix D. Non-linearities with respect to
integration time are measured using a stable reference lamp.
As our spectrometer only shows small non-linearities, which
are of the order of measurement uncertainty, we do not apply
non-linearity corrections and also neglect the wavelength
dependence of these contributions. The observed deviations
are considered in the uncertainty analysis by the factors

f Reflin,tint(λ) = 1+ ulin,tint · ρlin,tint , (56)

f DUTlin,tint(λ) = 1+ ulin,tint · ρlin,tint , (57)

f Reflin,irr(λ) = 1+ ulin,irr · ρlin,irr , (58)

f DUTlin,irr(λ) = 1+ ulin,irr · ρlin,irr , (59)

where ulin,tint and ulin,irr are relative deviations. The specific
values are given in table 1.

4.2.6. Spectral bandwidth. is taken into account using the
parameters specified in table 1.

4.2.7. Wavelength accuracy. is taken into account using the
parameters specified in table 1.

4.2.8. Spectral irradiance of reference. The uncertainty
related to ERef

λ (λ) is taken from the calibration certificate
issued by PTB.

4.2.9. Distance adjustment. The uncertainty of the dis-
tance adjustment is determined by two components, namely
the uncertainty of the distance offset correction factor (cdist),
which we determine to be 0.78 mm, and the uncertainty of the
adjustment (0.1 mm). Both components are rectangularly dis-
tributed. Combining the components yields udist = 0.88 mm
as specified in table 1. The distance offset is the dominant
component. Hence, udist is also (approximately) rectangularly
distributed.

4.2.10. Variation of lamp operating current. We operate a
Quartz-Tungsten-Halogen (QTH) lamp (250 W) with a nom-
inal operating current of Iop = 9.7 A at a voltage Vop of typic-
ally 21.0 V. The uncertainty of the operating current is ucur =
0.7 mA. This value results from an analysis of the current
adjustment accuracy at our facility, which takes the measure-
ment uncertainty of the operating current and the stepwidth
of current adjustment by the power supply into account. We
obtain an electrical operating power Pop of 203.7 W and a fila-
ment temperature of Top = 3 462.2 K. The lamp resistance R0

measured at room temperature (296.15 K) is 0.15 Ω, the lamp

Figure 11. Comparison of the the measured spectral irradiance of a
typical 250 W QTH reference lamp (symbols) with the blackbody
model according to equation (37) (black line).

resistance at operating temperature Top is R(Top) = Vop/Iop =
2.16 Ω. The filament temperature variation due to operation
current variations of ±0.7 mA is thus δT = ±0.3 K accord-
ing to equation (42), resulting in relative deviations of spectral
irradiance of 0.14% at 250 nm, 0.07% at 500 nm and 0.02%
at 1700 nm. Figure 11 compares the measured spectral irradi-
ance of a typical 250 W QTH reference lamp (symbols) with
the blackbody model according to equation (37) (black line),
showing that treating the reference lamp as a blackbody radi-
ator is a reasonable approximation for evaluating this uncer-
tainty contribution.

4.2.11. Long term reproducibility. This uncertainty contribu-
tion is determined from the deviation of the radiometric correc-
tion function determined with an identical setup. The specific
parameter for the uncertainty calculation is given in table 1.

4.2.12. Detector temperature effects. Since the InGaAs
detector of our spectrometer is temperature controlled, we
only apply a correction to the signal measured by the silicon
detector. We refer the correction to the temperature difference
(TDUT −TRef) betweenDUT and referencemeasurement (typ-
ically of the order of 2 K in our laboratory) and thus only apply
a correction to the DUT measurement. For the correction, we
assume that the origin of the detector’s temperature sensitivity
is the temperature dependence of the absorption coefficient of
silicon α. This assumption has been validated by varying the
detector temperature using a hot air fan while measuring the
detector signal when being irradiated by a (stable) reference
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Figure 12. Left: Spectral irradiance of solar simulator (black line) and corresponding relative uncertainty (k= 2, dashed blue line). Right:
Histogram of EDUT

λ,i at 550 nm resulting from 10 000 Monte-Carlo iterations. The black curve represents a normal distribution fitted to the
data.

Figure 13. Sensitivity analysis for U
(
EDUT
λ (λ)

)
. Left: Si detector (250 nm–1000 nm). Right: InGaAs detector (950 nm–1700 nm).

lamp. The relative temperature coefficient cT is taken from lit-
erature [42] and used for a correction,

EDUT
λ,corr(λ) = EDUT

λ (λ)
(
1+ cT(λ) · (TDUT −TRef)

)
. (60)

We apply the temperature correction to EDUT
λ (λ) instead of

SDUT1 (λ) for the sake of simplicity. This is possible because
all corrections (including the temperature correction) only
have a minor impact on the resulting spectral irradiance. The
detector temperature is measured by a Pt1000 temperature
sensor, which is attached to the sensor’s housing. Therefore,
the sensor’s chip temperature may slightly deviate from the
measured temperature. On the other hand, the temperature
measurement is correlated between reference and DUT meas-
urement, so that systematic deviations cancel out. Based on

experience, we estimate the overall uncertainty of the temper-
ature difference to be utemp = 0.3 ◦C and include a factor

ftemp(λ) = 1+ cT(λ)utemp · ρtemp (61)

in the Monte-Carlo analysis. The product cT(λ) · utemp is visu-
alized in figure 10.

4.2.13. Tilt of the measuring head. The alignment on the
optical axis is performed bymeans of a bidirectional alignment
laser in such a way that the beam incident on the measuring
head is reflected back into itself. The spot size of our laser is
1 mm and the distance between laser and measuring head is
about 10 cm during the adjustment. A lateral displacement of
the reflected beam of 1 mm on the output window of the laser,
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which is clearly visible, thus corresponds to a tilt angle of 0.6◦

or 0.01 rad, respectively. This value is used as an estimate for
uXtilt.

4.2.14. Non-uniformity of the light field and temporal stability
of the DUT. Our measurements refer to a specific lateral pos-
ition in the light field and a specific point of time. Hence, we
do not consider these uncertainty contributions.

4.3. Measurement and uncertainty analysis results

Figure 12 (left graph) depicts the measured spectral irradiance
EDUT
λ (λ) of the solar simulator and its relative uncertainty as

following from the analysis outlined in section 3. Additionally,
the right graph exemplarily shows the distribution of EDUT

λ,i (λ)
at 550 nm (450 bins), from which the values in the left graph
are determined using equations (15) and (16). The solid line
in the right graph represents a normal distribution fitted to the
data. The gaussian shape of the distribution is representative
for the whole wavelength range. All calculations are imple-
mented in Python and make use of the standard random num-
ber generators included in the NumPy package [43]. The code
will be made available on the website of our institute by the
time of publication of this paper. Typically, we use N= 10000
Monte-Carlo iterations, leading to calculation times of about
3 min on a standard laptop computer.

With respect to a further optimization of the measurement
procedure, it is instructive to analyze the impact of the dif-
ferent uncertainty contributions for EDUT

λ (λ). One option for
this, as described in the GUM [17], supplement 1, is setting
all but one single uncertainty contribution to zero, running the
uncertainty calculation and plotting the result as a function of
wavelength. This way, the dominant uncertainty contributions
become directly visible. Figure 13 depicts the results of
such a calculation for our measurement. On the ordinate, the
expanded uncertainty U

(
EDUT
λ (λ)

)
= 2 u

(
EDUT
λ (λ)

)
is plot-

ted, which is obtained if only one uncertainty contribution
is considered in the analysis. The plot reveals that domin-
ant uncertainty contributions arise from the calibration of the
reference lamp, internal stray light and signal-to-noise ratio
in the spectral regions where the sensitivity of the detectors
is low. If sharp spectral features are present, spectral band-
width and wavelength uncertainty also contribute significantly
to the overall uncertainty. Note that when considering only one
uncertainty component as input, the output quantity EDUT

λ (λ)
is distributed as the corresponding input quantity. Hence,
for rectangularly-distributed quantities like uRefstray,ext(λ), for
instance, the resulting distribution of EDUT

λ (λ) is also rectan-
gular. In order to properly compare the impact of the differ-
ent uncertainty components, the standard uncertainty u [17]
of EDUT

λ (λ) must be used, i.e. u=σ for normal distributions,
u= a/

√
3 for rectangular distributions and u= a/

√
6 for tri-

angular distributions, where σ is the standard deviation and 2a
is the width of the distribution. In figure 13, this is taken into
account. Note that a sensitivity analysis should be regarded
as a qualitative tool for improving the measuring procedure.

Figure 14. Impact of spectral stray light correction when
determining the spectral irradiance of ISFH CalTeC’s solar
simulator.

Also, note that another option for performing a sensitivity ana-
lysis would be setting only one single uncertainty contribution
to zero, while all other uncertainty contributions are retained.

Although the implementation of spectral stray light correc-
tion into the calculation of EDUT

λ (λ) is straight forward (mat-
rix multiplication), the experimental effort for the determin-
ation of the correction matrix can be enormous and requires
an elaborate measurement facility. In practice, this may lead
to an imbalance between effort and required accuracy of the
measurement. Therefore, it is instructive to look at the overall
impact of spectral stray light correction. Figure 14 visualizes
the spectral irradiance determined once with (Ecorr(λ), red dot-
ted line) and oncewithout (Euncorr(λ), black solid line) applica-
tion of the stray light correction. The top graph shows the abso-
lute amount of relative deviation |

(
Ecorr(λ)/Euncorr(λ)

)
− 1| of

corrected and uncorrected spectral irradiance and compares it
to the relative uncertainty of EDUT

λ (λ) when only considering
the contribution due to the spectral stay light correction (from
figure 13). The deviation is mainly below 1% and increases to
10% in the UV region, where the spectral irradiance is low,
and around 1050 nm. For most wavelengths, the uncertainty
induced by the correction exceeds the impact of the correction
itself. Hence, we find that in this case the spectral stray light
correction has minor impact on the measured spectral irradi-
ance for our solar simulator and spectrometer. However, the
uncertainty of the correction must be considered in the uncer-
tainty budget, especially if the correction is neglected. Note
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that these results are not necessarily transferable to different
solar simulators and/or spectrometers.

5. Conclusion

We presented an in-depth uncertainty analysis for measure-
ments of spectral irradiance caused by direct solar radiation.
Fifteen uncertainty sources were discussed in detail and ana-
lytical equations formodeling the impact of these uncertainties
on the overall uncertainty of the measured spectral irradiance
were given. As a specific application example, we described
the determination of the spectral irradiance of ISFH CalTeC’s
solar simulator by means of an array spectrometer and out-
lined the corresponding measurement uncertainty analysis.
The uncertainty is mostly of the order of 2%–3% in the
wavelength range from 300 nm to 1700 nm. In the edge-
regions, it increases to values of up to about 80% due to noise
and stray light. We showed that for this measurement facility,
dominant uncertainty contributions arise from the calibration
of the reference lamp, internal stray light, signal-to-noise ratio
(in regions where the sensitivity of the detectors is low), spec-
tral bandwidth and wavelength uncertainty (in regions where
sharp spectral features are present). We also showed that at
ISFH CalTeC, the spectral stray light correction does not alter
the measured spectral irradiance of the solar simulator signi-
ficantly. However, this result is not necessarily transferable
to different irradiation conditions and/or spectrometers. The
uncertainty of the stray light correction must nevertheless be
included in the uncertainty budget of the spectral irradiance.
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Appendix A. Monitoring the stability of reference
lamps

Reference lamps are usually operated with constant current
Iop. Many laboratories continuously log the operating current
Iop and voltage Vop measured at the terminals of the lamp in

order to monitor the temporal stability of the operating power
Pop = Iop ·Vop and thus the validity of the spectral irradiance
tabulated in the calibration certificate. If the operating power
deviates from the value during the calibration, a recalibration
may be necessary. Treating the lamp as a blackbody radiator
allows to estimate the change of the spectral irradiance caused
by a change of the operating power and thereby to define a
threshold value for the largest accepted deviation.

In analogy to section 3, we can express the power P as a
function of voltage and resistance using Ohm’s law and per-
form a Taylor series expansion around Pop:

P≈
V2
op

Rop
+

2Vop

Rop
δV= Pop + δP , (A1)

where Rop = Vop/Iop. From the latter equation,

δV= δP
Rop

2Vop
(A2)

follows. Next, we approximate the change of the filament tem-
perature δT in analogy to equations (40) through (42). How-
ever, we calculate δT as a function of δV due to the constant
current control and obtain

δT=
δV

IopR0α
. (A3)

Inserting equation (A2) into equation (A3) yields

δT=
δP
Pop

Rop

2R0α
. (A4)

With this expression, equation (43) can be used for calculating
the change of the spectral irradiance resulting from a change
of the electrical power.

For our 250 W QTH reference lamps, we allow a max-
imum deviation of 0.5 W from the operating power during the
calibration before a recalibration is performed. Regarding the
example described in section 4, a power deviation of 0.5 W
corresponds to a voltage deviation of about 26 mV and a tem-
perature deviation of about 4 K, resulting in a relative devi-
ation of the spectral irradiance of 2.2% at 250 nm, 1.1% at 500
nm and 0.34% at 1700 nm. These deviations are smaller than
the measurement uncertainties indicated at these wavelengths,
which shows that 0.5 W is a reasonable threshold value for
these lamps. Note that voltage deviations are also likely to
occur due to thermal expansion inside the terminal blocks of
the bulb during the operation of the lamp. This affects the con-
tact resistance but not the filament temperature due to the con-
stant current control. Hence, the threshold value should not be
chosen too low. For our lamps, we observe voltage deviations
of the order of 15 mV that do not cause measurable deviations
of the spectral irradiance and thus are likely due to changes of
the contact resistance.
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Appendix B. Determination of distance offset

Experimentally,∆d can be determined by varying the distance
d between a stable point light source and the measuring head
and fitting the relation

S(d) = S(dmin)

(
dmin +∆d
d+∆d

)2

(B5)

to the measured signal S(d) [44, 45], where dmin is the shortest
distance chosen in the experiment. For some instruments,
a wavelength dependence of ∆d may be observed. If the
wavelength dependence is not significant (i.e. only leads to
small signal deviations compared to the overall measurement
uncertainty), a mean value of ∆d may be used and deviations
of ∆d with respect to wavelength may be considered in the
uncertainty budget.

Appendix C. Temperature correction

The temperature correction factor ctemp(λ) can be determined
experimentally by artificially heating the spectrometer while
measuring the background-corrected signal S(λ) of a stable
light source, e.g. a reference lamp. The heating can be per-
formed using a hot air fan or, more accurately, by putting the
spectrometer inside a temperature-controlled chamber. From
this measurement, the temperature correction coefficient can
be deduced:

ctemp(λ) = 1+
1

S(λ)
∂S(λ)
∂T

δT , (C6)

where δT should be small compared to the nominal temperat-
ure of the spectrometer. This condition is usually fulfilled in
air-conditioned laboratories. Special attention to the applicab-
ility of the latter equation should be paid under outdoor con-
ditions or if strong radiative heating of the spectrometer by
the DUT occurs. The uncertainty utemp(λ) of the temperature
correction coefficient arises from the experimental uncertain-
ties during the determination of ctemp(λ), in particular: The
uncertainty of the temperature deviation δT, the uncertainty
of S(λ) and the appropriateness of the linear approximation
expressed in equation (C6). The standard GUM formalism can
be used to combine these uncertainties into the overall uncer-
tainty utemp(λ).

Appendix D. Non-linearity corrections

Determining the spectral irradiance of the DUT according to
equation (12) requires a linear behavior of the detector with
respect to spectral irradiance and integration time because the
spectral irradiance of the reference and DUT can differ by
several orders of magnitude, depending on the wavelength.
Deviations from a linear characteristic (as exemplary shown
in figure D1) would cause a signal deviation, which must be
taken into account.

There are several possibilities for the determination of non-
linearities related to irradiance variation, e.g. using the inverse

Figure D1. Top: Examplary detector output signal S(λ0) as a
function of irradiance level E(λ0) for a linear (black), a quasi-linear
(green) and a non-linear detector (red). Bottom: Resulting
uncertainty ulin,irr(λ0) for the quasi-linear detector and non-linearity
correction factor clin,irr(λ0) for the non-linear detector. The dotted
line is a guide to the eye.

square law and varying the distance between light source and
detector or using calibrated filters with different attenuation
factors. The most accurate determination of non-linearities
is facilitated by the superposition method [46] (often also
called ‘two lamps-method’). This method uses two stable light
sources A and B, which illuminate the detector one after the
other. Afterwards, both light sources illuminate the detector
simultaneously (A+B). The irradiance level on the detector
is EA(λ) for the first lamp, EB(λ) for the second lamp and
EC(λ) = EA(λ)+EB(λ) for both lamps together. The corres-
ponding detector signals are SA(λ), SB(λ) and SC(λ). Ideally,
SC(λ) should be equal to SA(λ)+ SB(λ). Deviations from this
characteristic lead to the two lamps-ratio

rSC(λ) =
SA(λ)+ SB(λ)

SC(λ)
(D7)

different from unity, which can be interpreted as a local
deviation from linear behaviour for a given signal level SC(λ).

Figure D1 visualizes the results of the two lamps-method
qualitatively for a single wavelength λ0. A linear detector fea-
tures a signal S(λ0) that is proportional to the spectral irra-
diance E(λ0) and thus behaves according to the black line in
the upper graph. The green curve represents a quasi-linear
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detector, which behaves linearly in the low irradiance range
and shows small non-linearities at high irradiance. In con-
trast, the red curve represents a detector showing significant
non-linearities. The two lamps-method probes these curves
at different signal levels SC(λ), which are represented by the
symbols. The different symbols correspond to one measure-
ment series each, where the signal is always doubled. Three
measurement series are shown for the quasi-linear and the
non-linear case. The lower graph depicts the corresponding
ratio rSC(λ0) as calculated from equation (D7). For the linear
device, rSC(λ0)≡ 1, whereas for the non-linear device, signi-
ficant deviations from unity are observed. For the quasi-linear
device, rSC(λ0)≈ 1 holds.

If no significant non-linearities are observed (green dia-
monds in lower graph of figure D1), the non-linearity correc-
tion factor can be set to unity and the corresponding uncer-
tainty can be defined as the maximum scatter of these data
points,

ulin,irr(λ) =max
(
|rSC(λ)− 1|

)
, (D8)

for reasons of simplicity. With this assumtion, the uncertainty
is independent of the signal S(λ). For the example shown here,
the uncertainty is ulin,irr(λ) = 0.01. Hence, for the Monte-
Carlo uncertainty analysis outlined in section 3, the f-factor
would be fXlin,irr(λ) = 1+ 0.01ρlin,irr. Depending on the spec-
trometer and the results of the non-linearity measurement, it
may be possible to simplify even further by also neglecting
the wavelength dependence of the uncertainty. This is a reas-
onable procedure if ulin,irr can be estimated conservatively (e.g.
as themaximum uncertainty over the whole wavelength range)
and the resulting uncertainty contribution is still small com-
pared to other contributions in the uncertainty budget.

If a significant non-linearity is observed (as for the red sym-
bols in the lower graph of figure D1), a non-linearity correction
factor clin,irr

(
S(λ)

)
should be derived and applied. The asso-

ciated uncertainty is determined by the experimental uncer-
tainties for the determination of clin,irr

(
S(λ)

)
. The determin-

ation of the non-linearity correction factor is outlined, e.g. in
[46–50]. In order to give a guidance to the reader, we briefly
explain a simplified approach for detectors that behave lin-
early in the low irradiance regime (similar to the example
given in figure D1). This usually holds for photodiode- and
photodiode array-based spectrometers and thus for a large
number of spectrometers that are used throughout the labor-
atories. We also assume that external stray light is negli-
gible (which can in principal be ensured by an appropriate
measurement setup) and that the irradiance levels EA(λ) and
EB(λ) on the measuring head are identical (which can in prin-
cipal be achieved by an appropriate adjustment of the dis-
tances between the lamps and the measuring head), leading
to SA(λ)≈ SB(λ). The measurement procedure would be as
follows:

(a) Lamp A and lamp B are set to the lowest possible irradi-
ance in the linear regime of the detector. The irradiance
can be adjusted by changing the distance between lamp
and spectrometer and/or by application of neutral density

filters. Consequently, the lowest irradiance is determined
by the maximum distance possible between the lamp and
the detector and/or the highest optical density of the avail-
able filters. Since we assume that the detector is linear in
the low irradiance regime, the correction factor obtained
hereby is

c1
(
SC,1(λ)

)
=
SA,1(λ)+ SB,1(λ)

SC,1(λ)
= 1 . (D9)

(b) The irradiances of lamp A and B are doubled so that

SA,2(λ)≈ SB,2(λ)≈ SC,1(λ) (D10)

The next correction factor c2
(
SC,2(λ)

)
can then be determ-

ined:

c2
(
SC,2(λ)

)
= c1 ·

SA,2(λ)+ SB,2(λ)
SC,2(λ)

, (D11)

where c1 = c1
(
SC,1(λ)

)
= 1 according to the initial

assumption.
(c) Subsequently, the irradiances of lamp A and B are again

doubled, so that

SA,3(λ)≈ SB,3(λ)≈ SC,2(λ) . (D12)

Next, the correction factor

c3
(
SC,3(λ)

)
= c2 ·

SA,3(λ)+ SB,3(λ)
SC,3(λ)

(D13)

is determined. At this point, the correction c2 =
c2
(
SC,2(λ)

)
of the previous measurement, which might

deviate from unity, has to be included in order to correct
SA,3(λ) and SB,3(λ) to the linear scale.

(d) This series of measurements is continued until the end of
the dynamic range of the detector is reached. This yields
the iteratively derived correction factors

ci
(
SC,i(λ)

)
= ci−1 ·

SA,i(λ)+ SB,i(λ)
SC,i(λ)

. (D14)

(e) Having finished the series of measurements, it should be
verified that the first data point is in the linear regime, i.e.

SA,1(λ)+ SB,1(λ)
SC,1(λ)

≈ 1

holds, so that the assumptions on which the procedure is
based are fulfilled.

(f) In order to get more data points, the full series can be
repeated at different starting points as long as the start-
ing point is located in the linear operating regime of the
detector. In figure D1, this is visualized by three different
types of symbols, each representing a different series.

(g) The discrete correction factors ci
(
SC,i(λ)

)
can then be

interpolated with respect to the signal level in order to
obtain the non-linearity correction factor clin,irr

(
S(λ)

)
. The

results of this procedure for the non-linear example in
figure D1 are depicted in figure D2. The dotted lines rep-
resent interpolated values.
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Figure D2. Application of the described measurement procedure to
obtain a non-linearity correction function clin,irr

(
S(λ)

)
out of the

ratios rSC of the two-lamp data.

For the two lamps-method, irradiance drift, external stray-
light, noise and interpolation may contribute to the uncertainty
of the non-linearity correction. Since this correction is derived
iteratively, the uncertainty increases with increasing irradiance
due to uncertainty propagation. This is exemplary shown in
figure D2, where the uncertainty of the ratio rSC(λ0) (repres-
ented by the error bars) is constant for each data point. The
uncertainty of the non-linearity correction clin,irr

(
S(λ0)

)
then

increases with increasing signal. The f-factor for the Monte-
Carlo analysis outlined in section 3 would be fXlin,irr(λ) = 1+
ulin,irr(λ)/clin,irr(λ)ρlin,irr according to equation (27). Note that
the correction factor clin,irr(λ) is applied prior to the uncer-
tainty analysis, so that fXlin,irr(λ) works on the corrected signal
and is thus distributed around 1.

Non-linearities related to integration time can be determ-
ined in a similar way by variation of the integration time tint
at a constant irradiance level (e.g. provided by a stable refer-
ence lamp). The analogon to the two-lamps method would be
a series of measurements comparing the signal level SC(tint,C)
relative to the signal level SA(tint,A)+ SB(tint,B)with the integ-
ration time tint,C = tint,A + tint,B. This procedure yields the
ratios r(tint,C,λ) and consequently the non-linearity correction
function clin,tint(tint,λ) with respect to integration time. As for
the irradiance level, if non-linearities with respect to integra-
tion time are observed to be small, no correction is applied
and the measured (small) signal deviations are assigned to the
uncertainty by

ulin,tint
(
S(λ)

)
=max

(∣∣∣r(tint,C,λ)− 1
∣∣∣) (D15)

for reasons of simplicity. Again, it may be possible to neglect
the wavelength dependence, too, as mentioned above.

Appendix E. Spectral bandwidth correction

In this section, a general formula for spectrometer bandwidth
correction for generalized bandpass functions is derived fol-
lowing Wooliams et al [21]. For comparability, the mean-
ing of the variables in this appendix (especially S) is chosen
identically to Wooliams et al [21] and shall not be confused
with the meaning of variables used throughout the rest of this
paper. Moreover, their definition of the spectral bandwidth as
the interval [λ−∆λ, λ+∆λ] is adopted for comparability,
which differs from the definition [λ−∆λ/2, λ+∆λ/2] used
throughout the rest of this paper.

Wooliams et al express a measured spectral distribution
M(λ) at λ=λ0 by the convolution of the true spectral distri-
bution S(λ) with a bandpass function b(λ−λ0), wheras the
integral of the bandpass function is normalized to one:

M(λ0) =

∞̂

−∞

S(λ) b(λ−λ0)dλ. (E16)

1=

∞̂

−∞

b(λ−λ0)dλ. (E17)

It is assumed that the true spectral distribution can be expanded
as a Taylor series at λ=λ0:

S(λ) = S(λ0)+ (λ−λ0)S
′(λ0)+

(λ−λ0)
2

2
S′′(λ0)+ ...

(E18)
Inserting equation (E18) into equation (E16) yields

M(λ0) = I0 S(λ0)+ I1 S
′(λ0)+

1
2
I2 S

′′(λ0)+ ... (E19)

with the bandpass moments

In =
ˆ
(λ−λ0)

n · b(λ−λ0)dλ . (E20)

The expression (E19) can now be rewritten as:

M(λ0) =
(
1+ I1

d
dλ

+
I2 d2

2dλ2
+ ...

)
S(λ0)

M(λ0) =
(
1+ I1D+

I2D2

2
+ ...

)
S(λ0)

M(λ0) =
(
1+C

)
S(λ0) (E21)

with the operators

D =
d
dλ

, (E22)

C = I1D+
I2D2

2
+ ... . (E23)
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Figure E3. Triangular, rectangular and gaussian shaped bandpass
functions b(λ−λ0) with identical integral area representing three
possible types of spectrometers (here λ0 = 0). The red curve shows
the weighting function for the calculations of the moment I2.

Based on these definitions a new operator

F= 1−C+C2 −C3 + ... (E24)

is defined as the inverse operator of the operator (1+C) which
has the property

F(1+C) = (1−C+C2 −C3 + ...)(1+C)

= 1+C−C−C2 +C2 +C3 −C3 − ...

= 1 . (E25)

Application of F to equation (E21) leads to an expression of
the true spectral distribution S(λ0) as a function of the meas-
ured spectral distribution M(λ0):

S(λ0) = FM(λ0) = (1−C+C2 −C3 + ...)M(λ0) . (E26)

Substiution of equation (E23) into equation (E26) leads to

S(λ0) =
[
1−

(
I1D+

I2D2

2
+ ...

)
+

(
I1D+

I2D2

2
+ ...

)2
−

(
I1D+

I2D2

2
+ ...

)3
+ ...

]
M(λ0) . (E27)

This equation can be fully multiplied and sorted in powers of
the differential operator D:

S(λ0) =
[
1− I1D+

(−I2
2

+ I21
)
D2

+
(−I3

6
+ I2I3 − I31

)
D3 + ...

]
M(λ0) . (E28)

This formula describes the reconstruction of the true spec-
tral distribution S(λ0) as a function of the measured spectral
distributionM(λ0) using the derivatives of the measured spec-
tral distribution and the bandpass moments In given in equa-
tion (E20). Until now, only the assumption that the true spec-
tral distribution can be evolved in a Taylor series at λ=λ0 is
carried out. In the following, a mathematical simplification is
made: Only terms up to the second derivative shall be taken
into account. This leads to the final expression

S(λ0) =M(λ0)− I1M
′(λ0)+

(−I2
2

+ I21
)
M′′(λ0) . (E29)

If the bandpass function b(λ−λ0) is a symmetrical function
with respect to λ0, the moment

I1 =

∞̂

−∞

(λ−λ0) · b(λ−λ0)dλ= 0 (E30)

becomes zero and equation (E29) simplifies to

S(λ0) = M(λ0)−
I2
2
M′′(λ0)

= M(λ0)

(
1− I2

2
M′′(λ0)

M(λ0)

)
. (E31)

The first summand in the latter equation is the signal due to
incident light at the nominal wavelength λ0. The second sum-
mand is the additional signal due to light incident at neighbour-
ing wavelengths. The mathematical simplification mentioned
above implies that only the two neighboring grid points affect
the measured signal at λ0. This means that equation (E31) is
valid only in regions where the spectral bandwidth ∆λ is of
the same order of magnitude as the wavelength sampling. If
the bandwidth is larger, this formula must be understood as a
simplified approximation. For discretemeasured signalsM(λ),
the second derivative in equation (E31) can be approximated
by [51]

M′′(λ)≈ M(λ−∆λ)− 2M(λ)+M(λ+∆λ)

(∆λ)2
. (E32)

The values M(λ±∆λ) required for this calculation can be
obtained by linear interpolation of M(λ).

In the following, the bandpass moments In are calculated
for a triangular, a rectangular and a gaussian bandpass func-
tion. For comparison of the respective moments In,tri, In,rect
and In,gauss it is important that these bandpass functions have
the same transmission, i.e. integral area. An example for these
three different types of bandpass functions with a bandwidths
of∆λ= 1 nm is shown in figure E3. The dashed curve showes
the ideal triangular bandpass function of a monochromator.
The plain curve shows a gaussian and the dotted curve a rect-
angular bandpass function. The red curve shows the weighting
function for the calculations of the moment I2.
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E.1. Triangular bandpass

For a triangular bandpass function with an integral value of 1,
the function btri(λ−λ0) is:

btri(λ−λ0) =


1

∆λ +
(

λ−λ0

∆λ2

)
, λ0 −∆λ≤ λ≤ λ0

1
∆λ −

(
λ−λ0

∆λ2

)
, λ0 < λ≤ λ0 +∆λ

0 elsewhere .
(E33)

Consequently, the moment I2 becomes

I2,tri =

ˆ
(λ−λ0)

2 · b((λ−λ0))dλ

=

λ0ˆ

λ0−∆λ

(λ−λ0)
2

∆λ
dλ+

λ0ˆ

λ0−∆λ

(λ−λ0)
3

∆λ2 dλ

+

λ0+∆λˆ

λ0

(λ−λ0)
2

∆λ
dλ−

λ0+∆λˆ

λ0

(λ−λ0)
3

∆λ2 dλ

=
1
3
(∆λ)2 − 1

4
(∆λ)2 +

1
3
(∆λ)2 − 1

4
(∆λ)2

=
(∆λ)2

6
(E34)

and the bandpass correction formula (E31) becomes

Stri(λ0) = M(λ0)−
I2
2
M′′(λ0)

= M(λ0)

(
1−

1

12
(∆λ)2

M′′(λ0)

M(λ0)

)
. (E35)

Inserting (E32) into (E35) yields the correction factor
c_bw(S,∆λ) defined in (8). Note that (8) applies a different
definition of the spectral bandwidth as discussed above. For
this reason, ∆λ is replaced by ∆λ/2 in (8).

E.2. Rectangular bandpass

For a rectangular bandpass function with an integral value of
1, the function b(λ−λ0) is:

brect(λ−λ0) =

{
1

2∆λ , λ0 −∆λ≤ λ≤ λ0 +∆λ

0 elsewhere .
(E36)

Please note that here, the full width of the rectangular band-
pass function is 2∆λ and half of the amplitude compared to
the triangular bandpass function in order to have an identical
integral area (throughput of the spectrometer) and transmitting
wavelength range (see figure E3). Consequently, the moment
I2,rect becomes

I2,rect =

ˆ
(λ−λ0)

2 · b(λ−λ0)dλ

=
1

2∆λ

λ0+∆λˆ

λ0−∆λ

(λ−λ0)
2dλ

=
1

6∆λ
(λ−λ0)

3
∣∣∣λ0+∆λ

λ0−∆λ

=
1

6∆λ

[(
∆λ
)3

−
(
−∆λ

)3]
=

(∆λ)2

3
(E37)

and the bandpass correction formula (E31) becomes

Srect(λ0) = M(λ0)−
I2
2
M′′(λ0)

= M(λ0)

(
1−

1

6
(∆λ)2

M′′(λ0)

M(λ0)

)
. (E38)

E.3. Gaussian bandpass

For a gaussian bandpass function with an integral value of 1,
the function b(λ−λ0) is

bgauss(λ−λ0) =

√
2

π(∆λ)2
· e−

2(λ−λ0)
2

(∆λ)2 . (E39)

Please note that here, the variance of the gaussian function
is σ=∆λ/2 and the integral area (throughput of the spectro-
meter) for this bandpass function is one in order to satisfy the
integral condition (see figure E3). Consequently, the moment
I2,gauss becomes:

I2,gauss =

ˆ
(λ−λ0)

2 · b(λ−λ0)dλ

=

√
2

π(∆λ)2
·

∞̂

−∞

(λ−λ0)
2 · e−

2(λ−λ0)
2

(∆λ)2 dλ

= ...

=

√
2

π(∆λ)2
·
√

π(∆λ)6

4 · 8

=

√
(∆λ)4

16
=

(∆λ)2

4
(E40)

and the bandpass correction formula (E31) becomes

Sgauss(λ0) = M(λ0)−
I2
2
M′′(λ0)

= M(λ0)

(
1−

1

8
(∆λ)2

M′′(λ0)

M(λ0)

)
.(E41)

In summary, the corresponding factors in the bandwidth
correction formula increase from 1/12 for a triangular band-
pass function via 1/8 for a gaussian bandpass function to 1/6
for a rectangular bandpass function. This reflects the increas-
ing impact of the additional signal contribution from neigh-
bouring wavelengths.
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Figure F4. Relative deviation of the measured signal (including
external stray light correction) from the ideal signal as calculated
with the ray tracing simulation.

Appendix F. External stray light simulation

We model the geometry of the measuring facility using meas-
ured reflectance data for the objects and take the measured lat-
eral and angular sensitivity of themeasuring head into account.
A total of 109 rays are simulated for each wavelength (step-
width 100 nm), leading to computation times of the order
of several hours when using parallelization on 12 processor
cores. Figure F4 shows the resulting deviation of the measured
signal from between the ideal signal for the beam block used
(widthw= 15mm, black circles). For comparison, the simula-
tion results for two different beam blocks (10 mm and 35 mm,
open symbols) are included. The deviation is below ±0.05%
and does not show a systematic trend. The other widths of the
beam block lead to over- or undercorrection of external stray
light. The noisy appearance of the curves is a consequence of
the small fraction of light rays (<0.003%) hitting the measur-
ing head when the beam block is mounted. The noise reflects
the random nature of the Monte-Carlo ray tracing approach
[52] and could be reduced by using more light rays for the
simulation. However, we refrain from that, since themaximum
deviation observed is not a limiting uncertainty contribution,
and use 109 light rays as a sufficient trade-off between accur-
acy of the simulation and computational effort. Fromfigure F4,
we deduce a relative uncertainty of SRef4 (λ) of

uRefstray,ext = 0.0005 , (F42)

where we neglect the wavelength dependence for reasons of
simplicity.

The simulation is validated by measuring the detector sig-
nal with and without beam block in the beam path (illuminated

Figure F5. Validation of the external stray light simulation. Open
symbols depict measured values, solid lines depict the
corresponding calculated values.

signal SRef1 (λ) and background signal Sbgnd(λ), respectively)
for the widest (35 mm) and smallest (10 mm) beam block.
From the simulation, a detection probability fdet(λ) is calcu-
lated for light rays emitted by the light source when the beam
block is placed in the beam path. The background signal is
then calculated from the illuminated signal by multiplication
with fdet(λ) from the simulation and compared to the meas-
ured background signal. The result of this validation is depic-
ted in figure F5 (open circles: measured values, solid lines:
corresponding calculated values Sbgnd(λ) = SRef1 (λ) · fdet(λ)),
demonstrating that the calculated detection probability is of
the correct order of magnitude and that the simulation thus
properly models the optical properties of the measurement
setup.
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