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A B S T R A C T

Vibration-based Structural Health Monitoring (SHM) is classically approached from two dif-
ferent directions; both involve the acquisition and processing of vibration signals. The first and
most popular strategy, which is also followed in the present thesis, relies entirely on the mea-
surements. In contrast, the second approach employs physical models such as finite element
(FE) models that are designed based on mechanical principles. In times in which the real-
time processing of digital twins for engineering structures becomes more and more realistic,
model-based approaches for vibration-based SHM receive increasing attention. Data-driven
strategies are still primarily used in vibration-based SHM, and they will remain appealing
in situations where precise physical modeling appears cumbersome. Hence, the need for effi-
cient, robust, and reliable data-driven techniques concerning all stages and hurdles of SHM
that can prove themselves in practice will never vanish. In this regard, after over 25 years of
research, the number of real-life validation studies is still surprisingly low.

As for all SHM strategies, the difficulty concerning damage analysis increases with higher
levels of realization. Beginning with the goal of detecting damage, SHM finally seeks to
predict the remaining lifetime of a structure. The intermediate steps comprise the localiza-
tion, classification, and assessment of damage. Without the existence of adequately calibrated
physics-based models, the successful implementation of methods tackling the objectives be-
yond damage localization in an unsupervised data-driven scheme is questionable. The term
‘unsupervised’ refers to the fact that knowledge about the manifestation of damage is not
available. Especially in civil engineering, this situation pertains in general and is considered
in the present thesis.

In data-driven SHM, where the area of structural alterations is narrowed down to adjacent
sensors, damage localization suffers from the coarse spatial resolution of parsimonious data
acquisition systems. Classical modal approaches that hold potential for damage localization
require a dense sensor network or significant damage. Originating from the field of fault
detection and isolation, estimator- and filter-based methods have proven to be applicable for
damage identification of mechanical and civil engineering structures. Notably, they feature
an enormous sensitivity towards structural changes when properly designed. Although it
remains advantageous for the sake of precise damage localization, these tools such as Kalman
or H8 filters do not exhibit the inherent demand for a dense sensor network. Consequently,
they promise to be viable techniques for the application in vibration-based SHM.

A central challenge of this discipline is the discrimination between the natural variability of
the structure’s dynamics and the one caused by damage. The former results from varying
environmental and operational conditions (EOCs). Especially highly sensitive methods for
damage identification are affected by these natural changes, and thus, rely on an efficient data
normalization strategy, which can prove itself in practice.

In light of these challenges, this thesis provides a real-life validation for the application of
quadratic estimators in data-driven vibration-based SHM. To this end, an elaborate technique
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for estimator-based damage localization is adapted and included in an SHM framework com-
prising the necessary steps of data normalization and statistical testing. The damage analysis
methodology was originally designed for H8 filters, which seem well-suited for use in SHM,
as they do not assume specific properties of the excitation acting on the structure nor of the
involved disturbances. However, previous studies have shown that, in some cases, the filter
performance required to achieve high levels of sensitivity towards localized damage cannot be
obtained. This issue can be circumvented by employing well-tuned Kalman filters. Therefore, a
novel approach for noise covariance estimation is established at first. The associated estimation
scheme constitutes a parametric extension of the popular autocovariance least-squares (ALS)
technique. The effectiveness of this estimation technique in the context of Kalman filter-based
damage localization is studied first using simulations and laboratory experiments.

The second part is dedicated to the problem of handling EOCs. This body of work proposes
an identification scheme for linear parameter-varying systems based on the interpolation of
linear time-invariant systems for different operating points. A simulation study demonstrates
the applicability for the purpose of data normalization.

Finally, real-life validation of the proposed methods for SHM is conducted. Therefore, a steel
lattice mast located outdoors functions as the test object. It is naturally affected by ambi-
ent sources of excitation, variability, and uncertainty. The mast, explicitly designed for this
validation purpose, is equipped with reversible damage mechanisms that may be activated
or removed to reduce the stiffness at multiple locations of the structure. The investigations
conducted in this part of the thesis demonstrate proper damage detection of all considered
damages as well as localization for the highest degree of severity. These promising results sug-
gest the applicability of the presented methods for Kalman filter tuning, damage localization,
and data-normalization in the context of vibration-based SHM.

keywords : Structural Health Monitoring, vibration-based, data-driven, damage localiza-
tion, linear quadratic estimation, real-life validation
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Z U S A M M E N FA S S U N G

Die schwingungsbasierte Zustandsüberwachung von Bauwerken (engl.: SHM) wird klassi-
scherweise auf zwei Arten betrieben. Beide Strömungen beinhalten die Erfassung und Verar-
beitung von Schwingungssignalen. Die erste und am weitesten verbreitete Strategie, die auch
in der vorliegenden Arbeit verfolgt wird, stützt sich vollständig auf Messungen. Im Gegensatz
dazu werden bei der modellbasierten Zustandsüberwachung physikalische Modelle wie z. B.
FE-Modelle eingesetzt, die auf der Grundlage mechanischer Prinzipien basieren. In Zeiten, in
denen die Echtzeitverarbeitung digitaler Zwillinge für Ingenieurbauwerke immer realistischer
wird, rücken modellbasierte Ansätze für das schwingungsbasierte SHM zunehmend in den
Vordergrund. Nichtsdestotrotz werden nach wie vor vorwiegend datengesteuerte Strategien
eingesetzt. Weiterhin ist davon auszugehen, dass diese Methoden auch in Zukunft in Situatio-
nen Verwendung finden werden, in denen eine präzise physikalische Modellierung mühsam
erscheint. Somit bleibt der Bedarf an effizienten, robusten, zuverlässigen und praxistauglichen
datengetriebenen Techniken für alle Phasen und Herausforderungen der Zustandsüberwa-
chung bestehen. Diesbezüglich ist die Zahl der In-situ-Validierungsstudien in der Praxis nach
über 25 Jahren Forschung immer noch erstaunlich gering.

Bei allen SHM-Strategien steigt die Herausforderung bezüglich der Schadensanalyse mit zu-
nehmendem Realisierungsgrad. Ausgehend von dem Ziel, Schäden zu erkennen, zielt die
Zustandsüberwachung schließlich darauf ab, die verbleibende Lebensdauer einer Struktur
vorherzusagen. Die Zwischenschritte umfassen die Lokalisierung, Klassifizierung und Bewer-
tung von Schäden. Ohne das Vorhandensein adäquat kalibrierter physikalischer Modelle ist
die erfolgreiche Implementierung von Methoden, die über die Schadenslokalisation hinaus-
gehen, in einem unüberwachten (engl.: unsupervised) datengesteuerten SHM-Ansatz fraglich.
Der Begriff ‘’unüberwacht” bezieht sich auf die Tatsache, dass kein Wissen über die Auswir-
kung von Schäden vorhanden ist. Im Allgemeinen ist diese Situation im Bauwesen gegeben
und wird in der vorliegenden Arbeit berücksichtigt.

Beim datengetriebenen SHM lassen sich Schädigungsorte lediglich auf naheliegende Sensoren
eingrenzen. Demzufolge leidet die Schadenslokalisation unter der groben räumlichen Auflö-
sung sparsamer Datenerfassungssysteme. Klassische modale Ansätze, die für die Schadens-
lokalisation geeignet sind, erfordern ein dichtes Sensornetz oder das Auftreten erheblichen
Schäden. Die aus dem Bereich der Fehlererkennung und -isolierung (engl.: FDI) stammen-
den zustandsschätzer- und filterbasierten Methoden haben sich in der Vergangenheit für die
Schadensidentifikation von mechanischen Strukturen bewährt. Sie zeichnen sich, wenn richtig
entworfen, insbesondere durch eine hohe Sensibilität gegenüber strukturellen Veränderungen
aus. Obwohl diese Werkzeuge wie Kalman- oder H8-Filter für eine präzise Schadenslokali-
sation vorteilhaft sind, erfordern sie nicht notwendigerweise ein dichtes Sensornetz. Folglich
stellen diese Techniken eine vielversprechende Option für die Anwendung im schwingungs-
basierten SHM dar.
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Eine zentrale Herausforderung dieser Disziplin ist die Unterscheidung zwischen der natürli-
chen Variabilität der Strukturdynamik und jener, die durch Schäden verursacht wird. Erstere
resultiert aus variierenden Umwelt- und Betriebsbedingungen (engl.: EOCs). Gerade hoch-
empfindliche Methoden zur Schadenserkennung werden durch diese natürlichen Verände-
rungen beeinflusst und sind daher auf eine effiziente Strategie zur Datennormalisierung an-
gewiesen, die sich auch in der Praxis bewährt.

Vor dem Hintergrund dieser Herausforderungen bietet diese Arbeit eine praxisnahe Validie-
rung für die Verwendung linear quadratischer Schätzer in der datengetriebenen schwingungs-
basierten Zustandsüberwachung von Bauwerken. Zu diesem Zweck wird ein Verfahren zur
schätzerbasierten Schadenslokalisation angepasst und in ein SHM-Konzept integriert, das die
notwendigen Schritte der Datennormalisierung und statistischer Tests umfasst. Die adaptierte
Schadensanalysemethode wurde ursprünglich für H8-Filter entwickelt, die für den Einsatz
im SHM als gut geeignet erscheinen, da sie keine spezifischen Eigenschaften der auf die Struk-
tur wirkenden Erregung oder der beteiligten Störungen voraussetzen. Frühere Studien haben
jedoch gezeigt, dass in einigen Fällen die für eine hohe Empfindlichkeit gegenüber lokali-
sierten Schäden erforderliche Filterperformanz nicht erreicht werden kann. Dieses Problem
kann durch den Einsatz von gut abgestimmten Kalman-Filtern umgangen werden. Daher
wird zunächst ein neuartiger Ansatz für die Schätzung der Rauschkovarianz-Matrizen entwi-
ckelt. Das zugehörige Schätzverfahren stellt eine parametrische Erweiterung der bekannten
Autocovariance-Least-Squares-Technik (ALS) dar. Die Wirksamkeit dieses Schätzverfahrens
im Zusammenhang mit der Kalman-Filter-basierten Schadenslokalisation wird zunächst an-
hand von Simulationen und Laborexperimenten untersucht.

Der zweite Teil widmet sich dem Problem des Umgangs mit EOCs. In diesem Teil der Ar-
beit wird ein Identifikationsschema für lineare parametervariante Systeme vorgeschlagen, das
auf der Interpolation linearer zeitinvarianter Systeme für verschiedene Betriebspunkte beruht.
Eine Simulationsstudie demonstriert die Anwendbarkeit für den Zweck der Datennormalisie-
rung. Schließlich werden die vorgeschlagenen Methoden für die schwingungsbasierte und da-
tengetriebene Zustandsüberwachung unter realen Bedingungen validiert. Als Testobjekt dient
ein im Freien errichteter Stahlgittermast. Dieser wird auf natürliche Weise erregt und unter-
liegt gleichermaßen natürlicher Variabilität und Unsicherheit der Umgebungsbedingungen.
Der ausdrücklich für diesen Validierungszweck konzipierte Mast ist mit reversiblen Schädi-
gungsmechanismen ausgestattet, die aktiviert werden können, um die Steifigkeit an mehreren
Stellen der Struktur zu verringern. Die in diesem Teil der Arbeit durchgeführten Untersu-
chungen zeigen eine korrekte Schadenslokalisation an allen betrachteten Positionen für den
höchsten Schweregrad. Diese vielversprechenden Ergebnisse implizieren die Anwendbarkeit
der erarbeiteten Methoden zum Kalman-Filter-Entwurf sowie zur Schadenslokalisation und
Datennormalisierung im Kontext der schwingungsbasierten SHM.

schlagworte : Bauwerksüberwachung, schwingunsbasiert, datengetrieben, Schadenslo-
kalisation, linear quadratische Schätzung, In-situ-Validierung
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Alles Wissen und alles Vermehren unseres Wissens endet nicht mit einem Schlußpunkt, sondern mit
einem Fragezeichen.

— Herrmann Hesse
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D feed-through matrix of discrete-time state-space model

Dc feed-through matrix of continuous-time state-space model

Dc,a feed-through matrix of continuous-time state-space model lead-
ing to accelerations

Dc,d feed-through matrix of continuous-time state-space model lead-
ing to displacements

Dc,v feed-through matrix of continuous-time state-space model lead-
ing to velocities

Dp proportional damping matrix

H block Hankel matrix of outputs or output covariances

K stiffness matrix

Ke gain matrix for estimation (subscript p for prediction, f for filter-
ing, s for smoothing)

M mass matrix

N covariance matrix of future states and current outputs

Pe state-estimation error covariance of estimation step (subscript p
for prediction, f for filtering, s for smoothing)

Po projection matrix for SSI

Q covariance matrix of process noise
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Rab cross-covariance matrix of stochastic processes a and b

Rv covariance matrix of measurement noise

S covariance matrix of process and measurement noise

S1 diagonal matrix of nonzero or selected singular values

S diagonal matrix of singular values

T transformation matrix for similarity transformation

U1 left-hand singular vectors

V1 right-hand singular vectors

W1 left-hand weighting matrix for Stochastic Subspace Identification

W2 right-hand weighting matrix for Stochastic Subspace Identifica-
tion

Γ controllability matrix

Λ diagonal matrix with discrete-time eigenvalues/poles

Λc diagonal matrix with continuous-time eigenvalues/poles

O observability matrix

Σx state covariance matrix

Φ matrix containing eigenvectors on columns

Φ f f covariance matrix of future outputs

Φpp covariance matrix of past outputs

Ψ modal matrix

operators

(¨)˚ complex conjugate of a number or conjugate transpose of a vector
or matrix

À

direct sum

∥¨∥ Euclidean norm or norm of vector or matrix in general

∥¨∥Hp
Hp norm of complex-valued signal

xa, by inner product of a and b

(¨)´1 inverse

b Kronecker product

∥¨∥ℓp
ℓp norm of discrete-time signal

∥¨∥Lp
Lp norm of continuous-time signal

(¨): pseudoinverse

(¨)T transpose of a vector or matrix

σt¨u extract maximum singular value

Et¨u expectation



nomenclature xxv

Ft¨u Fourier transformation

F´1t¨u inverse Fourier transformation

Imt¨u extracting the imaginary part of a complex number

inf infimum

Lt¨u Laplace transformation

L´1t¨u inverse Laplace transformation

Probt¨u probability

rankt¨u computing the rank of a matrix

Ret¨u extracting the real part of a complex number

sup supremum

trt¨u trace operator

vart¨u variance operator

vect¨u vectorization operator

vecht¨u half-vectorization operator

Zt¨u z-transformation

Z´1t¨u inverse z-transformation

fields and spaces

C field of complex numbers

D open unit disk in complex plane

Hp Hardy space of functions and sequences

ℓp Lebesgue space of sequences

Lp Lebesgue space of functions

N field of natural numbers

N+
0 field of nonnegative natural numbers

N+ field of nonnegative and nonzero natural numbers

R field of real numbers

R+
0 field of nonnegative real numbers





1
I N T R O D U C T I O N

In vibration-based Structural Health Monitoring (SHM), mechanical systems are continuously ob-
served by acquiring vibration data, e.g., strains or accelerations, at several discrete locations. The goal
is to infer the structural integrity by using these measurements and by assessing the structural dynam-
ics of the mechanical system under consideration of varying environmental and operational conditions
(EOCs). This objective is approached from two directions, namely by employing calibrated physics-
based models, referred to as model-based SHM, or by solely relying on the measured data denoted as
data-driven SHM. In civil engineering, where structural excitation is challenging to observe, so-called
output-only strategies are particularly relevant. Another limitation is posed by the lack of knowledge
regarding the manifestation of potential damage, generally forcing engineers to consider unsupervised
approaches for damage identification. This thesis focuses on output-only and unsupervised techniques
for data-driven vibration-based SHM. In over 25 years of extensive research in this field, an uncount-
able number of simulation studies and experiments have been conducted, enabling and promoting the
development of elaborate methods to tackle all kinds of problems associated with vibration-based SHM.
However, only a few cases exist that can be seen as a real-life benchmark object, which requires the
existence of damage and the presence of natural sources of excitation, variability, and uncertainty. For
the present work, a long-term measurement campaign of a lattice mast located outdoors has been con-
ducted to enable the real-life validation of a vibration-based damage localization approach using linear
quadratic estimation theory. The validation constitutes the central objective of this thesis. The out-
door experiment is well suited for this endeavor because of its excellent data quality and the equipment
with reversible damage mechanisms at multiple positions. To highlight the difficulties and hurdles of
output-only and unsupervised data-driven vibration-based SHM, in the following, the state of the art is
reviewed with particular focus on the damage localization problem. Lastly, the objectives of this thesis
are defined, and the outline is formulated.

1.1 data-driven vibration-based shm

Data-driven vibration-based SHM is particularly appealing in situations where precise physi-
cal modeling appears cumbersome. It is carried out traditionally within the statistical pattern
recognition paradigm introduced at the end of the last century [72, 73]. The core of this frame-
work is the acquisition and statistical assessment of so-called damage-sensitive features. Those
quantities can be seen as informative proxies of the structure’s dynamic behavior analyzed to
enable SHM. In general, the problem of SHM can be regarded by defining four main subjects:
(i) capturing the short-term dynamics, (ii) capturing the long-term dynamics, (iii) damage
analysis, and (iv) uncertainty. This circumstance is summarized in Fig. 1.1. It stands in no
contradiction to the established statistical pattern recognition paradigm; in fact, the described
segmentation is intrinsically picked up by any existing SHM scheme, cf. [70, 94].

Almost all vibrating structures subject to monitoring undergo varying EOCs such as tempera-
ture, humidity, wind speed, etc. [17]. These exogenous effects alter the dynamic behavior of
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the structures upon which they act. Thus, they need to be taken into account during moni-
toring to distinguish between natural and damage-induced changes. Importantly, since EOCs
might vary on different time scales and the structural state of the monitored system is to be
evaluated continuously, one must consider the dynamics of that system over short and long
periods (Subject 1 and 2). The quantitative meaning of this has an individual interpretation,
enormously depending on the overall dynamics of the mechanical system affected by varying
EOCs, which inherently affects the choice of identification and modeling techniques. However,
with simple words and without wanting to state general facts, it can be said that the expres-
sion short-term is used to refer to seconds, minutes, maybe hours, though, when speaking of
long-term, the author aims to refer to days, months, and years.

The mentioned overall purpose of SHM is to identify damage (Subject 3). This objective subdi-
vides into five steps ranging from the detection of damage to the prognosis of the remaining
lifetime [215]. Damage analysis is enabled through knowledge about the monitored system’s
general and instantaneous structural dynamics and the consideration of varying EOCs. The
associated analyses are performed using damage-sensitive features, also called condition pa-
rameters or damage indicators, which are indirectly or directly computed or extracted from
the measurements. They comprise modal parameters, residuals, etc. Especially in civil engi-
neering, where damage constitutes complex structural alterations, information about its effect
on the applied methods is not available or impossible to determine from an economical and
practical point of view. Consequently, an unsupervised damage identification scheme is read-
ily used that does not consider any information in this regard.

Similar to other engineering tasks, the observation and evaluation of complex mechanical
systems exposed to all kinds of physical phenomena underlie significant uncertainty. This
fact led to the statistical pattern recognition paradigm in the first place. It must be born
in mind when conducting any of the three subjects explained before, see Fig. 1.1. In some
situations, e.g., in system and modal identification, uncertainty is often inherently considered,
for instance, when mathematical models are fitted to measurements by minimizing the error
of fit. In view of the main objective of damage analysis, especially of damage detection and
localization, the problem of uncertainty is faced by using statistical tests to decide on the
structure’s state.

The following sections examine the mentioned main subjects of SHM separately. The litera-
ture review is limited to methods that are not depending on explicitly measured excitation
(output-only). This restriction does not extend to the observation of EOCs. Regarding damage
identification, solely unsupervised approaches are considered, as explained before. Since the
primary motivation of this work constitutes the real-life validation of an approach for data-
driven vibration-based SHM, Section 1.1.3 discusses strategies with the potential of localizing
damages.
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Figure 1.1: Main subjects of SHM.
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1.1.1 Capturing short-term dynamics

For a continuous inference of the structural state of monitored mechanical systems based on
the structural dynamics, useful information must be gathered regularly. Identifying the dy-
namics of the observed systems based on snippets of measured vibration data can be seen
as producing a snapshot of the current dynamic behavior, which principally enables damage
identification. Unfortunately, this picture is hardly interpretable if no information regarding
the influence of EOCs is available. Typically, these effects alter the structural behavior natu-
rally, see, e.g., [71]. Therefore, to assess whether the observed system acts normally in terms
of its structural dynamics, the usual variation due to exogenous effects must be identified at
least to some extent, as will be further discussed in Section 1.1.2.

Short-term dynamics can be captured in two ways. An explicit approach is the repetitive
identification of system models based on relatively short measurement intervals. Later, these
models can be utilized to identify an overall system representation covering the entire range
of environmental and operational variability (EOV) [16, 17]. The second and most common
strategy is the implicit approach that strives to extract damage-sensitive features from the
measured data, functioning as a proxy of the structure’s current dynamic behavior. The list of
features applicable for SHM is sheer endless; however, natural frequencies or modal parame-
ters, in general, constitute a classic example. They are determined with the help of system or
modal identification techniques.

The present section comprises a summary of parametric and nonparametric methods for sys-
tem identification, which aim to capture the short-term dynamics explicitly but can also be ex-
ploited to derive modal parameters or other quantities representing the current dynamics im-
plicitly. Further, an overview of features extractable from short-term data is presented.

system identification – definitions , properties , and classification
In this thesis, the term system identification is used to denote the data-based realization of
functionals representing the time-dependent input-output relationship of a dynamic system.
In the context of this section and most parts of this thesis, the latter refers to a mechanical
system with time-varying forces on the input side and displacements, velocities, or accelera-
tions on the outputs. Nevertheless, a dynamic system can be generally seen as an operator
with specific properties in time and space, representing the transfer between time-varying
processes.

System identification techniques can be classified in parametric and nonparametric methods.
For the former, parametric mathematical models with certain order (polynomial degree) are
fitted to the measured data. Thus, a finite set of coefficients belonging to a particular mathe-
matical structure is determined to represent the associated map from inputs to outputs in the
‘best way’ possible. Parametric methods feature several advantages such as the compactness
of system representation and the improved accuracy, and frequency resolution [74]. Nonpara-
metric approaches, on the other hand, model a system directly based on measurements [163].
Depending on the dynamic behavior of the regarded mechanical system and the level of ap-
proximation, the identified models can be linear/nonlinear, time-variant/time-invariant, and
parameter-varying/non-parameter-varying, see Fig. 1.1. The term time-variance describes the
circumstance that the dynamic properties change with time. In contrast, the expression of
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parameter-variance emphasizes the dependence on EOCs such as wind speed, temperature,
etc. Thus, time-variance can be seen as a special case of parameter variance, where the so-
called scheduling variable, which affects the dynamic properties, is the time. Time-variant
and time-invariant systems and models are often denoted as nonstationary and stationary,
respectively.

Methods for system identification are further differentiated depending on their degree of
physical interpretability. Fully data-driven approaches generally result in so-called black-box
models, which cannot be directly associated with the physics of the data-generating system
(mechanical system). The structure of black-box models is entirely mathematical. They are
simply functions computed from or fitted to time or frequency domain data, representing an
operator that maps inputs to outputs. Independent of the mathematical nature of black-box
models, an indirect physical interpretation in terms of modal properties can often be derived.
Contrary to black-box models, white-box models are obtained from analytical physical princi-
ples. Hence, they are parametric per se. Good examples from the field of structural mechanics
are differential equations, which are derived from static and dynamic equilibrium equations,
geometric kinematic compatibility equations, and material laws [121]. Equations of motion
(EOMs) are determined to describe the dynamic behavior of mechanical systems, depending,
e.g., on mass, damping, and stiffness properties. Consequently, the model (EOM) has a direct
physical interpretation because of these parameters and their interconnections. In the past
years, accelerated through the rise of aritifical neural networks (ANNs), a hybrid model type,
namely gray-box models received increasing attention. Such models are typically based on sim-
ple white-box models designed based on prior physical knowledge of the associated system to
be identified. Then they are optimized with the help of data-driven identification techniques
[49, 159, 173, 228].

Another way of classifying system identification techniques refers to the type of data used
for the identification. Using input and output data is the natural and classic approach to
system identification. In civil engineering, or generally in those cases where inputs (excitation
data) are difficult to acquire, so-called output-only strategies are useful options. Obviously,
the input side must be considered to some extent, and thus, the randomness of the inputs,
or Gaussianity, in particular, is assumed. Therefore, these methods are readily denoted as
stochastic system identification. Input-output strategies are often denoted as deterministic system
identification, see [168]. Output-only identification plays an important role in the realization of
linear time-invariant (LTI) systems. Such strategies, linked to the field of Operational Modal
Analysis (OMA) are heavily exploited in this thesis, and thus, special attention is paid to
summarizing the associated literature.

In the modal analysis community, the term system identification often describes the process
of determining modal parameters. This choice of words is somewhat inaccurate since modal
analysis does not necessarily imply the identification of system models, e.g., when nonpara-
metric modal identification tools such as the Frequency Domain Decomposition (FDD) are
applied, cf. [30]. Further, the construction of dynamic models of mechanical systems based
on modal parameters is only feasible in the case of LTI systems when modal scaling factors
are known, see [29].
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parametric and nonparametric system identification
Nonparametric approaches for system identification are generally a good start to get an im-
pression of the complexity of a system’s dynamic behavior, as these models impose no particu-
lar model structure [158]. The observed systems are modeled as an impulse response function
(IRF) in the time domain or frequency response function (FRF) in the frequency domain. The
latter and most common approach typically involves the use of Hx estimators depending on
the characteristics of the signals used [201]. As mentioned before, all system identification
techniques aim to model particular input-output relationships. Nevertheless, some nonpara-
metric system identification techniques belong to the class of output-only methods, that is, the
identification without measured excitation. One example constitutes the so-called transmissi-
bilities, see [207]. These models represent the dependence among the output signals, which
inherently captures the dynamics of the observed system.

Parametric approaches feature a broad class for system identification resulting in functional
dependence models with different structures. Contrary to nonparametric methods, they ex-
hibit a compact and parsimonious representation, and an improved frequency resolution [74].
A popular time-domain identification technique of LTI systems is the Stochastic Subspace Identi-
fication (SSI), which was established in the mid-1990s pioneered by the work of van Overschee
and de Moor [147, 148]. The application of the SSI helps to identify state-space systems that as-
sume unknown, stationary, white, and Gaussian-distributed excitation [110]. In experimental
structural dynamics, the model order must be chosen pragmatically. Therefore, stabilization
diagrams are typically applied in the context of SSI, which further enables the discrimination
of spurious modes [10].

To receive a polynomial-like representation of the observed system, autoregressive (AR) mod-
els might be identified that map the measured data to itself. By that, the dynamics of the
output-generating system are inherently captured [27]. If structures are observed with mul-
tiple sensors, which is the standard case in SHM, the system is identified as a multiple input/
multiple output (MIMO) model. That demands the use of vector autoregressive (VAR) identi-
fication techniques. Further, a moving average (MA) part is frequently added to the system
representation to model the dynamics in a more parsimonious way [7]. (V)AR/MA models
are primarily identified employing a least-squares strategy [74, 122]. Therefore, the model or-
der is determined with the help of information criteria such as Akaike’s information criterion
(AIC) [3, 186].

For large amounts of data, the application of time-domain techniques can be prohibitively
expensive in terms of computational effort. Here, frequency-domain methods might relax this
burden. In the presented context, the Least-Squares Complex Frequency-Domain (LSCF) and
Poly-Reference Least-Squares Complex Frequency-Domain (pLSCF) method are particularly
worth mentioning, which aim to model the FRF of a system as a common-denominator model
[163]. The pLSCF method [90], well-known under its commercial name PolyMAX, has been
celebrated for its computational efficiency and the ability to result in clear stabilization dia-
grams [153]. Similar to all data-driven system identification techniques, the (p)LSCF estimator
was developed for input-output system identification. Though, it was extended to the output-
only case by utilizing the positive one-sided power spectral density (PSD) of the measured
outputs instead of nonparametric estimates of the FRFs [37].
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For completeness, some methods for the identification of linear time-variant (LTV) and lin-
ear parameter-varying (LPV) systems shall be briefly reviewed. In the past years, exciting
developments regarding the modeling of nonstationary time series (LTV) have been made by
applying (V)AR/MA techniques, see [13, 23, 160, 184, 231]. For these kinds of methods, model
parameters are generally assumed to follow some sort of structured or unstructured evolution.
Hence, the identification is enabled through a functional series expansion and a least-squares
scheme. The realization of LPV systems often follows similar strategies, as was shown by
Avendaño-Valencia et al. [12, 17].

damage-sensitive features
The list of damage-sensitive features employed for SHM is sheer endless. Thus, attempts to
provide a complete overview are likely to fail. Before reviewing any of these features, it should
be mentioned that the parameters extracted or computed from short-term measurements not
necessarily need to function as the features considered for damage analysis. Depending on
the strategy of handling EOV, new features might be determined to infer damage eventually.
This circumstance is explained in detail in Section 1.1.3. In the following, two standard classes
of features are presented that are readily used as a proxy for short-term dynamics. For a more
extensive overview, the interested reader is referred to [11, 70].

Modal-based features such as natural frequencies comprise the largest group of damage-
sensitive features employed for SHM, as they can be well interpreted from a structural dy-
namics point of view. However, it must be mentioned that their sensitivity towards small
damages is sometimes low. The computation of modal-based features is enabled through
system identification techniques or modal identification methods that have been developed
particularly for this purpose, such as the FDD [30] or the Bayesian OMA [8, 9]. Cases where
natural frequencies are used as a basis for SHM were presented, e.g., in [91, 126, 156, 172, 185,
219]. Mode shapes or the related Modal Assurance Criterion (MAC) [5] have also been used
in the context of SHM for damage detection and localization, see, e.g., [105]. However, it is
a common opinion that these measures tend to be insensitive towards small damages. Mode
shape curvatures, on the other hand, which were initially studied in [149], promise to feature a
higher sensitivity in this regard [178]. Many more modal-based features exist. An interesting
review of these quantities for damage identification was presented in [69].

A second and lastly presented class of damage-sensitive features comprises model parame-
ters. For their determination, parametric models are fitted to the measured data. The model
parameters are then kept for damage identification, constituting a data reduction, which also
applies to previously presented features. In [77], Figueiredo et al. used AR coefficients as
damage-sensitive features. A similar approach was followed in [67], and in [138] by applying
VAR parameters instead.

1.1.2 Capturing long-term dynamics

Capturing the long-term dynamics inherently addresses the problem of handling the effect
of EOV on the structure’s dynamic behavior, which is often referred to as data normalization
[70, 182]. In the presented work, a differentiation between implicit and explicit methods is fol-
lowed. The former seeks to remove the disturbing influence of EOCs on features representing
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the short-term dynamics, e.g., modal parameters. Explicit normalization approaches, on the
other hand, aim to directly model the long-term variability of the structural dynamics concern-
ing the affecting exogenous conditions [17]. Projection-based data normalization strategies
form the most significant class of implicit data normalization techniques and shall therefore
be regarded extensively in this section. Explicit methods, also referred to as functional depen-
dence modeling, will be regarded next. One might argue that implicit data normalization does
not capture a structure’s long-term dynamics, as the corresponding techniques are applied to
snippets of continuously acquired vibration data or features extracted from it. However, data
normalization tools must be trained with data associated with wide ranges of EOV, and there-
fore, the long-term dynamic behavior is inherently taken into account.

implicit data normalization
Linear projection-based data normalization techniques are appealing since they function in an
unsupervised1 manner such that the affecting EOCs do not need to be measured. Neverthe-
less, a general understanding of these quantities is required, including information about the
number of independent EOCs and whether the acquired data and the altering effects are corre-
lated linearly or nonlinearly. Interesting comparisons of projection-based data normalization
techniques can be found in [47, 55, 114].

A well-known projection technique that is readily applied to remove exogenous effects in
vibration data is the principal component analysis (PCA), which employs the singular value de-
composition (SVD) or eigenvalue decomposition. The PCA is a covariance-based technique,
which helps to remove linear correlation caused by EOVs. Therefore, it is also applicable for
dimensionality reduction [86]. The method is strongly related to the factor analysis [114] and
data normalization employing the Mahalanobis squared distance [55]. Yan et al. employed the
PCA method to remove the linear temperature effects on natural frequencies of a simulated
and experimental bridge model, and by that, enabled the successful detection of stiffness re-
ductions and additional local masses [218]. In a companion paper [219], the authors extended
the strategy to the case of nonlinear dependence by joining multiple principal components for
different intervals of EOCs, which was then applied to natural frequencies of the well-known
Z24 bridge. Here as well, the normalization strategy facilitated the detection of damage. An
alternative strategy for the same validation example was carried out by Reynders et al. [172],
using the nonlinear kernel PCA. An interesting extension of the PCA is the probabilistic PCA,
which features a couple of advantages, such as the introduction of a likelihood model and the
ability to deal with missing data [58]. Other instances of data normalization with the help of
PCA can be found in the literature, see, e.g., [178]. Wernitz et al. [213] applied this method
to enable the damage localization under varying exogenous conditions with the help of resid-
uals stemming from H8 filters. Criticism on the PCA or factor analysis can be formulated
concerning the property of preserving or removing as much variance as possible of the fea-
tures. As the significant variance is assumed to be caused by EOV, it cannot be precluded that
the corresponding principal components cover the effect of minor damages as well [70].

Another projection-based normalization strategy is the cointegration technique. This originally
econometric method aims to project out nonstationary data components that are not corre-
lated equally. The term cointegration implies that for nonstationary time series, there exists

1 Depending on the context, the term unsupervised exhibits different implications. In general, it states that the data
used is unlabeled by an expert.
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some linear combination of them which produces a stationary residual [50]. In the context of
cointegration, Worden et al. [217] emphasized the issues of heteroscedasticity and nonlinear-
ity. The former refers to the property of time-varying statistical moments, e.g., variance, and
the latter describes the problem of EOCs and damage-sensitive features being not correlated
in a linear fashion. Both situations represent common problems in the normalization of data
in SHM, as was implicitly stated to some extent in this section. The classical cointegration
approach was extended to the case of heteroscedastic nonstationary data in [177]. Therein,
seasonal effects causing changes in the variance of the data were removed with the help of an
additional model representing trends and seasonal components. The problem of nonlinearity
of data and the varying EOCs was addressed in [48, 176, 232, 233], where the cointegration
technique was applied to natural frequencies of the Z24 bridge and Supervisory Control and
Data Acquisition (SCADA) data of a wind turbine.

Besides the mentioned techniques, other projection-based data normalization methods exist.
Kullaa presented a missing data model in [113] that comprises an identified mean squared
error estimator also relying on the linear correlation of the data to be normalized and the
EOCs. Some alternatives to projection-based approaches exist within the class of implicit data
normalization, which are worth mentioning. Data clustering or look-up tables are commonly
used strategies. There, features are obtained in a training phase for a reasonable range of EOV
and then grouped in individual classes of data (clustering). During validation and testing, the
newly determined features are first assigned to one of these classes using EOC measurements
or reasonable proxies (classification); they are then compared to their pendants from training.
An overview of clustering algorithms is given in [95]. Look-up tables can be seen as manual
clustering approaches. The data classification is typically carried out with the help of the
Euclidean norm to determine the closest cluster available [70]. Instances for the application of
clustering approaches for data normalization in the context of wind turbine monitoring can
be found in [92, 194, 195, 229].

explicit data normalization
As an alternative to removing the varying effects of EOCs on quantities representing the
short-time characteristics of the monitored structure (damage-sensitive features), the inher-
ent dependence may be modeled directly. By that, systems are identified that describe the
long-term dynamics of the structure under surveillance. Most non-ANN functional modeling
approaches require the measurement of the relevant EOCs (supervised data normalization).
However, in a few instances, this might not be necessary, see, e.g., [17]. Explicit methods for
data normalization can be divided into deterministic and stochastic functional dependence
models. Suppose a direct dependence of the varying EOCs and the captured short-term dy-
namics, e.g., in the form of extracted features, is observable. Then, deterministic dependence
models can be derived via functional series expansion or fitting techniques. However, due to
unknown excitation, uncertainty, and spatial and temporal sparsity in the observations, the
dependence of the structure’s dynamic behavior and the EOV might not be sufficiently cap-
tured. In these cases, dependence models based on random (stochastic) functions could be
identified [17].

Regression techniques are one of the most popular approaches for identifying deterministic
functional dependence models. Together with interpolation strategies [216], as another ex-
plicit normalization method, and projection-based methods, they have been used for data
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normalization since the beginning of extensive research in the field of SHM in the 1990s.
They have been applied in many cases ever since. Peeters and De Roeck [152] modeled the
temperature dependence of the natural frequencies of the Z24 bridge with the help of an
autoregressive model with exogenous inputs (ARX). Similar work was conducted, e.g., for
another bridge [126], for the monitoring of a reinforced concrete dam [156], and in the field of
wind turbine monitoring [144]. Regarding the latter area of applications, more precisely for
the monitoring of jacket structures of offshore wind turbines, Weijtens et al. [208] presented a
study employing a nonlinear regression model. An interesting comparison of several nonlin-
ear and piece-wise linear models for temperature-dependent modeling of natural frequencies
of a footbridge can be found in [139].

In the context of regression analysis or SHM in general, the so-called Support Vector Machine
(SVM)-type regression is worth mentioning. This supervised classification-based tool, rooting
from the statistical learning theory, has been widely applied in SHM to model the dynamic
long-term behavior of systems [25, 109, 141]. SVMs seek to separate data into two classes
by fitting a hyper-plane into the multi-dimensional vector space defined by the data itself.
Then, one class represents the intrinsic linear dependency and the other one the remaining
information. In the case of nonlinear relationships, the application of kernel functions comes
to the rescue [141]. From a numerical point of view, SVM regression is rather appealing since
the underlying quadratic optimization problem to be solved is convex [70].

Stochastic functional dependence models for data normalization received considerable atten-
tion in the past years because of their flexibility to model all kinds of dependencies. The
Polynomial Chaos Expansion (PCE) is particularly well suited for the modeling of uncertain
dynamics. To this end, the data to be normalized is expanded on polynomial chaos basis func-
tions, which are orthonormal to the probability space of the EOCs [185]. The PCE method
has been applied in SHM to all kinds of structures. In [185], Spiridonakos et al. applied
this method to model the nonlinear relationship of the natural frequencies of the Z24 bridge
with respect to the measured temperature. Similar work has been conducted on a reinforced
viaduct [129]. Bogoevska et al. [24] employed this method to natural frequencies, identified
through time-varying ARMA models, and SCADA data of a wind turbine. An interesting
extension of the conventional PCE implementation was presented by Dertimanis et al. [57].
They proposed the utilization of B-splines as basis functions and estimated the corresponding
parameters with the help of a separable nonlinear least-squares procedure.

Promising explicit normalization results have been further presented within a Gaussian pro-
cess regression framework [17], which, contrary to the PCE method, considers uncertainty re-
sulting from unmeasurable sources. The associated functional dependency models constitute
LPV systems that represent the short- and long-term dynamics of the observed structure with
respect to so-called scheduling variables (EOCs). In Gaussian process regression, it is assumed
that the EOC-dependent parameters comprising the short-term dynamics follow a Gaussian
distribution. An LPV model representing the long-term dynamics is then constructed through
functional series expansion. Avendaño-Valencia et al. [17] applied this concept to a bridge fea-
turing LTI short-term dynamics identified as VAR models. Similar efforts have been made
for the monitoring of an on-shore wind turbine in [16] using VAR and continuous Wavelet
transform models for low- and high-frequency content, respectively.
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With the rise of ANNs in all kinds of disciplines related to data processing, their appealing ap-
plicability for unsupervised and supervised data normalization was quickly discovered. These
tools are applicable to model all types of linear and nonlinear functional dependencies among
features and EOCs. Unsupervised normalization is achievable with the help of autoassocia-
tive neural networks (AANNs). Setting the size of the bottleneck layer equal to the number of
independent EOCs results in capturing the dependency on the unobserved EOCs. An early
example of the application of an AANN for data normalization is given in [183], where the
neural network is trained by employing temperature-dependent transfer function coefficients.
In recent publications, scientists constructed AANNs to represent natural frequencies under
varying temperatures [89, 175]. In these instances, the variable temperature was provided
as an input to the AANN. A comparative study to non-neural-network-like approaches was
presented in [79, 143].

1.1.3 Damage analysis

The primary purpose of SHM is the identification of damage, which constitutes a change of
the structure’s material and/or geometrical properties leading to a deviation from the ideal
condition, cf. [70, 215]. Classically, the damage identification problem describes a hierarchical
procedure comprising several steps. Rytter first defined a four-step classification in his PhD
thesis [174]. Later Worden and Dulieu-Barton included a fifth step leading to the following
widely excepted structure [215]:

1. Damage detection: Does damage exist?

2. Damage localization: Where is the damage?

3. Damage classification: What is the type of damage?

4. Damage assessment: What is the extent of the damage?

5. Prediction: How much safe and useful life remains?

Data-driven vibration-based SHM cannot satisfy all these objectives. The most significant
limitation is that no physics-based model is involved, which would provide a more detailed
representation of the observed structure compared to the one defined by the sensor network.
Consequently, the location of damage, for instance, can only be narrowed down to adjacent
sensors. An even more substantial restriction follows from the consideration of unsupervised
SHM schemes. According to the third axiom of SHM by Farrar and Worden [70], the local-
ization of damage in the unsupervised case is feasible at best. This approach is generally
pursued in civil engineering, which implies that the manifestation of damage with respect to
the applied methods is unknown. Since the present thesis is dedicated to the field of unsuper-
vised damage identification, special attention is paid in this section to existing practices with
this purpose.

As mentioned before, in data-driven vibration-based SHM, damage is inferred based on
damage-sensitive features. The associated feature extraction process might as well involve the
procedure of data normalization, resulting in a set of characteristic quantities (used for the sta-
tistical assessment) that differ from those extracted from the measured data in the first place.
Hence, the term damage-sensitive feature is sometimes used inconsistently in the existing lit-
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erature. To illustrate the described circumstance, consider the following example: Suppose
a structure is monitored using natural frequencies extracted from short-term measurements.
These features are sensitive to damage to some extent, but at the same time, they change
with varying EOCs. Thus, an implicit data normalization approach that, e.g., applies the PCA
method to a certain set of frequencies might be followed. By considering a user-specified num-
ber of principal components, the influence of EOCs on the natural frequencies can be removed,
leading to a residual of the original and projected natural frequencies, cf. [218]. Under healthy
conditions and if the projector is trained adequately, the residual takes a Gaussian distribution,
which can be finally tested for the purpose of damage identification. Given this exemplary
case, it is arguable that the natural frequencies constitute the actual damage-sensitive features.
Instead, the residual should be considered as such. Nevertheless, the denotation is legitimate,
as the natural frequencies are indeed affected by damage. Independent of this notational
discussion, it can be generalized that, in SHM, damage identification is enabled by assessing
the representability of the captured long-term dynamics considering the currently acquired
vibration data.

Since the present work contributes to the problem of damage localization in output-only and
unsupervised data-driven vibration-based SHM, existing approaches are reviewed in the fol-
lowing. Special attention is paid to the validation of the regarded methods.

As mentioned in Section 1.1.1, modal-based quantities comprise the most intuitive choice of
features applicable for damage identification. Attempts to localize damage have been made
by employing mode shapes [105] and mode shape curvatures [6, 149, 178, 206] or modal filters
[133, 190, 191]. In the output-only context, this class of modal approaches is also related to
methods employing flexibility or stiffness matrices such as the popular damage locating vector
(DLV) method [20] since these structural parameters can be estimated using OMA techniques,
see [21, 221]. Generally, modal-based methods suffer from the sparsity of sensor networks.
For mode shape curvatures, which tend to be more sensitive to damage than the mode shapes
themselves [149], this issue is often tackled through the application of interpolation schemes.
By that, it is hoped to better highlight local changes in the curves. Moreover, the sensitivity
of mode shape curvatures towards damage also depends on the level of measurement noise.
To overcome this issue, advanced signal processing tools are often applied, see, e.g., [35, 162,
198]. Modal filters promise to hold potential in the view of changing environmental conditions,
especially temperature variations. Originally, these filters were constructed from the FRF of
the structure under surveillance. The idea is to build up a set of modal filters, each tuned to
a different mode by computing linear combination factors. That is, the filter is orthogonal to
all modes except one. Thus, the FRFs representing the modal filters feature a single peak at
the frequency of the mode they are tuned for. When applied to the measured outputs of the
structure, additional peaks arise in the case of local structural changes. On the contrary, if a
global change occurs, e.g., caused by a homogenous decrease or increase of temperature, this
effect is absent [56], as the mode shapes are unaffected. To overcome the problem of missing
input data, the filters can be designed based on PSDs of the outputs or synthesized FRFs
[132].

Another class of techniques applied for damage localization stems from the field of fault de-
tection and isolation (FDI) [106, 188] associated with control engineering. The corresponding
approaches frequently involve Kalman and H8 filters to detect and localize changes in engi-
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neering systems. In output-only problems, such filters can be employed in the observer form,
constituting an estimator of the undisturbed outputs. Then, the estimation error exhibits a
quantity suitable for damage identification. An early example of Kalman filters used for this
purpose in the view of SHM was presented by Yan et al. [220]. For this study, the authors
determined the estimators with the help of the SSI. Erazo et al. [68] showed that Kalman filters
can be interpreted as modal filters if tuned optimally, and therefore, theoretically exhibit the
same insensitivity towards global changes as explained before. A fundamental assumption of
Kalman filters is that the excitation and measurement noise represent white noise processes
with known statistical properties. Clearly, this assumption does not hold in practice, encour-
aging the application of more robust estimation schemes. Following this motivation, Lenzen
and Vollmering proposed the use of H8 filters for damage identification [117]. Later, the au-
thors extended this strategy through the use of projection techniques [118, 119, 205], leading
to an energy-based damage indicator representing the differences in estimation errors.

Other damage localization techniques have been subjected to research. For instance, the appli-
cability of transmissibilities for dispersive and non-dispersive systems was discussed in [43].
An application example is given by Diao et al. [59]. Mosavi et al. [138] proposed damaged
localization by applying the Mahalanobis distance to identified VAR parameters. A linear dis-
criminant criterion was then used to evaluate the contribution of the coefficients to structural
alterations.

All methods for damage localization mentioned so far have been validated in an experimental
context regarding selected batches of data. This even includes large-scale experiments involv-
ing a 34 m rotor blade for the utilization of mode shape curvatures [198] or an 80 m footbridge
in view of the application of modal filters [133]. The popular Z24 was also subject to Kalman
filter-based damage localization, see [220]. These investigations provide valuable justifica-
tion for the general application of the corresponding methods for data-driven vibration-based
SHM, but they do not prove the suitability of the applied methods for long-term monitoring.
The reason is that the data used for these studies do not reflect relevant changes of varying
EOCs. In the case of [198], the structure was not even excited by ambient sources since it was
set up in a laboratory environment. To the knowledge of the author, such studies have so
far only been conducted in simulation studies, see, e.g., [116, 178]. This lack of existence of
real-life validation examples is addressed in this thesis. Therefore, Kalman and H8 filters are
employed within the so-called SP2E framework, and the effect of EOV is handled by means
of an interpolation-based LPV modeling approach. The justification for the choice of method
is three-fold. Firstly, modal-based methods, in particular, suffer from the sparsity of sensor
networks. Without a doubt, dense data acquisition is beneficial for damage identification and
damage localization in particular. Nevertheless, energy-based methods tend to cope better
with weakly observed structures, cf. [213]. Secondly, a thorough modal identification is not
necessarily required, cf. [212, 220], which is appealing for the handling of large sets of data. At
last, recent studies have shown that the sensitivity towards localized damage of the proposed
damage identification method is high, e.g., compared to a modal curvature-based approach
[210].
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1.1.4 Uncertainty

It is in the nature of vibration-based SHM that different manifestations of uncertainty are
present in all stages and subjects associated with it [39]. Hence, it comes as no surprise that
the problem of evaluating the structural integrity of a system given continuously acquired
observations is generally approached from a statistical pattern recognition perspective. Nev-
ertheless, the presence of uncertainty needs not only to be faced during the identification of
damage. It is also worth considering, reducing, and/or quantifying in all subjects involved,
see Fig. 1.1. Possible approaches for coping with uncertainty shall be examined in the follow-
ing.

uncertainty and dynamic modeling
Uncertainty in the observations might be reduced in the first step during data preprocessing,
which among other components, includes data cleansing and data reduction. The former
constitutes, for instance, the tasks of filtering signals to remove noise, the removal of spikes,
and the treatment of missing data [70, 215]. Uncertainty is intrinsically reduced when mod-
eling the structure’s dynamic behavior with parametric techniques. Such techniques aim to
fit a mathematical model to the measured data in some optimal sense by reducing the error
of fit. From a modal analysis point of view, these models are applicable to extract natural
frequencies, damping ratios, and mode shapes, which can be used as features for damage
identification. In this regard, approaches exist that quantify the uncertainty associated with
the estimated modal parameters. Early contributions were made by Pintelon et al. [157].
Reynders et al. [170] and Döhler et al. [62, 63] published strategies explicitly designed for
the SSI. Validation examples are available, e.g., in [169]. Au et al. [8, 9] recently developed
an interesting nonparametric approach, leading to the so-called Bayesian Operational Modal
Analysis (BAYOMA), which involves the uncertainty quantification of modal estimates.

A final example for the consideration and quantification of uncertainty in system modeling
is posed by Gaussian processes. In the regarded context, these stochastic processes assume
that the model’s parameters follow a Gaussian distribution so that the parameter covariance
matrix quantifies the uncertainty of the representation. Valuable contributions in this field
have been recently published by Avendaño-Valencia et al. [15, 17] concerning LTI and LPV
system modeling.

uncertainty and damage analysis
Following the statistical pattern recognition paradigm, identifying damage in unsupervised
SHM is referred to as novelty, anomaly, or outlier detection. Damage-sensitive features are
acquired in a training phase, defining the statistical reference associated with the healthy
structure. Generally, this is accomplished with the help of a hypothesis test, formulated using
a probability density function (PDF) or cumulative distribution function (CDF) of the features
acquired during training [93]. In the inspection phase, also called the testing phase, the same
kind of features are checked to match this baseline, cf. [70]. To this end, a confidence interval
must be defined that represents a high likelihood of the structure being undamaged. By
using these statistical measures, uncertainty is intrinsically taken into account when implicit
approaches are followed.
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Control charts exhibit standard tools to visualize the continuous process of outlier detection.
They are borrowed from the field of statistical quality control. The charts depict the acquired
features over time and stationary upper and lower control limits representing the confidence
interval. Once limits are exceeded in either direction, an alarm is triggered, indicating poten-
tial damage. An early example of the use in SHM is given by Fugate et al. [81]. An overview
of different control charts is available in [70, 137].

Naturally, statistical testing cannot always guarantee the successful identification of damage.
This might be caused by the insensitivity of features towards certain types of damage or the
minor degree of the damage severity. In any case, for the assessment and/or readjustment of
the SHM system, it is beneficial to quantify false detection, manifested as type I errors (false
positive detection) and type II errors (false negative detection). The former describes a false
alarm, whereas the latter refers to missed damage detection. Clearly, the last case constitutes
a more severe error. In SHM, so-called receiver operator characteristic (ROC) curves can
be used posterior to the confirmed errors to assess the effectiveness of the applied damage
identification scheme and to optimize confidence intervals, see [70].

1.2 organization of the presented work

The presented literature review highlights the value of real-life validation cases for SHM.
Accordingly, studies that explicitly focus on damage localization in unsupervised data-driven
vibration-based SHM have not been presented. Hence, this task defines the central element of
this thesis. Linear quadratic estimators form the basis for this endeavor, as they possess a high
sensitivity towards localized damage without requiring particularly dense sensor networks.
The objectives of this work follow from the necessity to cope with EOV and uncertainty as
well as designing proper estimators. The objectives are presented in the following, together
with the outline of the thesis.

1.2.1 Objectives

For the overall goal of validating an approach for unsupervised data-driven vibration-based
SHM with the potential to localize damage, a strategy shall be developed that focuses on the
following goals and hurdles:

• A parametric framework for damage detection and localization is to be adapted for the
application in SHM. Therefore, a system theoretic strategy for data normalization shall
be developed that enables damage identification under EOV.

• All methods applied must cope with natural sources of variability, excitation, and uncer-
tainty.

• To effectively use Kalman filters within the damage analysis framework, a suitable ap-
proach for noise covariance estimation shall be provided.

• The applicability of different kinds of linear quadratic estimators (H2 and H8 optimal
estimators) should be investigated and compared.
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• Therefore, criteria shall be derived to enable the a priori assessment of the estimators to
be efficiently applied for damage detection and localization.

• Employing the described methods in a practical scenario, challenges should be identified
associated with the real-life application of SHM.

By conducting this research in a realistic yet academic context, it is hoped to encourage further
studies with a similar focus to quantify the potential and practical effectiveness of vibration-
based SHM methods.

1.2.2 Outline

This thesis contains two parts. The first one lays the theoretical foundation for the topics and
objectives of this thesis. These are addressed in the second part, which includes simulation
and experimental studies for verification and validation purposes. This thesis contributes to
all main subjects of SHM directly or indirectly. This circumstance is visualized in Fig. 1.2 with
references to the corresponding chapters. The outline of this thesis is as follows:

Figure 1.2: Contributions of thesis to SHM.

Chapter 2 — In this thesis, structures are modeled as linear systems with stochastic inputs.
Therefore, fundamental structural dynamics of linear systems are presented, and basic prop-
erties of random processes are characterized. Finally, the theory and computational steps of
the SSI are provided. This method is generally used to identify structures based on short-term
observations.

Chapter 3 — The estimation theories behind Kalman and H8 filters are studied. To this
end, interpretations of the associated transfer function norms are made within a generalized
control framework. A whiteness test for the evaluation of Kalman filter performance is pre-
sented.
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Chapter 4 — The original damage analysis framework is introduced, which employs quadratic
estimators and projection techniques (SP2E) in state space. Based on that, an indicator suit-
able for damage localization is derived. The framework is regarded in the context of SHM.
Therefore, a hypothesis test is proposed for a statistical assessment of the damage indica-
tors. Further, assumptions are postulated concerning the suitability and effective use of the
designed filters for effective damage identification.

Chapter 5 — This body of work establishes a parametric extension of the autocovariance least-
squares (ALS) method for noise covariance estimation. This enables the convenient design
and utilization of Kalman filters within the adapted damage analysis framework. In this con-
text, the whiteness test presented in Chapter 3 is adjusted. The proposed method is validated
in a series of simulations and two experiments. The latter demonstrates the effective applica-
bility of tuned Kalman filters within the SP2E framework presented in Chapter 4 for damage
detection and localization.

Chapter 6 — This chapter investigates the effect of EOV on damage indicators computed
with the help of the damage analysis framework presented before. An LPV identification
scheme is developed based on the interpolation of LTI systems for different operating points.
Under varying temperatures, this long-term modeling approach is validated using a simulated
temperature-dependent LPV system. The applicability of this data normalization strategy
in the context of damage detection and localization is demonstrated by introducing small
structural changes. A comparison of Kalman and H8 filters is given.

Chapter 7 — SHM is conducted by employing the damage analysis framework by SP2E (Chap-
ter 3) under consideration of the LPV identification scheme (Chapter 6). To this end, Kalman
filters tuned with the parametric ALS method (Chapter 5) are applied and compared to H8

filters.

Chapter 8 — This final chapter summarizes and concludes this thesis. Further, an outlook is
presented, highlighting aspects to be addressed in future research.





Part I

F U N D A M E N TA L S

The scope of this part is to lay the theoretical foundation for the topics and objec-
tives addressed in this thesis.
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L I N E A R S Y S T E M S A N D I D E N T I F I C AT I O N

Finally, we make some remarks on why linear systems are so
important. The answer is simple: because we can solve them!

— Richard Feynman [76, p. 25-8]

In most engineering disciplines, linear models play an essential role in representing system behavior.
At the same time, it is common knowledge that these models can never exactly describe the regarded
phenomena, as every physical action and reaction features nonlinearities – at least to some extent.
Whenever these nonlinear effects can be neglected, ignored, or compensated because of their insignifi-
cance, linear models are the first choice from an engineering perspective due to their simplicity, efficacy,
and solvability. Since SHM implies the observation and tracking of dynamic properties, a fundamental
understanding of structural dynamics is of utmost importance. The relevant theory is given in the first
section of this chapter. Inverse system identification techniques are required to model dynamic systems
or derive modal properties based on measured data sequences. In this regard, a parametric subspace
method is favored throughout this thesis; it is elaborated on in the second section of this chapter.

2.1 fundamental structural dynamics of linear systems

The objective of structural dynamics is to analyze and evaluate the vibration of structures due
to time-varying loads. The mathematical tool to address this problem is the equation of motion
(EOM) that can be derived from classical or analytical mechanics for continuous-time systems.
By leaving the theoretical world of physics and entering the sphere of computer-based engi-
neering analyses, discrete-time representations of vibrating systems become desirable because
of their numerical efficacy as well as digital data acquisition. Analyzing a dynamic system,
its excitation, or its response in the time domain often leads to limited interpretability of the
oscillatory behavior. Therefore, it is advisable to regard the associated signals, or even the
system itself in the frequency domain, by performing a Laplace transform or its discrete-time
counterpart, the z-transform.

2.1.1 Continuous-time systems

The equation of motion (EOM) is a second-order differential equation that, in the case of me-
chanical systems, represents the mechanical properties and behavior of a system and allows
the computation of vibrations resulting from time-varying external forces. Considering clas-
sical mechanics and Newton’s second law of motion is the direct approach to derive EOMs
for single degree of freedom (SDOF) systems or multi-degree of freedom (MDOF) systems.
Newton’s second law of motion constitutes that the sum of forces, acting on a point-like par-
ticle of mass in a fixed reference frame, is equal to mass times acceleration [151]. With the
help of d’Alembert’s principle, one can regard a system from a static equilibrium standpoint
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for every time t by introducing a fictitious inertia force. This state is referred to as dynamical
equilibrium. D’Alembert generalized the principle to any arbitrary mechanical system and not
only moving mass particles. The principle further relaxes the necessity of an inertial reference
frame, as it permits the introduction of a moving relative system [115]. Other approaches exist
to derive EOMs, e.g., the principle of virtual displacement or Hamilton’s principle [44].

In the presented work, linear mechanical structures are usually modeled as multiple degree-
of-freedom (MDOF) systems. Thus, the corresponding EOM reads

Mÿ(t) + Dpẏ(t) + Ky(t) = f (t). (2.1)

Therein, M P RnDˆnD denotes the mass matrix, Dp P RnDˆnD the viscous and proportional
damping matrix and K P RnDˆnD the stiffness matrix. The vector of external forces f P RnD ,
acting at each of the nD degrees of freedom (DOFs), is time varying, as well as the displace-
ment y P RnD , velocity ẏ P RnD , and the acceleration ÿ P RnD . Note that the dot notation
is used to designate the time derivative. Naturally, Eq. 2.1 also applies to single degree-of-
freedom (SDOF) systems. The matrix coefficients (M, Dp, K) then reduce to scalar values. The
discretization of a structure, e.g. with the finite element (FE) method, highly depends on the
presupposed material laws and interconnecting relationships. However, to elaborate on this
is beyond the scope of the thesis.

Structures represented by Eq. 2.1 are referred to as linear time-invariant (LTI) systems. That
means their mechanical properties (M, Dp, K) are not time-dependent. However, a structure
may alter over time. Then, (M(t), Dp(t), K(t)) should be considered instead. In this case,
the system can no longer be described as LTI but as linear time-variant (LTV). When a linear
system changes with respect to its current operational point or environmental conditions, it
should be characterized as linear parameter-varying (LPV). Then, the structural parameters
are given as a function of the scheduling variable θ such that (M(θ), Dp(θ), K(θ)). How-
ever, this chapter is only dedicated to LTI systems. LPV systems will be later addressed in
Chapter 6.

From a signal processing standpoint, it is often convenient to regard dynamic systems as a
general operator that maps some inputs u to some outputs y. This interconnection is dis-
played in Fig. 2.1, where G denotes some arbitrary system1. This illustration condenses the

Figure 2.1: System G with input u and output y.

relationship of u, y, and G to its core. It does not imply any form of representation of G or
whether u and y are time- or frequency-domain signals. It simply states that some output y
arises when u acts on G. From there, the labels single input/single output (SISO) or multiple
input/multiple output (MIMO) follow. In the following, important forms of representation
are introduced, besides the EOM discussed before. Also, solutions for the map u Ñ y are
presented.

1 Throughout this thesis, systems are highlighted by bold capital letters.
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state-space formulation
A practical representation of dynamic systems is the state-space form. This arrangement,
developed in control engineering, consists of writing a second-order differential equation in
a first-order form and adding an algebraic output equation. To do so, the so-called state
vector x(t), which consists of n = 2nD elements is introduced [214]. At this point, a generic
continuous-time LTI state-space system is introduced first that reads

ẋ(t) = Acx(t) + Bcu(t) (2.2a)

y(t) = Ccx(t) + Dcu(t), (2.2b)

with

x(t) =

[
x1(t)

x2(t)

]
, x2(t) = ẋ1(t). (2.3)

Here, the subindex c denotes continuous-time. Ac is the n ˆ n system matrix, Bc is the n ˆ p
input matrix, Cc is the q ˆ n output matrix, and Dc represents the q ˆ p feed-through matrix.
All state-space matrices might be complex- or real-valued. Note, that p and q depict the
number of inputs u(t) and outputs y(t), respectively. A transformation of Eq. 2.1 into state-
space yields

ẋ(t) =

[
0 I

´M´1K ´M´1Dp

]

looooooooooooomooooooooooooon

Ac

[
y(t)

ẏ(t)

]
+

[
0

M´1

]

loomoon

Bc

f (t) (2.4a)

y(t) =
[

I 0
]

loomoon

Cc,d

[
y(t)

ẏ(t)

]
(2.4b)

so that x1(t) = y(t), x2(t) = ẏ(t), u(t) = f (t), and Dc,d = 0. In the preceeding equations, 0
depicts a matrix containing only zeros and I is the identity matrix. Note that x1(t) = y(t),
u(t) = f (t), and Dc,d = 0. All associated variables are real-valued.

In Eq. 2.1, and therefore, in Eq. 2.4b, y refers to displacement, which essentially follows the
definition of Cc,d, where, the subscript d denotes displacement. To yield different quantities
as outputs, such as velocity and acceleration, the parameters Cc,d, and even Dc,d, must be
changed to [152, 204]

Cc,v = Cc,d Ac, Dc,v = Cc,dBc, (2.5)

Cc,a = Cc,d A2
c , Dc,a = Cc,d AcBc, (2.6)

where the subscripts v and a imply velocity and acceleration, respectively. These definitions
follow from the time derivatives of Eq. 2.4b.

time domain solution
To compute the response of a continuous-time LTI system represented by Eq. 2.2 to an arbi-
trary input u(t) in time domain, the state equation can be generally solved with [214]

x(t) = eAc(t´t0)x(t0) +

ż t

t0

eAc(t´τ)Bcu(τ)dτ. (2.7)
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Here, the first part, eAc(t´t0)x(t0), refers to the homogeneous solution of the first-order differen-
tial equation, namely the response to zero input but some initial condition x(t0) at the starting
time t0. The second part constitutes the particular solution, which represents the output to
an arbitrary input signal, whereas the initial state vector x(t0) is zero. At this point, it must
be mentioned that computing eAc is not trivial at all. However, a solution can be found by
employing the Cayley-Hamilton theorem, for instance, [40]. Finally, substituting Eq. 2.7 into
Eq. 2.2b yields

y(t) = CceAc(t´t0)x(t0) +

ż t

t0

CceAc(t´τ)Bcu(τ)dτ + Dcu(t). (2.8)

By assuming that t0 = 0, x(t0) = 0, and ui(t) = δ(t), i P [1, p], with δ(t) being the Dirac
function

δ(t) =

$

&

%

1, t = 0,

0, t ą 0,
(2.9)

one recovers the impulse response function (IRF)

G(t) = CceActBc + Dcδ(t). (2.10)

Consequently, an alternative form for Eq. 2.8 follows:

y(t) = CceAc(t´t0)x(t0) +

ż t

t0

G(t ´ τ)u(τ)dτ. (2.11)

Note that the second part of the latter is referred to as convolution and is closely related to
the Duhamel’s Integral for the solution of Eq. 2.1 (see, e.g., [44]). The IRF in Eq. 2.10 is a full
representation of the system G in the time domain, as it enables the genuine computation of
y(t) through convolution with u(t), see Eq. 2.11.

modal analysis
Modal parameters are crucial for the characterization of linear dynamic systems. They com-
prise natural frequencies, also known as eigenfrequencies, mode shapes, and modal damping
ratios. A general way to derive them is to consider Eq. 2.4a for the free-vibration case ( f (t) = 0)
and the possible solution of this first-order homogeneous differential equation [134]:

x(t) =
n
ÿ

i=1

[
ϕi

ϕiλi

]
eλit. (2.12)

Here, ϕi P CnD describes the complex-valued eigenvectors or mode shapes, respectively, and
λi P C represents the associated eigenvalues. Both appear in nD complex-conjugated pairs.
The eigenvalues of these nD so-called normal modes or eigenmodes are defined as

λi, λ˚
i = ´ζiω0,i ˘ jω0,i

b

1 ´ ζ2
i = δi ˘ jωD,i, (2.13)

where the real part is represented by the decay constant δi, and the imaginary part, led by
the imaginary number j =

?
´1, contains the damped circular or also-called angular natural

frequency ωD,i (in radian) of the ith eigenmode. ω0,i depicts the ith undamped circular natural
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frequency, and ζi is the modal damping ratio. (¨)˚ denotes the complex conjugate. Note that
for mechanical systems with proportional damping, as given by Eq. 2.1, eigenvalues and
eigenvectors comprise real-valued quantities since they satisfy the orthogonality property of
the normal modes [30, p. 95]. This circumstance implies that the response of the damped
MDOF system can be fully described by the superposition of nD decoupled SDOF systems.
Nevertheless, eigenvalues and -vectors become complex-valued when transferring the EOM
into state space. The associated eigenvalue problem is similar to the modal decoupling of
non-proportionally damped systems, see [30, p. 99 ff.].

Now, substituting Eq. 2.12 into ẋ(t) = Acx(t) (free decay) yields the standard eigenvalue
problem

ΨΛ̄c = AcΨ, (2.14)

with

Λ̄c =

[
Λc 0

0 Λ˚
c

]
, Λc =




λi
. . .

λnD


 (2.15)

and

Ψ =

[
Φ Φ˚

ΦΛc Φ˚Λ˚
c

]
, Φ =

[
ϕi ¨ ¨ ¨ ϕnD

]
. (2.16)

It follows from Eq. 2.14 and the relations described before that Ac can be diagonalized us-
ing the so-called modal matrix Ψ so that Λ̄c = Ψ´1AcΨ. This procedure is referred to as
modal decoupling of the state-space form, which comprises a set of n independent first-order
differential equations. In fact, an infinite amount of so-called similarity transformations ex-
ists for any non-singular matrix T P Cnˆn that leads to a transformation of the states so that
x1(t) = T´1x(t) [214]. The associated state-space matrices then become

A1
c = T´1AcT, B1

c = T´1Bc, C1
c = CcT, D1

c = Dc. (2.17)

Note that the prime marks a vector or matrix after the similarity transformation. With T = Ψ,
the eigenvalues λi can be extracted conveniently from the main diagonal of A1

c, as A1
c becomes

Λ̄c. Based on that and given Eq. 2.13, the circular natural frequencies

ω0,i = |λi| (2.18)

and damping ratios

ζi =
´δi

ω0,i
(2.19)

follow. Finally, the projected mode shapes can be found on the columns of C1
c = CcΨ. To

receive the natural frequencies in Hz, the division by 2π is required such that f0,i = ω0,i/(2π)

and fD,i = ωD,i/(2π), where f0,i and fD,i denote the ith undamped and damped natural
frequency in Hz, respectively.

canonical forms and model reduction
In the case of the modal decoupling with T = Ψ, a diagonal canonical form with complex-
valued state-space coefficients is derived. Therefore, a model reduction constituting the re-
moval of specific modes from the model is easy to conduct by neglecting the corresponding
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rows and columns, respectively, of the state-space matrices. In some applications, real-valued
state-space matrices are desired. Then, an alternative canonical form can be computed with
[214]

T =
[
Retψiu Imtψiu ¨ ¨ ¨ Retψnu Imtψnu

]
, (2.20)

leading to

A1
c = T´1AcT =




δi ωD,i 0 ¨ ¨ ¨ 0

´ωD,i δi 0 ¨ ¨ ¨ 0

0 0
. . .

...
...

...
...

... δn ωD,n

0 0 . . . ´ωD,n δn




. (2.21)

Note that in Eq. 2.20, ψi denotes the eigenvectors of Ac available on the columns of Ψ (Eq. 2.16),
the operator Ret¨u extracts the real components of complex numbers, and Imt¨u the imaginary
part. In the case of the described transformation, B1

c and C1
c are real-valued as well, and a

modal-based model reduction is feasible similarly to the diagonal canonical form2.

2.1.2 Discrete-time systems

In SHM, structures of interest are observed with the help of sensors and data acquisition
systems. Because of the digital nature of this equipment, the sensed forces, vibrations, me-
teorological information, etc., are sampled in discrete time. Consequently, the models fitted
to this data, e.g., by means of system identification techniques, are defined in discrete time
as well. Although these models are appealing for numerical operations, they often become
more comprehensible, e.g., in terms of natural frequencies, once converted to continuous time.
On the other hand, a conversion from a continuous-time to a discrete-time model might be
desired, for instance, to simplify numerical operations. The discretization of signals and sys-
tems is enabled by defining t = k∆t, where ∆t denotes the sampling period, and k represents
discrete time steps. Further, the type of discretization depends on how the transition of time-
dependent processes from one time instance to the next is defined. Assuming a constant value
for the duration of one time step k∆t is referred to as zero-order hold (ZOH) [168].

When converting continuous-time state-space systems, the input u(t) is assumed constant for
k∆t ď (k + 1)∆t. By that, the associated discrete-time state-space model can be derived [40]:

xk+1 = Axk + Buk (2.22a)

yk = Cxk + Duk, (2.22b)

with parameters

A = eAc∆t, B = A´1
c (A ´ I) Bc, C = Cc, D = Dc. (2.23)

2 It must be remarked that the simplified case is regarded, where a system contains complex-conjugated modes only.
For further information and the more complicated scenario, consult [214].
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time-domain solution
By discretizing continuous-time state-space models, e.g., with the help of the ZOH method,
the computation of time derivatives is no longer required. Moreover, by processing Eq. 2.22a
for some initial time step k0 yields the discrete-time pendant to Eq. 2.7, which reads

xk0+l = Alxk0 +
l´1
ÿ

i=0

AiBuk0+l´i´1, (2.24)

xk = Ak´k0 xk0 +
k´k0´1
ÿ

i=0

AiBuk´i´1, (2.25)

with k = k0 + l, l ě 0 and k ą k0. Further, the output equation as a function of the initial state
xk0 and the inputs uk follows from substituting Eq. 2.25 into Eq. 2.22b such that

yk = CAk´k0 xk0 +
k´k0´1
ÿ

i=0

CAiBuk´i´1 + Duk. (2.26)

Here, the similarity to Eq. 2.8 is apparent.

Now, the discrete-time IRF Gk can be found by choosing k0 = 0, x0 = 0, and ui,k = δk, i P [1, p],
where δk denotes the discrete-time Dirac function defined as

δk =

$

&

%

1, k = 0,

0, k ‰ 0.
(2.27)

The discrete-time IRF, also called infinite impulse response (IIR), reads

Gk =

$

&

%

D, k = 0,

CAk´1B, k ą 0
(2.28)

such that Eq. 2.26 can be written similarly to Eq. 2.11 as

yk = CAk´k0 xk0 +
k
ÿ

i=k0

Gk´iui, (2.29)

cf. [40, 145]. This operation is also referred to as discrete convolution. Note that for causal sys-
tems, k ě i, since the output yk must be a function of past and present. This system property
and some more will be regarded in Section 2.1.4. A last comment is made with respect to the
computation of Gk. At first sight, it seems that this procedure is relatively simple. However,
because of the matrix exponential Ak´1, this operation is numerically demanding.

modal analysis
Eigenvalues and eigenvectors of discrete-time state-space systems can be extracted similarly to
the continuous-time case using an eigenvalue decomposition, as stated in Eq. 2.14. However,
in this case, the diagonal matrix containing the discrete-time eigenvalues µi is denoted Λ̄ or
Λ, respectively. It decomposes to

Λ =




µi
. . .

µnD


 , with µi = eλi∆t (2.30)
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so that the continuous-time eigenvalues are recovered by

λi =
ln(µi)

∆t
. (2.31)

Then, the classical interpretations in terms of natural frequencies, damping ratios, as well as
mode shapes follow from the theory of modal decoupling of continuous-time systems given
in Section 2.1.1.

2.1.3 Frequency domain representation and analysis

Signals and systems can also be represented, analyzed, and processed in the frequency do-
main. To this end, they are regarded as functions of (complex) frequency. The transformation
of LTI systems from the time to the frequency domain also paves the way for the computation
of system responses in a numerically relaxed manner. In fact, this change of perspective en-
ables interesting interpretations of the nature of signals and systems, and therefore, is readily
considered in almost all engineering disciplines. The mathematical operation to conduct such
transformations in continuous-time is the Laplace transform. For an arbitrary signal y(t), it is
defined as [197]

y(s) =
ż 8

0
y(t)e´st dt. (2.32)

The argument s P C denotes the so-called Laplace variable or Laplace operator that has the
factorization s = α + jω, where ω denotes the angular frequency in radian and α is some real-
valued scalar. In the following, the transformation y(t) Ñ y(s) is denoted by Lty(t)u.

For discrete-time signals, the z-transform (Zt¨u) must be used instead. Similarly to Eq. 2.32, it
is defined as

y(z) =
8
ÿ

k=0

ykz´k. (2.33)

Here, the complex scalar variable z is defined that reads z = es∆t. If Eqs. 2.32 and 2.33
are considered for the interval (´8, 8), the so-called bilateral or two-sided Laplace or z-
transform, respectively, is implied. Both the Laplace and the z-transform possess inverse
counterparts such that L´1ty(s)u = y(t) and Z´1ty(z)u = yk, where L´1t¨u and Z´1t¨u

denote the inverse Laplace and z-transform, respectively. For more information on this topic,
see [145, 197].

transfer function
With the proper mathematical tools at hand, the system response given by Eq. 2.11 for x(0) = 0
can be expressed as a function of the complex variable s [40, p. 13 ff.]. Then, it reads

y(s) = G(s)u(s). (2.34)

Here, u(s) is the Laplace transform of the input signal u(t), and the complex-valued matrix
function G(s) is the so-called transfer function of the continuous-time system G represented
by the state-space parameters (Ac, Bc, Cc, Dc). It yields

G(s) = LtG(t)u = Cc(sI ´ Ac)
´1Bc + Dc. (2.35)
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Eq. 2.34 reveals a powerful property of the Laplace transform, namely that this operation
turns convolution integrals, and even differential equations, into algebraic equations [40, 145].
Consequently, processing signals and systems in the frequency domain is appealing from a
numerical perspective. All information can be retained and recovered because of the unitary
nature of the Laplace transform [230].

It is easy to show that the transfer functions for discrete-time state-space systems follow sim-
ilar derivations [40, p. 32 ff.]. To this end, consider the equation of outputs in Eq. 2.29 for
x0 = 0 and the z-transform defined in Eq. 2.33. Then,

y(z) = G(z)u(z), with G(z) = ZtGku = C(zI ´ A)´1B + D. (2.36)

frequency response function
While the transfer function of an LTI system has quite an abstract interpretation because of
the complex variables s or z, respectively, the so-called frequency response function (FRF) is a
powerful tool to gain insight into how a system reacts to inputs with specific frequencies. By
assuming a stationary input and considering the steady-state case3, the real part of s is chosen
to zero (α = 0). By that, the FRFs

G(jω) = Cc(jωI ´ Ac)
´1Bc + Dc (2.37)

and
G(ejω∆t) = C(ejω∆t I ´ A)´1B + D (2.38)

are recovered. Hence, the FRFs are simply functions of all real angular frequencies ω P

(´8, 8) or ω P [0, fs/2] in the discrete-time case, respectively. They show how the system G
responds to a sinusoidal excitation with distinct frequency ω and unit amplitude in terms of
magnitude |G(jω)| and phase =G(jω). These quantities are defined as

|G(jω)| =

b

RetG(jω)u2 + ImtG(jω)u2 (2.39)

and

=G(jω) = arg G(jω) = arctan
ImtG(jω)u

RetG(jω)u
. (2.40)

=G(jω) can be interpreted as the delay to the excitation4. These explanations and interpreta-
tions hold for the discrete-time case as well. The combined plot of magnitude and phase as
functions of frequency is known as Bode plot.

FRFs can also be derived with the help of the Fourier transform, denoted by Ft¨u, and its
discrete-time counterpart, respectively. For the continuous-time case, the associated transfor-
mation is defined for an arbitrary signal y(t) as [197]

y(jω) =

ż 8

´8

y(t)e´jωt dt. (2.41)

3 The steady-state solution of a dynamically excited system comprises the homogeneous solution only and disre-
gards transient effects.

4 In practice, the two-argument arctangent (atan2) is readily applied to determine the unique phase angle within
the complex plane.
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Obviously, this operation considers the infinite time interval (´8, 8) and yields functions of
the real variable ω. Thus, the Fourier transform can be seen as a special case of the Laplace
transform for α = 0. In the case of the bilateral Laplace transform, y(t ă 0) = 0 is required,
which is satisfied for causal systems. Accordingly, there exist an inverse operation denoted by
F´1t¨u such that [197]

y(t) =
1

2π

ż 8

´8

y(jω)ejωt dω. (2.42)

2.1.4 System properties

When analyzing or processing linear dynamic systems, certain properties need to be assumed
or assured. In the following, properties that play a fundamental role in the present work are
briefly defined and explained. Since discrete-time LTI systems are typically considered in this
work, the associated definitions are made in this regard. Nevertheless, the characterization of
continuous-time LTI systems follows the same principles in general.

stability
Stability is the most important property of dynamic systems, especially LTI systems. Gener-
ally, system theorists distinguish between internal and input-output stability. The former is
often referred to as Lyapunov stability, whereas the latter type is typically denoted as bounded-
input, bounded-output (BIBO) stability [102]. In simple words, the internal stability evaluates the
system response to some arbitrary initial state x0. On the other hand, BIBO stability of systems
is assessed by contrasting inputs and outputs. Although both kinds of stability share certain
similarities, they should not be confused. In the present thesis, Lyapunov stability is implied
whenever the stability of systems is regarded. There, the stability of a system depends only
on the state matrix A, which constitutes the transmission of states. A discrete-time LTI system
described by xk+1 = Axk is said to be asymptotically stable if and only if all eigenvalues of
A have a magnitude strictly smaller than one5. On the other hand, the system is unstable
if at least one eigenvalue has a magnitude greater than one. States of asymptotically stable
systems tend towards zero as the time approaches infinity (xk Ñ 0 as k Ñ 8) independent
of the initial condition x0. Thus, the effect of the initial condition diminishes with time. An
alternative test for Lyapunov stability follows from the Lyapunov theorem, which states that a
discrete-time LTI system is asymptotically stable if for every positive definite n ˆ n matrix Q,
there exist a unique, symmetric, and positive-definite solution P for the following, so-called
discrete-time Lyapunov equation [102]:

ATPA ´ P = ´Q. (2.43)

causality and invertibility
Another important characteristic of dynamic systems is the property of causality. A system
is causal when the outputs solely depend on past and present inputs. This is generally the
case for all passive mechanical systems. In the case of strict causality, the system’s output
depends on past inputs only. Consider Eq. 2.29, where the output yk is computed by means of
an discrete-time IRF and the inputs ui. The system G is only causal or nonanticipatory if and

5 In the continuous-time case, this refers to strictly negative real parts, which is associated with positive damping,
cf. Eq. 2.13.
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only if yk = 0 in the case of i ą k, ui ‰ 0. G is strictly causal if and only if yk = 0 for i ě k,
ui ‰ 0.

The property of invertibility can be readily visualized with the help of Eq. 2.36 because of its
algebraic nature. This equation also comprises the computation of a system response y for
an excitation u, cf. Fig. 2.1. However, the sequences are regarded in the complex frequency
domain in this case. The system G is considered invertible if G(z)´˚G(z) = I, and thus,
u(z) = G(z)´˚y(z). Here, (¨)´˚ denotes the complex transpose of the inverse. Systems in this
work are always considered causal and invertible when not stated otherwise.

observability and controllability
Observability and controllability are essentially important when dealing with control prob-
lems. Yet, in the present work, where estimation strategies stemming from the control field
are exploited, observability plays a paramount role. Because of the duality to controllability,
the necessary statements for this property should also be given.

Typically, the true states xk of a discrete-time system defined by (A, B, C, D) (see Eq. 2.22)
are unknown, and therefore, it might be desirable to estimate x based on measurements y.
Therefore, the corresponding system must be observable, which implies that any unknown
initial state x0 can be uniquely reconstructed given a finite sequence of yk with k ą 0 [40].
Observability is only linked to the state-space representation’s output equation; thus, checking
for this property solely involves the pair (A, C). The latter is said to be observable if, e.g., the
(nq ˆ n) observability matrix

O =




C

CA
...

CAn´1




(2.44)

has full column rank.

Controllability describes the possibility to steer any state of a system in any direction within
the state space in finite time. Contrary to the observability property, this only involves the
state equation. A system is controllable if the (n ˆ np) controllability matrix

Γ =
[

B AB . . . An´1B
]

(2.45)

has full row rank. Note that besides these binary metrics, the degree of observability and
controllability can be assessed by computing the observability and controllability Gramians,
respectively, see [102].

2.2 stochastic processes and signal processing

Civil engineering structures typically undergo ambient excitation induced by, e.g., wind or ex-
ogenous vibration sources, such as traffic. These loads feature random (stochastic) character-
istics or are assumed as such. Consequently, they are determined by statistical properties. In
particular, these properties comprise statistical moments, probability density functions (PDFs),
correlation or covariance functions, and power spectral density (PSD) functions, which are
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elaborated on in the following paragraphs. Prior to that, the terms stationarity and ergodicity
are introduced, which relate to readily assumed properties. Besides the practical motivation,
stochastic processes play an essential role in many problems covered by this work, e.g., hy-
potheses testing and Kalman filtering. Thus, the theory summarized in this section can be
seen as a theoretical foundation for these disciplines. For the sake of clarity, the following
theory is mostly summarized for the continuous case. Special notes are made for discrete
processes when appropriate.

2.2.1 Stationary and ergodic stochastic processes

To relate the theory of statistics to measured signals, it seems appropriate to overlook the
notation one more time and to make some additional nomenclatural definitions. Prior to this
section, an arbitrary time-dependent signal or process was denoted as x(t) in continuous-
time and as xk when thought of as a discrete-time function. From a statistical point of view,
measured signals are seen as realizations of the stochastic process x(t) or xk, respectively, and
therefore, are denoted as xi(t) or xi,k, where i P N+ depicts the number of realizations. Hence,
they are called sample functions. The totality txi(t)u or txi,ku represents an ensemble of these
ne sample functions. This relation is depicted in Fig. 2.2. If t or k is fixed and i is a variable,
then any xi(t) or xi,k, respectively, is a random variable [19, 150]. Following this definition

Figure 2.2: Ensemble txi(t)u of sample functions xi(t) (adapted from [19, p. 10]).

and regarding Fig. 2.2, it becomes clear that the concept of stochastic processes is somewhat
abstract since only an ensemble of infinite sample functions could represent it.
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Hence, stochastic processes are typically considered ergodic, as explained in the following
paragraph. This assumption pertains to the presented work. Therefore, the stochastic process
x(t) or xk, respectively, can be characterized based on a single sample function, and thus,
the index i becomes obsolete. Before continuing, one formal incorrectness should be allowed,
namely that measured data is often referred to as a stochastic process and not a realization of
such.

For a random process to be ergodic, it must be stationary at first. Stochastic processes are
referred to as stationary if certain statistical properties are independent of time. More precisely,
they are considered as weakly stationary if the mean value and the autocorrelation function are
time-independent. Moreover, they are said to be strongly stationary if this time-independence
holds for all statistical properties [150] (see Section 2.2.2). In this work, the former is typically
assumed when considering stationary stochastic processes. To explain this feature, consider
the ensemble txi(t)u of an arbitrary random scalar-valued stochastic process x(t), the expected
value µx(tl) at time instance tl defined as [19]

µx(tl) = Etxi(tl)u = lim
neÑ8

1
ne

ne
ÿ

i=1

xi(tl) (2.46)

and the correlation function

Rxx(tl , tl + τ) = Etxi(tl)xi(tl + τ)u = lim
neÑ8

1
ne

ne
ÿ

i=1

xi(tl)xi(tl + τ). (2.47)

Et¨u generally denotes the expectation operator. In the later equation, τ represents a time
offset. Now, x(t) is said to be a weakly stationary stochastic process if both the mean and the
autocorrelation function are independent of the selection of the fixed time tl , that is, µx(tl) =

µx and Rxx(tl , tl + τ) = Rxx(τ).

Obviously, from an experimental point of view, the stationarity property is hard to prove, or
it is cumbersome to estimate the underlying statistical moments. The reason for this is that
many realizations would need to be gathered that represent the same experiment conducted
in the same way (cf. [29, p. 64]). Fortunately, many physical processes are stationary. A simple
example of that could be a building such as a bridge that naturally reacts to some excitation
in the exact same chronological manner if the same loads are applied as well as the condition
and the initial state of the structure are alike.

As explained above, stationarity of a stochastic process x(t) manifests itself by considering
the ensemble txi(t)u and the corresponding mean and autocorrelation function given by the
Eqs. 2.46 and 2.47. Stationary stochastic processes are also ergodic if these ensemble-averaged
values are equal to the time-averaged values [19]. Therefore, consider the mean value µx(i) of
the ith sample function defined as

µx(i) = Etxi(t)u = lim
TÑ8

1
2T

ż T

´T
xi(t), (2.48)

where T denotes some time interval. Further, consider the corresponding autocorrelation
function given by

Rxx(τ, i) = Etxi(t)xi(t + τ)u = lim
TÑ8

1
2T

ż T

´T
xi(t)xi(t + τ). (2.49)
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If x(t) is ergodic, then the choice of the sample function is irrelevant, and thus, µx(i) = µx

and Rxx(τ, i) = Rxx(τ). In practice, stationary stochastic processes are typically ergodic as
well, which is why, the associated statistical properties can be determined based on a single
observation (sample function) [19].

In the following, stationary stochastic processes are implied to be ergodic.

2.2.2 Statistical properties

The probability of a random variable x(t) being smaller or equal than some fixed value x is
given by the probability distribution function or cumulative distribution function (CDF) P(x) P [0, 1]
that is defined as

P(x) = Probtx(t) ď xu. (2.50)

Here, Probt¨u denotes the probability of some event. Based on that, the probability density
function (PDF) can be computed through differentiation such that

p(x) =
dP(x)

dx
. (2.51)

Obviously, the latter represents the rate of change of probability for x(t) to take a certain value
x [19]. Moreover, the partial integral of p(x) for the interval [x1, x2] is equal the probability of
x(t) to take any value within that range [29]. This is expressed by

Probtx1 ď x(t) ď x2u =

ż x2

x1

p(x). (2.52)

Thus, the total integral of p(x) from ´8 to 8 is equal to one.

Both the probability distribution and the PDF inherently depend on the underlying statis-
tics. The most popular probability distribution is the normal or Gaussian distribution with
PDF

p(x) =
1

σx
?

2π
e

´
(x´µx)2

2σ2
x . (2.53)

Here, σ2
x denotes the variance of a univariate random variable x(t), which refers to the second

central statistical moment of x(t), as shall be explained in the proceeding paragraph. σx is
the so-called standard deviation. Both the variance and the standard deviation are measures
to quantify how close or far the value of a random variable might be from its mean. From
Eq. 2.53, it follows that the Gaussian distribution is only defined by two parameters, namely
by the mean value and the variance. A random variable x(t) following a Gaussian distribution
with mean µx and variance σ2

x is introduced by x(t) „ N (µx, σ2
x).

Probability distribution functions and PDFs are powerful but analytical formulations that can
only be approximated given finite amounts of measured data. However, a practical concept
to visualize the distribution of random variables are the well-known histograms. They are
created by dividing the range of measured values into subintervals of uniform span ∆x. Then,
for each of these so-called bins, the occurrences of x falling within the corresponding range
are counted. Despite their appearance, histograms do not function as discrete surrogates for
PDFs, as they simply display the number of occurrences of certain events. However, they can
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be scaled so that they represent a sample probability density function with sample probability
pi(x) of the ith bin computed by [29]

pi(x) =
ns,i

ns

1
∆x

. (2.54)

Histograms do not postulate any specific probability distributions. However, if no information
regarding the distribution of data is available, histograms can be used as a basis for deriving
such functions.

Another powerful tool for the nonparametric (distribution-free) analysis of random data are
empirical CDFs denoted as Pe(x), which only assume that the random variables x are indepen-
dent and identically distributed. Equivalent to its continuous counterpart defined in Eq. 2.50,
Pe(x) P [0, 1]. The empirical CDF is determined by sorting the ns acquired values for xk in an
ascending order. Then the percentile of the ith value is equal to i/ns so that [54]

Pe(x) =
nxkăx

ns
, (2.55)

where nxkăx denotes the number of values of xk that are smaller than some fixed value x.
Empirical CDFs play an important role in hypothesis testing when the distribution of the data
is unknown, as will be explained in Section 4.4.2.

statistical moments and central statistical moments
Both the mean value and the variance constitute statistical moments with certain orders. Sta-
tistical moments are parameters that are used to characterize stochastic processes. They are
directly related to the shape of PDFs. Given the PDF p(x), e.g. for a Gaussian distribution
defined by Eq. 2.53, the ith order statistical moment mx,i is given by [150]

mx,i = E
!

x(t)i
)

=

ż 8

´8

xi p(x) dx. (2.56)

The mean value of a stationary, ergodic stochastic process x(t) is the first statistical mo-
ment:

µx = mx,1 = lim
TÑ8

1
2T

ż T

´T
x(t) =

ż 8

´8

x1 p(x) dx. (2.57)

It can be approximated using ns samples such that [29]

µ̂x =
1
ns

ns
ÿ

k=1

xk, (2.58)

where (ˆ̈) denotes the estimate.

Furthermore, the central statistical moments depicted as m1
x,i are defined similarly to Eq. 2.56

as [29, 150]

m1
x,i = E

!

(x(t) ´ µx)
i
)

=

ż 8

´8

(x ´ µx)
i p(x) dx. (2.59)

As noted before, the variance σ2
x represents the second central statistical moment, that is,

σ2
x = m1

x,2. Equivalently to Eq. 2.57, the following holds:

σ2
x = m1

x,2 = lim
TÑ8

1
2T

ż T

´T
(x(t) ´ µx)

2 =

ż 8

´8

(x ´ µx)
2 p(x) dx. (2.60)
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Consequently, an estimate can also be found by [19]

σ̂2
x =

1
ns ´ 1

ns
ÿ

k=1

(xk ´ µ̂x)
2. (2.61)

The estimates given by Eqs. 2.58 and 2.61 are crucial for the characterization of discrete-
time scalar-valued stochastic processes. Naturally, these sequences are sampled point-wise
and characterizations must be made from finite observations. Hence, µ̂x and σ̂2

x are often
called sample mean and sample variance, respectively. In contrary to Eq. 2.58, in Eq. 2.61,
the summation is premultiplied by 1/ns´1 to achieve an unbiased estimate, that is, the estimated
value converges towards the true value [19, p. 79 ff.]. Nevertheless, premultiplying by 1/ns´1

or 1/ns does not make a significant difference when large amount of samples are used.

It should be noted that higher-order central statistical moments such as skewness and kurto-
sis appear to be useful in some disciplines of SHM, e.g., as damage indicators for damage
detection [78]. However, in the present work, such parameters are not utilized, and hence, the
interested reader is referred to the cited literature for further information.

joint and multivariate statistics
Only single and scalar-valued stochastic processes have been regarded in the previous elab-
orations. However, a common case is that multiple stochastic processes, which are not inde-
pendent of each other, are involved in certain analyses. Therefore, the theory of joint statistics
should be introduced here. Stochastic processes generally manifest themselves as multivari-
ate (vector-valued) processes in the present work. Examples of that are stochastic inputs or
outputs of MIMO systems. In these cases, the single univariate processes that form the multi-
variate process are not independent of each other and, therefore, should be regarded mutually
from a statistical point of view. The formulations made before can be extended to the case of
joint and multivariate statistics. This paragraph is mainly dedicated to multivariate statistics
and only summarizes the most relevant concepts for this thesis.

Consider the scalar-valued, stationary, and ergodic stochastic processes x(t) and y(t) with
mean values µx and µy represented by the first statistical moment defined by Eq. 2.57. Both
processes result from a joint PDF p(x, y) so that the covariance can be defined by [19]

σ2
xy = E

␣

(x(t) ´ µx)(y(t) ´ µy)
(

=

8
ĳ

´8

(x(t) ´ µx)(y(t) ´ µy)p(x, y) dx dy (2.62a)

= lim
TÑ8

1
2T

ż T

´T
(x(t) ´ µx)(y(t) ´ µy). (2.62b)

Obviously, the covariance can be interpreted as a measure of the correlatedness of two stochas-
tic processes. Further, the covariance function R1

xy(τ) can be derived similar to the correlation
function given in Eq. 2.49. It is defined as

R1
xy(τ) = E

␣

(x(t) ´ µx)(y(t + τ) ´ µy)
(

= lim
TÑ8

1
2T

ż T

´T
(x(t) ´ µx)(y(t + τ) ´ µy). (2.63)

Hereby, the correlation of the stochastic process x(t) and time-shifted versions of y(t) are
quantified by introducting the variable τ. Considering Eqs. 2.62, 2.63, 2.60, and 2.49, the
following observations can be made:
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• σ2
xy = R1

xy(0),

• R1
xx(0) = σ2

x ,

• Rxy(τ) = R1
xy(τ) if µx = 0 and µy = 0,

• Rxy(´τ) = Rxy(τ).

The terms autocovariance or autocorrelation are readily used in the literature when x = y.
Accordingly, cross-covariance and cross-correlation imply x ‰ y. In the following, this distinc-
tion is not strictly obeyed. However, autocovariance and -correlation will be highlighted by
neglecting the second subscript.

The concept of covariance (and correlation) and covariance functions (and correlation func-
tions) can be easily extended to m-dimensional multivariate stochastic processes. Then, e.g.,
R1

xy denotes the (cross-) covariance matrix of the multivariate random variables x and y such
that

R1
xy = E

!

(x(t) ´ µx)(y(t) ´ µy)
T
)

=




σ2
x1y1

σ2
x1y2

. . . σ2
x1ym

σ2
x2y1

σ2
x2y1

. . . σ2
x2ym

...
...

. . .
...

σ2
xmy1

σ2
xmy2

. . . σ2
xmym




. (2.64)

Equivalently to Eq. 2.61, covariance matrices can be estimated as

R̂1
xy =

1
ns ´ 1

ns
ÿ

k=1

(xk ´ µ̂x)(yk ´ µ̂y)
T, (2.65)

which is essential when dealing with discrete-time processes. Therein, µ̂x and µ̂y are column-
vectors computed with help of 2.58 for the associated multivariate processes. An estimator for
matrix-valued covariance functions of sampled data is given by [19]

R̂1
xy(i) =

1
ns ´ i

ns´i
ÿ

k=1

(xk ´ µ̂x)(yk+i ´ µ̂y)
T, (2.66)

where i denotes the time shift operator similar to τ.

A remark should be made for joint PDFs and multidimensional PDFs. Although they inher-
ently play an important role in the context of this work, they are not utilized or derived for
any analyses made herein. Therefore, the interested reader is referred to the literature. For
Gaussian distributions, see [19, p. 62 ff.].

Notational remark: As implied in the itemization above, correlation is a special case of co-
variance. Hence, in engineering literature, the terms covariance and correlation are often not
properly distinguished. For simplicity, in the later chapters, covariance matrices for mean-free
processes are written without a prime. To clarify the underlying computation, the operator
Et¨u shall be readily used.
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2.2.3 Correlation function and power spectral density

Correlation functions comprise potent tools to characterize stationary stochastic processes
from a statistical point of view. However, they also allow for a physical interpretation, as
the autocorrelation Rx(0) is directly related to the average power of the signal x(t) [29]. The
properties of correlation functions can be assessed not only in the time domain but also in
the frequency domain. The transformation is realized through the Fourier transform or bi-
lateral Laplace and z-transform by defining s = jω or z = ejω∆t, respectively, introduced in
Section 2.1.3.

Consider the correlation function Rxy(τ) of two stationary stochastic processes x(t) and y(t).
Then, the power spectral density (PSD) function denoted by Sxy(jω) is defined as

Sxy(jω) = F
␣

Rxy(τ)
(

=

ż 8

´8

Rxy(τ)e´jωτ dτ, (2.67)

cf. Eq. 2.41. For Eq. 2.67 to be feasible, the integral over the interval (´8, 8) of the absolute
values of Rxy(τ) must be finite. Further, there exists the inverse operation

Rxy(τ) = F´1␣Sxy(jω)
(

=
1

2π

ż 8

´8

Sxy(jω)ejωτ dω (2.68)

that perfectly recovers Rxy(τ), cf. Eq. 2.42. This connection of the correlation function and the
PSD through the Fourier transform and inverse Fourier transform was simultaneously proven
by the mathematicians Norbert Wiener and Aleksandr Khinchine, and therefore, is known as
the Wiener-Khinchine theorem [19]. The PSD function given by Eq. 2.67 is also called two-sided
PSD as it is defined for ω P (´8, 8). The one-sided PSD can be derived by doubling Sxy(jω)

and solely considering the interval [0, 8). Sxy(jω) is also referred to as cross-PSD function.
Though, considering Rx(τ) for Eq. 2.67 results in the so-called auto-PSD function. Similar to the
correlation function, this distinction is not made consistently throughout this thesis. Auto-PSD
functions are rather highlighted by omitting one of the redundant subscripts such that Sx :=
Sxx. Finally, it should be noted that the auto PSD is a real-valued function, whereas the cross
PSD is complex-valued [19]. When multivariate processes are considered, the PSD becomes
a symmetric, positive-definite, matrix-valued complex function (cf. Eq. 2.64) containing the
auto-PSD entries on the main diagonal and the cross-PSD entries elsewhere.

Estimating correlation functions and PSD functions based on finite amounts of sampled data
is crucial for this work. In the previous section, a rather simple but intuitive estimator for
correlation functions was introduced, see Eq. 2.66. Regarding Eq. 2.68, an alternative to that
could be established through the inverse Fourier transformation of an estimated PSD function.
However, given finite amounts of sampled data, two things must be satisfied to realize this.
The discrete Fourier transform (DFT) and its inverse realization, as well as the discrete-time Fourier
transform (DTFT) must be utilized. Further, an efficient estimation strategy for PSD functions
should be considered. Central element for the derivation of discrete PSD and correlation
functions connected through the DFT is the continuous periodic PSD function Sxy(ejω) defined
as [167]

Sxy(ejω) =
8
ÿ

i=´8

Rxy(i)e´jωi. (2.69)
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This function results from a DTFT, which maps an infinite sequence of uniformly sampled
data to a continuous function of frequency with a periodicity of 2π. It is symmetric about
ω = 0. Similar to Eq. 2.68, this PSD function can be transformed back to the time domain
with the help of the inverse Fourier transform such that

Rxy(i) =
1

2π

ż π

´π
Sxy(ejω)ejωi dω. (2.70)

Now, suppose that Rxy(i) results from the processes xk and yk sampled with the sampling
frequency fs = 1/∆t (in Hz), then it might be desirable to obtain a PSD function with a period-
icity of 2π fs. This normalization increases the physical interpretability in terms of the average
signal power for certain frequency ranges. On the other hand, it enables computations in
combination with the discrete-time transfer function of LTI systems (cf. Eq. 2.36), which will
be exploited in the following sections. To this end, Eq. 2.69 is modified by considering the
sampling period ∆t such that [135]

Sxy(ejω∆t) =
8
ÿ

i=´8

Rxy(i)e´jωi∆t. (2.71)

Obviously, this equation is equal to the bilateral z-transform of the discrete-time correlation
function with z = ejω∆t, cf. Eq. 2.33. To recover Rxy(i), compute

Rxy(i) =
∆t
2π

ż π/∆t

´π/∆t
Sxy(ejω∆t)ejωi∆t dω. (2.72)

It remains the question of how to estimate a discrete PSD function from finite data. A few
strategies exist for this purpose. However, one of the most popular approaches is Welch’s
method, which was published by Peter Welch in 1967 [209]. For this method, the signals
xk and yk are divided into m possibly overlapping blocks. Then, for each block, a so-called
periodogram is computed by multiplying the DFTs of the corresponding signals. Finally, an
estimated PSD function Ŝxy(ejω∆t) results from averaging the periodograms for all m blocks.
Typically, this method is conducted employing the fast Fourier transform (FFT), a numerically
efficient version of the DFT. Moreover, additional tools such as windowing or zero-padding
are readily applied to avoid leakage effects or to increase the frequency resolution of the PSD
functions artificially. For more details on that, see, e.g., [29].

physical interpretations
Previously, it was stated that signals in the time and frequency domain are related through
the Fourier transform. Obviously, a special case constitutes the transformation of the autocor-
relation function to the auto PSD function and vice versa. This connection is known as the
Wiener-Khinchine theorem, as mentioned before. Moreover, this theorem is closely related
to Parseval’s theorem, which essentially states that the energy or average power of a signal is
conserved in either domain. In case of a stationary random signal xk, this is demonstrated
by considering Eq. 2.72 for i = 0. Then, under consideration of the theory presented in
Section 2.2.1, one yields

Rx(0) = E
!

xkxT
k

)

=
∆t
2π

ż π/∆t

´π/∆t
Sx(ejω∆t) dω. (2.73)
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Consequently, the average power of the signal, which can be written as E
␣

xkxT
k

(

, is equal to
its correlation and the area under the PSD function. By integrating Sx(ejω∆t) for a certain
frequency range, say [2π f1, 2π f2], f2 ą f1, the average power of xk for this frequency interval
can be assessed. Thus, a signal featuring equal power over all frequencies has a constant PSD.
Such signals, which play a crucial role in the analysis of random processes and many engi-
neering disciplines, are called white noise. The corresponding autocorrelation function yields
zero for all i ‰ 0. It should be mentioned that the terminology of power and energy is only
entirely adequate in an electrical sense if xk refers to voltage. Nevertheless, this formulation
is readily used in experimental dynamics and in this thesis. An alternative characterization
of signals is often made by means of root mean square (RMS) values, which equal the square
root of the autocorrelation.

2.3 system identification

Since the inherent objective of SHM is to identify changes in the dynamic behavior, the repet-
itive realization of the system and tracking of modal parameters plays an important role. In
civil engineering, where the regarded structures typically are of large size and are excited
ambiently, a classical determination of the input-output relationship is exceptionally challeng-
ing. Hence, so-called output-only methods for modal and system identification, which are also
referred to as Operational Modal Analysis (OMA), have been developed since the mid-1990s.
These techniques only consider the measured system response, which is enabled by the as-
sumption of a stochastic input. Therefore, they quickly gained great popularity. In this work,
the Stochastic Subspace Identification (SSI) method is applied for the extraction of modal
parameters from structural measurements but, more importantly, for the realization of state-
space models. The stochastic realization theory initiated by Akaike [1] and Faurre [75] builds
the foundation for that, and hence, is briefly introduced first.

2.3.1 Realization of stochastic systems

Consider the following discrete-time LTI system with finite model order n:

xk+1 = Axk + wk (2.74a)

yk = Cxk + vk. (2.74b)

Here, the process noise wk P Rn represents the excitation of the underlying system, and
the measured signals yk P Rq are disturbed by the measurement noise vk P Rq. The noise
processes wk „ N (0, Q) and vk „ N (0, Rv) are assumed to be stationary and white. The
mutual covariance matrix may be written as

Mδkl = E

$

&

%

[
wk

vk

] [
wl

vl

]T
,

.

-

=

[
Q S

ST Rv

]
δkl (2.75)

=

[
Σx ´ AΣx AT N ´ AΣxCT

NT ´ CΣx AT Ry(0) ´ Σx ´ CΣxCT

]
δkl ě 0, (2.76)
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where S P Rnˆq describes the joint covariance matrix of process and measurement noise, and
δkl denotes the Kronecker delta, which is defined as

δkl =

$

&

%

1, k = l,

0, k ‰ l.
(2.77)

Eq. 2.76 results by applying expectations to Eq. 2.74. N is the covariance matrix of the future
states xk+1 and the measured output yk such that

N = E
!

xk+1yT
k

)

= AΣxCT + S. (2.78)

Further, Σx P Rnˆn denotes the state covariance matrix E
␣

xkxT
k

(

, which follows the unique
Lyapunov equation [75]

Σx = AΣx AT + Q, (2.79)

cf. Eq. 2.43.

Because of the randomness of wk, xk is a stochastic process as well. Moreover, Eq. 2.74a
reveals that xk+1 solely depends on the knowledge of xk and wk, making x a Markov process,
see Section 2.2. By that, it follows that the system represented by Eq. 2.74 is a Markov model
for the process y. The goal of the stochastic realization is to find all Markov models6 that
simulate the correlation function Ry(i) or the associated PSD function Sy(z) (z = ejω∆t) (cf.
Section 2.2.3) [110].

The stochastic realization theory is strongly related to the deterministic realization theory
developed by Ho and Kalman [104] in the 1960s. They showed that the IRF of a discrete-time
LTI system ordered in a block Hankel matrix is equal to the product of its observability and
controllability matrices. Despite the theoretically infinite size of the Hankel matrix, the rank
is known to be equal to the system order n.

For the stochastic realization, consider the following infinite-size block Hankel matrix with
the correlation function Ry(i):

H8 =




Ry(1) Ry(2) Ry(3) . . .

Ry(2) Ry(3) Ry(4) . . .

Ry(3) Ry(4) Ry(5) . . .
...

...
...

. . .




. (2.80)

As for the deterministic realization theory, it is also assumed that the rank of H8 is equal to n
[110]. Further, note that under consideration of Eq. 2.74, it follows that

Ry(i) =

$

&

%

Ry(0), i = 0,

CAi´1N, i ą 0.
(2.81)

The derivations of the factorizations of Ry(i) and N are given in Appendix A.1. Akaike
[1] showed that there exist a minimal realization (A, N, C, Ry(0)) for stochastic systems that

6 Note that by the similarity transformation (see Section 2.1.1), an infinite number of state-space representations
exist that yield the same output yk.
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satisfies Eq. 2.81, just as the quadruplet (A, B, C, D) defines the IRF in the deterministic case
[104]. This result seems rather intuitive when comparing Eqs. 2.81 and 2.28. As a consequence,
a state-space system can be realized using (A, N, C, Ry(0)) with Eq. 2.81 being its IRF [110,
p. 173]. Finally, the PSD function of y has the parametric factorization

Sy(z) = C(zI ´ A)´1N + Ry(0) + NT(z´1 I ´ AT)´1CT, (2.82)

where z = ejω∆t.

Following the stochastic realization theory, the SSI and their variants represent powerful nu-
merical tools for the identification of the state-space parameters based on measured data.
There, the SVD plays a crucial role in the decomposition of certain block matrices. This proce-
dure was suggested ten years after the publication of Ho’s and Kalman’s approach by Zeiger
and Ewen [223]. Algorithms for the SSI are typically based on the direct application of the
deterministic realization approach, as explained before, or on the canonical correlation analy-
sis (CCA) of future and past observations [110]. The latter approach was initiated by Akaike
[2, 3] in the 1970s; it led to valuable contributions and algorithms in the 1990s, e.g., by van
Overschee and de Moor, and Verhaegen [147, 148, 203]. These projection-based approaches
heavily rely on the QR or LQ decomposition [111]. From a stochastic realization viewpoint,
the goal of the SSI is to find the minimal realization (A, N, C, Ry(0)) that fits the covariance
function given in Eq. 2.81 to its measured pendant. Nevertheless, from the perspective of
modal analysis or OMA the focus rather lies on the identification of dominant and stable
modes, which is typically realized by the use of stabilization diagrams [152]. The SSI is often
distinguished between the data-driven SSI (SSI-DAT) and the covariance-driven SSI (SSI-COV),
although both approaches are strongly related, as will be shown herein. Nevertheless, to fit
this classification of the standard literature on OMA [163], the next two sections follow this
differentiation.

positivity and realness of Ry ( i)
A last remark should be made concerning the positive definiteness of the covariance sequence
Ry(i) as a function of (A, N, C, Ry(0)), see Eq. 2.81. This sequence should be a positive real
sequence, which is identical to the fact that the spectral matrices Sy(z) given by Eq. 2.82 are
positive real for every z [147]. The opposite would imply that the measured output has nega-
tive power, which has no physical interpretation. The major reason for non-positive covariance
sequences lies in using finite measurement time-series to estimate covariances or the compu-
tation of a projection matrix. Further discussions on that are made in [52]. Few algorithms
exist that guarantee a positive real covariance sequence [110, 147]. In fact, the procedures
overviewed in the proceeding sections do not possess this property, which is not problematic,
as independent of the choice of method, the positivity cannot be guaranteed after applying
model reduction techniques. Further, in an OMA context, this issue is readily disregarded,
as the extraction of modal parameters remains feasible. Nevertheless, it should be mentioned
that the positivity of Ry(i) plays an important role in the identification of covariance-based
Kalman filters constructed by means of the stochastic realization theory and the SSI. In these
cases, a stabilizing solution to a discrete-time algebraic Riccati equation (DARE) must be
found, which is only possible if Ry(i) is a non-negative definite sequence.
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2.3.2 Covariance-Driven SSI

The first identification algorithm presented here is based on the deterministic realization the-
ory by Ho and Kalman [104]. It starts by assembling a block Hankel matrix H P Rqlˆqm with a
user-defined number of block rows l and block columns m with estimated covariance matrices
Ry(i) such that

H =




Ry(1) Ry(2) . . . Ry(m)

Ry(2) Ry(3) . . . Ry(m + 1)
...

...
. . .

...

Ry(l) Ry(l + 1) . . . Ry(l + m ´ 1)




. (2.83)

The number of block rows and columns should be chosen large enough so that n ă l ď m
[110, p. 144]. As noted before, H = OΓ with

O =




C

CA
...

CAl´1




P Rqlˆn, Γ =
[

N AN . . . Am´1N
]

P Rnˆqm. (2.84)

Both the observability matrix O and the controllability matrix Γ can be constructed with the
help of the SVD. Therefore, consider the arbitrary weighting matrices W1 P Rqlˆql and W2 P

Rmlˆml that can be chosen to implement different versions of the SSI-COV, as will be explained
later on. Then, H can be decomposed to

W1HW2 = USVT =
[
U1 U2

] [S1 0

0 0

] [
VT

1 VT
2

]
» U1S1VT

1 , (2.85)

where U P Rqlˆql and V P Rqmˆqm denote the left- and right-hand singular vectors, respec-
tively. S P Rqlˆqm is a rectangular matrix that theoretically contains n non-zero singular values
represented by the diagonal matrix S1 P Rnˆn [134]. U1 P Rqlˆn and V1 P Rqlˆn denote the
corresponding singular vectors.

In practice, where the model order n is unknown, H has full rank, and the number of the
non-singular values is equal to the minimum of ql and qm. Consequently, n must be chosen
in advance and S1 represents the n greatest singular values of S with corresponding singular
vectors U1 and V1 so that O and Γ can be approximated by

O = W´1
1 U1S1/2

1 and Γ = S1/2
1 VT

1 W´1
2 . (2.86)

Finally, C and n can be simply extracted from the first q rows or columns of O and Γ, respec-
tively. The system matrix A results from

A = O:O. (2.87)

Therein, O depicts a subset of O, where the last q columns are omitted. In the case of O, the
first q rows are left aside. (¨): denotes the Moore-Penrose inverse (pseudoinverse) [134].
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Before leaving the field of the SSI-COV, possible choices for W1 and W2 are presented that
result in different versions of the identification method. Essentially, the weighting leads to a
specific scaling of the singular values and relations of the subspaces spanned by the singular
vectors. For more details on that, see [110]. Tab. 2.1 gives an overview of possible choices for
the weighting matrices. In the CCA-based algorithm, Φ f f and Φpp obey a Toeplitz structure.

Table 2.1: Weighting matrices W1 with size ql ˆ ql and W2 with size ml ˆ ml according to different
realization algorithms of the SSI-COV.

W1 W2

Ho-Kalman-based stochastic realization algorithm [110, p. 198] I I

CCA-based stochastic realization algorithm [110, p. 208, 227 ff.] Φ´1/2
f f

(
Φ´1/2

pp

)T

They are defined as

Φ f f = ΦT
pp =




Ry(0) Ry(1)T . . . Ry(r ´ 1)T

Ry(1) Ry(0) . . . Ry(r ´ 2)T

...
...

. . .
...

Ry(r ´ 1) Ry(r ´ 2) . . . Ry(0)




. (2.88)

Φ f f and Φpp must be of appropriate size, and thus, r has to be chosen as l or m, respec-
tively.

2.3.3 Data-Driven SSI

For SSI-DAT, the time sequences of the measurement data are used directly instead of es-
timated covariance matrices of the output. Hence, projections enable the model realization
procedure. The algorithm starts by assembling block Hankel matrices of the past and future
outputs with measured data:

Yp =




y0 y1 . . . ym´1

y1 y2 . . . ym
...

...
. . .

...

yl´1 yl . . . yl+m´2




P Rqlˆm and Yf =




yl yl+1 . . . yl+m´1

yl+1 yl+2 . . . yl+m
...

...
. . .

...

y2l´1 y2l . . . y2l+m´2




P Rqlˆm.

(2.89)
Here, l denotes the number of block rows, and m represents the number of columns, which
are both user-defined parameters. It is a common opinion that the latter should be chosen
large enough to enable a proper system identification. Moreover, to store all information of
a data set with ns samples, m must be equal to ns ´ 2l + 1. However, as Priori at al. [161]
point out, the computational effort should be considered as well, and therefore, they provide
a lower bound for m. Regarding the selection of l, a common approach is to choose this value
based on the ratio of the sampling frequency and the lowest natural frequency of interest
[171].
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The two matrices Yp and Yf lay the foundation for the construction of the so-called projection
matrix Po defined as [147]

Po = Yf YT
p

(
YpYT

p

):

Yp. (2.90)

This formulation rather follows a geometrical interpretation, that is, the rows of the past
outputs Yp form a reference vector space onto which the rows of the future outputs Yf are
projected. The idea behind it is to retain relevant information from the past to predict the
outputs in the future [152]. The relevance of information is quantified through the correlation
of past and future, which is essentially represented by (1/m)Yf YT

p . In fact, Po is numerically
computed, e.g., with the help of the LQ decomposition, which is the transpose of the QR
decomposition [110, 134]. This operation considers the joint block Hankel matrix H P R2qlˆm

that decomposes to [163]

H =
1

?
m

[
Yp

Yf

]
=

[
L11 0

L21 L22

] [
QT

1

QT
2

]
. (2.91)

Then, the projection matrix finally yields

Po = L21QT
1 P Rqlˆm. (2.92)

Similar to the decomposition of the Hankel matrix in Eq. 2.85, Po is decomposed employing
the SVD under the consideration of arbitrary weighting matrices such that

W1PoW2 =
[
U1 U2

] [S1 0

0 0

] [
VT

1 VT
2

]
» U1S1VT

1 . (2.93)

In practice, S1 contains as many non-zero singular values as the minimum dimension of Po so
that n needs to be chosen a priori. Together with the corresponding singular vectors U1 and
V1, the observability can be constructed according to Eq. 2.86. Note that when conducting the
SSI-DAR as presented here and as proposed by van Overschee and de Moor, the controllability
matrix has a reversed structure and is thus written as Γ1. It reads [147]

Γ1 = S1/2
1 VT

1 W´1
2 =

[
Al´1N . . . AN N

]
. (2.94)

Consequently, N is found in the last q columns of Γ1. As for A and C, the identification
procedure is identical to the SSI-COV. The entire identification strategy presented here refers
to Algorithm 2 in [147].

As in the previous section, different choices for W1 and W2 lead to different versions of the
identification. A selection of possible weightings is given in Tab. 2.2. Note that the Toeplitz
matrices Φ f f and Φpp with appropriate dimensions (r = l) for the realization of the PC and
the CVA follow the definitions of Eq. 2.88. Generally, the approaches mentioned in Tab. 2.2
differ in such a way that they yield state-space models, which are balanced in a certain sense,
and the obtained singular values can be interpreted differently, see [147, p. 77 ff.].
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Table 2.2: Weighting matrices W1 with size ql ˆ ql and W2 with size ml ˆ ml according to different
realization algorithms of the SSI-DAT [147].

W1 W2

Principal component algorithm (PC) I YT
p Φ´1/2

pp Yp

Unweighted principal component algorithm (UPC) I I

Canonical variate algorithm (CVA) Φ´1/2
f f I

data-driven cca-based ssi
The previous elaborations show that the SSI-COV and SSI-DAT are strongly related. Even
though measurement time series are directly utilized for the latter, the projection conducted
for the SSI-DAT essentially leads to the estimation and processing of covariance matrices, see
Eq. 2.90. Moreover, the CCA-based version of the SSI-COV, based on the work of Akaike and
Katayama [2, 3, 110] (see Tab. 2.1), is a data-driven algorithm in its initial configuration. In
the following, this balanced realization method is summarized in brevity to emphasize the
connection of the general SSI approaches again.

In addition to the block Hankel matrix Yf given in Eq. 2.89, the block Toeplitz matrix for the
past outputs denoted by Y̌p is defined as

Y̌p =




yl´1 yl . . . yl+m´2

yl´2 yl´1 . . . yl+m´3
...

...
. . .

...

y0 y1 . . . ym´1




P Rqlˆm. (2.95)

Then, similar to Eq. 2.91, an LQ decomposition yields [110, p. 227]

1
?

m

[
Y̌p

Yf

]
=

[
L11 0

L21 L22

] [
QT

1

QT
2

]
, (2.96)

which forms the basis for the computation of

H = Φ f p = L21LT
11, (2.97)

W1 = Φ´1/2
f f =

(
L21LT

21 + L22LT
22

)´1/2
, (2.98)

and

W2 =
(

Φ´1/2
pp

)T
=

([
L11LT

11

]´1/2
)T

. (2.99)

The remainder of the identification process from the SVD to the estimation of (A , C , N) is
identical to the steps overviewed in Section 2.3.2.
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In this thesis, linear quadratic estimators are exploited for damage detection and localization. More
precisely, filters or predictors for the structure’s measured responses are realized, and their correspond-
ing estimation errors are utilized to infer damage. For their synthesis, two different approaches are
considered, namely Kalman and H8 filtering. During the design, different cost functions are mini-
mized, which is associated with the minimization of the H2 or H8 transfer function norms. To lay the
basis for that, the necessary signal and system norms are explained first. Secondly, a general control
framework is introduced, which enables the interpretations with respect to the system norms. Finally,
the estimator design problems are addressed therein and in view of the intended purpose of damage
identification.

3.1 signal and system norms and spaces

In control and estimation theory, norms, as a measure of size, are utilized to design controllers
or estimators in the desired way or to evaluate their behavior and performance. In a few
instances, norms are directly computed on systems. However, they are mainly applied to input
and output signals, which are time- or frequency-domain functions in a mathematical sense, or
to transfer functions, as these quantities are directly related to the systems. The mathematical
foundation for the computation of signal and system norms is laid by the theory of functional
analysis. In the following, the most relevant function spaces and norms are overviewed and
interpreted to give a foundation for H2 and H8 optimal estimation, which is heavily exploited
in this work. The concepts and derivations for this section are mainly collected from the
textbooks [88, 192, 230].

3.1.1 Normed spaces

Mathematically speaking, signals are measured functions f (x) of some argument x that con-
stitute a map from an input to an output space, that is, f : X Ñ Y with x P X . It can be said
that signals lay within the output space Y , which is a linear vector space over the field of com-
plex numbers C or real numbers R. To measure the ‘size’ of these functions in a certain sense,
norms, denoted by } ¨ }, can be determined, which are functions themselves (} ¨ } : Y Ñ R+

0 )
that result in some real scalar value. For a function to be a norm, the following properties
must hold [192]:

(i)
∥ f ∥ ě 0, (3.1)

(ii)
∥ f ∥ = 0, iff f = 0, (3.2)

47
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(iii)
∥α f ∥ = |α|∥ f ∥, (3.3)

(iv)
∥ f + g∥ ď ∥ f ∥+ ∥g∥, (3.4)

where f , g P Y , α P C or R, and | ¨ | denotes the absolute value. A linear vector space Y
associated with a norm } ¨ } defines a normed space.

3.1.2 Signal norms and spaces

Signals are Lebesgue measurable functions in time or frequency domain defined on the interval
[a, b] P R for which the following norms are given for 1 ď p ă 8:

∥ f ∥Lp
=

(
ż b

a
} f (x)}p dx

)1/p

(3.5)

and
∥ f ∥L8

= sup
xP[a,b]

∥ f (x)∥. (3.6)

Note that in Eq. 3.5 and in the following, } ¨ } represents the Euclidean vector norm and sup
denotes the supremum. Signals are said to lay in the space Lp[a, b] or L8[a, b] if the associated
norms (Eq. 3.5 and Eq. 3.6) over [a, b] exist and if they are finite [112, 230].

signals in time domain
For the purpose of this thesis and for simplicity, vector-valued functions of time t are con-
sidered on the finite interval [0, 8), thus f : [0, 8) Ñ Rn, where n represents the number of
entries of the vector f (t). Moreover, signals considered in this work are often assumed to lay
in L2[0, 8) with the finite norm

∥ f ∥L2
=

d

ż 8

0
f (t)T f (t) dt, (3.7)

and therefore, are square-integrable signals. Note that Eq. 3.7 is equal to the computation of
energy of a signal, and therefore, signals in L2 have the natural and practical interpretation of
featuring finite energy [192].

This thesis is dedicated to systems that are either modeled or identified as discrete-time sys-
tems. Consequently, the corresponding input and output signals are vector-valued sequences
f : N+

0 Ñ Rn and not continuous-time functions. Thus, the integral in Eq. 3.5 must be ex-
changed by the sum, and the supremum in Eq. 3.6 has to be replaced by the max operator.
The L2 norm in Eq. 3.7 is then expressed by [230]

∥ f ∥ℓ2
=

g

f

f

e

8
ÿ

k=0

f T
k fk, (3.8)
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Here, k refers to the time steps and denotes the index of the discrete elements fk within the
sequence f . All interpretations of the norms made in continuous time hold in discrete time as
well.

signals in frequency domain
As mentioned in Section 2.1.3, signals in the time domain can be transferred to the fre-
quency domain with the help of the Laplace or z-transform, respectively. Thereby, they
become complex-valued functions. In the case of signals in L2[0, 8) and ℓ2[0, 8), this pro-
cess is associated with the map from one space to another, namely L2[0, 8) Ñ H2(jR) and
ℓ2[0, 8) Ñ H2(D)1, respectively, where Hp denotes the Hardy spaces [42, 88]. Note that D

refers to the open unit disk in the complex plane (|z| ă 1). Complex-valued signals in H2

must have finite norms [88]

∥ f ∥H2(jR) =

d

1
2π

ż 8

´8

f ˚(jω) f (jω) dω (3.9)

in the continuous-time case and [42]

∥ f ∥H2(D) =

d

1
2π

ż 2π

0
f ˚(ejθ) f (ejθ) dθ (3.10)

in the discrete-time case2. Here, the Fourier transform is considered (α = 0) such that s = jω
and z = ejω∆t = ejθ , cf. Section 2.1.3. The H2(jR) space contains complex-valued functions
f (s) that are analytic on the open right half-plane (Re(s) ą 0). This means that f (s) has
continuous derivatives of all powers for every s with Re(s) ą 0. For a more comprehensive
definition of analytic complex functions, see [230, p. 97]. In the discrete-time case, f (z) must
be analytic on the open unit disk D [42].

isomorphism between time and frequency domain
Most interestingly, the ℓ2[0, 8), L2[0, 8), and H2 spaces induce inner products x¨, ¨y making
them Hilbert spaces. These inner products3 are defined as [42, 88]

x f , gy =

ż 8

0
f (t)Tg(t) dt (3.11)

=
1

2π

ż 8

´8

f ˚(jω)g(jω) dω (3.12)

and

x f , gy =
8
ÿ

k=0

f T
k gk (3.13)

=
1

2π

ż 2π

0
f ˚(ejθ)g(ejθ) dθ, (3.14)

1 H2 is a subspace of the complex-valued L2(jR) space (continuous-time case) or L2(D) (discrete-time case).
2 Be aware that integrating a periodic frequency domain signal with argument θ over [0, 2π] or [´π, π] yields the

same result because of its symmetry property.
3 Interesting properties can be deduced from inner products such as the angle between two vectors. For a compre-

hensive description on inner products, see [107, 230].
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respectively. Note that the inner products x f , gy are preserved when transformed from one
domain to the other. Not only the inner products but also the norms remain equal, indepen-
dent of the signal domain, which makes the Laplace transform (or z-transform) and its inverse
counterpart an isomorphism. For a more detailed and mathematically elaborated definition of
isomorphisms, see [42, p. 87]. The equality of the 2-norms for time- and frequency-domain
signals represents what is referred to as Parseval’s theorem and can be interpreted as preser-
vation of energy in either domain [88].

3.1.3 Operator norms and spaces

Recall the input-output relationship depicted in Fig. 2.1, which is repeated in Fig. 3.1 for
simplicity. There, the output y results from u acting on the linear system G. u and y lay within

Figure 3.1: System G with input u and output y.

the normed spaces U and Y , respectively. As mentioned in Section 2.1.1, it can be assumed
that the block diagram implies the following algebra: y = Gu, although it was shown that in
case of time-domain signals, a convolution of the IRF G(t) with u(t) is required, cf. Eq. 2.11.
The system G can be seen as a linear operator denoted by L (U ,Y) that maps signals from U
to Y . To define a normed space of linear operators (systems), the induced norm

∥G∥L (U ,Y) = sup
u‰0

∥Gu∥Y
∥u∥U

(3.15)

is introduced. Hence, the induced norm ∥¨∥L (U ,Y) of G is the maximum gain from u P U to
y P Y [192].

3.1.4 Transfer function norms and interpretations

It can be shown that direct relations between the system norm defined in Eq. 3.15 and the
H2 and H8 norms of the transfer functions G(jω) and G(ejθ) exist. Thus, certain system
properties can be directly inferred by regarding the finite H2 and H8 norms of the system’s
transfer function representation.

Before examining these connections, the H2 transfer function norm is defined by [192]

∥G∥H2(jR) =

d

1
2π

ż 8

´8

trtG˚(jω)G(jω)u dω (3.16)

for the continuous-time case and by [42]

∥G∥H2(D) =

d

1
2π

ż 2π

0
tr
␣

G˚(ejθ)G(ejθ)
(

dθ (3.17)
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for the discrete-time case. Here, trt¨u denotes the trace operator. Note that transfer functions
of multivariable systems essentially are functions of frequency, and therefore, the signal norms
given in Section 3.1.2 are simply extended to matrix-valued functions.

Similarly, the infinity-norms of the transfer function G are given by [88]

∥G∥H8(jR) = sup
ωPR

σtG(jω)u (3.18)

and [42]
∥G∥H8(D) = sup

θP[0,2π]

σtG(ejθ)u, (3.19)

respectively, where σt¨u extracts the maximum singular value. The following relationships
are established for the discrete-time case, but they also hold for the continuous-time case, see
[230].

Again, consider the block diagram given in Fig. 3.1 with u P ℓ2[0, 8) and suppose that y P

ℓ2[0, 8). This appears to be a rather natural case, as the response of the system G to the finite
energy signal u should have finite energy too. By considering the isomorphism explained
earlier (Parseval’s theorem) and the induced system norm

∥G∥L (ℓ2[0,8)) = sup
u‰0

∥y∥ℓ2[0,8)

∥u∥ℓ2[0,8)

= sup
u‰0

∥Gu∥H2(D)

∥u∥H2(D)

, (3.20)

it becomes obvious that ∥y∥ℓ2[0,8) ă 8 if and only if the transfer function matrix G(ejθ) obeys
∥Gu∥H2(D) ă 8 4. A sufficient condition for this is that ∥G∥H8(D) ă 8, since [88]

∥Gu∥H2(D) =

d

1
2π

ż 2π

0
tr
␣

u˚(ejθ)G˚(ejθ)G(ejθ)u(ejθ)
(

dθ (3.21)

ď

d

sup
θ

σtG(ejθ)u2 1
2π

ż 2π

0
u˚(ejθ)u(ejθ) dθ (3.22)

= ∥G∥H8(D)∥u∥H2(D). (3.23)

Substituting Eq. 3.23 into Eq. 3.20 shows that

∥G∥L (ℓ2[0,8)) = ∥G∥H8(D) ă 8 (3.24)

for mappings of the kind ℓ2 Ñ ℓ2. Eq. 3.24 holds for any causal and stable linear system G.
In summary, the H8 norm of a transfer function can be referred to as the maximum system
gain from an energy-bounded input to an energy-bounded output. Hence, this norm is an
excellent design criterion for controllers and estimators.

Another interesting relationship between LTI systems and their transfer functions can be estab-
lished with respect to the H2 norm. To this end, again, consider the block diagram depicted
in Fig. 3.1, but this time, assume that the input u is white noise with bounded PSD Su(ejθ),
meaning that

∥∥Su(ejθ)
∥∥
H8(D)

ă 8 5. As a consequence of the Wiener-Khinchine theorem (see
Section 2.2.3), the PSD of the output y can be factorized as [110]

Sy(ejθ) = G(ejθ)Su(ejθ)G˚(ejθ). (3.25)

4 Note that the notation L (ℓ2[0, 8), ℓ2[0, 8)) is reduced to L (ℓ2[0, 8)) because of equal input and output spaces.
5 Eq. 3.19 is valid for every function of frequency in the discrete-time case.
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Now, assume that Su = I (white noise) and recall from Section 2.2.3 that the average power of
the signal y is equal to

Ry(0) = E
!

y(t)y(t)T
)

=
1

2π

ż 2π

0
Sy(ejθ) dθ. (3.26)

Thus, one may write

E
!

y(t)Ty(t)
)

=
1

2π

ż 2π

0
tr
!

Sy(ejθ)
)

dθ. (3.27)

Then, after substituting Eq. 3.25 into Eq. 3.27, and with Eq. 3.17,

E
!

y(t)Ty(t)
)

= ∥G∥2
H2(D). (3.28)

Consequently, the H2 norm of the transfer function of a system G excited by white noise with
a constant PSD of I represents the joint average power of the output signal.

3.2 filtering and estimating as a special case of optimal control

A typical objective in modern control is to design feedback systems Tzw, also called closed-
loop systems, with certain minimal transfer function norms that map exogenous inputs w to
regulated outputs z. The former can be seen as disturbance, which is uncontrollable, and the
latter is typically expressed by an error or residual, which is desired to go to zero. Therefore,
with simple words, the goal of the control problem is rephrased, namely to minimize the effect
of w on z in a certain sense. A schematic illustration of Tzw is given by Fig. 3.2. The system

Figure 3.2: Feedback system Tzw with plant P and controller K.

consists of a plant P, which itself cannot be changed, and a controller K that maps sensed
outputs y to actuator inputs u. For the control system design, the controller K is defined
in such a way that the objective, the minimization of some transfer function norm, is met.
To illustrate this relationship, consider the following simplified example. The goal may be
to design a car’s cruise control system that minimizes the worst-case error of measured and
desired speed. In this case, P constitutes a model of the car’s drive system. z represents the
error, namely the difference between the desired speed defined by the user and the measured
speed, which is expressed by y. Finally, K controls the throttle represented by u, and is
selected in such a way that the infinity-norm of Tzw is minimized.
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This thesis is devoted to using quadratic estimation solutions for vibration-based SHM. Esti-
mation can be seen as a special case of control, and thus, it can be regarded within the general
framework introduced before, allowing for a unified formulation, interpretability, and design.
In the following, the theoretical foundation is laid, which is then examined in more detail for
Kalman and H8 filtering. Therefore, consider this simplified generalized parameterization of
P and K given as

P =

[
P11 P12

P21 P22

]
=




A B1 0

C1 D11 D12

C2 D21 0


 (3.29)

and

K =

[
Ae Be

Ce De

]
, (3.30)

respectively, where the index e emphasizes the estimation case. The kind of notation used in
3.29 and 3.30 is readily considered throughout this thesis to define transfer functions. Conse-

quently, the general quadruplet of state-space matrices

[
A B

C D

]
refers to C(zI ´ A´1) + D,

cf. Eq. 2.36.

For the regarded case, the following definitions are made in view of Fig. 3.2:

y = y

u = ŝ

w =
[
wT vT

]T

z = s ´ ŝ,

leading to the state-space representations of Eqs. 3.29 and 3.30 that can be stated in matrix
notation as 


xk+1

zk

yk


 =




A B1 0

C1 D11 D12

C2 D21 0







xk

wk

ŝk|k+m


 (3.31)

and [
xe,k+1

ŝk|k+m

]
=

[
Ae Be

Ce De

] [
xe,k

yk

]
, (3.32)

respectively. Here, sk denotes an arbitrary signal to be estimated based on past, present, or
future observations. This is emphasized by the variable m used as a subscript for the estimate
ŝk|k+m. xe denotes the internal states of the estimator defined by (Ae, Be, Ce, De). Depending
on the choice of m, the estimator can be used for prediction (m ă 0), filtering (m = 0),
or smoothing (m ą 0) [180]. In this thesis, filters or predictors are derived, for which the
subscripts p and f are chosen.
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To find the parameterization of the system Tzw, a lower linear fractional transform (LLFT),
denoted as LLFT(P, K), is performed, resulting in [88, p. 137]

Tzw = LLFT(P, K) =

[
Acl Bcl

Ccl Dcl

]
=




A 0 B1

BeC2 Ae BeD21

C1 + D12DeC2 D12Ce D11 + D12DeD21


 ,




xk+1

xe,k+1

zk


 =




A 0 B1

BeC2 Ae BeD21

C1 + D12DeC2 D12Ce D11 + D12DeD21







xk

xe,k

wk




. (3.33)

Independent of the applied linear quadratic estimation theory, the overall goal concerning the
estimator design for this thesis reads as follows:

Problem 3.1. Given a linear quadratic estimator K for some signal s, the goal is to derive a strictly
proper6 filter or predictor K f : yk Ñ ŷk|k or Kp : yk Ñ ŷk|k´1 with estimation error e = y ´ ŷ.

3.3 kalman filter theory

In this work, Kalman filters are studied and used intensively. These filters can be seen as
special cases of H2 estimators, for which they can be regarded within the control framework
presented before. The synthesis is outlined as follows.

Problem 3.2. Given the pair (A, C), the plant P is defined for sk = xk and ŝk|k = x̂k|k such that

P =




A
[

I 0
]

0

I
[
0 0

]
´I

C
[
0 I

]
0


 ,




xk+1

zk

yk


 =




A
[

I 0
]

0

I
[
0 0

]
´I

C
[
0 I

]
0







xk

wk

x̂k|k


 . (3.34)

The goal is to find a filter K : yk Ñ ŝk|k = x̂k|k that minimizes the H2-norm of Tzw (Eq. 3.33) by taking
into account the statistical properties of wk defined as N (0, Mk). The covariance matrix Mk is given
by

Mk = E

$

&

%

[
wk

vk

] [
wl

vl

]T
,

.

-

=

[
Qk Sk

Sk
T Rv,k

]
δkl ě 0 (3.35)

and is assumed as time-invariant, i.e. Mk = M. The objective function of this design problem can be
formally stated as

minimize
K(Q,Rv,S)

J = ∥Tzw∥H2
. (3.36)

From a finite-horizon perspective (k P [0, 8)), the cost function J formulated in Eq. 3.36 is dual
to

Jk = }x̃k|k}2
2 = tr

␣

Pk|k
(

, (3.37)

where x̃k|k denotes the a posteriori state-estimation error defined as x̃k|k = zk = xk ´ x̂k|k, and
Pk|k represents the state-estimation error covariance matrix.

6 The term strictly proper implies that the system is asymptotically stable and D = 0, see [102, p. 33].
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The solution to the filter design problem follows, e.g., from the derivations of the standard
time-varying Kalman filter. In the following, the most relevant steps are summarized, starting
with the time-varying filter minimizing Eq. 3.37 and finally providing the formulae for the
so-called steady-state Kalman filter, which constitutes the desired time-invariant solution. For
more information on this topic, see, e.g., [180].

The fundamental concept of Kalman filtering is to predict and filter the states in an alternating
fashion. Therefore, during filtering, current information from the measurements is introduced
with the help of a gain matrix K f ,k and an innovation process ek. Thus, the state prediction
reads

x̂k|k´1 = Ax̂k´1|k´1, (3.38)

and the filtering comprises

ek = yk ´ Cx̂k|k´1 (3.39)

x̂k|k = x̂k|k´1 + K f ,kek. (3.40)

Now, as stated before, the Kalman filter seeks to minimize the mean squared error (MSE)
of the a posteriori state estimates (filtering), cf. Eq. 3.37. Hence, K f ,k must be determined
accordingly. The optimal solution arises by writing Pk|k as a function of K f ,k [180, p. 85]:

Pk|k = E
!

x̃k|k x̃T
k|k

)

(3.41)

= (I ´ K f ,kC)Pk|k´1(I ´ K f ,kC)T + K f ,kRv,kKT
f ,k, (3.42)

and then, setting the derivative of Eq. 3.37 to zero with respect to K f ,k. This results in

K f ,k = Pk|k´1CT(CPk|k´1CT + Rv,k)
´1. (3.43)

Eq. 3.42 reveals a central property of the Kalman filter recursion. To determine the posterior
probability of the estimation errors, the prior likelihood in the form of

Pk|k´1 = E
!

x̃k|k´1 x̃T
k|k´1

)

= E
!

(xk ´ x̂k|k´1)(xk ´ x̂k|k´1)
T
)

(3.44)

is taken into account together with information that is currently available. Hence, the Kalman
filter is often referred to as a Bayesian filter.

A typical representation of the Kalman filter is given by the one-step form. Therefore, a
parameterization of Pk+1|k has to be found first, which follows directly from Eqs. 3.40 to
3.44:

Pk+1|k = E
!

(xk+1 ´ x̂k+1|k)(xk+1 ´ x̂k+1|k)
T
)

(3.45)

= E
!

(Axk + wk ´ Ax̂k|k´1 ´ AK f ,kCxk ´ AK f ,kvk + AK f ,kCx̂k|k´1)(...)
T
)

= E
!

(Ax̃k|k´1 ´ AK f ,kCx̃k|k´1 + wk ´ AK f ,kvk)(...)T
)

= APk|k´1AT ´ APk|k´1CTKT
f ,k AT ´ AK f ,kCPk|k´1AT + AK f ,kCPk|k´1CTKT

f ,k AT

+ Qk ´ SkKT
f ,k AT ´ AK f ,kST

k + AK f ,kRv,kKT
f ,k AT. (3.46)
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Note that (...)T is used to avoid the repetition of the first statement within the expectations.
Substituting Eq. 3.43 into Eq. 3.46 yields [110, p. 129]:

Pk+1|k = APk|k´1AT ´ (APk|k´1CT + Sk)(CPk|k´1CT + Rv,k)
´1(CPk|k´1AT + ST

k ) + Qk. (3.47)

Finally, the one-step Kalman filter is found in the well-known innovations form by substituting
Eq. 3.43 into Eq. 3.40 and then into Eq. 3.38. The state-space equations are completed by
rearranging Eq. 3.39 such that

x̂k+1|k = Ax̂k|k´1 + Kp,kek (3.48a)

yk = Cx̂k|k´1 + ek, (3.48b)

where [110, p. 120]
Kp,k = (APk|k´1CT + Sk)(CPk|k´1CT + Rv,k)

´1. (3.49)

The inverse of this system is readily obtained through a small rearrangement and the intro-
duction of Ap,k = A ´ Kp,kC so that

x̂k+1|k = Ap,k x̂k|k´1 + Kp,kyk (3.50a)

ek = ´Cx̂k|k´1 + yk. (3.50b)

steady-state kalman filter
In this work, it is generally assumed that wk and vk are stationary processes. Consequently,
the covariance matrix must be constant so that Mk = M. Thus, in the context of time-invariant
parameters (A, C), Eq. 3.47 converges to a constant matrix as k Ñ 8. In fact, this convergence
is obtained quickly in most cases, leading to the so-called steady-state Kalman filter. Therefore,
it comes naturally to directly design a time-invariant Kalman filter when the aforementioned
criteria are met. The covariance matrix Pk+1|k can then be replaced by a unique positive-
definite stabilizing solution of the following DARE:

Pk+1|k « Pp = APp AT ´ (APpCT + S)(CPpCT + Rv)
´1(CPp AT + ST) + Q (3.51)

Then, the time-invariant parameter for Eqs. 3.48 and 3.50 read

Kp = (APpCT + S)(CPpCT + Rv)
´1, Ap = A ´ KpC. (3.52)

Information regarding the existence conditions and numerical solution of Eq. 3.51 is available
in the literature, see e.g. [180] or [101, p. 427] and the citations therein.

Based on these findings, the estimator K that satisfies Problem 3.2 is defined as

K =

[
Ap Kp

A 0

]
,

[
x̂k+1|k

x̂k|k

]
=

[
Ap Kp

A 0

] [
x̂k|k´1

yk

]
. (3.53)

Finally, Problem 3.1 is fulfilled by defining

Kp =

[
Ap Kp

C 0

]
,

[
x̂k+1|k

ŷk|k´1

]
=

[
Ap Kp

C 0

] [
x̂k|k´1

yk

]
. (3.54)
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3.4 test for whiteness of innovations

In the previous sections, it was assumed that the noise covariance matrices Qk, Rv,k, and
Sk are known. However, this is rather a theoretical case, and thus, in practice, the noise
covariances are either guessed or estimated using noise estimation techniques, as will be
elaborated on in Chapter 5. In any case, the performance of the Kalman filter designed with
a set of noise covariance matrices can be assessed based on the innovations resulting from
that filter. In the optimal case, where the Kalman filter functions as a least-squares error filter,
the innovations are white and Gaussian distributed. Special statistical tests exist to test these
properties. Regarding the test for Gaussianity, the Kolmogorov-Smirnov or Anderson-Darling
tests can be applied [136], for instance. In the context of this thesis, the whiteness property, i.e.,
the independence or uncorrelatedness of estimation errors, is frequently addressed. Hence, a
typical approach for testing this property is explained here.

A classical approach for this endeavor is to consider the normalized estimated covariance
function defined as

R̂e(i) =
řns´1

k=1 (ek ´ µ̂e)(ek+i ´ µ̂e)T

řns´1
k=1 (ek ´ µ̂e)(ek ´ µ̂e)T

, (3.55)

and to check whether the weighted and squared covariance function converges in a χ2 distri-
bution with certain degrees of freedom (DOF)7. Note that the numerator and denominator of
Eq. 3.55 are slightly different from Eq. 2.66 since they are not multiplied by 1/ns´i. The factor
cancels out here, and therefore, is not included in Eq. 3.55. The following descriptions contain
terms that are strongly related to the random theory covered by Section 2.2 and statistical
testing or hypothesis testing, respectively, which is addressed in Section 4.4.2. In the previous
equation, ns denotes the number of measured or processed samples. Note that in the multi-
variate case, ek is a vector containing the elements el,k with l P [1, q] representing each output
channel, and therefore, R̂e(i) becomes a q ˆ q matrix with the autocovariance function R̂el (i)
on the main diagonal. The latter is of interest for the whiteness test, which essentially checks
the autocorrelation of the q individual innovations sequences. If el,k were a white noise pro-
cess, then R̂el (i) would amount to zero for i ą 0. Various versions of the χ2 test exist that can
be interpreted as modifications of the standard test by Box and Pierce [26]. A good overview
of the existing versions, together with suggestions for application, can be found in [53]. The
test statistics of the common whiteness test reads

r = ns

m
ÿ

i=1

R̂2
el
(i). (3.56)

If el is a realization of white noise then the sum of the squared correlation function R̂el (i)
multiplied with the number of samples ns converges in a χ2 distribution with m DOF [22].
Now, the null-hypothesis, that is, the hypothesis that the estimation error is white noise, can
be stated as H0 : r ă ϑ, where ϑ marks the (1 ´ α) quantile that is computed from the CDF of
the χ2 distribution with m DOF, cf. Section 4.4.2.

The selection of the value m is not straightforward. Bernal [22] suggests to choose

m «
fs

fD,1
, (3.57)

7 Here, the term DOF is used in a statistical sense.



58 linear quadratic estimation

where fs denotes the sampling frequency and fD,1 the lowest measured natural frequency. He
also comments on the definition of the significance level α. In the multivariate case, this value
might be globally defined as

α = 1 ´ (1 ´ α)1/q (3.58)

with a uniform significance level α for each innovation sequence.

3.5 H8 estimation theory

In practice, Kalman filters, or H2 estimators in general, exhibit certain drawbacks. It follows
from the interpretation of the H2 transfer function norm (see Section 3.1.4) that both process
and measurement noise summarized by w are assumed to be white noise processes, which
is generally not the case in practice. Moreover, Kalman filtering requires information about
the statistical moments regarding these processes. Again, from a practical point of view,
this manifests another limitation, as such information is typically not at hand, nor can it be
assumed in general that w and v are random processes at all. The estimation of unknown noise
covariance matrices is addressed in Chapter 5. Despite likely violations of the underlying
assumptions, the Kalman filter is particularly appealing because of its simplicity. Therefore, it
has been heavily exploited in many engineering fields since its introduction in 1960 by Rudolf
E. Kálmán [108].

An alternative estimator design is posed by the H8 theory, which aims to minimize the H8

norm of Tzw (Eq. 3.33). According to the explanations made in Section 3.1.4, this design
scheme solely requires w P ℓ2[0, 8) and z P ℓ2[0, 8), which implies finite energy of w and
z. No other assumptions are postulated and noise and even system uncertainties are taken
into account [101, 180]. Since the involved processes are not necessarily random processes,
Gramian matrices instead of covariance matrices are proper choices to write inner products.
The former are denoted by ⟨ak, bk⟩, where ak and bk represent some multivariate, possibly
deterministic processes. In the case of ak and bk being random processes, ⟨ak, bk⟩ = E

␣

akbT
k

(

[210]8.

Similar to Problem 3.2, the objective of the H8 estimator design for this thesis is formulated
in view of the control framework presented in Section 3.2.

Problem 3.3. Given the pair (A, C), the plant P is defined for sk = Cxk and ŝk|k = ŷk|k such that

P =




A
[

I 0
]

0

C
[
0 0

]
´I

C
[
0 I

]
0


 ,




xk+1

zk

yk


 =




A
[

I 0
]

0

C
[
0 0

]
´I

C
[
0 I

]
0







xk

wk

ŷk|k


 . (3.59)

The goal is to find a filter K : yk Ñ ŝk|k = ŷk|k so that the H8 norm of Tzw (Eq. 3.33) satisfies an
user-defined upper bound γ2. This is formerly expressed by the objective

J = inf
K
∥Tzw∥H8

ă γ2. (3.60)

8 Note that the differentiation between Gramian and covariance matrices is rather pedantic, as the underlying
mathematical operations are identical.
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Here, J defines the corresponding cost function and inf denotes the infimum operator. Com-
paring Eqs. 3.34 and 3.59 reveals that this time, the design problem is formulated to obtain
ŷk|k, although, in the Kalman filter case, the postulated goal was to receive the state estimates
x̂k|k. As mentioned before, this has been done to obtain the H2-optimal estimates ŷk|k and
ŷk|k´1, respectively, by applying the Kalman filter theory. In the H8 theory, the H8-optimal
estimates x̂k|k cannot be employed to receive H8-optimal estimates for yk by computing Cx̂k|k,
see [180]. Thus, for the sake of comparability, the design problem associated with the H8

theory has to be formulated accordingly. Another remark should be made in view of Eq. 3.60.
The attentive reader might wonder why the objective is not formulated to read minK∥Tzw∥H8

instead. The reason is that an H8-optimal solution does not always exist [101], as will be
explained later on. Thus, the design problem is relaxed by seeking a suboptimal or so-called
γ-optimal solution.

3.5.1 Riccati-based H8 filtering

In the following, a Riccati-based approach is presented for the H8 filter design problem stated
above. The underlying theory refers to the problem of indefinite-quadratic estimation, which
was established by Hassibi et al. [99–101]. It constitutes an interesting approach, as the
synthesis is similar to the Kalman filter design. Solely an indefinite metric space, namely the
Krein space, must be considered. As in Section 3.3, the finite-horizon case is regarded first.
Secondly, from the converging property of the DARE, a time-invariant solution is derived
assuming stationarity of wk. For a direct infinite-horizon synthesis, see [101]. As mentioned
before, the H8 synthesis strictly depends on the signal to be estimated (sk). To avoid confusion
with derivations from the literature and for the sake of clarity, the general case using sk = Lxk,
where L denotes some arbitrary weighting matrix, is regarded first. Later, the special case of
L = C will be considered to meet Problem 3.3, referring to the estimation of the undisturbed
measurements.

The time-varying pendant of Eq. 3.60 reads [80, 101]

Jk = sup
w,v

řk
i=0 (si ´ ši|i)

T(si ´ ši|i)

xT
0 Σ´1

x0 x0 +
řk

i=0

(
wT

i Q´1
i wi + vT

i R´1
v,i vi

) ă γ2. (3.61)

Here, šk|k describes the filtered estimate of sk which is a theoretical process that must not be
confused with the actual output of the H8 filter ŝk|k, as we will explain later on. A relatively
intuitive explanation for H8 filters is the game theory approach by Banavar and Speyer [18].
It constitutes a game between nature and the engineer, where the nature selects wk and vk to
maximize the estimation error sk ´ šk|k, and therefore Jk. The engineer’s goal, on the other
hand, is to find a good estimate ŝk|k to finally minimize the cost function [180]. In Eq. 3.61, x0

denotes the initial states and Σx0 is the corresponding Gramian matrix xx0, x0y. The Gramian
matrices Qk and Rv,k are not required for the H8 filter synthesis, and therefore, do not appear
in the original derivations by Hassibi et al. [101]. However, they are introduced here, as sug-
gested by Forssell [80], to establish an interesting relationship with the Kalman filter. Namely,
the latter is recovered for γ Ñ 8 and by choosing L = I, defining Qk and Rv,k according to
Eq. 3.35, and assuming that wk and vk are mutually uncorrelated. Though, in the sense of the
H8 filter, Qk and Rv,k might function as weighting matrices [179, 180]. That is, if, for instance,
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a certain element in wk is small compared to the other entries, this can be taken into account
by choosing the corresponding element in Qk small relative to the others.

After reordering Eq. 3.61, the following indefinite-quadratic form arises

Jk = xT
0 Π´1

0 x0 +
k
ÿ

i=0

[
wi

vi

]T

M´1
i

[
wi

vi

]
, (3.62)

with the central Gramian

Mk =

〈[
wk

vk

]
,

[
wl

vl

]〉

K
=

[
Qk 0

0 Rv,k

]
=




Qk 0

0

[
Rv,k 0

0 ´γ2 I

]

 (3.63)

and the extended disturbance process

vk =

[
vk

s̃k|k

]
=

[
yk

šk|k

]
´

[
C

L

]
xk. (3.64)

Due to the negative extended Gramian matrix Rv,k, the Hilbert space, in which Kalman filters
are usually defined, is not applicable anymore. Alternatively, the Krein space must be used
instead, where negative inner products are allowed [99]. Hence, K highlights this particular
indefinite-metric space.

Most interestingly, the minimum of the deterministic cost function stated in Eq. 3.62 is equiv-
alent to the general solution of least mean-squares problems such as Kalman filtering [204,
p. 72]. This minimum is found with the help of a stationary point and yields [101]

min Jk =
k
ÿ

i=0

êT
i Rê,i êi, (3.65)

where êi denotes the extended innovations process defined as

êk =

[
ey,k

es,k

]
=

[
yk

šk|k

]
´

[
ŷk|k´1

ŝk|k´1

]
=

[
yk

šk|k

]
´

[
C

L

]
x̂k|k´1 (3.66)

and Rê,k = ⟨êk, êk⟩. Note that with a slight abuse of notation, but to match the notation of the
cited literature, the internal filter states are written as x̂ instead of xe. This could be seen as a
minor imprecision as the objective is not explicitly the estimation of states.

Due to the aforementioned equivalence of solutions to both deterministic and stochastic
quadratic-estimation problems, a Krein space state-space system can be defined to which the
standard Kalman filter approach (see Section 3.3) is applicable [101, 204]. The corresponding
state-space equations read

xk+1 = Axk + wk (3.67a)
[

yk

šk|k

]
=

[
C

L

]
xk + vk, (3.67b)
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and the estimation results are similar to those presented before – only with extended matrices.
In particular, the pendant to the innovations form given in Eq. 3.48 is defined as

x̂k+1|k = Ax̂k|k´1 + Kp,k êk (3.68a)
[

yk

šk|k

]
= Cx̂k|k´1 + êk. (3.68b)

Further, the gain matrix

Kp,k = APk|k´1CT(CPk|k´1CT + Rv,k)
´1 (3.69)

results from the Riccati recursion

Pk+1|k = APk|k´1AT ´ APk|k´1CT(CPk|k´1CT + Rv,k)
´1CPk|k´1AT + Qk (3.70)

with extended matrices C = [CT LT]T and Rv,k, and in comparison with Eq. 3.47, with Sk =

0.

Unfortunately, these equations do not constitute the final solution for two reasons [101, 204]:

(i) ey,k and es,k in Eq. 3.66 are not independent (
〈
ey,k, es,k

〉
‰ 0), and thus, Eqs. 3.66 and 3.69

have to be decoupled, e.g. with the help of an LDU factorization.

(ii) šk|k is a theoretical choice only, as it is not available nor measurable in a prediction step.
Hence, a pragmatic choice has to be made that ensures that the minimum of the cost
function stated in Eq. 3.65 is positive.

Taking care of the first point results in the new extended innovations sequence ek defined as
[204]

ei =

[
ey,k

ẽs,k

]
=

[
yk

šk|k

]
´

[
ŷk|k´1

ŝk|k

]
, (3.71)

with

ŝk|k = Lx̂k|k

= Lx̂k|k´1 + LPk|k´1CT(Rv,k + CPk|k´1CT)´1ey,k

= ŝk|k´1 + LPk|k´1CTR´1
ey,key,k (3.72)

that satisfies
〈
ey,k, ẽs,k

〉
= 0. Eq. 3.71 replaces êk in Eq. 3.68. Further, the gain matrix decom-

poses to

Kp,k =
[
Kpy,k Kps,k

]
,

Kpy,k = APk|k´1CTR´1
ey,k, Kps,k = APk|k´1(LT ´ CT(RT

ey,k)
´1CPk|k´1LT)R´1

ẽs,k, (3.73)

where Rẽs,k = ⟨ẽs,k, ẽs,k⟩.
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Concerning the selection of šk|k, a reasonable replacement is given through šk|k = ŝk|k, which is
equivalent to ẽs,k = 0, cf. Eq. 3.71. Keeping that in mind, a final solution arises by substituting
Eqs. 3.71 to 3.73 into Eq. 3.68 so that

x̂k+1|k = Ax̂k|k´1 + Kp,kek

= Ax̂k|k´1 +
[
Kpy,k Kps,k

] [ey,k

0

]

= Ax̂k|k´1 + Kpy,key,k (3.74a)

ŝk|k = Lx̂k|k´1 + LPk|k´1CTR´1
ey,key,k. (3.74b)

It must be mentioned that the existence of Eq. 3.74 is not guaranteed for each time step k given
some γ ą 0. Certain existence conditions must be fulfilled, and thus, they must be checked
recursively when finite-horizon filtering (k P [0, 8)) is pursued. For more information on that,
see, e.g., [204, p. 90].

Rearranging Eq. 3.74 under consideration of ey,k = yk ´ Cx̂k|k´1 results in a system that maps
the measurements yk to the estimates ŝk|k. The corresponding state space formulation reads

x̂k+1|k = Ap,k x̂k|k´1 + Kpy,kyk (3.75a)

ŝk|k = L(I ´ Pk|k´1CTR´1
ey,kC)x̂k|k´1 + LPk|k´1CTR´1

ey,kyk, (3.75b)

with Ap,k = A ´ Kpy,kC.

steady-state H8 filter
As in Kalman filtering for LTI systems, the recursive Eq. 3.70 converges towards a constant
matrix as k Ñ 8 if, beside other conditions, wk and vk are stationary processes, and thus, lead
to a stationary central Gramian matrix Mk defined in Eq. 3.63. Therefore, a time-invariant
H8 filter can be determined by solving the following DARE with the extended matrix C =

[CT LT]T and the negative definite Gramian Rv (see Eq. 3.63):

Pk+1|k « Pp = APp AT ´ APpCT(CPpCT + Rv)
´1CPp AT + Q (3.76)

Then, the time-invariant gain matrix reads

Kpy = APpCT(CPpCT + Rv,k)
´1 with Ap = A ´ KpyC. (3.77)

The resulting so-called central filter can also be used for prediction purposes or in other words
as a strictly causal estimator (cf. Section 2.1.4) with ŝk|k´1 = Lxk|k´1 [101, p. 401]. This is
possible since the DARE for the derivations of a strictly causal estimator with output equation
ŝk|k´1 = Lxk|k´1 is equivalent to the DARE of the causal estimator (Eq. 3.76).

Naturally, finding a converging solution for Eq. 3.76 depends, among other conditions ex-
plained in [101, p. 436], heavily on the choice of γ. An optimal upper bound can be deter-
mined via iteration or with the help of the smoothing solution. Nevertheless, in the regarded
case of filtering signals in additive noise (L = C), a solution for γ = 1 is always feasible when
the convergence conditions for Eq. 3.76 are fulfilled [101, p. 471]. The resulting filter does not
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filter at all, but luckily, the predictive performance can be analyzed instead by considering the
strictly causal estimator.

In summary, the estimator K that satisfies Problem 3.3 is given by

K =


 Ap Kpy

C(I ´ Pk|k´1CTR´1
ey,kC) CPk|k´1CTR´1

ey,k


 ,

[
x̂k+1|k

ŷk|k

]
=


 Ap Kpy

C(I ´ Pk|k´1CTR´1
ey,kC) CPk|k´1CTR´1

ey,k



[

x̂k|k´1

yk

]
, (3.78)

and Problem 3.1 is fulfilled by

Kp =

[
Ap Kpy

C 0

]
,

[
x̂k+1|k

ŷk|k´1

]
=

[
Ap Kpy

C 0

] [
x̂k|k´1

yk

]
. (3.79)

3.5.2 LMI-based H8 filtering

A rather modern approach for the design of H8 filters is posed by linear matrix inequality
(LMI)-based syntheses. The fundamental idea of these strategies is to linearize the typically
nonlinear cost functions and solve the resulting matrix inequalities by means of convex opti-
mization and semidefinite programming. Solving these already relaxed problems still involves
elaborate numerical methods such as interior-point methods. For further information, see, e.g.,
[28]. The optimizations can be conducted by employing open-source software packages such
as YALMIP [123] or CVX [33, 87] together with the solvers SEDUMI [187] or SDPT3 [189]. In
the following, an LMI-based synthesis for H8 filters is presented in brevity. The proposed
strategy follows Problem 3.3 and suffices Problem 3.1 by directly imposing a strictly proper
form.

For the LMI-based synthesis of H8 filters, they are considered as special cases of dynamic
output feedback controllers. Hence, the corresponding LMIs are adapted for their design [38,
p. 139]. A filter K can be designed if there exists a matrix X = XT ă 0 such that [83]




´X´1 Acl Bcl 0

AT
cl ´X 0 CT

cl

BT
cl 0 ´γI DT

cl

0 Ccl Dcl ´γI




ă 0. (3.80)

Substituting Eq. 3.33 into this Eq. 3.80 results in a matrix inequality that is not linear in the
variables (A f , B f , C f , D f ) representing K, and thus, the nonlinear matrix inequality should be
transferred to an LMI to efficiently solve the design problem by means of convex optimization
[84]. Several ways exist to perform this conversion, e.g., through a change of variables. For
further information, the interested reader is referred to the literature, e.g., [64, 84]. According
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to Caverly and Forbes [38, p. 139], a filter that satisfies Problems 3.3 and 3.1 can be found by
solving the following set of LMIs:




X1 In X1A + BC2 A X1B1 + BD21 0n,q

˚ Y1 A AY1 B1 0n,q

˚ ˚ X1 In 0n,q CT
1 + CT

2 DTDT
12

˚ ˚ ˚ Y1 0n,q Y1CT
1 + CTDT

12

˚ ˚ ˚ ˚ γIq DT
11 + DT

21DT
n DT

12

˚ ˚ ˚ ˚ ˚ γIq




ą 0,

[
X1 In

˚ Y1

]
ą 0.

(3.81)

Here, (˚) was placed in the block lower triangular matrix to emphasize that the symmetric
matrices can be easily completed. The identity and zero matrices are given the relevant di-
mensions to simplify the reimplementation process9. The matrices X1, Y1, A, B, C, and D
constitute the variables of the LMI-based optimization problem that result from the lineariza-
tion procedure. Finally, the filter parameter can be determined as

[
A f B f

C f D f

]
=

[
X2 0

0 I

]´1([
A B

C D

]
´

[
X1AY1 0

0 0

]) [
YT

2 0

C2Y1 I

]´1

. (3.82)

Now, taking into account Problem 3.1 by defining D f = 0 and C f = C, it follows that D = 0
and C = CYT

2 so that Eq. 3.81 simplifies and the final list of optimization variables reads: X1,
Y1, Y2 A, and B. X2 follows with X2 = I ´ X1Y1Y-T

2 . Finally, the LMI-based filter for yk arises
as

K = K f =

[
A f K f

C 0

]
,

[
x f ,k+1

ŷk|k

]
=

[
A f K f

C 0

] [
x f ,k

yk

]
, (3.83)

where K f = B f .

3.6 concluding remarks

In this chapter, two different approaches for linear quadratic estimation were presented,
namely Kalman and H8 filtering. Where the former assumes white and Gaussian distributed
disturbances and requires the knowledge of the corresponding covariance matrices, H8 fil-
ters do not make any assumptions regarding these processes. For this thesis, both strategies
are utilized to realize causal and strictly proper estimators (predictors or filters) that map the
measured signal y to the estimate ŷ so that the estimation error reads e = ŷ ´ y. The latter can
then be assessed to infer changes in the structure’s dynamics resulting from damage. The con-
sidered approaches for the realization of H8 filters comprise a Riccati-based and LMI-based
synthesis. In either case, special attention is paid to finding the strictly proper form, as is sum-
marized in Fig. 3.3. On the other hand, the Kalman filter theory directly leads to the desired
representation by inverting the well-known innovations form.

9 Note that the additional subscripts are only provided in cases where the identification of matrix dimensions
appears particularly cumbersome.
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Figure 3.3: Applied predictor syntheses using linear quadratic estimation.





4
D A M A G E A N A LY S I S F R A M E W O R K

In this chapter, a damage analysis framework developed by Lenzen and Vollmering [118, 119] is intro-
duced. Therein, estimation errors of linear quadratic estimators comprise the basis for damage inference.
The framework is inspired by the control-related discipline of fault detection and isolation (FDI); how-
ever, two estimators are operated in parallel, unlike conventional approaches. Moreover, instead of
processing measurement data, the involved signals are parameterized with the help of the identified
system parameters. This parameterization finally enables oblique projections in state space, which fur-
ther improves the sensitivity and robustness towards damage. Thereby, the method is referred to as
state-projection estimation error (SP2E). The resulting estimation errors, or more precisely differences
of estimation errors, can be assessed using the average signal power, as initially proposed [118, 119], or
by regarding the residual’s correlation function, see [210].

In the following, the utilization of multiple estimators and parameterized signals is discussed first.
Then, the theory from behind SP2E is briefly summarized in Sections 4.1 and 4.2. The performance
of both the power-based and correlation-based damage indicators is discussed and compared using a
simulation example in Section 4.3. Finally, in Section 4.3, relevant aspects of the SP2E framework in
the context of SHM, such as hypotheses tests, are examined. It is remarked that parts of the proceeding
text have been published in [210]. A concise list of the relevant computational steps is given therein as
well.

4.1 damage indicators by estimation error residuals

The considered damage analysis framework is based on the interconnection of state-space
systems associated with a reference and analysis state. According to the second axiom of SHM
by Farrar and Worden [70, Chapter 13], this differentiation is necessary to enable damage
identification. Typically, the structure of interest is considered healthy for a certain period,
which is generally referred to as the baseline phase. However, the analysis state does not
necessarily relate to the damaged system; it could as well be a further realization of the
healthy structure [210]. Signals and systems corresponding to the reference state are indicated
by index 1. On the other hand, the analysis state is emphasized with the help of an index
2.

As mentioned before, the SP2E framework is inspired by the control-related discipline of FDI
[41]. There, the damage is readily inferred from the estimation performance regarding mea-
sured outputs yk. Hence, a conventional approach is to realize estimators representing the
observed and healthy structure and then assess the innovations sequence ek, also referred to
as estimation error, given data acquired under unknown conditions. A null hypothesis for
damage identification is generally formulated by considering observations in a training or
inspection phase, i.e., data from the healthy structure. This hypothesis is then tested during
the inspection phase, as will be explained later in Section 4.4. Since ek is often assumed to be

67
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Gaussian distributed, a typical approach is to evaluate its mean or covariance Rek = E
␣

ekeT
k

(

(cf. [41]) where the latter offers the convenient physical interpretation of average power, cf.
Section 2.2.3. Now taking into account the aforementioned definitions, the explained conven-
tional residual generator can be illustrated by Fig. 4.1. Here, G2 represents the mechanical

Figure 4.1: Conventional residual generator for damage identification.

system in the analysis state that maps noise processes w2 and v2 to the observations y2. These
outputs are used to compute e1 with the help of the reference estimator Π´1

1 . For completeness,
the state-space equations representing both systems are defined as

x2,k+1 = A2xk + w2,k (4.1a)

y2,k = C2x2,k + v2,k. (4.1b)

and

xe,1,k+1 = Ae,1xe,1,k + Ke,1y2,k (4.2a)

ek,1 = ´C1xe,1,k + y2,k. (4.2b)

Note that in Eq. 4.2, the general notation for a strictly proper estimator is used (cf. Fig. 3.3)
that could be represented as a predictor or filter for yk. Naturally, the noise processes w2,k
and v2,k are unknown but assumed as stationary; they can be characterized by the Gramian
matrix

M2 =

〈[
w2,k

v2,k

]
,

[
w2,l

v2,l

]〉
(4.3)

=

[
Q2 S2

ST
2 Rv,2

]
δkl (4.4)

=

[
Σx2 ´ A2Σx2 A2

T N2 ´ A2Σx2 C2
T

N2
T ´ C2Σx2 A2

T Ry(0) ´ C2Σx2 C2
T

]
δkl ě 0, (4.5)

with N2 = ⟨x2,k+1, y2,k⟩ = A2Σx2 CT
2 + S2. Regarding Fig. 4.1 and with the help of the equations

given above, the map from y2 to e1 can be described with the following equations

e1,k = ´C1 x̂1,k + y2,k (4.6)

= ´C1 x̂1,k + C2x2,k + v2,k. (4.7)

This shows that for damage identification to be effective, the following conditions must hold:
(i) The dynamics represented by the estimator (Ae,1, Ke,1, C1) is linked to the dynamics encom-
passed in the measurement data y2. (ii) The characteristics of the noise process w2,k, but most
importantly, v2,k are truly stationary.

In data-driven SHM, both conditions are likely to be violated at one point or another. In
a supervised system identification procedure, poles with no direct structural meaning, e.g.,
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those representing the mains hum, are generally discarded. Also, when system identification
is automated, physical modes might be neglected by mistake. In these cases, a discrepancy
exists between the identified dynamics and the one encompassed in the measurements being
processed. Then, these effects end up in the innovations sequence e1,k and are likely to trig-
ger false detections. Instead, the SSI can be exploited that allows the parameterization of the
correlation function or PSD of the measured output yk, see Eq. 2.82. Moreover, an alterna-
tive residual dk = e1,k ´ e2,k can be considered that follows by employing a second estimator
Π´1

2 , which is designed in the analysis phase and that constitutes the map from y2 to e2. In
accordance to Eq. 4.7, its estimation error reads

e2,k = ´C2 x̂2,k + C2x2,k + v2,k. (4.8)

Computing dk by subtracting Eq. 4.8 from Eq. 4.7 suppresses the measurement noise v2,k,
which does not contain any structural information, and hence, increases the robustness of
damage identification.

The generation of the signal y2 as well as the computation of d can be expressed by the overall
system Ω : [wT

3 vT
3 ]

T Ñ d, which is depicted in Fig. 4.2. In fact, Fig. 4.2 describes a more

Figure 4.2: Central system Ω of the parametric damage analysis framework. Index 1 refers to reference
state, index 2 is associated with analysis state.

general scenario by introducing the test signal y3 that stems from the system G3 exited by w3

and v3. The latter processes are characterized by M3, cf. Eqs. 4.3 - 4.5. This extension via
G3 results in an increased flexibility of the damage analysis framework, as will be explained
in Section 4.2.2. For now, it should be acknowledged that G3 can be chosen freely, e.g., such
that G3 = G2 so that w3 = w2, v3 = v2, and y3 = y2. This constitutes a natural selection since
when SP2E is considered for SHM, G2 is readily available with every incoming data set and
system identification conducted.

As mentioned before, damage can be inferred by assessing the correlation function Rd(i).
Therefore, processing the measured data y3,k is not required; instead Rd(i) can be computed
using the state-space parameters of Ω and by making practical choices for the input Gramian
M3 in Eq. 4.3. The latter becomes relevant because the input to Ω is unknown. This topic is
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addressed at the end of this section. For now, consider the state-space representation of Ω

defined as



xe,1,k+1

xe,2,k+1

x3,k+1


 =




Ae,1 0 Ke,1C3

0 Ae,2 Ke,2C3

0 0 A3







xe,1,k

xe,2,k

x3,k


+




0 Ke,1

0 Ke,2

I 0




[
w3,k

v3,k

]
(4.9a)

dk =
[
´C1 C2 0

]



xe,1,k

xe,2,k

x3,k


 . (4.9b)

By introducing the state-space parameters of Ω, AΩ P RnΩˆnΩ , BΩ P RnΩˆ(n3+q), and CΩ P

RqˆnΩ with model order nΩ = n1 + n2 + n3, this system of equations can be simplified to

xΩ,k+1 = AΩxΩ,k + BΩuΩ,k (4.10a)

dk = CΩxΩ,k (4.10b)

such that Eqs. 4.10a and 4.10a equal Eqs. 4.9a and 4.9a, respectively. Based on that, the
correlation function [210]

Rd(i) = E
!

dkdT
k+i

)

= CΩ Ai
ΩΣxΩ CT

Ω (4.11)

follows, where ΣxΩ denotes the Gramian matrix of the states xΩ,k, which obeys the following
Lyapunov equation:

ΣxΩ = AΩΣxΩ AT
Ω + BΩ M3BT

Ω. (4.12)

Here, it is assumed that ⟨xΩ,k, uΩ,k⟩ = 0 for i P N. As implied before, the computation
of this Lyapunov equation requires a certain pragmatism, as the Gramian M3 is unknown.
Suggestions to overcome this hurdle are discussed at the end of Section 4.2.1.

Using Eq. 4.11, the average power of d can be computed by setting i = 0 and extracting the
diagonal of Rd(0). An alternative damage indicator can be constructed by considering the
main diagonal of Rd(i) and computing the variance of the entries for a given interval. In
both cases, the sensitivity towards structural damage can be improved by applying oblique
projections in state-space, and thereby, reducing the disturbance of the state-estimation error
[204]. This procedure is referred to as SP2E and will be explained in the following section,
where also the corresponding damage indicators are formally defined.

4.2 state projection estimation error (sp2e)

The fundamental idea of SP2E is to retain the information contained in xΩ that is commonly
shared by x1 and x2, and thus, compute a difference signal dV which is condensed to the part
relevant for changes (damages) [204]. This is enabled through the use of oblique projection
techniques, which, under certain circumstances, can even be conducted with a single estimator.
In the following section, the classical approach for SP2E, using two estimators, is explained.
In Section 4.2.3, the single-estimator approach is summarized.
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4.2.1 SP2E by using two estimators

To comprehend this, it is helpful to see the state vector xΩ as an element of the vector space W ,
which is essentially the direct sum of the two complementary subspaces U and V , i.e., U X V = 0.
In linear algebra, this is denoted by writing W = U ÀV , where

À

depicts the direct sum. By
regarding xΩ, as defined in Eq. 4.9a, it can be seen that this state vector consists of xe,1 and
xe,2, both representing the estimates of x1 and x2, respectively, and x3, which is the state vector
of the system G3 generating the test signal y3. Now, V can be seen as a vector space holding
information about the true states of G3. Further, U is the vector space that governs the states
of the estimators xe,1 and xe,2. Moreover, U is defined as the direct sum of U1 (xe,1) and U2

(xe,2). These rather complex relations are illustrated in Fig. 4.3

Figure 4.3: Oblique projections of the state vector xΩ. Adapted from [119]

complementary subspaces
From an algebraic point of view, the goal of SP2E is to find two unique linear projectors PV and
PU . The former maps onto V along U , and PU operates in the opposing direction. The product
PVxΩ leads to xΩV P V , whereas PU xΩ is equal to xΩU P U . Later in this section but also in
Fig. 4.3, it can be seen that the sum xΩ = xΩU + xΩV is unique, which is an unconditional
property of complementary vector spaces and their direct sum, it is equivalent to U X V = 0,
see [134]. Since V strictly refers to x3 and xΩ contains both x1 and x2, xΩV can be utilized to
extract differences in modal information comprised by (A1, C1) and (A2, C2), cf. [205].
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To compute the unique projectors PU and PV , bases for the complementary subspaces U and
V must be found. Conveniently, they arise from an eigenvalue decomposition of AΩ such
that

AΩ = XΛX´1 (4.13)

=
[

X1 X2 X3

]



Λ1 0

Λ2

0 Λ3







X1

X2

X3


 , (4.14)

where Xi denotes the eigenvectors, and Λi represents the eigenvalues of AΩ. The structure of
the former follows directly from the composition of AΩ defined in Eq. 4.9a, and the fact that
[204]

AΩ =
3
ÿ

i=1

XiΛiXi. (4.15)

Hence, the matrix containing the eigenvectors on its columns reads

X =




[
X11 0

0 X22

] [
X13

X23

]

[
0 0

] [
X33

]


 (4.16)

X1, X2, and X3 represent the bases of the complementary subspaces U1, U2, and V , respec-
tively. The inverse X´1 is found by considering X as a 2 ˆ 2 block matrix, as highlighted
in the previous equation, and performing a block-wise Gauss-Jordan elimination [124, 134].
Thus,

X´1 =




X´1
11 0 ´X´1

11 Y

0 X´1
22 ´X´1

22 Z

0 0 X´1
33


 , (4.17)

with
Y = X13X´1

33 and Z = X23X´1
33 . (4.18)

Now, it is easy to show that Z = I if G3 = G2, and Z = I if G3 = G1. This is an important
condition in the derivation of the projectors. An exemplary proof for the case of G3 = G2 is
given in Section A.2.

computation of projectors
Given the bases for the complementary subspaces U and V , determined by the eigenvectors
of AΩ, the two projectors are defined as [134]

PU =
[
U 0

] [
U V

]´1
and PV =

[
0 V

] [
U V

]´1
(4.19)

with [204]
U =

[
X1 X2

]
and V = X3. (4.20)
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Again, PU constitutes the map onto U along V , while PV projects onto V along U . Substituting
Eqs. 4.16 and 4.17 into Eq. 4.19 and under consideration of Eq. 4.20, the projectors arise
as

PU =




I 0 ´Y

0 I ´Z

0 0 0


 (4.21)

and

PV =




0 0 Y

0 0 Z

0 0 I


 . (4.22)

By means of PU and PV , xΩ can be factorized uniquely such that

xΩ,k = PU xΩ,k + PVxΩ,k (4.23)

= xΩU ,k + xΩV ,k (4.24)

=




xe,1,k ´ Yx3,k

xe,2,k ´ Zx3,k

0


+

[
0 0 PV

]
xΩ,k (4.25)

= xΩU ,k + PVx3,k, (4.26)

and thus, information regarding x3 is removed from xΩ,k when PU is applied. On the other
hand, xΩV ,k is solely dependent on x3. Because of that, the map onto V along U by means of
PV constitutes a model reduction. Note that PV was introduced above to denote the relevant
parts of PV .

enhanced damage indicators using state projections
xΩV is finally used to define the enhanced difference process dV as

dV ,k = CΩxΩV ,k = (´C1Y + C2)x3,k. (4.27)

Equivalently, the projectors PV or PV , respectively, might also be applied to the correlation
function given in Eq. 4.11, resulting in the correlation function of the projected difference
process [210]

RdV (i) = ⟨dV ,k, dV ,k+i⟩ = CΩPV Ai
ΩΣxΩ PT

VCT
Ω (4.28a)

= CΩPV Ai
3Σx3 PT

VCT
Ω. (4.28b)

For damage detection and localization, one can successively analyze the average power of
dV by considering the diagonal of RdV (0) in Eq. 4.28, as suggested in [118, 119]. However,
since the estimation errors are most probably not white, depending on the applied filtering
technique and due to practical circumstances, Wernitz et al. [210] proposed to examine RdV (i)
for i ą 0 instead by considering the variance of the diagonal elements of RdV (i) for i P [i1, i2]
with i2 ą i1 and i1 ą 0. This new damage-sensitive feature can be formally defined as

rdV ([i1, i2]) =
[
rdV ,1([i1, i2]) rdV ,2([i1, i2]) ¨ ¨ ¨ rdV ,q([i1, i2])

]T
(4.29)
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with
rdV ,l([i1, i2]) = vartRdV ,ll([i1, i2])u. (4.30)

Here, vart¨u is the variance operator and the index l denotes the corresponding output channel.
The latter appears twice in the subscript of RdV ,ll to denote the entry of the main diagonal.
Practical suggestions for choices of i1 and i2 are made in Section 4.3.

selection of gramians
An important remark is made regarding the definition of input Gramians used for SP2E. To
solve Eq. 4.12, the input Gramian M3 must be chosen at first. Since w3 and v3 are unknown,
this selection needs to be conducted in a pragmatic way. The noise covariance or Gramian
matrices Q3, Rv,3, and S3, which define M3 (cf. Eq. 4.4), can be estimated, e.g., using the
approach presented in Chapter 5, and subsequently used to assemble the input Gramian M3.
This is a reasonable strategy when Kalman filtering is considered. However, as remarked in
[210], this might decrease the sensitivity towards structural damage. An alternative approach,
which is independent of the applied scheme for linear quadratic estimation, is to define Σx3 =

0 at first, and then, factorize M3 according to Eq. 4.5 instead, and by that, enabling the solution
of the Lyapunov equation in Eq. 4.12.

Later, for the computation of RdV (i) according to Eq. 4.28, Σx3 is required again. Since the
previous and naive choice (Σx3 = 0) is not acceptable in this case, the (2, 2)th block of ΣxΩ ,
actually belonging to Σxe,2 , can be used if G3 = G2 [119]. Accordingly, if G3 = G2, the (2, 2)th
block of ΣxΩ constitutes an appropriate choice. Under the premise that, in Eq. 4.28, Σx3 can
simply be regarded as a weighting matrix, this procedure is justified [205].

4.2.2 Making use of G3

The derivations presented so far take advantage of the central system’s (Ω) general structure,
see Fig. 4.2 and Eq. 4.9. As mentioned before, employing the system G2 (G3 = G2) for the
generation of the test signal y3 is an intuitive choice since, e.g., in SHM, the mechanical system
in the analysis state is repetitively identified. This strategy was selected in most publications
regarding SP2E (see, e.g., [118, 119, 205, 210, 212, 213]). Nevertheless, choosing G3 differently
bears tremendous potential for the actual damage identification procedure and can reduce the
number of false detections. Although this potential was already anticipated in [119], Lenzen
et al. [116] firstly exploited the flexibility arising from the introduction of the system G3 based
on results presented in [120].

To comprehend the advantage associated with the introduction of G3, the philosophy of the
presented damage analysis framework should be recalled. When designed properly, Π´1

1 and
Π´1

2 function as modal filters for signals stemming from the identified mechanical system
in the reference (G1) and analysis state (G2), respectively. Thus, when G3 = G2 is defined
and y2 is analytically fed through Π´1

1 and Π´1
2 , e1 will differ significantly from e2 when G2

and Π´1
2 are related to an altered mechanical system. Otherwise, e1 and e2 will be similar in

terms of the damage indicators presented. Now, for this mind game to hold true in a practical
application, one of the following conditions should hold:

(i) G1 and G2, and thus, Π´1
1 and Π´1

2 comprise the exact same set of modes (qualitatively).
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(ii) G2, and thus, Π´1
2 do not represent any modes that are not covered by G1 and Π´1

1 ,
respectively.

Notably, from an SHM perspective, either condition must pertain at all times and indepen-
dently of the structural state of the system under surveillance. To satisfy this constraint is
not trivial at all: While it is almost impossible to repetitively realize systems representing the
same set of modes (option (i)), the alternative is to over-determine G1 and Π´1

1 by choosing
particularly high model orders. Besides an inherent decrease in computational time, this strat-
egy reduces the user’s control regarding the model selection. Hence, false detections might
occur that are difficult to explain.

Now, the flexibility that follows from the general system Ω depicted and described by Fig. 4.2
and Eq. 4.9 can be exploited to lower the practical hurdles by combing the options mentioned
before. To this end, the definition G3 = G2 can be reconsidered at first. Then, by performing a
modal-based model reduction, an analytical test signal y3 can be determined, representing the
dynamics that is mutually shared or related to by both estimators Π´1

1 and Π´1
2 . The challenge

that arises here is to find some reasonable Σx3 that solves Eq. 4.28b. Unlike discussed in the
final paragraph of Section 4.2, defining Σx3 = Σxe,2 for this operation is not feasible, as n3 ‰ n2.
However, since G3 is a reduced version of G2, Σx3 = Σxe,2 can be chosen instead, where Σxe,2 is
derived from Σxe,2 by removing the rows and columns that represent the neglected modes. To
this end and from an algorithmic point of view, the structure of Z introduced in Eq. 4.18 comes
in handy. Because of the connection of G3 and G2, this (n2 ˆ n3) matrix only contains ones
and zeros, cf. Section A.2. Thus, the appropriate rows and columns of Σxe,2 to be discarded
can be directly determined from the structure of Z.

4.2.3 SP2E by using one estimator

According to the derivations summarized before, the SP2E method can be applied even when
the identified systems (Gi) and estimators (Π´1

i ), respectively, feature different model orders.
In the context of SHM, this property is beneficial, which follows from the discussions made in
Section 4.2.2. Nevertheless, if one could guarantee the identification of comparable dynamics
and constant model orders, e.g., in simulation studies or probably at the cost of neglecting a
significant amount of identification results, the SP2E technique can be employed in a single-
estimator mode. Therefore, Vollmering and Lenzen [205] showed that if G3 = G2 the relevant
projectors can readily be determined without needing to compute an estimator in the analysis
state (Π´1

2 ). Nevertheless, the identification of G2 via, e.g., SSI is still required. Depending
on the applied theory for linear quadratic estimation and the number of channels and modes
to be considered, this approach might drastically reduce the computational effort. The single-
estimator mode for SP2E is also applicable if G3 = G1 or if G3 constitutes a reduced form of
G2 or G1, cf. Section 4.2.2. However, for the sake of simplicity, the following derivations refer
to the case that G3 = G2.

It follows from Section 4.2.1 that the core of SP2E is to determine a projector that maps onto
V along U , namely, in the regarded case (G3 = G2), the matrix Y P Rn1ˆn2 , see Eq. 4.22.
Consequently, if one were able to construct this matrix solely given Π´1

1 and G2, RdV (i) and
rdV ,i([i1, i2]) defined in Eqs. 4.28 and 4.30, respectively, could be computed equivalently. In
this regard, consider the system depicted in Fig. 4.1 that maps the unknown processes w2 and
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v2 to the estimation error e1. This system shall be called Ω, and it is similar to Ω defined by
Eq. 4.9. The corresponding state transition matrix AΩ reads

AΩ =

[
Ae,1 Ke,1C2

0 A2

]
, (4.31)

with state vector

xΩ,k =

[
xe,1,k

x2,k

]
. (4.32)

Now, according to the concept of complementary spaces and direct sums, xΩ could be re-
garded as an element of W , where W = U 1

ÀV . Again, V is dedicated to x2 and U 1 refers to
the states of Π´1

1 , namely xe,1. Hence, analogously to Eqs. 4.13 to 4.16, bases of U 1 and V can
be determined via eigenvalue decomposition of AΩ. Suppose that the resulting eigenvalues
are represented by Λ and the eigenvectors are denoted by V such that AΩ = VΛV´1, then
[124]

V =

[
V11 V12

0 V22

]
and V´1 =

[
V´1

11 ´V´1
11 V12V´1

22

0 V´1
22

]
. (4.33)

Note that V11 = X11 and V22 = X33, and thus, V12 = X13. Therefore, Y = V12V´1
22 = X13V´1

33 .
Consequently, PV and PV might be computed accordingly.

As good as this seems, obstacles arise when seeking practical choices for Σx2 , see the final
paragraph in Section 4.2.1. There it was claimed that defining Σx2 = Σxe,2 after solving Eq. 4.12
is admissible to process Eq. 4.28b, as in this case, Σx2 can simply be regarded as a weighting
matrix. From this perspective, it also seems legitimate to choose Σx2 = Σxe,1 when only Π´1

1
and the corresponding state covariance matrix is available [205]. Obviously, this procedure is
only feasible if and only if n1 = n2.

4.3 analyzing correlatedness and power

As mentioned before, damage detection and localization are enabled by analyzing RdV (i). On
the one hand, one could assess the main diagonal of RdV (0) [118, 119], which refers to the
average power of dV denoted as PdV . During the actual damage analysis process, values for
the damage indicator must be compared to some threshold. This problem will be addressed
in the proceeding section. Without a doubt, the power-based damage indicator is most suit-
able if e2 is always a white noise process. However, from a practical standpoint, this can
hardly be guaranteed, which is why the utilization of the feature defined in Eq. 4.30 might be
beneficial.

To elaborate on that, consider the following example. A 3DOF system is given in the form of
the spring-mass chain depicted in Fig. 4.4. The mass and stiffness matrices are given by

M =




m1 0

m2

0 m3


 and K =




k1 + k2 ´k2 0

´k2 k2 + k3 ´k3

0 ´k3 k3


 , (4.34)
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Figure 4.4: 3DOF system as spring-mass chain with masses mi, spring stiffnesses ki, and outputs yi.

where each mi was chosen as 1 kg and ki as 100 N m´1. Proportional damping was defined by
a damping rate δi = 0.01 for each of the three eigenmodes. The 3DOF system was transferred
to state-space according to Eq. 2.4 and converted to a discrete-time LTI system using Eq. 2.23.
Finally, the output equation was altered to enable the simulation of acceleration, see Eq. 2.6.
Damage was realized by decreasing the stiffness k2 by 10 %. The proposed damage analysis
framework is generally applied to identified systems with state-space representation as given
in Eq. 4.1. Therefore, inputs and outputs of the model depicted in Fig. 4.4 were repetitively
simulated for a duration of 104 samples at a sampling frequency of 50 Hz (200 s). To this end,
each mass was excited with Gaussian white noise, featuring a variance of 0.1 N2. To each
simulated output, a white measurement noise was added, taken from a Gaussian distribution
with a variance of 5 ˆ 10´6 m2/s4. In a second step, the system was identified by means of the
CCA-based SSI-DAT (see Section 2.3.3) and with a model order of n = 6. The number of rows
and columns for the assembly of the block-Hankel matrices defined in Eq. 2.89 were selected
according to the suggestions given in Section 2.3.3. To determine a baseline for damage
detection, 100 realizations of the intact system were identified.

Before performing the actual damage analysis according to Section 4.2.1 and with G3 = G2,
the spectra, or more precisely the PSDs, of the relevant signals concerning the difference
process d (cf. Fig. 4.2) shall be examined. This includes y2, where, in the regarded case,
G2 actually refers to the damaged system. The list continues with e1 and e2; additionally,
y1 is considered. Both estimators Π´1

1 and Π´1
2 were designed using the Riccati-based H8

synthesis for filtering signals in additive noise, as described in Section 3.5.1. The energy-
bound γ (see Eq. 3.60) was set to one, and the filters were transferred to a strictly causal
form so that they function as predictors. Throughout this section, the healthy system’s first
realization was considered as the reference system (index 1). The PSDs were determined by
employing Eq. 2.82 and computing

Sei(z) = Π´1
i (z)Sy2(z)Π

´˚
i (z) (4.35)

for i = 1 and i = 2, where z = ejω∆t. The analytical PSDs of the first channel associated
with Sy1 , Sy2 , Se1 , and Se2 are depicted in Fig. 4.5. Firstly, it can be realized that the stiffness
reduction (10 %) has an altering effect on the system’s dynamics (softening), as the peaks of
Sy2 referring to the natural frequencies of the model depicted in Fig. 4.4 are shifted to the left.
For orientation, the PSD of the output y1 used to identify the system in the reference state
(G1) is presented in Fig. 4.5 as well using the grey line. Further the spectra of the estimation
errors e1 and e2 can be seen. Note that these are computed with the help of the test signal
y2. Because of the introduced damage, the information encompassed in the output y2 (A2,
C2) does not match the dynamics of the reference system (A1, C1), and thus, the different
dynamics are caught up by the estimation error e1, which becomes visible through the spikes
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Figure 4.5: Analytical PSDs of signals associated with the computation of the difference signal d. PSD
of the output used to identify the reference system G1 (Sy1 ) given for orientation.

of the dashed green line. The PSD Se2 , on the other hand, clearly corresponds to a random
signal. Consequently, by analyzing the difference d = e1 ´ e2 the change in dynamics can be
identified. Naturally, baseline values are required, which can be determined by repetitively
considering realizations of the healthy system for (G1), as mentioned before.

A final remark is made in view of the analysis of d. Clearly, assessing Rd(0) (or RdV (0)), which
is essentially the area under Sd = Se1 ´ Se2 , is plausible. However, as pointed out before, the
difference in dynamics is mainly manifested by the spikes of Se1 , and thus, of Sd. Therefore,
analysing Rd(i) (or RdV (i)) for i ą 0 seems to be a powerful alternative. To investigate this
assumption, both RdV (0) and the new damage feature given by Eq. 4.30 were computed. For
the latter, i1 was set to 1 and i2 = 72. The last value corresponds to Eq. 3.57. Since the central
idea is to somewhat distinguish d from a white-noise signal, this choice is justified.
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Figure 4.6: Variance-based (left) and power-based (right) damage indicators by SP2E for damage detec-
tion and localization at 3DOF system.

Fig. 4.6 contains two bar charts depicting rdV ,i([1, 72]) and PdV . The latter constitutes the
average power of dV , which is found on the main diagonal of RdV (0). These values were
determined by applying the SP2E method described before to the healthy reference system
(G1) and the damaged system in the analysis state (G2). The reference values highlighted
in black result from a training phase, where the remaining 99 realizations of the healthy
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system were assigned to G2. For the sake of simplicity, the maximum values regarding each
channel computed during these analyses were set as baseline values. Since, in both cases,
the corresponding black bars are exceeded by at least one channel, damage detection can be
confirmed. The damage location might be associated with the channel featuring the maximum
value of the damage indicators. Because of the fact that k2 was reduced, it comes as no surprise
that two channels display significantly high values, as k2 reflects the spring connecting the
lumped masses related to the first and second output channel, cf. Fig. 4.4. This phenomenon
should be kept in mind when performing damage localization in the context of data-driven
SHM; it appears less dominant when a denser sensor network is used. As for rdV ,i([1, 72]),
the reference values are exceeded more clearly, which implies a higher sensitivity towards
damage. Hence, in this thesis, the damage-sensitive feature rdV ,i([i1, i2]) is mostly used for
damage identification instead of PdV .

4.4 sp2e in the context of shm

Applying SP2E in the context of data-driven SHM requires some deliberation regarding the
choice of estimators and the decision-making for damage detection and localization. In the
previous section, more precisely, in the previous example, Riccati-based H8 estimators were
used without questioning this choice. This initial decision can be justified since damage de-
tection and localization were successful. But, in an unsupervised problem, where the effect
of damage is unknown prior to the damage analysis, it is helpful, or maybe even necessary,
to have some criteria to decide upon whether the selection of estimators holds the desired
potential for damage identification to be carried out. This problem is discussed in the follow-
ing section. Attention should also be paid to a statistically profound damage analysis and
the definition of threshold values for damage detection. In the previous example, damage
detection was confirmed as damage indicators exceeded the maximum values obtained in a
training phase. Clearly, the proper damage detection would have been complicated if these
extreme values were particularly high, e.g., because of erroneous computations of some sort.
Therefore, Section 4.4.2 discusses the role of hypotheses testing. Lastly, Section 4.4.3 is dedi-
cated to formerly define a procedure for damage analysis considered in the chapters to come,
especially Chapters 6 and 7.

4.4.1 Design and selection of filters and system identification

Essentially, linear quadratic estimators strive to track the dynamics of an observed system
within noisy signals. Therefore, it can generally be assumed that estimators that feature a
good estimation performance are most suitable for SP2E. This is expressed by the following
assumption.

Assumption 4.1. Linear quadratic estimators are most suitable for damage analysis via SP2E, when

(i) the estimation errors are not correlated with the measured outputs,

(ii) the variance of the estimation errors is low.

The first point refers to the estimators’ ability to successfully distinguish the system dynamics
from the corrupting noise. If an estimator fails in this regard, harmonic components will arise
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in the estimation error that refers to the natural frequencies of the observed system. These
deterministic components lead to a strongly oscillating correlation function. In the frequency
domain, this is manifested by distinct spikes of the corresponding PSD that one typically
wants to take advantage of when applying the test signal y3 to the reference estimator Π´1

1 ,
cf. Fig. 4.5. This addresses the scenario where G3 is derived from G2. If G3 = G1 or G3 is a
reduced form of G1, then deterministic components are expected to be contained in e2.

The second point in Assumption 4.1 further addresses the denoising quality of estimators. It
is fair to assume that the parts of measured signals representing the system dynamics feature
much higher variance1 than the contaminating noise, e.g., measurement noise. Hence, the
estimation error variance should be low and should not exceed the variance of the measured
signal in general or in spectral intervals associated with the system’s poles. Otherwise, the
corresponding estimator would exhibit an amplifying effect.

Both properties discussed here can be assessed numerically. One way to do that is to con-
trast the variance of the estimation error and the one of the measured signal. Further, the
correlation function of the estimation error might be evaluated by means of whiteness tests,
see Section 3.4 or Section 5.5. However, since a purely white estimation error can hardly be
expected depending on the applied linear quadratic estimation theory and due to practical
reasons, the corresponding test would require the definition of an acceptable threshold for
the test statistics. Hence, such a procedure is not straightforward to apply. Nevertheless, in
the experience of the author, a good strategy is to design different estimators such as Kalman
or H8 filters and to assess the criteria from Assumption 4.1 visually. Suppose none of the
mentioned properties is clearly violated by at least one of the estimators. Then, the setup
corresponding to the best estimator should be considered for the entire damage analysis. This
practical approach is followed throughout this thesis.

Naturally, the best-designed estimators are useless if those employed for the computation of d
or the corresponding damage indicators refer to different dynamic features. This circumstance
was already discussed in Section 4.2.2 and shall be generally expressed with the help of a
second assumption:

Assumption 4.2. SP2E performs best if the estimators Π´1
i employed for damage analysis are designed

based on models representing the same set of vibration modes.

Since SP2E seeks to identify changes in the dynamic behavior of a structure, a poor damage
identification performance is to be expected if the aforementioned assumption is strongly
violated. Notably, and as mentioned before, repeatedly identifying the same set of modes in
a monitoring scenario is challenging. Therefore, Assumption 4.2 could be considered by, e.g.,
taking advantage of the flexibility associated with G3, see Section 4.2.2.

4.4.2 Hypotheses testing

In SHM, hypotheses tests are typically employed as a statistical measure to infer the state of
the monitored structure, see, e.g., [93, 213]. Naturally, a null hypothesis H0 is formulated
based on damage-sensitive features from the training phase. Therefore, the acquired data

1 The variance of a signal is proportional to its average power. In fact, these quantities are equal if the considered
signal features zero mean.
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is related to some statistical model. If the underlying statistical distribution, e.g., Gaussian,
Weibull, χ2 distribution, etc., is known, one might fit the data to PDFs or CDFs. Then, during
testing, values of damage indicators are checked to be represented by the identified statistical
models. If this is true, H0 is accepted, and the structure is considered as healthy; however,
in the opposite case, H0 is rejected, and the structure is considered damaged. Significance
levels defined by α P [0, 1] can be chosen to adjust the acceptance regions of values associated
with the damage indicator [29]. In other words, if α is increased, the statistical model corre-
sponding to H0 is trusted less, whereas, if α = 0, only quantities of values that were unseen
during training can trigger an alarm for damage during testing. In often cases, such as in the
regarded context of SP2E, the distribution of the features considered for damage identification
is unknown, so distribution-free statistical tests should be applied. One way to do that is to
consider empirical CDFs instead, see Section 2.2.2. The following paragraph will explain the
concept of hypothesis testing through the previous example.

To this end, the empirical CDF was determined using training data (99 samples) for the second
element of rdV ([1, 72]), referring to the second output channel of the 3DOF system. The em-
pirical CDF of rdV ,2([1, 72]) is depicted in Fig. 4.7. However, first, consider the corresponding
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Figure 4.7: Histogram with 15 bins (left) and empirical CDF (right) of rdV ,2([1, 72]) from training phase.
Confidence interval corresponding to α = 3% highlighted by red line.

histogram given in the same figure, which was generated using 15 bins. Assigning a specific
distribution to the underlying data does not come naturally, although the histogram might
be linked to some χ2 distribution. Nevertheless, considering a distribution-free statistical test
seems to be a sound decision. Therefore, the empirical CDF was computed as explained be-
fore. In Fig. 4.7, also the confidence interval of approximately 97 % corresponding to α « 3%
is displayed with the help of the red line. It constitutes the area under the blue curve for
rdV ,2([1, 72]) from 0 to 2.04 ˆ 10´12 g4. Note that the black bar depicted in Fig. 4.6 is equivalent
to α = 0. Now, a hypothesis for damage detection could readily be defined based on these
findings, e.g. by stating H0 (healthy): rdV ,2([1, 72]) ď 2.04 ˆ 10´12 g4. However, this work pro-
poses an alternative by considering the training values for all channels, as will be explained in
the following section. A final remark is made concerning the significance level α. It is recom-
mendable to define some α ą 0 to discard the effect of outliers. Nevertheless, one should keep
in mind that increasing α also increases the chance of false-positive alarms, also called type I
errors. On the contrary, the number of false negatives might rise if α is set too low.
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4.4.3 Proposed statistical assessment of damage indicators

The following strategy for a statistically profound damage analysis is applicable for both mul-
tivariate damage features PdV and rdV ([i1, i2]) introduced in this chapter. For simplicity and in
the present section only, the general damage indicator DI P Rq is introduced that might rep-
resent either of the SP2E-related features or any other multivariate damage-sensitive feature
applicable for damage detection and localization. The proposed statistical decision-making
procedure comprises a training, validation, and testing phase, which is standard practice in
machine decision-making/learning. In the first two stages, only sets of DI are considered
that reflect the observed structure under healthy conditions . During testing, DI represents
the potentially damaged structure, i.e., the corresponding values might be associated with the
healthy or damaged structure . The three phases of damage analysis applicable for SHM are
summarized in the following.

training
Gather nhealthy samples of DI and split this data into a subset of training (ntrain) and validation
(nval) data such that nhealthy = ntrain + nval and ntrain ě nval. A reasonable segmentation would
be such a one that obeys ntrain/nval ě 2. For all ntrain sets of DI, compute

řq
i=1 DIi, where i

refers to any entry of DI. Thus, the vector DI is condensed to a scalar, which is subsequently
used for the determination of a statistical model applicable for the decision making in terms of
damage detection. To this end, compute the empirical CDF given the ntrain values of

řq
i=1 DIi.

After defining some significance level α, the corresponding (1 ´ α) quantile ϑ is obtained.
Based on that, formulate the null-hypothesis such that

H0 (healthy):
q
ÿ

i=1

DIi ă ϑ. (4.36)

On the contrary, the observed structure is assumed to be damaged if

H1 (damaged):
q
ÿ

i=1

DIi ą ϑ. (4.37)

validation
The purpose of the validation phase is to evaluate whether the obtained statistical model (em-
pirical CDF) is valid for a representation of the observed structure under healthy conditions.
Therefore, the remaining nval sets of DI (representing the healthy structure) are considered.
After computing

řq
i=1 DIi, the previously stated null hypothesis can be tested. If this hypothe-

sis is rejected, that is,
řq

i=1 DIi ą ϑ, the presence of damage is mistakenly assumed. This case
is called false-positive detection or type I error. The relative number of these kinds of errors
should not significantly exceed the degree of

řq
i=1 DIi values discriminated in the training

phase through the definition of α. Since the false-positive rate depends directly on α, this
value might be readjusted before testing.

testing
The testing phase deals with the detection of damage but also with its localization. So far, the
latter was not regarded, as it only becomes relevant once the null-hypothesis stated in Eq. 4.36
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is rejected during testing. Therefore, the detection procedure is equal to the one described
in the previous paragraph for incoming sets of DI, representing a potentially damaged struc-
ture. The location of damage might be associated with the entry in DI accommodating the
maximum value. The underlying assumption is that the channel closest to damage exhibits
the greatest difference compared to the healthy reference. Indeed, other metrics for damage
localization (and detection) are plausible and worth considering. However, a discussion on
that is left for future studies.
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N O V E LT I E S , VA L I D AT I O N S , A N D A P P L I C AT I O N S





5
PA R A M E T R I C A U T O C O VA R I A N C E L E A S T- S Q U A R E S M E T H O D F O R
N O I S E C O VA R I A N C E E S T I M AT I O N

For Kalman filters to function properly, the noise covariance matrices Q, Rv, and S must be known.
Practically, this information is not available, and thus, noise estimation strategies received plenty of at-
tention from the moment the Kalman filters’ potential was recognized for control and other engineering
disciplines. Classically, noise covariance estimation methods can be divided in four groups: correlation
methods, maximum-likelihood methods, covariance matching methods, and Bayesian methods [131].
Other strategies such as subspace methods, prediction error methods, and minmax approaches could be
added to this list [66]. Among all these approaches, the correlation methods stand out because of their
theoretical optimality and efficient numerical solvability with the help of convex optimization tools.
They are particularly attractive for LTI systems. In this section, the so-called ALS method by Odelson
et al. [142] is adapted for the estimation of noise covariance matrices to design Kalman filters based on
identified state-space models for damage detection and localization within the framework presented in
Chapter 4. Therefore, a parametric alternative to the originally data-driven approach was developed and
presented in [210]. In this chapter, the general formulation of the ALS approach is summarized first.
Then, the extensions leading to the so-called parametric autocovariance least-squares (PALS) strategy
are presented. In what follows, both the ALS and PALS methods are compared for damage identification
as well as for state estimation and filtering, respectively, in simulation and experimental studies. Parts
of this chapter have been published in [210, 213].

5.1 motivation and background

Kalman filters are powerful tools for state estimation and filtering, given certain conditions
are satisfied relating to their H2 optimality, see Chapter 3. Besides the Gaussian distribution
and whiteness of process and measurement noise, which is already hard to satisfy or guar-
antee in practice, the statistics of these processes must be known a priori. Noise estimation
describes the discipline of estimating the covariance matrices of process and measurement
noise that enables the design of optimal or least suboptimal Kalman filters. This discipline
covers multiple types of algorithms, as described before. A good overview of existing meth-
ods can be found in [65]. The selection of noise covariance estimation methods also depends
on the dynamics of the underlying system. Correlation approaches are readily applied for
LTI systems; the so-called ALS technique represents the standard for these kinds of systems.
Nevertheless, extensions and advancements of this method also exist for nonlinear and time-
varying systems [85, 166]. An interesting approach, especially in the context of this thesis, is
the estimation of noise covariances with the help of subspace techniques such as the SSI. In
the present work, mechanical systems are identified with the help of this method. Hence, it
feels natural to estimate the noise covariances in the process. To do so, SSI algorithms must
be chosen that guarantee a positive real sequence Ry(i), as only then the triple of the noise
covariance matrices Q, Rv, and S is positive definite as well, and a Kalman filter can be found.

87
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Algorithms that guarantee this positive-definite property were presented by van Overschee
and de Moor [147, p. 85 ff] and Katayama [110, p. 228 ff]. In practice, where identified state-
space models are typically reduced to a representation covering only physically interpretable
modes, the SSI-based approach for noise covariance estimation is problematic. The reason is
that the positive definiteness can only be assured for a predefined model order that typically
includes physical but also purely mathematical eigensolutions. Therefore, the estimation of
noise covariance matrices via SSI is not appropriate in the presented context. Alternatively,
these quantities shall be estimated with the help of the ALS method, a representative of the
so-called correlation methods.

Correlation-based methods root back to the developments of Mehra in the early 1970s [130,
131]. This innovations-based approach was quickly taken up by several authors such as Carew
and Bélanger [36], and Neethling and Young [140]. The original multi-step procedures by
Mehra and Carew and Bélanger for the estimation of Q and Rv involve two least-squares
solutions, which leads to high variances of the estimates. Neethling and Young [140] first
improved this point using only a single least-squares computation. This was later taken up
by Odelson et al. [142] who introduced the so-called ALS method. Moreover, the latter criti-
cized and corrected the uniqueness conditions given by Mehra [130] and cited by Carew and
Bélanger [36]. Both parties, Neethling and Young [140] as well as Odelson et al. [142], pro-
posed imposing the symmetry and positive definiteness of the autocovariance matrices Q and
Rv to relax the computational burden, to reduce the variance of the estimates, and to decrease
the set of solutions to a physically reasonable level. It is not reported how Neethling and
Young [140] approached the least-squares problem to achieve only positive definite solutions,
but Odelson et al. [142] suggested solving the problem within a semidefinite programming
(SDP) optimization framework. The original contribution to the ALS method resulted in in-
teresting advancements. Rajamani [164], and Rajamani and Rawlings [166] contributed to
identify the disturbance structure of state-space models. Åkesson et al. [4] extended this
method to a generalized framework to cover the case of correlated process and measurement
noise. The optimal weighting of the least-squares approach was discussed in [166, 222]. Wer-
nitz et al. [210] proposed a parametric computation of the innovations’ correlation function
for state-space models identified via SSI. They utilized the tuned Kalman filters in the context
of damage detection and localization of LTI systems.

Solving the ALS problem using convex optimization and semidefinite programming [28, 200]
has become a standard because of its numerical efficacy. For instance, Åkesson et al. [4]
presented a predictor-corrector algorithm to solve the constrained ALS problem. For Matlab
applications, open-source toolboxes such as the CVX framework [33, 87] in combination with
semidefinite solvers like SeDuMi [187] or SDPT3 [189] can be employed, see [31]. Also, com-
mercial optimization tools such as Matlab’s fmincon [125, 146] have been utilized to solve the
associated least-squares problem [210]. Because of the general nonlinear nature of fmincon,
the semidefinite constraints need to be formulated as eigenvalue-based inequalities to assure
positive definiteness of the noise covariance triple. Despite the considered optimization tools,
the ALS problem remains convex and linear in the parameters, see [164].

In this chapter, the strategy of employing the PALS method [210] is revisited and compared
to the classical ALS approach, where the innovations covariance sequences are estimated us-
ing batches of measured data. However, at first, the potential of the ALS method for the
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estimation of true noise covariance matrices is demonstrated in simulation studies for the
cases of uncorrelated and correlated process and measurement noise. The effectiveness of
both the ALS and PALS approaches in the context of damage localization is then analyzed
in two experiments. In these applications, the knowledge of the true covariances is of less
interest. Moreover, the goal is rather to design Kalman filters that are in line with Assumption
4.1. For the analyses made herein, the CVX framework and SDPT3 are employed. Although
good results have been achieved by using Matlab’s nonlinear optimization toolbox (fmincon,
cf. [211]), the aforementioned tools constitute the more natural choice given the explicitly
convex nature of the optimization problem1 and the numerically efficient ability of CVX to
handle semidefinite constraints.

5.2 generalized als formulation

In the following, the underlying theory of the ALS method is presented. The given formula-
tion is based on [4, 32, 142, 164].

Consider a system with the following state-space representation:

xk+1 = Axk + Gwwk (5.1a)

yk = Cxk + vk. (5.1b)

Here, Gw represents a so-called noise shaping matrix that maps the process noise wk, acting
on the inputs, to the states xk. Note that in case of a system identified with the help of the SSI,
Gw = In, where In denotes an n ˆ n identity matrix, cf. Eq. 2.74. However, when the system
is modelled based on mechanical principles using the parameters M, K, and Dp, then Gw = B,
cf. Eq. 2.4.

For the ALS technique, the evolution of the state-estimation error x̃k|k´1 = xk ´ x̂k|k´1 is con-
sidered [142], which can be written in state-space formulation as

x̃k+1|k = (A ´ KpC)x̃k|k´1 +
[

I Kp

] [Gwwk

vk

]
(5.2a)

= Ap x̃k|k´1 + Bwk (5.2b)

ek = Cx̃k|k´1 + vk (5.2c)

with

X = E
!

wkwT
l

)

=

[
GwQGT

w GwS

STGw
T Rv

]
δkl ě 0. (5.3)

Here, X denotes the general covariance matrix of the extended input process w that contains
the unknown noise covariances to be estimated. The covariance of the state-estimation error
follows the Lyapunov equation

P = ApPAT
p + BXBT, (5.4)

which can be broken down to [4]

P = ApPAT
p + GwQGT

w ´ KpSTGT
w ´ GwSKT

p + KpRvKT
P. (5.5)

1 fmincon does not necessarily assume global minima (convexity) and can also cope with nonconvex problems.
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Now, the general idea of the ALS method is to parametrize the covariance or correlation
function of the innovations2 with the help of the state-space system given in Eq. 5.2, and from
there, construct an overdetermined linear set of equations that can be solved as a least-squares
problem. The mentioned correlation function of the innovations reads [32]

Re(i) = E
!

ekeT
k+i

)

=

#

CPCT + Rv, i = 0 (5.6a)

CAi
pPCT + CAi´1

p GwS ´ CAi´1
p KpRv, i ą 0. (5.6b)

If the Kalman filter is tuned ideally, i.e., if Kp is optimal, this function yields zero for every
i ą 0 [130]. A vectorized version of Eq. 5.6 can be found with the help of the Kronecker
product denoted by b [128] so that

vectRe(i)u =

$

’

&

’

%

(C b C)vectPu + vectRvu, i = 0 (5.7a)

(CAi
p b C)vectPu + (Iq b CAi´1

p Gw)vectSu

´(Iq b CAi´1
p Kp)vectRvu

, i ą 0. (5.7b)

Here, vect¨u represents the column-wise stacking of a matrix. By substituting the vectorized
state-estimation covariance (Eq. 5.5) defined as

vectPu = [In2 ´ Ap b Ap]
´1[(Gw b Gw)vectQu + (Kp b Kp)vectRvu

´(Gw b Kp)KSvectSu ´ (Kp b Gw)vectSu]
(5.8)

into Eq. 5.7, one yields a linear set of equations
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Here, the variables are represented by χ, A denotes the coefficient matrix, and the vectorized
correlation function for a user-defined number of lags nl is gathered in b. Further, the com-
mutation matrix KS in Eq. 5.8 depicts a n ˆ q matrix containing only ones and zeros that helps
to reorganize vectSu so that KSvectSu = vec

␣

ST
(

[128]. The coefficient matrix A, contains the
three submatrices AQ, ARv , and AS with subelements for each lag i. They decompose to

AQ,i =
(

C b CAi
p

) [
In2 ´ Ap b Ap

]´1
(Gw b Gw) , (5.10)

AS,i =

$

’

’

’

&

’

’

’

%

(C b C)
[
In2 ´ Ap b Ap

]´1
[´(G b Kp)KS ´ Kp b Gw], i = 0 (5.11a)(

C b CAi
p

) [
In2 ´ Ap b Ap

]´1
[´(Gw b Kp)KS ´ Kp b Gw]

+Iq b CAi´1
p Gw

, i ą 0, (5.11b)

and

ARv,i =

$

’

’

’

&

’

’

’

%

(C b C)
[
In2 ´ Ap b Ap

]´1 (Kp b Kp
)
+ Iq2 , i = 0 (5.12a)

(
C b CAi

p

) [
In2 ´ Ap b Ap

]´1 (Kp b Kp
)

´Iq b CAi´1
p Kp,

i ą 0. (5.12b)

2 Since the innovations are readily assumed as mean-free processes, it is fair to use both the terms covariance and
correlation function.
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5.3 numerical solution of als method

A simple and straightforward solution to Eq. 5.9 can be achieved by considering the standard
least-squares problem described by the objective

minimize
χ

∥Aχ ´ b∥2
2. (5.13)

It has the well-known solution [28]

χ =
(
ATA

)´1
ATb, (5.14)

which can be computed, e.g., with the help of the pseudoinverse. Unfortunately, following
this strategy will most likely lead to unsatisfactory results, as the positive definiteness of X is
not guaranteed. Moreover, bad conditioning of A caused by the finite length of data is to be
expected, which decreases the accuracy of the solution [4, 32]. The latter is a common problem
in the least-squares theory, typically remedied with the help of regularization strategies. Then,
the associated objective reads

minimize
χ

f0(χ) = ∥Aχ ´ b∥2
2 + λ2∥χ ´ χ0∥2

2, (5.15)

where λ is the so-called regularization parameter, and χ0 contains the initial guesses of the
noise covariances that are used to construct the arbitrary Kalman filter. Eq. 5.15 is linked to
the popular Thikonov regularization, where the regularization parameter can be computed in
multiple ways, e.g., via the generalized cross-validation (GCV) or the L-curve method [32, 97].
Both procedures are implemented in the Matlab regularization toolbox by Hansen introduced
in [96, 98].

Conditioning the initial least-squares problem stated in Eq. 5.13 is a decisive step to increas-
ing the accuracy of the estimations. However, to guarantee positive definiteness of X, the
regularized problem in Eq. 5.15 must be constrained, leading to the problem stated as

minimize
χ

f0(χ) = ∥Aχ ´ b∥2
2 + λ2∥χ ´ χ0∥2

2,

s.t. X ě 0.

Typically, the solution is efficiently realized through SDP within a convex optimization frame-
work [28, 200]. Powerful open-source tools exist for this purpose, as was described in Sec-
tion 5.1. The underlying optimization algorithms, such as the interior-point methods [200,
Chapter 11], are gradient-based strategies that might be accelerated by providing the analyti-
cal derivative of the objective function defined as3

∇ f0(χ) = 2
(
ATA+ λI

)
χ ´ 2ATb ´ 2λχ0. (5.16)

At this point, it should be mentioned that, as for every least-squares problem, there are certain
conditions for the estimates’ uniqueness. For ALS, these rules are presented diligently by
Rajamani [164]. In the context of this work, where identified state-space models are involved,
it is rather irrelevant to check the uniqueness conditions, as the goal is to find noise covariance

3 The gradient of the objective function can, e.g., be considered by Matlab’s fmincon [125, 146].
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matrices that lead to improved Kalman filter performance (see Assumption 4.1) instead of
identifying the true covariances. In the literature, the problem of unknown noise shaping
matrices Gw (see Eq. 5.1), which inherently arises when techniques such as the SSI are involved,
is often referred to as disturbance structure identification. They are readily tackled as a rank-
minimization problem, see, e.g., [164, 165]. However, in this work, the latter is not necessarily
pursued because of the mentioned goal of improved Kalman filter performance.

When solving the ALS problem, it is advisable to impose the symmetry or even diagonality
of the covariance matrices Q and Rv to increase the accuracy of the estimates and to relax the
computational burden by reducing the number of unknowns. Diagonality of the covariance
matrices can be easily achieved by canceling the columns of A associated with off-diagonal
entries of Q and Rv. It is advisable to consider diagonalization if the process or measurement
noise is not inherently cross-correlated or if a decrease of variables leads to similar estimation
performance of the tuned Kalman filters, see [210]. Symmetry should be imposed on AQ and
ARv by employing duplication matrices (cf. [164]), as autocovariance matrices are inherently
symmetric. Duplication matrices contain only ones and zeros, such that [127]

vechtEu = DEvectEu and vectEu = DE
:vechtEu. (5.17)

Here, E denotes some m ˆ m symmetric matrix, whereas the
(
m2 ˆ (m [m + 1] /2)

)
dupli-

cation matrix DE extracts the m(m + 1)/2 unique values denoted by the half-vectorization
vechtEu.

5.4 parametric estimation of the innovations’ correlation function

In the classical ALS approach, the innovations’ correlation function Re(i) is estimated, e.g.,
with the help of the sample-covariance defined in Eq. 2.66. Alternatively, when noise covari-
ance matrices are estimated for Kalman filter design based on state-space parameters iden-
tified via SSI, a parametric estimation of Re(i) might be advantageous. This proposition is
further supported in the context of damage detection and localization utilizing the damage
analysis framework presented in Chapter 4, as the estimation-error analysis is purely paramet-
ric. The argumentation for parametric estimation of noise covariance matrices for the Kalman
filter synthesis is based on the following points:

• When the model structure, namely the state-space matrices A and C do not account
for the entire dynamics encompassed in the measurement data, e.g., because of a selec-
tive model reduction, then additional information can have a disturbing effect on the
estimation of the noise covariances.

• A parametric representation of Re(i) solely depends on the identified system dynamics,
which is often defined by a low-order model. Consequently, fewer lags of this correlation
function need to be considered. Practically, that can lead to a decrease in computational
time and fewer iterations of the optimization algorithm.

For a parametric computation of the innovations’ correlation function, recall the Wiener-
Khinchine theorem (see Section 2.2.3) expressed by

Re(i) = F´1tSe(z)u, (5.18)
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where Se(z) denotes the PSD of e and z = ejω∆t. Conveniently, Se(z) can be computed through
the following algebraic operation:

Se(z) = Π´1(z)Sy(z)Π´˚(z). (5.19)

Here, Π´1(z) represents the FRF of the Kalman filter, which, to set up the least-squares prob-
lem, is constructed using Q0, Rv,0, and S0. A parametric formulation for Sy(z) is readily
available from the SSI, see Eq. 2.82. Thus, by substituting Eq. 2.82 into Eq. 5.19 and apply-
ing the inverse Fourier transform (or bilateral z-transform) according to Eq. 5.18, one can
estimate the innovations’ correlation function solely based on the identified state-space pa-
rameters. However, special attention should be paid to the definiteness of Sy(z) and Se(z),
respectively. As mentioned before, most SSI algorithms do not guarantee the positive definite-
ness of Sy(z), which can lead to implausible physical interpretations (see Section 2.2.3) and
numerical inaccuracies. Consequently, a correction procedure should be applied that checks if
Se(z) ě 0 for every z and enforces positive semidefiniteness if Se(z) ă 0. One way to do this is
to replace the corresponding matrix with its nearest symmetric positive semidefinite version.
Such matrices can be computed by applying the algorithm presented in [103]. A Matlab im-
plementation is available in [51]. An alternative strategy to enforce positive semidefiniteness
of Se(z) was presented by Vaccaro and Vukina [199].

remark on implementation
When reimplementing this parametric approach for estimating the innovations’ correlation
function, questions might arise regarding the number of sample points n f for the computation
of Sy(z) and Se(z). This choice should be made in view of Ry(i), which is defined by Eq. 2.81.
Recall that this function represents the IIR of the system identified via SSI. Thus, it must be
ensured that n f is large enough to allow a computation through Ry(i) = F´1

␣

Sy(z)
(

without
any loss of information regarding the dynamics of the underlying identified system. Since
the maximum number of lags nl

4 for Ry(i), i P [0, nl ] is equal to n f , the problem of selecting
this parameter is equivalent to representing the identified system through a finite impulse
response (FIR) because of the discrete nature of the approximation problem. Therefore, nl
must be found so that the FIR (Ry(i), i P [0, nl ]) contains no less information than the IIR
(Ry(i), i P [0, 8)). Moreover, since Sy(z) as well as Se(z) are two-sided PSDs, n f should finally
be chosen as two times nl .

A perfect orientation for that is the so-called settling time ts. This measure refers to the time
elapsed until the IIR enters a ˘2 % error band. It can be approximated by [214]

ts,i «
4

ζiω0,i
. (5.20)

Since MIMO systems are generally considered, which are represented by multiple modes (i),
n f should be selected such that

n f ą 2 max ts,i fs, (5.21)

where fs represents the sampling frequency.

Depending on the quantities used for Eqs. 5.20 and 5.21, n f become quite large. Therefore, it is
advisable to define a maximum value for n f , say 40.000. However, it should be borne in mind
that this comes at the cost of reduced precision regarding the noise covariance estimates.

4 Here, nl is not necessarily the value that is eventually used to set up the linear set of equations in Eq. 5.9.
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5.5 testing for whiteness in the context of pals

As mentioned in Section 3.4, the Kalman filter performance can be evaluated with the help
of whiteness tests. Especially when the underlying noise covariance matrices are estimated,
this might be taken into account to check and perhaps improve the estimates by repeating the
computations with different settings. In the case of a parametric estimation of the innovations’
correlation function, the application of the χ2-test summarized in Section 3.4, or any statistical
test in general, is slightly unorthodox, as only state-space parameters and no sampled data is
involved in the entire noise estimation process. Nevertheless, an altered χ2 test can be applied,
which is explained and demonstrated exemplarily in the following.

For a whiteness test in the context of PALS, consider the estimated innovations’ correlation
function R̂e(i) determined as explained in the previous section. Given some m, e.g. via
Eq. 3.57, the next step is to compute the test statistics r for each channel using Eq. 3.56 and
the squared normalized innovations’ correlation function (R̂el [i]/R̂el [0])

2, see Eq. 3.55. At this
point, confusion might arise, as the number of samples ns is not intuitively defined. Typically,
when whiteness tests are applied to sampled data, ns follows directly from the amount of
data gathered to estimate the correlation function. If R̂e is a parametric function, this is rather
different. Nevertheless, since the parameters for constructing this function are state-space
parameters identified given a finite set of measurements, they should be defined according to
the length of the corresponding data minus m.

This procedure shall be justified with the help of the following example. To this end, consider
measurements on the first output of the 3DOF system presented in Section 4.3. Fig. 5.1 shows
the PSD of the simulated acceleration data (Sy(z)) as well as of the innovations (Se(z)) resulting
from a Kalman filter designed with an arbitrary and suboptimal choice of covariance matrices
(Q = I, Rv = I, S = 0). These matrices could as well be estimated with PALS. Both Sy(z)
and Se(z) were determined using Welch’s method, cf. Section 2.2.3. In Fig. 5.1, Sy,SSI(z) and
Se,analy(z) are depicted as well, which denote their analytical counterparts. Obviously, Π´1

0 1 2 3 4 5 6 7 8 9 1010−10

10−7

10−4

10−1

Frequency (Hz)

PS
D

((
m

/
s2 )

2 /
H

z)

r = 1132 > 97, ranaly = 1051 > 97

Sy(1, 1) Se(1, 1) Sy,SSI(1, 1) Se,analy(1, 1)

Figure 5.1: Measured and analytical spectra of 3DOF system.

does not perform in an H2 optimal sense, as the PSD referring to the estimation errors Se(z)
and Se,analy(z) do not form a constant line. It can be observed that the graphs associated with
the analytical spectra follow the PSDs of the corresponding measured (simulated) quantities.
Due to the parametric nature, the typical jitter caused by finite-length data is not apparent. The
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test statistics r referring to whiteness tests described in Section 3.4 and above (ranaly) are given
above the plot. It can be seen that the null hypothesis is rejected in either case, as the threshold
value ϑ = 97 corresponding to a 0.95 % quantile is exceeded. Only slight differences between
the test statistics can be observed, which approves the approach for testing the whiteness in
the context of PALS suggested herein.

5.6 simulation studies

In output-only system identification, process and measurement noise might be statistically
independent (S = 0) or not (S ‰ 0). It depends on the type of the acquired measurement
data and must be taken into account when estimating noise covariance matrices for Kalman
filtering. Therefore, the proceeding sections cover the cases of uncorrelated and correlated
process and measurement noise. The statistical relationship of these noise processes becomes
more apparent regarding the state-space structure of the output-generating system and the
Kalman filter. This will be explained in the following.

Since, in this work, inputs are always considered unknown, and therefore, the SSI technique
is applied, Kalman filters must assume that the outputs yk result from a system represented
by

xk+1 = Axk + wk (5.22a)

yk = Cxk + vk. (5.22b)

Now, consider the case of measured displacement. Then, the state-space model of the data-
generating mechanical system in discrete-time reads

xk+1 = Axk + Bw1,k (5.23a)

yd,k = Cdxk + v1,k, (5.23b)

cf. Eqs. 2.4 and Eq. 2.23. Here, the subscript d highlights the qualitative nature of the outputs,
namely, the displacements. The process noise in Eq. 5.23a is depicted by w1,k and characterized

by the covariance matrix E
!

w1,kwT
1,l

)

= Q1δkl to distinguish it from the one in Eq. 5.22a.

Similarly, the measurement noise is depicted by v1,k with covariance E
!

v1,kvT
1,l

)

= Rv1 δkl .
Obviously, the noise covariance matrices for a Kalman filter that acts on yd,k and assumes a
system structure given by Eq. 5.22, implies noise covariance matrices defined as

E

$

&

%

[
wk

vk

] [
wl

vl

]T
,

.

-

=

[
Q S

ST Rv

]
δkl =

[
BQ1BT 0

0 Rv1

]
δkl . (5.24)

Hence, the process noise wk and measurement noise vk considered for Kalman filtering in
Eq. 5.22 can be assumed as uncorrelated since E

!

w1,kvT
1,k

)

= 0 is readily presumed. Moreover,
another classical assumption is that both w1,k as well as v1,k are not internally cross-correlated,
and therefore, Q1 and Rv1 possess diagonal structures, which also pertains for Rv.
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If accelerations are measured or simulated instead, the output equation of the output-generating
system reads

xk+1 = Axk + Bw1,k (5.25a)

ya,k = Cd A2
c xk + Cd AcBcw1,k + v1,k (5.25b)

= Caxk + Daw1,k + v1,k. (5.25c)

Here, the subscript a emphasizes acceleration. It can be seen that the output matrix Ca and
the feedthrough matrix Da are assembled using the continuous-time state-space parameters
Ac and Bc. This follows from the theory presented in Sections 2.1.1 and 2.1.2. Given this
state-space representation, the noise covariance matrices decompose to

E

$

&

%

[
wk

vk

] [
wl

vl

]T
,

.

-

=

[
Q S

ST Rv

]
δkl =

[
BQ1BT BQ1DT

a

DaQ1BT DaQ1DT
a + Rv1

]
δkl . (5.26)

Hence, when Kalman filtering is pursued using acceleration data and output-only identified
state-space models, process and measurement noise must be assumed to be mutually corre-
lated, i.e., S ‰ 0. As in the case of simulated displacements, Q1 and Rv1 possess diagonal
structures. This property even pertains to Rv since Eqs. 2.4a, 2.5, and 2.23 show that Da = I.
However, this is only valid for the here considered type of representation and discretization
of mechanical systems and cannot generally be assumed.

In the following, both the uncorrelated and correlated process and measurement scenarios
shall be regarded. Thereby, the performance of the ALS and PALS techniques for noise covari-
ance estimation is evaluated. Since the mechanical system is known in the simulation case
in terms of the physical parameters (A, B, C, D), the ALS method can be applied to estimate
the true noise covariance matrices. This will be demonstrated through repeated simulations.
Therefore, the goal of ALS is to estimate Q1, Rv when displacements are considered, cf. Eqs.
5.23, 5.1, and 5.24. Thus, the noise shaping matrix is defined as Gw = B. In the case of
simulated accelerations, the matrices Q1, Rv, and S shall be estimated, cf. Eqs. 5.25, 5.1, and
5.26.

The advantages of PALS mainly manifest themselves in the experimental case when identified
systems are involved. This will be studied in Section 5.7. Nevertheless, a comparison to
the classical ALS approach is given here as well by examining the RMS of prediction errors
for a set of simulations. Therefore, slight modifications to the simulation setup must be
considered. That is, systems will be realized using the SSI and the simulated data. Further,
the noise shaping matrix Gw must be defined as identity so that the goal of ALS and PALS
is to estimate Q, Rv in the case of simulated displacements. This list must be extended by S
when acceleration data is considered. Thus, the number of unknowns increases significantly,
and diagonality of Q should not be assumed in either case, see Section 5.6.

5.6.1 The case of uncorrelated process and measurement noise

First, to demonstrate the necessity of noise covariance estimation in the context of Kalman
filtering, regard the example depicted in Fig. 5.2. Therein, a segment of simulated displace-
ments (ymeas) is given, which was obtained by simulating the 3DOF system introduced before.
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Figure 5.2: True and measured displacement of 3DOF system. Comparison of predicted output using
Kalman filter tuned with true noise covariances (ŷp,nom), estimated noise covariances (ŷp,est),
and naive selection of noise covariances (ŷp,naive).

Therefore, w1,k and v1,k (see Eq. 5.23) were generated from a Gaussian distribution with zero
mean and covariance matrices

Q1 =




0.1 0

0.1

0 0.1


 and Rv1 = 1e´6




5 0

5

0 5


 . (5.27)

Three different Kalman filters were designed to conduct predictions ŷp of the true outputs
ytrue = Cxk. The list of estimators comprises a naive predictor designed with Q1,0 = I and
Rv,0 = I (ŷp,naive), one that takes into account the true noise covariance matrices given above
(ŷp,nom), and a last one that was tuned with ALS estimates (ŷp,est). The naive Kalman filter
was also considered to initialize the ALS technique. It can be seen that both the Kalman fil-
ter tuned with true and the one with estimated noise covariance matrices perform well; the
predicted outputs ŷp,nom and ŷp,est are close to the true value. The estimator designed with
Q0 = BQ1,0BT and Rv,0 (ŷp,naive), on the other hand, fails to produce reasonable predictions.
Consequently, applying noise estimation schemes is worth the effort, as Kalman filters tuned
with estimated noise covariance matrices most likely feature a reasonable prediction and fil-
tering performance.

In order to evaluate the ability of the ALS method to estimate the true noise covariances, 300
simulations were carried out. In each run, the process and measurement noise was generated
and fed through the state-space representation of the 3DOF system. Then, the ALS method
was applied using Kalman filters designed with the state-space parameters corresponding
to the true mechanical parameters and the initial values Q1,0 and Rv,0. Thus, no system
identification was conducted. The solutions to the least-squares problem with semidefinite
constraints were computed using convex optimization employing the CVX framework [33, 87]
in combination with SDPT3 [189]. The number of lags nl (Eq. 5.9) was set to 100. As mentioned
before, the noise shaping matrix Gw was set to B. The corresponding results are given in Figs.
5.3 and 5.4, where the estimated diagonal entries of the estimated noise covariance matrices
(blue dots) are compared with the true values (red lines). For Fig. 5.3, diagonality of Q1

and Rv was imposed, which is in line with the structure of the true noise covariance matrices
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Figure 5.3: Estimated noise covariances (uncorrelated process and measurement noise) for 3DOF sys-
tem by ALS with enforced diagonality. Estimated values in blue dots, true values depicted
by red lines. Average RMS of prediction errors ỹp = Cxk ´ Cx̂k|k´1 given above each subplot
(ỹp,nom = 0.0011 m).
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Figure 5.4: Estimated noise covariances (uncorrelated process and measurement noise) for 3DOF sys-
tem by ALS. Estimated values in blue dots, true values depicted by red lines. Average RMS
of prediction errors ỹp = Cxk ´ Cx̂k|k´1 given above each subplot (ỹp,nom = 0.0011 m).

given in Eq. 5.23. In contrary, for Fig. 5.4, only the symmetry of the covariance matrices was
enforced to test the robustness of the ALS method when the linear set of equations becomes
undetermined.

It can be observed that the autocovariance estimates gather around their corresponding true
values, which is desired. Nevertheless, some significant scattering is visible in either figure.
Hence, the average RMS of the prediction errors ỹp = Cxk ´ Cx̂k|k´1 are additionally provided
to enable the proper assessment of deviations from the true values. The prediction errors can
be best compared to those referring to the nominal Kalman filter, which amounted to approx-
imately 0.0011 m. Consequently, the predictors tuned with ALS-estimated noise covariance
matrices function almost optimally when diagonality is imposed (see Fig. 5.3), which is in line
with the inherent matrix structures discussed in Section 5.6. Apparently, the quality of covari-
ance estimation decreases when unnecessarily raising the number of variables and imposing
only symmetry constraints, see Fig. 5.4. This behavior is to be expected, as Q1 and Rv are
indeed diagonal matrices. Nevertheless, it should be mentioned that by simply comparing
the distributions of the blue dots in Figs. 5.3 and 5.4, one would expect the fully populated
covariance matrices to lead to the better predictions.
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As mentioned before, in this work, the ALS method is neither applied to estimate true values
of covariances nor to identify the disturbance structure of identified systems. Instead, the
goal is solely to identify noise covariance matrices that improve the estimation performance
of Kalman filters employed within the damage analysis framework presented in Chapter 4,
cf. Assumption 4.1. To this end, the PALS technique was developed by the author. The in-
fluence on the detection and localization of damage shall be investigated in an experiment
later on. Concerning the simulation case, the ALS and PALS methods are compared based
on the prediction error RMS values. Therefore, another 100 simulations were conducted. For
noise covariance estimation, the diagonality Rv was enforced. However, since Gw = I, Q was
estimated instead of Q1, which is not a diagonal matrix. In each run, a state-space model
with an order of n = 6 was identified using the CCA-based SSI-DAT, see. Section 2.3.3. Then,
Kalman filters were designed based on noise covariance matrices estimated with the ALS and
PALS methods. The nominal Kalman filter was again processed in parallel. Finally, the RMS
of prediction errors ỹp = Cxk ´ Cx̂k|k´1 was computed. Fig. 5.5 depicts these RMS values
of the estimation errors for each of the three output channels and for the different Kalman
filters, respectively. There, it can be seen that the prediction performance of the Kalman filters
tuned with estimated covariance matrices is almost as good as the ones of the nominal filter,
referring to the optimal case. Notably, there is almost no visible difference in the RMS of esti-
mation errors concerning the Kalman filter tuned with PALS estimates and the nominal filters.
The estimators tuned with ALS estimates perform slightly worse, especially in view of the
output at the third channel. This highlights the effectiveness of the proposed PALS technique.
In the following section, the case of correlated process and measurement noise is regarded,
representing the situation of acceleration measured at a mechanical system. Since this is a
common practice in SHM, the corresponding investigations have greater relevance.

5.6.2 The case of correlated process and measurement noise

The investigations presented in this section were conducted analogously to Section 5.6.1, but
this time, because of simulated accelerations, the optimization problem stated in Eq. 5.16 was
given the flexibility to estimate the joint covariance matrix S as well. Therefore, the noise
estimation procedures were initialized with S0 = 0.

First, the ability of estimating the true noise covariance matrices is regarded. The correspond-
ing results of a series of simulations comprising 300 runs are given in Figs. 5.6 and 5.7. As
in the previous study, two investigations were conducted in parallel. Therefore, Fig. 5.6 repre-
sents the case of imposed diagonality of Q1 and Rv1 , whereas for Fig. 5.7 no such constraints
were enforced, i.e., a fully populated and symmetric structure was assumed. By that, the ro-
bustness of noise covariance estimation shall be examined. Note that, contrary to the previous
studies, the true values for Rv are marked at 1 + 5e´6 instead at 5e´6 because of the factor-
ization of Rv = DaQ1DT

a + Rv1 , cf. Eqs. 5.26 and 5.27. The estimates for the diagonal entries
of Q1 and Rv1 gather around the corresponding true values, except for the values associated
with the third channel. There, a significant bias in the estimates is observable. Nevertheless,
this issue is slightly relaxed when the diagonality constraint is lifted. A possible explanation
for that could be found in the linear system of equations, which is already underdetermined
because of S ‰ 0. Adding more equations to the systems might increase the flexibility of the
least-squares problem, leading to slightly better results. However, such a phenomenon can
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Figure 5.5: Comparison of prediction performance of Kalman filters designed for identified 3DOF mod-
els and ALS- and PALS-estimated noise covariance matrices (uncorrelated process and mea-
surement noise). Nominal Kalman filter for true system designed with true noise covariance
matrices as reference.

barely be expected when real measurements are considered. Moreover, the average prediction
errors depicted above each subplot of Fig. 5.6 are computed as ỹp,k = Caxk ´ Ca x̂k|k´1, see
Eq. 5.25c. Again, the RMS of estimation errors is best compared with those associated with
the nominal Kalman filter, which amounts to approximately 0.033 m s´2. Given that, it is real-
ized that, on the one hand, dropping the diagonality constraint leads to slightly better results.
On the other hand, it can be observed that the general prediction performance with estimated
noise covariance matrices is significantly worse (almost by a factor of 3) than the one of the
nominal Kalman filter. This observation contrasts the previous example of the uncorrelated
process and measurement noise and can be explained by the number of unknowns in the
least-squares problem. Note that no plots are presented that contrast estimated entries in S
with their true counterparts. According to Eq. 5.26, S is directly related to Q1, and thus, the
estimation performance of the joint covariance matrix S can be derived from Q1.
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Figure 5.6: Estimated noise covariances (correlated process and measurement noise) for 3DOF system
using the CVX toolbox and enforcing diagonality. Estimated values in blue dots, true values
depicted by red lines. Average RMS of prediction errors ỹp = Caxk ´ Ca x̂k|k´1 given above
each subplot (ỹp,nom = 0.033 m s´2).
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Figure 5.7: Estimated noise covariances (correlated process and measurement noise) for 3DOF system
using the CVX toolbox. Estimated values in blue dots, true values depicted by red lines.
Average RMS of prediction errors ỹp = Caxk ´ Ca x̂k|k´1 given above each subplot (ỹp,nom =

0.033 m s´2).

In the next step, the performance of ALS and PALS in the context of noise estimation for iden-
tified state-space models is observed. To this end, again, 100 new simulations were conducted.
Then, systems were identified using the acceleration data and the CCA-based SSI-DAT tech-
nique with a model order of n = 6. Since Gw = I and Da = I, only the diagonality of
the measurement noise covariance was assumed. The RMS values of the prediction error
ỹp,k = Caxk ´ Ca x̂k|k´1 of the Kalman filters tuned with estimated noise covariance matrices
are presented in Fig. 5.8 with reference values resulting from a nominal Kalman filter. As in
the case of uncorrelated process and measurement noise investigated in the previous section,
the Kalman filters tuned with PALS-estimated covariance matrices perform better than those
designed with covariance estimates resulting from ALS. The difference is even more signifi-
cant (cf. Figs. 5.6 and 5.7), which can be explained with the increased number of variables
caused by estimating S and the (6 ˆ 6) and fully populated matrix Q instead of the (3 ˆ 3)
diagonal matrix Q1. Both ALS and PALS fail to tune Kalman filters that get close to the per-
formance of the Kalman filter designed with the true system model and true noise covariance
matrices.
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Figure 5.8: Comparison of prediction performance of Kalman filters designed for identified 3DOF mod-
els and ALS- and PALS-estimated noise covariance matrices (correlated process and mea-
surement noise). Nominal Kalman filter for true system designed with true noise covariance
matrices as reference.

5.7 experimental validation

In the previous sections, both the ALS and PALS techniques were compared, e.g., in terms of
prediction performance in several simulations. For that, the CVX framework was employed.
The corresponding studies were conducted for the cases of uncorrelated and correlated pro-
cess and measurement noise. It was found that both optimization schemes produce reasonable
noise covariance estimates. Moreover, in connection with the correlated process and measure-
ment noise and identified state-space models, which is the standard case throughout this
thesis, the PALS technique led to Kalman filters that performed slightly better than those
based on ALS estimates. In the following, the noise estimation techniques are regarded in
relation to damage analysis, utilizing the framework presented in Chapter 4. Therefore, exper-
imental data is considered instead of simulations. Minor stiffness alterations at a cantilever
beam in a laboratory setting shall be detected and localized in a first study. The specimen was
already considered in a previous publication [210]. A second experimental study is dedicated
to detecting and localization of an added mass at a different cantilever beam.
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5.7.1 Localizing stiffness alterations

The central element of a recent publication was the steel cantilever beam subjected to local-
ized stiffness changes. For more details, see [210]. For convenience, the experimental setup
is again depicted in Fig. 5.9, and described in the following. The monolithic beam has di-

(a) (b)

Figure 5.9: Photograph of the experimental setup of a cantilever beam with exchangeable lugs (a) and
exchangeable lug with centered saw-cut (b).

mensions (l, w, t) = (1.2 m, 60 mm, 5 mm). To controllably vary the local stiffness properties
in a modular manner, nine exchangeable steel lugs were bolted along the beam, alternating
at the top or bottom with an overlap of 10 mm. These feature a length of 130 mm, a width
of 20 mm, and a thickness of 5 mm. Local damages were introduced by removing these lugs
and replacing them with a modified version subjected to minor damages realized by saw-cuts
of approximately 1 mm in width, severing about 75 % of the lug’s cross-section. The beam
remained intact. An exemplary photograph of such a damaged lug is presented in Fig. 5.9.
Along the beam, 15 piezoelectric accelerometers were placed at every 75 mm, starting at the
tip of the cantilever beam. The sensors were oriented at the left and right edges of the steel
beam. An illustration of the measurement layout is given in Fig. 5.10. A broadband excitation

Ch 1 Ch 3 Ch 5 Ch 7 Ch 9 Ch 11 Ch 13 Ch 15

Ch 2 Ch 4 Ch 6 Ch 8 Ch 10 Ch 12 Ch 14

L1 L2 L3 L4 L5 L6 L7 L8 L9

excitation

120.5 cm

Figure 5.10: Elevation view of the experimental steel cantilever with exchangeable lugs (L) at top and
bottom (dashed line).

up to 250 Hz was realized using a contactless electromagnetic shaker placed at the root of the
beam. The data acquired in the experiments comprises at least one hour of data recorded at a
sampling rate of at 1200 Hz and split into segments of 10 min for each configuration (reference
and damaged).
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Before conducting the damage analyses, the Kalman filters, later used for this procedure,
shall be evaluated exemplarily based on the PSDs of the corresponding innovations. To this
end, consider Fig. 5.11, which contains the PSD of the measured acceleration (Sy) at channel
1 as well as its analytical pendant computed with identified parameters resulting from the
SSI (Sy,SSI). It should be noted that the identified model does not capture the entire dynam-
ics encompassed in the data. In fact, the first peak, at a frequency of about 5 Hz, refers to
the first natural frequency, which the identified model does not realize. However, since the
corresponding power comprised by that mode is comparatively low, the disturbing effect con-
cerning ALS is expected to be neglectable. The spectra of the innovations (Se), given in the
figure, refer to Kalman filters tuned with noise covariance matrices estimated with either ALS
(Se,ALS) or PALS (Se,PALS) employing Matlab’s fmincon. The reason for selecting another opti-
mization scheme was that the nonlinear optimization tool outperformed the CVX framework
with respect to Assumption 4.1, i.e., it led to Kalman filters resulting in less correlated inno-
vations. The PSDs were computed analogously to Eq. 5.19 using Sy,SSI instead of Sy, which
explains the smooth nature of the graphs. The noise covariance matrices were estimated

0 20 40 60 80 100 120 140 160 180 200 220 240
10−12

10−8

10−4

Frequency (Hz)

PS
D

(g
2 /

H
z)

Sy(1, 1) Sy,SSI(1, 1) Se,ALS(1, 1) Se,PALS(1, 1)

Figure 5.11: PSD of measured acceleration (Sy), analytical PSD using identified system (Sy,SSI), and PSD
of innovations from Kalman filter (Se,ALS and Se,PALS). Noise covariances estimated with
fmincon.

similarly as described in [210]. That is, both ALS and PALS were initialized with Q0 = I,
Rv = I ¨ min diag

␣

Ry(0)
(

, and Gw = I was defined. Further, diagonality of Rv was imposed,
and process and measurement noises were assumed to be uncorrelated (S = 0). Note that this
assumption somewhat contradicts the theoretical elaborations presented at the beginning of
Section 5.6. Because of the fact that acceleration data was acquired, process and measurement
are inherently correlated (S ‰ 0). However, as was shown in [210], the additional estima-
tion of S does not always lead to significantly improved filtering performance, and it comes
at the cost of increased computational effort. Hence, the simplification was justified in this
case.

Both PSDs of the estimation errors (Se) almost indicate whiteness of the innovations. However,
they feature a valley located in the proximity of 160 Hz. Note that these singularities do not
result from zeros of the estimators’ transfer functions, as could be expected. Notably, zeros
can generally be found at the locations of the poles of the underlying systems Gi (cf. [22,
68]) and nowhere else since only stable estimators are considered. However, during the filter
synthesis, additional poles might arise that can lead to artifacts observed in Fig. 5.11. In the
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regarded context, these phenomena are not problematic, as they have no amplifying effect.
Finally, no significant difference between the estimation errors’ PSDs can be recognized, and
thus, according to Assumption 4.1, it can be suspected that the ability of Kalman filters tuned
with ALS and PALS estimates to detect damage is similar. To investigate this assumption,
consider Figs. 5.12 and 5.13. The former contains damage detection and localization results
for Kalman filters tuned with ALS-estimated noise covariance matrices. The latter refers to
the estimators tuned with PALS estimates. Each figure represents the replacement of all
nine lugs with a damaged version of it, cf. Figs. 5.10 and 5.9. The damage detection and
localization procedures are in line with the routines summarized in Section 4.4.3. Therefore,
the SP2E-based damage-sensitive feature rdV ([i1, i2]) was considered, where i1 was set to one,
and, according to Eq. 3.57, i2 was chosen as 70. Because of the low degree of uncertainty, the
significance level for hypothesis testing was defined as α = 0.

Comparing Figs. 5.12 and 5.13, it can be seen that damage detection is successful in all
regarded cases. The Kalman filters tuned with ALS estimates are able to pinpoint the damage
in all cases but for the exchanged lugs 5, 3, and 2. On the contrary, the estimators tuned
with noise covariance matrices estimated via PALS fail to localize the damage introduced at
lugs 5, 2, and 1. However, the results associated with ALS are slightly more pronounced in
some cases (damage at lugs 6 to 9). Nevertheless, in the regarded example, no significant
advantage of either approach can be realized. Finally, an interesting phenomenon shall be
discussed. For the damage case concerning lugs 2, 3, and 5, particularly high values of the
damage indicator can be observed for the first channel. This phenomenon can be occasionally
observed for the damage identification scheme presented in Chapter 4 and probably also
for different residual-based damage localization techniques. A possible explanation can be
derived from the structure of the considered mechanical system. Generally, the tip of the
cantilever (channel 1) exhibits strong oscillations that manifest themselves as a high variance
of the adjacent channels. Moreover, identifying the corresponding values of the mode shapes
is associated with significant uncertainty, as only neighboring channels exist in one direction.
Hence, when damage occurs that does not alter only the local but also the global dynamic
properties, residual average power might be picked up at those channels that are particularly
influenced. In the case of damage at lugs 2, 3, and 5, it is to be expected that the change
of the global dynamics regarding the first channel is more dominant than the local alteration
observed in the proximity of the damages.

Although in this experiment, the PALS technique shows to be a proper alternative to the
classical ALS method, the experiment does not seem to be entirely suitable to highlight the
advantages of PALS. The reason for that was mentioned earlier. It refers to the fact that the
identified system covers the predominant dynamics encompassed in the data, cf. Fig. 5.11.
However, the PALS technique was developed for the case where a significant difference be-
tween the modeled or identified dynamics and the measured dynamics is present. Therefore,
the proceeding experiment constitutes a good example.
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Figure 5.12: Variance feature by SP2E for localization of stiffness alteration using Kalman filters tuned
with noise covariance matrices estimated with the ALS method using fmincon. Colored
areas depict the severed lugs.
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Figure 5.13: Variance feature by SP2E for localization of stiffness alteration using Kalman filters tuned
with noise covariance matrices estimated with the PALS method using fmincon. Colored
areas depict the severed lugs.
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5.7.2 Localizing mass alterations

Considerable structural alterations do not always manifest themselves as a local change of
stiffness but also as a mass change. An obvious example from the domain of civil engineering,
or systems situated outdoors in general, is the case of icing. Therefore, an experiment in a
laboratory environment was conducted to test the detectability of localized additional masses.
The associated experiment was the subject of an article published earlier, see [213]. However,
for clarity, the setup is briefly described in the following. The considered cantilever beam is
depicted in Fig. 5.14. It featured a rectangular profile with a width of 60 mm and a thickness

Fan 1 Fan 2

Ch 2Ch 4Ch 6Ch 8 Ch 7 Ch 5 Ch 3 Ch 1

160 cm

add. mass

Figure 5.14: Sketch of experimental steel cantilever excited by two fans with additional mass at the tip
of the beam.

of 6 mm. It was equipped with eight accelerometers sampled at a frequency of 1652 Hz and
stored as 5 min data blocks. Measurements were acquired in both a reference and an altered
state. For the latter, single masses weighing 24 g and 96 g, respectively, were placed at the
tip of the beam. The excitation was realized using airflow by employing two regular fans
positioned underneath the cantilever.

Before performing the actual damage analysis, the filtering performance of two exemplary
Kalman filters is again examined. They were realized given the noise covariance matrices
estimated using the ALS and PALS approach within the CVX framework. PSDs of the mea-
surement response (Sy) as well as its analytical counterpart (Sy,SSI) using identified state-space
parameters are therefore depicted in Fig. 5.15. It is noted that the identified model does not
capture the entire dynamics encompassed in the data. In fact, the first peak, at a frequency of
about 2 Hz, refers to the first natural frequency, which the identified model does not realize
despite high signal power. This circumstance might disturb the noise covariance estimation
when the ALS approach is pursued, as shall be observed later on. In addition, the spectra of
the estimation errors associated with ALS (Se,ALS) and PALS (Se,PALS) are also given in Fig. 5.15
as well. For the noise covariance estimation, diagonality of Rv was imposed, and both process
and measurement noise were assumed to be mutually correlated (S ‰ 0). Further, both ALS
and PALS were initialized with Q0 = I, Rv = I, and Gw = I was defined. Despite the fact
that both Kalman filters lead to almost white innovation series, the filter tuned with noise
covariance matrices estimated with PALS leads to innovations corresponding to a spectrum
with a more even distribution over all frequencies.

Considering these findings from the visual inspections of Figs. 5.15 and in view of Assump-
tion 4.1, it can be postulated that the Kalman filters tuned with PALS-estimated noise covari-
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Figure 5.15: PSD of measured output using identified system (Sy,SSI) as well as PSD of innovations from
Kalman filter (Se,ALS and Se,PALS). Noise covariance matrices estimated with CVX toolbox.

ance matrices are most probably more suitable for the damage analysis. This is confirmed
through Fig. 5.16 for the case of an additional mass of 24 g and through Fig. 5.17 for 96 g.
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Figure 5.16: Variance feature by SP2E for localization of additional 24 g at tip of cantilever beam (chan-
nel index 8) using Kalman filters tuned with noise covariance matrices estimated with the
ALS (a) and PALS (b) method using CVX toolbox.

Note that the damage analysis procedure is equivalent to the one from the preceding inves-
tigation. Though, according to Eq. 3.57, i2 for rdV ([i1, i2]) had to be altered to 830 because of
a different lowest natural frequency (approximately 2 Hz). Although the identified systems
do not represent this mode, this value is reasonable for comparability reasons concerning the
ALS method.

Indeed, damage detection is successful with respect to either noise estimation scheme, as
expected. However, the Kalman filters tuned with noise covariances resulting from PALS pin-
point the location of the structural alteration, whereas, in the case of the ALS estimates, the
precision of the damage localization is less convincing. Interestingly, by comparing the mag-
nitudes of the damage feature, a qualitative connection to the degree of structural alteration
(24 g versus 96 g) can be recognized. However, the circumstance that the damage indicators
do not take the fourfold value when increasing the additional mass by a factor of four sug-
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Figure 5.17: Variance feature by SP2E for localization of additional 96 g at tip of cantilever beam (chan-
nel index 8) using Kalman filters tuned with noise covariance matrices estimated with the
ALS (a) and PALS (b) method using CVX toolbox.

gests that the proposed damage analysis technique needs adjustment (if even possible) when
precise damage quantification is pursued.

5.8 concluding remarks

The presented chapter introduced the PALS method, a parametric extension of the ALS
method for noise covariance estimation of state-space models. The PALS approach can be
utilized in combination with systems identified with the help of SSI techniques. Contrary to
the original ALS method, the correlation function of the innovations, which forms the basis
for the least-squares problem, is estimated by employing the identified state-space parameters
and performing an inverse Fourier transform.

Both the ALS and PALS were utilized in the context of simulation and experimental studies to
predict signals and, most importantly, for detecting and localizing structural alterations. Also,
the estimation of the actual covariance matrices for the case of known systems, or such that is
modeled by first principles, employing ALS was demonstrated and investigated.

Estimating noise covariance matrices by ALS (and PALS) requires solving an optimization
problem with semidefinite constraints. For this endeavor, several optimization toolboxes can
be applied. The open-source optimization framework CVX and Matlab’s optimization toolbox
were employed for the present chapter. In one example (Section 5.7.1), the optimization prob-
lem was tackled utilizing the Matlab function fmincon, which is a tool for solving constrained
nonlinear optimization problems. Since the underlying optimization problem is explicitly
convex and demands semidefinite constraints, CVX or similar frameworks constitute intuitive
choices since they have been particularly designed for these problems; and they enable a nu-
merically efficient realization of the semidefinite constraints. However, the commercial and
generic tool (fmincon) was applied because of a better performance regarding Assumption
4.1. In this case, a reasonable computation time could be achieved. However, to the author’s
experience, CVX performs more efficiently when systems with high model orders are consid-
ered.
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The PALS technique was validated as a proper replacement for the classical ALS approach for
damage detection and localization. It was shown that the sensitivity toward localized damage
can be improved when the identified system models do not cover modes that are significantly
encompassed in the acquired signals, see Section 5.7.2. The explanation for that results from
the theory of ALS. There, a Kalman filter is employed, which, on the one hand, represents
the identified or modeled dynamics of the observed mechanical system and, on the other
hand, constitutes a filter for the acquired measurements. When computing the innovations by
feeding the measured data through the initially designed Kalman filter to estimate the innova-
tions’ correlation function (ALS), perturbations are picked up if the dynamics represented by
the Kalman filter are not linked to those encompassed in the data. More precisely, even if the
initially chosen Kalman filter were designed optimally by accident, the resulting innovations
sequence would not be a white noise process. Hence, the PALS technique was developed to
cope with such scenarios. By synthesizing the innovations’ correlation function with the help
of identified state-space parameters, the utilization of actual measurements is bypassed. Thus,
it can be concluded PALS is more suitable for the application in SHM.





6
A L O C A L L P V A P P R O A C H F O R D A M A G E L O C A L I Z AT I O N I N
L O N G - T E R M M O N I T O R I N G

A major challenge in SHM is manifested by varying EOCs that naturally alter the dynamic behav-
ior of mechanical systems. Linear and even nonlinear dependencies might characterize the underlying
relationship between dynamic properties and exogenous conditions. Hence, implicit or explicit data nor-
malization strategies are readily applied to features extracted from short-term data to remove or handle
these natural variations. In the past years, growing attention has been paid to the identification of linear
parameter-varying (LPV) systems. These models account for the dependency on so-called scheduling
variables, such as temperature or wind speed, and the corresponding dynamics of the observed system.
Two identification strategies exist, namely global and local approaches. In the former, an LPV model
with some presumed structure is directly derived from a finite amount of data that covers a reasonable
variety of the scheduling EOCs as well as the system’s dynamics. Whereas for the latter approach,
the interpolation between locally stationary models (LTI models) is carried out, resulting in a different
global representation. In the context of the damage localization framework presented in Chapter 4, an
LPV approach to handle long-term variations caused by EOV is particularly appealing, as it matches
the system theoretic background. Moreover, applying an interpolation scheme enables the representation
of nonlinear dependencies, which frequently occur in SHM. Unfortunately, this intuitive and simple
concept faces strong hurdles in identifying LPV state-space systems due to the coherence requirement of
local models. Therefore, in this chapter, a recently presented interpolation method is adapted to identify
LPV estimators suitable for damage localization within the SP2E framework. In the following, this
approach is presented, validated, and further investigated by means of a simulation study of an LPV
system under varying temperatures.

6.1 motivation and background

In the past years, the direct modeling of the functional dependence of EOCs and representa-
tives of the short-term dynamics of structures under surveillance (system parameters or fea-
tures) received increasing attention in SHM to enable the damage identification under EOV,
see Section 1.1.2. An exciting strategy constitutes the modeling of LPV systems, as it incorpo-
rates varying dynamic properties, and therefore, is closely related to the predominant physical
phenomena. Relevant literature in the context of SHM has been published recently, e.g., by
Avendaño-Valencia et al. [12–14, 17]. For these modeling approaches, the observed structure
is regarded as a system depending on the scheduling variable θ and featuring linear dynamic
behavior at different operating points represented by the set [θ̄1, θ̄2, ¨ ¨ ¨ θ̄l ]. This circumstance
is depicted by the flowchart given in Fig. 6.1. There, u represents the excitation and y depicts
the output of the LPV system G(θ). Obviously, y depends on the scheduling variable θ, as
the output-generating system behaves differently for varying θ. This circumstance is further
illustrated by Fig. 6.2, where a fictive ith system pole λi representing the dynamic behavior of
G(θ) is plotted versus θ. There, also the operating points represented by θ̄i are depicted. In
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Figure 6.1: LPV system G(θ) with input u, scheduling variable θ, and output y.

Figure 6.2: Dependence of system pole λi (representing G(θ)) on the scheduling variables θ.

the illustrated example, the dependency on the scheduling variable is clearly nonlinear. That
highlights a major advantage of LPV modeling approaches, as they are suitable for nonlinear
problems as long as the dynamic behavior at a local operating point represented by θ̄i is lin-
ear. This property makes LPV models particularly attractive for nonlinear control problems
[193]. But also in SHM, where the observed structures might vary their dynamic behavior
significantly with respect to changing EOCs, LPV identification schemes are applicable for
data normalization by explicitly modeling the functional dependence of relevant EOCs on the
dynamic properties over long periods, or more precisely, for a wide range of EOV.

For the identification of LPV systems, two general strategies exist: the global and local approach.
The former refers to the realization of LPV systems through data representing the expected
range of the scheduling parameter θ. The local approach, on the other hand, relies on the inter-
polation of so-called frozen LTI systems that refer to different operating points. In either case,
a single global model arises. It should be mentioned that the identification process might be
accompanied by statistical methods such as Gaussian process models to consider uncertainty
in the parameters, see [14] and the citations therein. Global approaches can struggle to rep-
resent long-term trends in SHM, as they readily involve huge amounts of data. Therefore,
interpolation-based strategies might perform better in these cases.

In this chapter, the SP2E method summarized in Chapter 4 shall be incorporated into an LPV
framework that accounts for EOV so that data normalization is performed explicitly. That
is, the dependence of EOCs and some damage-sensitive features is modeled directly. There-
fore, the local approach is appealing as, in the regarded cases, LTI models are continuously
identified. Thus, the framework becomes extendable for newly experienced EOCs. Unfortu-
nately, the interpolation-based realization of a single global LPV model involving multiple
state-space models is not a trivial task, as the considered local models must be coherent. This
expression refers to the circumstance that the state-space systems feature the same state-space
basis. Typically, this is faced by transforming the corresponding state-space models into some
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canonical form [193] applying a similarity transformation with the help of Ti P Rnˆn so that
for a system defined by [A(θ̄i), B(θ̄i), C(θ̄i), D(θ̄i)]

A1(θ̄i) = Ti A(θ̄i)T´1
i , B1(θ̄i) = TiB(θ̄i), C1(θ̄i) = C(θ̄i)T´1

i , D1(θ̄i) = D(θ̄i), (6.1)

cf. Eq. 2.17. Zhang et al. concluded in [227] that in practice, a single transformation matrix
T must be found, which is valid for all local state-space models in the sense that the input-
output relation is in line with the actual (measured) behavior of the observed LPV system.
Further studies by Zhang and Ljung [225, 226] showed that a common matrix T could be
derived from measurements at the regarded operating points. The approach is based on the
work of Verdult and Verhaegen [202]. Although promising numerical results were presented
in these publications, for the present work, the coherence issue is circumvented by combing
local LTI models into a global system and solely interpolating the output with the help of
a distance-based weighting. Thus, no interpolation of the system matrices is pursued. The
corresponding procedure is described and validated in the following. An investigation of the
strategy presented in [225, 226] in the regarded context is left out for future research.

6.2 interpolation of local lti systems in the context of sp2e

As mentioned before, the goal is to operate the SP2E method summarized in Chapter 4 in a
normalized manner so that the identification of damage (detection and localization) is enabled
under varying EOCs. In previous studies presented by the author [213], an implicit data
normalization strategy based on the PCA was applied that allowed for the localization of
structural alterations under environmental variability. However, given the system-theoretic
nature of the SP2E framework and the fact that EOV might manifest itself in a nonlinear
alteration of the dynamic behavior, an explicit normalization approach with the potential of
coping with these kinds of dependencies is desirable. To this end, an interpolation approach
by Zhang [224] is adapted for this thesis. An alternative, look-up-table-like strategy was
presented in [116].

For the interpolation-based SP2E framework, consider the interconnection of systems as given
in Fig. 4.2. At the risk of repetition, it is remarked that Π´1

1 refers to an estimator, e.g., de-
signed using Kalman or H8 filter theory, representing the monitored structure in the reference
state (emphasized by index 1). Π´1

2 , on the other hand, represents the potentially damaged
structure referred to as the structure in the analysis state (index 2). Now, the idea is to sub-
stitute Π´1

1 , which is typically given by an LTI system associated with a particular working
point, with an LPV system representing a wide range of EOV. The latter is constructed with
the help of l local LTI systems referring to different operating points (θ̄i). The output of Π´1

1
triggered by some test signal y3 on the input side is then determined through weighting. This
relation is illustrated in Fig. 6.3. The corresponding state-space equations read

xe,k+1 = Āxe,k + B̄y3,k (6.2a)

e1,k = C̄(θ)xe,k + D̄y3,k, (6.2b)
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...

Figure 6.3: Construction of reference estimator Π´1
1 as LPV system via interpolated LTI systems.

where

Ā =




Ae(θ̄1) 0
. . .

0 Ae(θ̄l)


 , B̄ =




Ke(θ̄1)
...

Ke(θ̄l)


 ,

C̄(θ) =
[
´κ1(θ)C(θ̄1) ¨ ¨ ¨ ´κl(θ)C(θ̄l)

]
, D̄ = I.

(6.3)

Thus, e1 is equal to the weighted sum of the outputs of the local LTI models defined by
[A(θ̄i), Ke(θ̄i), C(θ̄i)]. Recall that θ depicts the continuous scheduling variable, whereas θ̄i
describes discrete values of θ representing a single operating point, namely a snapshot of θ

observed, e.g., when identifying the local LTI models. In Eq. 6.3, κi(θ) depicts the weightings
for interpolation. It can be seen that the proposed design of the LPV model is different from
conventional approaches (cf. e.g. [34]) since Ā, B̄, and D̄ are not a function of the continuous
scheduling variable θ, only C̄(θ) varies. Hence, this interpolation approach is not influenced
by different state-space bases of the local LTI models referring to θ̄i, and no special care must
be taken to make these systems coherent. Consequently, the LPV design problem is reduced
to a proper selection of the weightings κi(θ) for the current values of θ, which is explained in
the following. The corresponding Algorithm 1 is presented in Section A.3.

The proposed weighting selection is based on a simplex inclusion metric and is illustrated with
the help of Fig. 6.4. Consider θ = [θ1 ¨ ¨ ¨ θm]T to be an m-dimensional variable representing
m EOCs that affect the dynamics of the monitored structure. In the first step, a grid of l
local LTI models is constructed, where each model refers to a different working point given
by θ̄i P Rm. To this end, the EOC space is divided into segments, for which ∆θ is defined,
cf. Fig. 6.4. This parameter contains the segment widths for all m EOC dimensions. During
monitoring, it is to be expected that multiple identified models fall into a single EOC segment.
Therefore, the ‘best’ representative should be selected for the LPV system realization. Clearly,
the choice depends on the case of application; however, local LTI models that represent a wide
range of structural dynamics and are close to the segment center are attractive for the LPV
design.
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Figure 6.4: Grid of local LTI models (blue dots) and interpolation in a 2D EOC space via Barycentric
coordinates.

For the actual interpolation step, weightings κ1(θ) to κl(θ) must be found for a given θ = θk
to assemble C̄(θk). A simple strategy for that is to find the m + 1 local LTI models whose
working points θ̄i form a convex hull which includes θk. The corresponding weightings are
then defined in such a way that

1 =
ÿ

i

κi(θk). (6.4)

All other l ´ m ´ 1 weightings are set to zero. A convenient choice of convex hulls is given by
m-dimensional simplexes, which are generalizations of polyhedra [28]. That is, if, e.g., m = 1,
the associated geometric shape is a line, if m = 2, the simplex is equivalent to a triangle, and
so forth. The number of vertices (θ̄i) amounts to m + 1. Most interestingly, a point included in
an m-dimensional simplex can be transformed into the barycentric coordinate system, allowing
for interesting interpretations concerning the vertices defining the simplex. This circumstance
is elaborated on in the following.

For simplicity, the 2-dimensional case is regarded, where a triangle gives the corresponding
simplex, cf. Fig. 6.4. The barycentric coordinates of a point lying within this triangle (θk) can
be imagined to correspond to masses placed at the vertices θ̄1, θ̄2, and θ̄3. If all barycentric
coordinates for that point are equal, it represents the center of mass and the geometric center.
Moreover, a point included in a triangle divides this shape into three sub-triangles. The area
of each sub-triangle normalized with respect to the overall area of the triangle is equivalent
to the barycentric coordinates of the dividing point, cf. [46, p. 216]. Hence, the weightings
κi(θk) concerning the m + 1 surrounding reference working points θ̄i can be determined by
normalizing the EOC space and then computing the barycentric coordinates for θk. This
operation is enabled by an affine transformation [196]. The idea is that barycentric coordinates
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should be equal before and after the transformation. Thereby, the generic property defined in
Eq. 6.4 is presupposed, leading to the following linear set of equations:

[
θk

1

]
=

[
Vθ̄

J1,m

]
κ(θk) (6.5)




θk,1
...

θk,m

1



=




θ̄1,1 θ̄2,1 ¨ ¨ ¨ θ̄m+1,1
...

...
. . .

...

θ̄1,m θ̄2,m ¨ ¨ ¨ θ̄m+1,m

1 1 ¨ ¨ ¨ 1







κ1(θk)
...

κm(θk)

κm+1(θk)




(6.6)

Here, Vθ̄ depicts a matrix containing the vertices of the m-dimensional simplex and J1,m de-
notes a row vector of ones positioned in m columns. Vθ̄ is assembled with the help of the
normalized values of the operating points θ̄i that surround θk, which is also normalized with
respect to the considered EOC grid. The second subindex of θk and θ̄i refers to the associated
value for each EOC. Note that with a slight abuse of notation, in Eq. 6.6, the index i is replaced
by numbers starting at 1, strictly referring to the vertices of the surrounding simplex. Finally,
the weights can be computed by

κ(θk) =

[
Vθ̄

J1,m

]´1 [
θk

1

]
(6.7)

or with the help of Cramer’s rule, see [196].

Very importantly, it should be mentioned that to determine the weightings κ(θk) with the
proposed interpolation scheme, the segmentation of the EOC space via ∆θ is not necessary, cf.
Eq. 6.6. Moreover, the motivation to realize an EOC grid is twofold:

(i) The ‘best’ estimators can be defined as a local reference by comparing those associated
with the same EOC segment, e.g., by regarding the model order.

(ii) Reasonable values of ∆θ can be readily determined in preliminary studies, e.g., by inves-
tigating natural frequency fluctuations with respect to EOCs. In case of an incomplete
representation of the EOC space, ∆θ can be conveniently considered to assess the mean-
ingfulness of interpolations.

To elaborate on the latter issue, suppose the following circumstance: In the context of SHM,
a complete grid of local LTI models is often hard to achieve (cf. Fig. 6.4), especially if the
LPV modeling approach is pursued adaptively. In cases where the distance of even the closest
reference models is comparatively far and the dependence of system dynamics and relevant
EOCs is nonlinear, interpolation might be problematic. That is, the values of the damage
indicators introduced in Section 4.2.1 might increase because of EOC-related alterations (not
damage) of the estimators’ dynamics in the reference and analysis state. Hence, it is suggested
to check the following criterion for all l P [1, m + 1]:

θk,l ´ θ̄i,l ă 2∆θl . (6.8)

Another challenging scenario occurs when θk lies outside the considered EOC grid. Then, in-
terpolation is not feasible and a pragmatic strategy must be found to enable damage analyses
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beyond the yet observed EOC space. A simple solution for that is to consider a maximum of
the m nearest points (local reference systems) that obey

θk,l ´ θ̄i,l ă ∆θl (6.9)

and perform a distance-based weighting instead, see Algorithm 1. Obviously, the criteria
defined in Eqs. 6.8 and 6.9 can be adjusted depending on the application scenario. Moreover,
the proposed normalization scheme might be modified to enable proper extrapolation.

A final remark is made in view of implementing the simplex inclusion algorithm. This
procedure involves the identification of encasing m-dimensional simplexes. Thus, the m-
dimensional grid of θ̄ must be divided into a finite set of simplexes first. Secondly, the simplex
must be identified that accommodates θk. The first problem can be tackled via a triangulation
approach such as the Delaunay triangulation, and the latter constitutes a convex hull inclusion
problem. Because of the possible high dimensionality, one must consider advanced geometric
algorithms. Elaborating on that would by far exceed the scope of this thesis. Nevertheless,
for the implementation of the proposed interpolation scheme the Matlab functions delaunayn

and tsearchn have been utilized.

6.3 simulation and analysis of an lpv system under varying conditions

A series of simulations were performed to validate the proposed interpolation-based LPV ap-
proach. Therefore, the system depicted in Fig. 6.5 was modeled as a temperature-dependent
LPV system with five two-noded Euler-Bernoulli beam elements and a diagonal (5 ˆ 5) mass
matrix. The Young’s modulus and second moment of inertia were set to 21 ˆ 107 kPa and
1.7932 ˆ 10´7 m4, respectively. Further, the modal damping ratios ζi were set to 0.5 %. Note
that the simulation model is not linked to any of the cantilever systems investigated in Chap-
ter 5. The LPV simulation was carried out via Simulink [181] after defining a grid of local LTI

Figure 6.5: Cantilever simulation model as LPV system.

models in Matlab [45].

Two different temperature dependency functions were considered and realized by scaling the
stiffness matrices of the local LTI models with a scalar factor αK. Thus, it is assumed that the
temperature effect manifests itself in a uniform and global change in the structural dynam-
ics. For the investigations, a smooth sinusoidal fluctuation of the temperature was simulated,
ranging from ´30 °C to 30 °C. The different imaginary temperature dependencies are repre-
sented by a linear and nonlinear (quadratic) functional relationship to the stiffness-altering
parameter αK. These relations are depicted in Fig. 6.6. It can be seen that the temperature
rises from ´30 °C to 30 °C within a period of 12 h. After this time, it reduces to ´30 °C again.
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Figure 6.6: Temperature dependence of LPV system (expressed by stiffness-altering factor αK) and tem-
perature profile.

The corresponding factor αK changes within 1.05 to 0.95 for the linear and approximately to
0.94 for the nonlinear case, respectively. For the studies made herein, the LPV system was sim-
ulated for 24 h under healthy and locally altered conditions at a sampling frequency of 800 Hz.
For each state, the entire range of environmental variability was considered by passing the
temperature to the Simulink model as well as a random excitation signal. The outputs are
comprised of acceleration data that were computed through linear interpolation of the LPV
system. Measurement noise was added featuring a variance of Rv = 5e´6 (m/s2)2. Stationary
and nonstationary excitation was considered for the present investigations. The former is de-
fined by a constant variance of Q1 = 0.5 N2 (cf. Eq. 5.26) for the entire simulation period of
24 h. The nonstationary excitation, on the other hand, is characterized by a changing intensity
as depicted in Fig. 6.7. An exemplary plot of the simulated accelerations at the cantilever’s tip
for the cases of least and most intense excitation is presented in Fig. 6.8.
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Figure 6.7: Nonstationary and stationary variance Q1 of random excitation w1,k, cf. Eqs. 5.25c and 5.26.

Finally, as the overall goal is to detect and localize damages under varying EOCs, changes to
the system illustrated in Fig. 6.5 were introduced in the form of a reduced element stiffness
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Figure 6.8: Exemplary time series of the output y1,k at cantilever tip (cf. Fig. 6.5) for excitation with
minimal and maximal variance.

and an increased mass. More precisely, the stiffness of the third element was decreased by 5 %.
The second damage state constitutes an increased mass of the same element by 2 %.

Separate analyses are presented in Section 6.5 to observe the effect of the simulated phe-
nomena (linear/nonlinear temperature dependence, stationary/nonstationary excitation, lo-
cal change of stiffness/mass) individually. The scopes of these studies are summarized in the
following list:

• Section 6.5.1 presents the results of the damage analysis procedure described in Sec-
tion 6.2 for the case of linear temperature dependence and stationary excitation. The
results cover both damage scenarios.

• Section 6.5.2 is dedicated to the problem of nonlinear temperature dependence in com-
bination with stationary excitation. Both damage scenarios are considered.

• Section 6.5.3 extends the previous problem by considering nonstationary excitation in-
stead. Only the case of localized stiffness alteration is regarded for simplicity.

• Since interpolation techniques depend on the density of the sampling grid, a sensitivity
study is performed in Section 6.5.4 There, results obtained in Sections 6.5.1 and 6.5.2 are
reevaluated for different choices of ∆θ, cf. Fig. 6.4.

damage analysis procedure
The applied damage analysis strategy is based on subsequent processing and evaluation of
small batches of simulated measurement data. To this end, the simulated data was divided
into segments of 10 min resulting in a total of 144 data sets representing the system under
healthy conditions and 144 data sets for the damaged state. Each unit of 144 data sets covers
the entire range of temperature and excitation intensity variation depicted in Figs. 6.6 and 6.7,
respectively, depending on the investigated problem. According to Section 4.4.3, the damage
analysis procedure is divided into training, validation, and testing phase. Hence, the data
set representing the healthy system is split in half so that the first 72 data sets comprise the
training set, and the remaining 72 batches are associated with the validation set. The testing
set is solely defined by the data representing the damaged model.
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The estimator Π´1
1 depicted in Figs. 4.2 and 6.3 must be constructed as an LPV model to enable

monitoring using the interpolation-based SP2E method. Therefore, in the present example, the
system is gradually identified using the unweighted SSI-COV (see Tab. 2.1) and a model order
of n = 10. The identified state-space parameters were labeled with the mean temperature of
the corresponding data set and subsequently used to derive estimators K using quadratic esti-
mation theory. To compare the different techniques presented in the aforementioned chapter,
Kalman filters as well as Riccati-based and LMI-based H8 filters were constructed following
the design guidelines summarized in Fig. 3.3. For the former, fully populated noise covariance
matrices were estimated with the PALS method presented in Chapter 5. To this end, the CVX
toolbox and SDPT3 were employed, and the number of lags nl was set to 100. The method
was initialized with Q0 = I, Rv = I ¨ min diag

␣

Ry(0)
(

, and S0 = 0, and Gw = I was defined.
Note that this chapter does not aim to compare the PALS and ALS techniques. This topic
was already covered by Sections 5.6 and 5.7. Besides, since this simulation study somewhat
constitutes an ideal scenario for both noise covariance estimation techniques, similar results
concerning the damage analysis could be expected. The LMI-based H8 filters were designed
using YALMIP and SDPT3. Next, to define a grid of local reference estimators, the EOC
space was divided in 12 segments with boundaries of ´30, ´25, . . . , 25, and 30 °C by setting
∆θ = ∆T = 5 K. The estimators associated with the training data that are closest to these 13
boundaries were defined as the local reference estimators considered for the identification of
Π´1

1 according to Fig. 6.3.

For damage analysis, G3 = G2 was defined and rdV ([i1, i2]), i1 = 1 and i2 = 133, was computed
using the SP2E framework in combination with the proposed LPV identification scheme. Dur-
ing training, the models initially chosen for the grid of local LTI models were spared, which
resulted in 59 executions of damage analysis. Each time, the mean temperature (θk) asso-
ciated with the data set used to identify G2 and Π´1

2 was taken into account to determine
the weightings κi(θk) to construct the LPV reference estimator Π´1

1 defined by Eqs. 6.2 and
6.3, cf. Fig. 6.3. Then, a CDF of

řq
i=1 rdV ,i([1, 133]) was determined given a significance level

α = 3 %. Based on this statistical model, damage analysis in the validation and testing phase
is conducted.

6.4 preliminary investigations

Before presenting the actual results of the damage analyses, some preliminary investigations
will be shown. Fig. 6.9 illustrates the fluctuation of the natural frequency with respect to
the varying temperature. In the upper plot of Fig. 6.9, the mean temperature for each of the
144 data sets referring to the healthy and damaged structure are displayed. The lower plot
contains the identified values for the third undamped natural frequency for both structural
states. These quantities vary about 5 %, demanding the consideration of data normalization
strategies. As for the damage scenarios, only the stiffness alteration is depicted in Fig. 6.9.
However, the local change of mass resulted in a slightly more significant decrease in the
natural frequency. This can be further regarded in Tab. 6.1, where the actual values for all
five natural frequencies are given for all structural states at ´30 °C. The maximum frequency
deviation amounts to 1.2 % for the fifth mode of system with locally increased mass and 0.7 %
for the same mode caused by the change of element stiffness. The MAC value was merely
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Figure 6.9: Temperature-dependent variation of third undamped natural frequency for the healthy and
structurally altered system (local stiffness reduction).

affected and did not result in values below 0.997 with respect to the mode shapes of the
healthy structure.

Table 6.1: Undamped natural frequency of simulated cantilever at ´30 °C (αK = 1.05) under healthy
and damaged conditions. Stiffness reduction highlighted by K, increase of mass emphasized
by M.

Mode i f0,i of healthy system ... damaged system (K) ... damaged system (M)

1 6.77 Hz 6.75 Hz 6.73 Hz

2 43.23 Hz 42.88 Hz 42.53 Hz

3 122.49 Hz 122.21 Hz 122.11 Hz

4 236.71 Hz 235.58 Hz 234.27 Hz

5 352.52 Hz 350.14 Hz 348.29 Hz

Further, special attention is paid to Assumption 4.1, where the suitability of linear quadratic
estimators for damage identification is addressed. In this regard, the PSD of the estimation er-
ror (Se) for an exemplary data set is examined, stemming from all three estimators introduced
in Chapter 3. Fig. 6.10 depicts these quantities referring to the first channel. For orientation
purposes, the PSDs of the simulated output (Sy) and its analytical pendant (Sy,SSI) are given
as well. It can be seen that the model realized using SSI-COV fits the simulated data flaw-
lessly. The estimation error e features a comparatively small variance for all three estimators.
However, the more important property is the correlation with the outputs, which could be
quantified with the help of a whiteness test, cf. Section 5.5. This step is skipped for the sake of
conciseness. Instead, the spectra depicted in Fig. 6.10 are assessed visually1: The Kalman filter
and the Riccati-based H8 filter seem not correlated with the simulation data at all. Whereas

1 As mentioned earlier, in the experience of the author, this step is generally sufficient.
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Figure 6.10: PSD of simulated measurement from LPV system (Sy), analytical PSD using identified
system (Sy,SSI), and PSD resulting from estimators (Se).

the PSD of the estimation error stemming from the LMI-based H8 filter features a little spike
in the area of the first resonance frequency, indicating some degree of correlation. The PSD of
the estimation error stemming from the Kalman filter exhibits a small valley at a slightly lower
frequency. As discussed in Section 5.7.1, this phenomenon is not problematic for the intended
purpose. Following Assumption 4.1, it can be concluded that the Kalman and Riccati-based
H8 filter is likely to be the most suitable for damage identification, as the estimation error is
small and close to white. Due to a slight degree of correlation with the simulated data, the
LMI-based H8 filter is expected to perform the worst.

emphasizing the necessity of data normalization
As mentioned before, the change of dynamic properties illustrated and implied by Fig. 6.9
suggests the consideration of data normalization schemes. In the following sections, this
issue shall be tackled through the LPV-based modeling of a structure under EOV. A damage
analysis was performed by employing the SP2E framework and PALS-tuned Kalman filters to
emphasize the necessity of strategies that account for the long-term variability of structural
dynamics. Therefore, the predictor designed using the first data set of the healthy structure
was defined as Π´1

1 . Training, validation, and testing were conducted as described before
but without applying any interpolation of local LTI models. The corresponding results are
depicted in Fig. 6.11. Therein, the value of the damage feature

řq
i rdV ,i([1, 133]) is plotted

for all simulated data sets. It can be seen that, without a surprise, the damage indicator
varies tremendously throughout the training phase, resulting in a particularly high threshold
value. The corresponding statistical model is confirmed in the validation phase. However,
only 23 % of the data sets representing the damage system (stiffness reduction of the third
element) are identified as such. Moreover, damage localization was mostly unsuccessful in
these instances, as spikes appeared predominately for channel 5 instead of channels 3 and
4. In the following sections, it will be shown that the consideration of the proposed LPV-
based data normalization strategy leads to a significant improvement in damage detection
and localization performance.
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Figure 6.11: Damage localization of 5 % stiffness reduction of third element via SP2E using tuned
Kalman filters and no normalization scheme. Linear temperature dependence and sta-
tionary excitation.

řq
i=1 rdV ,i in m2/s4.

6.5 results of interpolation-based damage identification by sp2e

The damage identification performance is investigated using different quadratic estimators
in the following sections. This section starts with the case of linear dependence of the struc-
tural dynamics on the temperature under stationary excitation. In the following Sections, the
problem is extended successively to more complicated scenarios.

6.5.1 Linear effect of exogenous conditions

At first, the case of a linear relation between dynamic behavior and environmental conditions
is examined. Therefore, simulations were conducted following the descriptions made in Sec-
tion 6.3 under stationary excitation. Damage analysis with intrinsic data normalization was
performed by applying the LPV-based SP2E method according to Section 6.2. In Fig. 6.12, the
results for damage detection and localization are plotted involving PALS-tuned Kalman filters
as well as Riccati-based and LMI-based H8 filters. This figure is dedicated to the case of the
reduced element stiffness of the third element, whereas Fig. 6.13 contains the results for the
locally increased mass.

In both cases, data normalization is successful, which manifests itself in a rather constant pro-
gression of the depicted damage-sensitive feature, cf. Fig. 6.11. This pertains to all estimators.
Regarding the damage identification, the Kalman and Riccati-based H8 filters help to detect
damages for all test data sets leading to a detection rate of 100 %. Comparing the threshold
value for detection (dashed line) with the values of the damage indicator in the case of dam-
age suggests that the sensitivity towards damage of the Kalman and Riccati-based H8 filters
are similar. This statement cannot be repeated for the LMI-based H8 filters, where the dam-
age is only detected in 7 % of the test data sets for the case of the reduced element stiffness
and 40 % in the case of the locally changed mass. Apparently, the design of the LMI-based
H8 filters via optimization fails to realize estimators with similar properties, which leads to
outliers that result in a rather great variance of the damage indicators compared to the other
estimators. Nevertheless, damage localization was successful whenever damage was detected.
This applies to all estimators.
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Figure 6.12: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 5 K). Linear temperature dependence and station-
ary excitation.

řq
i=1 rdV ,i in m2/s4.
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Figure 6.13: Damage localization of 2 % mass reduction of third element via SP2E using different types
of interpolated estimators (∆T = 5 K). Linear temperature dependence and stationary
excitation.

řq
i=1 rdV ,i in m2/s4.
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6.5.2 Nonlinear effect of exogenous conditions

The same analyses as in the previous section were performed for the simulated nonlinear re-
lationship between global dynamic behavior and temperature. Clearly, this scenario is more
challenging when it comes to data normalization, but it is also more realistic since such phe-
nomena can be frequently observed, see, e.g., [154, 155]. The results for each damage case
(local stiffness and mass alteration) are given in Figs. 6.14 and 6.15
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Figure 6.14: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 5 K). Nonlinear temperature dependence and
stationary excitation.

řq
i=1 rdV ,i in m2/s4.

Regarding the Kalman and Riccati-based H8 filters, nearly no difference can be observed
compared to the previous investigation regarding the linear dependency. Solely the results for
damage localization vary, as the maximum value of rdV ,i appears more frequently for channel 4
in the case of the reduced element stiffness. However, this is not an issue, as maximum values
at the third and the fourth entry are legitimate for proper damage localization. The damage
identification results received using LMI-based H8 filters differ significantly compared to the
previous investigations. Most interestingly, the detection rate increased drastically from 7 to
96 % in the case of reduced stiffness and from 40 to 100 % in the second damage scenario (mass
alteration). In both cases, damage localization is almost always successful. A reason for that
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Figure 6.15: Damage localization of 2 % mass reduction of third element via SP2E using different types
of interpolated estimators (∆T = 5 K). Nonlinear temperature dependence and stationary
excitation.
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is difficult to find. Nevertheless, it can be recognized that the threshold value decreased when
the nonlinear dependence was realized. Still, regarding the significance of damage detection,
Kalman and Riccati-based H8 filters outperform the LMI-based H8 filters significantly. This
circumstance emphasizes the different sensitivity to damage.

6.5.3 Considering nonstationary excitation

Data normalization does not only play a role when it comes to varying EOCs. Also, changing
excitation intensities might significantly affect the outcome of damage identification. Hence,
it is advisable to account for different levels of excitation by conducting some data normaliza-
tion in this regard, see, e.g., [61]. To investigate the necessity of such procedures, the analysis
presented in the previous section, corresponding to Fig. 6.14, was repeated for the case of
nonstationary excitation. Therefore, the variance of the inputs was simulated according to
Fig. 6.7. Fig. 6.16 depicts the corresponding damage identification results. Therein, it can be
seen that the magnitude of the damage indicator reduces with decreasing intensity of excita-
tion. Thus, the threshold for damage detection rises as the variance of the damage-sensitive
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Figure 6.16: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 5 K). Nonlinear temperature dependence and
nonstationary excitation.
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feature increases. As a consequence, a reduced sensitivity towards localized damage can be
observed in Fig. 6.16, which, in the case of the applied Kalman filters (and LMI-based H8

filters), resulted in a reduction of the detection rate by 9 %. Though, the precision with respect
to damage localization was not affected. In total, these results suggest a further normalization
of the data considered for damage identification concerning the excitation intensity.

A classic approach for this is to divide each channel of measured or simulated outputs by
its standard deviation so that the variance becomes unity, cf. [70]. By that, different levels
of excitation are taken into account inherently. In the context of system identification via
SSI-COV, a convenient way to realize the aforementioned data normalization constitutes the
computation of Hankel matrix weightings [82]

W1 = Il b Ry(0)1/2, W2 = Im b Ry(0)1/2 (6.10)

so that Eq. 2.85 becomes to W1W1HW2W2. In Eq. 6.10, l and m denote the number of block
rows and columns, respectively, and (¨)1/2 represents the matrix square root.
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From the author’s experience, such a normalization strategy is problematic in the context
of parametric system identification, as information regarding the internal transfer behavior
gets lost. Hence, an alternative approach is proposed. Regarding Fig. 4.2 highlights that
both the reference system Π´1

1 as well as Π´1
2 are fed with the same input – namely y3.

Therefore, dividing the resulting estimation errors e1 and e2 by the summed power of y3

should remove the effect of varying magnitudes of excitation. Based on this analysis, the
amplitude-normalized damage indicator can be formally defined as

r̄dV = rdV
1

tr
␣

Ry3(0)
( . (6.11)

This normalization was considered for the data belonging to Fig. 6.16 leading to results de-
picted in Fig. 6.17. Clearly, the normalization according to Eq. 6.11 led to an improvement
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Figure 6.17: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 5 K). Nonlinear temperature dependence and
nonstationary excitation, normalized.

řq
i=1 r̄dV ,i in m2/s4.

in the damage detection performance, as no trends caused by varying levels of excitation are
visible. Further, the sensitivity towards damage was increased to the maximum, which is now
similar to the corresponding case under stationary excitation, cf. Fig. 6.19. The ability to lo-
calize damage did not suffer from the excitation normalization since the damage indicator’s
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values associated with each channel were scaled equally. This is not the case when Eq. 6.10 is
considered.

6.5.4 Influence of the sampling point density

Naturally, the interpolation methods applied here depend on the chosen distance between
sampling points. For the previous investigations, the grid of local reference systems was
defined with ∆θ = ∆T = 5 K. This setting led to satisfactory results. However, it is to be
expected that a coarser grid worsens the data normalization performance – especially in the
case of nonlinear temperature dependence, resulting in a reduced sensitivity towards damage
under the presence of EOV. On the other hand, a more refined grid might improve that.

To test this property in the context of the applied methods, additional simulations were per-
formed for both cases of linear and nonlinear dependence on temperature. At first, results
calculated for a finer grid by choosing ∆T = 3 K are examined. Figs. 6.18 and 6.19 show these
for the linear and nonlinear temperature dependence, respectively. Comparing Figs. 6.18
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Figure 6.18: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 3 K). Linear temperature dependence and station-
ary excitation.

řq
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and 6.12 reveals no significant improvement for the increase of the sampling point density.
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Figure 6.19: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 3 K). Nonlinear temperature dependence and
stationary excitation.
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Though it must be mentioned that this comes to no surprise, as the simulated system features
linear dynamics, and the temperature dependence and interpolation are linear as well. Even
in the case of the nonlinear dependence on the temperature, no relevant improvement can be
realized for either of the applied estimators, cf. Fig. 6.14. However, the detection rate of the
LMI-based H8 filters increased by 1 %. It can be concluded that the sampling grid distance of
∆T = 5 K was a reasonable choice for this example. It should be remarked that an excessive
increase of grid density is not recommendable, as the corresponding LTI models should be
excluded from the computation of the damage indicator during training, which might result
in an erroneously low threshold value for damage detection.

An even more interesting investigation is realized by drastically increasing the sampling grid
distance for interpolation. To this end, ∆T was increased to 30 K. Again, Figs. 6.20 and 6.21
show the results for the linear and nonlinear dependence, respectively. Even though the grid
distance was increased by a factor of six, resulting in a grid of three local LTI models only,
the damage detection performance for the case of linear dependence on temperature is shown
in Fig. 6.20 is still good. Indeed, temperature fluctuation appears within the training and
validation phase values. However, the threshold value is still fairly small, which leads to a
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Figure 6.20: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 30 K). Linear temperature dependence and station-
ary excitation.
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good sensitivity towards damage. Interestingly, the damage detection rate for the LMI-based
H8 filters increased in the regarded case. That gives rise to the suspicion that rather a global
change in the dynamics has been detected. In this case, the estimators possibly pick up local
differences since the damage position is always pointed out correctly.

Fig. 6.21 contains the damage identification results for the case of the nonlinear temperature
dependence and ∆T = 30 K. As expected, the choice of the sampling grid distance affects
the outcome more clearly. Indeed, both the tuned Kalman filters and Riccati-based H8 filters
succeed in detecting and localizing the introduced damage. However, the sensitivity towards
damage decreased tremendously compared to Fig. 6.14. In the case of the LMI-based H8

filters, this led to 69 % less correct detections.

Given these observations, it can be concluded that if the dependence on the relevant EOCs
is linear, the effect of the user-defined sampling grid distance ∆θ is minor. However, in the
nonlinear case, a rather dense grid of local LTI models should be defined if feasible to enable
a proper data normalization and increase the sensitivity towards damage.



6.6 concluding remarks 135

1 72 144 288

10−10

10−5

∑
q i=

1
r d
V,

i(
[1

,1
33
])

Kalman filter

training validation testing α = 3% pot. damage

1 2 3 4 5
0

50

100

150

Fr
eq

.o
f

m
ax

.v
al

ue

100 % det. rate

1 72 144 288

10−10

10−5

∑
q i=

1
r d
V,

i(
[1

,1
33
])

H∞ filter (Riccati)

1 2 3 4 5
0

50

100

150

Fr
eq

.o
f

m
ax

.v
al

ue

100 % det. rate

1 72 144 288
10−11

10−4

103

Data set (-)

∑
q i=

1
r d
V,

i(
[1

,1
33
])

H∞ filter (LMI)

1 2 3 4 5
0

10

20

30

Channel index

Fr
eq

.o
f

m
ax

.v
al

ue

27 % det. rate

Figure 6.21: Damage localization of 5 % stiffness reduction of third element via SP2E using different
types of interpolated estimators (∆T = 30 K). Nonlinear temperature dependence and
stationary excitation.
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6.6 concluding remarks

In the present chapter, an explicit data normalization technique was introduced that enables
damage identification by SP2E under EOV. Therefore, the reference estimator Π´1

1 , which
typically refers to a single operating point only, is replaced by an LPV model representing
the entire range of EOCs experienced during training. The output of this LPV system is
based on an interpolation scheme involving a grid of local LTI models referring to different
operating points. The presented strategy for interpolation is applicable in an m-dimensional
EOC space.

To demonstrate the efficacy of the proposed method, a variety of simulation studies were
investigated. To this end, a simple cantilever model featuring linear and nonlinear temper-
ature dependence was modeled as an LPV system under varying temperatures and healthy
as well as damaged conditions using Simulink. The LPV-based SP2E method was employed
using PALS-tuned Kalman as well as Riccati-based and LMI-based H8 filters. The investiga-
tions showed that the presented method can intrinsically remove the effect of the exogenous
scheduling effect while facilitating the detection and localization of small damages simultane-
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ously. In this regard, the Kalman and Riccati-based H8 filters outperformed the LMI-based
H8 filters. The latter showed a reduced sensitivity towards damage so that not all instances of
damage could be detected as such. A variance-based normalization approach was considered
to reduce the disturbing effects of varying excitation intensities, resulting in the successful
detection and localization of damage under nonstationary excitation.

The investigations were completed by a sensitivity study regarding the sampling grid dis-
tance for the interpolation. It was observed that a dense grid of local LTI models is likely to
improve damage detection and localization when the monitored structure manifests a nonlin-
ear dependence on EOCs. However, in a completely linear problem, the grid density has a
minor influence on the normalization performance.
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M O N I T O R I N G A T E S T S T R U C T U R E F O R S H M

This chapter combines the central contributions presented in Chapters 4 to 6 and provides a real-life
validation of the corresponding approaches and techniques. The Leibniz University Test Structure for
Monitoring (LUMO) gives the validation object, which comprises a steel lattice mast located outside
near Hanover, Germany, and which was originally planned, designed, and constructed by the author
and his colleagues. It is densely equipped with accelerometers that help to continuously acquire vibra-
tion data applicable for SHM. Reversible damage mechanisms distributed along the structure can be
activated to realize changes in stiffness and mass to varying extents. This chapter considers six damages
introduced on three different positions that shall be studied after describing the test structure. Parts of
this chapter are based on a submitted article [211].

7.1 structure description

LUMO is situated on a meadow next to an agricultural field, 20 km south of Hanover (Lower
Saxony, Germany). It constitutes a steel lattice mast mounted on a concrete block foundation
linked to a data acquisition system. The mast features reversible damage mechanisms in-
stalled on six levels. The block foundation was built in October 2019, the tower was erected in
June 2020, and the continuous measurements started in August 2020. In the following, a char-
acterization is given of the test structure, the environmental conditions, and the corresponding
open-access data set. For further information, see [211].

7.1.1 General description

The lattice mast is made of galvanized and painted structural steel. It consists of three identical
segments with a length of 3 m each, resulting in a total height of 9 m. The overall weight
without sensors is approximately 90 kg. Each segment has three tubular legs forming a cross-
section similar to an isosceles triangle and consists of seven bracing levels and short connecting
sections at the ends. The sections end in an elliptical flange which allows the connection of
the segments in arbitrary order employing regular M10 steel bolts. Figure 7.1 contains a
photograph of the lattice mast.

The test structure is mounted on a concrete block foundation with the dimensions 1.5 m ˆ

1.5 m ˆ 0.8 m, which is embedded in cohesive soil. Therefore, an anchor plate with eight head
bolts attached to it was integrated during the manufacturing of the foundation. To safely erect
and modify the mast, the anchor plate was designed as a hinge consisting of two metal plates
with a thickness of 30 mm each. The latter is kept shut by 12 M12 bolts during monitoring
measurements to provide a rigid mast fixture. A photograph of the foundation and connector
plate is given in Figure 7.2.

137
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Figure 7.1: Photograph of the test structure (left), and schematic drawing including the measurement
levels (ML) and the damage locations (DAM) (right) [211].

7.1.2 Reversible damage features and environmental conditions

The key features of the test structure are local reversible damage mechanisms that can be used
to introduce stiffness and, if desired, mass alterations. For this purpose, on six levels of the
structure, which are depicted in Figure 7.1, these mechanisms enable the disconnection of
individual bracings. At each damage level, all three bracings were equipped with damage
mechanisms, resulting in 18 potential positions for introducing localized stiffness and mass al-
terations. The damage mechanisms, which are depicted in Fig. 7.3, consist of an M10 threaded
rod with a coupling nut on each end – one with a left-hand and one with a right-hand thread.
Two simple M10 nuts between the coupling nuts can be used to lock the damage mechanism
when set in place. Another photograph of the installed damage mechanisms at damage level
6 is given in Figure 7.2. Damage of LUMO can be realized by loosening the coupling nuts so
that the corresponding bracing is severed (stiffness reduction) or by removing the entire dam-
age mechanism. The last-mentioned damage scenario also results in a reduction of mass of
approximately 155 g per damage mechanism. The damage cases considered herein generally
imply the complete removal of damage mechanisms.

As LUMO is located outside, the primary excitation source constitutes aerodynamic forces
exerted by the wind, which mainly blows from west to south. Further, variations of the
structural dynamic behavior are mainly caused by daily and seasonal temperature cycles.
During visual inspections, it was also recognized that birds occasionally seek the mast as a
place to rest.
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Figure 7.2: Photograph of the foundation and anchor plate (left), and photograph of the first bay and
damage mechanisms in place (right).

Figure 7.3: Photograph of removable damage mechanism.

7.1.3 Sensor equipment and data acquisition

The structure is equipped with 18 uniaxial accelerometers, three strain sensors, and one ma-
terial temperature sensor. They are distributed across ten horizontal measurement levels,
which are schematically displayed in Figure 7.1. Note that accelerometers are positioned at
ML1-9, whereas ML10 is only used for the measurements of strains and temperature, cf [211].
The strain measurements are not considered in this work, and therefore, are not assessed
any further. MEAS 8811LF-01-005 piezoelectric accelerometers with IEPE current supply are
mounted in pairs using 90° mounting brackets to measure in orthogonal directions in the
horizontal plane and to capture the spatial motion. There are no acceleration sensors in the
vertical direction (z-axis) because of their low relevance for beam-like structures and the pri-
mary focus on bending deformation. One Pt100-type thermocouple is mounted at ML10 and
provides the reference material temperature.

The data acquisition system consists of a National Instruments NI-cDAQ-9189 chassis con-
nected to a host computer, both protected from the environment in a shack approximately
40 m away from the test structure. The chassis contains five NI-9234 modules for the mea-
surements of the accelerometers, one NI-9237 module for the strain gauges, and one NI-9291
module for the temperature sensor. The data is acquired continuously at a sampling rate
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of 1651.61 Hz and locally stored as data blocks of 10 min on the hard drive of the host com-
puter.

A meteorology mast erected by the Institute of Meteorology and Climatology (IMUK) of Leib-
niz University Hannover is positioned 20 m away from the test structure. There, the meteo-
rological data is measured and saved as one-minute mean values. This information precisely
describes the prevailing environmental conditions. Previous studies [211] showed that among
all the meteorological data acquired, besides the temperature, the maximum wind speed con-
stitutes an essential parameter, as the lattice mast exhibits nonlinear dynamics in terms of
amplitude-dependent behavior, cf. Section 7.2.

For this chapter, data from September 2020 until May 2021 was considered, which is avail-
able in an online open-access repository of Leibniz University Hannover and can be accessed
through https://doi.org/10.25835/0027803. Besides measurements referring to the struc-
ture under healthy conditions, the mentioned data acquisition period also covers several dam-
age cases, as listed in Tab. 7.1.

Table 7.1: Data recordings according to structural state and damage position [211].

Period of data acquisition Structural state Damage position

Aug. 1st, 2020 - Oct. 13th, 2020 healthy –

Oct. 13th, 2020 - Oct. 27th, 2020 damaged damage level 6

(all damage mechanisms removed)

Oct. 27th, 2020 - Nov. 9th, 2020 healthy –

Nov. 9th, 2020 - Nov. 24th, 2020 damaged damage level 4

(all damage mechanisms removed)

Nov. 24th, 2020 - Mar. 18th, 2021 healthy –

Mar. 18th, 2021 - Apr. 20th, 2021 damaged damage level 3

(all damage mechanisms removed)

Apr. 20th, 2021 - May 4th, 2021 healthy –

May 4th, 2021 - May 19th, 2021 damaged damage level 6

(one damage mechanisms removed)

May 19th, 2021 - May 28th, 2021 healthy –

May 28th, 2021 - Jun. 14th, 2021 damaged damage level 4

(one damage mechanisms removed)

Jun. 14th, 2021 - Jun. 25th, 2021 healthy –

Jun. 25th, 2021 - Jul. 12th, 2021 damaged damage level 3

(one damage mechanisms removed)

Jul. 12th, 2021 - Jul. 31st, 2021 healthy –

https://doi.org/10.25835/0027803
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7.2 characterization of dynamic behavior

When monitoring a structure, methods and approaches must be chosen properly according
to its dynamic behavior. For instance, if the system exhibits strong nonlinearities or nonsta-
tionary dynamics on short-term scales, say during periods of 10 min, as considered here, then,
identifying the system as LTI will most probably lead to poor damage identification perfor-
mance. Hence, before launching automated SHM routines, engineers in charge should assess
the dynamic behavior of the observed system in a supervised manner for a certain period. In
the case of LUMO, this was conducted in [211] by observing natural frequencies and modal
damping. As a result, it was shown that the lattice mast exhibits nonlinear and parameter-
varying dynamic behavior on both short-term as well as long-term time scales. Nonlinear
dynamics manifested as amplitude dependency are caused by varying wind forces; daily and
seasonal temperature fluctuations further influence the dynamic behavior. Despite these ob-
servations, the authors concluded that the short-term dynamics (10 min) might as well be
approximated as LTI since the mentioned properties, especially the maximum wind speed,
seldom show non-smooth and extreme variations. Therefore, assuming it constant for 10 min
intervals is reasonable. For completeness and understanding regarding the dynamics of the
lattice mast, parts of investigations conducted in [211] are presented here in a condensed and
extended fashion.

To obtain a general overview of the variations of structural dynamics, consider the period
of September 1st, 2020, until September 30th, 2020. During this time, LUMO was observed
under healthy conditions. Fig. 7.4 depicts the history of damped natural frequency1 of the
first 15 modes identified with the help of the unweighted SSI-COV algorithm, cf. Tab. 2.1.
Further, stabilization diagrams were employed to discard spurious modes. To reduce the
numerical burden of the long-term modal analysis, only data blocks acquired every 30 min
were taken into account. The identification results for the frequency range from 0 to 120 Hz
were classified with the help of a simple clustering algorithm and the settings given in Tab. 7.2.
Characterization of these modes follows from Tab. 7.3. A close-up of the evolution of the

Table 7.2: Criteria for modal clustering of identified modes of LUMO based on 10-min data sets.

Criterion for modal clustering Value

Min. MAC value within cluster 0.95

Max. absolute frequency deviation within cluster 1 Hz

Min. absolute frequency difference between mean frequencies of clusters 0.02 Hz

natural frequency of mode B2-x is presented in Fig. 7.5, which exhibits the mentioned variation
most clearly. Additionally, an exemplary plot of the corresponding mode shape is depicted
in Fig. 7.6. In both Figs. 7.4 and 7.5, it can be observed that natural frequencies vary heavily
during the considered time interval. As mentioned before, these fluctuations are caused by
varying excitation intensity and temperature, see [211]. In the following, these properties shall
be examined separately.

1 In the present chapter, damped natural frequencies are generally implied when writing natural frequencies. As
mentioned in [211], comparable results and interpretations can be achieved by considering the undamped natural
frequencies instead.
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Figure 7.4: All identified and classified natural frequencies of LUMO from September 1st until October
13th, 2020 and between 0 to 120 Hz (unclassified frequencies in gray).
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Figure 7.5: Close-up of evolution of natural frequency of B2-x from September 1st until October 13th,
2020.

amplitude dependence
To observe the effect of amplitude dependence, again, measurements at an interval of 30 min
were considered during the period from September 1st, 2020, until September 30th, 2020. The
natural frequency values corresponding to B2-x (see Tab. 7.3) and obtained for 10-min data
sets are presented in dependency plots in Fig. 7.7. To exclude the effect of temperature, all
identification results outside the window of material temperature from 9 to 13 °C were dis-
carded. The dependency plots display the maximum wind speed (MW) and its substitute
log (vartaccel09u) over the natural frequency and modal damping ratio. Here, vartaccel09u

represents the absolute value of the variance of the acceleration measurements in x- and y-
direction acquired at ML9 (see Fig. 7.1), which are denoted as accel09x and accel09y, respec-
tively, so that

vartaccel09u =

b

vartaccel09xu
2 + var

␣

accel09y
(2.
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Table 7.3: Characterization of first 15 vibration modes and natural frequencies obtained using SSI-COV
and modal clustering using parameters given in Table 7.2.

Index Average natural frequency,

Sep. 1st - Oct. 13th, 2020

Type of vibration mode

(dominating direction)

Identifier

1 2.76 Hz 1st bending mode (y) B1-y

2 2.81 Hz 1st bending mode (x) B1-x

3 13.40 Hz 1st torsional mode T1

4 15.94 Hz 2nd bending mode (y) B2-y

5 16.28 Hz 2nd bending mode (x) B2-x

6 39.78 Hz 2nd torsional mode T2

7 40.76 Hz 3rd bending mode (y) B3-y

8 42.14 Hz 3rd bending mode (x) B3-x

9 66.40 Hz 3rd torsional mode T3

10 69.15 Hz 4th bending mode (y) B4-y

11 71.51 Hz 4th bending mode (x) B4-x

12 92.40 Hz 4th torsional mode T4

13 100.98 Hz 5th bending mode (y) B5-y

14 104.33 Hz 5th bending mode (x) B5-x

15 117.16 Hz 5th torsional mode T5

Note that in [211], log (vartaccel09u), i.e., the common logarithm of vartaccel09u, was iden-
tified as a suitable proxy for the maximum wind speed, which can be alternatively consid-
ered for periods of missing wind measurements, e.g., from May 7th, 2021 until June 21st,
2021. In fact, in the cited publication, it was shown that the maximum wind speed and
log (vartaccel09u) computed for 10-min data sets are linearly correlated, which was quanti-
fied by a Pearson coefficient [60] of 0.96. In Fig. 7.7, additional plots presenting the material
temperature (MT) vs. natural frequency and damping ratio are included to visualize that the
temperature effect has truly been isolated.

The dependency plot confirms the amplitude dependence of LUMO, as the considered natural
frequency decreases with rising wind speeds, representing a softening behavior. At the same
time, the damping ratio increases, possibly because of higher aerodynamic damping effects.
Note that Fig. 7.7 displays the undamped natural frequency values. Thus, their decrease
cannot be explained by an increase in modal damping, cf. Eq. 2.13. Further, it can be seen
that log (vartaccel09u) determined for the 10-min data sets is indeed a suitable substitute for
the maximum wind speed measurements. This conclusion follows by comparing the left and
middle column of Fig. 7.7. Therefore, in the following, the auxiliary parameter will be solely
considered.

temperature dependence
The temperature dependence can be investigated similarly by utilizing dependency plots.
Therefore, the same data acquisition period was considered as before, and the data were
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Figure 7.6: Exemplary plot of mode shapes of B2-x, B3-x, and B4-x.

filtered, allowing maximum wind speeds to range from 3 to 5 m s´1 only. In Fig. 7.8, the
natural frequency values corresponding to the mode B2-x are plotted over the material tem-
perature, air temperature (AT) averaged over 10 min, as well as the corresponding maximum
wind speed. The latter was considered to reassess the neglected effect of strongly varying exci-
tation intensity. It can be seen the natural frequency values decrease with rising temperature,
confirming a thermal dependency of the lattice mast.

7.3 damage detection and localization under varying environmental con-
ditions

According to Tab. 7.1, two damage cases are considered in this chapter that constitute the
removal of all, or a single damage mechanism (cf. Fig. 7.3) positioned at one measurement
level. These cases shall be investigated in the proceeding sections employing the LPV-based
SP2E method introduced in Chapter 6. Thus, the goal is to detect and localize damage under
realistic EOV.

7.3.1 Preliminary investigations

Before conducting the actual damage analysis, preliminary investigations shall be first per-
formed in view of Assumption 4.1, which was formulated to enable the a priori assessment
of the estimators’ applicability for damage identification. As in the previous studies, this is
carried out by regarding the PSDs of estimation errors (Se). The type of filter that exhibits the
best estimation performance will be considered for damage identification. To this end, regard
Fig. 7.9. Therein, the PSD of an exemplary measurement of LUMO is depicted. The graph
refers to the upmost accelerometer pointing in the x-direction. Additionally, the analytical
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Figure 7.7: Dependency plot to examine amplitude dependence of LUMO. Natural frequency values
and damping ratios of B2-x plotted vs. maximum wind speed (MW), log (vartaccel09u),
and material temperature (MT) for corresponding 10-min datasets.

spectrum (Sy,SSI) obtained via SSI-COV is presented as well. It follows the PSD of measured
acceleration, as desired. At first, note that both axes are scaled logarithmically and that the
entire frequency range up to fs/2 was depicted. The previous section focused on modes below
120 Hz for three reasons that can be explained well in view of Fig. 7.9:

(i) Characterizing higher frequency modes as in Tab. 7.3 is particularly challenging, as the
spatial resolution given by the sensor network is too low to distinguish between the
corresponding mode shapes.

(ii) Few signal energy is contained in higher frequency ranges suggesting a minor relevance
concerning the global structural dynamics.

(iii) Numerous spikes appear near 200 Hz that possibly represent local vibrations of the struts
of the girder mast and no global dynamics, which are relevant for the considered SHM
strategy.

That being mentioned, regard the PSDs of the estimation errors (Se) also depicted in Fig. 7.9.
They represent three different linear quadratic estimators, namely a Kalman filter and a
Riccati-based and LMI-based H8 filter (see Chapter 3) that were designed given the identified
dynamics of LUMO (blue line in Fig. 7.9). The noise covariance matrices of the former were
identified using PALS in combination with the CVX framework and the solver SeDuMi. The
alternative solver resulted in faster convergence compared to SDPT3, which was employed
for Chapters 5 and 6. The LMI-based H8 filter was designed with the help of YALMIP and
SDPT3.
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Figure 7.8: Dependency plot to examine temperature dependence of LUMO. Natural frequency values
and damping ratios of B2-x plotted vs. material temperature (MT), air temperature (MT),
and log (vartaccel09u) for corresponding 10-min datasets.

In Fig. 7.9 it can be seen that the LMI-based H8 estimator fails to filter the measured sig-
nal at all, whereas its Riccati-based pendant succeeds to cope with the first identified mode
at around 3 Hz at least. On the other hand, the Kalman filter performs best, which can be
observed from the estimation error spectrum that spreads well over all frequencies, not in-
dicating any correlation with the measurement signal. A possible explanation for the bad
performance of the H8 filters follows from their design objective. According to Problem 3.3,
the H8 filters aim to minimize the H8 norm of the system Tew : w Ñ e, where w represents
the unknown excitation and measurement noise (w and v), and e = yk ´ ŷk|k´1 is the estima-
tion error. Hence, the filters strive to minimize the maximal gain of Tew, cf. Section 3.1.4.
Now, regarding Fig. 7.9, it appears that the first mode at around 3 Hz comprises most of the
measured signal’s average power. Especially compared to the vibration modes beyond 30 Hz,
the signal energy is exceeded by orders of magnitude. For the H8 filters, this suggests that
filtering the vibrations associated with the first mode has the greatest impact on minimizing
the maximum gain of Tew, and thus, the estimation error e. This effect can be observed in the
case of the Riccati-based H8 filter but not for the LMI-related design. The latter observation
suggests that the LMI-based synthesis approach for H8 filters proposed in Section 3.5.2 is
simply not as efficient as its pendant, which is in line with the investigation results obtained
in Chapter 6. As a consequence and in accordance with Assumption 4.1, Kalman filters should
be realized for the damage identification of LUMO.

To complete this discussion, the two noise covariance estimation approaches, namely ALS
and PALS, shall be compared in the following. Therefore, the same data set is considered.
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Figure 7.9: PSD of exemplary measurement of LUMO (Sy), analytical PSD using identified system
(Sy,SSI), and PSDs resulting from estimators (Se).

As before, the PSDs of the acceleration signal acquired at the upmost measurement position
in the x-direction and its analytical counterpart are depicted in Fig. 7.10. These graphs are
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Figure 7.10: PSD of exemplary measurement of LUMO (Sy), analytical PSD using identified system
(Sy,SSI), and PSDs of estimation errors resulting from Kalman filters (Se) tuned with the
help of ALS and PALS.

accompanied by the spectra of the estimation errors resulting from Kalman filters tuned with
ALS- or PALS-estimated noise covariance matrices. It can be seen that the Kalman filter de-
signed with the help of covariance matrices estimated with PALS is more suitable for damage
analysis. The reason is that the average power of the estimation error is lower in the relevant
frequency range (cf. Sy,SSI) and, more importantly, Se,KF(ALS) shows little spikes at around
100 Hz, which indicates correlation with the measured data. As discussed in Chapter 5, this
was likely triggered by the discrepancy between the dynamics represented by the identified
system model (Sy,SSI) and those encompassed in the measured data (Sy). Consequently, in
accordance with Assumption 4.1, PALS-tuned Kalman filters were employed for the damage
analysis of LUMO.
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7.3.2 Damage analysis procedure

Deciding on the type of linear quadratic estimation according to Assumption 4.1 is a crucial
step for the SP2E-based damage identification. Moreover, the second assumption formulated
in Section 4.4, which is essentially dedicated to the model selection problem, should also be
considered to lay a proper foundation for damage analysis. When monitoring a structure
under ambient excitation, EOV, and significant uncertainty, it is practically impossible to en-
able the identification of the same vibration modes for all time. Hence, one could disregard
Assumption 4.2 and simply apply stable systems Gi and estimators Π´1

i . Alternatively, one
might consider only specific vibration modes by making use of G3, see Section 4.2.2. Depend-
ing on the identification rate of the considered modes, the latter approach might come at the
price of skipping significant amounts of incoming data sets. Then, the state of the structure
under surveillance can be assessed less frequently but possibly more thoroughly. To study
this assertion, both approaches shall be investigated at LUMO in the following sections. From
there, procedures can be derived that are applicable for different cases and experiments. The
two different strategies of model selection and damage identification, which will be further
elaborated on in the proceeding paragraphs, are formally defined:

Table 7.4: Different strategies for model selection in the context of SP2E-based damage analysis of
LUMO.

Strategy 1
Defining G3 = G2, cf. Fig. 4.2. Performing no modal reductions concerning a

static set of reference modes.

Strategy 2
Defining G3 as a reduced form of G2. Performing the model reductions

with respect to a static set of reference modes.

Despite the differences in the model selection strategies, the unweighted SSI-COV in combina-
tion with stabilization diagrams was generally applied for the system identification of LUMO,
as mentioned before. Also, only the frequency range from 0 to 140 Hz was considered. Hence,
spurious modes and such that are difficult to interpret (cf. Tab. 7.3) were also neglected in
view of strategy 1.

defining the grid of local reference systems
Section 7.2 proved that the dynamic behavior of LUMO depends strongly on the temperature
and excitation intensity. Thus, the material temperature and log (vartaccel09u) were consid-
ered for data normalization. These quantities define a two-dimensional EOC space in which
local reference estimators are interpolated. To obtain a grid of these systems, the EOC space
was segmented first by defining ∆θ, see Fig. 6.3. In the present case, ∆θ1 was defined to refer
to the material temperature, whereas ∆θ2 represents log (vartaccel09u). Under consideration
of Figs. 7.7 and 7.8, these values were chosen as ∆θ1 = 2 K and ∆θ2 = 1 log

(
g2). That is,

small changes in the structure’s dynamics could theoretically be realized by the LPV model
to be identified. Apparently, the grid associated with θ1 has a finer resolution than θ2. This
was realized to enable a representation of the grid elements with a reasonable amount of po-
tential reference systems. It should be mentioned that defining a particularly fine grid for all
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relevant EOCs is desirable but practically infeasible, as too many grid elements are likely to
be non-represented. This circumstance complicates the interpolation problem.

In the next step and for a defined data acquisition period, the EOC-labeled estimators were as-
signed to the resulting grid. This procedure was handled differently for the strategies defined
in Tab. 7.4. Strategy 1: Because of the likely case of multiple systems falling into a certain
grid field, the system with the highest model order was chosen as the local reference system.
Strategy 2: To conduct a modal-based model selection, a set of reference modes needs to be
defined first. In the present case, these followed from the cluster analysis presented in Sec-
tion 7.2, resulting in the mode set listed in Tab. 7.3. The associated mode shapes were chosen
as the ones that showed the greatest similarity with the remaining mode shapes contained in
the corresponding mode cluster. Given that and the systems assigned to the EOC grid, the list
of reference modes was updated (reduced) so that local reference models could be found that
represented the same modes across the entire EOC space. For the comparison of the updated
list of reference modes and the ones comprised by the identified system models, the criteria
given in Tab. 7.2 were considered. Finally, the estimators were chosen as local references that
showed the highest compliance with the reference mode set.

performing the lpv-based sp2e method
Damage identification under EOV was performed using the two-dimensional grid of local LTI
models for the LPV-based SP2E method introduced in Chapter 6. Hence, the SP2E related
damage indicators rdV ([i1, i2])) and PdV (see Section 4.3) were computed by identifying Π´1

1
for some θk via interpolation (see Fig. 6.4), and then, applying the original SP2E method, see
Section 4.1. The EOCs observed at time k (defining θk) referred to the analysis system Π´1

2 .
The input y3 to both estimators Π´1

1 and Π´1
2 followed from the definition of G3 according to

Tab. 7.4. Thus, in the case of strategy 1, G3 = G2 was simply defined, whereas, for strategy 2,
G3 was derived from G2 so that it was only comprised by those modes relatable to the set of
reference modes. Note that in either case (strategy 1 or 2) the estimators Π´1

1 and Π´1
2 featured

the original model order that followed from the system identification via SSI-COV and a
simple model reduction based on stabilization diagrams, generally considering the frequency
range from 0 to 140 Hz. Thus, differences of the mentioned model selection strategies manifest
themselves solely in the construction of the grid of local reference estimators (see above) and
in the definition of G3, and thus, y3.

Now, to enable the execution of strategy 2 in accordance with Assumption 4.2, a modal com-
parison must be conducted between G3 and G1,i, where the latter refers to the identified sys-
tems associated with Π´1

1 , cf. Fig. 6.3. Recall that G3 is derived from G2 and should comprise
only reference modes defined during the LTI grid identification. For the modal comparison,
it was tested if a reduced version of G2 (G3) existed, where each of its modes could be linked
to those comprised by each G1,i. As long as this pertained, the damage analysis proceeded
with G3; otherwise, the current data set referring to G2 was skipped. The case where G1,i
contains more vibration modes than G3 is not critical and was therefore disregarded. Also, a
comparison of G3 and G2 was not considered, as G3 was directly derived from G2. Obviously,
to enable the modal comparison, certain criteria had to be defined. The ones applied in the
present studies are summarized in Tab. 7.5. These criteria were chosen particularly high to
ensure modal tracking even when severe damage occurs. Strategy 1 was conducted in such
a way that Assumption 4.2 was respected at least for each data set separately. That is, it was
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Table 7.5: Criteria for modal comparison of G1,i and G3.

Criterion for modal comparison Value

min. MAC 0.2

max. relative exceedance of natural frequency 20 %

max. relative lower deviation of natural frequency 30 %

assured that only analyses were performed where the entire dynamics of G3 = G2 could be
linked to G1,i by means of the criteria listed in Tab. 7.5. Thus, the modal compliance was
ensured for all data sets differently.

Finally, to remove the effect of different excitation intensity, which affects the magnitude
of damage indicators, the amplitude-related normalization via the average power of y3 (see
Eq. 6.11) was carried out additionally.

7.3.3 Localizing the complete removal of damage mechanisms

In the following, the damage analysis results for the complete removal of damage mechanisms,
namely the severing of all three struts, are presented. The corresponding periods are given
in Tab. 7.1. Data acquired under particularly low temperatures were generally discarded to
disregard the effect of icing encountered in some periods, see [211]. This concerns a material
temperature smaller than 1 °C. As mentioned before, no frequencies greater than 140 Hz were
considered for the system identification. This choice is in line with Tabs. 7.5 and 7.3. Thus,
systems that potentially represented the first 15 modes could be considered. An important
remark is made with respect to the periods considered for training and validation. Generally,
the phase after the repair of the preceding damage case and before the first occurrence of
damage was taken into account. To illustrate this issue, regard Tab. 7.1 and consider the
damage at DAM3, which was introduced on March 18th, 2021, and repaired on April 20th,
2021. For this case, the relevant period for training and validation comprises November 24th,
2020, until March 18th, 2021. This selection was conducted to facilitate a proper realization
of the reference state, as the repair of LUMO must be associated with slight alterations of
the structural dynamics, see [211]. The data representing the healthy structure was split into
two parts, where 2/3 was assigned for training and the remainder was used for validation,
cf. Section 4.4.3. Nevertheless, the grid of local LTI reference systems was assembled by
considering the totality of training and validation data to provide better coverage of the grid.
Though, during validation, the corresponding data instances were disregarded to avoid biased
statistics, leading to an artificially lower threshold for damage detection. The corresponding
hypothesis test was formulated based on the damage indicators’ CDFs and a significance level
of α = 3 %.

Figs. 7.11 to 7.16 as well as Figs. 7.17, 7.19, and 7.21 show the damage identification results for
the removal of all damage mechanisms at DAM6, DAM4, and DAM3, respectively, see Fig. 7.2.
The presentation style of the damage analysis results is similar to the one used in Chapter 6.
However, the type I (false-positive) and type II (false-negative) error rate for validation and
testing, respectively, are additionally provided. Figs. 7.11 to 7.16 are dedicated to the model
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selection strategy 1 defined in Tab. 7.4. The corresponding figures display the variance-based
damage-sensitve feature rdV ([i1, i2])) for i1 = 1 and i2 = 550 as well as the power-based feature
PdV . The latter was computed to allow a comparison in a more practical scenario.

Given these results, it can be observed that damage detection is successful for all three damage
cases even when minor attention is paid to Assumption 4.2. Concerning the damage localiza-
tion, a good success rate can be confirmed for the complete removal of damage mechanisms
at all damage levels. In the figures, the relevant measurement levels are highlighted by a
grey area. Some outliers concerning damage localization exist for all damage cases, especially
damage at DAM3, see Figs. 7.15 and 7.16. A special comment should be made in view of
the damage indicators’ evolution during training and validation. Especially in Figs. 7.13 to
7.16, different deterministic trends can be observed, which can be described as oscillatory (in
Fig. 7.13) or nonlinear (linear in log-scaled plot) in Fig. 7.15. This might indicate a change in
the intact system or improper data normalization. In any case, this disturbance might have
caused an increase in the type I error compared to the first damage case, cf. Figs. 7.11 and
7.12.
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Figure 7.11: Variance feature for localization of complete removal of damage mechanisms at damage
level 6. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.
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Figure 7.12: Power feature for localization of complete removal of damage mechanisms at damage
level 6. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.
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Figure 7.13: Variance feature for localization of complete removal of damage mechanisms at damage
level 4. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.
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Figure 7.14: Power feature for localization of complete removal of damage mechanisms at damage
level 4. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.
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Figure 7.15: Variance feature for localization of complete removal of damage mechanisms at damage
level 3. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.
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Figure 7.16: Power feature for localization of complete removal of damage mechanisms at damage
level 3. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 1 defined in Tab. 7.4.

Concerning the different damage indicators (variance-based and power-based), only minor
differences regarding the precision of damage localization can be seen. That is, the power-



7.3 damage detection and localization under varying eocs 155

based feature leads to slightly fewer outliers. This can be best observed for the case of damage
at DAM3, see 7.15 and 7.16. More importantly, the damage analysis with the power-based
damage indicator produced a smaller type I error rate, cf. Figs. 7.13 to 7.16. Hence, it
can be assumed that in practice, when the LPV-based SP2E method is applied, the variance
feature derived in Section 4.2 is less suitable for damage identification. However, to prove this
assumption, more experimental studies are required. Based on this observation, the power-
based damage indicator is presented in the remainder of this chapter; results obtained for the
variance-based feature are provided in Section A.4.1.

Figs. 7.17 to 7.22 are dedicated to the damage analysis under consideration of model selection
strategy 1. That is, for these analyses, fixed sets of reference modes were employed, which im-
plies that only changes in the corresponding modal properties are taken into account. Hence,
Figs. 7.18, 7.20, and 7.22 are provided that depict the evolution of the natural frequencies,
representing the reference modes during training, validation, and testing. It can be seen that
due to the soft criteria defined in Tab. 7.5, the tracking of modes was successful even after
the introduction of damage. However, it also led to false assignments of the modes, which is
observable in all phases of damage analysis. Notably, the considered set of modes varied sig-
nificantly throughout the damage cases. This can be justified by the demand for a consistent
representation for all local reference estimators by means of the same modes.

Despite the minor mode assignment issues, which suggest a more elaborate modal tracking
strategy, damage detection and localization were mostly successful for all damage cases. Com-
paring Figs. 7.12, 7.14, and 7.16 with 7.17, 7.19, and 7.21 shows that the type I error rate could
be reduced in all cases except damage at damage level 6, where the false-positive rate was
already at 3 %. Nevertheless, because of the more thorough model selection procedure, more
pronounced damage detection results or, at least, less variance of the damage features would
have been expected. This expectation is raised in view of the natural frequencies’ evolution,
which displays distinct jumps once the damage is introduced. The fact that the variance of
the damage features is rather high, independent of the applied model selection strategy, sug-
gests that either of the applied data normalization strategies does not function properly. I.e.,
the LPV-based data normalization (see Chapter 6) could not model the dependency of the
structure’s dynamics and the EOCs correctly. Also, the power-related normalization method
concerning varying levels of excitation might have failed to clean up the data. The latter
scenario is most likely, since the spectral characteristic of the excitation most probably varies
significantly, while the proposed amplitude-normalization assumes at least equal spectral dis-
tribution of signal energy.
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Figure 7.17: Power feature for localization of complete removal of damage mechanisms at damage
level 6. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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Figure 7.18: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of complete removal of damage mechanisms at damage level 6.
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Figure 7.19: Power feature for localization of complete removal of damage mechanisms at damage
level 4. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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Figure 7.20: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of complete removal of damage mechanisms at damage level 4.
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Figure 7.21: Power feature for localization of complete removal of damage mechanisms at damage
level 3. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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Figure 7.22: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of complete removal of damage mechanisms at damage level 3.
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7.3.4 Localizing the removal of a single damage mechanism

After investigating the more severe damage cases, the minor scenarios shall be regarded,
which manifest themselves in the removal of a single damage mechanism at DAM6, DAM4, or
DAM3. The corresponding results can be found in Figs. 7.23 to 7.25 for model selection strat-
egy 1 (see Tab. 7.4) and in Figs. 7.26, 7.28, and 7.30 for strategy 2. Again, results concerning
the variance-based damage indicator can be found in Section A.4.2.
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Figure 7.23: Power feature for localization of removal of single damage mechanism at damage level 6.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.

Starting with the modal tracking-free approach (strategy 1), it can be recognized that the suc-
cess rate for damage detection and localization is significantly reduced compared to the more
severe damage scenarios studied in the previous section. Damage at DAM6 could only be
detected in 65 % of the cases, resulting in a 35 % type II error (false-negative) rate. The re-
moval of a single damage mechanism at DAM4 constitutes the case with the highest detection
rate, which amounted to 85 %. Damage detection at the upmost position (DAM3) among the
considered cases was barely feasible. Further, except for damage at DAM4, which triggered a
fair amount of alarms in the remote proximity of the actual damage position (DAM3 instead
of DAM4), damage localization can hardly be confirmed in any case.

Notably, the strictly modal-based model selection approach for damage identification (strategy
1 in Tab. 7.4) improves the damage detection rate tremendously, as can be seen in Figs. 7.26,
7.28, and 7.30. By following this enhanced approach, the damages could be detected in at
least 91 % (damage at DAM3) and at a maximum of 94 % (DAM4) of the cases. Thus, the
type II error rate was reduced accordingly. Unfortunately, the localization of damage was not
improved significantly, although a few more alarms were triggered at the correct locations in
the cases of damage at DAM4 and DAM3.
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Figure 7.24: Power feature for localization of removal of single damage mechanism at damage level 4.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.

An interesting effect can be observed in Fig. 7.26, where the damage indicator exceeds the
damage detection threshold significantly during validation. This instance can be explained
with a faulty mode assignment of mode B5-x at around 104 Hz visible in Fig. 7.27, which
emphasizes the necessity of performing a thorough model selection. The erroneous classifica-
tion of modes can also be recognized in Fig. 7.29 and Fig. 7.31 but without showing a strict
correlation with the corresponding damage indicators.

Despite the improved damage analysis results that could be achieved with the help of the
model selection strategy 2, the effectiveness of the employed data normalization approaches
is still questionable. Figs. 7.27, 7.29, and 7.31 show again distinct jumps of some natural
frequencies, indicating a substantial change of the structure’s dynamics. Since these changes
can be easily observed even under the presence of EOV, they should also be picked up by
the LPV-based SP2E method. In the following section, the change of modal properties will be
further studied.
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Figure 7.25: Power feature for localization of removal of single damage mechanism at damage level 3.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.



162 monitoring a test structure for shm

21-Apr 02-May04-May 17-May-2021
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Time (UTC)

∑
q i=

1
P d
V,

i
(g

2 )
21 % type I error rate (validation), 7 % type II error rate (testing)

training validation testing α = 3% pot. damage

123456789
0

100

200

300

400

500

600

Measurement level

Fr
eq

.o
f

m
ax

.v
al

ue

93 % det. rate

Figure 7.26: Power feature for localization of removal of single damage mechanism at damage level 6.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.
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Figure 7.27: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of removal of single damage mechanism at damage level 6.
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Figure 7.28: Power feature for localization of removal of single damage mechanism at damage level 4.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.
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Figure 7.29: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of removal of single damage mechanism at damage level 4.
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Figure 7.30: Power feature for localization of removal of single damage mechanism at damage level 3.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.
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Figure 7.31: Natural frequencies corresponding to model selection strategy 2 defined in Tab. 7.4. Local-
ization of removal of single damage mechanism at damage level 3.
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7.4 further assessment of damage identification results

The results presented before suggest that a thorough model selection is required to increase
the chance of detecting small damages. Moreover, the corresponding modal tracking pro-
vides valuable insight into the structure’s dynamic behavior before and after the occurrence
of damage. As for the regarded experiment, the results associated with the less severe damage
(Figs. 7.27, 7.29, and 7.31) reveal that removing a single damage mechanism mainly affects
the torsional modes, while, on first sight, the bending modes appear to be unaffected by the
damage. This makes perfect sense since the diagonal struts almost entirely contribute to the
lattice mast’s torsional stiffness. Thus, to complete the studies associated with the considered
experiment and to provide a better basis for evaluating the outcome of the damage analyses,
the lastly presented damage case (removal of a single damage mechanism at DAM3) shall be
further investigated from a modal perspective. Therefore, modes T4 and B4-x are studied in
terms of MAC values and natural frequencies.

Figs. 7.32 and 7.33 depict these quantities with respect to the material temperature and
log (vartaccel09u). Similar plots for the severe damage case are additionally provided in
Section A.4.3. The MAC values were computed by considering the reference mode shape
determined before. Fig. 7.32 contains the results associated with the torsional mode T4 for the
healthy and damaged structure, and Fig. 7.33 depicts the values corresponding to the bending
mode B4-x. Basically, Fig. 7.32 repeats the information contained in Fig. 7.30, i.e., that the dam-
age leads to a significant drop of the natural frequency, which is accompanied by a reduction
of the MAC to approximately 0.9. This change can be recognized without the employment
of any data normalization technique. On the other hand, the bending mode represented by
Fig. 7.33 is clearly less affected by the damage, as mentioned before. This is manifested by
the natural frequency values of the healthy and damaged structure, which spread similarly
across the considered parameter space. However, the corresponding MAC values display a
significant drop caused by the damage. Figs. 7.32 and 7.33 confirm the impression that the
removal of even a single damage mechanism has a tremendous impact on LUMO’s structural
dynamics. The damage leads to a change in natural frequencies and MAC values that can be
recognized even without the use of data normalization strategies. This circumstance stands
in contrast to the damage identification results presented in the previous section that fail to
reflect the significance of the considered damage scenario.
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Figure 7.32: Comparison of natural frequencies and MAC values of mode T4 (plotted against material
temperature [MT] and log[vartaccel09u] [log

(
g2)]) referring to healthy structure and with

single damage mechanism removed at damage level 3.
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Figure 7.33: Comparison of natural frequencies and MAC values of mode B4-x (plotted against material
temperature [MT] and log[vartaccel09u] [log
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g2)]) referring to healthy structure and with

single damage mechanism removed at damage level 3.
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7.5 concluding remarks

This chapter provides a real-life validation of the methods introduced in Chapters 4, 5, and 6.
The corresponding techniques and procedures are applied to localizing joint stiffness and
mass alterations at a lattice mast (LUMO) located outside. The presented investigations
show that the parametric ALS and the LPV-based SP2E approach are practically applicable
for monitoring structures with approximately linear and stationary short-term dynamics and
parameter-varying (or nonstationary) and nonlinear long-term dynamics. Damages at three
different levels and with two different degrees of severity could be detected under ambient
excitation and EOV. Proper localization could only be announced for the more severe case.
It was demonstrated that a modal-based model selection should be followed to achieve the
highest sensitivity towards damage. However, all damages could even be noted by means of
natural frequency and MAC shifts without further data normalization. Therefore, given the ex-
tent of damage and its effect on the considered damage indicators, it is doubtful that damage
detection would have been feasible if minor and practically relevant damages occurred.

It is not trivial to explain the reduced sensitivity towards damage compared to one observed
in simulation studies (cf. Chapter 6). One might argue that the signal quality associated
with simulations is higher than when real measurements are involved. However, this fact
probably has only a minor impact on the final damage analysis. The reason is that once the
observed system is identified and a parametric system model exists, the processing of data is
no longer required, and the quality of the numerical models is always equal. Thus, it could be
concluded that if the data quality is sufficient to derive proper images of the structure under
surveillance, damage identification should be feasible with high sensitivity. In the case of
LUMO, the signal quality is excellent, and the modeling of the structure via SSI works properly.
This can be recognized by the identification of a high number of modes. More importantly, the
greatest differences between simulations and experimental studies are manifested in the signal
characteristics, which are intrinsically linked to the excitation. When ambient excitation is
present, which is generally the case for structures located outdoors, the whiteness assumption
is always violated, and not only the magnitude of excitation but only the spectral distribution
of the signal energy varies continuously. These variations and violations are not accounted
for by the considered damage analysis and system modeling schemes (short- and long-term
modeling), and therefore, could be picked up by the considered damage indicators, leading to
increased values even when the structure is entirely intact. In future research, more elaborate
strategies for the normalization concerning the excitation should be developed and tested.
This demand for innovation is complicated by the output-only nature of the applied methods.
That is, information regarding the signal characteristics of the input is generally not available,
and thus, should be derived from measured vibrations of the structure.
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S U M M A RY, C O N C L U S I O N , A N D O U T L O O K

In the following, a summary of the present thesis is given, and the work is concluded. Finally, recom-
mendations for future research are presented.

8.1 summary

This thesis is dedicated to the use of linear quadratic estimation theory for damage localization
in data-driven vibration-based SHM. Therefore, the central elements of the latter are defined
and reviewed first. Since in SHM, damage is inferred from changes in the dynamic behavior
of mechanical systems under EOV, this engineering discipline comprises (i) the capturing
of short-term dynamics, (ii) the capturing of long-term dynamics, (iii) the actual damage
analysis, and (iv) the consideration of uncertainty in tasks (i) to (iii). This work addresses the
damage localization problem under consideration of all four subtasks, and thus, constitutes
a validation of the proposed methods for the real-life application in SHM. Contributions are
made concerning all subjects (i) to (iv).

On a short-term scale, structures are viewed as LTI systems throughout this thesis. Therefore,
after introducing the scope and objectives, the fundamental theory of structural dynamics of
such systems is presented. That is followed by introducing the SSI technique considered for
their realization based on measured vibration data. Two different theories are considered for
the design of filters or predictors for the acquired outputs, namely, the Kalman filter (H2) and
H8 filter theories. They are subsequently summarized. A general framework for optimal con-
trol is introduced, and the theoretical basis is laid before providing unified formulations for
the related design problems. The fundamentals part is closed by presenting the adapted dam-
age analysis framework, which employs identified LTI systems and linear quadratic estimators
in a purely parametric fashion. Here, a contribution is made by formulating an alternative
(variance-based) damage indicator that can increase the sensitivity towards localized damage.
Another contribution is manifested by providing criteria that help to assess the potential of
linear quadratic estimators for damage identification prior to application.

The second part of this thesis constitutes the main novelties and application and validation
cases. To pave the way for proper consideration of Kalman filters within the parametric dam-
age analysis framework, a modified version of the well-known ALS technique is presented.
The proposed method links the ability of the SSI to parameterize the PSD and correlation
function of data applied for system identification to the ALS technique. By that, a data-
free estimation for noise covariance matrices, applicable for Kalman filter tuning, is enabled.
The implementation of the ALS method is validated in several simulations by comparing the
estimated covariance matrices with those used for the simulation studies. Finally, the effec-
tiveness of the parametric ALS in the context of Kalman filter-based damage localization is
demonstrated in both simulation and experimental cases. Next, the problem of monitoring

169
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under varying EOCs is addressed. Therefore, an interpolation-based identification scheme
is introduced, which interprets the monitored structures as LPV systems. For this data nor-
malization approach, local LTI systems associated with certain operational points are inter-
polated through weightings determined through barycentric coordinates. The resulting iden-
tified LPV systems are readily considered within the proposed damage analysis framework
and thus, enable damage localization under varying EOCs. This approach is also applicable
when the long-term dynamics are affected nonlinearly by varying EOCs, as shown in a simu-
lation study of an LPV system. Finally, the central contributions, namely the PALS technique
and the interpolation-based LPV identification, are applied in a real-life scenario by consid-
ering an outdoor test structure for SHM. The study shows that the methods are applicable
in practice and that localized damage can be identified under consideration of realistic envi-
ronmental factors that significantly influence the structure’s dynamic behavior. Six different
damage cases, constituting three different positions and two different extents of damage, are
considered. While the continuous localization of the more severe cases is successful, the minor
damages cases emphasize the potential for further advancements and research in the field of
system identification and model selection.

8.2 conclusion

Individual concluding remarks are presented for Chapters 3, 5, 6, and 7. This section consti-
tutes an overall conclusion in view of the main goals and objectives of this thesis.

This thesis confirms the practical usability of linear quadratic estimators for data-driven
vibration-based SHM by successfully detecting and localizing damages at a girder mast lo-
cated outdoors and exposed to natural sources of excitation and uncertainty. Therefore, the
central objective of the present work, the validation under realistic conditions, is fulfilled.
However, the effect of the considered damage cases exceeded the influence of the environmen-
tal variability, so the efficacy of proposed data normalization strategies could not be proven.
In fact, it must be suspected that in the regarded case, the detection of minor damages un-
der the presence of changing environmental conditions would have failed. Nevertheless, the
potential for improvements in view of the input-related normalization was recognized.

The presented validation study is essentially enabled through several contributions concerning
the main subjects of SHM, which comprise the capturing of short-term and long-term dynam-
ics, the actual damage analysis, and uncertainty consideration. The proposed approach to
SHM assumes LPV characteristics of the structure under surveillance. This defines the long-
term dynamic behavior. On shorter time scales, the observed structures are approximated as
LTI systems. Capturing the long-term dynamics of structures refers to the problem of data
normalization that can be performed implicitly or explicitly. The latter was aimed for in this
thesis. It constitutes an interesting approach from a system theoretical point of view, as it
attempts to identify functional dependence models of the structure’s dynamic behavior and
EOCs. In this work, a damage analysis framework designed for linear quadratic estimators
is combined with a local approach for LPV system identification. Therefore, an interpolation
scheme was adapted to identify interpolated reference estimators within m-dimensional EOC
spaces. These systems can then be applied for damage detection and localization. By that,
the long-term dynamic behavior of the observed system is inherently captured, and the de-
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pendence on EOCs is explicitly identified. This interpolation scheme is tempting, as, on the
one hand, even nonlinear dependencies can be modeled, and, on the other hand, many affect-
ing EOCs can be considered. This thesis provides validation examples for the one-parameter
(m = 1) and two-parameter (m = 2) case. First, the interpolation approach was employed
in a simulation study involving an LPV system and finally in the outdoor experiment. In
both cases, damages manifested as mass and/or stiffness alterations could be detected and
localized. This confirms the suitability of the proposed explicit, interpolation-based data nor-
malization strategy, and thus, contributes to the problem of capturing the long-term dynamics
of systems.

The effective utilization of Kalman filters for this LPV-based damage identification was en-
abled by using the ALS method for noise covariance estimation. This well-known approach
was extended so that the direct use of measurement data becomes obsolete in the actual
least-squares problem. Hence, the developed PALS method, which constitutes the parametric
extension of ALS, can be employed when the plants for the Kalman filter synthesis are iden-
tified with the help of SSI. This case pertains to the entire thesis. PALS is advantageous as
it decreases the disturbing effect of dynamics encompassed in the measurement data but not
represented by the identified systems. In this work, the efficacy of this approach could be
demonstrated in several laboratory experiments and the final validation case. Since in the lat-
ter, the alternative H8 filter theory failed to produce estimators featuring a decent estimation
performance, PALS-tuned Kalman filters could be employed instead. Therefore, these estima-
tors provide a valuable alternative for the SP2E-based damage analysis, which was initially
developed for the use of H8 filters.

The development of the PALS technique, the adaption of the interpolation-based LPV identi-
fication, and its combination with the SP2E-based damage analysis framework constitute the
novelties put forward in this thesis. Two further contributions are made for damage analy-
sis and the consideration of uncertainty. First, an alternative variance-based damage indicator
was derived from the SP2E method. The feature was applied with success for all investigations
regarding damage identification. More importantly, two assumptions were formulated in this
regard to enable the a priori assessment of the suitability of linear quadratic estimators for
damage identification. They are hoped to increase the confidence when predictors and filters
are applied in future applications. As for the cases considered in this thesis, the postulated
criteria proved to be helpful for the setup of the proposed SHM methodology.

8.3 outlook

Since this thesis only considers systems that exhibit approximately linear and stationary dy-
namics on a short-term scale, future work should concentrate on extending the proposed
methodologies for nonstationary and possibly nonlinear systems. The former describes a
straightforward step concerning the linear quadratic estimation theory. These techniques were
developed for finite-horizon applications and can thus be adapted for monitoring systems that
feature significant time variance. A greater challenge is posed by the output-only identifica-
tion and realization of state-space models for such systems, which must be addressed first. In
the present work, systems were identified using the SSI technique, resulting in the realization
of LTI systems. Naturally, this method cannot be applied in the case of LTV systems, and thus,
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alternative approaches must be considered. The extension to significantly nonlinear systems
appears particularly challenging but would constitute an exciting research objective.

Besides these potential developments concerning different dynamic behavior of systems, some
of the presented methods hold potential for improvements as well. For instance, the noise
covariance estimation by (P)ALS could be enhanced concerning the solution of the central
least-squares problem. Throughout this work, the number of lags of the innovations covari-
ance function was chosen to be relatively small, although one would preferably set it as large
as possible. Unfortunately, this parameter strongly impacts the computational burden mani-
fested by the least-squares problem and, therefore, has to be reduced for pragmatic reasons.
An attractive alternative, which is worth investigating, would be to skip a few lags and to
define a sparse least-squares problem instead. Further improvements could be achieved by
performing (P)ALS for different lag ranges in parallel.

One of the thesis’s central contributions is applying interpolated LTI systems in combination
with the SP2E framework. Interpolation is enabled by assigning weightings to the output
equation of state-space models representing different operating points. The dynamic behavior
for a given set of EOCs is indirectly interpolated, although it would be more desirable to
obtain new models that feature interpolated poles. In addition to this being particularly
appealing from a system theoretical point of view, it would also result in a more parsimonious
system representation and allow the further analysis of the interpolated system, e.g., for modal
analysis.

At last, particular attention should be paid to the practical application of the proposed tech-
niques. The presented validation case confirms the applicability of the methodology in real
life, yet it demands improvement regarding the sensitivity towards damage. A possible strat-
egy to achieve that is, besides the aforementioned points, to improve normalization concerning
structural excitation. When ambient excitation is present, the whiteness assumption of the in-
puts is violated, and the spectral distribution of the signal energy varies strongly. These points
are not considered by the considered damage analysis scheme and system identification ap-
proaches of short- and long-term modeling. Hence, they should be considered by an enhanced
normalization scheme, which is particularly challenging in the regarded output-only context.
Therefore, the relevant information must be extracted from the acquired measurement data.
Finally, to further assess the performance of the proposed SHM methodologies, comparisons
to other methods would be of particular interest. That is readily facilitated through the open-
access availability of the LUMO data.
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This chapter chapter contains supplementary material for Chapters 2, 4, 6, and 7.

a.1 appendix of chapter 2

In the following, the factorization of the covariance function Ry(i) = E
␣

yk+iyT
k

(

of y is derived
for a state-space system as given in Eq. 2.74.

Note that the process noise wk and measurement noise vk are independent of the states xk.
Therefore,
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First, the covariance Ry(0) is determined as

Ry(0) = E
!

ykyT
k

)

= E
!

[Cxk + vk] [Cxk + vk]
T
)

= CE
!

xkxT
k

)

CT + CE
!

xkvT
k

)

+ CE
!

vkxT
k

)

+ E
!

vkvT
k

)

= CΣCT + R. (A.1)

Further, to derive Ry(i) = E
␣

ykyk + iT
(

for i ą 0, it is helpful to formulate the evolution of the
states:

xk+1 = Axk + wk,

xk+2 = A(Axk + wk) + wk+1

= A2xk + Awk + wk+1,

xk+3 = A(A2xk + Awk + wk+1) + wk+2

= A3xk + A2wk + Awk+1 + wk+2
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etc., which can be summarized as

xk+i = Aixk +
i
ÿ

l=1

Al´1wk+i´l . (A.2)
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= CAi´1N. (A.3b)

Eqs. A.1 and A.3b together yield Eq. 2.81. Note that the transition from Eq. A.3a to Eq. A.3b
is enabled by the covariance of future states and output:
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a.2 appendix of chapter 4

If Ω is assembled according to Eq. 4.9, then Z = I in Eq. 4.18.

Proof. Substitute Eq. 4.18 into Eq. 4.17, and then, assemble AΩX = XΛ according to Eq. 4.13
with the help of Eq. 4.9a. This yields




Ap,1X11 0 Ap,1X13 + Kp,1C2X33

0 Ap,2X22 Ap,2X23 + Kp,2C2X33

0 0 A2X33


 =




X11Λ1 0 X13Λ3

0 X22Λ2 X23Λ3

0 0 X33Λ3


 . (A.5)

Multiplying this equation with X´1
33 from the right leads to




Ap,1X11 0 Ap,1X13X´1
33 + Kp,1C2

0 Ap,2X22 Ap,2X23X´1
33 + Kp,2C2

0 0 A2


 =




X11Λ1 0 X13Λ3X´1
33

0 X22Λ2 X23Λ3X´1
33

0 0 X33Λ3X´1
33


 , (A.6)

and reveals that
Λ3 = X´1

33 A2X33, (A.7)

by regarding the lowest block row. Consequently, Λ3 contains the eigenvalues of A2. Further,
substituting Eq. A.7 into Eq. A.6 shows that

Ap,1Y + Kp,1C2 = YA2 and Ap,2Z + Kp,2C2 = ZA2. (A.8)

Since the closed-loop matrix Ap,2 is defined as A ´ Kp,2C2, Z must be identity.
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a.3 appendix of chapter 6

Algorithmus 1 : Interpolation-based LPV identification
Input : grid of local LTI models (local reference estimators)

corresponding sets of EOC values θ̄

EOC grid distance ∆θ

current set of EOCs θk
Output : LPV system Π´1

1
weightings κ

dim θ̄ Ð dimension of considered EOC space
define ˜̄θ = θ̄ and θ̃k = θk

normalize ˜̄θ and θ̃k such that ˜̄θ P [0, 1]
discard all local LTI models as well as EOC sets in θ̄ and ˜̄θ that correspond to

θ̄ ą θk + 2∆θ or θ̄ ă θk ´ 2∆θ

perform dim θ̄-dimensional Delaunay triangulation for ˜̄θ (Matlab: delaunayn)

if θ̃k is included in some simplex obtained through Delaunay triangulation (Matlab: tsearchn)
then

V˜̄θ Ð vertices of surrounding simplex
a Ð indeces of corresponding local LTI models
κ Ð barycentric coordinates according to Eq. 6.7 given V˜̄θ and θ̃k

else
nClose Ð number of points represented by θ̄ that are in close vicinity of θk, i.e.,
θ̄ ă θk + ∆θ and θ̄ ą θk ´ ∆θ

if nClose ą 0 then
V˜̄θ Ð min[nClose, dim θ̄] sets of EOCs contained in ˜̄θ closest to θ̃k

dV˜̄θ
Ð Euclidean distance between V˜̄θ and θ̃k

a Ð indices of corresponding local LTI models

κ Ð inverse distance weights such that κi =
1/di,V˜̄θ
ř

dV˜̄θ

else
κ = 0

end
end

if κ ‰ 0 then
assemble Π´1

1 according to Eq. 6.3
end
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a.4 appendix of chapter 7

a.4.1 Appendix of Section 7.3.3

01-Sep 30-Sep 09-Oct 25-Oct-2020
10−14

10−12

10−10

10−8

10−6

10−4

10−2

Time (UTC)

∑
q i=

1
r d
V,

i(
[1

,5
50
])
(g

4 )

2 % type I error rate (validation), 0 % type II error rate (testing)

training validation testing α = 3% pot. damage

123456789
0

50

100

150

Measurement level

Fr
eq

.o
f

m
ax

.v
al

ue

100 % det. rate

Figure A.1: Variance feature for localization of complete removal of damage mechanisms at damage
level 6. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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Figure A.2: Variance feature for localization of complete removal of damage mechanisms at damage
level 4. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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Figure A.3: Variance feature for localization of complete removal of damage mechanisms at damage
level 3. Damage localization and data normalization by LPV-based SP2E. Model selection
according to strategy 2 defined in Tab. 7.4.
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a.4.2 Appendix of Section 7.3.4
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Figure A.4: Variance feature for localization of removal of single damage mechanism at damage level 6.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.
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Figure A.5: Variance feature for localization of removal of single damage mechanism at damage level 4.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.
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Figure A.6: Variance feature for localization of removal of single damage mechanism at damage level 3.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 1 defined in Tab. 7.4.
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Figure A.7: Variance feature for localization of removal of single damage mechanism at damage level 6.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.

20-May 25-May 28-May 12-Jun-2021

10−15

10−13

10−11

10−9

10−7

Time (UTC)

∑
q i=

1
r d
V,

i(
[1

,5
50
])
(g

4 )

3 % type I error rate (validation), 4 % type II error rate (testing)

training validation testing α = 3% pot. damage

123456789
0

50

100

150

200

250

Measurement level

Fr
eq

.o
f

m
ax

.v
al

ue

96 % det. rate

Figure A.8: Variance feature for localization of removal of single damage mechanism at damage level 4.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.
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Figure A.9: Variance feature for localization of removal of single damage mechanism at damage level 4.
Damage localization and data normalization by LPV-based SP2E. Model selection accord-
ing to strategy 2 defined in Tab. 7.4.
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a.4.3 Appendix of Section 7.3.5
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Figure A.10: Comparison of natural frequencies and MAC values of mode T4 (plotted against material
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Figure A.11: Comparison of natural frequencies and MAC values of mode B4-x (plotted against mate-
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