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Abstract— In this paper, we analyze how to calculate the
matrix transposition in continuous flow by using a memory
or group of memories. The proposed approach studies this
problem for specific conditions such as square and non-square
matrices, use of limited access memories and use of several
memories in parallel. Contrary to previous approaches, which
are based on specific cases or examples, the proposed approach
derives the fundamental theory involved in the problem of matrix
transposition in a continuous flow. This allows for obtaining the
exact equations for the read and write addresses of the memories
and other control signals in the circuits. Furthermore, the cases
that involve non-square matrices, which have not been studied
in detail in the literature, are analyzed in depth in this paper.
Experimental results show that the proposed approach is capable
of transposing matrices of 8192 x 8192 32-bit data received in
series at a rate of 200 mega samples per second, which doubles
the throughput of previous approaches.

Index Terms— Continuous flow, external memory, matrix
transposition, pipelined architecture, SDRAM.

I. INTRODUCTION

MATRIX transposition is an essential operation in a wide
range of signal processing applications. To a large

extent, this is due to the fact that it is used for the calcu-
lation of multidimensional transforms. This makes it a key
component for the 2D fast Fourier transform (FFT) in image
processing and machine vision [1], multiple-input multiple-
output (MIMO) [2], [3], automotive [4] and synthetic aperture
radars [5]–[7]. Likewise, it is required for the 3D FFT in mole-
cular dynamics [8], motion detection [9]; for the 2D discrete
cosine transform (DCT) in image compression [10], [11]; for
the 2D fast Hartley transform (FHT) in image processing and
circular convolution [12], [13]; and for the 3D fast Wavelet
transform (FWT) in video encoding [14]. Additionally, matrix
transposition is considered in convolutional neural networks
(CNN) [15], [16] for artificial intelligence.

In a digital system that processes a continuous flow of
data [7], [17]–[19], matrix transposition is used to change data
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in “row by row” order to “column by column” order. The
circuit to do this transposition can be based on registers [20]
or memories. In the current paper, we explore the use of
memories.

Designing the matrix transposition circuit using memories
involves multiple challenges. First, the calculation of matrix
transposition in a continuous flow means that the circuit
receives a series of matrices one after the other. A strategy
to handle this is to use double buffering [18], [21], [22].
This requires two memories of size N , where N is the total
number of elements in the matrix. One of the memories
stores and transposes the even matrices in the flow and the
other one handles the odd ones. More recent techniques
improve this approach by making use of a single memory
of size N [10], [17], [23], [24].

Second, the access to the memory may be limited. For small
data sizes, either registers [25] or small memories that can be
read or written arbitrarily may be used [10]. On the contrary,
large memories such as a synchronous dynamic random-access
memories (SDRAM) [26] are not so easily addressable. For
them, the access consists in selecting a row of the memory and
reading or writing samples in columns of this row. A change
in the row leads to an important overhead due to the fact that
several commands need to be executed before new data can be
read or written. To circumvent this issue, different strategies to
access the memory have been proposed [17], [18], [23], [24],
[27]–[30]. A first alternative is to write rows of the matrix in
squares of the memory [27]. This, however, does not solve the
unbalance between the times required to operate row by row
and column by column in the memory. Another alternative is
to store rows of the matrix in rows of the memory and then
read several columns of the same row of the memory instead
of a single sample [18]. However, as only the first sample is
required when the first row is read, an auxiliary memory must
be used for storing the rest of the samples until they have to
be provided at the output. The size of the auxiliary memory
will then be α · NR , where α is the number of columns read
together and NR is the number of rows of the matrix. Finally,
the most useful alternative is to store squares of the matrix
in rows of the memory [17], [23], [24], [28]–[30]. This way,
consecutive values of the matrix both in horizontal and vertical
directions are stored in the same row of the memory and can
be accessed without row changes.

Third, a group of memories in parallel are needed when the
throughput of the system needs to be larger than the throughput
of a single memory. This usually happens in combination
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Fig. 1. Calculation of a 2D transform in a continuous flow.

with the use of limited-access memories. The reason is that
the overhead of activating and refreshing these memories
reduces the throughput of the memory. In order to mitigate
this problem, bank interleaving mapping strategies have been
proposed [17], [23], [24].

Finally, the solutions proposed in the literature generally
cover square matrices. However, the case of non-square matri-
ces is only considered in a few works [17], [31], [32] and an
in-depth analysis of this case has not been presented so far.

In this paper, we provide a detailed analysis of the matrix
transposition in a continuous flow using memories under any
combination of specific conditions: Square and non-square
matrices, use of limited access memories and use of several
memories in parallel. For all these cases, efficient solutions
that require a total memory size of order O(N) are presented.
Apart from a broad analysis, the proposed approach sets the
theoretical fundamentals of matrix transposition in continuous
flow. Whereas previous works study the problem based on
examples, the proposed approach deepens in the mathematical
and logical fundamentals of the problem. This allows for
obtaining the exact equations for the read and write addresses
of the memories and other control signals. Last but not least,
the cases of non-square matrices, which have not been studied
in depth in the literature, are analyzed in detail in this paper.

The paper is organized as follows. In Section II, we
introduce the matrix transposition in a continuous flow. In
Section III, we review the main notions for bit-dimension
permutations using memories. Based on this, we analyze the
transposition of square and non-square matrices in a contin-
uous flow in Sections IV and V, respectively. Matrix trans-
position using limited access memories and using multiple
memories are addressed in Sections VI and VII, respectively.
In Section VIII, we provide a practical application of the pro-
posed approach and in Section IX we show the experimental
results. In Section X, we compare the proposed approach to
previous ones. Finally, in Section XI, we summarize the main
conclusions of the paper.

II. MATRIX TRANSPOSITION IN A CONTINUOUS FLOW

From an algorithmic point of view, the calculation of a
2D transform on a 2D data set can be carried out by a 1D
transform of each row followed by a 1D transform of each
column.

For a digital system that calculates the 2D transform in a
continuous flow, Fig. 1 shows the modules involved in the
computations. The first module calculates the row-wise 1D
transform, whereas the last one calculates the column-wise 1D
transform. These modules demand data arriving row by row

and column by column, respectively. This makes it necessary
to include an intermediate module to carry out a matrix
transposition that transforms the row-wise order provided by
the first module into the column-wise order demanded by the
last module.

For the matrix transposition module, we have to take into
account that it will process a continuous flow of 1 or several
samples per clock cycle. Furthermore, the number of rows of
the matrix, NR , and columns, NC , may be equal or different
and, therefore, the matrix may be square or non-square.
Additionally, the memory used to store the data during the
transposition may be a random-access memory (RAM) where
any address can be accesses or a memory with limited access,
such as an SDRAM. Finally, multiple samples may be received
in parallel every clock cycle, which requires the use of several
memories in parallel. All these cases are studied in Sections IV
to VII.

III. REVIEW OF BIT-DIMENSION PERMUTATIONS

A bit-dimension permutation σ is a permutation on n bits
that infers a permutation on N = 2n elements. It has the
form [20]

σ(un−1un−2 . . . u0) = uσ(n−1)uσ(n−2) . . . uσ(0), (1)

where un−1un−2 . . . u0 are the bits permuted into
uσ(n−1)uσ(n−2) . . . uσ(0). The position of an element is
calculated as

P =
n−1∑
i=0

xi 2
i , (2)

where xn−1 is the most significant bit and x0 is the least
significant bit. Thus, there are 2n positions numbered from 0 to
2n −1 and occupied by the N elements. And the bit-dimension
permutation σ changes the position of these elements.

Matrix transposition is a type of bit-dimension permutation.
For the case of a square matrix, it has the form

σ(un−1 . . . un/2un/2−1 . . . u0) = un/2−1 . . . u0un−1 . . . un/2.

(3)

This means that the upper half of the bits is exchanged with
the lower half. If they correspond to rows bits and column
bits of the matrix, respectively, the permutation carries out a
transposition of the elements of the matrix.

Bit-dimension permutations, including matrix transposition,
can be implemented by using registers or memories. The
work [20] explains in detail the theory related to registers,
whereas the theory related to memories was introduced in [17].
Next, we review the main ideas related to the latter.

A. Bit-Dimension Permutations Using Memories

Given a set of N = 2n data arriving in series, the time of
arrival, t , can be counted by a counter cn−1, . . . , c0 where

t =
n−p−1∑

i=0

ci 2i . (4)
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The write address to the memory, W , and the read address,
R, are obtained by a permutation of the bits of the counter
according to

W = σW (cn−1 . . . c1c0),

R = σR (cn−1 . . . c1c0). (5)

Any bit-dimension permutation σ can be calculated from
the permutations that lead to the read and write addresses as

σ = σ−1
R

◦ σW . (6)

In a continuous flow, it must be fulfilled that data are written
into the memory in the same address that is being read. In other
words, the write address for the i -th set of data is the same
as the read address for the (i − 1)-th set of data, i.e.,

σWi
= σR(i−1)

. (7)

The read address of the i -th set of data is then calculated
from (6) as

σRi
= σWi

◦ σ−1. (8)

IV. TRANSPOSITION OF SQUARE MATRICES IN A

CONTINUOUS FLOW

For a square matrix, it is fulfilled that NR = NC . Let us
consider that the total number of elements is N = 2n =
NR NC . When the matrix arrives in series row by row in a
continuous flow, the matrix transposition is defined by (3).
The size of the memory used for the transposition, M , must
be M ≥ N . Thus, a memory of M = N addresses is usually
used in order not to waste memory. Here, we assume that NR ,
NC and M are powers of 2.

The write address for the first set of data can be chosen
to be equal to the value of the count. According to this,
W1 = cn−1 . . . c0. Then, R1 is calculated from (8) as R1 =
cn/2−1 . . . c0cn−1 . . . cn/2. According to (7), W2 = R1. By
applying (8) again, R2 = cn−1 . . . c0 is obtained and from (7)
W3 = R2 = cn−1 . . . c0 is derived. Note that W3 = W1 and
in general Wi+2 = Wi . Likewise, Ri+2 = Ri . This occurs
because σ 2 = Id.

As a result, the read and write addresses for the i -th set of
data are

Wi =
{

cn−1 . . . , cn/2cn/2−1 . . . c0, if i odd,

cn/2−1 . . . c0cn−1 . . . cn/2, if i even,
(9)

Ri =
{

cn/2−1 . . . c0cn−1 . . . cn/2, if i odd,

cn−1 . . . cn/2cn/2−1 . . . c0, if i even.
(10)

Figure 2 shows how the memory address is obtained from
the counter of the system. It can be checked that the address is
the same for reading the i -th data set and writing the (i +1)-th
one, due to the fact that the (i + 1)-th data set is written at
the same time that the i -th data set is read.

Regarding hardware resources, the circuit requires a mem-
ory of size N and no multiplexer. The circuit achieves a
throughput of one sample per clock cycle in a continuous flow.
As the circuit reads data of the i -th set whereas it writes the
i + 1 set, the latency of the circuit is N clock cycles, which
is the time difference between two consecutive sets.

Fig. 2. Obtention of the read and write addresses for the transposition
of square matrices in a continuous flow. (a) Write address for odd-indexed
matrices and read address for even-indexed matrices. (b) Write address for
even-indexed matrices and read address for odd-indexed matrices.

V. TRANSPOSITION OF NON-SQUARE MATRICES IN A

CONTINUOUS FLOW

The transposition of non-square matrices is defined by the
permutation

σ(un−1 . . . u j u j−1 . . . u0) = u j−1 . . . u0un−1 . . . u j , (11)

where j �= n/2. Here, NR = 2n− j �= NC = 2 j , and the each
data set includes N = 2n = NR NC elements.

The period of the permutation, k, is the minimum natural
number that fulfills σ k = Id. This number can be calculated
as

k = n

gcd(n, j)
, (12)

where gcd(n, j) is the greatest common divisor of n and j .
By applying (7) and (8), the read and write addresses for

the i -th set of data are calculated as

Wi = σW1
◦ σ−(i−1),

Ri = σW1
◦ σ−i . (13)

For W1 = σW1
(cn−1 . . . c0) = cn−1 . . . c0, this simplifies to

Wi = σ−(i−1),

Ri = σ−i . (14)

As σ has a periodicity k, Wi = W mod (i,k) and Ri =
R mod (i,k). Thus, there are k periodical read and write
addresses. This means that the controller that generates the
address needs to select among k different permutations of
the counter bits. When k is small, this selection can be done
by using multiplexers. However, for large k the number of
multiplexers may be large. A better alternative for large k
is to use the circular counter in Fig. 3. This counter can be
configured so that any of the bits can be the least significant bit
(LSB) of the count. The control signal ctr of that bit is set to
1 and the rest of ctr signals are set to 0. This way, the address
an−1 . . . a0 will be the shifted version of a counter, which is
what is needed to generate the read and write addresses to the
memory.

This circuit, as in the case of square matrices, requires a
memory of size N and no multiplexer. The throughput is one
sample per clock cycle and the latency is N clock cycles.
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Fig. 3. Circular counter for the address generation for permutations with large k.

VI. MATRIX TRANSPOSITION USING LIMITED

ACCESS MEMORIES

In the previous section it has been assumed that any memory
address can be accessed arbitrarily. However, this is not
always possible, as in case of SDRAM [26] memories. These
memories organize the addresses in rows and columns, and the
access is burst-oriented and row by row. This means that it is
possible to access addresses in the same row at a relatively
high rate. By contrast, the access column by column is slow.

A. Problem Formulation

The M addresses of the memory are distributed in MR

rows and MC columns, being M = MR MC . Read and write
operations in the memory must be done in bursts of L data in
a single row.

As the matrix to be transposed must fit in the memory, it
must be fulfilled that

NR NC ≤ MR MC . (15)

Here, the worst case NR NC = MR MC is considered, and
it is assumed that N , NR , NC , MR , MC and L are powers
of 2. Note also that the fact that M = N does not necessary
mean that the memory and the matrix have the same number
of rows and columns.

According to this, the challenge consist in finding a read
and write strategy that respects the read and write conditions
of the memory and achieves high throughput in continuous
flow.

B. Square Matrices

In the limited access memory, data are read/written in bursts
of L data in the same row. To guarantee that the row is the
same during each burst, only column bits of the address can
vary, whereas row bits of the address must remain constant.
As in a group of L consecutive data only the λ = log2 L least
significant bits (LSB) change, these bits must be assigned to
column bits of the memory address. This condition must be
met for each read/write pattern, as shown next.

When transposing square matrices, there are two read/write
patterns. According to (9) and (10), the read/write addresses
can be one of the following cases

cn−1 . . . cn/2cn/2−1 . . . c0,

cn/2−1 . . . c0cn−1 . . . cn/2. (16)

For each of the patterns, the λ LSBs must be assigned to
column bits of the memory address:

cn−1 . . . cn/2cn/2−1 . . . cλ cλ−1 . . . c0︸ ︷︷ ︸
Mem. columns

,

cn/2−1 . . . c0cn−1 . . . cn/2+λ cn/2+λ−1 . . . cn/2︸ ︷︷ ︸
Mem. columns

. (17)

This way, data in a burst do not modify row bits of the memory
address.

The memory address is then obtained by the assignment
shown in Fig. 4. Note that cλ−1 . . . c0 and cn/2+λ−1 . . . cn/2 are
always assigned to column bits of the memory. This requires
to fulfill the condition 2λ ≤ h, where MC = 2h , which is the
same as

L2 ≤ MC . (18)

This condition limits the maximum burst length for a
given MC .

According to Fig. 4 the read and write addresses are

Wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cn−1 . . . cn/2+λcn/2−1 . . . cλ

cn/2+λ−1 . . . cn/2cλ−1 . . . c0, if i odd,

cn/2−1 . . . cλcn−1 . . . cn/2+λ

cλ−1 . . . c0cn/2+λ−1 . . . cn/2, if i even,

(19)

Ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cn/2−1 . . . cλcn−1 . . . cn/2+λ

cλ−1 . . . c0cn/2+λ−1 . . . cn/2, if i odd,

cn−1 . . . cn/2+λcn/2−1 . . . cλ

cn/2+λ−1 . . . cn/2cλ−1 . . . c0, if i even.

(20)

Fig. 5 shows how samples are read and written in the
memory according to the assignment of Fig. 4. In Fig. 5, the
allocation of the first row and the first column of the matrix
is indicated by the two types of shaded regions. As can be
observed, all the samples of every L × L square of the matrix
are stored in the same row of the memory. These squares are
represented by letters A, B, . . . , U, V , . . ..

Considering that data are provided row by row, the first L
data that arrive at the system are those of the first row of A.
For these data, all bits cn−1, . . . , cλ are equal to zero, so they
are stored in the first row of the memory. Next, the data of the
first row of B are received. In this case cλ = 1. According to
Fig. 4, cλ is assigned to a2λ, so room is made in the first row
of the memory for the rest of data in A, which will be stored
in the same row. Consequently, the first row of B starts to
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Fig. 4. Assignment of the bits of the counter to the bits of the address for the transposition of square matrices by using a memory with access limitations.
(a) Write address for odd-indexed matrices and read address for even-indexed matrices. (b) Write address for even-indexed matrices and read address for
odd-indexed matrices.

Fig. 5. Storage of a square matrix in a memory with access limitations.
(a) Matrix. (b) Memory.

be stored after L2 memory addresses. Likewise, L2 memory
addresses are also reserved for square B after those reserved
for A. Once an entire row of the memory is reserved, the next
square will be written in the following row of the memory.

When a whole row of the matrix has been written in the
memory, the following row is stored in the address space

reserved for the corresponding square. For example, the second
row of A is stored in the first row of the memory after the
first row of A. Once L rows of the matrix have been stored
in the memory, the first L N/MC rows of the memory will be
full. Next, samples of squares U , V , and so on, will be written
following the same strategy used for A and B .

As can be observed in Fig. 5, every group of L samples
of the first column of the matrix is stored in the same row
of the memory, as was desired. They are interleaved with
those of other rows of the same square, but they can be
read at a high rate since the row of the memory does not
change. Consequently, the transposition of the matrix is carried
out efficiently and using only a memory of size N and no
multiplexer. This is possible because every sample is stored
in the memory address released by the sample provided at
the output at the same instant. This reduces the size of
the memory with respect to double buffering strategies and
simplifies control since data are written in those addresses
that are being read.

The suggested address mapping allows for a throughput of
one sample per clock cycle. To guarantee this rate, the access
protocol in terms of the sequence of commands to access the
limited access memory must support this rate. The solutions
for this is based on making use of several memory banks, B ,
where each of the banks supports a rate of 1/B samples per
clock cycle. This is studied later in Section VIII and applies
to all the scenarios that use limited access memories.

C. Non-Square Matrices

For non-square matrices, σ k = Id is fulfilled for a certain
k > 2. By following the same strategy used for square
matrices, it would be necessary that the λ bits of each of the
k read/write patterns correspond to columns of the memory,
which requires that Lk ≤ MC . This leads to a low value of
L. Indeed, if k is large, the condition may not be fulfilled.
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Fig. 6. Transposition of non-square matrices with access limitations.
(a) Small RAM folowed by a large SDRAM for j > n/2. (b) Large SDRAM
followed by a small RAM for j < n/2.

In this case, the strategy for square matrices presented in the
previous section is not feasible for non-square matrices.

In order to solve this issue, we propose an alternative
strategy that makes use of a large memory with limited
access and a small auxiliary memory. The strategy consists
in dividing the matrix transposition into a permutation for the
large memory and a permutation for the small one.

Let us consider the matrix transposition in equation (11),
which is a general equation for any size size of the matrix.
When j > n/2, the matrix transposition can be calculated as
σ = σ2 ◦ σ1 where

σ1(un−1 . . . u0) = un−1 . . . u j un− j−1 . . . u0u j−1 . . . un− j ,

σ2(un−1 . . . u0) = u j−1 . . . u2 j−nun−1 . . . u j u2 j−n−1 . . . u0.

(21)

The permutation σ1 is a perfect shuffle [33] of 2 j elements,
whereas the permutation σ2 fulfills σ 2

2 = Id and has a
periodicity k = 2. Therefore, σ2 can be implemented by using
a limited access memory of size M = N = 2n and following
the strategy for square matrices in previous section, whereas
σ1 is a smaller memory of size J = 2 j . Note that in this case
the auxiliary memory is placed before the large limited access
memory, as shown in Fig. 6(a).

If j < n/2, the permutation σ in equation (11) can be
calculated as σ = σ2 ◦ σ1 where

σ1(un−1 . . . u0)

= un− j−1 . . . un−2 j un−1 . . . un− j un−2 j−1 . . . u0,

σ2(un−1 . . . u0)

= un−1 . . . un− j un−2 j−1 . . . u0un− j−1 . . . un−2 j . (22)

In this case, the permutation σ1 has a periodicity k = 2 and
uses the limited access memory, whereas σ2 is calculated with
an auxiliary memory of size J = 2n− j . Note that in this case
the auxiliary memory is placed after the large limited access
memory, as shown in Fig. 6(b).

As the matrices are usually images, the ratio between the
number of rows and columns will be close to 1, unless the
image is extremely wide or high. Therefore, the size of the
auxiliary memory will be close to

√
N , being significantly

smaller than the large limited access memory.
This strategy requires a total memory of size N + J and no

multiplexer. It achieves a throughput of one sample per clock
cycle and a latency of N + J clock cycles.

VII. USING MULTIPLE MEMORIES IN PARALLEL

Several memories in parallel must be used when the size of
the matrix is larger than the size of a single memory and also
when it is necessary to increase the throughput of the system.
On the one hand, if the size of the matrix is larger than the
size of the memory, the use of more memory chips serves to
increase the total number of memory addresses, but does not
add additional constraints. Thus, the group of memory chips
can be considered as a single memory, where several bits of
the address directly select the memory chip. On the other hand,
the use of several memory chips for increasing the throughput
demands a specific management of the data in order to make
the most of the chips and use them simultaneously at the
highest rate. The cases of square and non-square matrices are
explained in Sections VII-A and VII-B, respectively.

A. Square Matrices

Let us assume that a continuous flow of sets of N = 2n

data is received, where every clock cycle P = 2p data are
provided in parallel. Thus, the data set arrives during 2n−p

clock cycles. According to this, the terminals are numbered
as T = 0 . . . 2p − 1 and the time of arrival of the N data is
defined as t = 0 . . . 2n−p − 1 [20]. Based on this, the control
counter has n − p bits, being cn−p−1 . . . c0.

In this context, the matrix transposition is defined as

σ(un−1 . . . un/2un/2−1 . . . u p|u p−1 . . . u0)

=un/2−1 . . . u pu p−1 . . . u0un−1 . . . un/2+p|un/2+p−1 . . . un/2,

(23)

where the vertical bar is used to separate the serial and parallel
parts [20]. Here, it is assumed that n/2 > p.

The solution in this case is based on splitting σ in

σ = σ3 ◦ σ2 ◦ σ1, (24)

where

σ1(un−1 . . . un/2un/2−1 . . . u p|u p−1 . . . u0)

= un−1 . . . u p|(u p−1 ⊕ un/2+p−1) . . . (u0 ⊕ un/2),

σ2(un−1 . . . un/2un/2−1 . . . u p|u p−1 . . . u0)

= un/2−1 . . . u p(u p−1 ⊕ un/2+p−1) . . . (u0 ⊕ un/2)un−1 . . .

. . . un/2+p|u p−1 . . . u0,

σ3(un−1 . . . un/2un/2−1 . . . u p|u p−1 . . . u0)

= un−1 . . . u p|(u p−1 ⊕ un/2+p−1) . . . (u0 ⊕ un/2). (25)

The permutations σ1 and σ3 only modify the parallel part,
whereas σ2 only modifies the serial part. Therefore, σ1 and
σ3 can be implemented with multiplexers that route the data
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in the parallel branches, whereas σ2 can be implemented by
using memories.

First, let us analyze the permutations σ1 and σ3. In parallel-
parallel permutations, the circuit that carries out the permu-
tation is obtained by defining the input and output terminals
of the parallel part of the permutation [20]. By taking into
account that ui = ci−p for i > p, the input terminal for
σ1 and σ3 is T0 = u p−1 . . . u0 and the output terminal is
T1 = (u p−1⊕cn/2−1) . . . (u0⊕cn/2−p). The values u p−1 . . . u0
define the terminal and are constant for each terminal. Thus, if
cn−p−1 . . . c0 = 0 . . . 0, then T1 = T0 and if cn−p−1 . . . c0 =
10 . . . 0, then T1 = ū p−1u p−2 . . . u0, i.e., T1 is the terminal
that results from negating the MSB of T0.

The assignment of T0 to T1 is carried out with a multiplexer
network as that in Fig. 7, which represents the case for p = 3.
Each switching element consist of two multiplexers that make
the inputs either continue in the same path or change paths.
Each stage of multiplexers is controlled by one of the bit of
the counter. If the bit is equal to 0, then the stage passes the
inputs without changing their path. If the bit is equal to 1, the
stage exchanges the paths. The hardware cost of this network
is P log2 P multiplexers.

Second, the permutation σ2 only affects data in series. Thus,
parallel paths are not mixed and the permutation is carried
out with a group of P memories in parallel. By setting the
writing address for the first data set to W1 = cn−p−1 . . . c0,
then, according to (8) and taking into account that ui = ci−p

for i > p, the reading address is

R1 = cn/2−p−1 . . . c0(u p−1 ⊕ cn/2−1) . . .

. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2. (26)

According to (7), W2 = R1 and, as σ 2 = Id, then R2 = W1.
This leads to

Wi =

⎧⎪⎨
⎪⎩

cn−1, . . . , c0, if i odd,

cn/2−p−1 . . . c0(u p−1 ⊕ cn/2−1) . . .

. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2, if i even,

(27)

Ri =

⎧⎪⎨
⎪⎩

cn/2−p−1 . . . c0(u p−1 ⊕ cn/2−1) . . .

. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2, if i odd,

cn−1, . . . , c0, if i even,

(28)

In theses equations, u p−1 . . . u0 are constants that indicate
the terminal or parallel path. Thus, the memories in parallel
calculate different permutations with small variations.

Fig. 8 shows the circuit that obtains the read and write
addresses to the memories. To write odd-indexed matrices
and read even-indexed ones, the memory address is obtained
directly from the bits of the counter, as shown in Fig. 8(a). To
write even-indexed matrices and read odd-indexed ones, the
upper n/2− p bits are exchanged with the lower n/2− p bits,
and the intermediate bits of the address are obtained by con-
necting them with a wire or an inverter to the corresponding
bits of the counter, depending on the constant value that each
ui takes. This, is shown in Fig. 8(b).

If the memories have limited access, the read and write
addresses are obtained as in Section VI, i.e., the λ LSBs for
each read and write pattern are assigned to columns of the
memory.

Fig. 7. Switching network for the permutations σ1 and σ3 in equation (25)
for the particular case of p = 3.

Both for limited access memories and non limited access
memories, the circuit requires a total memory of size N and
2P log2 P multiplexers. The throughput is P samples per
clock cycle and the latency is N/P clock cycles.

B. Non-Square Matrices

The transposition of non-square matrices with P = 2p

parallel paths is defined by the permutation

σ(un−1 . . . u j u j−1 . . . u p|u p−1 . . . u0)

= u j−1 . . . u pu p−1 . . . u0un−1 . . . u j+p|u j+p−1 . . . u j . (29)

Here, it is assumed that n − p ≥ j ≥ p.
As for square matrices, for non-square matrices the permu-

tation σ is split in three permutations

σ1(un−1 . . . u p|u p−1 . . . u0)

= un−1 . . . u p|(u p−1 ⊕ u j+p−1) . . . (u0 ⊕ u j ),

σ2(un−1 . . . u p|u p−1 . . . u0)

= u j−1 . . . u p(u p−1 ⊕ u j+p−1) . . . (u0 ⊕ u j )un−1 . . .

. . . u j+p|u p−1 . . . u0,

σ3(un−1 . . . u p|u p−1 . . . u0)

= un−1 . . . u p|(u p−1 ⊕ un− j+p−1) . . . (u0 ⊕ un− j ). (30)

The difference with respect to the case of square matrices
is that now σ1 �= σ3 and σ 2

2 �= Id. For σ1, the following is
obtained:

T0 = u p−1 . . . u0,

T1 = (u p−1 ⊕ c j−1) . . . (u0 ⊕ c j−p), (31)

and for σ3,

T0 = u p−1 . . . u0,

T1 = (u p−1 ⊕ cn− j−1) . . . (u0 ⊕ cn− j−p). (32)

These permutation require the same network of multiplexers
as in Fig. 7, with the only difference in the counter bits used
for the commutators.
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Fig. 8. Assignment of the bits of the counter to the memory address when using multiple memories in parallel to computer the matrix tranposition in a
continuous flow. (a) Write address for odd-indexed matrices and read address for even-indexed matrices. (b) Write address for even-indexed matrices and read
address for odd-indexed matrices.

The permutation σ2 can also be implemented as the case of
square matrices with the difference that its period is k > 2.
This is solved by making use of the circular counter in Fig. 3.

Finally, if a memory with limited access is used, the permu-
tation σ2 can be split in the way explained in Section VI-C.

For non limited access memories, the circuit requires a
total memory of size N and 2P log2 P multiplexers, has a
throughput of P samples per clock cycle and a latency of N/P
clock cycles. For limited access memories, the circuit uses a
total memory of size N + J and 2P log2 P multiplexers, has
a throughput of P samples per clock cycle, and a latency of
(N + J )/P clock cycles.

VIII. IMPLEMENTATION

This section applies the previous ideas to a real system
where matrices must be transposed in a continuous flow.

A. Specification

A pipelined 2D transform must be designed for the compu-
tation of a continuous flow of SAR images with a throughput
of at least 40 MS/s. The size of the 2D transform is up to
8192 × 8192 points, and data are complex with 16 + 16 bits
of word length.

For the 1D transforms, there exist hardware architectures
that can achieve throughputs much higher than 40 MS/s, so the
bottleneck is to design the circuit for the matrix transposition.

The target FPGA and SDRAM memory are a Virtex-7
XC7VX330T -1 FFG1157 [34] and a dual data rate (DDR)
SDRAM [26] with the following characteristics:

• Model: Micron MT46V32M16.
• Size: 512Mb (4 banks of 8M x 16-bit words).
• Programmable burst lengths: BL = 2, 4 or 8.
• Clock rate up to 200 MHz for Speed Grade -5B and CAS

(READ) latency CL=3.

TABLE I

COMMAND TIMES IN ns AND CLOCK CYCLES FOR f = 200 MHz

The largest image has 8192 × 8192 32-bit data, which is
equivalent to 128M 16-bit. This means that we need to make
use of the 4 memory banks of 32M 16-bit words for the matrix
transposition.

The configuration of the SDRAM for 16-bit words defines
a memory where the addresses consist of 2 bits for the bank,
13 bits for the row and 10 bits for the column. Note that
although 10 bits are used for selecting the column of the
SDRAM, both the real and imaginary parts of the data are
stored in consecutive memory addresses and, thus, the effective
number of columns is MC = 29.

The SDRAM memory is controlled by a set of commands,
where the most important ones are: PRECHARGE, AUTO
REFRESH, ACTIVE, READ, WRITE and NOP (No Opera-
tion). Times between commands are summarized in Table I.
Rows of the memory banks are activated with ACTIVATE after
a PRECHARGE. A new activation for the same bank requires
to execute PRECHARGE and ACTIVATE again. Once a row
of any of the banks is activated, it is possible to carry out any
number of READ and WRITE operations on this row in bursts
of length (B L). The READ and WRITE commands transfer
2 16-bit data per clock cycle, each of them in half of the
clock period. Consequently, one complex sample can be read
or written every clock cycle when the READ or the WRITE
commands are executed. Finally, the AUTO REFRESH of
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Fig. 9. Timing diagram of the SDRAM memory.

TABLE II

AREA OF THE SDRAM CONTROLLER FOR TRANSPOSING A CONTINUOUS

FLOW OF MATRICES FOR VARIOUS MATRIX SIZES

the memory has to be done periodically and executed after
a PRECHARGE and before ACTIVATE.

B. Proposed Solution

In order to achieve continuous flow, in a period of T clock
cycles T data must be read and written, which corresponds to

Fig. 10. Management of 4 memory chips. This scheme is adequate for
reading and writing samples simultaneously in all the chips.

2T operations. Each memory bank can read or write 1 sample
per clock cycle, giving a total of 4 operations per clock cycle.
According to this, the 2T operations are calculated in T/2
clock cycles and the remaining T/2 clock cycles are left for
the rest of the commands. The proposed protocol is shown in
Fig. 9. In it, T = 128 and a memory row change happens
every 16 read and write operations. Note that first data are
read and then new data are written in the same addresses.
This means that in each group of 64 consecutive samples,
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TABLE III

COMPARISON OF HARDWARE CIRCUITS FOR MATRIX TRANSPOSITION USING MEMORIES

Fig. 11. Wrapper of the SDRAM.

16 will go to each memory. This is guaranteed by using the
reading/writing scheme in Fig. 10, where L = 16, C = 4
is the number of chips and C · L = 64. In this way, from
every 64 consecutive data, 16 go to each bank, both row-wise
and column-wise. Furthermore, as L = 16 and MC = 29, the
condition in equation (18) is met.

The burst length that we consider is B L = 2. Note the dif-
ference between B L, i.e., the number of values transferred in
a read/write command, and L, i.e., the number of consecutive
data stored in the same memory row.

In order to adapt the access protocol to the SRAM memories
to 1 sample per clock cycle at the input and output of the
system, small ping-pong memories are used for storing the
input and the output data, as shown in Figure 11. They consist
of 2 RAM memories of 16 words and 32 bits per word at the
input and another two at the output of the SDRAM.

For non-square matrices, the system adds an auxiliary
memory, as explained in Section VI-C. With this, the system
works for any size of the matrix from 32 ×32 to 8192 ×8192
points and for non-square matrices whose the quotient between
the larger and the smaller dimensions is Q ≤ 8.

IX. EXPERIMENTAL RESULTS

Table II shows the experimental results of the designed
controller on a Virtex-7 FPGA, XC7VX330T -1 FFG1157.
The area of the controller ranges from 3515 to 4811 FFs
and from 4206 to 6853 LUTs. Square matrices do not require
additional BRAM memories, whereas non-square matrices use
several BRAM memories. The controller works at 200 MHz.
As the sytem processes one sample per clock cycle, it reaches
a throughput of 200 MS/s, which is much higher than the
expected 40 MS/s.

The latency of the circuit in clock cycles is

Lat =
{

NR NC + 134, if NR = NC

NR NC + 134 + max {NR , NC } + 1, if NR �= NC

(33)

Consequently, the latency mainly depends on the size of the
matrix with a small overhead due to the auxiliary memories
that are included.

At 200 MHz, the case of a 8192 × 8192 matrix takes
6.7 · 107 clock cycles to do the transposition, being the
system capable of transposing 2.98 matrices of 8192 × 8192
32-bit data per second. The latency of this circuit is 0.33 s.

X. COMPARISON

Table III compares the hardware cost of matrix transpo-
sition circuits using memories. Previous approaches provide
alternative solutions to some of the scenarios presented in this
paper. First, the approaches in [18], [23], [29] target square
matrices with limited access memories. They use either a
single memory of size N [23], [29] or a double buffering
strategy with two memories of size N [18]. In this case,
the proposed approach achieves the same results in terms of
memory and multiplexers as [23], [29].

Second, the case of transposing square matrices using non
limited access memories in parallel is addressed in [10]
and uses a total memory size of N as well as 2P2 − 2P
multiplexers. Compared to it, the proposed approach reduces
the number of multiplexers to 2P log2 P , while keeping a total
memory of size N .

Third, a solution for square matrices with limited access
memories in parallel is presented in [23]. While the memory
size is N , the number of multiplexers is not reported. For this
case, the proposed approach requires a memory of size N and
2P log2 P multiplexers.

In addition to this, the proposed approach provides solution
for other scenarios, including the cases of non-square matrices
not reported in previous works. For non-square matrices using
limited access memories, the memory is N and the number
of multiplexers is 2P log2 P . For non-square matrices using
limited access memories in parallel, the memory is N + J ,
where J = 2n− j if j < n/2 and J = 2 j if j > n/2, and the
number of multiplexers is 2P log2 P .

The proposed approach can also be compared to previous
circuits for matrix transposition based on registers. The costs in
terms of memory and multiplexers for these cases are shown in
Table IV. First of all, it can be noted that previous approaches
based on registers only consider square matrices, but not non-
square ones. Likewise, these cases are not applicable when the
data set is large and a limited access memory is needed. For
the case of square matrices and serial data, some works [20],
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TABLE IV

COMPARISON OF HARDWARE CIRCUITS FOR MATRIX TRANSPOSITION USING REGISTERS

TABLE V

COMPARISON OF EXPERIMENTAL RESULTS FOR CONTINUOUS-FLOW

MATRIX TRANSPOSITION

[37] provide the optimum solution in terms of total memory,
whereas the number of multiplexers is larger than in the
proposed approach, which does not require any multiplexer.
For the case of square matrices and P = √

N , [20], [37]
require less multiplexers and memory than the proposed
approach. Finally, [38] provides an alternative for any P that
is not restricted to P = √

N . Compared to the proposed
approach, the total memory is slightly smaller, but the number
of multiplexers are of order O(P2), whereas the proposed
reduces the complexity to O(P log P).

Regarding the experimental results, Table V compares
the proposed approach to previous ones. Both the proposed
approach and [23] allow for transposing matrices of 8192 ×
8192 elements and, therefore, need to use limited access
memories. Conversely, [10] transposes a smaller memory of
32 × 32 for which a limited access memory is not needed.

In terms of performance, the proposed approach doubles the
throughput with respect to previous approaches. With respect
to area, the proposed approach and [23] use a similar amount
of resources, taking into account that the proposed approach
occupies more slices but does not use BRAMs. Finally, the
proposed approach has a latency of 0.33 s and a power
consumption of 177 mW.

XI. CONCLUSIONS

This paper has analyzed the problem of matrix transposition
in a continuous flow in a hardware system. The study is carried
out from a theoretical perspective, which was missing in the
literature. This allows to draw general conclusions and derive
the exact equations for the read and write addresses of the
memories and other control signals. Of particular interest are
the cases of non-square matrices, which had not been studied
in detail so far.

The comparison with previous works show that the proposed
approach not only provides solutions for scenarios that have
not been studied before, but also improves previous approaches
in already studied scenarios.
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