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Abstract

There is a rising number of knowledge graphs available published through various sources.
The enormous amount of linked data strives to give entities a semantic context. Using
SHACL, the entities can be validated with respect to their context. On the other hand, an
increasing usage of AI models in productive systems comes with a great responsibility in
various areas. Predictive models like linear, logistic regression, and tree-based models, are
still frequently used as they come with a simple structure, which allows for interpretability.
However, explaining models includes verifying whether the model makes predictions based
on human constraints or scientific facts. This work proposes to use the semantic context of
the entities in knowledge graphs to validate predictive models with respect to user-defined
constraints; therefore, providing a theoretical framework for a model-agnostic validation
engine based on SHACL. In a second step, the model validation results are summarized
in the case of a decision tree and visualized model-coherently. Finally, the performance
of the framework is evaluated based on a Python implementation.



Contents

1 Introduction 3
1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Semantic Constraint Validation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 RDF - Encoding Structured Information . . . . . . . . . . . . . . . 11
2.2.2 An Example RDF Graph using Turtle . . . . . . . . . . . . . . . . 14
2.2.3 Querying RDF Graphs with SPARQL . . . . . . . . . . . . . . . . 15
2.2.4 Validating SHACL Constraints over an SPARQL Endpoint . . . . 20

2.3 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Basics of Machine Learning . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Learning Algorithms and Performance Measures . . . . . . . . . . 26
2.3.3 Tree-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Related Work 35
3.1 Data Mining and Data Extraction from Knowledge Graphs . . . . . . . . 35
3.2 Integrity Constraint Validation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Model-agnostic Interpretabilty Methods . . . . . . . . . . . . . . . . . . . 36
3.4 Explainable Machine Learning over Knowledge Graphs . . . . . . . . . . . 37
3.5 Visualization of SHACL constraints . . . . . . . . . . . . . . . . . . . . . 38
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Approach 39
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Validating Constraints over Machine Learning Models . . . . . . . 39
4.1.2 Constraint-based Explanations . . . . . . . . . . . . . . . . . . . . 42

4.2 Validating Constraints over Machine Learning Models . . . . . . . . . . . 43
4.2.1 Prepositionalization . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Constraint Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 The Validation Engine . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Improving and Extending the Approach . . . . . . . . . . . . . . . . . . . 54
4.3.1 Reducing the SHACL Shape Schemas . . . . . . . . . . . . . . . . 54
4.3.2 How to Join the SHACL Validation Results with the Dataset . . . 57

1



4.3.3 Performing SHACL Constraint Validation during SPARQL Query
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Different Types of Constraints . . . . . . . . . . . . . . . . . . . . 64
4.4 Constraint-based Explanations and Interpretations . . . . . . . . . . . . . 65

4.4.1 Frequency Distribution Tables to Summarize and as a Basis for
Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Decomposing the Confusion Matrix . . . . . . . . . . . . . . . . . 70
4.4.3 Visualizing the Model Validation Results Given Multiple Constraints 71
4.4.4 Supporting the Explainability of Decision Trees . . . . . . . . . . . 76

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Implementation 85
5.1 Design, Structure and Dependencies . . . . . . . . . . . . . . . . . . . . . 85
5.2 Performance Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 The Dataset Module . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Estimating the Decision-tree-node-to-samples Mapping . . . . . . . 89
5.2.3 Caching and Calculating the Needed Intermediate Results . . . . . 90
5.2.4 Using Parallel Computation for the Visualization Process . . . . . 93

5.3 Portability and Maintainability . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Application: InterpretME 98

7 Experimental Evaluation 100
7.1 Validation Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 SHACL Constraint Validation . . . . . . . . . . . . . . . . . . . . . 104
7.1.2 The Join Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Visualization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Summary: Real Data Application . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusions and Future Work 118
8.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Chapter 1

Introduction

AI is called explainable when a user of an AI model can understand the predictions a
model makes. The user is enabled to not only interpret the model but trust the model
through given reasoning of why a decision has been made. [16, 27]
Knowledge graphs are used to store and connect data, promoting the cooperation be-
tween machines and humans. Therefore the data and its entities are stored in a way
understandable for both. [7]
Data is extracted from knowledge graphs for statistical analysis [3, 11, 48]. However, the
process only uses the context of the extracted entities during the data mining process.
On the other hand, embeddings represent the entity through its properties and links to
other entities (i.e., latent vectors). Therefore, they incorporate the semantic context for
later usage (e.g., clustering by embedding-based similarity measures [18]) but lake for
explainability. Finally, there are rule-based systems. Mohamed et al. [25] mine rules for
comprehensible cluster labels. Halliwell et al. [30] generate ground truth explanations
for the link prediction task based on handcrafted rules. Even handcrafted rules show to
suffer from understandability in some cases [30].
In the area of the semantic web, SHACL engines are known for their capability to validate
knowledge graphs against a set of constraints (i.e., rules). Therefore rating entities based
on their integrity and trustability.
This work aims to exploit SHACL engines to support the explainability of predictions
made by machine learning models. The approach is naturally based on handcrafted con-
straints (i.e., rules), which should facilitate the generation of understandable explanations.
Based on the constraints the approach will additionally increase the interpretability of
AI models by annotating the model with constraint validation results. The constraint
validation results will be based on the semantic context provided by a knowledge graph.
Standard interpretability methods (e.g., LIME [56], or Partial Dependence Plots [24]) do
not take into consideration the context of the entities used to train the model or make
predictions. Therefore Using the semantic context of entities in the described way is novel
and closes a hole in interpretability methods.
Recently, machine-learning-based techniques have been used to accelerate COVID-19-
related drug discovery during the pandemic [67]. Drugs found through these kinds of
techniques need to be validated carefully. On a large scale, this highlights the importance
of explainable AI. Most likely, the lack of explainability of the AI model used for drug
discovery leads to the need to validate the results by hand. However, given the expertise
in validating drugs, there are for sure constraints involving the training data and the
assigned targets. These could have been used for automatic validation and a step toward
better explainable AI.
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weight person allergic_to gender pregnant country vaccinated
4
12 :Max PEG male ⊥ Germany ⊥
1
12 :Maria female ⊤ Germany ⊥
6
12 :Eva female ⊥ Germany ⊤
1
12 :Laura PEG female ⊥ Germany ⊥

Figure 1.1: Dataset about COVID-19 Vaccination

Figure 1.2: Visualization of an RDF Graph containing some Instances of the Data

1.1 Motivating Example
The motivating example is about the social problem of vaccine hesitancy. This is a
related problem, which got pronounced during the COVID-19 crisis, when the trust in
official sources and scientific studies became a decisive factor in connection with the
willingness to vaccinate [52]. To counteract this behavior, one might imagine a predictive
model based on a knowledge graph, which gives explainable recommendations to people,
whether they should get vaccinated or not. Therefore, a social-themed knowledge graph
about people and their COVID-19 vaccination status would be required. Due to privacy
reasons, such a knowledge graph is not publicly available. However, one might expect
that the introduction of electronic health records in more and more countries [19] will
lead to broader availability of this kind of data to specific persons in the future.
For the sake of comprehensibility, a tiny dataset (see figure 1.1) is used for demonstration
purposes. The dataset is not meant to be true in reality, but will help explain the approach
(see chapter 4). Each row in the table represents a type of sample, which has a weight
assigned. This weight gives the proportion of this type of sample in the dataset. As
described above, the example assumes a knowledge graph, which was used to extract the
data. A small part of the knowledge graph is depicted in Figure 1.2.
In this work, the goal is twofold. On the one hand, the work aims to use the additional
context provided by a knowledge graph for a given set of entities. This is to be imple-
mented to discover further insights into the patterns of machine learning models trained
on the data extracted from the knowledge graph. On the other hand, a goal is to allow
users to validate certain assumptions about the model using the context. To achieve that,
user-defined constraints about the target of the machine learning model are validated
against a knowledge graph and a model’s predictions. When extracting a dataset, as in
Figure 1.1, from a knowledge graph, as in Figure 1.2, the graph structure of the data gets
lost. In this example, there are the contact_with predicates, which get discarded. The ex-



Figure 1.3: Decision tree trained on the dataset from figure 1.1 assuming 9999 samples (n
denotes the number of samples getting predictions assigned in the leaf) visualized using
dtreeviz [63]

ample will show how this kind of semantic context, exclusively available in the knowledge
graph, might be used to explain the model’s predictions.
Available knowledge graphs suffer from data quality issues. For example, seven years ago,
a paper identified certain substantial constraints over DBpedia [45], which are frequently
violated [39]. The situation has not changed until today [58]. This problem gets accel-
erated when learning from such kind of data. A model trying to generalize to this data
will suffer from the same quality constraints as the data. Moreover, it will apply the
recognized patterns to new data, which in turn, will also suffer from the same issues.
Both, knowledge graphs as a source of further insights and data quality issues in knowledge
graphs give rise to semantic constraint validation. This has the capability of identifying
data points, which violate certain constraints and predictions made on the basis of these.
Let us assume a decision tree, trained on the given dataset, which recommends a person
X, which is not allergic to PEG (included in COVID-19 vaccines) but is pregnant, not to
get vaccinated (see Figure 1.3).
Although the decision tree is already inherently explainable, and it is, therefore, known
why it recommends not getting vaccinated, it remains unclear whether the decision is
rational with respect to human constraints or scientific facts. For example, there might
be a constraint stating: „Every pregnant person in Germany, which has more than 20
contacts with non-vaccinated persons should get vaccinated“. The decision tree alone
cannot be used to validate the constraint. The underlying knowledge graph is needed to
count the number of contacts with vaccinated persons. An option would be to include
the number of contacts with non-vaccinated persons in the dataset, but that will not
guarantee that the decision tree uses this data in a constraint conform way. Further,
one could exclude the examples from the dataset which violate the constraint. This



Figure 1.4: The decision tree of figure 1.3 annotated with the validation results of the
example constraint. Pregnant persons not allergic to PEG are predicted not to be vacci-
nated, which violates the example constraint, given the semantic context of the persons
in the knowledge graph.

might be a viable approach but will only eliminate the faulty examples from the dataset,
which might, in turn, lead to a better-adapted model. However, edge cases not covered
by the dataset and a generalized model might continue to give predictions violating the
constraint. Therefore, it might be good to learn about the model trained on the available
data.
As a result, the approach implicitly validates the model given a set of constraints and
the knowledge graph to explain the model’s prediction with respect to the constraints. In
this context, “implicitly” means that each sample in the dataset is used to conclude the
model’s behavior. This kind of information is then used to visualize constraint satisfaction.
An example of such a visualization is shown in Figure 1.4, which demonstrates that the
prediction the model makes for person X violates the constraint. On the other hand,
it confirms the other predictions of the model. For example, the model suggests not
getting vaccinated if someone is allergic to PEG. The constraint does not contradict these
predictions. Therefore, a potential user of the model can be sure that the model’s decision
is not made based on data for which the model makes invalid predictions.
Performing constraint validation this way has further advantages: One might find errors
in the model, which need to be solved, or reject invalid predictions. Furthermore, a model
can be checked to apply in a different environment with different constraints.

1.2 Contributions
This work contributes a theoretical framework to efficiently validate predictive models us-
ing user-defined constraints based on semantic web technologies. The framework exploits



the SHACL shape schema validation to make the semantic context of entities usable for
the validation of predictive models. In this context, two types of constraints arise: (i) Pre-
diction constraints to explain and check the model’s predictions and (ii) Data constraints
to measure the trustworthiness of the samples in the dataset used to train a predictive
model.
Heuristics are proposed for efficiency: SHACL engine agnostic heuristics allow to minimize
the number of SHACL validation results needed to be generated. Join heuristics are
presented to reduce the time required to align the SHACL schema validation results with
the samples in the dataset used for machine learning.
Based on the constraint validation results generated by the framework, models’ predic-
tions can be explained or better interpreted. The way of visualizing decision trees of the
dtreeviz library [63] with the samples’ ground truth distribution is transferred to be usable
for the annotation with constraint validation results. The latter allows for increased inter-
pretability. Confusion matrices are decomposed for better interpretability of classifiers’
performance. The whole framework is publicly available in the form of a python library1

and is evaluated with respect to efficiency criteria.

1.3 Document Structure
The thesis is split up into eight chapters. Chapter 1 is the introduction and provides the
reader with a motivating example, the main contributions, and the problem tackled in
this work. Next, chapter 2 presents the mathematical notations, symbols, and the basic
concepts needed to understand the following chapters. Having understood the necessary
background, chapter 3 highlights topics related to this work, summarizes the state-of-the-
art while referring to suitable papers, and positions the thesis with respect to them. The
approach, including the formal problem definition, the proposed solution, and extensions
and improvements to it, are discussed formally in chapter 4. For a better understanding of
the approach, the motivating example is used to demonstrate the method by using it as a
running example. Chapter 5 provides the reader with an implementation of the approach,
highlighting the different modules and design decisions. Parallel to the creation of this
work, a resource called “InterpretME” has been created as a collaborative project with
four Scientific Data Management Research Group members. InterpretME [12] is shortly
presented as an application of this work in chapter 6. The implementation is evaluated
with respect to its performance based on four benchmarks in chapter 7. Finally, it comes
to a conclusion in chapter 8.

1.4 Summary
The rough overall approach presented in the motivating example is summarized in short
here. Figure 1.5 shows the sequential process described in the motivating example. The
process starts with a knowledge graph (like Figure 1.2), which gets transformed into
a dataset (like Figure 1.1). The dataset is in turn used to train a machine learning
model like the decision tree in Figure 1.3. Now, constraints like the one about contacts
with non-vaccinated persons can be validated over the knowledge graph and the trained
machine learning model. Afterward, the constraint satisfaction results can be used for
visualizations, meant to explain predictions of the model, show the validity according to

1https://github.com/JulianLoewe/Validating_Models

https://github.com/JulianLoewe/Validating_Models


Figure 1.5: Showing the overall approach as a sequential process

the constraint, and might provide inside into patterns used by the model. Figure 1.4
illustrates this visualization.



Chapter 2

Background

This chapter introduces some basic concepts and notations used in this work. Although
some basic definitions and lemmas are presented, no claim is made to completeness. The
reader should refer to the literature cited for a sound and complete description of the
concepts. The background is split into two main parts, referring to the title of the thesis.
The first part is about the concepts and the topic of semantic constraint validation, and
the second part focuses on introducing approaches related to explainable AI.

2.1 Preliminaries
This section is used to summarize the notation used in this work. Therefore, let A, B
and C be sets; D be a tuple; f : A→ B and g : B → C arbitrary functions and a ∈ R to
introduce the mathematical symbols listed in Table 2.1.

Symbol Meaning

Gf The Graph {(x 7→ f(x)) | x ∈ A ∧ f(x) ∈ B} of f
dom(f) The domain {x | (x 7→ f(x)) ∈ Gf} of f
P(A) Power set of A
f ◦ g Composition of f and g
∅ Empty set
tuple A function transforming a set into a tuple with arbitrary order
max(A) The maximum x of A where ∀a ∈ A (x ≥ a)
min(A) The minimum x of A where ∀a ∈ A (x ≤ a)
id The identity function mapping each instance to itself
D[i] The i-th element in D
|A| Number of elements in A
|a| The absolute value of a
(ai,j)i∈A

j∈B
A matrix with elements ai,j and a dimension of |A| × |B|

E := A E is assigned A, such that E equals A after the operation.
f(.) f is marked to be a function of arity one.

Table 2.1: Mathematical Notation

Further, this work makes use of several logical expressions. To define what a logical
expression is and how it should be interpreted, the concept of languages and structures
is used. In this context, a word in the language is a logical expression, which is built
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according to the predicate logic and interpreted using a given structure S = (A;R;F ; C).
A is called the carrier of the structure and provides the set of available values for variables.
R is the set of relations, F is the set of functions, and C is the set of constants. All the
syntactically correct words, which are built according to the predicate logic with the
symbols, relations, and functions provided by S are contained in the language, which is
denoted by LS.
Semantically, the symbols used in this work have the usual meaning, if not defined oth-
erwise. In this thesis, the logical expressions do not involve quantification, therefore,
variables can only occur unbound. A logical expression σ ∈ LS can be evaluated via
I |= σ the logical true (⊤) or false (⊥), where I is an interpretation. An interpretation
is a tuple (S, β), where β is a partial function assigning values from the carrier A to the
available variables.
To distinguish between this kind of evaluation and the evaluation of other kinds of ex-
pressions υ, the second kind uses the Scott brackets [[υ]]λθ for evaluation with various
parameters θ and λ. One can think of it as asking, whether θ in combination with λ
models υ. Table 2.2 summarizes the notation explained.

Symbol Meaning

[[υ]]λθ The evaluation of υ given θ and λ (Scott brackets)
var(σ) Function to retrieve all kind of variables in σ
I |= σ I models σ (semantic entailment)
⊤ Logical true equivalent to 1
⊥ Logical false equivalent to 0
ϕ[a/b] ϕ but b is replaced with a

Table 2.2: Logical Symbols

As a reference for the reader, Table 2.3 shows the infinite sets defined in this work:
Some usual namespaces (the meaning of a namespace is defined in section 2.2.1) used
in this work are defined in Table 2.4 to shorten the examples, which make use of these
namespaces.
Finally highlighting is used in pseudocode and when reporting implementation details for
the ease of reading. The following concepts are formatted as their counterparts will be in
the thesis: Module, Class, instances, “paramters”, “functions”, pseudocodeFunction,
pseudocode_variable and :ressourceIdentifier.

2.2 Semantic Constraint Validation
The Semantic Web aims to improve the ability of machines to not only represent but un-
derstand the data they are processing and storing. At the same time, the data should stay
comprehensible to humans, allowing for the cooperation of humans and machines in mak-
ing decisions. Therefore, technologies are designed to deal with human-understandable
data structures, giving their entities a semantic meaning. [7]
This section introduces the W3C recommended technologies to perform constraint valida-
tion over structured data carrying a semantic meaning and, therefore, is called semantic
constraint validation.



Symbol Meaning Definition

I Infinite set of IRIs 1
L Infinite set of literals 2
B Infinite set of blank nodes 3
G Infinite set of knowledge graphs 6
V Infinite set of query variables 7
T Infinite set of triple patterns 8
M Infinite set of SPARQL solution mappings 9
P Infinite set of graph patterns 11
Q Infinite set of SPARQL SELECT queries 12
−→P Infinite set of property paths 14
CP Infinite set of property path constraints 15
QT Infinite set of target queries 16
S Infinite set of shapes 17
SN Infinite set of shape schemas 17
η Infinite set of sample-to-node mappings 23
C Infinite set of constraints 24
Θ Infinite set of model-validation-result functions 32
E Infinite set of explanation mappings 34
Γ Infinite set of grouping functions 42

Table 2.3: Infinite Sets

Prefix Namespace

http://example.org/

xsd http://www.w3.org/2001/XMLSchema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

sh http://www.w3.org/ns/shacl#

Table 2.4: Prefixes and their associated namespaces

2.2.1 RDF - Encoding Structured Information

RDF – short for Resource Description Framework – is a data model used to describe
resources on the web. Originally, RDF was mainly used for metadata of web resources
but was then extended to a general machine-interpretable exchange format to encode
structured information. Nowadays, RDF has become the W3C standard for publishing
and exchanging structured data over the web. The concepts and the abstract syntax
presented in this section are taken from [17], unless stated otherwise. The following
builds up the concepts of RDF in a bottom-up fashion.
When talking about something in the world in the context of the web, there are two
main types of things called resources. First, there are entities that need to be described
uniquely in a global context. These types of resources are assigned an IRI.



Definition 1: IRI
IRIs („Internationalized Resource Identifier“) are a super set of URIs („Unique Re-
source Identifier“), which additionally allow the use of Unicode characters, while
identifying resources uniquely. Generally, they are structured hierarchical [6]:

<scheme>://<authority><path>?<query>#<fragment>

The infinite set of all possible IRIs is denoted by I.

A collection of IRIs used in this context is called an RDF vocabulary. Additionally, a
set of IRIs with a common prefix pre followed by an arbitrary local part post can be
abbreviated by defining an RDF namespace n. Leading to the shorthand n:post to be
used for the IRI, which is the concatenation of pre and post.

Example 1: RDF build-in vocabulary

The built-in RDF vocabulary is a set of IRIs, which, for instance, include the
definition of the essential data types. A data type needs to be identified uniquely
and, therefore, gets a unique IRI assigned. For example, the data type string has
the following IRI.

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

Clearly, the IRI can be decomposed into the parts mentioned in definition 1. An-
other IRI belonging to the same vocabulary is used to state that an entity is of a
specific class:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Both IRIs have the common prefix:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

Usually, rdf is chosen as a shorthand so that the IRIs can be shortened to
rdf:langString and rdf:type.

Secondly, there might be things like values, dates and items (e.g., items with a data type)
defined. These may be used in different contexts without referring to the same thing and
are called literals.

Definition 2: Literal
A literal consists of a Unicode string and a data type IRI, as mentioned in example
1. Further, if the data type is rdf:langString, then a language tag should be defined.
The infinite set of all possible literals is denoted by L.

Literals, IRIs, and a third concept named blank nodes are called RDF terms. Though,
there may be string literals, which are also used as IRI, the entities denoted with these
concepts are distinct and distinguishable, which means that a literal can never be mixed
up with an IRI or a blank node.



Definition 3: Blank Node
A blank node is disjoint from the concept of literals and IRIs. Apart from that, the
set of blank nodes is arbitrary, and an identifier of a blank node may only be unique
in a local representation. The infinite set of all possible blank nodes is denoted by
B.

RDF is a graph-based data model. The goal of using the RDF terms as building blocks
is to encode structured information. RDF triples are used to represent the information
in the form of facts about resources.

Definition 4: RDF triple
A triple (s, p, o) is called an RDF triple, iff s ∈ I ∪B, p ∈ I and o ∈ I ∪ L ∪B. The
three components of the triple are called subject s, predicate p, and object o.

A set of triples (i.e., facts about resources) can then be combined into an RDF graph,
which is defined as follows:

Definition 5: RDF graph
An RDF graph G is a set of RDF triples as defined in definition 4.

Given the definition, it is clear that an RDF graph G ⊂ (I∪B)× I× (I∪L∪B) can also
be understood as a representation of a labeled directed graph [14], which is the statement
of the following lemma.

Lemma 1: Two representations for an RDF graph
An RDF graph G1 as defined in definition 5 is equivalent to the representation of a
labeled directed graph G2 = (VG, EG) where VG ⊂ I ∪ L ∪ B are the vertices and
EG ⊆ VG × I× VG are the edges between nodes of VG labeled with predicates of I.

Proof. To show the equivalence, the conversion from G1 to G2 and vice versa needs to
be shown. Converting G1 into G2 is a matter of setting VG = {s | (s, p, o) ∈ G1} ∪ {o |
(s, p, o) ∈ G1} and EG = G1. The reverse has to be done by setting G1 = EG, such that
two nodes s and o are connected with a directed edge (s, p, o) ∈ EG, if there is a triple
(s, p, o).

A labeled directed graph G = (VG, EG), created as above, can be visualized as shown
in Figure 1.2. To distinguish literals from the other nodes, they are drawn rectangular,
while the other nodes are drawn round. A blank node, therefore, would be an empty
round node. Here, a knowledge graph is defined as a labeled directed graph.

Definition 6: Knowledge Graph [14]
A knowledge graph G = (VG, EG) is a labeled directed graph with vertices VG and
edges EG. The set of all possible knowledge graphs is defined to be G

By encoding structured information in the knowledge graph, the labeled edges give the
entities in the knowledge graph a meaning. That is, a labeled edge can be seen as a
sentence consisting of a subject (the entity), the predicate (the label of the edge), and the



<http://example.org/Max> <http://example.org/gender> "male"@en .

<http://example.org/Max> <http://example.org/contact_with> <http://example.org/Maria> .

<http://example.org/Max> <http://example.org/allergic_to> "polyethylene glycol"@en .

<http://example.org/Max> <http://example.org/allergic_to> "broccoli"@en .

<http://example.org/Max> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/Person> .

<http://example.org/Maria> <http://example.org/age>

34^^<http://www.w3.org/2001/XMLSchema#integer> .

Listing 2.1: N-Triples serialization of a superset of a subgraph of figure 1.2

object (the literal or another entity). Multiple sentences (or triples in the RDF graph)
about an entity sets it in a semantic context, giving it a meaning.

2.2.2 An Example RDF Graph using Turtle

Given the abstract RDF data model, it makes sense to define a concrete textual syntax
to serialize RDF graphs. The W3C recommended language for serializing RDF graphs
is Turtle. Turtle – short for Terse RDF Triple Language – is built on top of the N-
Triples serialization, with the goal of a more compact serialization. Thus, every N-Triples
serialization is a Turtle serialization. [5] The Turtle serialization as presented here is
defined in [5] and the N-Triples serialization is defined in [4].
Turtle is introduced by serializing an extended subset of the RDF graph given in the
motivating example in figure 1.2. First, using N-Triples and building on that in a more
compact form using Turtle.

N-Triples As the name “N-Triples” suggests, the serialization of an RDF graph with
N different triples is just writing down N triples. A dot is used to mark the end of a
triple. Each triple consists of a subject, predicate, and object, which are separated by a
space. In listing 2.1 the graph consists of 6 triples. The end of each of them is marked
with a dot.
An IRI is always enclosed with “<” and “>” to distinguish it from literals. As defined in
definition 2, a literal is just a string associated with a data type. Literals without a prede-
fined data type have their data type annotated with a preceding “ˆˆ” and the correspond-
ing data type, expressed as IRI. According to definition 4, each predicate of a triple has to
be an IRI. This can also be validated in listing 2.1, where each predicate is marked as an
IRI. Furthermore, the last triple has as an object the literal 34. As the 34 is meant to be of
the data type integer, it is annotated with the IRI http://www.w3.org/2001/XMLSchema#integer.
A particular case of a literal is one surrounded with “””, which has the data type string
predefined (see example 1) and should instead be annotated with a language tag. This is
done by extending the literal with “@” and the language tag, which is a Unicode string
without spaces. In listing 2.1 the first and the third triple have a literal of data type
string as an object, which is additionally marked with the language tag “en”.

Turtle Next, listing 2.1 is inspected to introduce some useful shortcuts defined in Turtle.
The first thing one notices when inspecting listing 2 is that it does not use the shorthand
already defined in section 2.2.1 for IRIs with a common prefix. To be able to use these
namespaces, one first needs to define them. This is done by using the “@prefix” key-
word followed by the namespace, “:” and the IRI, which is replaced by the namespace.



@prefix : <http://example.org/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

:Max :gender "male"@en ;

:contact_with :Maria ;

:allergic_to "polyethylene glycol"@en, "broccoli"@en ;

a :Person .

:Maria :age 34^^xsd:integer .

Listing 2.2: A Turtle serialization of the graph serialized with N-Triples in listing 2.1

In listing 2.2, there are two prefixes defined. The first maps the empty namespace to
http://example.org/ and the second maps “xsd” to http://www.w3.org/2001/XMLSchema#. After
defining the prefixes, they can be used as already demonstrated in example 1. There is
no longer any need to encapsulate them in “<” and “>”. Next, there are four triples,
starting with :Max, which can also be written short in Turtle by allowing predicate object
lists. Such a list of triples with a common subject is separated with a semicolon. The
analog is also applied to triples with subject and predicate in common by allowing ob-
ject lists to be separated with a comma. Finally, Turtle also allows writing “a” instead
of <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> to denote the class of an IRI. All these
features of Turtle allow the graph, serialized in listing 2.1, with N-triples to be represented
in a more compact and readable form in listing 2.2 with Turtle.
Both serializations allow the use of blank nodes. A blank node with name b is re-
ferred to with _:b and can then be used in subject and object position as defined
in definition 4. When a blank node occurs only in the subject position of triples
[(_:b,p1,o1),(_:b,p2,o2),...] and exactly once in another position, there is an additional
shorthand in Turtle. In that case, one can replace the blank node occurring only once
with open and closing square brackets. Then inside them have the triples referring to the
blank node as the subject with a (possibly empty) predicate-object list. This is heavily
used when defining SHACL constraints (see section 2.2.4).

2.2.3 Querying RDF Graphs with SPARQL

Let us assume a knowledge graph using RDF with the introduced Turtle serialization as
in listing 2.2. However, over time, the knowledge graph has grown to have thousands
of triples, and one would like to know the names of female persons who had contact
with persons allergic to broccoli. This scenario is a simple example of the information
needed, which can be expressed as a machine-interpretable query formulated in SPARQL.
SPARQL – short for SPARQL Protocol and Query Language – is the W3C recommended
declarative query language to query data from RDF graphs [54].
This section aims to provide the basic knowledge about SPARQL and the involved
SPARQL set algebra used, such that the upcoming extension in section 4.3.3 can be
clearly defined, and the reader can understand the basic types of queries used in this
work. The notation defined here is mainly taken from Pérez et al. [51] if not otherwise
specified.
There are four different types of SPARQL queries called SELECT, CONSTRUCT, DESCRIBE and
ASK. All query types use graph matching to identify which kind of data the author of the
query is interested in. A query can be decomposed into a head and a body. While the
head defines the query type containing its parameters and, therefore, defines the structure



of the output, the body includes a graph pattern expression.
Here the procedure is again done in a bottom-up fashion and, therefore, starts with
defining the components used in graph pattern expressions. The atomic and pairwise
distinct components are IRIs, blank nodes, literals, and variables. Three of them are
already defined — the one left is the variables, which are referred to in the head of the
query as parameters.

Definition 7: Query Variables [54]
A query variable is a Unicode string without spaces and prefixed with “?”. The infinite
set of all possible query variables is denoted by V and is defined to be distinct with
I ∪ L ∪B.

Generally, a variable will be used in a graph pattern as a placeholder. When the graph
pattern is evaluated over a knowledge graph, multiple solution mappings might exist.
Each solution mapping assigns the variables the values that need to be substituted for
the variables in the graph pattern in order for the graph pattern to match a subgraph of
the knowledge graph. The value to be substituted can therefore be an IRI, a literal, or a
blank node.
The graph pattern will be defined recursively, and the basic building block is always a
triple pattern.

Definition 8: Triple Pattern [54]
A triple pattern is a 3-tuple such that the infinite set of triple patterns T is a subset
of (I∪B∪V)× (I∪V)× (I∪L∪B∪V). Additional the function var : T→ P(V)
is defined such that var(t) gives the set of variables occurring in t ∈ T.

Therefore, a triple pattern can be seen as an extended version of an RDF triple, allowing
a variable in each position. At this point, it is helpful to have an idea of what a graph
pattern will be. The following example is intended to give this intuition.

Example 2: Visualization of a simple graph pattern

Let us return to the example query mentioned above, which should return the
names of the female persons who had contact with persons allergic to broccoli.
Analyzing the query gives three variables. The first one will be assigned a node
referring to a female person, the second one to a node of the person allergic to
broccoli, and the last will refer to the literal, which is the name of the female
person. The query only asks for the name, but the other variables are still needed
to define the graph pattern. The conjunction of six triple patterns is used to
connect the variables. Though the conjunction is not yet defined, it will still make
intuitive sense. Figure 2.1 shows the graph pattern visually using the notation
explained in section 2.2.1 with the addition of variables. This makes sense because
a conjunction of triple patterns is just a set of RDF triples, which allows having
variables in each position. A node representing a variable is of a diamond form. If
it is a variable that will be returned finally, the node is double lined.
Evaluating the graph pattern against the knowledge graph in figure 2.2
will give a set of solution mappings. In this example the set con-
sists of one solution mapping of ?name to “Maria”. Figure 2.2 addi-



tionally depicts the evaluation by highlighting the subgraph, matched by
the graph pattern from figure 2.1, used to produce a solution mapping.

Figure 2.1: An Example Graph Pattern. It will query the names of female persons,
which had contact to persons allergic to broccoli

Figure 2.2: A small Knowledge Graph. The red subgraph is matched by the graph
pattern from figure 2.1 to produce a solution mapping.

As in the example, evaluating a graph pattern expression P over a knowledge graph G
gives a set of solution mappings. Each solution mapping maps at least the variables used
outside of an OPTIONAL pattern to RDF terms. The OPTIONAL pattern will be defined together
with the graph pattern expression in definition 11. A single solution mapping is defined
as follows.

Definition 9: SPARQL Solution Mapping [54]
A solution mapping is a partial function µ : V→ (B ∪ L ∪ I), which maps a subset
of the infinite set of variables V to RDF terms. Two mappings µ1 and µ2 are called
compatible, denoted with µ1 ∼ µ2, when ∀v ∈ (dom(µ1) ∩ dom(µ1)) µ1(v) = µ2(v)
is true. In that case the union of two mappings µ1 and µ2 is defined as µ1 ∪ µ2,
which is a shorthand for Gµ1 ∪ Gµ2 . The infinite set of all possible SPARQL solution
mappings is defined to be M.

Next, algebraic operations over the sets of solution mappings and filter conditions on
a set of solution mappings are needed to recursively extend the notion of the graph
pattern with further operators. A filter condition is a logical expression R ∈ LS with
S = (B ∪ L ∪ I; <; +, ∗; 0, 1), which makes use of variables from V. There are further
functions defined and, moreover, the functions and relations in the structure can only be
applied to specific types of literals. IRIs can only be checked for equality as there is no
order defined. All this is specified exactly in [54]. Nevertheless, a filter condition R can



be evaluated via (S, µ) |= R using the solution mapping µ as an assignment.
The algebraic operations over sets of solution mappings are the content of the following
definition.

Definition 10: Algebraic Operations over sets of solution mappings (ex-
tended version of [62])
Given two sets of solution mappings Ω1, Ω2 ⊂ M, a set of variables v ⊂ V, a filter
condition R ∈ LS and a function used for renaming of variables ∇ : V → V the
following operations are defined:

operation meaning

πv(Ω1) {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω1 ∧ dom(µ1) ⊆ v ∧ (dom(µ2) ∩ v) = ∅}
σR(Ω1) {µ ∈ Ω1 | (S, µ) |= R}
Ω1 ∪ Ω2 {µ | µ ∈ Ω1 ∨ µ ∈ Ω2}
Ω1 ▷◁ Ω2 {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 : µ1 ∼ µ2}
Ω1 \ Ω2 {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2 : ¬(µ1 ∼ µ2)}
ρ(∇, Ω1) {∇ ◦ µ | µ ∈ Ω1}

Compared to Schmidt et al., ρ is added to the algebraic operations to allow for
variable renamings in solution mappings. S is the structure (B ∪ L ∪ I; <; +, ∗; 0, 1)

Before the notion of a graph pattern and its evaluation can be appropriately defined, there
is the substitution of a solution mapping into the triple pattern left. A thing which was
already implicitly done in example 2 to identify the red subgraph. To do that formally,
µ is overloaded to be usable as a function µ : T → (I ∪B) × I × (I ∪ L ∪B), such that
µ(t) replaces all occurrences of v ∈ dom(µ) in t with µ(v).
Now the graph pattern expression and their evaluation can be formally defined:

Definition 11: Graph Pattern Expression and their Evaluation (similar to
[51, 62])
Let t ∈ T be a triple pattern as defined in definition 8. The following table gives the
recursive definition of a graph pattern P , the SPARQL syntax and the evaluation
of the graph pattern into the set of solution mappings. The infinite set of all graph
patterns is denoted as P. The evaluation of a graph pattern P ∈ P over the knowl-
edge graph G ∈ G is written as a function [[P ]]G : P ×G → P(M) and gives a set
of SPARQL mappings as defined in definition 9. The recursive definition of a graph
pattern assumes that P1, P2 are graph patterns, R is a filter condition, v ⊂ V and
∇ a renaming function as in definition 10.

graph pattern P syntax evaluation [[P ]]G

t := (s, p, o) s p o {µ | dom(µ) = var(t) ∧ µ(t) ∈ EG}
(P1 AND P2) {P1 . P2} [[P1]]G ▷◁ [[P2]]G
(P1 UNION P2) {{P1} UNION {P2}} [[P1]]G ∪ [[P2]]G
(P1 OPT P2) {{P1} OPTIONAL {P2}} [[P1]]G ▷◁ [[P2]]G
(P1 FILTER R) {{P1} FILTER R} σR([[P1]]G)
SELECT(v,∇, P1) {SELECT v′ WHERE {P1}} ρ(∇, πv([[P1]]G)

v′ denotes v but written as a list separated with spaces. Additionally, there is the



option to implicitly define ∇ with the AS keyword used in-place between the renamed
variable var ∈ v and the new variable new ∈ V. All other variables not included on
the left-hand side of the AS keyword will be mapped to themself.

Turtle is used for serializing the graph patterns in P. Therefore, serializing a graph
pattern is just a matter of serializing the triple patterns with Turtle and writing down
the other operators using the syntax as defined. For example, a conjunction (“AND”)
of triple patterns is denoted with a dot. The other short hands presented as Turtle’s
features to shorten the conjunctions of RDF triples can also be used. There are further
rules of precedence, association, syntax, and operators (like the concept of grouping)
defined in SPARQL, which abstract away from the logical core. These allow to relax the
requirements for the brackets in definition 11 and can be found in [54].
Now that the basic syntax of the body of a SPARQL query is defined by serializing graph
patterns, one has to define the head. In this work, only SELECT queries are used, such that
it will be enough to define this query type.

Definition 12: SPARQL SELECT Query
A SPARQL SELECT query Q is a graph pattern P of the form SELECT(var(Q),∇, P ′)
where P ′ ∈ P and ∇ a renaming function as defined in 10. P uses the syntax as
defined for the SELECT clause in definition 11 but without the outermost brackets. The
infinite set of SPARQL SELECT queries is denoted with Q.

Like Turtle, SPARQL allows the definition of prefixes but instead of “@prefix”, „PREFIX”
is used. To show the algebra and the SPARQL syntax in action, the following example
continues example 2.

Example 3: SPARQL Algebra and syntax applied

Given the visualization, in example 2 the triple patterns lying at the heart of the
graph pattern and needed to specify the query can be identified. All of the triple
patterns should apply simultaneously, implying the need for the conjunction of the
triple patterns. In the end, only the names of the persons should be retrieved,
such that only ?name is projected. There is no renaming of variables needed here.
Therefore, the identity function id mapping each variable to itself is used.

SELECT(?name,id,((((((?person, :gender, ”female@en”)
AND (?person, rdf:type, :Person))
AND (?person, :name, ?name))
AND (?person, :contact_with, ?person2))
AND (?person2, :allergic_to, ”broccoli”@en))
AND (?person2, rdf:type, :Person)))

Using the left associative property of AND, the algebra can be transformed into the
SPARQL syntax.

PREFIX : <http://example.org/>

SELECT ?name WHERE {



?person :gender ’’female’’@en .

?person a :Person

?person :name ?name .

?person :contact_with ?person2 .

?person2 :allergic_to ’’broccoli’’@en .

?person2 a :Person

}

Listing 2.3: Algebra transformed into SPARQL syntax

Finally, given a SPARQL SELECT query the evaluation of the query is defined analogue to
the evaluation of a graph pattern.

Definition 13: Execution of Q over G [14]
The execution of the SPARQL SELECT query Q ∈ Q over the knowledge graph G ∈ G
is written as a function [[Q]]G : Q×G→ P(M) and gives a set of SPARQL mappings.
Each SPARQL mapping assigns the set of variables var(Q) ⊂ V to RDF terms.

It is essential to note that a SPARQL endpoint typically performs the process of executing
a query over a knowledge graph. The SPARQL endpoint exposes a knowledge graph
by answering SPARQL queries using the knowledge graph. Most knowledge graphs are
exclusively accessible using SPARQL queries, which consolidates the use of SPARQL as
the primary medium to extract information from a knowledge graph.

2.2.4 Validating SHACL Constraints over an SPARQL Endpoint

At this point, a knowledge graph might be made available by a SPARQL endpoint and
can then be queried using SPARQL queries. However, as mentioned in the introduction,
the goal is to exploit the structure of the knowledge graph to get further insights into
machine learning models by using semantic constraint validation. SHACL – short for
Shapes Constraint Language – is the W3C recommended language to describe constraints
and validate RDF graphs against them [38]. The approach is described in terms of the
abstract syntax for the SHACL core constraint components, as introduced by Cormen et
al. [15]. The notation has the advantage of being compact, allowing recursive schemas,
and being translatable into the SHACL language.
Let us return to the example knowledge graph about the properties of people having
contact with each other. The government might have passed a law that states that
everyone who is not vaccinated can only have contact with up to five vaccinated strangers.
A vaccinated stranger is defined as another person who is vaccinated and not pregnant.
Now, the knowledge graph can be checked against those constraints to enforce the law.
The example constraint makes the distinction between two groups of people. Here, these
two groups are described by shapes. The first shape might be called, :risk_group and the
second :vaccinated_stranger. A set of shapes is called a shape schema. A shape comes with
a logical expression, which enforces constraints. Further components of the shape are the
name, which identifies the shape, and the target definition, which defines the scope for
the shape in the knowledge graph.
A constraint uses certain properties of the entity, which property paths can identify.



Definition 14: Property Path (general concept as in [38])
A property path p defines a path between two nodes in a knowledge graph. The
evaluation of p over G ∈ G is done with a function path(p, G) to give a SPARQL
mapping µ with dom(µ) = {?sp, ?ep}. The variable ?sp represents the start node
and the variable ?ep the end node of the path. The infinite set of property paths is
denoted with −→P . The recursive definition of a property path is given in the table
below, which uses I ∈ I, p1, ..., pn ∈

−→P and the renaming functions

∇seq ={(?sp1 7→ ?sp), (?epn 7→ ?ep)}∪
{(?epi 7→ ?spi+1) | ∀i ∈ [1, 2, ..., n− 1]}∪
{(?v 7→ ?v) | ∀?v ∈ (V \ ({?sp1} ∪ {?epi | ∀i ∈ [1, 2, ..., n]}))}

∇inv ={(?sp1 7→ ?ep), (?ep1 7→ ?sp)} ∪ {(?v 7→ ?v) | ∀?v ∈ (V \ {?sp1 , ?ep1})}

name property path p evaluation path(p, G)

Predicate paths I [[(?sp, I, ?ep)]]G
Inverse paths ˆp1 ρ(∇inv, path(p1, G))
Sequence paths p1/p2/.../pn π?sp,?ep(ρ(∇seq, ▷◁i∈[1,2,...,n]path(pi, G)))

To abbreviate the notation, let [[p]]G be the shorthand for

{(vs, ve) | {(?sp 7→ vs), (?ep 7→ ve)} ∈ Gpath(p,G)}

Using the concept of property paths, constraints can be defined:

Definition 15: Property Path Constraint [15]
A property path constraint is a logical expression ϕ included in the language that
contains the words of the following grammar defined in the Backus-Naur-Form [36]:

c := ⊤ | s | I | ≥np1.ϕ | EQ(p1, p2)
ϕ := ¬ϕ | ϕ ∧ ϕ | c

where s is a shape name, I ∈ I, p1, p2 ∈
−→P and n ∈ N ∪ {0}. The infinite set of all

possible constraints is denoted with CP.

Therefore, a constraint is a logical expression ϕ, consisting of terms c. These terms can be
split into two (possibly empty) groups. The first group is called inter-shape constraints
and includes all terms referring to shape names denoted with s in definition 15. The
second group, including the rest, is called intra-shape constraints. Hence, the intra-shape
constraints describe the entity based on its properties, and the inter-constraints allow
entities to depend on each other.
During the validation of a knowledge graph, each shape is checked against a possibly
empty set of target nodes. A target query identifies these target nodes.



Definition 16: Target Query [15]
A target query QTs is a SPARQL SELECT query with |dom([[QTs ]]G)| = 1 for all G ∈ G
defined for a shape named s. The infinite set of all possible target queries is QT ⊂ Q.

Without loss of generality, let Ω = [[QTs ]]G be the set of solution mappings of a target
query QTs ∈ QT with ∀µ ∈ Ω dom(µ) = {?x} and ?x ∈ V an arbitrary variable. In
that case, the notation of the set of solution mappings can be shortened to a set of
solution values {µ(?x) | µ ∈ Ω}. Therefore, to check whether there is a solution mapping,
{(?x 7→ v1)} ∈ GΩ the shorthand v1 ∈ Ω can be used.
Given all the components, the notion of a shape schema can be defined.

Definition 17: Shape Schema [15]
A shape schema is a triple S = (S, TARG, DEF) consisting of a set of shape names S, a
function returning a target query TARG : S → QT and a function returning a property
path constraint DEF : S → CP for each shape s ∈ S. The components of the shape
schema S can be accessed by S.S, S.TARG and S.DEF. The infinite set of all possible
shapes is denoted with S and the infinite set of all possible shape schemas with SN

Example 4: Shape Schema with references to the SHACL language

This example continues the example in the introductory text of this section by
defining the shape schema S = (S, TARG, DEF) according to the definition above. As
mentioned, there will be two shapes. The first one called :risk_group and the second
one called :vaccinated_stranger. Therefore, it is

S = {:risk_group, :vaccinated_stranger}

The attentive reader might notice the colons in front of the names, which typically
indicate an IRI with an empty prefix in the Turtle syntax. That is because in
the SHACL language (not the abstraction used here), a shape is identified by an
IRI of the class sh:NodeShape and a shape schema is basically a knowledge graph
serialized with Turtle containing a set of IRIs annotated with RDF terms defined
in the SHACL namespace http://www.w3.org/ns/shacl# with the shorthand sh [38].
Next, the TARG function needs to be defined for S. As every person can be a
:vaccinated_stranger the shape has as scope the nodes of the class person. A person
is in the scope of :risk_group if the person is not vaccinated. That is because the
law should be enforced, and the goal is to identify the persons in the scope of
:risk_group with more than five contacts with persons of type :vaccinated_stranger.

PREFIX : <http://example.org/>

SELECT ?x WHERE {

?x a :Person .

?x :vaccinated False

}

Listing 2.4: TARG(:risk_group)

PREFIX : <http://example.org/>

SELECT ?x WHERE {

?x a :Person

}

Listing 2.5: TARG(:vaccinated_stranger)



In the SHACL language, there is no concept of a target query. Instead, there
are RDF triples indicating the target nodes explicitly, by class or implicitly as
subject or object of a specific predicate [38]. Therefore, the targets would be
defined by two RDF triples (:risk_group, sh:targetClass, :NotVaccinatedPerson) and
(:vaccinated_stranger, sh:targetClass, :Person).
Finally, the function DEF giving the property path constraints for each shape s ∈ S
needs to be defined. To conform with :risk_group, a person cannot have more than
five contacts with :vaccinated_stranger.

DEF(:risk_group) = ¬(≥6 :contact_with.:vaccinated_stranger)

A :vaccinated_stranger has to be vaccinated and cannot be pregnant.

DEF(:vaccinated_stranger) = (≥1 :vaccinated.True) ∧
(≥1 :pregnant.False)

When using the SHACL language to express constraints, nodes of the class
sh:PropertyShape are used. These can be characterized by various properties and
have to be connected to a sh:NodeShape via sh:property. In this example, the full
SHACL shape schema expressed with Turtle would be:

PREFIX : <http://example.org/>

PREFIX sh: <http://www.w3.org/ns/shacl\#>

:risk_group

a sh:NodeShape ;

sh:targetClass :NotVaccinatedPerson ;

sh:property [

sh:path :contact_with ;

sh:qualifiedValueShape :vaccinated_stranger ;

sh:qualifiedMaxCount 5 .

] .

:vaccinated_stranger

a sh:NodeShape ;

sh:targetClass :Person ;

sh:property [

sh:path :vaccinated ;

sh:hasValue "True" ;

sh:minCount 1 .

] ;

sh:property [

sh:path :pregnant ;

sh:hasValue "False" ;

sh:minCount 1 .

] .

Listing 2.6: The Example SHACL Shape Schema Serialized with Turtle

The task of validating a shape schema S = (S, TARG, DEF) against a knowledge graph G is



to find a faithful assignment σ. An assignment σ is a set of atoms of the form s(v), where
s ∈ S is a shape and v is a node v ∈ VG. If s(v) ∈ σ then v is called valid with respect to s
according to σ and ¬s(v) ∈ σ means that v violates s according to σ. A valid assignment
can only contain s(v) or ¬s(v) and not both. However, it has to contain s(v) or ¬s(v)
for each target v ∈

⋃
s∈S [[TARG(s)]]G. Additionally, a valid assignment σ is called faithful

if for all s(v) ∈ σ, v indeed satisfies s and for all ¬s(v) ∈ σ, v indeed does not satisfy s.
The satisfaction is measured with respect to the assignment. Therefore, there can be a
faithful assignment σ with s(v) ∈ σ and another one σ2 with s(v) ̸∈ σ2. [15]
What remains is to evaluate whether a node v indeed satisfies a shape s ∈ S of a given
knowledge graph G and an assignment σ. But that is something which can be reduced
to the problem of evaluating a property path constraint c given by DEF(s) as defined in
definition 15. The evaluation is denoted with [[c]]G,v,σ and is done inductively over the
components of c. Table 2.3 includes the non-trivial part of the evaluation. The rest is
evaluated according to a normal logical expression.

Constraint C Evaluation [[C]]G,v,σ

s ⊤ if s(v) ∈ σ else ⊥
I ⊤ if v = I else ⊥
≥np1.ϕ ⊤ if |{v′ | (v, v′) ∈ [[p]]G and [[ϕ]]G,v′,σ = ⊤}| ≥ n else ⊥
EQ(p1, p2) ⊤ if {v′ | (v, v′) ∈ [[p1]]G} = {v′ | (v, v′) ∈ [[p2]]G} else ⊥

Figure 2.3: Evaluation of a constraint C given a node v and a assignment σ [15]

Therefore, a node v in a knowledge graph G is indeed valid with respect to a shape s in
a shape schema S if [[DEF(s)]]G,v,σ = ⊤ is true.
An engine producing a faithful assignment σ for a shape schema S = (S, TARG, DEF) given a
knowledge graph G can only use SPARQL queries to get information about the knowledge
graph. Such an engine is shown in Algorithm 1, which is now described. In a first step, for
each shape, s the target nodes [[TARG(s)]]G of the shapes are retrieved. Given the instances
to be checked against each shape s, the constraints encoded in DEF(s) are converted into
SPARQL queries. The solution mappings retrieved, yield a set of rules involving the atoms
s(v) with v ∈ [[TARG(s)]]G and atoms s′(v′) connected to s(v) by inter-shape constraints.
(line 2 - 5). This set of rules can then be solved by a SAT solver to get the faithful
assignment σ (line 6). Finally, it is useful to convert the assignment produced into a
partial function as defined below (line 7 - 13).

Definition 18: Entity Validation [58]
The result of a SHACL validation process for a node v ∈ VG and a shape s ∈ S given
a knowledge graph G and a SHACL shape schema S = (S, TARG, DEF) is represented
as a partial function:

validate:(B ∪ I)× S×G→ {⊤,⊥}

2.3 Explainable AI
AI is “the study and design of intelligent agents, [which] [...] take actions that maximize
[their] chances of success” [60]. When this definition of AI is extended to explainable



Algorithm 1 Pseudocode of a SHACL engine
1: function runShaclEngine(Shape Schema S, Knowledge Graph G)
2: rules← ∅
3: for each s ∈ S do
4: rules← rules ∪materialize(S.DEF(s), G)
5: end for
6: σ ← SAT_Solver(rules)
7: validate← ∅
8: for each s(v) ∈ σ do
9: validate← validate ∪ {(s, S, G) 7→ ⊤}

10: end for
11: for each ¬s(v) ∈ σ do
12: validate← validate ∪ {(s, S, G) 7→ ⊥}
13: end for
14: return validate
15: end function

AI, the goal is to produce agents whose behavior can be understood by humans. “[It
allows] users to comprehend and trust the results and outputs created by machine learning
algorithms” [16]. “[That is] explainability [is the capability of the model to] summarize
the reasons [for their] behavior, gain the trust of the users, or produce insights about the
causes of their decisions” [27]. This is in contrast to the interpretability of AI, which only
requires to “[...] describe the internals of a system in a way that is understandable to
humans” [27]. To tackle explainable AI in the context of semantic constraint validation,
first, the most needed machine learning concepts are introduced, followed by a more
specific introduction to the covered models.

2.3.1 Basics of Machine Learning

Machine learning aims at providing algorithms that enable computers to learn from data.
A good definition of learning in this context is given by Mitchell [46], who states that
learning from experience E with respect to some class of tasks T and performance measure
P is to perform better at T (as measured by P) with more experience E. As this definition
of learning lies in the heart of machine learning, the short introduction is structured
based on it. Usually, machine learning is applied for tasks where the direct design of an
algorithm is too difficult or where it is not even known how the task can be solved. In
analogy to a functional algorithm, which gets an input and produces an output, a machine
learning algorithm produces a machine learning model, which can then transform an input
into an output. Therefore, a task is to transform an input into an output according to a
specific eventually unknown schema ot(.). [28]

Definition 19: Task
A task is described in terms of what a machine learning model will get as input and
which type of output the user is interested in. Therefore, it is a tuple (I,T, ot(.)),
where I denotes the type of the input, T denotes the type of the output, and ot : I→ T
the schema (represented as a function) to be learned by the machine learning model.
ot(.) is usually referred to as objective truth or the function which returns the optimal
prediction.



As there is an endless number of algorithms, there is also a variety of task types, re-
stricting or making specific assumptions about the input and the output of the task.
Two common tasks in machine learning are classification and regression. Classification
restricts the output type to be categorical. Hence, the output is a set of labels, and
the goal is to assign an input a label. Therefore, an example for such a task would be
(Rn, {Setosa, Versicolour, Virginica}, ot(.)), which refers to the classification performed on
the basis of the popular iris dataset [23]. In that case, ot(.) would be the function al-
ways estimating the correct iris given the sepal and petal, length, and width. Regression
restricts the output to be continuous and is, therefore, a numerical value, e.g., T = R).
A machine learning algorithm is then used to learn from a tuple of examples by estimating
the parameters of a machine learning model.

Definition 20: Machine Learning Model
A machine learning model Mθ : I → T is a function parameterized with learnable
parameters θ solving a task (I,T, ot(.)), by mapping problem instances to targets.

Roughly, there are two types of machine learning algorithms: the supervised ones and the
unsupervised ones. The algorithm type is chosen depending on the available experience to
solve the task. The unsupervised ones are only given a tuple of N ∈ N problem instances
D of the task (I,T, ot(.)) and, therefore, D ∈ IN . In contrast, the supervised algorithms
have as experience D the problem instances, but now annotated with the matching targets
and, therefore, D ∈ (I×T)N . D here denotes a dataset and is a tuple, so an example can
be identified by its position in the tuple. Therefore, a dataset is defined as follows:

Definition 21: Dataset
Given a task (I,T, ot(.)), a dataset D is a tuple of samples. The dataset is defined
depending on the type of the algorithm. If it is a supervised algorithm, D = ((xi, ti) |
i ∈ [1, ..., N ]) is a tuple of N ∈ N samples. Each sample consists of a problem instance
xi and a target ti ∈ T. If it is an unsupervised algorithm, D = (xi | i ∈ [1, ..., N ])
is a tuple of N ∈ N samples. In both cases, the problem instance is a feature vector
xi = (xi,1, xi,2, ..., xi,K)T ∈ I with K ∈ N features.

The machine learning algorithm discussed above to produce a machine learning model
Mθ given a dataset D is called the inducer of the model. The inducer is defined below.

Definition 22: Inducer
Given a task (I,T, ot(.)), a machine learning algorithm is a function Iζ : (I×T)N 7→
FIζ

. Iζ is called inducer with hyperparameters ζ and the hypothesis space, FIζ
⊂

P(I×T) which is the space of functions, which the produced machine learning model
can represent.

Hyperparameters are the parameters used to configure the inducer. Typical examples of
hyperparameters are the learning rate and the maximum depth of a decision tree.

2.3.2 Learning Algorithms and Performance Measures

The inducer is specific to the model. However, in common, an inducer tries to minimize
the expected loss of the model it produces. The expected loss is a property of the model



solving a task and depends on the performance measure P defined for the task. As will
be seen, the expected loss is difficult to determine directly but will help understand the
metrics used in machine learning. [8]
This section is written based on [8] but emphasizes the difference between the objective
truth ot(.) and ground truth gt(.) and uses the definitions provided in the last section.
The exact formulas used can be found in [8].
Let us assume a task (I,T, ot(.)). The data generation process will be the first step in
producing a trained machine learning model to tackle the task. The process generates the
dataset by sampling the objective truth ot(.) via experiments (there is a data-generation
distribution [28]). Therefore the process abstracts from the objective truth ot(.) to the
ground truth gt(.). As gt(.) only refers to the samples taken it turns out to be a partial
function gt : I → T. In this work, the ground truth refers to the samples in the dataset
and, therefore, it holds

(xi, ti) ∈ D ⇐⇒ (xi 7→ ti) ∈ Ggt

As random fluctuations might be involved in the experiments, the dataset can already
contain errors known as noise.
Usually, only a restricted number of samples are available when the inducer creates the
trained model. Nevertheless, the model should be able to approximate the objective
truth ot(.) as well as possible for all possible inputs in I. The capability of transferring
the knowledge seen to new inputs is called generalization. The generalization capabilities
of the model are measured using a so-called train-test split. The train-test split splits up
the dataset into two disjoint subsets Dtrain and Dtest. Then Dtrain should be used to train
the model and Dtest to approximate the capabilities of the model, to generalize using the
performance measure P .
Generalization can be further understood by decomposing the expected loss into the bias,
the variance, and the noise. The origin of the noise is the sampling process, so the bias
and the variance still need to be explained.
Both terms are defined with respect to a model trained on different datasets D1, D2, . . .
but for the same task. That is, an inducer Iζ creates the models via Mθ1 = Iζ(D1), Mθ2 =
Iζ(D2), . . . . The bias is the extent to which the average prediction of the models deviates
from the objective truth, and variance is the extent to which the models’ predictions
vary around the average prediction. If the variance term dominates, that might imply
that the model mainly learned the characteristics of the dataset used during training
and, therefore, generalizes poorly to unseen data. On the other hand, if the bias term
dominates, that might be a sign that the model is generally not capable of learning
the needed structures or the inducer with the given hyperparameters can not learn the
required model M as M ̸∈ FIζ

. Therefore, a well-trained model usually needs a balanced
bias and variance: The model is biased enough to generalize well but sufficiently complex
to adopt the dataset’s structure.
The following example shows that in some cases approximating the expected loss of the
model Mθ via P on Dtest is enough. That is important as determining the concrete bias-
variance decomposition often cannot be done as the required amount of data is unavailable
and ot(.) is not accessible. Furthermore, the example visualizes the concepts of bias,
variance, noise, objective truth, and ground truth.



Example 5: Estimating the required depth of a decision tree to approx-
imate the sigmoid function

In this example, the sigmoid function ot(x) = 1
1+e−x should be approximated by

regression. Here a decision tree for regression is used, but any other model used
for regression could be used. Most important is that the inducer used to train the
model needs to have a hyperparameter, which limits the complexity of the model.
A study is done to find the maximum depth of the decision tree such that the
model generalizes well. Following the procedure described to explain the bias and
the variance for each possible depth, 100 decision trees are trained on a dataset
Dj sampled from ot(.). Each dataset has N = 1000 samples and is divided by a
train-test split. During the process, for each depth, the average squared loss using
a distinct test dataset is calculated:

1
100 ∗N

100∑
j=1

N∑
i=1

(Mθj
(xi)− ti)2

This is done as the performance measure used here is the mean squared error. The
decision trees are used to estimate the bias, the variance, and the noise as the
components of the expected loss. This decomposition and the average test error
per depth are used to create Figure 2.4.

Figure 2.4: Trading of bias vs. variance to estimate the maximal depth of a decision
tree. Estimation is based on 100 decision trees trained on new sampled datasets
with 1000 samples.
First of all, one can see that the average test error strongly correlates with the ex-
pected loss. Although, the expected loss depends on ot(.) and the average test error
on gt(.). To calculate the bias-variance decomposition from [8] h(x), representing
the optimal regression function is replaced by ot(x).
The vertical line marks the depth of 4, corresponding to the lowest expected
loss and, therefore, the best possible value for the max depth hyperparameter.
Next, the bias term dominates in the region of a too simple model, and the
variance term dominates in the regions of a too complex model. Figure 2.5 vi-
sualize the model predictions per max depth and the bias-variance decomposi-
tion per input value. For example, in the Figure for a maximum depth of 8,
one can see that the model has learned unnecessarily complex structures that



only fit a particular dataset and, therefore, do not generalize well because of
the high variance all over the place. This is in contrast to a maximum depth
of 1, where the decision tree is incapable of capturing the structure of the sig-
moid function, leading to a high bias term in large parts of the model. Finally,
the difference between the objective truth and the ground truth is visualized.

(a) max depth = 1

(b) max depth = 4

(c) max depth = 8

Figure 2.5: Models’ predictions and Bias-Variance Tradeoff visualized for a maxi-
mal depth of 1, 4 and 8. Refers to the experiment in Figure 2.4



2.3.3 Tree-based Models

The topic of artificial intelligence is known as a fast-developing field, which can be assessed
through the growth of the number of AI journal publications. For example, from 2019 to
2020 the number of AI journal publications has grown by a factor of 1.345; in comparison
to the growth rate of 1.196 from 2018 to 2019 [67]. Still, the most commonly used
algorithms are linear and logistic regression directly followed by decision trees or random
forests [37]. While the first kind of model fails when features are correlated in a non-linear
way, decision trees have the expressive power to solve such types of problems [47].
This basic type of algorithm remains popular, as they can produce models with a high bias,
and this is also a property that makes them model-inherent interpretable. Furthermore,
they are the basic building blocks for more complex models created through bagging or
boosting. Two good examples for boosting are AdaBoost (i.e., with decision trees as
estimators) and Gradient Boosting. Among other models, random forests are a well-
known bagging model. All these learning methods make use of tree-based models and
are supervised algorithms. Therefore, this section introduces tree-based models but uses
a visual approach (like in [63]) referred to later in this thesis.

General Concept Regardless of what kind of tree-based model is used, the input space
I is partitioned into distinct cuboids R1, ..., RT ⊂ I (T ∈ N the number of cuboids). Each
of these cuboids Rt are assigned a model (t ∈ [1, ..., T ]) [8]. For example, when using
standard decision trees, constant models Mct : Rt → T with r 7→ ct are used, such that all
inputs r ∈ Rt are assigned the constant ct ∈ T. This kind of partitioning in combination
with the assigned predictions ct is visualized in Figure 2.6 using the model from the
example 5.

Figure 2.6: Partitioning of the one-dimensional input space given a decision tree trained
to approximate the sigmoid function

Training a tree-based model is, therefore ,twofold: (i) Partitioning the input space, and
(ii) assigning each cuboid a model. The input space is partitioned by learning a function
T : I→ [1, ..., T ], which assigns each x ∈ I a cuboid Rt.
T is represented as a binary tree. Each leaf of the tree refers to a cuboid, Rt and all the
other nodes are split nodes. A split node nd,u has two child nodes n(d+1),l, n(d+1),r and
is coupled with a split criterion fk ≤ θd,u (k ∈ [1, ..., K], K is the number of available
features, nd,u refers to the u’th node on the depth d and θd,u is a parameter comparable



with fk). Given a sample (xi, ti), the split criterion is evaluated via

(xi |= fk ≤ θi,u)⇐⇒ (xi,k ≤ θu) (2.1)

If xi is a model for the split criterion, then the procedure continues with n(d+1),r oth-
erwise with n(d+1),l. When a leaf referring to a cuboid Rt is reached by following this
procedure from the root node n1,1, the output of T (xi) is known to be t. Depending on
the implementation, operators other than ≤ may be allowed.
In general, finding the optimal T is infeasible as the structure of the tree and the parame-
ters of each node need to be found, which spans a solution space that grows exponentially
with the number of nodes available for T .
In the case of decision trees, a greedy approach is used to learn T and, therefore, the
solution might not be optimal. This work is centered around explaining and interpreting
models with respect to semantic constraint validation. Consequently, it is unavoidable to
understand the basic approach used to train a decision tree.

Greedy Inducer Here, a decision tree used for regression with cuboid borders, as
visualized in Figure 2.6, should be learned. The process is a recursive one, and in each
step, there is a set of samples Rd,u ⊂ D and one needs to decide whether the node nd,u

corresponding to the step will be a leaf node or a split node. This criterion needs to be
chosen wisely, as shown in example 5. In the case of a regression task, one might stop if
all the samples (xi, ti) ∈ Rd,u have the same target value ti or the target values have a
limited standard deviation. The first criterion will lead to decision trees with high variance
because the decision trees will be specialized to the dataset used for training. The second
criterion requires further knowledge about the dataset, and the standard deviation might
be different in various spaces of the dataset. In this example, the inducer decides that
the node will be a leaf node if, d = 4 as example 5 has shown that a maximal depth of 4
is reasonable for the given task.
If nd,u will be a leaf node, a constant model Mcd,u

has to be selected such that the
performance of the model is as good as possible, given the available data Rd,u. As typical
for regression tasks, the performance is measured by the mean squared error:

P (Mcd,u
, Rd,u) = 1

|Rd,u|
∑

(xi,ti)∈Rd,u

(ti − cd,u)2 (2.2)

minimizing the term with respect to cd,u leads to the optimal solution, which is the
average:

cd,u = 1
|Rd,u|

∑
(xi,ti)∈Rd,u

ti (2.3)

As a leaf is reached, Rd,u corresponds to a cuboid Rt, which is referred to by T . The
feature vectors corresponding to the samples in Rd,u form a subset of Rt, which will be
real in most cases. That is because Rt represents the cuboid of all possible feature vectors
xi that get the prediction ct assigned due to T (xi) = t and Rd,u is just the subset of the
samples of D used to infer the leaf and ct during training.
If nd,u will be a split node, the data Rd,u has to be split into disjoint sets R(d+1),l and
R(d+1),r given a criterion fk ≤ θd,u as described above. fk and θd,u are chosen by trying all
features for all possible splitting values and choosing the one maximizing the performance
of the sum of the child nodes, measured by formula 2.2. The calculation is performed



with the optimal prediction c(d+1),l and c(d+1),r calculated with (2.3). Then the procedure
is recursively called for n(d+1),l and n(d+1),r.
Finally, the training of a decision tree is just a matter of starting the recursive procedure
for the root node n1,1 with the data R1,1 := D.

Example 6: Estimating the Rd,u of the motivating example decision tree

Here, the recursive procedure described is applied to discover the sets Rd,u given
the dataset D shown in example 7 and the decision tree in Figure 1.3. Starting
with the root node n1,1 (Node 0 in Figure 1.3), for which R1,1 = D is given, the
examples are split according to the criterion: allergic_to ≤ 0 (using formula 2.1).
To give R2,1 and R2,2. Next, the procedure would be called for n2,1. Executing
the procedure until the end, gives for each node nd,u the indices of D occurring in
Rd,u. The result is shown in Figure 2.5; additionally referring to the persons and
the enumeration of the nodes in Figure 1.3.

Node nd,u Persons {i | (xi, ti) ∈ Rd,u}

0 n1,1 :Max, :Maria, :Eva, :Laura [1, ..., 9999]
1 n2,1 :Maria, :Eva [3334, ..., 9166]
4 n2,2 :Max, :Laura [1, ..., 3334] ∪ [9167, ..., 9999]
2 n3,1 :Eva [4167, ..., 9166]
3 n3,2 :Maria [3334, ..., 4166]

Table 2.5: For each node nd,u in Figure 1.3, the indices of the dataset D included
in Rd,u are shown

The model’s training procedure stays the same when a decision tree for classification is
trained. Besides that, the performance measure changes from the mean squared error
to the negative cross-entropy or the Gini index and, therefore, the optimal prediction
changes to be the target class referred to by the most examples in the node.

Visually interpreting the Decision Tree This work builds on the kind of visualiza-
tions shown in Figure 1.3 and 2.7 proposed by the dtreeviz library [63]. The visualizations
are built to explain what has been learned by the decision tree and why the decision tree
makes a certain decision given a problem instance. This is done with respect to a specific
dataset D.
For each node nd,u

1, the distribution of the ground truth values of the set of samples Rd,u

is visualized. As described above, Rd,u refers to the samples used to decide whether the
node nd,u will be a split or a leaf node given the dataset D. In the case that nd,u is a split
node, the distribution of the ground truth is shown with respect to the split feature fk.
As the values of the other features are ignored, the distribution shows the marginal effect
the feature has on the ground truth. Further, the size of distributions is scaled with the
number of samples included in Rd,u.
Next, to explain why the decisions are made by the decision tree induced by the learning
algorithm during training, Figure 2.7 is investigated further.

1The indexing is demonstrated for some nodes in the Figure 2.7



Figure 2.7: Visualization of a decision tree trained to approximate the sigmoid function
with a maximal depth of four

Figure 2.7 shows the decision tree trained to approximate the sigmoid function from
example 5, the explanation will be about the regression task but can be transferred
analog to the classification task. In the case of regression, scatter plots are used to show
the distribution of the points {(xi,k, ti) | (xi, ti) ∈ Rd,u)} per split node. Starting at the
root node n1,1 with R1,1 = D, the learning algorithm had to choose the split feature and
the decision boundary for each split node. In example 5 only one feature x is used. x is
the input to the sigmoid function, and will be the split feature for each split node. Hence,
the split criterion for all nodes is x ≤ θd,u and θd,u has the value shown right under the
marker at the x-axis. Now it is visually verifiable that θd,u is chosen correctly and, thus,
the performance

−(P (Mcl
, Rd,l) + P (Mcr , Rd,r))

is maximized. Therefore, explaining the decision made at each split node is a matter of
visually verifying that the new cuboid border shown by the vertical dotted line is chosen
optimally. The horizontal dotted line corresponds to the optimal predictions, which would
be given if the child nodes were leaves.
In the case of regression, the optimal predictions of the learning algorithm estimated for
each node can be verified as the horizontal dotted lines visualize them. In the leaves, the
horizontal dotted line directly corresponds to the predictions made.
As a final note: For these visualizations to work and explain why specific cuboid borders
are chosen, and the decision tree makes particular predictions, the dataset used for visu-
alization should be the one initially used to train the decision tree. If a different dataset
is used, the visualization will show how the decision tree behaves with respect to the new
data, but will not show how the cuboid boundaries are chosen during the training process.

2.4 Summary
This chapter introduced the main concepts used in this thesis. The first part featured
the concepts necessary for semantic constraint validation. First, knowledge graphs are



introduced in the context of RDF graphs, which give entities in the graph a semantic
context. Next, building on N-Triples, Turtle is presented as a serialization format for
RDF graphs. As it turns out, SPARQL, the W3C recommended query language to query
data from RDF graphs, uses a syntax similar to Turtle with the addition of query variables;
extending RDF triples to triple patterns. Evaluating a triple pattern over a knowledge
graph gives a set of SPARQL solution mappings. Using algebraic operations over these
sets, manifested in the SPARQL language as graph patterns, allows for writing expressive
SPARQL queries. In this work, the SPARQL evaluation of the query Q ∈ Q over the
knowledge graph G ∈ G is denoted with [[Q]]G. Among other use cases, in the abstract
syntax for the SHACL core constraint components as introduced by Cormen et al. [15],
SPARQL queries are used to define the target of SHACL shapes. Multiple interconnected
SHACL shapes S form a shape schema S = (S, TARG, DEF), which represent constraints over
a knowledge graph. The SHACL validation of S over a knowledge graph G is performed
by a SHACL engine and gives the validation results in the form of the entity validation
function.
In the second part, explainable AI is introduced as the extension of AI, allowing one to
comprehend and trust an AI agent’s results. A focus is on explainable machine learning
and the main concepts of machine learning: An inducer solves a given task (I,T, ot) by
training a machine learning model on a given dataset sampled from ot. Whether the
resulting model matches the user’s expectations (e.g., generalizes well) is usually checked
by measuring the model’s performance with a performance measure (e.g., mean squared
error, accuracy) on a test set sampled separately from the objective truth. Finally, tree-
based models and, specifically, decision trees are introduced. A decision tree visualization
is discussed, which explains a decision tree trained on the task of approximating the
sigmoid function based on the data used to train the model.



Chapter 3

Related Work

In this chapter, state-of-the-art methods of topics related to this thesis are presented in
short. At the end of each section, the approach followed in this thesis is positioned with
respect to state-of-the-art methods.

3.1 Data Mining and Data Extraction from Knowledge
Graphs

The semantic web provides large linked open data sources, which try to connect large
amounts of data crawled from the web into a knowledge graph. For example there is DB-
pedia [45] and Wikidata [65]. DBpedia is a community-based project, that automatically
extracts and combines multi-lingual data from Wikipedia into a single knowledge graph.
Therefore Wikipedia info boxes are exploited as a source of structured data. In compari-
son, Wikidata is a knowledge graph directly associated with the Wikimedia project (i.e.,
including Wikipedia) aiming to provide “[...] universal identifier for all relevant named
entities”[65] in an approach to get the central authority for this purpose.
It is necessary to extract the data first to make this kind of data usable with standard
machine learning approaches. Narasimha et al. [48] proposed a data mining system for
linked data called LiDDM. LiDDM is a model that offers a GUI conducted pipeline to
extract linked data from different sources and make it usable for statistical analysis; with
results visualized in the end. For data extraction, the user can choose between specifying
the SPARQL query and an automatic query builder based on predicate recommendations.
The user is only needed to specify the triples. Cheng et al. [11] provide a theoretical
framework to automatically query semantic feature vectors from a knowledge graph based
on SPARQL. Given a set of entities E of interest, they automatically propose a feature
vector ve ∈ {0, 1} with semantic neighborhood information for all e ∈ E . Moghaddam et
al. [3] proposed a framework capable of automatic feature extraction from a knowledge
graph by generating SPARQL queries based on traversing an RDF graph. Like Cheng
et al., they start with a set of entities of interest but aim to retrieve literals instead of
a lengthy binary vector automatically. This thesis uses SPARQL queries like the ones
generated by the frameworks above. The user can use any of the tools to generate the
query and extract the dataset automatically. The approach won’t be dependent on how
the SPARQL query to retrieve the dataset is designed. The concept of entities of interest
will be formalized because, during the extraction of the dataset, these entities will be
aligned with the samples in the extracted dataset. Therefore not only using the knowledge
graph as a data source but also as a source for the semantic context of the samples in the
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dataset, which stays usable after data extraction.

3.2 Integrity Constraint Validation
Cormen et al. [15] introduced the semantics for recursive SHACL and provided complexity
bounds for the general problem of SHACL constraint validation over a knowledge graph.
In general, the problem turns out to be not solvable in polynomial time, in the case
of P ̸= NP . However, they identified tractable fragments of the language [14] and
proposed SHACL2SPARQL [13] an algorithm to tackle these fragments. Nevertheless,
the execution of SHACL validation over large knowledge graphs stays expensive, which is
why Figuera et al. [21] presented Trav-SHACL. Trav-SHACL is a SHACL engine built to
detect invalid entities early in an approach to maximize the scalability of the engine. Both
engines interleave the saturation performed by the SAT solver (see section 2.2.4) with the
materialization and grounding of the rules. However, Trav-SHACL rewrites the queries
sent to the SPARQL endpoint (e.g., pushing FILTER terms into the queries to make them
more selective). Furthermore, Trav-SHACL chooses the shape validation, such that the
shapes, that can invalidate the most number of entities, are validated first. This thesis
depends on the performance of SHACL validators and proposes heuristics to minimize
the time spent performing SHACL constraint validation. Compared to Trav-SHACL, the
heuristics used for optimization will be agnostic to the SHACL engine, enabling the wider
application.

3.3 Model-agnostic Interpretabilty Methods
Model-agnostic interpretability methods can be applied in an approach to make black-box
models better interpretable. On the one hand, there are global methods to analyze how
features influence the prediction of a machine learning model on average (e.g., Partial
Dependence Plot [24], Accumulated Local Effects Plot [2]), to measure the feature impor-
tance (e.g., model reliance [22]) or to build another approximating model, which can be
interpreted more easily.
For example, given a dataset D having the feature set Z = {f1, f2, ..., fM} the Partial
Dependence Plot shows the marginal distribution of the predictions of a machine learning
model Mθ given a subset of the features ZC ⊂ Z. The marginalization is done by taking
the average prediction (in the case of regression) and the most mentioned class (in the
case of classification) per ZC feature combination. This allows seeing the general influence
the features in ZC have on Mθ.
On the other hand, we have local methods to explain specific predictions of a model like
LIME [56]. Again one might assume a trained machine learning model Mθ, but now
one is just interested in the approximate linear effect the features have on the prediction
at a given problem instance xi. Therefore a new dataset D2 for supervised machine
learning is generated by varying the feature values of xi and for each problem instance
generated ask for Mθ(xi + sj). The sj (j ∈ [1, ..., |D2|]) might be estimated by sampling
|D2| times from a multivariate normal distributed random variable with zero mean and a
covariance matrix ϵ ∗ I where ϵ > 0 and I the identity matrix with dimension |xi| × |xi|.
Now |D2| can be used to train an easily interpretable model, which approximates Mθ

at xi locally. For instance, in the case of continuous feature and target values, a linear
regression Mw(x) = w ∗ x can be used. The weights w, as well as the standard deviation
of the weights wstd, can be estimated an interpreted as a feature importance vector w

wstd
.



Figure 3.1: Layers to be considered by interpretability methods: The real world goes
through many layers before the interpretability method is used to inform the human about
the model. The semantic context is ignored by interpretability methods used normally.
(The figure is inspired by [47])

Both methods help investigate the features’ importance when making a prediction with
Mθ for xi.
However, both examples and the other usual interpretable methods named above have
one major drawback: They try to explain the model only with respect to the features,
without considering the semantic context provided by a knowledge graph. Figure 3.1
illustrates this drawback. The entities of the real world can be captured together with
their semantic context in a knowledge graph. The dataset is created based on the entities
in the knowledge graph, but the extraction process discards the semantic context the
knowledge graph provides. An inducer uses the dataset to train a machine learning model
(i.e., a black box model), which is then analyzed by the interpretability methods (e.g.,
global or local) for better interpretability. However, the semantic context the knowledge
graph provides is not considered. This thesis proposes a model-agnostic interpretable
method. The semantic context is used in the process of the constraint validation to
interpret machine learning models (i.e., especially decision trees) better with respect to
patterns detected through the constraint validation.

3.4 Explainable Machine Learning over Knowledge Graphs
Machine learning over knowledge graphs is used for (i) link prediction to identify missing
facts (i.e. triples) in the knowledge graph [59], (ii) entity clustering to detect repeating
patterns in entities, or even to discover completely synonymous entities [61], (iii) Image
Classification [43] and various further applications. All of these approaches somehow make
use of the semantic context the knowledge graph provides: Embeddings (e.g., graph-,
node-, link embeddings, or messages passed in graph neural networks) incorporate the
semantic context and encode it in a latent vector representation. Rule-based approaches
yield insights based on the semantic context [44]; for example, in the context of link
prediction.
Embedding-based approaches usually scale well with large-size knowledge graphs, but
predictions based on them are not inherently explainable. In contrast, when a rule-based
approach makes a prediction, it is explainable, since the prediction was made based on
a set of rules. Nevertheless, comprehensible rules are usually handcrafted, making these
approaches scale worse.
For example, Halliwell et al. [30] propose using user-scored explanations for rating state-
of-the-art model explanations for link predictions. They generate ground truth explana-
tions for links to be rated based on horn clauses. Mohamed et al. [25] generate explainable
labeled clusters based on rule mining. Nevertheless, using embeddings for the task of clus-



tering, the clusters’ labels are explainable through they originate from rules.
In this thesis, the semantic context is exploited by using SHACL constraint validation
to make machine learning models’ predictions explainable. The explainability, however,
originates from using handcrafted rules (i.e., constraints).

3.5 Visualization of SHACL constraints
In the semantic web, the communication and cooperation of machines with humans is a
topic [7]. The visualization of SHACL constraints allows domain experts to understand
SHACL constraints without needing them to know RDF Schema (i.e., an RDF vocabulary
for data-modeling) and the exact SHACL specification.
Arndt et al. [49] propose a graphical RDF Schema editor and visual SHACL editor in
a single tool. The tool allows domain experts to create RDF vocabularies and SHACL
shape schemas (i.e., SHACL constraints) in a graphical toolbox. The tool is not based
on a familiar visual notation. In contrast, Lieber et al. [41] present unSHACLed a tool,
agnostic to the RDF vocabulary used for constraint modeling, that makes use of known
visualizations like UML and VOWL. Supporting all common constraint types and editing
operations, they were able to reuse familiar notations. In a study with users proficient
with Linked Data and UML, 81% of the questions were answered correctly. However,
they could not cover the visualization notation’s scalability. A recent master thesis [1],
making use of 3D visualization, experimentally studied the effect of the network size
based on synthetic shape schemas. It turned out that the number of nodes and links to
be rendered had the highest impact on rendering. Nevertheless, up to 5,000 nodes could
be rendered in under ten seconds.
This thesis does not visualize SHACL shape schemas. Still, it aims to visualize constraint
validation results in a model-coherent way, promoting the interpretability of machine
learning models (e.g., decision trees). Therefore a known visualization library (i.e., dtree-
viz [63]) is adapted, and synthetic shape schemas are used for the evaluation.

3.6 Summary
This chapter presents various topics related to the thesis, supported by current papers.
Data extraction is a central topic and will be based on user-defined SPARQL queries.
However, the user is free to use automatically generated queries by other frameworks.
Constraints exploit the semantic context of entities for an interpretability method based
on SHACL validation. The SHACL process will be speed-up by heuristics agnostic to
the SHACL engine. When the constraint validation results are available they will be
visualized in a familiar way (i.e., familiar to users of dtreeviz). Model predictions are
made explainable based on handcrafted constraints.



Chapter 4

Approach

This chapter introduces the problem described in the motivating example more formally.
Therefore, the concepts presented in the background section are used. Afterward, the
approach to solving the problem is explained in detail, and heuristics are proposed to
improve the performance of the approach. The motivating example continues to help the
reader understand the approach.

4.1 Problem Definition
The problem approached in this thesis is twofold. The first part is to validate constraints
over machine learning models while using the semantic context of the entities in an un-
derlying knowledge graph. The second part is to use the validation results to make the
machine learning model better interpretable or even explainable. The following two sec-
tions present these two problems formally using the motivating example.

4.1.1 Validating Constraints over Machine Learning Models

To be able to use the semantic context of the entities provided in a knowledge graph
to validate a machine learning model against a set of constraints, a validation engine is
needed. The validation engine needs to connect the information provided by the knowl-
edge graph and the predictions a machine learning model makes based on samples. To
do so, the problem of constraint validation for machine learning models is narrowed down
to the case, in which a mapping between the samples in the dataset and the nodes in
the knowledge graph exists. The mapping will be called sample-to-node mapping and is
defined as follows:

Definition 23: Sample-to-node Mapping
Given a dataset D for a specific task with N ∈ N samples and a knowledge graph G,
a sample-to-node mapping is a total function

η : [1, ..., N ]→ (B ∪ I) ∩ VG

mapping a sample to an IRI or a blank node in G. The infinite set of sample-to-node
mappings is given by η

At this point, it is important to recognize that η does not make any restrictions on the
dataset and their assigned nodes in the knowledge graph. On the left-hand side of the
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function, the indices of the dataset are used to allow duplicates in the dataset (e.g.,
required for oversampling [40]). This is in contrast to using I×T on the left, which would
not allow duplicates to be used. In addition, η enables a node in the knowledge graph
to be associated with several or no samples. The knowledge graph connected through η
with the dataset is referred to by underlying knowledge graph.

Example 7: The Function η used in the Motivating Example

This example refers to the dataset in Figure 1.1 and the underlying knowledge graph
in Figure 1.2. In the motivating example, the dataset consists of a set of person
types (the person column). For each person type, various features (representing the
problem instance) and the vaccination status (representing the target) are defined.
Additionally, the overall ratio (the weight column) of this type of person in the
whole dataset is given. Assuming a dataset of N = 9999 examples as in Figure
1.4, there will be 1

12 ∗ 9999 ≈ 833 examples of the type :Maria. Each example is
then mapped to a node in the underlying knowledge graph. The same procedure
is applied to the other types of persons.
That is what η does for each example in the dataset. Table 4.1 shows the complete
sample-to-node mapping and the corresponding problem instances and targets.

i xi ti η(i)
allergic_to gender pregnant country vaccinated

1 PEG male ⊥ Germany ⊥ :Max_0
...

...
...

...
...

...
...

3333 PEG male ⊥ Germany ⊥ :Max_3332
3334 female ⊤ Germany ⊥ :Maria_0

...
...

...
...

...
...

4166 female ⊤ Germany ⊥ :Maria_832
4167 female ⊥ Germany ⊤ :Eva_0

...
...

...
...

...
...

9166 female ⊥ Germany ⊤ :Eva_4999
9167 PEG female ⊥ Germany ⊥ :Laura_0

...
...

...
...

...
...

...
9999 PEG female ⊥ Germany ⊥ :Laura_832

Table 4.1: The Dataset Extracted from Figure 1.1 and 1.2 Annotated with the
Sample-to-node Mapping

Given the index i ∈ [1, ..., N ] of a sample (xi, ti) in a dataset D, η maps the index to a
node v ∈ B∪ I of a knowledge graph. During inference, a trained machine learning model
Mθ transforms the problem instance xi into a prediction Mθ(xi) for the target. These two
steps connect the entities or nodes in the knowledge graph to the prediction a machine
learning model makes based on them. The next step is to use the semantic context of the
entities and the corresponding predictions in the form of constraints.
A constraint will be defined similarly to an implication used in Boolean formulas. In
general, a Boolean implication (e.g., A→ B where A and B are Boolean formulas) consists



of a condition (i.e., A) and a restriction (i.e., B), getting active when the condition applies.
Regarding the validation engine, the left-hand side (i.e., A) of the constraint will be a
shape schema with a target shape, describing a condition on the entities found in the
knowledge graph. This is done according to the W3C recommendation in the SHACL
language [38] and allows using the semantic context of the entities in the knowledge graph.
The right-hand side of the implication (i.e., B) then allows for restrictions of the target
prediction of the machine learning model depending on the condition. The structure of
the constraint allows to generate explanations in specific cases: If the condition applies
and the target prediction is according to the restrictions, then the restrictions can be used
as an explanation for the target prediction (B might be true because of a A).

Definition 24: Constraint
A constraint C is composed of a shape schema S = (S, TARG, DEF) as defined in defini-
tion 17 (S ∈ SN), a shape ts ∈ S (called target shape) and a logical expression ϕT

with only the T as a free variable. T is the placeholder for the predicted target of
the machine learning model, to be validated. C is serialized as follows:

S
∣∣
ts
⇝ ϕT

where ⇝ is a symbol for a binary operatora. The components of C can be accessed
with C.S, C.ts and C.ϕT . The infinite set of constraints is defined to be C.

aThe semantics of the constraint will be defined in section 4.2.2

Until the semantic of the ⇝ is formally defined, the reader should translate it with “is a
requirement for”.

Example 8: An Example Constraint

In the introduction, the constraint „Every pregnant person in Germany, which has
more than 20 contacts to non-vaccinated persons should get vaccinated“ was for-
mulated and will now be transformed into the form defined above. The constraint
can clearly be expressed in the form of an implication having a set of conditions
on the node found in the knowledge graph on the left-hand side (e.g., the person
lives in Germany, is pregnant, and has more than 20 contacts with non-vaccinated
persons) and a Boolean expression about the target (e.g., the person has to be
vaccinated) on the right-hand side.
First, the necessary condition on the node is defined. Therefore, the abstract
notation from section 2.2.4 is used to define the shape schema S = (S, TARG, DEF).

S = {:PersonShape, :NotVaccinatedPersonShape}
DEF(:PersonShape) = (≥1 :pregnant.True) ∧ (≥1 :country.Germany) ∧

(≥21 :contact_with.:NotVaccinatedPersonShape)
DEF(:NotVaccinatedPersonShape) = (≥1 :vaccinated.False)

PREFIX : <http://example.org/>

SELECT ?x WHERE {

?x a :Person



}

Listing 4.1: TARG(:PersonShape) and TARG(:NotVaccinatedPersonShape)

When evaluating the shape schema against the knowledge graph to validate the
constraint, :PersonShape defines the condition based on :NotVaccinatedPersonShape.
Therefore, the target shape is :PersonShape and in case that a node is valid according
to the target shape the corresponding target prediction of the machine learning
model should be according to

ϕvaccinated = (vaccinated = ⊤)

Hence, the final constraint is

S
∣∣
:PersonShape

⇝ ϕvaccinated

Given the definition of the sample-to-node mapping (definition 23) and the constraint
(definition 24), to be validated over a machine learning model and the underlying knowl-
edge graph, the problem can be formulated.

Lemma 2: The Limited Problem of Validating Constraints over Machine
Learning Models
The input of the problem of validating constraints over machine learning models is
a 5-tuple (C, Mθ, D, G, η) where C ⊂ C a set of constraints, Mθ a machine learning
model with parameters θ, D a dataset according to definition 21, G ∈ G and η ∈ η
a sample-to-node mapping. Given a sample-to-node mapping η, the problem is to
efficiently evaluate each constraint C ∈ C for each sample indexed with [1, ..., N ] over
the machine learning model Mθ and the knowledge graph G.

4.1.2 Constraint-based Explanations

The problem addressed in this thesis goes one step further than validating a set of con-
straints as described in lemma 2. Another goal is to use the knowledge gained through the
validation to make the model behavior more evident to humans. This happens according
to the definition of explainable resp. interpretable AI: “[...] produce agents, whose be-
havior can be understood by humans [...]” resp. “[...] describe the internals of a system
in a way that is understandable to humans” and leads to a model, producing predictions
that can be trusted by the user (see chapter 2.3).
When using the validation results of the user-defined constraints, the goal is to summarize
the validation results so that they can be combined with the patterns used by the machine
learning model. Therefore, when talking about explaining a model in the context of
constraint validation in this thesis, it refers to the following definition of the problem.

Lemma 3: The Problem of Explaining Machine Learning Model Behavior
using Constraint Validation Results
Given the validation results for each constraint C ∈ C ⊂ C for each sample in the
dataset D, indexed with [1, ..., N ], over the machine learning model Mθ, the problem



is to summarize the knowledge gained in such a way, that the behavior of Mθ gets
more apparent to the user.

4.2 Validating Constraints over Machine Learning Models
As shown graphically in Figure 1.5, the approach described in this chapter can be rep-
resented sequentially. The first three steps are the ones that build the foundation and
contribute to an approach to solve the problem described in lemma 2. This is also the
problem tackled in this section. The initial situation assumed is that a user wants to
solve a task (see definition 19) using a machine learning model based on data available
in a knowledge graph (see definition 6), but the machine learning model should respect
a given set of user-created constraints as defined in definition 24. In the first subsection,
the first step called „Propositionalization“ is described in more detail and will provide a
dataset (see definition 21) and a sample-to-node mapping (see definition 23). Building on
that, a machine learning model is trained on the dataset, which completes the inputs of
the problem tackled and leads to the third step called „Constraint Validation“ (see Figure
1.5). This step is described in detail in section 4.2.2 by presenting the semantics of the
constraints. This leads to the validation engine solving the problem model-agnostic.

4.2.1 Prepositionalization

Most machine learning algorithms that train machine learning models demand a propo-
sitional form of the input data. This is the kind of data matching the definition 21. Each
sample is associated with a number of features and a target, given that it is not an un-
supervised algorithm. Hence, the goal is to generate a dataset given a knowledge graph
and, in parallel, create the needed sample-to-node mapping by tracking the generation
process. There is already some work tackling the first part of the goal by using user-
defined SPARQL queries [11, 48]. A recent paper even proposed a generic distributed
framework that can generate these kinds of queries automatically [3]. Since this proce-
dure has proven itself and is also suitable for extracting the required mapping, SPARQL
queries are used here for propositionalization. In this work, the user is required to provide
the query. Nevertheless, a framework like the one in [3] can be used as long as it generates
queries as specified below. To get started, the following provides the components used to
specify the query. First, the user must decide on a corpus of entities, making predictions
about [11].

Definition 25: Set of Seed Nodes
The set of seed nodes s ⊂ I ∪ B represents the corpus of entities a user wishes to
make predictions about.

Each seed node represents a starting point in the knowledge graph from which one or more
samples will be extracted. Similar to the notion of a target query, which retrieves target
instances to be checked against a shape, one can define a seed query Qs, which gives,
when executed over a knowledge graph, the set of seed nodes to be used to construct the
dataset.



Definition 26: Seed Query
Given a set of seed nodes s ⊂ I ∪ B and a knowledge graph G ∈ G, a seed query
Qs ∈ Q is a SPARQL query with [[Qs]]G = s and |dom([[Qs]]G)| = 1.

The infinite set of seed queries equals the infinite set of target queries QT.
To connect a seed node with a node representing a feature, property paths are needed.
Therefore, one must choose K property paths p1, p2, ..., pK ∈

−→P . Each property path
pj connects a seed node si to the corresponding feature value xi,j extracted from the
knowledge graph. In the case of a supervised algorithm, an additional path pti ∈

−→P is
needed to connect the seed node si with the corresponding target value ti.
Finally, the concept of a seed query and the concept of property paths need to be combined
to build a dataset constructing SPARQL query QD. In definition 11 the SELECT query as
defined in definition 12 is listed as a graph pattern, which allows the usage of nested
queries in SPARQL. Therefore, the seed query can be integrated as a nested query into
QD. Furthermore, a property path can be seen as a shorthand for a more complicated
graph pattern. This becomes evident in definition 14. Each recursive component of
a property path can be evaluated using the algebraic operations over sets of solutions
mappings. Here, a property path is used as an in-place operation between two variables.
These variables replace the variables ?sp and ?ep in the definition 14. The variable on the
left-hand side of the property path refers to, ?sp and the variable on the right-hand side
to ?ep.

Example 9: Using Property Paths and Nested Queries as Graph Pat-
terns

In the motivating example, one might be interested in all the pairs of people, who
are related to each other and the first person is constrained to be not vaccinated.
Here two persons are related to each other, when there is a path in the knowledge
graph connecting them and the path consists of a maximum of two edges labeled
with :contact_with.
Let ∇ be the identity function; mapping each variable to itself. First, a query to
extract non-vaccinated persons is defined

Qnot vaccinated = SELECT(?x,∇,((?x, rdf:type, :Person)
AND (?x, :vaccinated, False))

Next, two property paths are needed to express the concept of paths connecting
two persons via edges labeled with :contact_with.

p1 := :contact_with

p2 := p1/p1

p1 is a predicate path and p2 a sequence path consisting of two predicate paths.
Now the full query can be specified:

SELECT({?x,?y},∇, ((Qnot vaccinated AND (?x, p1, ?y)) UNION

(Qnot vaccinated AND (?x, p2, ?y)))



There might be seed nodes si for which a property path pj does not lead to a feature
value xi,j in a knowledge graph G because ∀f ∈ B ∪ I (si, f) ̸∈ [[pj ]]G. Therefore, the
dataset may contain empty entries in the case of some samples, and QD has to use the OPT

graph pattern for each property path referring to a feature. Hence, a sample including
an empty entry will not be discarded. Therefore, the SPARQL query QD can be built as
follows:

SELECT({?x, ?f1, ..., ?fK}, ∇, (Qs AND OPT
j∈[1,...,K] (?x, pj , ?fj))) (4.1)

An additional optional graph pattern using pti must be used when building a dataset for
a supervised algorithm.

Example 10: Query used to Generate the Motivating Example Dataset

There is already a dataset given in the motivating example (see Figure 1.1), which
was extracted from a knowledge graph like the one in Figure 1.2. Here the goal is
to specify how the dataset was extracted using a SPARQL query QD, which has
the form shown as a graph pattern above. First, a seed query is needed. In the
case of the motivating example, one is interested in the corpus of persons and the
seed query. Therefore, one needs to extract all entities of type person.

Qs = SELECT(?x,∇, (?x, rdf:type, :Person))

As the knowledge graph is kept simple, the property paths leading to the features
as well as the target are predicate paths:

:allergic_to, :gender, :pregnant, :country, :vaccinated ∈
−→P

Finally, the query can be specified using the SPARQL syntax.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX : <http://example.org/>

SELECT ?x ?allergic_to ?gender ?pregnant ?country ?vaccinated

WHERE {

?x rdf:type :Person .

OPTIONAL{ ?x :allergic_to ?allergic_to }

OPTIONAL{ ?x :gender ?gender }

OPTIONAL{ ?x :pregnant ?pregnant }

OPTIONAL{ ?x :country ?country }

OPTIONAL{ ?x :vaccinated ?vaccinated }

}

Listing 4.2: SPARQL query to generate the motivating example dataset

The kind of query QD presented here already comprises the seed query. Therefore, when
evaluating QD against a knowledge graph, each solution mapping represents a sample
annotated with the corresponding seed node. The transformation from a tuple of solution
mappings to a dataset and a sample-to-node mapping is given below:



Definition 27: Transforming a Tuple of Solution Mappings into a Dataset
and a Sample-to-node Mapping
Given a task (I,T, ot(.)), the function ℧ : MN × V → (I × T)N × η transforms a
given tuple of solution mappings Ω of length N ∈ N and a variable ?t specifying
the target (if there is one, „None“ otherwise) into a dataset and a sample-to-node
mapping. This only requires that for each solution mapping µ ∈ Ω it’s ?x ∈ dom(µ)
and µ(?x) ∈ I ∪B gives the seed node of the solution mapping.

xi :=(µ(?v) | µ = Ω[i]∧?v ∈ dom(µ) \ {?x, ?t})

℧(Ω, ?t)[1] 7→


((xi, Ω[i](?t)︸ ︷︷ ︸

ti

) | i ∈ [1, ..., N ]) ?t ̸= None

(xi | i ∈ [1, ..., N ]) else
℧(Ω, ?t)[2] 7→{(i 7→ Ω[i](?x)) | i ∈ [1, ..., N ]}

If ?t is not „None“, then for all µ ∈ Ω it’s ?t ∈ dom(µ).

As one can observe, the dataset generating query QD can also be of other forms deviating
from 4.1. For example, the query can use groupings and aggregations (see [53]) as long
as the requirements of the previous definition are fulfilled.

Definition 28: A Dataset Generating Query
Given a dataset D and a knowledge graph G, a dataset generating query QD is the
one, which evaluates to a set of solution mappings Ω := [[QD]]G, such that tuple(Ω)
fulfills the requirements in definition 27 and ℧(Ω, ?t)[1] = D.

The dataset and the sample-to-node mapping can now be constructed depending on the
machine learning algorithm. If it is an unsupervised algorithm, and a knowledge graph G
and a dataset generating query QD are given, then the dataset D and the sample-to-node
mapping are constructed as follows:

(D, η) = ℧(tuple([[QD]]G), None)

If the algorithm is a supervised algorithm, the variable for target identification ?t is
required additionally:

(D, η) = ℧(tuple([[QD]]G), ?t)
In both cases, the sample-to-node mapping generated has as domain the original set of
seed nodes chosen by the user as corpus of entities to make predictions about (e.g., given
G ∈ G, Qs ∈ QT, s := [[Qs]]G and the dataset extracting query QD ∈ Q comprises Qs,
the extracted sample-to-node mapping η it will full fill dom(η) = s)

Example 11: Creating the Motivating Example dataset

As all the components to create the dataset from the motivating example are ready,
that is, the knowledge graph G (see Figure 1.2) and the dataset generating query
QD (see example 10), the dataset D (see Figure 1.1) and the matching sample-to-
node mapping η (see example 7) can be created by executing:

(D, η) = ℧(tuple([[QD]]G), ?vaccinated)



This concludes the section, as the goal of generating a dataset from a knowledge graph
while creating the required sample-to-node mapping has been achieved.

4.2.2 Constraint Evaluation

At this point, all the inputs (C, Mθ, D, G, η) of the problem defined in lemma 2 are avail-
able. Initially, a user defines a set of constraints C to be evaluated over a knowledge
graph G and a machine learning model Mθ. Here the model is assumed to be already
trained with parameters θ; for example, using the dataset D generated from the knowl-
edge graph G. The generation process is tracked to create the sample-to-node mapping η.
Here the semantics of the constraints are defined, such that approaches to a more efficient
evaluation can be tackled in section 4.3.
As explained in section 4.1, the sample-to-node mapping allows connecting the prediction
Mθ(xi) of a problem instance xi with the validation result of a target shape ts in a shape
schema S over the node η(i) in a knowledge graph G. This connection was, therefore,
incorporated into the definition of the constraint with the hint of a semantics similar to the
implication used in Boolean formulas. Now, the semantics of a constraint is approached
bottom-up and from the left-hand side to the right-hand side.
On the left-hand side of a constraint, there is the shape schema S = (S, TARG, DEF) annotated
with a target shape ts ∈ S. The target shape denotes the shape, which is used during
the validation (see definition 18) of the node η(i). This is necessary because for each
shape s ∈ S there are validation results corresponding to η(i) ∈ [[TARG(s)]]G. Evaluating
the left-hand side of the constraint is, therefore, done by executing the entity validation
function with the given parameters:

[[S
∣∣
ts

]]G,η(i) =
{

validate(η(i), ts, G) η(i) ∈ [[TARG(ts)]]G
⊤ else

(4.2)

As there might be instances retrieved by the seed query (n ∈ [[Qs]]G), which are not part
of the target definition of the target shape defined for the constraint (n /∈ [[TARG(ts)]]G),
the case distinction is necessary. These nodes n are handled as if they were valid according
to the target shape.
On the right-hand side of the constraint, there is the logical expression ϕT involving one
free variable T . To evaluate the formula, T needs to be substituted with the predicted
result Mθ(xi) and then be evaluated. Formally, the evaluation is done over a structure S
with T as a carrier, functions, relations and constants defined for T and an assignment β
with Gβ = {(T →Mθ(xi))}. Therefore, it holds:

[[ϕT ]]Mθ(xi) = 1⇔ (S, β) |= ϕT (4.3)

Next, the evaluation results need to be combined. The combination is done with the
special symbol ⇝ defined for the evaluation with a 3-valued logic designed for this appli-
cation.

Definition 29: Interpreting formulas using the 3-valued logic
The 3-valued logic extends the Boolean logic by the introduction of a third symbol
−1. The symbol is used to rate whether a formula σ is modeled by an interpretation
I : var(σ)→ {0, 1,−1}. Therefore it holds:

(I |= σ) ∈ {−1, 0, 1}



−1 expresses that I does not apply to σ, 0 expresses that I is an invalid interpretation
for σ and 1 expresses that I is an valid interpretation for σ.

To define the semantics of ⇝, the Scott brackets are used for notation convenience.

Definition 30: The Semantics of ⇝
Let A and B be formulas, which can be evaluated using the Scott brackets by [[A]]α
and [[B]]β and the necessary parameters α and β. Syntactically writing A ⇝ B is
allowed if ∀α, β [[A]]α, [[B]]β ∈ {−1, 0, 1}. Then the evaluation of A ⇝ B denoted
with [[A⇝ B]]α,β is defined as shown in the following truth table.

[[A]]α [[B]]β [[A⇝ B]]α,β

0 0 −1
0 1 −1
1 0 0
1 1 1

All further possible combinations of [[A]]α and [[B]]β evaluated to −1.

The following example should make the evaluation of formulas using the⇝ of the 3-valued
logic, and the interpretation coming with it, better understandable.

Example 12: Evaluating formulas of the 3-valued logic

This example is about a voting scenario. The candidates are Armin Laschet or
Olaf Scholz. Each person permitted to vote is given a voting form with two boxes,
one for each candidate. A vote is called compliant with the rules if exactly one box
is checked. There are two formulas given.

Formula A evaluates to −1 if the vote was not done compliant with the rules,
0 if the vote was done compliantly for Armin Laschet, and 1 if the vote was
done compliantly for Olaf Scholz.

Formula B evaluates to 1 if the person checked the box for Armin Laschet and
otherwise evaluates to 0.

Let us assume person 1 only checks the box for Olaf Scholz, person 2 only checks
the box for Armin Laschet, and person 3 checks both boxes. In this context, the
interpretation I determines the boxes checked by providing the person.
Now we may be interested in evaluating A ⇝ B (“Voting compliantly for
Olaf Scholz is a requirement for checking the box for Armin Laschet”) and ¬B ⇝ A
(“Not checking the box for Armin Laschet is a requirement to vote compliantly for
Olaf Scholz”) according to definition 30 for the different interpretations, given in



the form of persons. Table 4.2 and 4.3 shows the result of the evaluation.

p [[A]]p [[B]]p [[A⇝ B]]p

Person 1 1 0 0
Person 2 0 1 −1
Person 3 −1 1 −1

Table 4.2: Evaluating A⇝ B

p [[¬B]]p [[A]]p [[¬B ⇝ A]]p

Person 1 1 1 1
Person 2 0 0 −1
Person 3 0 −1 −1

Table 4.3: Evaluating ¬B ⇝ A

In the context of evaluating a constraint C ∈ C, the evaluation is even simpler, as S
∣∣
ts

and
ϕT always evaluate to 0 or 1. Definition 31 concludes the process of evaluating a constraint
C given a problem instance xi, a knowledge graph G, a machine learning model Mθ and
a sample-to-node mapping η.

Definition 31: Constraint Evaluation given a Problem Instance
A constraint C ∈ C can be evaluated over a problem instance xi given a trained
machine learning model Mθ, a knowledge graph G and a sample-to-node mapping η
with [[C]]Mθ(xi),G,η(i).

As a remark, C is of form S
∣∣
ts
⇝ ϕT and, therefore, evaluating C according to definition

31 means to apply formulas 4.2 and 4.3, and combine these results with definition 30.
The whole evaluation process is demonstrated using the following example, building on
the motivating example.

Example 13: Evaluating the Example Constraint

This example continues the motivating example and, therefore, makes use of the
sample-to-node mapping η from example 7, created in example 11 from the knowl-
edge graph G illustrated in Figure 1.2. The goal is to validate the constraint

S
∣∣
:PersonShape

⇝ ϕvaccinated

from example 8, given the already trained decision tree in Fig-
ure 1.3. Since only a part of the knowledge graph is given, the
SHACL validation process will be done by reasoning using table 4.4:

person #cw :allergic_to :gender :pregnant :country :vaccinated

:Max 15 PEG male ⊥ Germany ⊥
:Maria 25 female ⊤ Germany ⊥
:Eva 30 female ⊥ Germany ⊤
:Laura 10 PEG female ⊥ Germany ⊥

Table 4.4: Dataset from 1.1 annotated with the number of contacts with non-
vaccinated persons (#cw)
The evaluation of the left-hand side of the constraint is done by executing
validate(η(i), :PersonShape, G) for all i ∈ [1, ..., 9999]. Therefore, S needs to be



validated against G by running a SHACL engine, like the one given in algo-
rithm 1, to give validation results for all i ∈ [1, ..., 9999]. In this example, it is
[[Qs]]G ⊆ [[TARG(ts)]] as the seed query Qs equals the target query of the shape
ts (see example 8 and 10) and, hence, the else case in formula 4.2 does not
occur. Inspection of the table above shows that only the nodes :Maria_j with
j ∈ [0, ..., 832] will be valid with respect to :PersonShape, because they are preg-
nant, live in Germany and have more than 20 contacts to non-vaccinated persons
(e.g., fulfill DEF(:PersonShape)).
For the evaluation of the right-hand side, ϕvaccinated needs to be evaluated for all
xi with i ∈ [1, ..., 9999]. Hence, [[ϕT ]]Mθ(xi) = 1 iff (Mθ(xi) = ⊤). According to the
dataset in example 7 and the decision tree in Figure 1.3, ϕvaccinated is true only for
the instances x4167, ..., x9166, i.e., those that belong to :Eva. Table 4.5 includes the
summarized evaluation results for each sample in the dataset.

i η(i) [[S
∣∣
:PersonShape

]]G,η(i) [[ϕvaccinated]]Mθ(xi) [[C]]Mθ(xi),G,η(i)

1 :Max_0 0 0 -1
...

...
...

...
...

3333 :Max_3332 0 0 -1
3334 :Maria_0 1 0 0

...
...

...
...

...
4166 :Maria_832 1 0 0
4167 :Eva_0 0 1 -1

...
...

...
...

...
9166 :Eva_4999 0 1 -1
9167 :Laura_0 0 0 -1

...
...

...
...

...
9999 :Laura_832 0 0 -1

Table 4.5: Sample-to-node mapping annotated with the (intermediate results of
the) constraint evaluation of the example constraint

Applying [[C]]Mθ(xi),G,η(i) to all problem instances xi in a dataset D and all constraints
C ∈ C then yields a constraint validation result for each pair of sample and constraint.
This result is recorded by the function defined in the following definition.

Definition 32: Model-Validation-Result Function
Given a set of constraints C ⊂ C and a dataset D with N samples, the model-
validation-result function

ΘMθ,D,G,η : C × [1, ..., N ]→ {1, 0,−1}

maps a constraint C and an index i of a problem instance xi in D to the validation
result:

ΘMθ,D,G,η(C, i) 7→ [[C]]Mθ(xi),G,η(i)



Θ assumes a trained machine learning model Mθ, a knowledge graph G, and a dataset
D with the matching sample-to-node mapping η ∈ η. The set of all possible model-
validation-result functions is defined as Θ. If the context is clear, Θ might be used
instead of ΘMθ,D,G,η.

The model-validation-result function tells the user, whether the sample resp. the predic-
tion made by the model is valid (1), or invalid (0) according to the constraint, or the
constraint was not applicable (-1) to the sample resp. the prediction. In the context of a
constraint as stated in definition 24, the semantics of ⇝ allows for preserving the evalu-
ation result of the left-hand side of the constraint. That is, a constraint does not apply
to a sample, when ts is invalidated explicitly by the property path constraints defined
in S.DEF(ts). In the remaining cases, the formula on the right-hand side of the implica-
tion determines the validation result. This is in contrast to using the standard Boolean
implication:

Lemma 4: ⇝ is closely related to →
Reuse the notation from definition 30 and let → be the implication used in Boolean
formulas, then for all possible A and B it holds |[[A⇝ B]]α,β| = [[A→ B]]α,β.

The lemma can be used to convert Θ to use the standard Boolean implication and the
2-valued logic by taking the absolute value of each validation result. The 2-valued version
of Θ is referred by |Θ| and defined analog to Θ but maps a constraint and the index of a
sample in a dataset as follows:

ΘMθ,D,G,η(C, i) 7→
∣∣∣[[C]]Mθ(xi),G,η(i)

∣∣∣ (4.4)

4.2.3 The Validation Engine

This section serves as a summary of chapter 4.2 by providing pseudocode of the validation
engine (algorithm 2), approaching the problem described in lemma 2, and showing how one
might get the inputs of the problem. The algorithm assumes an inducer I, a knowledge
graph G ⊂ G, the components (i.e., the dataset generating query QD and a target variable
?t) used to generate a dataset from G as well as the constraints to be checked C ⊂ C.
These inputs are transformed into the input tuple of the problem described in lemma
2 and, afterward, the constraints are used to validate the so-created model, solving the
problem described. Saying that, the user may skip the training of the machine learning
model with the extracted dataset, by using an already trained model. However, this may
lead to less useful visualizations based on the results of the engine, created in the coming
sections. More details can be found as a final note in section 2.3.3.
The algorithm results in the model-validation-result function from definition 32. The
algorithm is further improved in section 4.3. The following example demonstrates the
algorithm line by line using the examples already provided.



Example 14: Applying Algorithm 2 to the Motivating Example

In a first step, the result of section 4.2.1, which is definition 27, is used to trans-
form the dataset generating query QD and the variable ?t occurring in all solution
mappings in [[QD]]G into the dataset D and the sample-to-node mapping η (line 2).
The dataset generating query is the one provided in example 10, which is then used
in example 11 to generate the dataset. By doing so, the sample-to-node mapping,
as shown in example 7, is created on the fly. Afterwards, the learning algorithm I
is used to train a machine learning model M with parameters θ using the gener-
ated dataset D (line 3). Here, it is assumed that the decision tree in Figure 1.3 is
created, to solve the classification problem of "to get vaccinated or not to get vac-
cinated" given the dataset. Techniques to improve the quality of the model such as
hyperparameter optimization, like finding the maximal depth of the decision tree
as in example 5, or further steps to prepare the dataset are omitted. The division
of the data set into a training set and a test set is also left out, but should be done
as described in section 2.3.2 to be able to measure the generalization capabilities
of the model.
At this point, the input tuple (C, Mθ, D, G, η) to the limited problem of validating
constraints over machine learning models are ready. As a first step to solve the
problem, a SHACL engine is needed to evaluate the shape schemas C.S given by the
constraints C ∈ C (lines 9 - 13). The process of performing the SHACL validation
for each constraint returns a dictionary of entity validation functions (see definition
18). Therefore, validate has one entry per distinct SHACL shape schema mentioned
in the constraints (line 4). In this example, G needs only be checked against one
shape schema, as only the constraint from example 8 is used.
The validation results for the :PersonShape are then used to evaluate the constraint
for each sample (line 19). Therefore, the formula 4.2 is used in lines 20 - 24 and
the formula 4.3 in line 25. Given definition 30, these results are combined (lines 26
- 32) to populate the result function Θ. This procedure is already demonstrated in
example 13.

4.2.4 Complexity

Given the pseudocode of the validation engine, it is appropriate to analyze the time
complexity of the approach. Inspection of the constraint validation engine yields three
main parts to take into consideration:

1. Querying the dataset together with the sample-to-node mapping

2. Performing the SHACL validation

3. Evaluating the constraints

In the pseudocode, the first two parts are outsourced and hidden behind [[QD]]G and
runShaclEngine. However, it should be noted, that even checking whether a given
SPARQL mapping is contained in the set of answers of a query is PSPACE-complete,
when not restricted to specific graph patterns [51]. The complexity of the problem can be
reduced to be coNP-complete, by limiting the graph patterns to OPTIONAL, FILTER, and AND.
Therefore, checking whether a SPARQL mapping will be retrieved by a SPARQL query



Algorithm 2 Pseudocode of the Validation Engine
1: function main(Inducer I, Query QD, Knowledge Graph G, Target Variable ?t, Con-

straints C)
2: (D, η)← ℧(tuple([[QD]]G), ?t)
3: Mθ ← I(D) ▷ This is optional. A trained model Mθ might also be provided to

the engine, instead of I
4: validate← performShaclValidation(C, G)
5: return evaluateConstraints(C, validate,Mθ, η, G)
6: end function
7: function performShaclValidation(Constraints C, Knowledge Graph G)
8: validate← ∅
9: for each C ∈ C do

10: if C.S ̸∈ validate then
11: validate[C.S]← runShaclEngine(C.S, G)
12: end if
13: end for
14: return validate
15: end function
16: function evaluateConstraints(Constraints C, Entity Validation Function

validate, Model Mθ, Sample-to-node Mapping η, Knowledge Graph G)
17: GΘ ← ∅
18: for each C ∈ C do
19: for each i ∈ {1, ..., length(D)} do
20: if (η(i), C.ts, G) ∈ dom(validate[C.S]) then
21: left← validate[C.S](η(i), C.ts, G)
22: else
23: left← ⊤ ▷ Case: η(i) ̸∈ [[TARG(ts)]]G
24: end if
25: right← [[C.ϕT ]]Mθ(D[i])
26: if left ∧ right then
27: GΘ ← GΘ ∪ {(C, i) 7→ 1}
28: else if left ∧ ¬right then
29: GΘ ← GΘ ∪ {(C, i) 7→ 0}
30: else
31: GΘ ← GΘ ∪ {(C, i) 7→ −1}
32: end if
33: end for
34: end for
35: return GΘ
36: end function

written according to formula 4.1 will be in coNP and the user may be advised to remove
the OPTIONAL patterns when possible to make the problem solvable in polynomial time.
Also, checking a SHACL schema against a knowledge graph is NP-complete in general
[15]. Therefore, the user of the engine should choose SHACL schemas non-recursively
or without negations in recursive dependencies to reduce the complexity of the SHACL
schema evaluation to polynomial time.
This result is not surprising, as in algorithm 1 a SAT solver is used. The main difference
between the engine in algorithm 1 and the one implemented in SHACL2SPARQL [14]



[[TARG(C.ts)]]G [[Qs]]G

{η(i) | [[C.ϕt]]Mθ
(xi) = ⊥}

Figure 4.1: Venn-Diagram visualizing the Different Kinds of Nodes Occurring during the
Validation

or Trav-SHACL [21] is that the saturation performed by the SAT solver is performed
interleaved with the materialization and grounding of the rules.
This leaves the third part to be performed by the implementation of the constraint val-
idation engine. Algorithm 2 proves that evaluating the constraints, given the necessary
components, as in the evaluateConstraints function, can be done with a time complex-
ity of O(|C| ∗ |D|) assuming constant length constraints and a data structure like a hash
table to access the SHACL validation result in constant time.
Overall, the complexity of the validation engine depends on the complexity arising through
querying the knowledge graph and performing the SHACL validation. In a worst-case
scenario, this results in the problem being PSPACE-complete. However, wisely choosing
the SPARQL query to retrieve the data and the constraints yields a polynomial run time,
on which further extensions and improvements can be built.

4.3 Improving and Extending the Approach
In this section, the aim is to improve the previously presented approach with heuristics
to reduce the time needed by the validation engine. First, heuristics are presented to
reduce the number of nodes in the knowledge graph, which need to be validated during
the SHACL schema validation of the different constraints. In this first section, it is also
presented how redundant validation runs for shape schemas used by multiple constraints
are avoided. Next, heuristics are worked out to reduce the time spent on joining SHACL
schema validation results with the samples in the dataset via the sample-to-node map-
ping. The third section investigates performing the SHACL constraint validation during
SPARQL query processing, which uses the heuristics from the first section to improve the
runtime. Finally, a new type of constraint is introduced and distinguished from the old
one.

4.3.1 Reducing the SHACL Shape Schemas

An inspection of the validation engine given in algorithm 2 shows that the information
needed by the validation engine with respect to the SHACL validation results is commu-
nicated too broad to the SHACL engine. In the context of evaluating constraints over a
machine learning model, the calls to the entity validation function in line 21 specify the
need of the algorithm for SHACL validation results.
The entity validation function is called for every combination of a constraint C and a



node η(i) related to a sample in the dataset. That is, the evaluation only requires the
validation results for the nodes retrieved, when executing the seed query Qs, used during
creation of the dataset, over G (in Figure 4.1 the right circle). Additionally, the algorithm
only makes use of the entity validation function if the entity validation function contains
the needed validation result. For a given constraint C with a target shape, C.ts this
is only the case if the node is included in the target definition of the shape (left circle
in Figure 4.1). Finally, one can exploit the form of the constraint C in the case of the
2-valued logic. Taking definition 24 and lemma 4 brings C in the form

S
∣∣
ts
→ ϕT

Because of the Boolean implication now used in C, if [[C.ϕt]]Mθ
(xi) evaluates to true the

whole constraint will also evaluate to true independent of the SHACL schema validation
result generated for the evaluation of the left-hand side of the constraint (dotted circle in
Figure 4.1).
As the entity validation function is created from a valid assignment, at most the validation
results for the target nodes of the shapes in the shape schema are included, which are
too many. This can be seen in Figure 4.1. The area in blue represents the set of nodes
originally not included in the target definition of the target shape. The red area, as well as
the not dotted green area (in the case of the 2-valued logic), represent the nodes validated
by the SHACL engine, although, the results are not needed by the validation engine to
validate the constraints.

Lemma 5: Only Perform the SHACL Validation for Target Nodes Needed
by the Validation Engine
Given a constraint C ∈ C (as in definition 24), a shape schema S = (S, TARG, DEF), a
seed query Qs ∈ QT used to retrieve the dataset D and the sample-to-node mapping
η with problem instances xi from a knowledge graph G ∈ G, the nodes needed to
be validated by a SHACL engine to perform the constraint validation of C can be
limited to

H2 = [[TARG(C.ts)]]G ∩ [[Qs]]G ∩ {η(i) | [[C.ϕt]]Mθ(xi) = ⊥} (4.5)

in case of the 2-valued logic (the dotted area marked in green in Figure 4.1) or

H3 = [[TARG(C.ts)]]G ∩ [[Qs]]G (4.6)

in case of the 3-valued logic (the area marked in green in Figure 4.1).

Therefore, the goal is now to reduce the SHACL schema C.S = (S, TARG, DEF) to a SHACL
schema S ′ = (S′, TARG’, DEF), in such a way, that the validation results for the instances in
H3 resp. H2 does not change. This can be formally expressed with

∀G ∈ G ∀v ∈ H validateS(v, C.ts, G) = validateS′(v, C.ts, G) (4.7)

where validateS is the entity validation function for S and H is H2 or, H3 depending on
the logic used.
To remove the kind of instances validated unnecessarily by the SHACL engine, the target
definition of the target shape C.ts can be limited to the intersection H. Therefore, the
seed query Qs is extracted from the dataset generating query QD by only projecting ?x:

Qs = SELECT(?x, id, QD) (4.8)



Next, in case of the 2-valued logic the nodes in the set {η(i) | [[C.ϕt]]Mθ
(xi) = ⊥} can be

estimated by early evaluating the right-hand side of the constraint and making use of the
sample-to-node mapping η. Given the IRIs of the nodes, a filter condition R can be built
to restrict the validation to these nodes. In the case of the 3-valued logic, it holds R = ⊤.
Both Qs and R can now be used in the target definition of the target shape C.ts of the
reduced shape schema:

TARG’(s) =
{
TARG(s) s ̸= C.ts

SELECT(?x, id, ((Qs AND TARG(C.ts)) FILTER R)) else

Clearly, the change of TARG(C.ts) does not affect formula 4.7.
The execution of the SHACL engine over a shape schema, as performed in line 11, produces
at most the validation results for the target nodes of the shapes in the shape schema.
However, the evaluation of a constraint only needs the SHACL validation results for the
shape C.ts and further results should only be produced because of inter-shape constraints.
This is the second kind of instances validated unnecessarily by the SHACL engine. These
shapes can be identified by taking the shape schema S as a directed graph, as defined
below:

Definition 33: Dependency Graph of a Shape Schema [21]
Given a shape schema, S = (S, TARG, DEF) the directed dependency graph ΦS is a tuple
(VΦS , EΦS ) with

VΦS = S

and
EΦS = {(si, sj) | sj appears in DEF(si)}

Given, ΦS one can identify the needed shapes S′ to be the ones reachable from C.ts. This
is valid as the criterion DEF(C.ts) can still be evaluated as before because formula 4.7 stays
unaffected.

Lemma 6: Remove unneeded Shapes from the Shape Schema
Given a constraint C ∈ C (as in definition 24) and a shape schema, S = (S, TARG, DEF)
the shapes to evaluate C can be limited to the shapes, which are reachable from C.ts
in the directed dependency graph ΦS .

Algorithm 3 makes use of the two lemmas and is a replacement for
performShaclValidation (line 4 in algorithm 2). Additionally, the algorithm
takes care of shape schemas used by multiple constraints. Taking multiple constraints
into consideration is important as each shape schema should only be validated once over
the knowledge graph, to avoid the redundant generation of SHACL schema validation
results for shapes occurring in multiple reduced shape schemas.

Lemma 7: Simultaneous Generation of SHACL Schema Validation Re-
sults for Constraints using the Same Shape Schema
Given a set of constraints C ⊂ C the SHACL schema validation results for all
CS ∈ P(C) for which all Ci, Cj ∈ CS imply Ci.S = Cj .S should be generated si-
multaneously.



However, lemmas 5 and 6 can both be extended easily to multiple constraints. A group of
constraints using the same shape schema S, but different target shapes tsi (i ∈ [1, 2, ...]),
needs for evaluation all shapes reachable from the tsi (lines 3 - 11). These are stored
in relevantShapes. In the next steps, for each shape schema occurring in the constraints
(line 13), a subset of the target shapes must be selected for which the target definition
can be reduced (lines 15 - 20). That is the target definition of a target shape ts, involved
in the evaluation of another target shape ts′ may not be reduced, because the nodes
[[TARG(C.ts)]]G \ [[Qs]]G may be needed to evaluate ts′. In case the target definition of a
target shape can be reduced, the filter condition used to further reduce the nodes in the
target definition is computed per target shape. To avoid the evaluation of the right-hand
side of the constraints, the SHACL validation needs to be performed interleaved with
the constraint evaluation. Here for reasons of simplicity, line 17 can be thought of an
oracle giving the correct filter condition. Finally, the SHACL engine can be run on the
reduced shape schema S ′ consisting of the updated target definitions TARG and the shapes
S′ relevant for evaluation of the target shapes tsi (line 21).

Algorithm 3 Pseudocode of the Reduced SHACL Validation
1: function reducedSHACLValidation(Constraints C, Query QD, Knowledge Graph

G)
2: schemasForConstraints← ∅ ▷ the list of constraints using the same shape schema
3: relevantShapes← ∅ ▷ the needed shapes per shape schema
4: involvedShapes← ∅ ▷ the shapes involved when evaluating a constraint
5: Qs = SELECT(?x, id, QD) ▷ id is the identity function
6: for each C ∈ C do
7: ΦC.S ← createDependencyGraph(C.S)
8: involvedShapes[C]← DFS(ΦC.S , C.ts)
9: relevantShapes[C.S]← relevantShapes[C.S] ∪ involvedShapes[C]

10: schemasForConstraints[C.S] = schemasForConstraints[C.S].append(C)
11: end for
12: validate← ∅
13: for each S ∈ schemasForConstraints do
14: TARG← S.TARG
15: for each C ∈ schemasForConstraints[S] do
16: if C.ts ̸∈

⋃
c∈schemasForConstraints[S]\{C} involvedShapes[c] then

17: R← getFilterConditionForConstraint(C)
18: TARG(C.ts)← SELECT(?x, id, ((Qs AND TARG(C.ts)) FILTER R))
19: end if
20: end for
21: validate[S]← runShaclEngine((relevantShapes[S], TARG,S.DEF), G)
22: end for
23: return validate
24: end function

4.3.2 How to Join the SHACL Validation Results with the Dataset

In the complexity analysis of the evaluateConstraints function in algorithm 2, it is
assumed that all the validation results fit into the main memory and, therefore, a hash
table can be used to access the SHACL validation results in one step. However, this
might not be the case, when a large dataset with many seed nodes combined with various
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Figure 4.2: Execution Trees with Intermediate Results τ and Double Lines Denoting
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constraints should be handled.
This problem can be tackled by taking the different components involved as relations in a
relational schema, which in turn allows using appropriate physical operators known from
relational databases. First, there is the sample-to-node mapping η and the dataset D
retrieved from a knowledge graph G. These two can be handled as one relation T (idx,
node_id, x, y). Each entity of T represents a sample (xi, yi) in D with the corresponding
node_id η(i), identified by an index i (i ∈ [1, ..., N ] and N the number of samples in
D). Next, each SHACL validation corresponding to a constraint Cj ∈ C of a schema
Sj with target shape tsj,k yields a relation Sj,k(node_id, resultj,k), where j ∈ [1, ..., m];
k ∈ [1, ..., |Sj .S|]) and m = |C| the number of constraints. The entities of Sj,k represent
the SHACL validation results validate(node_id, tsj,k, G) for each seed node identified by
a node_id ∈ [[Sj .TARG(tsj,k)]]G.
During the evaluation of the constraints for each sample in the dataset, the SHACL
validation results are needed, which expresses the need for the relations joined with respect
to the seed nodes respectively the node identifiers. While performing the join, special
attention to the Sj,k relations is required as there will be node identifiers without a SHACL
validation result for some j, k as only nodes in the corresponding target definition of the
target shape are handled. Therefore, outer-joins must be used to retain all dataset indices
and validation results. Restricting the selection of query execution trees to left-deep trees
yields two different join strategies, which are depicted in Figure 4.2.
In the present context, applying the reductions from section 4.3.1 when possible, it can
be seen that the following equations hold:

|T | = |[[QD]]G| = |D| (4.9)
|Sj,k| = |[[Sj .TARG(tsj,k)]]G| (4.10)

|τ ▷◁ Sj,k| = |πnode_id(τ) ∪ πnode_id(Sj,k)| ≥ |Sj,k|, |τ | (4.11)
|T ▷◁ τ | = |τ ▷◁ T | = |T | ≥ |τ | (4.12)

where τ denotes an arbitrary intermediate result occurring in the execution trees.
Formula 4.12 is conceptually more involved, that is why it is proved below:



physical operator
for R ▷◁

A=BS
requirements read cost

Index join Index on B in S and B is
unique in S

|R| + |R|(k + log(#(B, S)))
where k denotes the average
number of B matches in S
given the A values from R.1

Sort join R and S are sorted w.r.t A
resp. B

|R|+ |S|

Hash join Requires S to match into
memory, in one or vertical
partitioned

|R|+ |S|

Table 4.6: Simplified Cost Model for Different Physical Join Operators

Proof. Each part of the equation can be proved on its own:
1.) |T ▷◁ τ | = |τ ▷◁ T | is true for all possible relations T and τ because of symmetry.
2.) |τ ▷◁ T | = |T | is proved by reasoning over τj (l ∈ [1, ..., m]) given the execution trees
in Figure 4.2.
In case of Figure 4.2a, it is τ1 = (Sj1,k1 ▷◁ Sj2,k2) and τl = (τl−1 ▷◁ Sj(l+1),k(l+1)). We note
that for each Sj,k the node_id is unique. Therefore the node_id will be unique for all l
in τl. T contains all node_id’s which can occure at least once (see lemma 5); implying
∀l πnode_id(τl) ⊆ πnode_id(T ). This is sufficient for ∀l |τl ▷◁ T | = |T | to be true in case of
Figure 4.2a.
In case of Figure 4.2b, it is τ1 = (T ▷◁ Sj1,k1) and τl = (τl−1 ▷◁ Sjl,kl

). With the
argumentation as above we can see that ∀l πnode_id(Sjl,kl

) ⊆ πnode_id(T ). Clearly
πnode_id(τ1) = πnode_id(T ) applies and ∀l πnode_id(τl) = πnode_id(T ) follows by induc-
tion over l. Again, this is sufficient for ∀l |τl ▷◁ T | = |T | to be true in case of Figure
4.2b.
3.) |T | ≥ |τ | can be proved with the same arguments as 2.).

Equations 4.9 and 4.10 put the cardinality of the relations in the context of the validation
engine. That is, the cardinality of T is equal to the cardinality of the dataset retrieved
from the given knowledge graph and the cardinality of Sj,k is equal to the number of
nodes included in the target definition of tsj,k.
Next, both execution plans in Figure 4.2 are analyzed separately using the cost model in
Table 4.6 with respect to the order in which the Sj,k relations are best joined and which
execution plan should be chosen.

a) Join T at the end With the equations 4.11 and 4.12 it follows that during the
execution of the operation tree the intermediate results are increasing monotonously up
to |T |.
In case of the index join, the cost can be approximated to be:

|τm−1|+ |τm−1| ∗
( |T |

#(node_id, T ) + log(#(node_id, T ))
)

︸ ︷︷ ︸
read cost ▷◁

1#(B, S) denotes the number of different B values in S



+
m−2∑
i=0

[
|τi| ∗ (2 + log(#(node_id, Sji+2,ki+2))

]
︸ ︷︷ ︸

read cost ▷◁

+ |τm| −
m−1∑
i=1

[|τi|]︸ ︷︷ ︸
write cost - pipelining

= |τm−1| ∗
( |T |
|[[Qs]]G|

+ log(|[[Qs]]G|)
)

+
m−2∑
i=0

[
|τi| ∗ (1 + log(|Sji+2,ki+2 |))

]
+ |T |+ |τ0|

where τ0 = Sj1,k1 , |τm| = |T |, and the node_ids are unique for all Sj,k and in each τi.
Therefore, to simplify the calculation, the k in the formula for the read cost of the index
join is set to 1, when joining with a S. In the join with, T it is used that the node_ids in
T correspond to the seed nodes in the sample-to-node mapping, which can be retrieved
with the Qs generated with equation 4.8.
In case of the sort or the hash join, the cost can be approximated to be:

(|τm − 1|+ |T |) +
m−2∑
i=0

[
|τi|+ |Sji+2,ki+2 |

]
︸ ︷︷ ︸

read cost

+
m∑

i=1
[|τi|]︸ ︷︷ ︸

write cost

where τ0 = Sj1,k1 and |τm| = |T |. However, these types of joins do not support pipelining
as the final result is written multiple times until the final result is ready. The sort join
comes with the additional requirement of sorted input relations, adding a cost in the order
of O(m ∗ |T | ∗ log(|T |)).
Therefore, considering the cost complexity of the physical join operators, the following
heuristic to minimize the cost arises:

Lemma 8: Join-Heuristic 1
When joining T at the end, the j1, ..., jm and k1, ..., km in Figure 4.2a should be
chosen such that the cardinality of the intermediate results τ1, ..., τm−1 are as small
as possible.

One might think about converting the left-deep execution tree into a right-deep execution
tree to reduce the cost2 to:

|T | ∗ (2 + log(#(node_id, τm−1))) +
m−2∑
i=0

[
|Sji+2,ki+2 | ∗ (2 + log(#(node_id, τi))

]
︸ ︷︷ ︸

read cost

+ |τm| −
m−1∑
i=1

[|τi|]︸ ︷︷ ︸
write cost - pipelining

where the k in the index join is again set to 1, assuming the maximal number of matches,
when joining with an intermediate result τi. However, this involves maintaining the index
structure of the intermediate results. Assuming a b-tree is used for indexing, this would
yield an additional cost in the size of O(|T | ∗ log(|T |)), which might lead to a worse
execution time.

2Assuming |τi| > |Sji+2,ki+2 | for enough i’s



b) Join T at the beginning The execution plan leads to a constant cardinality of
the intermediate results of |T | right from the beginning (see 4.12). Therefore, the cost
calculation will be analog to the last paragraph but with the difference that all |τi| are
as worse as possible, i.e., |T |. Further, an index structure over the node_ids in T will be
useful as it can be used in every step of the execution plan. On the good side, it allows
joining the SHACL validation results incrementally with T and, therefore, interleaving
the join and the SHACL validation will yield usable results right after the first SHACL
schema is validated, and the results are joined.

Lemma 9: Join-Heuristic 2
T should be joined in the end or as early as intermediate SHACL validation results
in combination with the dataset indices are needed.

4.3.3 Performing SHACL Constraint Validation during SPARQL Query
Execution

Although validation of a knowledge graph builds on querying, when performed over a
SPARQL endpoint, the sections 2.2.3 and 2.2.4 introduced querying and validating a
knowledge graph as two different concepts. This section presents the concept of validating
SHACL constraints during SPARQL query execution as proposed by Rohde et al. [58] as a
possibility to improve the validation engine in algorithm 2. Originally, SHACL constraint
validation is done during SPARQL query execution to “... [increase] the explainability
of SPARQL query results by annotating them with information from the SHACL shape
schema validation.“ [58]. Here the inspection of algorithm 2 shows that the SHACL schema
is evaluated over the knowledge graph (line 11) and afterwards combined (lines 18 - 34)
with the query results retrieved before (line 2). As shown by Rohde et al., performing both
task simultaneously allows to repeatedly exploit the knowledge encoded in the SPARQL
query like shown in section 4.3.1.
Next, the notation from section 2.2.3 is extended to perform the SHACL validation from
section 2.2.4 during query execution. Afterward, the pseudocode used to repeatedly
exploit the knowledge encoded in the seed query Qs is presented.
In comparison to the notation introduced in [58], the concept of the explanation and the
solution mapping is decoupled in a first step and instead there is an explanation function,
which is able to map the needed validated RDF terms to a set of validation results.

Definition 34: Explanation Mapping
An explanation mapping E is a partial function, which maps an RDF term t ∈
(B∪L∪ I) to a set of validation results for that term. A validation result consist of
the shape s ∈ S against which the node is validated and the validation result, which
can be valid (⊤) or invalid (⊥). Therefore it’s

E : B ∪ L ∪ I→ P(S× {⊤,⊥})

Two explanation mappings E1 and E2 can be united via E1 ∪ E2 by merging the
partial functions as follows:

E1 ∪ E2 = {(t 7→ E1(t) ∪ E2(t)) | t ∈ (B ∪ L ∪ I)}

where all unspecified values t are assumed to have as default value the empty set.
The infinite set of explanation mappings is denoted with E.



To annotate the query results, it is necessary to extend the notion of a set of solution
mappings as introduced in section 2.2.3 with the explanation defined above.

Definition 35: A modified valSPARQL Mapping Set
A modified valSPARQL mapping set is a triple (Ω, E, sn) where Ω ⊂M, E ∈ E and
sn ∈ SN.

As in section 2.2.3 several algebraic operations over the solution sets need to be defined.
The solution sets are now modified valSPARQL mapping sets instead of sets of SPARQL
solution mappings.

Definition 36: Algebraic Operations over Modified valSPARQL Mapping
Sets
Given two modified valSPARQL mapping sets F1 = (Ω1, E1, sn1) and F2 =
(Ω2, E2, sn2), a set of variables v ⊂ V, a filter condition R and a function used
for renaming of variables ∇ : V→ V the following operations are defined:

operation Ω GE sn

πv(F1) πv(Ω1) {(µ(x) 7→ E1(µ(x))) | x ∈ v ∧ µ ∈ Ω} sn1
σR(F1) σR(Ω1) {(s 7→ E1(s)) | s ∈ dom(µ) ∧ µ ∈ Ω} sn1
F1 ∪ F2 Ω1 ∪ Ω2 E1 ∪ E2 sn1 ∪ sn2
F1 ▷◁ F2 Ω1 ▷◁ Ω2 E1 ∪ E2 sn1 ∪ sn2
F1 \ F2 Ω1 \ Ω2 {(s 7→ E1(s)) | s ∈ dom(µ) ∧ µ ∈ Ω} sn1
ρ(∇, F1) ρ(∇, Ω1) E1 sn1

Given the operation in the left most column, the result is a new valSPARQL mapping
set (Ω, E, sn).

The next step is to build the explanation mapping during SPARQL query evaluation.
This is done inductively over the graph pattern expressions and analog to definition 11.
Therefore, the induction starts with the evaluation of a triple pattern, which utilizes a
modified version of the entity explanation function defined in [58].

Definition 37: Entity Explanation Function
The entity explanation function exp : M×T× SN×G→ E maps the substituted
subject s of a triple pattern t, given a mapping µ to an explanation mapping with
respect to the matching shapes sh ∈ S from a shape schema sn = (S, TARG, DEF) over
a knowledge graph G.

exp(µ(t), t, sn, G) = {(s 7→{(sh, validate(s, sh, G)) |
sh ∈ S ∧ s ∈ [[TARG(sh)]]G})}

where s = µ(t)[0]

Now the evaluation of a triple pattern with respect to a shape schema and a knowledge
graph can be defined as



[[t]]sn
G = ([[t]]G,

⋃
µ∈[[t]]G

exp(µ(t), t, sn, G), sn)

The further steps of the induction stay the same as in definition 11 but now use the alge-
braic operations over the modified valSPARQL mapping sets. Therefore, all occurrences
of [[P ]]G in definition 11 need to be replaced with [[P ]]sn

G where sn ∈ SN, P ∈ P and
G ∈ G. This concludes the notation needed to perform SPARQL query execution during
SHACL constraint validation.

Definition 38: Execution of Q over G while validating w.r.t. sn
The execution of the SPARQL SELECT query Q over the knowledge graph G while
validating w.r.t. a shape schema sn is written as a function [[Q]]sn

G : Q×G×SN→
P(M)×E× SN and gives a modified valSPARQL mapping set.

Finally, to make up the decoupling in the beginning, the query results Ω can be joined
with the modified valSPARQL explanation E to get the annotated query results as in
[58]:

Ω ▷◁ E = {({(t, µ(t)) | t ∈ dom(µ)}, {(t, sh, val) | (sh, val) ∈ E(t) ∧ t ∈ dom(µ)}) | µ ∈ Ω}
(4.13)

Clearly, this step might also be pushed down into the evaluation of the query, which would
result in a slight change of definition 36 to handle SPARQL mapping sets joined with the
explanation mapping [58].
The following describes the pseudocode of the valSPARQL approach (algorithm 4). The
approach decomposes the given query Q into so-called subject star-shaped queries (line 2),
whose results are joined afterwards according to the algebraic operations (see definition
9 in [58]) (line 11). A subject star-shaped query is a non-nested query consisting of the
conjunction of triple patterns with the same subject [66]. The pseudocode uses such a
decomposition and additionally performs the join (equation 4.13) per star-shaped query
result mapping set (line 9). During the decomposition, for each star-shaped query, a
shape s is determined. This is done by associating each star-shaped query with a class of
entities in the knowledge graph and inferring the shape in the shape schema associated
with that class. Besides performing SHACL validation during query processing, also the
SHACL schema is reduced as described in section 4.3.1 (lines 4 - 7).

Algorithm 4 Pseudocode of the valSPARQL Approach
1: function valSPARQL(Query Q, Shape Schema S, Knowledge Graph G)
2: plan← generateBushyExecutionPlan(Q,S) ▷ ssq is a star-shaped query
3: for each (ssq, s) ∈ plan do ▷ s is the shape chosen for ssq
4: sni ← S
5: Φsni ← createDependencyGraph(sni)
6: sni.S ← DFS(Φsni , s)
7: sni.TARG(s)← SELECT(?x, id, (ssq AND sni.TARG(s)))
8: (Ωi, Ei, sni)← [[ssq]]sni

G

9: Mi ← Ωi ▷◁ Ei

10: end for
11: return applyOperators(plan, M1, ...)
12: end function



The approach described in this section combines the process of the execution of a SPARQL
query with the evaluation of a SHACL schema over a knowledge graph. In the validation
engine (algorithm 2) the dataset constructing query QD is executed without evaluating a
SHACL schema. However, the constraints C are already known and, therefore, one may
decide to early evaluate a SHACL schema S coming from a set of constraints C ⊂ C with
the target shapes tsi (i ∈ [1, 2, ...]) matching the shapes s assigned to the star-shaped
queries.

4.3.4 Different Types of Constraints

In definition 24 a constraint is defined to be of a specific form, which makes use of a SHACL
shape schema associated with a target shape as a condition and a logical expression about
the predicted target as a restriction. This kind of constraint can be used during inference
to explain and check the model’s predictions. When the condition of the constraint applies
to the problem instance and its semantic context in the knowledge graph, the validation
result grades the prediction made by the model to be correct or incorrect according to the
constraint. If the validation result confirms the model’s prediction, the constraint gives
an explanation for the prediction. If the prediction turns out to be incorrect, the result
might be used to identify the reason for that. However, in both cases, the explanation or
the reasoning is only necessarily true if the underlying knowledge graph is correct. Given
the application, this kind of constraint is now referred to as prediction constraint.

Definition 39: Prediction Constraint
The type of constraint as defined in definition 24, which, when evaluated over a
machine learning model given the underlying knowledge graph and the sample-to-
node mapping, makes a statement about the correctness of the predictions of the
model, by assuming a correct data basis is called prediction constraint.

This is in contrast to a constraint, which does not take into consideration the predictions
of the model. As no statement is made about the truth of the model’s predictions, the
constraint validation results are only about the integrity of the semantic data in the
knowledge graph. It is the samples in the dataset, which are now validated or invalidated
with respect to the semantic context given in the knowledge graph. Therefore, each
constraint validation result measures the trustworthiness of the sample in the dataset.
Clearly, there are different possibilities to represent such a constraint. In some cases, it
might be enough to mark the ith sample as valid/invalid if the associated node η(i) is
retrieved by a SPARQL query and else as invalid/valid. However, using a SHACL shape
schema S = (S, TARG, DEF) to represent constraints over a knowledge graph is the W3C
recommended approach and is at least as expressive as a SPARQL query (see below).
The definition is done analog to a prediction constraint, but only uses the condition part
of the implication.

Definition 40: Data Constraint
A constraint C ∈ C is called a data constraint if the constraint only measures the
trustworthiness of the samples in the dataset, by looking at their feature values and
their semantic context given in the knowledge graph.
Here every data constraint C is composed of a shape schema S = (S, TARG, DEF) (S ∈



SN) and a target shape ts ∈ S. The constraint is serialized as follows:

S
∣∣
ts

The components of C can be accessed with C.S and C.ts.

To stay with the 3-valued logic and the notation known from the prediction constraints,
a data constraint C is evaluated with respect to a knowledge graph G and the node η(i),
that uses the sample-to-node mapping η applied to the i’th sample in a dataset, using the
Scott-brackets:

[[Cd]]G,η(i) =
{

validate(η(i), ts, G) η(i) ∈ [[TARG(ts)]]G
−1 else

(4.14)

Using the 3-values logic comes with the benefits of more detailed validation results. Pre-
cisely, a data constraint only applies to a seed node and the associated sample, when the
seed node is included in the target definition of the specified target shape of the constraint.
If a data constraint labels a sample as valid or invalid, that is because the shape applies
or does not apply to the related seed node.
For example, a data constraint CQ can be used to mark the instances retrieved by a
query Q as ’valid’ (1) and the rest as ’not applicable’ −1, by setting CQ.S = ({s1}, {s1 7→
Q}, {}). The example shows that using SHACL for data constraints is at most as expres-
sive as a constraint, which would only be based on a SPARQL query.
Again, the 3-valued logic can be transformed into the 2-valued logic by taking the absolute
value. However, the transformation may lead to misleading results as it might be the case
that every sample seems to be valid, although, in fact, not a single sample was validated.
Further, the transformation shows the similarity of the left-hand side S

∣∣
ts

of a prediction
constraint defined in definition 24 with a data constraint C:∣∣∣[[C]]G,η(i)

∣∣∣ = [[S
∣∣
ts

]]G,η(i) (4.15)

Although the validation results of a data constraint only make a statement about the
validity of the samples in the dataset and not the predictions of the model, for notation
convenience both will be saved by the validation engine in the model-validation-result
function Θ as defined in definition 32.
Adopting the evaluateConstraints function in algorithm 2 to different types of con-
straints is a matter of differentiating between the types. When evaluating a data con-
straint line 23 needs to assign −1 and lines 25 - 32 can be replaced with

GΘ ← GΘ ∪ {(C, i) 7→ left}

This change does not change the complexity of the validation engine as evaluating the
right-hand side of the prediction constraint in combining the results was assumed to take
constant time.

4.4 Constraint-based Explanations and Interpretations
In this section, the focus is on using the validation results available as model-validation-
result function Θ to get insights into the model behavior (see lemma 3) and explain



predictions made by the model, when possible. Θ was generated by validating the model
Mθ and the samples extracted from a knowledge graph G with user-defined prediction and
data constraints. Because of the different semantics as explained in section 4.3.4 different
usage scenarios arise:

1. Training a model, which conforms to specific requirements

(a) Understand the influence of bad data (w.r.t. data constraints) used to train
the model

(b) Analyze why the model may have made bad decisions w.r.t. prediction con-
straints

2. During the model inference explain a model prediction made based on a problem
instance w.r.t. prediction constraints

These scenarios are relevant for different kind of users. The machine learning engineer
is interested in creating models, which conform to requirements of the client and have
as less errors as possible. In that case, the explanations can be used to gain insights
into the model behavior (scenario 1), which then might be used to improve the model.
For example, through changing the hyperparameters of the model, being able to perform
further data cleansing or further feature engineering. The next group of people are the
ones offering the model to the world. For them it is important to have a model, which
makes predictions conforming to governmental regulations, or scientific facts (e.g., medical
or physical) and social principles. As they are not interested in improving the model
directly, but instead want to see that the model they are selling is correct (scenarios 1b
and 2). Finally, there are the users of the model. As a user, one wants to be able to
justify the decision made by the model and one might have certain constraints on the
model, which should be respected and can be used to explain the predictions made by
the model (scenario 2). In this thesis, a graphical approach is used for explanations, as
this is meant to facilitate the understanding of the model by the different kinds of user
groups and can be interpreted properly according to the given scenario.
The following sections build a framework for visualizing constraint validation results,
while also applying the framework to confusion matrices and to decision trees.

4.4.1 Frequency Distribution Tables to Summarize and as a Basis for
Visualizations

Frequencies or counts of specific observations build the foundation of the visualizations
used. More specific frequency distributions are used, as they allow to organize the avail-
able model validation results in a meaningful way, which connects the knowledge gained
through validation with the structure of the model to be explained. Basically, a frequency
distribution table is used to show the different measurement categories and the number
of observations per category.

Definition 41: Frequency Distribution Table [42]
A frequency distribution table FC1,C2,...,Cn ∈ N|C1|×|C2|×...×|Cn| is an n-dimensional
matrix of natural numbers, where C1, C2, ..., Cn are sets of measurement categories.

Therefore, independent of the model, the easiest frequency distribution table would have
the validation results as the single group of measurement categories and, hence, can be



visualized by a pie chart. This kind of visualization can be used as a very raw summary
of the validation results.

Example 15: A First Visualization for the Example Constraint

First, it should be noted that the example constraint is a prediction constraint and,
therefore, it is assumed that the underlying semantic context of the samples in the
knowledge graph is correct. The validation results are already given in example
13, from which a frequency distribution table is build, having the validation results
as categories for both kinds of semantics (see Figure 4.3 and 4.4). This kind of
one dimensional data is easily visualized by a pie chart as shown in Figure 4.5 and
4.6. As a pie chart converts frequencies into fractions, the number n of samples
in the dataset are given below the chart. Comparing the two visualizations, the
3-valued one gives more information, as it becomes clear, that there are not many
pregnant persons in Germany, which have more than 20 contacts to not vaccinated
persons in the dataset. Further, the pie chart shows that the few to which the
constraint applies, the model recommends not getting vaccinated, which invalidates
the predictions.

Groups invalid valid

Complete Dataset 833 9166

Figure 4.3: Frequency distribution table F{0,1} using the 2-valued logic for the
motivating example constraint

Groups not applicable invalid valid

Complete Dataset 9166 833 0

Figure 4.4: Frequency distribution table F{−1,0,1} using the 3-valued logic for the
motivating example constraint

.

Figure 4.5: Pie Chart of the fre-
quency distribution table in Fig-
ure 4.3

Figure 4.6: Pie Chart of the fre-
quency distribution table in Fig-
ure 4.4

In a next step, this kind of frequency distributions are extended by splitting the dataset
into different groups. Depending on the machine learning task, one might create a group



for each class (classification) or have a range of target values for each group (regression).
In both cases the grouping can be made depending on the prediction of the model or based
on the ground truth target value in the dataset. As the data is now two-dimensional, a
histogram can be used for visualization.

Example 16: Group by Target for more Meaningful Visualisations

Here the 3-valued logic is used and the frequency distribution from example 15
is extended, such that each ground truth class builds a separate group. As the
validation results from 13 are used, the model, which is validated, is the decision
tree in Figure 1.3 and the predicted class equals the ground truth class in that
case for all samples in the dataset. Besides this fact, the histogram shows that
the invalidated predictions were made on the basis of falsely labeled data. The
corresponding histogram is shown in Figure 4.8.

Groups valid invalid not applicable

vaccinated 0 0 5000
not vaccinated 0 833 4166

Figure 4.7: Frequency distribution table F{vaccinated,not vaccinated},{−1,0,1} for the mo-
tivating example constraint using a grouping by the target class

Figure 4.8: Histogram of the frequency distribution table in Figure 4.7

In the last two examples, the complete dataset is used to build the frequency distribution
table. But clearly this does not need to be the case. It might be useful to summarize only
a fraction of the constraint validation results belonging to specific samples in the dataset.
As the table is created dependent on a constraint, which completes the components needed
to define the frequency distribution tables used to summarize the validation results.

Definition 42: A Function to Create Frequency Distribution Tables to
Summarize Model Validation Results given one Constraint
Let D be a dataset, G a set of arbitrary group identifiers, C a constraint, N the
number of samples in D and Γ the endless space of grouping function Γ : G →



P([1, ..., N ]), then the function

FG,C : P([1, ..., N ])×Θ× Γ→ N|G|×|{−1,0,1}|

maps a subset of the indices Didx of D, a model validation result function Θ and a
grouping function Γ to a frequency distribution table:

FG,C(Didx, Θ, Γ) 7→ F C,Didx

G,{−1,0,1}

where
F C,Didx

G,{−1,0,1} =
(∣∣∣fC,Didx

g,v

∣∣∣) g∈G
v∈{−1,0,1}

fC,Didx
g,v = {i|i ∈ (Didx ∩ Γ(g)) ∧Θ(C, i) = v}

Clearly Θ, Γ and Didx have to refer to the same dataset D.

The definition concludes the creation of frequency distribution tables for one constraint
given a dataset (a tuple of samples), the model validation result function and a function
used for grouping. The following example shows the application of definition 42 using the
previous examples.

Example 17: Creating Frequency Distribution Tables Formally

Example 15 and example 16 both created frequency distribution tables. Both of
them use the whole dataset (Dfull = [1, ..., N ]) as shown in example 7, the model-
validation-result Θ function as shown in example 13 and the constraint C defined
in example 8.
In example 15, there is only a single group. Therefore, Γall, would be the function
mapping all indices of instances in D to the same group called Complete Dataset.
Therefore, to create the frequency distribution table in Figure 4.4 the following
formula is evaluated.

F{Complete Dataset},C(Dfull, Θ, Γall)

In the second example, two grouping functions are used such that instances with
the same predicted target class or ground truth target class are grouped together.
In the first case, it holds

Γpredicted class(g) 7→ {i |Mθ(i) = g}

and in the second case

Γground truth class(g) 7→ {i | ti = g}

Therefore, creating the frequency distribution table corresponding to Figure 4.7 is
a matter of executing

F{vaccinated,not vaccinated},C(Dfull, Θ, Γpredicted class)

or
F{vaccinated,not vaccinated},C(Dfull, Θ, Γground truth class)



In definition 42 the domain of the grouping function dom(Γ) is one dimensional, but clearly
multiple grouping functions Γ1, Γ2, ..., ΓM with domains G1, G2, ..., GM can be combined
to give a function Γ[1,...,M ] : G1 ×G2 × ...×GM → P([1, ..., N ]) with

Γ[1,2,...,M ](g1, g2, ..., gM ) 7→
⋂

i∈[1,...,M ]
Γi(gi) (4.16)

where (g1, g2, ..., gM ) ∈ G1 × G2 × ... × GM . Setting G = G1 × G2 × ... × GM allows to
generalize the definition to multidimensional grouping functions.

4.4.2 Decomposing the Confusion Matrix

In the last section, frequency distribution tables were used to summarize the model vali-
dation results of a single constraint and it is shown how multiple grouping functions can
be merged together. Here these concepts are used to decompose the confusion matrix
w.r.t to the constraint validation results.
The confusion matrix is a tool often used when evaluating a machine learning model Mθ

trained on a classification task and is basically a frequency distribution table [20]. Given
a classification task, the confusion matrix counts the number of samples (xi, ti) ∈ D with
Mθ(xi) = ti (true positives), Mθ(xi) ̸= ti (false positives), Mθ(xi) = ti (true negatives),
and Mθ(xi) ̸= ti (false negatives).
Given the decision tree in Figure 1.3 and the dataset given in example 7, the confusion
matrix can be inferred to be the one shown on the left in Figure 4.9. On the right side
of the figure, the confusion matrix is decomposed, such that the upper matrix Mvalid
counts the instances, which are valid according to the example constraint and the lower
matrix only the invalid instances Minvalid. The visualization is a result of the frequency
distribution table created via

FGgt×Gpred,C(Dfull, |Θ|, Γ[predicted class,ground truth class])

where Ggt = Gpred = {vaccinated, not vaccinated} are the group names. Extending
the confusion matrix decomposition to the 3-valued logic is just a matter of adding an
additional matrix Mnon applicable to the right-hand side, which counts the samples marked
as non applicable.
At this point, it is of interest to investigate the meaning of the different counts. Starting
with the type of the example constraint (e.g., a prediction constraint). A sample occurring
in Mvalid in the upper left or lower right corner (marked with a yellow border) indicates
that the constraint confirms the prediction made by the model and argues why the pre-
diction is correct. Therefore, in the example, it can be explained why the predictions are
correct: The persons are either not pregnant, live not in Germany, do not have more than
20 contacts with non-vaccinated persons, or are vaccinated themselves.
If a sample is counted in Mvalid in the lower left or upper right corner (marked with a blue
border), the constraint confirms the prediction, but now also the generalization made by
the model, and explains why the prediction is correct. This case does not occur in the
example as the model does make predictions deviating from the ground truth (because of
the small number of different instances in the dataset).
The samples counted in Minvalid are invalidated by the constraint, which disproves the
prediction made by the model. High numbers in the upper left and the lower right corner
(marked with a green border) can indicate that the model failed to generalize well (e.g.,



overfitting). In the example, this is indeed the case: The model failed to generalize, and
does not deviate from the ground truth values.
In contrast, high numbers in the lower left or upper right corner (marked with a purple
border) can indicate underfitting, i.e., is a model which has not yet captured the structure
of the data, will probably violate the constraint in a way in which predictions deviate from
the ground truth values.
In the case of data constraints, these interpretations do not apply. But decomposition may
be used to discover patterns in the semantic context of the data in the knowledge graph,
which makes the model make valid or invalid predictions. Therefore, these constraints
can give rise to improved interpretability of the model.

Figure 4.9: Decomposing the Confusion Matrix into Its Valid and Invalid Components

Besides the decomposition of the confusion matrix, this approach could also be used for
other kind of frequency distribution tables using a two-dimensional grouping function
Γ[1,2] : G1 × G2 7→ P([1, ..., N ]). In this case, the matrix on the left needs to use the
entries of the frequency distribution that result when the validation results are summed
per group (g1, g2) ∈ G1 ×G2.

4.4.3 Visualizing the Model Validation Results Given Multiple Con-
straints

In section 4.4.1, frequency distribution tables were introduced to summarize the model
validation results given a single constraint. However, the model-validation-result function



might contain the validation result of multiple constraints. Hence, a way is needed to
visualize the results in that case.
A natural extension of the last section is to create a frequency distribution table for each
constraint using the same subset of indices Didx, the same set of groups G, and the same
set of possible validation results V . Given the constraints cj (j ∈ [1, ..., M ]; M ∈ N), the
frequency distribution tables F

cj ,Didx

G,V have the same dimensions and all sum up to |Didx|.
In most cases, the grouping will be defined without making use of the constraint validation
results and, therefore, summing the validation results per group will be the same for all
constraints. This motivates summarizing the model validation results in a histogram,
having M bars per group and each bar visualizes the distribution of the validation result
for the given group.

Example 18: Visualizing the Validation Results of Multiple Constraints
Using a Histogram

This example extends example 16 by adding the constraint C2 expressing that
males should not be vaccinated and the constraint C3 that females should be vac-
cinated in general. The following table gives the model-validation-result function
Θ (short version of the table in example 13 showing the validation results but for
multiple constraints).

dataset indices i Person Θ(C, i) Θ(C2, i) Θ(C3, i)

1...3333 :Max -1 1 -1
3334...4166 :Maria 0 -1 0
4167...9166 :Eva -1 -1 1
9167...9999 :Laura -1 -1 0

Table 4.7: The model-validation-result function for the motivating example given
the constraints C,C2 and C3
As the frequency distribution tables are needed, F is executed as in in example 17
but for the constraint C2 and C3. The results of the executions are shown in the
frequency distribution tables shown in Figure 4.10 and 4.11.
Afterwards, all three frequency distribution tables (Figure 4.7, 4.10 and 4.11) are
visualized in Figure 4.12 using a histogram with a group of bars for each group (the
predicted class) and each bar in the group for one of the constraints. Therefore,
the validation results can be compared visually.
It turns out that all persons predicted to be vaccinated are females (valid according
to C3). Further, approximately 2

3 of the non-vaccinated persons are males (valid
according to C2) and the rest of them are females (invalid according to C and C3).
As the motivating example, the constraint was a prediction constraint; the pre-
dictions, confirmed by the model validation results, can now be explained. In the
example, there are 5,000 predictions valid according to C3 and 3,333 predictions
valid according to C2. These predictions can now be explained with the conditions
defined for C2 and C3, respectively. These predictions are correct because males



should not be vaccinated, resp., females should be vaccinated.

Groups valid invalid not applicable

vaccinated 0 0 5000
not vaccinated 3333 0 1666

Figure 4.10: Frequency distribution table F{vaccinated,not vaccinated},{−1,0,1} for the
constraint C2 using a grouping by the target class

Groups valid invalid not applicable

vaccinated 5,000 0 0
not vaccinated 0 1,666 3,333

Figure 4.11: Frequency distribution table F{vaccinated,not vaccinated},{−1,0,1} for the
constraint C3 using a grouping by the target class

Figure 4.12: Histogram of the frequency distribution tables in Figure 4.7, 4.10 and
4.11

This kind of visualization is great to compare the validation results per constraint. How-
ever, it stays unclear how the validation results of the different constraints are correlated,
i.e., in general knowing how the validation results of the different constraints overlap.
For example, one cannot say in general whether the instances invalidated by constraint
C are included in the ones invalidated by constraint C3 or whether there are predictions
validated by C2 but invalidated by C or C3. Another interesting question, in the case of
the 3-valued logic, is whether all the predictions made by the model on the basis of the



samples belonging to the subset of indices given are covered by at least one constraint.
That is, there is a constraint C for each index i ∈ Didx such that Θ(C, i) ̸= −1. To
answer these kinds of questions, another function COV is defined to create frequency
distribution tables, which summarize the validation results of multiple constraints in a
single 2-dimensional frequency distribution table.

Definition 43: A Function to Create Frequency Distribution Tables to
Summarize the Model Validation Results of Multiple Constraints
Let D be a dataset, G a set of arbitrary group identifiers, C a tuple (c1, c2, ..., cM )
of constraints with falling priority, N the number of samples in D and Γ the endless
space of grouping function Γ : G→ P([1, ..., N ]), then the function

COVG,C : P([1, ..., N ])×Θ× Γ→ N|G|×|C|∗|{−1,0,1}|

maps a subset of the indices Didx of D, a model validation result function Θ and a
grouping function Γ to a frequency distribution table:

COVG,C(Didx, Θ, Γ) 7→
(∣∣∣cci,Didx

g,v

∣∣∣) g∈G
(v,ci)∈({−1,0,1}×C)

where

cci,Didx
g,0 = f ci,Didx

g,0 \

⋃
j<i

f
cj ,Didx

g,0


cci,Didx

g,1 = f ci,Didx
g,1 \

⋃
j<i

f
cj ,Didx

g,1 ∪
⋃
i

f
cj ,Didx

g,0


cci,Didx

g,−1 = f ci,Didx
g,−1 \

⋃
j<i

f
cj ,Didx

g,−1 ∪
⋃
i

f
cj ,Didx

g,0 ∪
⋃
i

f
cj ,Didx

g,1



and f ci,Didx
g,v is defined as in definition 42.

As in definition 42, the sum of the entries is |Didx| per table. However, definition 43
summarizes the validation results of |C|∗|Didx| validation results by only counting the ones
with the highest priority. Therefore, a tuple of constraints C with falling priority is needed
and, furthermore, it is assumed that an invalided prediction has a higher importance than
a valid prediction, which in turn is more important than a non-applicable one. Given these
priorities, it is possible to count exactly one validation result per sample.
When using the 3-valued logic, the resulting frequency distribution table shows the cov-
erage of the validation results over the subset of samples (i.e., the number of validation
results are not not applicable). Due to this, the summarization method from definition
43 will be referred to by coverage.



Example 19: Applying Definition 43 to Example 18

In this example, the constraint validation results from 18 are reused and definition
43 is applied as follows. First, the inputs are determined:

G ={vaccinated, not vaccinated}
C =tuple({C, C1, C2}) =: (c1, c2, c3)

N = 9999 =|D|
Dfull =[1, ..., N ]

where D is the usual motivating example dataset and Γground truth class the grouping
function from example 17. To execute

COVG,C(Dfull, Θ, Γground truth class)

first, the sets f
ci,Dfull
g,v need to be estimated for all g ∈ G, v ∈ {−1, 0, 1} and

i ∈ {1, 2, 3}. This is done in Figure 4.13 using the ground truth values from Figure
1.1.

(v, ci) f
ci,Dfull

vaccinated,v f
ci,Dfull

not vaccinated,v

(0, c1) ∅ [3334, ..., 4166]
(0, c2) ∅ ∅
(0, c3) ∅ [3334, ..., 4166] ∪ [9167, ..., 9999]
(1, c1) ∅ ∅
(1, c2) ∅ [1, ..., 3333]
(1, c3) [4167, ..., 9166] ∅
(−1, c1) [4167, ..., 9166] [1, ..., 3333] ∪ [9167, ..., 9999]
(−1, c2) [4167, ..., 9166] [3334, ..., 4166] ∪ [9167, ..., 9999]
(−1, c3) ∅ [1, ..., 3333]

Figure 4.13: Table showing the f
ci,Dfull
g,v

Building on the sets f
ci,Dfull
g,v , the sets cci,Didx

g,v can be estimated as in Figure 4.14.

(v, ci) c
ci,Dfull

vaccinated,v c
ci,Dfull

not vaccinated,v

(0, c1) ∅ [3334, ..., 4166]
(0, c2) ∅ ∅
(0, c3) ∅ [9167, ..., 9999]
(1, c1) ∅ ∅
(1, c2) ∅ [1, ..., 3333]
(1, c3) [4167, ..., 9166] ∅
(−1, c1) ∅ ∅
(−1, c2) ∅ ∅
(−1, c3) ∅ ∅

Figure 4.14: Table showing the c
ci,Dfull
g,v



Finally, taking the cardinality of the sets give the frequency distribution table.

Groups (c1, 0) (c2, 0) (c2, 1) (c3, 1)

vaccinated 0 0 5000 0
not vaccinated 833 833 0 3333

Figure 4.15: Frequency distribution table showing the coverage results for the
constraints c1, c2, c3 using a grouping by the ground truth class
The frequency distribution table can now be visualized as usual. This is done
in Figure 4.16 using the grouping by the ground truth class on the left side and
without a grouping on the right side. In comparison to Figure 4.12, it becomes clear
that all the predictions made by the model are covered by at least one constraint.
In the case of predictions not covered by any constraint, these will always fall in
the (−1, c1) category, which will be called not covered in future visualizations.
Further, the plot allows making statements about the overlapping of validation
results. A prediction marked as valid is not invalidated by any other constraint.
A lesser important constraint validation result can only be overlapped by a more
important one, given that the validation result is the same. Therefore, in the
example approximately 83% of the samples in the dataset are predicted according
to the constraints and approximately 8% is invalidated by the example constraint
and another 8% is invalidated by the second constraint, but not by the example
constraint.

Figure 4.16: Validation Results of multiple constraints summarized by coverage.
Left side shows the results grouped by the ground truth class and the right side
shows the results without a grouping

4.4.4 Supporting the Explainability of Decision Trees

In section 2.3.3, it is explained how the learning algorithm of a decision tree works.
Therefore, Figure 2.7 was used to visually interpret the predictions made by the model
based on the dataset used to train the model and the internal structure of the model.
At this point, it is a matter of keeping the gist of the visualization and additionally



make use of the constraint validation results to create a visualization, which allows to
further interpret the decision tree with respect to the user-defined constraints and explains
predictions of the decision tree in suitable cases as demonstrated in section 4.4.2 and
example 18.

Frequency Distribution Tables to Summarize the Constraint Validation Re-
sults w.r.t. the Leaves of the Decision Tree The frequency distribution tables
introduced before lay the foundation to visualize the validation results. But they do not
make use of the internal structure of the decision tree. To reflect the internal structure
of the decision tree, each frequency distribution table will correspond to a node nd,u and
the set of samples used to create the frequency distribution table is limited to Rd,u. As
defined in section 2.3.3, Rd,u is the set of samples, which were used to decide, whether the
node nd,u is going to be a split or a leaf node. Therefore, the resulting node visualization
in Figure 2.7 (in the case of a regression task) and Figure 1.3 (in the case of a classification
task) made use of this limitation to show the effect these samples had on the decisions
made for that node (e.g., the node type and parameters). This is what the visualization
of a frequency distribution table using the constraint validation results of the samples
Rd,u should also achieve: Show the node relevant constraint validation results, to allow
for interpretations of patterns in the data and predictions of the decision tree, leading to
the internal structure of the decision tree.
Formally, a grouping function is defined, which captures the mapping of indices of samples
in the dataset to nodes in the decision tree according to the Rd,u sets:

Γnodes(nd,u) = {i | (xi, ti) ∈ Rd,u} (4.17)

Using the new defined grouping function, the frequency distribution table to be used for
the visualization of the leaf nodes, to summarize the constraint validation results, can be
defined:

FG,C(Γnodes(nd,u), Θ, Γall) (4.18)
COVG,C(Γnodes(nd,u), Θ, Γall) (4.19)

where Γall corresponds to the function, which maps all samples to a single group. As
discussed in section 4.4.3 for the visualization of the constraint validation results in case
of multiple constraints, formula 4.18 has to be executed once per constraint or use the
frequency distribution table showing the „coverage“ of the constraint validation results
by prioritizing them.
The procedure leads to a pie chart as shown in Figure 4.6 (in the case of a single constraint)
or Figure 4.16 (in the case of multiple constraints and using coverage), or to a histogram
as shown in Figure 4.12. The latter one additionally uses Γpredicted class, which does not
makes sense for a leaf node, as the prediction will be constant for all samples visualized.
However, Γground truth class can be used in case of classification. This way the plots in the
leafs will show the distribution of the ground truth class as the leaves of Figure 1.3 did.
This modification additionally allows for interpretations analogue to section 4.4.2 (see
Figure 4.17).

Frequency Distribution Tables to Summarize the Constraint Validation Re-
sults w.r.t. the Split Nodes of the Decision Tree In a next step, frequency
distribution tables should be created for the split-nodes, by extending the work done for



Figure 4.17: Decision Tree Node Visualization of the frequency distribution table using
Γground truth class. The border colors are chosen according to the interpretation from section
4.4.2. The visualized leaf predicts the persons to be vaccinated.

the leaf nodes. As discussed in section 2.3.3, figures 1.3 and 2.7 use the split nodes, to
show the marginal effect of the split feature on the ground truth. With respect to the
constraint validation results, the goal is to show the marginal effect the split feature has on
the constraint validation results, to be able to identify patterns in the data and predictions
made by the decision tree. To achieve the goal, a grouping function Γfk

bins is defined, which
groups the samples to be visualized, according to their split feature value (e.g., the value
of fk):

Γfk
bins(b) = {i | ∃(xi, ti) ∈ D ∧ (b− 1) ∗ s ≤ (xi,k −min) < b ∗ s} (4.20)

where

b ∈ [1, ..., B],
max = max({xi,k | ∃ti (xi, ti) ∈ D}),
min = min({xi,k | ∃ti (xi, ti) ∈ D}),

s = max−min
B

and B is the number of groups.
Finally, the formulas needed to create the frequency distribution table per split node nd,u

can be given,

FG,C(Γnodes(nd,u), Θ, Γfk
bins) (4.21)

COVG,C(Γnodes(nd,u), Θ, Γfk
bins) (4.22)

where formula 4.21 is used in case of a single constraint C and formula 4.22 in case of a
set of constraints C.
Figures 1.3 and 2.7 both visualize the cuboid borders added by the corresponding split
nodes to explain the set of samples used in the child nodes. The procedure leads to split
nodes as used in Figure 1.4 (in the case of a single constraint) and 4.18 (in the case



Figure 4.18: Summarizing validation results in bins given the allergic_to split feature
and marking the cuboid border added by the split node. The numerical values on the
x-axis have been replaced with their corresponding categorical label, the cuboid border,
however, can only be given numerical.

of multiple constraint using coverage). The latter should emphasize the significance of
summarizing the constraint validation results using coverage as the given procedure does
not allow visualizing the constraint validation results of multiple constraints in a useful
way, when showing the marginal effect of the split feature.

Composing the Visualizations Finally, all the visualizations of the different nodes
can be composed analogue to figures 1.3 and 2.7. This now allows tracking the flow
of the constraint validation results through the decision tree. To highlight the number
of samples summarized in each visualization, the size of the visualizations per node are
chosen proportional to the number of samples summarized.

Example 20: Visualizing the Validation Results Θ given a Decision Tree
Mθ

Using the validation results of the example constraint given in Figure 4.7, the appli-
cation of the formulas 4.21 and 4.18 can be seen in Figure 1.4. Borrowing the node
enumeration from Figure 1.3, node 0 and node 1 are split nodes. Hence, formula
4.21 was applied, which allows to annotate the corresponding visualization with
the cuboid borders associated with the „allergic_to“ and the „pregnant“ feature.
As a consequence of setting Didx to Γnodes(nd,u) for all nodes nd,u and marking the
cuboid borders, the flow of the validated and invalidated samples can be tracked
from the root node into the leaves. For example, the invalidated samples can be
tracked to occur only in the case of persons pregnant but not allergic to PEG. The
leave nodes are based on the frequency distribution tables created with formula
4.18 and, therefore, do not show the distribution of the ground truth class.
Using Γground truth class instead and making use of formulas 4.22 and 4.19, enables to
visualize multiple constraints and additionally shows the distribution of the ground
truth class in the leaves. The result of this procedure is depicted in Figure 4.19.
The interpretations given in section 4.4.2 allow making statements about the leaves
of the decision tree:



1. Not allergic persons which are not pregnant are classified correctly according
to the constraint and to the ground truth data.

2. Not allergic persons which are pregnant are classified correctly to the ground
truth data. However, the classification violates the example constraint, which
might imply overfitting, as will be seen later.

3. Men allergic to PEG are classified correctly according to the constraints and
to the ground truth data.

4. Women allergic to PEG are classified incorrectly according to a constraint
stating that females should be vaccinated. The decision was made on the
basis of ground truth data.

Figure 4.19: Decision Tree of Figure 1.3 annotated with the validation results from
Figure 4.7 and showing the ground truth class distributions in the leaves.

Additionally, Visualizing the Ground Truth Values of the Samples in Case of
a Decision Tree Used for Regression In the case of a regression task, the ground
truth values will be continuous, which allows to explicitly show the marginal effect the



Figure 4.20: Showing the ground truth target values as in 2.7 while visualizing the con-
straint validation results. Red dots resp. green dots stand for invalidated resp. validated
samples / predictions made on the basis of the samples

split features have on the precise ground truth value and the constraint validation result
of a constraint. Therefore, the split node visualizations from Figure 2.7 can be reused
and extended by choosing the colors of the samples in the scatter plot according to their
constraint validation result (see Figure 4.20).
However, this procedure only works for a single constraint and can be quite messy for
large datasets. This is why the procedure described before can also be applied to the
regression case; except for the grouping by the ground truth value.

Evaluating the Constraints per Decision Tree Node Until this point, the model-
validation-result function Θ was created by evaluating each constraint once for each sam-
ple xi, given the prediction Mθ(xi) of the decision tree. However, in the case of prediction
constraints, it might be interesting to see the distribution of the validation results per
node. For example, in section 2.3.2, these distributions might have helped to choose the
maximal depth of the decision tree, as over- and underfitting can be detected per node
nd,u (i.e., using the interpretations from section 4.4.2).
As each node in the decision tree is associated with a constant model Mcd,u

(see section
2.3.3), approaching the problem in lemma 3 corresponds to solving multiple instances of
the problem in lemma 2. Each instance is associated with a node nd,u in the decision
tree. Hence, the formulas 4.21 and 4.22 need to use the model-validation-result function
ΘMcd,u

,D,G,η(C, i). This is in contrast to the formulas 4.18 and 4.19, which can stay the
same as the predictions made in the leaves of the decision tree correspond to the overall
prediction the decision tree Mθ would make. Luckily, the repeated evaluation of the
same constraints over different models does not require the repeated evaluation of the
SHACL shape schemas corresponding to the constraints, because the entity validation
function validate stays unchanged. Further, it turns out that it is enough to execute line
5 (algorithm 2) once for every occurring constant model prediction. This is for a group
of constant models Mc1 ,Mc2 . . . with c1 = c2 = . . . = c only ΘMc,D,G,η is needed. In the
case that these groups include all the constant models of the leave nodes, the evaluation
of ΘMθ,D,G,η can be skipped. This limits the maximal amount of model-validation-result
functions to the number of distinct predictions the model makes on the basis of the dataset
used for the evaluation.



Example 21: Performing Node-based Constraint Validation

The motivating example is a binary classification problem. Therefore, only a max-
imum of two different model-validation-result functions should be needed. In the
case of the motivating example decision tree, there are two different options. First,
one could use the model-validation-result function for the two possible classifica-
tion results. The first group of constant models corresponding to the prediction
vaccinated would be, {Mc1,1 , Mc2,1 , Mc3,1} and the second group corresponding to
not vaccinated would be {Mc2,2 , Mc3,2}. Clearly, the two groups cover each leaf
and split node of the decision tree. The alternative used here is ΘMθ,D,G,η and
ΘM’vaccinated’,D,G,η. The first function is used for all the leaf nodes and is already
given in Figure 4.7. The second one is given below in Figure 4.21 and is used for
the split nodes.

dataset indices i Person Θ(C, i) Θ(C2, i) Θ(C3, i)

1...3333 :Max -1 0 -1
3334...4166 :Maria 1 -1 1
4167...9166 :Eva -1 -1 1
9167...9999 :Laura -1 -1 1

Figure 4.21: Table showing the model validation result function ΘM′vaccinated′ ,D,G,η

for the motivating example given the constraints C,C2 and C3
Using both model-validation-result functions (i.e., ΘMθ,D,G,η and ΘM’vaccinated’,D,G,η)
the decision tree can be annotated with the constraint validation results per node
(see Figure 4.22)
The visualization is done based on the formulas 4.22 (with Θ replaced with
ΘM′vaccinated′ ,D,G,η) and 4.19. Comparing the validation results of the newly cre-
ated plot with Figure 4.19 one can validate that only the validation results of the
split nodes have changed. Further, the constant predictions (corresponding to the
constant models used during the validation process), which would be made at a
split nodes, if they were leaf nodes, are given above the plots.
In the case of the motivating example, it seems that the model could be improved
by limiting the decision tree to a maximal depth of, 2 as this is also according
to the overfitting noted in example 20. Doing so would transform the node n2,1
into a leave node and, therefore, all persons not allergic to „PEG“ would get the
recommendation to get vaccinated. This is in the sense of the example constraint,



as it is evaluated to be valid for all samples in R2,1 given.

Figure 4.22: Decision Tree of Figure 1.3 annotated with the validation results
calculated per node

4.5 Summary
The chapter tackled two problems: Validating constraints over machine learning models
and using constraint validation results to interpret and, when possible, explain machine
learning model predictions.
Therefore, a model-agnostic validation engine was proposed, which can validate predic-
tion and data constraints. The evaluation of both types of constraints uses the SHACL
constraint validation as a central component, which allows using the semantic context of
the entities in the knowledge graph when defining the constraints. The sample-to-node
mapping allows for an association of the seed nodes (i.e., the entities of interest) and their
SHACL constraint validation results with the samples in the dataset. The mapping is
retrieved simultaneously with the dataset from a knowledge graph using a dataset gen-
erating query. The dataset generating query can be used to create the seed query, which
only retrieves the seed nodes. Further, both types of constraints are defined given a target
shape, which is evaluated over the seed nodes associated with the samples in the dataset.
The data constraint does not require any further information for evaluation, but the
prediction constraints additionally consider the model’s predictions. This is also why
data constraints can only help interpret, while prediction constraints can also be used to



explain model predictions in some cases. The evaluation is done using a 3-valued logic,
and unlike the 2-valued one, it allows the identification of samples that are only valid
because the condition of the constraint does not apply.
Several heuristics are proposed to speed up the execution of the validation engine: Three
heuristics are proposed to accelerate the SHACL constraint validation by minimizing the
number of SHACL constraint validation results that need to be produced. The assignment
of SHACL constraint validation results to samples in the dataset is analyzed in terms of
the join strategy with physical join operators, resulting in two heuristics to speed up
the assignment. Finally, the theory behind a SPARQL query engine is presented, which
pushes down the SHACL constraint validation and the joining of the SHACL constraint
validation results with the samples in the dataset into the SPARQL query execution.
Although the heuristics may help optimize the validation engine’s execution time, time-
complexity-wise, the theoretical approach is PSPACE-complete as querying the dataset
is PSPACE-complete, and the SHACL constraint validation is NP-complete in general.
However, reasonable decisions regarding the dataset generating query and the constraints
make the problem solvable in polynomial time.
The results of the validation engine are stored in a model-validation-result function. Fre-
quency distribution tables are consulted for the summarization of a single constraint. The
constraint validation results of multiple constraints are further cumulated by a concept
called coverage. Coverage reduces the constraint validation results to the number of sam-
ples in the dataset through prioritizing constraints and validation results (i.e., invalid
over valid over not applicable results). As an application, confusion matrices and decision
trees are annotated with the constraint validation results, and general interpretations
based on prediction constraints are proposed. The decision tree visualization is inspired
by the dtreeviz visualization, but extended to visualize the constraint validation results.
Classification, as well as regression tasks, are supported. As the decision tree is composed
of constant models, constraints can also be evaluated per node. Both data and prediction
constraints can be used to detect patterns learned by the model.



Chapter 5

Implementation

Chapter 4 explained the approach by showing its logical components. These components
were put together in pseudocode to allow for a theoretical understanding. The steps were
supplemented with the practical application in case of the motivating example. This
chapter enriches the theoretical components with a practical implementation written in
Python [64]. The implementation is publicly available on GitHub1.
Python is chosen for its simple syntax, readability, and extensive support for machine
learning, as the most popular machine learning frameworks, are written in Python [37].
However, Python comes with the overhead of interpreting and manipulating Python ob-
jects, which is why performance-optimized libraries for Python as NumPy [31], pandas
[55], and scikit-learn [10, 50] are based on pre-compiled functions written in the C lan-
guage. Similar to the examples, the implementation will also be centered on decision
trees, specifically the decision trees generated by the scikit-learn library.

5.1 Design, Structure and Dependencies
This section is meant to give an overview of the implementation. First, the most essential
dependencies should be mentioned.
A combination of NumPy and pandas is used. These libraries provide the capabilities for
vectorized code execution [31] and allow performing high-level data analysis in Python
[55]. For the visualizations, matplotlib [33] is used and, in the case of tree-like visualiza-
tions, the logic provided by dtreeviz [63] is reused. The dtreeviz library also provides an
interface to access trained decision trees of various libraries uniformly. Similar to dtreeviz,
Graphviz [26] is used to compose graph-structured visualizations of the nodes visualized
before. SPARQL queries are parsed with RDFlib [9] and send to a SPARQL endpoint via
the SPARQLWrapper package [32].
Next, to give a high-level overview over the different modules, Figure 5.1 is explained.
On the left-hand side of Figure 5.1, backed in grey, the modules used to implement the
constraint validation engine are depicted. These modules are capable of performing the
steps described in algorithm 2.
The Dataset is a central module as it is responsible for storing and managing all the
information collected from the endpoint and the SHACL validations, i.e., the dataset
itself, the sample-to-node mapping and the SHACL validation results. Given a set of
constraints, the Dataset initiates the process of the SHACL constraint validation.

1https://github.com/JulianLoewe/Validating_Models
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Figure 5.1: Overall Structure of the Implementation

Next is the Checker module, which connects the information stored in the Dataset
with the model predictions by initiating the evaluation of the constraints. Furthermore,
it stores the constraint validation results afterward.
The SHACL Engine Communicators and the Constraint module remain. The
first one receives SHACL validation requests from the Dataset, forwards them to the
SHACL engine of the user’s choice, and while receiving the results transforms them to a
representation independent of the chosen SHACL engine. The latter one implements the
logic to evaluate a constraint given the necessary information from the Checker module.
On the right-hand side of the figure, backed in yellow, the components needed to sum-
marize and visualize the constraint validation results are shown. The Checker and the
model partially belong to this part. The model is needed to make predictions for eval-
uating the constraints, but also the internal structure of the model, represented model-
implementation-agnostically by the ShadowModels module, is used to create model-
coherent visualizations of the constraint validation results.
In addition to the previously mentioned functions of the Checker module, it is also
able to summarize the validation results in frequency distribution tables, make use of
coverage and, therefore, utilizes grouping functions. Applying these concepts to constraint
validation results were introduced in definitions 42 and 43. The summarized or raw
validation results and the information about the internal structure of the model are then
combined to create the visualization.
The modules will be investigated further with respect to “Performance Efficiency” and
“Portability and Maintainability”. Both are software quality goals defined in [35].

5.2 Performance Efficiency
This section is meant to describe the performance-relevant implementation details. First,
the Dataset module is described as the join described in section 4.3.2 needs to be per-
formed efficiently using the heuristics proposed. Next, the building process of the grouping
function Γnodes corresponding to the set Rd,u from section 2.3.3 is found, while also de-



Figure 5.2: The Dataset Module

scribing the structure of the ShadowModels module. Subsequently, the role of caching
and lazy calculation of results is outlined. Finally, approaches to parallel computing using
the visualization algorithm are touched upon.

5.2.1 The Dataset Module

As shown in Figure 5.2, the module contains three classes: the Dataset, the BaseDataset,
and the ProcessedDataset class. All of them make extensive use of the pandas data frame,
which allows storing two-dimensional tabular data with the capability to index the rows
by a column. In this work, the index column in a data frame will be unique and, therefore,
the data frame index implies a functional dependency, analog to a key in a relation of a
relational database.
The Dataset class is a generic class holding the whole dataset in a pandas data frame
called “df” with an index column idx, a column for each feature, and a column for the
target. In analogy to a relation in a relational database, the type of the data frame will
be denoted by DataFrame(idx, *feature_names, target_name)2. Therefore, the feature
names and the target name need to be stored to identify the problem instances (the
“x_data”) and the target (the “y_data”). A dictionary called “categorical_mapping” is
used to give the user the option to map each feature to a dictionary, which maps encoded
feature values to meaningful terms. For example, in a classification task with a Dataset
containing encoded target classes “categorical_mapping[target_name]” is a dictionary
mapping the encoded target classes to their decoded class names.
The BaseDataset extends the Dataset, with the notion of the samples-to-node mapping,
which is realized by a DataFrame(idx, node_identifier). Each entry in the data frame

2* here denotes the unpacking of the followed list



Figure 5.3: The ProcessedDataset Class

maps an index i of a sample in the dataset to the node η(i). At this point, it should
be mentioned that DataFrame(idx, *feature_names, target_name) and DataFrame(idx,
node_identifier) can be concatenated to give the T relation mentioned in section 4.3.2.
The concatenation does not require a join as both are only stored separate for implemen-
tation convenience.
The BaseDataset is assumed to be retrieved from a knowledge graph with a user defined
query from a given endpoint using the underlined static method of the same name. In
contrast to definition 27, the user is allowed to specify the seed variable and the target
variable (target_name) to be different from ?x and ?t. A SHACL validation engine
communicator is needed, which provides a method to perform the SHACL validation given
a set of constraints. The BaseDataset starts the SHACL validation process and stores its
results in a dictionary “shacl_validation_results” mapping (shape schema, target shape)
tuples (here called “shacl_identifier”) to DataFrame(node_identifier, shacl_identifier).
Each entry assigns a SHACL validation result to a node in the knowledge graph. The
construct thereby represents the validate function in algorithms 2 and 3. The SHACL
validation is triggered by calling “calculate_shacl_validation_results”. Each data frame
in “shacl_validation_results” corresponds to a relation Sj,k in section 4.3.2.
However, during the constraint evaluation, the SHACL validation results are needed per
sample. Therefore, the method “get_shacl_validation_results” produces SHACL valida-
tion results joined as described in section 4.3.2. Implementation-wise, the procedure re-
sults in a DataFrame(idx,"shacl_identifier’s") mapping each index of a sample to SHACL
validation results. The implementation makes use of the join method provided by the
pandas library and attempts to make use of the join heuristics from section 4.3.2. First,
the heuristic from lemma 8 is implemented in a greedy manner: The SHACL validation
results per constraint are grouped by their target definition and ordered according to
their average size. Joining in the order estimated should keep the number of different
entities with SHACL validation results in the intermediate results small, such that the
size of intermediate results increases gradually. Secondly, the heuristic from lemma 9 is
implemented by joining the SHACL validation results first by default, as there is no need
for intermediate SHACL validation results in the current implementation.
The last class is the ProcessedDataset (as depicted in Figure 5.3), which allows the user
of a BaseDataset to modify the data frame “df” (the original dataset) as needed. In
contrast to the pseudocode provided in algorithm 2, one cannot expect that the original
dataset extracted from the knowledge graph is the final dataset, which can be used to
train, validate or test the model (see example 14). However, the sample-to-node mapping
that was originally extracted when the BaseDataset was created must remain intact when
the original dataset is modified.
This is effectively tackled by a mapping called “base_indices” from the new indices i to



Figure 5.4: Reconstructing the Sample-to-node Mapping of a Modified Dataset:
The left-hand side shows the BaseDataset extracted from the knowledge graph with the
seed nodes ?x and the SHACL validation results Sts. The right-hand side shows a pro-
cessed version of the dataset called ProcessedDataset with reconstructed base indices such
that the results associated with the original Dataset can be used

Figure 5.5: Usage of the Adapter Pattern in the ShadowModels Module (see [63])

the old ones j in the BaseDataset (see Figure 5.4). The mapping is represented as a list
in which the i-th element contains the corresponding index j. The static methods are
provided for the user to create the ProcessedDataset depending on the changes done to
the original dataset, represented as BaseDataset. In the best case, the index column of
the original dataset was kept or copied to a new column before the modifications were
done. As modifications like dropping or duplicating samples will now affect the original
index column, the mapping can be read from the index or copied column respectively.
If that is not the case, the final dataset has to be joined with the original dataset on
a column with values unique to the original index values. In both cases, the result is a
ProcessedDataset, representing the final dataset, in which every sample can be mapped
to the original seed node and the SHACL validation results associated with them.

5.2.2 Estimating the Decision-tree-node-to-samples Mapping

After the validation engine is done and the constraint validation results are available,
the validation results are summarized with respect to the model provided. In the case of
decision trees, a decision-tree-node-to-samples mapping is needed. That is, the assignment
made in section 2.3.3 by the set Rd,u for each node nd,u in the decision tree or the grouping
function Γnodes from section 4.4.4. This is very relevant to performance, since the number
of nodes in the decision tree increases exponentially with the depth of the decision tree.
Implementation-wise, each node in the decision tree has a unique identifier and the goal
is to retrieve a dictionary mapping each identifier to a list containing the indices in the
dataset associated with the samples handled by that node.
To further understand the implementation, Figure 5.5 shows the structure of the Shad-



Figure 5.6: Converting a Row-major Matrix into a Column-major Matrix

owModels module. In general, the module is responsible for providing insights into
the trained model needed for the visualizations. As this should be independent of the
library used to train the model, the adapter pattern is used. The ShadowDecTree class
provides the interface for the library-agnostic adapter. Multiple adapters are already
implemented in the dtreeviz library [63]. As an example, Figure 5.5 shows the adapter
class SklearnShadowTree which implements the „get_node_samples“ method using the
„decision_path“ method from a given an instance of a trained DecisionTreeClassifier of
the scikit-learn library.
The “decision_path” method gives a matrix M ∈ {0, 1}#samples×#decision_tree_nodes with
a nonzero entry at position (i,j) indicating that the sample i is handled by the node j. As
it is typical for Python, the matrix is saved in row-major order. That means, the rows of
the matrix are physically stored next to each other. Therefore, it is recommended for the
inner loop to address the column j when iterating over the entries of the matrix in a nested
loop. The implementation of the “get_node_samples” method provided by the dtreeviz
library does exactly that while adding i to the list referred to by the decision-tree-node-
to-samples mapping with entry j if Mi,j it is nonzero. Therefore, accessing the Python
dictionary structure and adding an item to Python list #samples∗#decision_tree_nodes
times.
However, as vectorized code execution using NumPy turns out to be faster in many cases
[31], the following heuristic is proposed:

Lemma 10: Efficiently Estimating the Decision-tree-node-to-samples
mapping
The decision-tree-node-to-samples mapping should be estimated using vectorized
code execution.

Implementation-wise, M is converted into a column-major form (see Figure 5.6) and the
nonzero row indices of each column j are written into the decision-tree-node-to-samples
mapping with entry j. This results in accessing the Python dictionary only #samples
times and avoids the usage of the Python lists.

5.2.3 Caching and Calculating the Needed Intermediate Results

During the constraint validation process and the following visualization process, specific
intermediate results are needed multiple times. Therefore, the goal is to calculate them
only once and cache them if needed.

SHACL Validation Results When validating multiple constraints that refer to the
same SHACL shape schema, sequential validation would lead to the duplicate evaluation of



Figure 5.7: shaclAPI: Reducing Shape Schemas SHACL-engine-agnostically

SHACL shapes. To avoid this, the SHACL validation of multiple constraints is performed
according to the heuristics described in section 4.3.1. These heuristics further minimize
the load on the SHACL engine by simultaneously reducing the SHACL schema to the
needed shapes and targets. The heuristics were implemented in an API because they
work independently of the SHACL engine implementation. The API is called shaclAPI
and is publicly available in GitHub3.
Figure 5.7 illustrates the process. The SHACL Engine Communicators module con-
tacts the shaclAPI per SHACL schema and set of constraints making use of the schema.
Algorithm 3 shows the steps needed. However, the shaclAPI is built purpose-independent
and, therefore, needs the seed query Qs instead of the dataset generating query QD (see
section 4.2.1 for definition and 4.3.1 regarding the conversion) for the reduction of the
target definitions of the target shapes mentioned in the constraints. In section 4.3.1, the
form of prediction constraints is exploited to further reduce the target definitions of the
target shapes by pushing filter terms into the target queries of the shapes. These can be
provided optionally per target shape and will be squashed together with the original target
definition and the given query QS into new target definitions. After removing unneces-
sary shapes and restricting the target definition, when possible, as summarized above and
shown in algorithm 3, the reduced shape schema is forwarded to the SHACL validation
engine. The SHACL validation results are returned entity-wise4 and incrementally to the
user of the shaclAPI.
The SHACL validation process is originally triggered by the Dataset module, which
stores and joins them according to the join strategy (see section 4.3.2). The raw vali-
dation results are stored in the “shacl_validation_results” dictionary and when joined
the “sample_to_node_mapping” data frame is extended to additionally store the joined
results. The Dataset module also takes care of identifying already validated SHACL
schemas in new constraints by calculating MD5 checksums given the serialized represen-
tation of the SHACL schema. Therefore, identifying the subset of SHACL schemas given
by the constraints.
Storing the results in the Dataset agnostic of the machine learning model allows using

3https://github.com/JulianLoewe/shaclAPI
4That is, separately for each node addressed by the target definitions of the shapes in the shape schema

https://github.com/JulianLoewe/shaclAPI


Figure 5.8: The Checker Class: The Checker stores prediction, constraint validation,
coverage results and evaluated expression results, and is able to return summarized vali-
dation results.

the SHACL validation results for multiple machine learning models and training iterations
without the need for re-validating the SHACL schemas over the knowledge graph. Fur-
ther, the given implementation of the PreprocessedDataset does not push further FILTER

terms based on the samples used, but just forwards the need for SHACL validation results
to the BaseDataset instance. This enables the user of a BaseDataset base to create mul-
tiple instances of the ProcessedDataset given base without triggering redundant SHACL
validations.

Constraint Validation Results and Model Predictions The Checker module
triggers the validation of the constraints over a given machine learning model. An im-
plementation of a class contained in the Checker module is depicted in Figure 5.8. A
checker instance is initialized given a dataset and a predict function representing the ma-
chine learning model. Both cannot be changed after initialization, as the checker heavily
relies on caching to minimize computation time. Here we assume prediction constraints,
as data constraints can be evaluated given only the dataset. A prediction constraint re-
quires, for the evaluation, the predictions of the machine learning model over the problem
instances in the dataset. As making predictions can be costly, they are cached (in the
“predictions” field) to be reused, when evaluating multiple constraints. There are various
methods provided by the checker instance, yielding constraint validation results in dif-
ferent formats (see Figure 5.8). All of them start with requesting the SHACL validation
results from the Dataset, calculate the constraint validation results per sample in the
dataset, and provide a “non_applicable_counts” parameter, which let the user choose
to use the 3-valued logic or not. Further, the SHACL validation can be interleaved with
the constraint validation by evaluating the right-hand side expression of the prediction
constraint first, to determine nodes in the knowledge graph, that do not require SHACL
validation results (see section 4.3.1). The evaluation results of the right-hand side of the
constraints are then stored in the “pre_evaluated_expressions” field to avoid the recom-
putation during the final evaluation of the constraint when the needed SHACL validation
results are available.
As the validation results are needed in every method and in the case of the decision tree
visualization for every node, the results are cached in the “constraint_validation_results”
field. The model-coherent visualizations (see section 4.4) are based on frequency distribu-



tion tables. These can be calculated with the “get_fdt” method. The method unifies the
frequency distribution table creation from definitions 42 and 43. The latter one is applied
if the “coverage” parameter is set to true. In that case, the “get_validation_coverage”
method is used to assign each sample in the dataset the constraint validation result with
the highest priority (see example 19). The calculation involves combining multiple vali-
dation results, which is why the amount of data needed can make the operation costly,
and the results are therefore cached in the „coverage_results_cache“ field. The further
parameters of the function correspond to the definitions provided and are generalized to
multiple grouping function by formula 4.16. Finally, the Checker class provides a method
to explain the constraint validation results by providing the user for each sample in the
dataset with the SHACL validation result, the prediction made by the model, and the
resulting constraint validation result.

5.2.4 Using Parallel Computation for the Visualization Process

This section is specific to the decision tree visualization (see section 4.4.4) and the algo-
rithm used to compose the different node visualizations. The algorithm is based on the
dtreeviz library [63] and is by default a sequential process (as shown in algorithm 5) with
similar options for customization as the dtreeviz library provides.

Algorithm 5 Pseudocode of the Constraint Validation Results Annotated Decision Tree
Visualization Algorithm

1: function dtreeviz(Decision Tree Mθ, Constraints C, Checker H, boolean
non_applicable_counts, boolean coverage, leaf grouping function Γ)

2: fdts← ∅
3: visualizations← ∅
4: Γnodes ← getDecisionTreeNodeToSamplesMapping(Mθ)
5: for each node ∈ splitnodes(Mθ) do
6: fk ← splitFeature(node)
7: fdts← fdts + {H.get_fdt(C, Γnodes(node), Γfk

bins, coverage, non_applicable_counts)}
8: end for
9: for each leaf ∈ leafnodes(Mθ) do

10: fdts← fdts + {H.get_fdt(C, Γnodes(leaf), Γ, coverage, non_applicable_counts)}
11: end for
12: for each fdt ∈ fdts do
13: visualizations← visualizations + {visualize(fdt)}
14: end for
15: return compose(visualizations, Mθ)
16: end function

The algorithm takes as input the constraints C; to be validated over the decision tree
Mθ, a checker instance as described in the previous section, two boolean parameters;
specifying whether the 3- or 2-valued logic and the coverage from section 4.4.3 should be
used, and the grouping function, which should be used for the leaves (see section 4.4.4).
Given the information, the decision-tree-node-to-samples mapping, as discussed in section
5.2.2, is calculated and used afterwards to calculate the frequency distribution table of
the constraint validation results for each split- and leaf-node according to section 4.4.4.
The frequency distribution tables can then be visualized, as shown in the examples in
section 4.4, and need to be composed into the final visualization afterward.



Figure 5.9: The Constraint Module

Clearly, the algorithm provides several possibilities for parallel computation:

(1) Validating SHACL schemas over the knowledge graph

(2) Computing the constraint validation results

(3) Summarizing the validation results into frequency distribution tables

(4) Visualizing the frequency distribution tables

Option (1) would heavily rely on the multiprocessing performance of the SPARQL end-
point or would require multiple instances of the SPARQL endpoint, which is usually not
the case. As will become apparent, much of the computational time of the evaluation
process (2) is spent on generating the SHACL results (2), and the parallelization of the
join would require a library like dask [57] if one wants to stay with pandas data frame for
data management. The implementation of (3) would come either with large main memory
requirements or with the need for the validation results to be stored on process-shared
read-only memory. Currently, the Python implementation supports (4) as this only re-
quires passing the frequency distribution table to the process and allows outsourcing the
time needed to create and write the visualizations onto the disk.

5.3 Portability and Maintainability
Various parts of the implementation were created with extensibility in mind and are
structured in such a way that the constraint validation engine is decoupled from the visu-
alization part (see Figure 5.1). This makes the individual components easily maintainable
and extensions to the implementation can be made with ease. Further, it turns out that
the constraint validation engine is agnostic to the SHACL engine and the machine learning
model used.

Constraints The Constraint module (see Figure 5.9) provides implementations of
the constraint types described in section 4.3.4. A central concept is the usage of SHACL
constraints to make use of the semantic context of the entities in the knowledge graph
which are connected to the samples in the dataset. Therefore, the abstract base class



Figure 5.10: The SHACL Engines Communicator Module

Constraint provides the capabilities to integrate SHACL validation results into the con-
straint evaluation. All constraint types have to inherit from Constraint and implement
the “eval” method, to be usable with the constraint validation engine. As an example, the
PredictionConstraint class implements the type of constraint defined in definition 24 by
extending Constraint with an expression representing the right-hand side of the predic-
tion constraint. A user may change the semantics of the prediction or data constraint by
inheriting from them. As an example, the implementation provides inverted constraints,
which invert the constraint validation result.

SHACL Engines The SHACL Engines Communicator module (see Figure 5.10)
makes the constraint validation engine agnostic to the SHACL engine used. A commu-
nicator to be used by the Dataset module has to inherit from the abstract base class
SHACLEngineCommunicator and has two endpoints assigned. The first one corresponds
to an internal endpoint like the shaclAPI (Figure 5.7) and the second one is an external
link to the SPARQL endpoint used as the data source and for SHACL validation. Three
different communicators are already implemented: The ReducedTravshaclCommunicator
directly integrates the shaclAPI to reduce the SHACL shape schema for Trav-SHACL
[21]. The second and the third ones implement the concept of performing the SHACL
constraint validation during SPARQL query execution as described in section 4.3.3. The
SHACLAPICommunicator makes use of extended capabilities of the shaclAPI to join
SPARQL query results with SHACL validation results, while the ValSPARQLCommuni-
cator uses the valSPARQL engine to push down the join into the SPARQL query evalu-
ation.

Checker The Checker module includes the Checker class as depicted in Figure 5.8
and is model-implementation-agnostic as only one function is required to get predictions
from the model. For instance, the implementation of example 21 does not require to
make any changes to the Checker class. Although, the predictions are now based on the
decision tree node and not the whole decision tree. Instead, a prediction method can be
defined to return the constant predictions, which would be made by the node (see section
2.3.3).

Group Functions Group functions are a concept introduced in definition 42. Formally,
they take a group name and return a set of indices of samples from the dataset belonging
to that group. In the implementation, a group function in the Group Functions module



Figure 5.11: The Group Functions Module

Figure 5.12: The Visualization Module

(see Figure 5.11) takes an instance of the Checker class and the indices of the dataset to
be grouped and returns a dictionary mapping each of the group names to the subset of
indices belonging to that group and a description string saying how the grouping is named.
The checker instance provides all the components (e.g., the problem instances, the targets,
the predictions, and the sample-to-node mapping) which might be needed to group the
indices. However, further arguments might be provided to the group functions if needed.
For example, the “group_by_feature” function; generating the theoretical Γfk

bins function,
additional takes the feature, the number of bins, and the range for the binning as inputs.
Therefore, new grouping functions can be added easily and used in existing visualizations.
For instance, the visualization of the leaves in the decision tree makes use of a grouping
function to determine the frequency distribution to show (e.g., Figure 4.19 makes use of
group_by_gt (Γgt) and Figure 4.22 makes use of group_by_complete_dataset (Γall)).

Visualizations In general, the visualizations generated are specific to the model. How-
ever, frequency distributions and the according visualizations can be used independently
of the model. That is the concepts shown in sections 4.4.1 and 4.4.3 can be applied inde-
pendent of the chosen model. The information content and the connection to the internal
structure of the model then depend only on the grouping function and the fraction of
the samples in the dataset selected to be visualized at once. Therefore, the work done in
sections 4.4.4 and 4.4.2 is an example of a suitable composition of frequency distributions
which can be created for other models as well. Figure 5.12 shows roughly the content of
the Visualization module.



Shadow Model The visualization of the model w.r.t. the constraints is based on
the internals of the model. However, the library can be chosen according to the user’s
preference as the visualization algorithm is independent of the concrete implementation
of the model, but instead makes use of the adapter pattern (reused from the dtreeviz
library [63]; see Figure 5.5).

5.4 Summary
The approach proposed in chapter 4 is realized in a library implemented using Python.
The implementation is split into two parts the constraint validation engine and the visu-
alization of the validation results in a model-coherent way.
The validation engine makes heavy use of pandas data frames and NumPy vectorization
while implementing the heuristics proposed in section 4.3.1 (i.e., using the shaclAPI)
and in section 4.3.2 (i.e., the implementation of the join strategies using the pandas join
function). The Dataset module is split into the BaseDataset and the ProcessDataset
to allow for dataset preparation (e.g., data preprocessing, sampling, feature engineering)
while keeping the sample-to-node mapping intact.
The visualization part is implemented based on the logic provided by the dtreeviz library.
Nevertheless, the logic is extended to support multiprocessing and annotation with mul-
tiple constraints. Frequency distribution tables are introduced to split the summarizing
stage from the visualization stage and allow for the implemented parallelization of the
plot generation. Finally, parts of the algorithm were improved through vectorization with
NumPy (e.g., the decision-tree-node-to-sample mapping generation) and caching of in-
termediate results (i.e., SHACL validation results, constraint validation results, coverage
results, and model predictions).
The whole implementation is built for extensibility with respect to new constraint types,
the usage of other SHACL engines, the group functions used during summarization, vi-
sualizations for new model types, and the library used to train the machine learning
model.



Chapter 6

Application: InterpretME

This section introduces a resource that utilizes specific aspects of this thesis and was
produced as a collaborative project with four members of the Scientific Data Management
Research Group. All authors contributed equally to the resulting resource paper. The
resource is called InterpretME [12] and will show how parts of the concepts in this thesis
can be applied.

Figure 6.1: The InterpretME Architecture [12]

InterpretME aims at making supervised machine learning models (e.g., decision trees
as in this thesis) better interpretable by tracking the different stages used to produce
the trained model in an automated way. That is, the concept of a machine learning
pipeline is extended to collect metadata about the characteristics of the model and the
data used to train the model. Figure 6.1 shows the architecture of InterpretME proposed
in the resource paper. In a first step, the user provides the inputs to InterpretME in the
form of knowledge graphs, a sampling strategy, a set of integrity constraints and features’
definitions. The features’ definitions are SPARQL sub-queries, which are combined similar
to the property path in section 4.2.1 to a dataset generating query. The query is then used
to retrieve the dataset and the sample-to-node mapping; allowing to apply the SHACL
validation to samples in the dataset.
In comparison to the sequential process proposed in Figure 1.5 and the general idea
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of validating the trained machine learning model, InterpretME postpones the constraint
validation step. The step is now called SHACL validation step as the integrity constraints
mentioned are the data constraints from section 4.3.4. The training pipeline uses the
constraint validation results as additional features. This allows the model to make use of
the additional patterns encoded into the validation results and, therefore, in a way make
use of the semantic context of the samples in the knowledge graph. Indeed, it turns out
that the usage of the constraint validation results improves the performance of the model
in terms of accuracy.
In the final step of the model training pipeline, the model is evaluated w.r.t. performance
metrics (see section 2.3.2); interpretability methods (e.g., LIME [56] and dtreeviz [63])
are applied and the approach from section 4.4 is used. The latter one allows to spot
patterns in the usage of the samples, annotated with the constraint validation results, by
the model.
The data collected (e.g., the inputs, the sample-to-node mapping, the model evaluation
results, and the results of the interpretability methods) is composed into a new knowl-
edge graph. In terms of this work, the new knowledge graph simplifies and facilitates
the interpretation of the model predictions w.r.t. the original entity and the constraint
validation results. This is achieved by exploiting the sample-to-node mapping to align the
entities in the new knowledge graph to the entities in the input knowledge graphs through
owl:sameAs connections. For example, results of interpretability methods are usually only
associated with the sample in the dataset, which makes it hard to understand the context
of the sample under specific circumstances. However, the generated knowledge graph can
be queried together with the input knowledge graphs in a federated manner to give the
interpretability result for a specific sample together with its original semantic context
and the matching constraint validation results. In this context, the constraint validation
results can also be used as flags to mark certain entities of interest.
Evaluating InterpretME shows that the interpretability of machine learning models can
be increased by, among other things, applying the methods proposed in this work.



Chapter 7

Experimental Evaluation

In this section, the approach is evaluated in combination with the proposed heuristics
using the Python implementation and with respect to the following research questions:

Q1 What is the impact of the join heuristics proposed in section 4.3.2?

Q2 What is the impact of reducing the SHACL shape schemas and the simultaneous
generation of SHACL schema validation results, depending on the schema topology
and the knowledge graph used?

Q3 What is the impact of the parallel node plot generation as mentioned in section
5.2.4?

Q4 How does the decision tree visualization implementation perform in comparison to
dtreeviz?

Q5 How much is the overhead added by the validation engine and the visualization of
the annotated decision tree compared to the time needed to train the model and
other interpretability methods (e.g., LIME [56])?

The experimental settings are as follows:

Benchmarks There are four different benchmarks used during the experimental eval-
uation. The first two use synthetic data to allow for load tests and the construction of
benchmarks suitable to show the effect of the heuristics proposed. The latter two are
benchmarks as performed in [12] to show two more realistic applications.

Synthetic Data A consists of a knowledge graph G with semantic data generated based
on a distribution of entities to classes and a shape schema S = ({0, 1, 2, ..}, TARG, DEF)
such that [[TARG(i)]]G gives the entities of class i. Figure 7.1 depicts the two shape
schema topologies which will be used: The first is a star-shaped one (short: star),
and the second is a binary tree-shaped one (short: bt). For both shape schema
topologies, three shape schemas of different sizes are generated, which are used
in combination with the distribution of the entities to classes as schematically de-
picted in Figure 7.2. The different test beds of Synthetic data A can be identified
with topology_K_distribution, where the topology is star or bt, distribution is in
{o, d, n}, and K denotes the number of constraints (each of the target shapes col-
ored in Figure 7.1 belongs to a data constraint). The knowledge graph is built such
that for each s ∈ S, half of the entities in [[TARG(s)]]G will be valid according to s.
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Figure 7.1: Shape Schema Topologies of Synthetic Data A: K denotes the num-
ber of constraints, H the height of the binary tree. The nodes represent the shapes,
and a directed edge connecting shape i with shape j represents an inter-shape con-
straint (≥1 :link_ij.j). There are no intra-shape constraints, except shape 0 enforces
the intra-shape constraints (≥l :literal_k.⊤) ∧ ¬(≥(m+1) :literal_k.⊤) for all (k, l, m) ∈
{(1, 1, 2), (2, 2, 4), (3, 1, 8), (4, 2, 16)}. The K colored nodes will be used as target shapes
for data constraints.

Figure 7.2: Venn Diagrams of Classes in Synthetic Data A: Qs is the set of entities,
which will be retrieved by the seed query in the benchmarks building on Synthetic Data
A. K denotes the number of constraints. Each set starting with A contains 4, 000 entities,
and each set starting with B contains 4, 000 + (#numberOfBSetsContained + 1) * 2, 000
entities. Each class not included in the figure contains 4, 000 entities. The diagram only
shows the classes associated with a target definition of a target shape of a constraint.



The generated knowledge graph G only contains the entities and literals necessary
to satisfy or violate the constraints, but does not include any further data which
might be used to create the dataset and define a prediction task. Therefore, when
running the validation engine over one of the test beds, the dataset generating query
QD only retrieves the seed nodes (e.g., the entities in Qs) to build the sample-to-
node mapping η. However, this is enough to evaluate the validation engine with the
heuristics proposed in section 4.3 based on data constraints as they do not require
a trained machine learning model to be evaluated.

Synthetic Data B complements Synthetic Data A, as the steps which could not be eval-
uated with Synthetic Data A can be evaluated with Synthetic Data B, i.e., the
performance of the visualization algorithm. Therefore, the dataset D, the sample-
to-node mapping η, as well as the entity validation function (see definition 18) are
generated synthetically on the basis of the number of samples N (#samples) of the
dataset D, the number of seed nodes M (#nodes), and the number of constraints
|C| (#constraints). The algorithm used to generate D is the one originally used
to generate the „Madelon“ dataset [29], which is implemented in the scikit-learn
library [10]. It basically creates clusters of samples with the same label. However,
the clusters can overlap. The predictive task is a classification task; aiming to label
each problem instance with its original cluster in the dataset. The default parame-
ters used to generate D can be found in table 7.1. The samples-to-node mapping η
is generated by choosing randomly with uniform probability and replacement from
a set of unique seed nodes with cardinality M . The validate function is populated
as needed by the engine: Given a request (v, s, G) ∈ (B∪I)×S×G and a constraint
C ∈ C the validation result is generated by a random process from {⊤,⊥, None},
where None indicates that the entity validation function does not contain a vali-
dation result for the given request. The random process samples for each C ∈ C a
triple (p1, p2, p3) uniformly from [0, 1]3. The triple is normalized to (p̂1, p̂2, p̂3) such
that

∑
i∈{1,2,3} p̂i = 1. Finally, for each request: ⊤ will be chosen with probability

p̂1, ⊥ with p̂2 and None with p̂3. The data constraints can be generated by choosing
a random shape schema directory and a target shape1. The decision tree used in the
benchmark is trained on D with the default parameters provided by the scikit-learn
library and with a maximal depth of 5 unless specified otherwise.

The French Royalty KG is an extended version of the fully curated one proposed in [30].
For each person in the knowledge graph, the class dbo:Person is added. In addition,
the different numbers of children, predecessors, and other counts are materialized.
Furthermore, the KG is extended to include the rule-based derived dbo:hasSpouse re-
lationships from [30]. Overall, this results in a knowledge graph with 3, 430 entities;
having an average of 9.2 triples with the entity as the subject. The prediction task
is to classify whether a person in the knowledge graph has a spouse and is tackled
by the InterpretME pipeline (section 6) to give a trained decision tree. A data
constraint is created for each logical rule proposed in [30] to explain a dbo:hasSpouse

link. This procedure results in ten constraints used to validate the samples based
on entities of type dbo:Person. Each of the constraints is based on a separate shape
schema with a single shape. Precisely, the constraints use different combinations of
the dbo:hasChild, dbo:hasParent, and dbo:hasSpouse links. For example, one constraint
describes that two different people who have the same child should both have a

1Both do not have to exist as they will be only used to query the entity validation function for SHACL
validation results



Parameter Value

number of clusters per class 1
number of informative features 2
number of redundant/repeated features 0
number of samples 410

number of seed nodes 410

number of constraints 5

Table 7.1: The default parameters used during the generation of test beds of Synthetic
Data B

spouse and another one stating, that if person A has person B as a spouse then
person B also has a spouse.

The Lung Cancer KG is a knowledge graph from the biomedical domain about lung can-
cer patients. For each lung cancer patient, the knowledge graph includes attributes
of the individual such as gender, age, cancer stage, smoking habits, and biomarkers
for lung cancer. There are a total of 21, 340, 353 entities with each of them occurring
in an average of 2.97 triples as the subject. In this case, the prediction task is binary
classification to predict whether the patient has “ALK” or “other” as biomarker.
Again, the task is tackled by the InterpretME pipeline to give a trained machine
learning model. Data constraints are created on the basis of medical protocols.
That is, special treatments should be prescribed in accordance with the patients’
biomarker values. Precisely, four different data constraints are defined based on a
medical protocol specifying that patients without the EGFR biomarker should not
take the drugs Afatinib and Gefitinib. Each constraint is based on a target shape
included in separate star-shaped SHACL schemas with three shapes (the topology
is the star-shaped one in Figure 7.1 with K = 2).

Engines As mentioned in section 5.3 the validation engine is agnostic to the SHACL en-
gine; during the experimental evaluation Trav-SHACL [21] is used. It is accessed through
the „ReducedTravshaclCommunicator“, which makes use of the shaclAPI (Figure 5.7);
implementing the heuristics in 4.3.1.

Metrics The following metrics will be used during the evaluation of the experiments:

Number of SHACL validation results: Given a set of constraints C ⊂ C and a knowledge
graph G ∈ G, the number of SHACL validation results is |dom(validate)|, where
validate is the entity validation function generated by a SHACL engine during the
evaluation of the constraints in C.

Execution time: The elapsed time spent on executing an experiment or a part of it;
measured using the Python library time2. Each experiment is executed five times
and the average execution time, as well as the standard deviation of the execution
times, are reported. All the experiments are executed on a machine equipped with
an Intel® Core(TM) i5-6500 at 3.20 GHz and 8 GiB RAM.

2https://docs.python.org/3/library/time.html

https://docs.python.org/3/library/time.html


bt star
7_o 15_o 31_o 15_d 5_o 15_o 25_o 15_d 5_n

34.6 117.0 416.5 79.9 29.3 231.0 633.6 142.4 46.1

Table 7.2: Execution time [s] observed during the execution of the validation engine on
performing the SHACL validation of all constraints in 9 test beds of Synthetic Data A
without using any heuristic.

7.1 Validation Engine
This section aims to experimentally evaluate the validation engine by using the synthet-
ically generated benchmark setups in Synthetic Data A and Synthetic Data B. Synthetic
Data A provides knowledge graphs and different shape schemas, which will allow answer-
ing the research question Q2. Synthetic Data B provides a dataset, the sample-to-node
mapping as well as the entity validation function, which will be used to evaluate the
join strategy (see section 4.3.2). Both benchmarks will lead to an answer to the research
question Q1. Evaluating the validation engine in two parts by answering Q1 and Q2 is
natural, as can be seen in algorithm 2; the SHACL constraint validation is performed first
(line 4) and the constraint evaluation (line 5), which in case of data constraints reduces
to the execution of the join, follows.

7.1.1 SHACL Constraint Validation

An ablation study based on nine different test beds of Synthetic Data A is performed to
show the effects of the heuristics proposed in section 4.3.1. Therefore, the execution time
of the SHACL constraint validation (e.g., applying the heuristics, running the SHACL
engine, collecting the SHACL validation results) and the number of SHACL validation
results generated in the process are measured.
The study is split into two parts: In the first part, only a single constraint of each test bed
is evaluated over the dataset extracted from the knowledge graph. In the second part, all
constraints as shown in Figure 7.2 are evaluated. Figure 7.3 presents the results of the
first part of the ablation study (with none as the baseline). The results of the second part
of the ablation study are shown in Figure 7.4 with the baseline separately shown in table
7.2. Based on the results, the impact of the heuristics is discussed.

Prune Shape Network refers to the heuristic proposed in lemma 6 and excels in
reducing the number of SHACL validation results needed to be generated in the first part
of the ablation study. That is because in both shape schema topologies used, the number
of shapes can be reduced, when only validating a single constraint. In the star-shaped
case, the reduction is theoretically able to remove (K − 1) shapes leaving 2 shapes in the
network, and in the binary-tree-shaped case even 2 ∗ (K − 1) − log2(K) shapes leaving
log2(K)+1 shapes in the network. In the „overlap“-case, the number of SHACL validation
results can be estimated to be (#shapes∗4, 000+K ∗4, 000). Therefore, the total number
of SHACL validation results in the „overlap“ case is reduced from (K+1)∗4, 000+K∗4, 000
resp. (2 ∗K − 1) ∗ 4, 000 + K ∗ 4, 000 in the baseline case (e.g., not using any heuristic) to
2 ∗ 4, 000 + 4, 000 resp. (log2(K) + 1) ∗ 4, 000 + K ∗ 4, 000 when only pruning the shape
network. The proactive reader might calculate the theoretical reduction of the number of
SHACL validation results with the formula for the „distinct“-case #shapes ∗ 4, 000 and



(a) Number of SHACL validation results

(b) Execution time [s]

Figure 7.3: Metrics observed during the execution of the validation engine on performing
the SHACL validation of a single constraint in nine test beds of Synthetic Data A. none
- the baseline does not make use of any heuristics, shapes - the shape network is pruned,
targets - the target reduction is applied, all - combination of shapes and targets



(a) Number of SHACL validation results

(b) Execution time [s]

Figure 7.4: Metrics observed during the execution of the validation engine on performing
the SHACL validation of all constraints in nine test beds of Synthetic Data A. simult. -
constraints are validated simultaneously, shapes - the shape network is pruned, targets -
the target reduction is applied, all - combination of simult., shapes and targets

the „nested“-case (#shapes−K)∗4, 000+
∑K

i (4, 000+(i−1)∗2, 000). As it turns out, the
theoretical numbers exactly match the estimated numbers in Figure 7.3a, which proves
the functionality of the heuristic for the given test beds. Comparing the results in figures
7.4 and 7.3 shows a strong correlation between the number of SHACL validation results
and the execution time; emphasizing the importance of the shape network pruning when
possible. In the second part of the ablation study, the shape network pruning does not
impact as none of the shape schemas can be reduced.

Target Reduction refers to the heuristic proposed in lemma 5. Both, in the first part
and in the second part of the ablation study, the target reduction impacts and reduces
the number of targets of the target shapes given by the constraints. Precisely, in the first
part of the ablation study, in the „overlap“-case, the target reduction exactly removes the
4, 000 additional entities included in the target definition of the shape but not included in
Qs. This scales in the second part of the ablation study to K ∗4, 000 as for each constraint
4, 000 entities were validated without being included in the seed nodes. In the „distinct“-
and „nested“-case, the set of entities Qs includes all the entities in the target definitions
of the shapes, which is why the target reduction does not have a further impact and the
number SHACL validation results stay the same in all cases. Even though the target
reduction was not able to reduce the number of SHACL validation results as much as
the shape network pruning, it still impacts the average execution time as can be seen in
figures 7.3b and 7.4b.

Simultaneous Constraint Validation refers to the heuristic proposed in lemma 7
and, therefore, only applies to cases in which multiple constraints are given, which is not
the case in the first part of the ablation study. However, it excels in the second part



by preventing the SHACL engine to produce redundant validation results. Even if the
heuristics above are able to reduce the number of SHACL validation results needed, still
shapes are processed multiple times when validating each constraint on its own. All setups
in Figure 7.4 make use of the heuristics except for the „shapes + targets“-configuration.
Therefore, Figure 7.4a shows the impact of the simultaneous constraint validation on the
number of SHACL validation results. In theory, the impact can be calculated as follows:
In the case of the star-shaped shape schemas, shape 0 is validated K times over the
knowledge graph, and in the case of the binary tree, a shape at depth i is validated 2(h−i)

times. This is the reason for the additional SHACL validation results, which the „shapes
+ targets“-configuration generates in comparison to the „all“-configuration. Although the
two heuristics perform well compared to the baseline, still the shaclAPI needs to apply the
heuristics above unnecessarily often, the SHACL validation is performed with smaller and
more queries and the validation engine needs to manage unnecessary validation results.
All these components contribute to a comparatively high execution time of the „shapes
+ targets“-configuration in Figure 7.4b.

Conclusion The preceding discussion leads to an answer to the research question Q2.
Given the nine test beds, pruning the shape network alone reduced the execution time
by 65% on average, while reducing the target definition of the target shapes only reduced
the execution time by 3% on average. The simultaneous constraint validation was able to
improve the average execution time by 90%. Applying all heuristics reduced the execution
time by 94% on average. Further, the number of SHACL validation results strongly
correlates with the execution time and whether the heuristic was able to reduce the
number of actions (e.g., queries to the endpoint) of the SHACL engine. All heuristics
proposed in section 4.3.1 at least impact on the execution time of the SHACL validation
in the same order of magnitude they were able to shrink the number of SHACL validation
results. However, this depends on the knowledge graph and the SHACL shape schema.
Additionally, figures 7.4 and 7.3 show that in cases the heuristics do not apply, it also
does not impact negatively in the given test beds.

7.1.2 The Join Strategy

In section 4.3.2 two different join strategies were presented:

A) Join T at the end. The SHACL validation results are first joined together before
being linked to the dataset via the sample-to-node mapping. The two join heuristics
(see lemma 8 and 9) propose to use this approach to keep intermediate results as
small as possible and, in turn, minimize the execution time of the join operations
in Figure 4.2a. However, full-outer-joins are required to keep all SHACL validation
results. The implementation of lemma 8 was described in section 5.2.

B) Join T at the beginning. The SHACL validation results are directly joined with the
dataset via the sample-to-node mapping. The intermediate results are always as
large as possible, but only left-outer joins are required to keep all samples in the
dataset. Furthermore, this strategy can be used when joined SHACL results are
needed early.

In the first step, the Synthetic Data B benchmark is used for a load test of the imple-
mentation. Therefore, the number of samples, nodes, or constraints are varied, to see the
effect of each of the parameters of the test bed on the execution time of the join strategy.
Figure 7.5 presents the results in terms of execution time.



Figure 7.5: Execution time [s] of the different join strategies observed during the execution
of the validation engine on performing different join strategies for test beds of Synthetic
Data B with a varied number of samples (#samples), number of seed nodes (#nodes) or
number of constraints (#constraints). The vertical red line marks the default value of
the varied parameter as shown in table 7.1

Varying the number of samples increases the time spent on joining with strategy A and
B in a roughly linear fashion. In the case of strategy A resp. B the execution time raises
approximately by 1.38 resp. 2.75 seconds per million samples. However, a small number
of samples results in a larger portion of unique nodes in the sample-to-node mapping in
relation to the number of samples, and strategy B turns out to be faster. Similar behavior
can be seen when varying the number of seed nodes: Raising the number of seed nodes
and, therefore, increasing the portion of unique nodes in the sample-to-node mapping in
relation to the number of samples, strategy B is faster. In the opposite case, strategy A
is faster. Varying the number of constraints scales the execution time in a linear fashion.
Finally, one can observe that the further optimizations to decrease the cardinality of the
intermediate results do not impact in case of the given benchmark.
Both observations may be due to the random nature of Synthetic Data B: A large portion
of unique nodes makes overlapping of entities of the SHACL validation results unlikely.
On the other hand, a small to moderate portion of unique nodes makes overlapping more
probable. However, the random nature of the experiment is not natural. In the real world,
the entities often match or overlap (e.g., multiple constraints about different person types)
or are nested into each other (e.g., constraints becoming more specific about a protocol).
This motivates the Synthetic Data A benchmark, in which entities are distributed to
classes and the SHACL validation results are not generated by a random process and
assigned to a random subset of the seed nodes. This is the second step of the evaluation
of the join strategy to validate the behavior observed in the preceding benchmark. The
results are depicted in Figure 7.6.
First of all, one can observe that strategy B performs worse or as good as strategy A
without optimizations. A reason for that might be the nested or distinct class distribu-
tions of the entities to classes, which encourage constantly growing intermediate results.
However, that is even true for the „overlap“-case in which the number of SHACL valida-
tion results is equal for all constraints. The latter can be due to the implementation of
strategy B having a larger overhead in comparison to strategy A. That is because B has
to use multiple pandas join calls where, on the other hand, A only requires a maximum
of two calls.
Next, one can observe that the optimizations impact differently depending on the distri-



(a) Cheap Joins

(b) Expensive Joins

Figure 7.6: Execution time [s] observed during the execution of the validation engine on
performing different join strategies for 19 different test beds of Synthetic Data A. ms -
marks a variation of the test bed, in which the target definition of five shapes each refer to
the same class, Optimizations - The optimizations to reduce the number of intermediate
results (see section 5.2)



bution of entities to classes. However, the execution times generally seem to vary less in
the optimized case.
In the „nested“-case, it is necessary to order the SHACL validation results of the different
target shapes according to their size to get constantly growing intermediate results during
the execution of the join strategy. Therefore, the optimizations impact and the average
execution time decreases by approximately 6%.
The test beds ending with “_ms” are specially designed only to produce constantly grow-
ing intermediate results during the join when the SHACL validation results of the con-
straints with a target shape having the same class in their target definition are joined
next to each other. However, the experiments do not show a difference in the execution
time of strategy A when using the optimizations or not.
In the case of a distinct distribution, the intermediate results will constantly grow inde-
pendent of the order in which the SHACL validation results are joined. Therefore, it is
logical that the optimizations do not impact, and the average execution time of the join
strategy is approximately the same in all of these test beds.
In the „overlap“-case, the order does not matter at all, and, as already noted, the in-
termediate results are of constant size independent of the join order. In this case, the
optimization adds an unnecessary overhead (e.g., sorting by the number of SHACL val-
idation results and grouping per target definition). Therefore, it can even lead to worse
execution times, as observed in some cases.
In summary, research question Q1 can be answered: Join strategy A is indeed faster in
cases where the distribution of entities to classes is chosen in a way that encourages the
production of constantly growing intermediate results. The second part of the experiments
even shows that in the case of a relatively small number of seed nodes, strategy B is slower
in general. Further, optimizing the order of the join operations in an approach to keep
the intermediate results small stabilizes the execution time of the join strategy.

7.2 Visualization Algorithm
This section aims at answering the research question Q3, while also investigating the
execution time of the different stages of the visualization algorithm. In addition, results
will be collected on research question Q4. Again, benchmark Synthetic Data B is used.
However, the validation engine is run before the experiment such that the constraint
validation results are already available and linked to the samples of the dataset.
First, a load test is conducted over the visualization algorithm running in serial and in
parallel mode. In parallel mode, the plots of the nodes of the decision tree are created in
parallel. The experiment is executed analog to the load test of the join experiment: On
top of the number of nodes (#nodes), constraints (#constraints) and samples (#samples),
the maximum depth of the decision tree is varied, to see the effect of the height of the
decision tree on the execution time. The visualization algorithm can be divided into
different stages, whose execution times are measured individually.

summarizing. The stage summarizing the constraint validation results into frequency
distribution tables. Corresponds to lines 5 - 11 in algorithm 5.

histogram creation. The stage visualizing the given frequency distribution tables corre-
sponding to the split nodes of the decision tree with histograms. Corresponds to
line 13 in algorithm 5.



Figure 7.7: Execution time [s] observed during the execution of the visualization algorithm
for test beds of Synthetic Data B with a varied number of samples, nodes, constraints
and maximal depth of the trained decision tree. The bars show the execution time of
the different components of the visualization algorithm running in serial mode. The dots
show the overall execution time of the visualization algorithm running in parallel mode
(see section 5.2.4). The vertical red line marks the default value of the varied parameter
as shown in table 7.1.

pie chart creation. The stage visualizing the given frequency distribution tables corre-
sponding to the leaves of the decision tree with pie charts. Corresponds to line 13
in algorithm 5.

writing to disk. The stage storing the created visualizations (e.g., the pie charts and the
histograms) to disk.

composition. The stage composing the stored visualizations into decision trees. Corre-
sponds to line 15 in algorithm 5.

other. Intermediate steps (e.g., intermediate result transformations, estimation of the
decision-tree-node-to-samples mapping (see section 5.2.2))

The visualization algorithm makes use of the coverage concept introduced in section 4.4.3.
The results of the experiment are depicted in Figure 7.7 and are the basis to answer the
research question Q3.
Varying the maximal depth of the decision tree, to be visualized with the annotations,
corresponding to the constraint validation results, raises the execution time exponentially
due to the exponentially rising number of split and leaf nodes of the decision tree. Further,
the parallel node plot generation is able to improve the execution time in cases of high
decision trees. For decision stumps (e.g., decision trees of depth 1) and shallow decision
trees, the parallel execution time is higher than the serial execution time due to the



overhead coming with multiprocessing. The overhead of the multiprocessing even raises
linear with the number of samples in the dataset, although process spawning is used, which
should not copy the dataset, but only the validation results summarized into frequency
distribution tables to the assigned processes. In the serial execution, the execution time
for summarizing the validation results increases proportional to the number of samples,
while keeping the execution times of the other stages approximately constant. Therefore,
the overhead added by the multiprocessing should be constant as the summarizing step is
not executed in parallel; pointing to an error in the implementation of the parallel node
plot generation. Varying the number of seed nodes (#nodes) to be considered during
the generation of the test bed does not impact on the execution time of the visualization
algorithm. Conversely, varying the number of constraints impacts the time spend on
writing to disk and creating the histograms up to a specific point, in which the complexity
of the histograms stops increasing as the concept of coverage suppresses the visualization
of additional less important validation results. This answers the research question Q3:
Parallel node plot generation can impact positively in the case of high decision trees.
However, with the current implementation, multiprocessing comes with a large overhead;
scaling is proportional to the number of samples in the dataset. This currently limits the
application since the overhead will surpass the time savings in most cases.
As mentioned in section 5, the visualization algorithm uses the logic provided by the
dtreeviz library. However, the implementation had to be extended to support the multi-
processing and the visualization of multiple constraints. Further, the concept of frequency
distribution tables as the basis of each node visualization was added for implementation
convenience. It basically allowed to split the summarizing stage from the visualization
stage. Finally, parts of the algorithm were improved through vectorization with NumPy
(e.g., the decision-tree-node-to-sample mapping generation (see section 5.2.2)). The next
experiment investigates the performance of the visualization algorithm in comparison to
its original implementation in the dtreeviz library and, therefore, aims at answering the
research question Q4.
Again, the experiment is conducted using the test beds provided by Synthetic Data B.
For comparability reasons, the visualization algorithm only has to visualize the validation
results of a single constraint since the original implementation only showed the distribution
of the ground truth values of the samples per node of the decision tree. In Figure 7.7
it can be seen that the visualization of the split nodes is more costly compared to the
visualization of the leaves of the decision tree. To further investigate this behavior, all
test beds are used to measure the execution time of the visualization algorithm and the
dtreeviz implementation; once for the visualization of the leaves only (e.g., the fancy
option of the dtreeviz library turned off) and once for the entire decision tree. This
time only the maximal depth of the trained decision tree and the number of samples
in the dataset are varied since the number of seed nodes has shown to not impact the
performance of the visualization algorithm. The results of the experiment are depicted in
Figure 7.8.
At first glance, the visualization algorithm clearly outperforms the dtreeviz implementa-
tion: Varying the maximal depth or the number of samples in the dataset in all cases,
the visualization algorithm is faster than the dtreeviz implementation.
For both implementations, keeping the maximal depth of the decision tree constant, the
execution time scales proportionally to the number of samples. The execution time of
the dtreeviz implementation and the visualization algorithm implementation increases by
about 85 and 0.9 seconds per million samples respectively given a maximal depth of 5 of
the decision tree.



Figure 7.8: Execution time [s] observed during the execution of the visualization algorithm
and it’s corresponding implementation of the dtreeviz library for test beds of Synthetic
Data B with a varied number of samples in the dataset (right figure) and trained decision
trees of a varied maximal depth (left figure). The vertical red line marks the default value
of the varied parameter as shown in table 7.1.

However, the visualization algorithm seems to scale slightly worse with a raising maximal
depth of the decision tree. Limiting the visualization to the leaves of the decision tree
reduces the execution time to the execution time needed to visualize an entire decision
tree, but only of approximately half the depth. This is the expected behavior as a decision
tree of height h has 2h − 1 split nodes and 2h leaf nodes.
Nevertheless, depending on the number of samples, the visualization algorithm starts with
a time advantage which can be partially derived from the improvement of the decision-
tree-nodes-to-samples mapping creation. To experimentally verify this theory, a final
experiment is conducted with the same setup as before, but now only measuring the
execution time needed by the visualization algorithm and by the dtreeviz implementation
for generating the decision-tree-node-to-samples mapping (Γnodes). Figure 7.5 presents
the results in terms of execution time.
Indeed, the experiment shows that the improved decision-tree-nodes-to-samples mapping
creation, which makes use of the vectorized code execution, is faster for the observed set-
tings. However, the conversion shown in Figure 5.6 seems to make the creation dependent
on the maximum depth of the decision tree (with the original version such a dependency
was not recognized). The improvement is exponential for a relatively small number of
samples but turns out to be linear for a larger number of samples. In the test beds using
a million samples (e.g., the ones on the left of Figure 7.8) approximately 70 seconds of the
initial time advantage are because of the worse decision-tree-nodes-to-samples mapping
creation implementation.
Therefore, the research question Q4 can now be answered: The visualization algorithm
scales considerably better w.r.t. the number of samples in the dataset. This gives the
visualization algorithm an initial time advantage when testing the scalability of the visu-
alization algorithm with respect to the maximum depth of the decision tree. However, the
visualization algorithm seems to scale slightly worse with a growing height of the decision



Figure 7.9: Execution time [s] of the generation of the decision-tree-node-to-samples map-
ping, observed during the execution of the visualization algorithm and its corresponding
implementation of the dtreeviz library for test beds of Synthetic Data B with a varied
number of samples in the dataset and trained decision trees of a varied maximal depth.

benchmark #samples #nodes
before prep. after prep. before prep. after prep.

LC-KG 2,102 428 1,083 295
FR-KG 2,212 1,988 2,212 1,988

Table 7.3: Number of samples and seed nodes of the extracted dataset for the non-
synthetic benchmarks before preparation through the InterpretME pipeline and after-
wards.

tree.

7.3 Summary: Real Data Application
This section is meant to summarize the previous results by applying them to the non-
synthetic benchmarks (The French Royalty KG (FR-KG) and The Lung Cancer KG (LC-
KG)). Furthermore, research question Q5 is answered based on these benchmarks. The
InterpretME pipeline from section 6 is applied to the benchmarks while measuring the
time spent on the different stages of the validation engine and the visualization algorithm
as in the previous sections. After InterpretME extracts the dataset from the endpoint, the
dataset is prepared for training of the model (e.g., removing duplicates, under-sampling,
encoding categorical features, and feature selection). Table 7.3 shows the number of sam-
ples and the number of unique seed nodes in the datasets before and after the preparation.
In each run of the benchmark the decision tree, trained with the prepared dataset, is vi-
sualized; annotated once for each constraint with the constraint validation results of the
constraint, and once annotated with all constraint validation results using the concept of
coverage (see section 4.4.3).



Figure 7.10: Execution time [s] observed during the execution of the validation engine on
performing different join strategies (at the bottom) and the SHACL validation using the
different heuristics (at the top) for the non-synthetic benchmarks (FR-KG on the right
and LC-KG on the left).

The Validation Engine needs to be executed once for each benchmark. Figure 7.10
presents the execution times for the different heuristics and strategies evaluated in section
7.1 for the two non-synthetic benchmarks. The execution time spent on executing the join
is lower when joining T at the end. This is the expected outcome since the strategy has
already shown to excel in cases the distribution of entities to classes is chosen in a way that
encourages the production of constantly growing intermediate results or the number of
samples is relatively low (the answer to Q1; see section 7.1.2). The latter criterion applies
to both benchmarks (see Figure 7.3) and in the case of The French Royalty KG all target
shapes of the constraints are targeting partially overlapping subsets of entities of the class
dbo:Person. Optimizing the order of the join operations does not impact positively but
only adds a marginal overhead.
The heuristics to reduce the number of shapes can be applied to the SHACL shape schemas
of the constraints in The Lung Cancer KG. Each shape schema contains three shapes of
which only two are required and indeed the execution time decreases when applying the
heuristic. However, the other available heuristics cannot impact positively: In both cases,
the target definitions of the target shapes of the constraints are already subsets of the
set of seed nodes and simultaneous constraint validation is not applicable as none of the
constraints share the SHACL shape schema. Instead, it can be seen that generating the
seed query from the dataset generating query, as shown in section 4.3.1, adds an overhead
to the SHACL validation. This is due to the execution of expensive queries generated by
the SHACL engine while performing the SHACL validation. Specifying the seed query
manually (e.g., using the Qs from section 4.2.1) leads to the results matching the answer
to the research question Q2.
Finally, the non-synthetic benchmarks show that optimizing the SHACL constraint vali-
dation impacts more than optimizing the join strategy. Further, it should be emphasized
that the positive impact of the heuristic depends strongly on the shape schema and the
KG (the answer to Q2; see section 7.1.1).

The Visualization Algorithm is applied multiple times during the execution of the
InterpretME pipeline. Figure 7.11 shows the fractions of the execution time of the visual-
ization algorithm spent for the two non-synthetic benchmarks. These portions are nearly
independent of the size of the decision tree which is why the figure does not differentiate
between the two benchmarks. However, the number of constraints that are visualized



Figure 7.11: Average portion of the execution time spent on different stages of the visu-
alization algorithm observed for The Lung Cancer KG and The French Royalty KG

impacts the time needed to summarize the constraint validation results (cf. Figure 7.7);
which can also be observed in Figure 7.11. Visualizing the decision tree with a single
constraint took 3.62 seconds on average for The Lung Cancer KG and 2.51 seconds on
average for The French Royalty KG (with standard deviations of under 0.05 seconds).
This is as fast as the dtreeviz implementation or slightly faster and matches the answer to
the research question Q4 from section 7.2: The visualization algorithm excels at a larger
number of samples, but scales slightly worse than dtreeviz with the size of the decision
tree. When the decision tree should be annotated with the constraint validation results of
multiple constraints using the coverage concept, it took 4.45 seconds on average for The
Lung Cancer KG and 3.80 seconds on average for The French Royalty KG (with standard
deviations of under 0.16 seconds). Again, it becomes obvious that the time needed to
annotate the decision tree with the constraint validation results of multiple constraints
grows slower than linearly with the number of constraints.
Generating the decision tree node plot visualizations in parallel raises the execution time
of the visualization algorithm when annotating the decision tree with the constraint val-
idation results of a single constraint to 4.75 seconds on average for The Lung Cancer KG
and 4.15 seconds on average for The French Royalty KG (with standard deviations of
about 0.5 seconds). The decision tree has to be of a specific size, which grows linear with
the number of samples in the dataset, to benefit from the multiprocessing implemented
(the answer to Q3; see section 7.2).

Summary. Finally, research question Q5 asking about the overall overhead added by
the validation engine and the visualization algorithm compared to the normal model
training and other kinds of interpretability methods (e.g., dtreeviz and LIME) can be an-
swered. As a reference, measurements of the execution times of the InterpretME pipeline
are used; they are listed in table 7.4. Here the overall execution time of the approach
is made up of the dataset extraction, the model training, the constraint evaluation per
sample in the dataset, and the visualization of the annotated decision tree. It is assumed
that all constraints are used to annotate a single decision tree using the coverage concept.
In the average worst-case scenario, the approach took up to 73.33 seconds (using the gen-
erated seed query; only applying the target reduction; joining T at the beginning) in the
case of The Lung Cancer KG and up to 6.65 seconds in the case of The French Royalty
KG (with standard deviations of 10.86 and 1.76 seconds resp.). However, in the average
best-case scenario, the approach took 30.39 and 5.8 seconds resp. (using the manually
specified seed query; only pruning the shape network; joining T at the end; with standard
deviations of 1.18 and 0.28 seconds resp.). Regarding Q5 that makes the execution time



benchmark dataset extraction model training dtreeviz LIME
avg. std. avg. std. avg. std. avg. std.

LC-KG 0.77 0.45 1.68 0.07 4.05 0.70 1894.67 19.14
FR-KG 0.20 0.06 1.19 0.04 2.51 0.09 424.12 3.02

Table 7.4: Reference execution times [s] measured for The French Royalty KG (FR-
KG) and The Lung Cancer KG (LC-KG). dataset extraction – time spent executing
the dataset generating query; model training – time spent on finding an appropriate
model for the predictive task of the benchmark (includes preprocessing, sampling, feature
selection, hyper parameter grid search and decision tree training); dtreeviz – time spent
to visualize the trained decision tree with dtreeviz; LIME – time spent on calculating
LIME interpretability results for a quarter of the samples in the dataset

of using the approach up to 44 times resp. 6 times slower with respect to the model train-
ing but still up to 62 resp. 73 times faster than using LIME. Due to the large differences
in execution time depending on the benchmark, no clear answer can be given. However,
due to the complexity of the approach (see section 4.2.4) expensive scenarios will lead to
a large overhead of the approach.



Chapter 8

Conclusions and Future Work

8.1 Lessons Learned
This work makes use of semantic constraint validation to support explainable AI. Semantic
constraint validation excels in checking structured data against constraints. Machine
learning models in the context of explainable AI are often model-inherent explainable.
Nevertheless, their predictions lack rationality for human constraints or scientific facts.
Combining explainable AI with semantic constraint validation allows for interpretability
and explainability combing with more trust in predictions.
Technically, the concepts were combined by aligning the entities in the knowledge graph
(i.e., the set of seed nodes) with the samples in the dataset by the sample-to-node mapping.
Two types of constraints are proposed: Prediction constraints can be used to explain and
check the model’s predictions based on a correct data basis. The semantic context of the
problem instance (represented through an entity in the knowledge graph) is used to grade
the prediction to be correct or incorrect. If the prediction is correct, an explanation is
found for the prediction. On the contrary, the constraints’ statement reasons why the
prediction is wrong and may be used to improve the model. Data constraints measure the
trustworthiness of the samples in the dataset. They are able to do so since they measure
the integrity of the semantic context of the entities to be valid or invalid1.
The first problem formulated is the efficient validation of the constraints over the machine
learning model given the semantic context of the entities in the dataset. It is tackled by a
validation engine integrating the dataset extraction, the model training, the SHACL val-
idation, and the constraint validation. Heuristics are proposed to speed up the execution
of the engine, exploiting the actual need for SHACL validation results, the join strategy,
caching of intermediate results, and vectorization techniques. A Python implementation
for the engine is provided. As well as the approach, the implemented engine is agnostic to
the machine learning model and the SHACL engine. Based on the implementation, the
approach is evaluated with respect to the engine’s performance. The evaluation is con-
ducted using two synthetic and two non-synthetic benchmarks. Minimizing the number
of SHACL validation results by generating only the required SHACL validation results for
each constraint at a time and avoiding re-evaluation of shapes, the execution time of the
SHACL validation could be reduced to 6% of a naive approach not using the heuristics.
Choosing a good join strategy does impact, but the total time savings are less than the
total time savings from optimizing the SHACL validation, as joining is a less complex
operation.

1or even not applicable in the case of the 3-valued logic

118



The second problem formulated is the summarization of the knowledge gained through
validating the constraints to make the behavior of the machine learning model clearer to
the user. Frequency distribution tables are consulted for the summarization of a single
constraint. A concept, referred to by coverage, allowed to reduce the constraint validation
results of multiple constraints by prioritizing. Based on that, model-coherent summaries
are created for decision trees in the form of annotated decision trees. The visualiza-
tions created this way are based on the dtreeviz library, but implemented to support the
parallel node plot generation and the annotation with the validation results of multiple
constraints. The experimental evaluation has shown that the parallelization approach is
not yet mature, but the coverage allows visualizing multiple constraints with a less than
linear increasing execution time. A comparison of the visualization algorithms’ execution
time with the execution time of the dtreeviz library showed that it scales considerably
better w.r.t. the number of samples in the dataset, but slightly worse w.r.t. the depth of
the decision tree visualized.
The overall approach is integrated into the InterpretME pipeline, and an evaluation of
the pipeline has shown that the methods in this work can provide improved interpretabil-
ity. Visualization-specific interpretations w.r.t. over- and underfitting are given as a
suggestion for further constraint-depending interpretations.

8.2 Limitations
The approach proposed in this work comes with some limitations. First, it is assumed
that the dataset is extractable from a knowledge graph. Although the semantic web con-
tinuously grows, most of the time, the data will not be instantly available as a knowledge
graph. In that case, the available (un)structured data needs to be transformed into RDF
knowledge graphs (e.g., using mapping rules [34]). However, the transformation alone
will most likely not be enough when the entities in the data do not come with a sufficient
semantic context, which goes beyond the features to be extracted for each entity. This
implies that the knowledge graph may have to be extended or connected with further
data. As turned out in section 7.3, the heuristics require a simple seed query to be used
efficiently. Therefore the set of seed nodes may need to be marked with a class. So in
this case it is also necessary to have the SPARQL endpoint either locally available or the
permissions for modifications.
Next, extracting the dataset has to be possible in an efficient way (i.e., such that the time
to execute the SPARQL query is reasonable), this may require further modifications to
the knowledge graph. As the constraints are defined based on SHACL, the constraints
can only be as expressive as the SHACL specification allows, given the knowledge graph.
Specific constraints involving negations in recursive dependencies may not be evaluated
in polynomial time by a SHACL engine (see section 4.2.4).
Further, as usual for approaches making use of rule-based explanations, domain knowledge
is needed to define the constraints as well as to interpret the results. Most likely the
constraints need to be user-specified to be well understood. User-defined constraints
also come with the short-coming of only detecting patterns in the data, which are also
suspected (e.g., one can only detect persons with an invalid birth date, if one creates a
constraint that checks for it).
Finally, Data Constraints can be used to check for the integrity (i.e., trustworthiness)
of the data. This is even necessary as explanations are only available for Prediction
Constraints, which do require a valid data basis to be applicable. Moreover, to check a
model indirectly against facts encoded as constraints, the data basis has to be large and



Figure 8.1: Draft for the visualization showing the representative leaves in a random
forest corresponding to a specific prediction given a problem instance. The bootstrapping
process is tracked, to identify the samples on which the prediction is based for each decision
tree. Similar constraint validation result distributions are clustered using KMeans and
only a representative per cluster is shown. The orange border indicates that the majority
of decision trees in the cluster voted for the prediction. The Lung Cancer KG provides
the data on which the random forest is trained.

diverse enough. This is especially an obstacle if a small subset of the available data should
be used for validation (see section 2.3.2), which will not contain a problem instance for
every harmful case one might want to detect. The latter is usually referred to by the
curse of dimensionality [8].

8.3 Future Work
In future work, the visualization approach may be extended to further machine learning
models (i.e., based on decision trees: Random Forests, AdaBoost Gradient Boosting).
Figure 8.1 shows a draft for the visualization of the prediction a random forest makes based
on a problem instance. The dtreeviz library is continuously extended, e.g., by adding a
visualization of the classification boundaries or the feature-target space. Both kinds of
visualizations could be used to further show the constraint validation results in different
contexts. Section 4.3.3 presented the theory of performing SHACL constraint validation
during the SPARQL query execution and promises further execution time improvements,
when applied in a way that avoids the duplicate validation of shapes.
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