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Abstract. Clinopyroxene-only thermobarometry is one of the most practical tools to reconstruct crystallization
pressures and temperatures of clinopyroxenes. Because it does not require any information of coexisting silicate
melt or other co-crystallized mineral phases, it has been widely used to elucidate the physiochemical conditions
of crystallizing magmas. However, previously calibrated clinopyroxene-only thermobarometers display low ac-
curacy when being applied to mafic and intermediate magmatic systems. Hence, in this study, we present new
empirical nonlinear barometric and thermometric models, which were formulated to improve the performance
of clinopyroxene-only thermobarometry. Particularly, a total of 559 experimental runs conducted in the pressure
range of 1bar to 12 kbar have been used for calibration and validation of the new barometric and thermomet-
ric formulation. The superiority of our new models with respect to previous ones was confirmed by comparing
their performance on 100 replications of calibration and validation, and the standard error of estimate (SEE)
of the new barometer and thermometer are 1.66 kbar and 36.6 °C, respectively. Although our new barometer
and thermometer fail to reproduce the entire test dataset, which has not been used for calibration and valida-
tion, they still perform well on clinopyroxenes crystallized from subalkaline basic to intermediate magmas (i.e.,
basaltic, basalt-andesitic, dacitic magma systems). Thus, their applicability should be limited to basaltic, basalt-
andesitic and dacitic magma systems. In a last step, we applied our new thermobarometer to several tholeiitic
Icelandic eruptions and established magma storage conditions exhibiting a general consistency with phase equi-
libria experiments. Therefore, we propose that our new thermobarometer represents a powerful tool to reveal the
crystallization conditions of clinopyroxene in mafic to intermediate magmas.

1 Introduction

The reconstruction of pre-eruptive magmatic temperatures
(T) and pressures (P) (e.g., Putirka, 2008, 2018) is a fun-
damental topic in igneous petrology, volcanology, and geo-
chemistry as (i) temperature and pressure strongly control
the stabilities of solid phases and complementary liquid
lines of descent in the course of magma differentiation and
solidification (e.g., Thompson, 1974; Villiger et al., 2007,
Botcharnikov et al., 2008a) and (ii) accurate estimation of
both temperature and pressure provide a critical perspective
for elucidating the storage of magma as well as its thermal

state at depth (e.g., Ruprecht et al., 2012; Cadoux et al.,
2014; Geiger et al., 2018; Eskandari et al., 2018). However,
although several rigorous geothermobarometers have been
calibrated based on thermodynamics and experimental data
during the past decades, predicted P and T are not always
satisfying, as reflected by large differences between calcu-
lated and experimental values (Fig. 1).

Clinopyroxene (Cpx) is commonly present in igneous
rocks and exhibits large compositional variations, espe-
cially in intermediate to basic and ultrabasic systems. Vari-
ous clinopyroxene-based thermobarometers have been estab-
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Figure 1. Comparison between experimental pressures and temperatures (data obtained at 6.8 and 7 kbar from the following studies: Husen
et al., 2016; Médard et al., 2004; Villiger et al., 2007; Whitaker et al., 2007) and corresponding calculated conditions obtained using various
geothermobarometric equations (Putirka, 2008). Note the relatively good agreement for temperatures but the incapability of the equations
at predicting accurate pressures. The thermobarometers involved here are Eqs. (24a), (25a), (28a), (29a), (31), (33), (38), (32a), and (324d),
respectively, from Putirka (2008). Calculations are performed by imposed experimental T or P if the model is 7-dependent or P-dependent,

respectively.

lished due to its compositional sensitivity to changes in mag-
matic temperature and pressure (e.g., Nimis, 1995; Putirka et
al., 1996). Among them, the two-pyroxene, i.e., clinopyrox-
ene and orthopyroxene (Opx), and the clinopyroxene-liquid
thermobarometers are the most frequently used ones, and
many recalibrations have been conducted to improve their
precisions (e.g., Lindsley and Andersen, 1983; Mercier et
al., 1984; Brey and Kohler, 1990; Anderson et al., 1993;
Sack and Ghiorso, 1994; Putirka, 2008; Liang et al., 2013).
However, due to additional magmatic processes such as
magma mixing or mingling, the coexistence of two pyrox-
enes in natural rocks does not necessarily imply that they co-
crystallized from the same magma even if Fe-Mg distribu-
tion indicates chemical equilibrium, limiting the applicability
of the two-pyroxene geothermobarometer to natural rocks.
Moreover, compositional zonation of pyroxene crystals com-
monly observed in magmatic rocks further complicates the
application of pyroxene geothermobarometry to natural sam-
ples.

Since clinopyroxene is distinctively more common
in igneous rocks compared to the coexistence of two
pyroxenes, clinopyroxene-liquid thermobarometers have
been more widely used. During the past decades, the
clinopyroxene-liquid thermobarometer has been calibrated
by several authors. Generally, these calibrations are pre-
dominantly based on site occupancy data, including Jd
(NaAlSi;Og; jadeite)-liquid equilibria for barometery and
Jd-DiHd (Ca(Mg, Fe)Si;Og; diopside-hedenbergite), CaTs
(CaAlAlSiOg; calcium-Tschermak)-DiHd exchange equilib-
ria for thermometry (e.g., Putirka et al., 1996, 2003; Putirka,
2008; Neave and Putirka, 2017), and thermodynamical or
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empirical models (e.g., Massota et al., 2013; Liang et al.,
2013; Brugman and Till, 2019). Nevertheless, it is quite dif-
ficult or even impossible to obtain the composition of the
melt the clinopyroxene crystallized from in natural sam-
ples, and the sole application of Fe-Mg exchange as an in-
dication of equilibrium could be problematic (Zellmer et
al., 2014). Moreover, if magma mixing and mingling or
fractional crystallization were involved in the corresponding
samples (Putirka, 2008), the melt composition in equilibrium
with the target clinopyroxene is almost impossible to con-
strain.

Accordingly, to better constrain P and 7 conditions of
magma storage, empirical Cpx-only thermobarometers have
been developed and calibrated on experimental data during
the last decades (e.g., Nimis, 1995; Nimis and Ulmer, 1998;
Nimis, 1999; Nimis and Taylor, 2000; Putirka, 2008). How-
ever, these Cpx-only barometers (e.g., Nimis, 1995; Putirka,
2008) exhibit strong systematic errors possibly due to the
paucity of experimental data at relevant crustal pressures
(< 12 kbar) and the thermodynamic complexity of clinopy-
roxene stability. For instance, the model of Nimis (1995) sys-
tematically underestimates pressures for high-pressure ex-
periments (Putirka, 2008), while Eq. (32a) of Putirka (2008)
systematically overestimates pressure for experiments run
at crustal pressure conditions (Fig. 2). Fortunately, exten-
sive experimental work was conducted at crustal pressures
on magmatic systems after 2008 (e.g., Botcharnikov et al.,
2008b, 2015; Almeev et al., 2012, 2013a, b; Vetere et al.,
2015; Webster et al., 2015; Husen et al., 2016; Erdmann and
Koepke, 2016; Stechern et al., 2017; Koepke et al., 2018),
providing the ideal basis and opportunity to improve and
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Figure 2. Test performed on published clinopyroxene-only barometers and thermometers with data from experiments carried out on basalts
(Baker and Eggler, 1987; Tormey et al., 1987; Grove et al., 1992; Toplis and Carroll, 1995; Yang et al., 1996; Villiger et al., 2004, 2007;
Berndt et al., 2005; Whitaker et al., 2007, 2008; Husen et al., 2016); 1:1 lines are shown in pale gray. Regression lines through the test
dataset are shown in black. Experimental data of HK19.1 SV27, HK19.1 SV28, HK19.1 SV24, and HK19.1 SV25 from Villiger et al. (2007)
were excluded from the regressions and are shown in pale gray. (a) Eq. (32a) from Putirka (2008), (b) Eq. (32d) from Putirka (2008). For
both models, calculations were performed iteratively. (¢) Cpx-only barometer of Nimis (1995) and (d) Cpx-only barometer of Nimis and

Ulmer (1998).

recalibrate existing clinopyroxene-based geothermobarome-
ters.

In this study, we propose new Cpx-only thermometric and
barometric models calibrated for basic to intermediate mag-
matic systems. A total of 559 experiments compiled from
the literature were used for calibration and validation. In ad-
dition, we recalibrated and verified the previous Cpx-only
barometric and thermometric models using the identical ex-
perimental dataset. Results from the validation process indi-
cated that our new models perform better than the previous
models. In a second step, 508 experiments from the litera-
ture that do not overlap with the calibration and validation
dataset were selected to confirm the generalization ability of
our models. Finally, we provide an immediate application of
our new algorithms to natural clinopyroxenes from Iceland.
The new thermometer and barometer result in magma storage
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temperature and pressure estimates comparable to the results
of Neave and Putirka (2017).

2 Method
2.1 Experimental data

The data used for calibration and validation are from the
following literature: Baker and Eggler (1987), Bartels et
al. (1991), Berndt et al. (2005), Botcharnikov et al. (2008a),
Bulatov et al. (2002), Di Carlo et al. (2006), Draper and John-
ston (1992), Falloon et al. (2001), Feig et al. (2006), Gae-
tani and Grove (1998), Grove et al. (2003, 1992), Husen et
al. (2016), Kelemen et al. (1990), Kinzler and Grove (1992),
Kogiso and Hirschmann (2001), Laporte et al. (2004), Ma-
hood and Baker (1986), Médard et al. (2004), Miintener
et al. (2001), Pichavant et al. (2002), Pickering-Witter and
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Figure 3. Total alkali versus silica diagram of melt compositions in

equilibrium with clinopyroxenes utilized for calibration, validation,

and testing. Blue circles refer to experimental data employed for
calibration and validation; unfilled circles represent test data.

Johnston (2000), Putirka et al. (1996), Schwab and John-
ston (2001), Scoates et al. (2006), Sisson and Grove (1993),
Thy et al. (2006, 1998), Toplis and Carroll (1995), Tormey
et al. (1987), Villiger et al. (2007, 2004), Wasylenki et
al. (2003), Whitaker et al. (2007, 2008), and Yang et
al. (1996). These experimental data were subsequently fil-
tered applying the following criteria: (1) the chemical com-
position of the coexisting melt has to be reported, and the
SiO; content of the melt must be below 60 wt %; (2) experi-
mental pressures are in the range of 1 bar to 12 kbar; (3) the
AIVT and Jd content of clinopyroxenes is higher than 0. The
selected data cover a wide range of melt compositions, with
most of them falling within the compositional fields of basalt
and basaltic andesite according to the TAS (total alkalis ver-
sus silica) diagram (Fig. 3; N =559).

The dataset employed for testing our models for their gen-
eralization ability represents a subset of the global clinopy-
roxene dataset used in Neave and Putirka (2017). However,
the experimental data that had previously been used for cal-
ibration and validation data were excluded. Experiments at
pressures higher than 20 kbar and temperatures lower than
800 °C were also removed. There was no further limitation
for both melt and clinopyroxene compositions for the pur-
pose of verifying the applicability of our new models to a
wide range of pressures, temperatures, and melt composi-
tions. Following the abovementioned criteria, 508 experi-
mental runs were selected as test data. Further details con-
cerning the calibration, validation, and test datasets are pro-
vided in Table S1 in the Supplement.
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2.2 Models and regression strategy

The new nonlinear barometric model is described as follows:

P (kbar) = a - NLT - InA1V! 4 bSi 4 cFe'® + dMg
+eCa+ fNa+g, (D
where NLT is a nonlinear term that is only clinopyroxene-
composition-dependent,
a)oAlVI
woAIVT + 0 Ti + @, Cr + w3Fe™ 4+ wsMn + wsMg’

NLT =

and a—g as well as w; represent parameters to be calibrated.
Given that the activity of the Jd component (NaA1Y!Si, Og)
in clinopyroxene is strongly pressure sensitive (Putirka et al.,
1996), the NLT, which is closely correlated with octahedral
alumina contents (A1VY), could also be pressure-dependent.

Since this function is differentiable with respect to its
parameters, gradient descent is an efficient optimization
method. Gradient descent represents an algorithmic tool to
minimize an objective function (in this paper, the loss func-
tion) parameterized by the model’s parameters by updating
the parameters in the opposite direction of the gradient of the
objective function with respect to the parameters. The learn-
ing rate determines the size of the steps undertaken to reach a
minimum (Ruder, 2017). Thus, model parameters of Eq. (1)
as well as NLT were determined by the gradient descent algo-
rithm. We used the Adam algorithm (Kingma and Ba, 2017)
of the PyTorch library to implement gradient descent (Paszke
et al., 2019). The learning rate was set to 0.01, and the em-
ployed loss function was MSE (mean square error):

loss = % . Z:/:l(y" — f)n)z
The new thermometric model is described as follows:
T(°C) =100[a - NLT + bTi + cAl + dMn + eMg
+fCa+ gFe?t + hH,O(wt %) + i] , )

where a—j are parameters to be calibrated by least square
method, while the parameters of NLT have already been de-
termined above in the barometric model. For comparison, we
additionally recalibrated previously established barometric
models (Nimis, 1995; Egs. 32a and 32b in Putirka, 2008) ap-
plying the same dataset. The Cpx-only thermometric model
of Putirka (2008) was adapted by adding a H,O term and is
referred to as Eq. (32dH) for the remainder of this contribu-
tion:

93100 + 544 P (kbar)
a + bTi+ cFe® + d (Al + Cr—Na—K)’
el + 120

T(°C) =

(32dH)

where the term aglx was taken from Nimis and Taylor (2000):

ag’ = (1 —Ca—Na—K)(1 — 0.5(Al + Cr + Na+K)).

https://doi.org/10.5194/ejm-33-621-2021
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For the above-introduced models, clinopyroxene compo-
nents were determined using the procedures reported in
Putirka (2008), assuming six oxygen anions per formula unit.
The new models we present herein are empirical, and intro-
duced parameters have no thermodynamic significance.

2.3 Division of calibration and validation data

For the purpose of equally splitting the data, the 559 exper-
iments were firstly divided into 7 groups of 2 kbar intervals,
where 1 bar experiments were assigned to a separate group.
Then, for each group, one subset of the data (80 %) was used
for calibration and the second one (20 %) for validation of
predicted pressure and temperature conditions. The calibra-
tion and validation datasets were randomly assigned. After
random segmentation of the entire dataset, the calibration
data consisted of 444 experiments, and the validation dataset
contained 115 experiments. To provide a robust performance
estimation for each model, we performed n =100 replica-
tions of the random splitting, calibration, and validation pro-
cedures and analyzed the general distribution of loss values.
The goodness of the established models was evaluated with
the loss value, which is related to the standard error of esti-
mate (SEE) as follows:

SEE= |— .1
= - 10SS.
n—2

Consequently, we infer that the model with the lowest loss
value represents the most suitable one. The codes used in this
paper are available in the Supplement (Codes S1 and S2).

3 Results
3.1 Evaluation of different models

Figure 4a and b represent loss value frequency histograms for
pressure estimations employing different models on the cali-
bration and validation data. P32b (Eq. 32b in Putirka, 2008)
exhibits the best performance for both calibration and vali-
dation data, with average loss values of 2.12 and 2.29, re-
spectively. We herein used the average rather than the value
of the highest frequency to illustrate the performance of the
different models. We infer that the average is more repre-
sentative, although in most cases the difference between the
two is negligible. Equation (1) performs slightly worse, with
loss values of 2.49 (calibration dataset) and 2.67 (validation
dataset). Average loss values of the models P32a (Eq. 32a
in Putirka, 2008) and Nimis (1995) range between 2.99 and
3.55. As a consequence, P32b is the best-performing baro-
metric model investigated herein. However, the P32b and
P32a models are T-dependent, and, in practice, it is almost
impossible to obtain accurate temperature information from
natural clinopyroxenes. Therefore, in most cases, calcula-
tions with both barometers should be performed iteratively.

https://doi.org/10.5194/ejm-33-621-2021

Table 1. Parameters of NLT determined by descent algorithm.

wo w1 ) w3 w4 ws

1.48 7774 1.17 1.06 0.04 —0.06

We performed calculations of P32b and P32a iteratively with
equation P32dH used to constrain temperature for each rep-
etition step, and results are also shown in Fig. 4b. Follow-
ing this iterative procedure, the performance of both models
drops significantly, with average loss values of 3.36 and 3.42
for calibration and validation data for P32b and even worse
values for P32a (4.06 and 4.11). We assume that the intrin-
sic error in the P32dH algorithm was transferred to baromet-
ric calculations during the iterative process. In addition, the
H>O content of the coexisting melt, which is also difficult
to constrain accurately, is implemented in P32b, introducing
an additional error source. Consequently, we conclude that
our newly calibrated barometer (Eq. 1) represents the best-
performing algorithm of the ones investigated in this study.

Equation (2) performs best for both calibration and vali-
dation data, with loss values of 1256 and 1291, respectively
(Fig. 4c). In contrast, P32dH performs slightly worse, with
loss values of 1298 and 1306, even though calculations were
conducted imposing experimental pressure. In detail, the per-
formance of P32dH drops significantly when combined with
iterative calculations employing P32b, which is the most pre-
cise Cpx-only T -dependent barometric model, with loss val-
ues of 1752 and 1735. In summary, compared with previ-
ous Cpx-only thermobarometric models, our new algorithms
(Egs. 1 and 2) are the most precise and practical ones. How-
ever, it has to be pointed out that Eq. (2) contains a melt
H,O term, and caution should be taken upon its usage if the
H>O content of the coexisting residual melt has not been con-
strained reliably.

3.2 Calibration of the thermometric and barometric
models

We selected one of the 100 replications’ results as the new
barometer and thermometer. The corresponding loss values
of Eq. (1) are 2.49 (calibration data) and 2.65 (validation
data) and thus comparable to the mean values of all replica-
tions (2.49 and 2.67; see Fig. 4). Calibration and validation
results of the algorithms P32b and P32dH for the identical
calibration and validation dataset are also reported (see be-
low) to allow better comparison between the different mod-
els. Established parameters of the new models are reported
in Tables 1 and 2. A spreadsheet for calculating temperatures
and pressures is provided in Table S2.

Although the parameters of NLT were determined by re-
gression of Eq. (1), their values show strong correlation both
with pressure and with temperature over the entire range of
the calibration and validation data (Fig. 5). The R? score of
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Table 2. Parameters for thermometric and barometric models.
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T vs. NLT in anhydrous systems (0.68; only anhydrous ex-
periments were considered) is even higher compared to the
correlations between T and other compositional components
of clinopyroxene (e.g., Mg and EnFs), thereby indicating that
the temperature information is mainly stored in the NLT term
of clinopyroxenes. This explains the good performance of
Eq. (2) in reproducing experimental 7 .

Figure 6 illustrates the reproducibility of Eq. (1) and al-
gorithm P32b with the calibration and validation data. P32b
represents the best-performing model, with an R? score of
0.88 for both calibration and validation data, when exper-
imental temperature is imposed during calculation. Equa-
tion (1) is slightly worse, with R? scores of 0.86. The inter-
cepts of both barometers are distinctively smaller than their
SEE, and established regression lines almost coincide with
the 1:1 line, indicating that the two barometers do not have
a systematic error over the entire pressure range investigated
(1 bar—12 kbar). In addition, we tested the influence of melt
H,0O contents on Eq. (1) by removing the hydrous experi-
ments from the calibration and validation data. As a con-
sequence, the R? score slightly improved to 0.90 for both
datasets. Although the model itself does not contain a HyO
term, this influence of water contents in melt could be ex-
plained with the effect of water on the cell volume of clinopy-
roxene (Nimis and Ulmer, 1998). Nonetheless, we decided to
remove the H>O term in the final model as in most cases the
improvement of the model via the addition of a H,O term
could not remedy the errors caused by imprecise estimations

https://doi.org/10.5194/ejm-33-621-2021

of melt H,O contents. In addition, H,O-free barometers are
significantly more convenient to use in practice.

Furthermore, the mean standard error of estimate (SEE)
between predicted and experimental conditions represents
an even more solid indicator of the models’ precision. The
SEEs of Eq. (1) and P32b are 1.66 and 1.54 kbar, respec-
tively. However, the performance of P32b drops significantly
when pressure is iteratively calculated with P32dH, the P-
dependent Cpx-only thermometer, with R? scores of 0.81
and 0.87 and a SEE of 1.87 and 1.88 kbar for calibration and
validation data. In practice, given that equations P32b and
P32dH are both H>,O-dependent, additional errors and uncer-
tainties are introduced by imprecise estimations of melt HoO
contents. Consequently, we conclude that our new barometer
(Eq. 1) represents the most practical and precise one among
the Cpx-only barometers investigated herein when applied to
natural samples.

Figure 7 reports the reproducibility of Eq. (2) and P32dH
for the calibration and validation data. The new model (Eq. 2)
shows the best reproducibility for both the calibration and
validation dataset, with RZ of 0.86 and 0.84, respectively, and
a SEE of 36.6°C. P32dH performs slightly worse, with R?
of 0.86 and 0.84, respectively, and a SEE of 36.8 °C. Per-
forming iterative calculation with P32b instead of imposing
P also significantly diminishes the performance of P32dH,
with R? of 0.81 for both datasets and a SEE of 42.4 °C. How-
ever, it has to be noted that both thermometric models are
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H>O-dependent, and thus caution must be taken when H,O
content of equilibrium melt cannot be constrained precisely.

Eur. J. Mineral., 33, 621-637, 2021

3.3 Assessment of the effect of HO and fO;

The effects of melt H,O content and fO; on the performance
of our new models are investigated by comparing the differ-
ence in the residuals (Pexp—Pealc, Texp—Tcalc) With melt HoO
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content and fO>. As shown in Fig. 8a and b, there are no
obvious correlations between Oy and Pexp—FPealc as well
as Texp—Tecale (R2 =0.030 and 0.004, respectively). In prin-
ciple, an enhanced incorporation of the aegirine component
(Aeg; NaFe3tSi,0¢) in clinopyroxene under oxidizing con-
ditions could contribute to an overestimation of the jadeite
(NaAlSi;Og; Jd) component (Blundy et al., 1995), result-
ing in specious estimation results for the Jd-in clinopyroxene

https://doi.org/10.5194/ejm-33-621-2021

barometer (Neave and Putirka, 2017). However, this does not
impact our barometric and thermometric models as we made
no assumptions concerning the Jd content in clinopyroxene
proactively in our models.

Pexp—Pealc and Texp—Tcalc are both weakly related to melt-
water content for HoO contents higher than 1 wt %, with RZ
of 0.29 and 0.21, respectively (Fig. 8c, d). As discussed ear-
lier, it is unsurprising that residual P relates to melt H,O con-
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Figure 8. Comparison between Pexp—Pcalc and Texp—Tcalc With melt H>O content (wt %) oxygen fugacity (fO;). For panels (a) and (b),
only experimental data quantitatively reporting the oxygen fugacity conditions were used.

tents since Eq. (1) does not contain a H,O term. The effect
of H>O on the cell volume of clinopyroxene could slightly
affect the pressure estimates. However, there is no obvious
H,O effect that significantly impacts the reproducibility of
our new barometer for the calibration, validation, and test
datasets (see below). Thus, we infer that the presence of wa-
ter in the coexisting melt does not affect our new barome-
ter’s precision in practical application. Additionally, the poor
correlation between Texp—Tcalc and H2O has no significance
because Eq. (2) contains a H,O term, and the maximum T
residual was not obtained from the melt with the highest H,O
content.

4 Discussion

4.1 Evaluating the new clinopyroxene-only
thermobarometer

Although regression statistics provide important information
concerning the performance of our new models, it is impor-
tant to verify their reliability with an independent test dataset
that has not been used before for calibration and validation.
The generalization ability of these thermobarometric mod-
els was verified by testing them on the global test dataset
that has not been used previously for calibration and vali-
dation. Equation (1) performs slightly worse on the global
dataset compared to the calibration and validation datasets
(Fig. 9a; R%2=0.73, SEE = 3.68 kbar, intercept = 1.96 kbar).
This mismatch cannot simply be attributed to the fact that
some experiments in the test dataset were performed on
magmas lying beyond the compositional range covered by
the calibration dataset since conditions of experiments with
dacitic and rhyolitic melt compositions (e.g., Martel et
al., 1999; Patifio Douce, 1995; Patiio Douce and Beard,
1995; Prouteau and Scaillet, 2003) were well reproduced by
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Eq. (1). In detail, pressures of 15 and 20 kbar experiments
are systematically underestimated, while pressures for the
1 atm data are systematically overestimated (Fig. 9a), and,
consequently, we infer that the diminished performance of
Eq. (1) for the test dataset mainly arises from calculations
for these experimental data. The failure of our new barom-
eter to satisfactorily reproduce high pressures could be due
to the lack of high-pressure experiments in the calibration
dataset. The overestimation of pressure for the 1 atm data,
however, is probably due to some Na loss experienced by
these experiments (Neave and Putirka, 2017). Additionally,
pressures of experiments that were performed on basaltic,
basaltic andesitic, and dacitic magma systems (e.g., Barclay
and Carmichael, 2004; Bender et al., 1978; Falloon et al.,
1999, 1997; Fram and Longhi, 1992; Grove et al., 1997,
Kennedy et al., 1990; Martel et al., 1999) were well repro-
duced by Eq. (1), while pressures of experiments on phono-
litic systems (Berndt et al., 2001) were systematically over-
estimated. Consequently, we propose that our new barometer
is particularly suitable for clinopyroxene crystallized from
subalkaline magmas. Likewise, model P32b exhibits a poor
generalization ability for the entire test dataset when per-
forming calculations with imposed experimental temperature
(Fig. 9b; R? =0.70, SEE = 3.89 kbar, intercept = 1.31 kbar).
However, the SEE even slightly increases upon iterative
calculations of P employing P32dH (Fig. 9¢; R%=0.68,
SEE =4.06 kbar, intercept =2.18 kbar). Similar to Eq. (1),
most of the errors arise from the experimental data at 1 atm as
well as above 12 kbar. Thus, we propose that the calibration
of a Cpx-only barometric model applicable to a wide pres-
sure range without reducing accuracy and precision is rather
unrealistic.

Similar to our barometer, also the new thermometer (Eq. 2)
struggles to reasonably reproduce the entire test dataset
(Fig. 9b; R?2=0.61, SEE=93°C, intercept =473 °C). Most
discrepancies can be attributed to the test data experiments
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with melt compositions out of the calibration range. For ex-
ample, for experiments conducted on intermediate acidic sys-
tems (e.g., Berndt et al., 2001; Draper and Green, 1999;
Patifio Douce, 1995; Patifio Douce and Beard, 1995; Springer
and Seck, 1997), experimental temperatures are highly over-
estimated by Eq. (2) (140 °C on average). However, the poor
applicability of Eq. (2) to the entire test dataset is unsurpris-
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ing given that temperature information is mainly stored in
residual melt compositions (Petrelli et al., 2020). Nonethe-
less, similar to Eq. (1), the new thermometer successfully re-
produces experimental temperatures of basaltic, basaltic an-
desitic, and dacitic systems (e.g., Barclay and Carmichael,
2004; Bender et al., 1978; Falloon et al., 1999, 1997; Fram
and Longhi, 1992; Grove et al., 1997; Kennedy et al., 1990;
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Martel et al., 1999). The P32dH model could also not sat-
isfactorily reproduce experimental temperatures of the en-
tire test dataset (Fig. 8d; R%?=0.57, SEE=91°C, inter-
cept=>517°C), and its performance becomes even worse if
calculations are performed iteratively in combination with
P32b (Fig. 8f; R% =0.54, SEE =94 °C, intercept =567 °C).

In summary, our new barometer (Eq. 1) and thermometer
(Eq. 2) are both specifically suitable for basic to intermediate
subalkaline magmatic systems. Although Eq. (1) has been
shown to work well for magma compositions outside of the
calibration and validation range (such as rhyolites), we still
recommend being cautious when applying it to magmas far
beyond basaltic, basaltic, andesitic, and dacitic compositions.

4.2 Application of the new models to Iceland volcanoes

The magmatic plumbing systems of tholeiitic eruptions
from Iceland’s rift zones have been broadly discussed in
the past (e.g., Maclennan et al., 2001; Neave et al., 2013,
2015). Recently, Neave and Putirka (2017) recalibrated a
new clinopyroxene-liquid barometer especially for tholeiitic
basalts that was subsequently applied to a variety of Icelandic
basalts to constrain their pre-eruptive magmatic storage con-
ditions. In detail, compositions of liquids in equilibrium with
measured clinopyroxenes were rigorously selected based on
multiple-component equilibria (e.g., Fe-Mg, Ti, CaTs com-
ponents).

To test the applicability of our new thermobaromet-
ric models to natural clinopyroxenes, we applied our new
barometer and thermometer to the same natural samples
used by Neave and Putirka (2017). Results of our calcu-
lations as well as Neave and Putirka (2017) are summa-
rized in Fig. 10 and Table 3. Although using an identical
dataset, our new barometer and thermometer both returned
systematically lower pressure and temperature estimates for
the more evolved volcanoes (0—4 kbar) compared to Neave
and Putirka (2017) (0-6 kbar). However, for the highly prim-
itive Borgarhraun basalts, our new models as well as Neave
and Putirka (2017) both resulted in higher pressure and tem-
perature estimates, with 6.0 &= 1.1 kbar, 1244 + 19 °C for the
former and 5.7 & 1.2 kbar, 1234 + 19 °C for the latter. Ac-
counting for the intrinsic errors in our new models (1.66 kbar
and 36.6°C) and the algorithms calibrated by Neave and
Putirka (2017) (1.4 kbar and 28.4 °C), we conclude that the
P-T estimates of both thermobarometers are actually cover-
ing identical ranges. Additionally, our barometer results for
the Holuhraun eruption (1.9 0.7 kbar) agree slightly bet-
ter with independent estimates using the OPAM (olivine—
plagioclase—augite—melt) barometer (2.1 £ 0.7 kbar; Hartley
et al., 2018).

To confirm the reliability of our new models’ results for
the Icelandic basalts, we further applied them to clinopyrox-
enes from experiments on the 2014-2015 Holuhraun lava by
Neave et al. (2019). Barometric and thermometric calcula-
tions were performed for all experimental clinopyroxene data
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Figure 10. Box plots of crystallization pressures and temperatures
calculated for the clinopyroxenes from Icelandic basalts. Blue boxes
refer to results calculated with our new models, while unfilled ones
were established with Neave and Putirka (2017). Horizontal lines
in each box represent median numbers, and crosses correspond to
averages.

Table 3. Comparison of barometric results between our new model
(Eq. 1) and Neave and Putirka (2017).

Eq. (1) Neave and
Putirka (2017)
Mean lo ‘ Mean lo
Holuhraunl&2 19 0.7 3.0 0.8
Laki,Mg#cpx > 80 1.0 0.3 3.5 0.4
Laki,Mg#cpx < 80 1.0 0.6 2.7 0.8

Saksunarvatn,Mg#cpx > 80 22 04 3.1 0.7
Saksunarvatn,Mg#cpx < 80 1.6 0.7 2.6 0.7

Skuggafjoll 1.7 0.7 3.6 0.9
Thjorsa,Mg#cpx > 80 23 05 3.6 0.6
Thjorsa,Mg#cpx < 80 14 09 2.8 L5
Borgarhraun 6.0 1.1 5.7 1.2

reported in Neave et al. (2019). For comparison, we addi-
tionally performed calculations for the same dataset by itera-
tively solving the barometer from Neave and Putirka (2017)
and Eq. (33) from Putirka et al. (2003), where disequi-
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librium clinopyroxene compositions were previously elimi-
nated based on multicomponent equilibrium analysis (DiHd,
EnFs, CaTs, Fe-Mg). Calculation results are listed in Ta-
ble S3 and summarized in Fig. 11. Although some disequilib-
rium clinopyroxene data were used for the calculations with
our new barometer and thermometer, experimental pressures
and temperatures were still well reproduced (e.g., those ex-
perimental pressures of 1 and 3 kbar, experimental temper-
ature of 1160°C). In addition, maximum observed devia-
tions between calculated and experimental P—T conditions
(e.g., at 6 kbar or 1200 °C) are still within 1 SEE of the new
thermobarometric models, underlining the reproducibility of
our new models. Moreover, the majority of established pres-
sure and temperature estimates agree well with the results of
the barometer from Neave and Putirka (2017) and Eq. (33)
from Putirka et al. (2003) (Fig. 11). Consequently, our new
thermobarometer resulted in robust and reliable P-T esti-
mates for natural clinopyroxenes from Icelandic basalts. Per-
formed calculations also confirm that our new models do not
require any prior filtering of clinopyroxene data for disequi-
librium. One possible reason for this feature is that clinopy-
roxenes approach chemical equilibrium from random direc-
tions, and averaging calculated pressures and temperatures
eliminates potential errors caused by disequilibrium (Putirka
et al., 2003; Putirka, 2008). Thus, we recommend averag-
ing calculation results when applying our new barometer
and thermometer to natural clinopyroxenes crystallized from
(supposedly) similar P—T conditions.

5 Conclusions

In this contribution, we calibrated new nonlinear Cpx-only
barometric and thermometric models that are suitable for ba-
sic to intermediate magmatic systems in the pressure range
of 1 bar to 12 kbar. Extensive comparisons between previous
Cpx-only thermobarometers and our new algorithms were
performed, confirming that our new models are the most
practical as well as most accurate and precise ones currently
available. However, our new thermobarometers revealed
some limitations in applicability to the entire experimen-
tal test dataset but performed reasonably well for basaltic,
basaltic andesitic, and dacitic systems. Consequently, we rec-
ommend to only apply our new barometric and thermomet-
ric formulations to basic to intermediate subalkaline magma
systems.

The applicability of our barometer and thermometer to nat-
ural clinopyroxenes was verified by recalculating crystalliza-
tion pressures and temperatures of Icelandic basalts. Calcu-
lated magma storage conditions employing our new models
agreed well with previous estimates and conclusions from
other studies. Moreover, our tests revealed that, in case cal-
culation results are averaged, no filtering of clinopyroxene
data for potential disequilibrium is required before applying
our new models. Consequently, the new Cpx-only thermo-
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Figure 11. Box plots of pressures and temperatures calculated for
the experimental clinopyroxenes from Neave et al. (2019). Blue
boxes and dots refer to results calculated with our new models,
and green ones correspond to values established by iterative cal-
culations with Eq. (1) from Neave and Putirka (2017) and Eq. (33)
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barometer presented herein can be confidently used to esti-
mate magmatic temperatures and pressures in basaltic and
basalt-andesitic magmatic systems.
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