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Abstract: Topology optimization techniques have been applied in integrated optics and nanopho-
tonics for the inverse design of devices with shapes that cannot be conceived by human intuition.
At optical frequencies, these techniques have only been utilized to optimize nondispersive materi-
als using frequency-domain methods. However, a time-domain formulation is more efficient to
optimize materials with dispersion. We introduce such a formulation for the Drude model, which
is widely used to simulate the dispersive properties of metals, conductive oxides, and conductive
polymers. Our topology optimization algorithm is based on the finite-difference time-domain
(FDTD) method, and we introduce a time-domain sensitivity analysis that enables the evaluation
of the gradient information by using one additional FDTD simulation. The existence of dielectric
and metallic structures in the design space produces plasmonic field enhancement that causes
convergence issues. We employ an artificial damping approach during the optimization iterations
that, by reducing the plasmonic effects, solves the convergence problem. We present several
design examples of 2D and 3D plasmonic nanoantennas with optimized field localization and
enhancement in frequency bands of choice. Our method has the potential to speed up the design of
wideband optical nanostructures made of dispersive materials for applications in nanoplasmonics,
integrated optics, ultrafast photonics, and nonlinear optics.
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1. Introduction

The last decade has witnessed an exponential increase of research in nanophotonics. Plasmonic
and dielectric nanostructured materials, such as metasurfaces and metamaterials, have been
developed to engineer the properties of light beyond what is allowed by bulk optical devices
[1,2], thus leading to revolutionary solutions for beam structuring [3], colouring [4], biosensing
[5], nanomedicine [6], tunable beam steering [7], and nonlinear generation [8,9], to name a
few. Advances in nanofabrication technologies have enabled such technologies by allowing
unprecedented design complexity at the nanoscale [5,10]. The opportunities offered by theoretical
research and nanofabrication facilities raise the need for new methods to efficiently design and
optimize such nanophotonic systems [11,12].

Advances in computing capabilities and numerical methods, such as the finite-difference
time-domain (FDTD) [13] and finite-element methods (FEM) [14], empowered the design of
nanophotonic devices while shortening their design cycle. Conventionally, a design cycle starts
from a given layout. The layout is then parameterized and various techniques are employed
to explore the parameters’ space. This offers opportunities to find new designs with improved
performance or that satisfy multi-objectives. However, exploring large parameter spaces raises
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computational challenges. Techniques such as parameters sweep or stochastic optimization
methods, e.g., genetic algorithms, are computationally intractable for large design spaces and
only suitable to handle problems with few design parameters [15]. Deep learning algorithms are
also an option, but require large data sets for training, and still not well established [16–18].

Topology optimization (TopOpt) is a robust inverse design approach [19,20]. It was initially
introduced to optimize mechanical structures [21], then it has been successfully extended to
various engineering disciplines, including acoustics [22], fluids [23], and electromagnetics
[24–28]. Typically, TopOpt problems are solved using gradient-based optimization methods,
where the gradient of the objective function is computed using efficient methods such as the
adjoint-field method [29,30]. Optimization problems that include millions or even billions of
design variables have enabled novel conceptual designs [31]. In electromagnetics, TopOpt was
used to optimize non-dispersive dielectric devices in the microwave and optical regimes [32–35].
In addition, it was used to design plasmonic antennas using frequency-domain methods [36–38].
Christiansen et al. [37] proposed a non-linear interpolation scheme that was successful to enable
TopOpt of plasmonic antennas near their surface plasma frequency using the FEM method.

Structural perturbations or changes in material properties, caused for example by fabrication
tolerance or temperature variations, raise the demand to account for the broadband performance
of optical components [39]. At optical and near-infrared wavelengths, various materials exhibit
dispersion, that can be modelled via Drude, Lorentz, or critical-points functions [13,40,41].
Below their plasma frequency, the Drude model is commonly used to describe the dispersive
properties of metals such as silver, gold, and aluminum [42]. The model also describes the
permittivity of conductive oxides, such as indium tin oxide (ITO) [43], and conductive polymers
[44], including their dielectric and epsilon-near-zero regions.

In this paper, we introduce TopOpt of dispersive optical materials in the time-domain and
aim at broadband designs. We base our algorithm on the FDTD method [13] and the Drude
model to describe the material dispersion. To the best of our knowledge, this is the first time
the FDTD method is used for TopOpt of plasmonic devices in the time domain. To present the
algorithm, we conduct the optimization of plasmonic nanoantennas, with the goal to maximize
the electric energy in a specified region by finding the distribution of the electric permittivity
in a design domain. To evaluate the gradient of the objective function efficiently, we employ
the adjoint-field method and provide sensitivity analysis based on Maxwell’s equations in their
first-order form. During the optimization, the interpolation of the design material between
dielectric and metal enables the surface plasmon frequency ωsp to fall within the frequency
band of interest [45,46]. Plasmonic effects, such as field localization and enhancement, are
amplified close to ωsp. This leads to hot-spots within the optimization domain that prevent the
algorithm from converging to well performing designs. To overcome these convergence issues,
we exploit the conductivity term in Maxwell’s equations to introduce an artificial damping. This
damping counteracts the high-field localization during the optimization process and enables the
algorithm to converge to good designs. The developed algorithm is demonstrated by optimizing
2D and 3D silver nanoantennas operating near plasma and infrared frequencies. In all cases, the
algorithm produces novel designs with outstanding performance, thus demonstrating its use for
the automatic design of dispersive optical nanostructures and metamaterials.

2. Optimization problem setup

In this section, we present the setup of the optimization problem that will be used to inverse
design 2D and 3D nanostructures. The computational domainΩ consists ofΩg∪Ωd∪Ωs∪ΩPML,
as shown in Fig. 1(a). The domain Ωg is an observation region where the electric energy is to be
maximized. We assume thatΩg is a dispersionless dielectric medium with relative permittivity εg
and has an area wg×hg. Inside the design domain Ωd=wd × hd, we aim to distribute a dispersive
material to form the nanoantenna structure. We consider materials with relative permittivity
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described by the Drude model:

εDrude(ω) = ε∞ −
ψ

ω2−jωγp
, (1)

where ε∞ is the high-frequency permittivity; γp is the collision rate; ψ = ω2
p =

ne2

meε0
is the square

of the plasma frequency; ε0 is the vacuum permittivity; n, me, and e are the electrons’ density,
effective mass, and charge, respectively. We use the ejωt convention.

Fig. 1. (a) Ωg is the observation domain, Ωd is the design domain, Ωs is the background
medium, and ΩPML is a perfect matched layer. The boundary Γ is used for plane-wave
injection. (b) Complex permittivity of silver [47], and fitting via the Drude model. (c)
Frequency and (d) time domain plots of a truncated sinc signal with a bandwidth of 20% at
half-maximum and modulating a carrier signal with a frequency of 600 THz.

In this paper, we consider silver in the wavelength range 350–1000 nm, where we fit its measured
complex permittivity [47], via a Drude model with parameters ε∞ = 4.469,ωp=1.426×1016 rad/s,
and γp=4.571 × 1013 rad/s, as shown in Fig. 1(b). The background space Ωs hosts the design
domain Ωd, and has a constant relative permittivity εs. For simplicity, we use εs = εg = 1,
but deviation from these values is also possible. The computational domain is terminated by
perfectly matched layers ΩPML. In our analysis, we use the total-field scattered-field formulation
[13] to inject a plane-wave through the boundary Γ, which is located in Ωs. A similar setup was
previously used to optimize TM nanoantennas with frequency-domain methods [36,37].

To optimize in the time-domain, the spectral content of the excitation signal determines the
desired bandwidth of the structure under optimization. Ideally, we want to excite the system with
a signal that has a rectangular spectrum (see Fig. 1(c)). Unfortunately, this corresponds to a
sinc signal of infinite duration. Thus, to keep the simulation time reasonable, the sinc signal is
truncated to a few lobes, as shown in Fig. 1(d). Such signal modulates a carrier with a frequency
corresponding to the center of the spectral window of interest. In addition, we use a Hanning
window to reduce the ripples in the excitation spectrum.

We formulate the conceptual optimization problem

maximize
ε(x)∈[εs,εDrude(ω)]

W

subject to: the governing equations,
and a specified spectral content,

(2)
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where
W = 1

2

∫
Ωg

∫ T
0 εgE2dt dΩ (3)

is the electric energy in Ωg, E is the time-dependent electric field, and T is the observation time.
The domain Ωg corresponds to the gap of a plasmonic nanoantenna or to a focus region where the
energy is collimated by the designed structure. A detailed description of the numerical treatments
of the optimization problem is given in Section 3.

2.1. Density-based interpolation and convergence issues

In density-based TopOpt, we use the permittivity function of the material as our design variable.
For each point x inΩd we want the permittivity at that point to be either that of the Drude material
εDrude(ω) or that of the background space εs. In order to interpolate between the background
space and the design material, a density variable ρi is introduced to describe the material at each
edges of the computational grid in Ωd. The vector ρ = [ρ1 ρ2 . . . ρi . . . ρM] is used to hold the
M design variables of the optimization problem. Since we aim to use gradient-based methods to
solve the TopOpt problem, the entries of the design vector are allowed to attain values between 0
and 1 during the optimization process. However, to obtain a manufacturable design, the final
density vector must hold only the binary values 0 or 1. We map each design variable ρi to the
physical material parameters using:

ε(ω, ρi) = ε∞ i −
ψi

ω2−jωγp
− j σi

ωε0
, (4)

where
ε∞ i = εs + ρi(ε∞ − εs), (5a)
ψi = ψs + ρi(ψ − ψs), (5b)
σi = ρi(1 − ρi)σmax (5c)

are our three design variables (the dependence on ρi is carried by the i subscript). The parameters
ψi and ε∞ i perform a linear interpolation between the physical parameters of the background
space {εs,ψs} and those of the design material {ε∞,ψ}. We use ψs = ψ/100 to ensure ψ>0, thus
avoiding the singularity in Eq. (21). In fact, the value ρi = 1 corresponds to the Drude model
εDrude(ω), and ρi = 0 sufficiently approximates the background permittivity εs. To overcome
convergence issues, we modify the Drude model to include an artificial conductivity σi, that
plays a temporary role only during the optimization. To do so, we use a parabolic profile, so that
the conductivity is zero for ρi = 0 and ρi = 1, and reaches its maximum value σmax for ρi=0.5.
The value σmax must be carefully chosen, as discussed later. Fig. 2(a)-(c) show the interpolation
between the permittivity of free space (ρ= 0) and silver (ρ= 1) using the design permittivity
model ε(ω, ρ) in Eq. 4, where we drop the index i for brevity.

The presence of metal and dielectric in the design domain leads to localization and enhancement
of the electric field due to surface plasmon modes arising during the optimization process. This
hinders the convergence of the objective function. To understand the reason for such convergence
problem, we use, as an illustrative model, the dispersion relation of surface plasmon polaritons
(SSPs) at a flat interface between a dielectric εs and our design material ε(ω, ρ) [45,46]:

β | |(ω, ρ) = k0

√︂
ε(ω,ρ)εs
ε(ω,ρ)+εs

(6a)

k⊥s(ω, ρ) =
√︂
β2
| |
− k2

0εs (6b)

k⊥m(ω, ρ) =
√︂
β2
| |
− k2

0ε(ω) (6c)

where β | | is the propagation constant parallel to the interface; k⊥s and k⊥m are attenuation factors
normal to the interface inside the dielectric and metal, respectively; and k0 = ω

√
µ0ε0, as shown
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Fig. 2. Interpolating between free-space permittivity (ρ= 0) and silver (ρ= 1). (a) Real
and (b) Imaginary part of ε(ω, ρ) when σmax=0 S/m. (c) Imaginary part of ε(ω, ρ) when
σmax = 5×105 S/m (the real part is the same as (a)). Dispersion diagrams of the surface
plasmon polaritons when interpolating between air and silver using (d)-(f) σmax=0 S/m,
(g)-(i) σmax=5×105 S/m, and (j)-(l) σmax=5×106 S/m.

in Figs. 2(d)-(f) for values of ρ between air (ρ=0) and silver (ρ=1). The horizontal gray strip
marks the wavelength interval of interest 350–1000 nm. Inspecting the silver case (ρ=1), we
see that the value of β | | reaches a maximum close to the surface plasmon frequency ωsp [45,46],
which by design is located outside the wavelength window of interest. The values of k⊥s and k⊥m
also reach a maximum close to ωsp, which indicates a large wave attenuation in the directions
normal to the interface. In other words, the wave propagates with the wavenumber β | | , and it
is spatially highly localized at the interface region. The range of frequencies ω>ωsp is not of
interest for SPPs. For intermediate values of ρ, the material permittivity changes from metal to
dielectric, and ωsp moves across the wavelength window of interest. This results in moving the
peaks of the dispersion curves into the wavelength window of interest, as shown in Figs. 2(d)-(f)
for σmax = 0 S/m. The high-field localization, associated with large amplitudes of k⊥s, k⊥m and
β | | , counteracts the objective function that aims to maximize the electric field in the domain Ωg.
This conflict prevents the algorithm from converging to well-performing designs.

With the aim to reduce the peaks in the dispersion diagrams at intermediate values of ρ, we
estimate the value of σmax based on a parameter sweep. Plots for our chosen σmax value (i.e.,
σmax = 5 × 105 S/m) are shown in Figs. 2(g)-(i). A too-large value of σmax (e.g., σmax=5 × 106
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S/m) leads to an intermediate material with conductivity higher than silver, as shown in Fig. 2(j)-
(l). To conclude, a too-small value of σmax is not enough to introduce sufficient damping to
counteract the plasmonic effects, while a too-large value prevents the algorithm from converging
to black and white designs since the structure becomes less lossy.

3. Methods

3.1. Governing equations and sensitivity analysis

Inside the analysis domain, that we assume source-free and non-magnetic with permeability µ0,
the time-dependent electric field E and magnetic field H are governed by Maxwell’s equations

∂tD − ∇ ×H = 0, (7a)

µ0∂tH + ∇ × E = 0, (7b)

where the electric displacement field D models the optical response of the materials through the
frequency domain relation

D(ω) = ε0ε(ω)E(ω). (8)

In our case, we use the design permittivity model

ε(ω) = ε∞ −
ψ

ω2 − jωγp
− j

σ

ωε0
, (9)

that consists of a Drude model and an additional artificial conductivity term that operates only
during the optimization process to guarantee convergence. By substituting Eq. (9) and Eq. (8)
into Eq. (7a), we rewrite Eqs. (7) as

ε0ε∞∂tE +J + σE − ∇ ×H = 0, (10a)

∂tJ + γpJ − ε0ψE = 0, (10b)

µ0∂tH + ∇ × E = 0, (10c)

where the dispersion of the medium is embedded in the polarization current density J, with
Eq. (10b) being the time-domain equivalent of

J(ω) = ε0ψ

jω + γp
E(ω). (11)

We solve the design problem by using a gradient-based optimization method. To do so, we
need derivatives of the objective function with respect to the design variables ε∞, ψ, and σ. We
use the adjoint-field method to derive expressions for such derivatives. Assuming that the design
variables are perturbed by δε∞, δψ, and δσ, the corresponding first variations of W are

δε∞W =
∫
Ωg

∫ T
0 εgE δε∞E dt dΩ, (12a)

δψW =
∫
Ωg

∫ T
0 εgE δψE dt dΩ, (12b)

δσW =
∫
Ωg

∫ T
0 εgE δσE dt dΩ. (12c)

To find explicit expressions for Eqs. (12), we use the system governing Eqs. (10) and employ
the adjoint-field method [29,30]. In the following, we derive an explicit relation for δψW. To
simplify the derivation, we drop the domain ΩPML and consider Γ as the external boundary of
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the analysis domain Ω, see Fig. 1(a). In addition, we drop the differential dt and dΩ since they
can be inferred from the limits of the integrals. We consider the initial-boundary-value-problem,

ε0ε∞∂tE +J + σE − ∇ ×H = 0 in Ω, t>0 (13a)

∂tJ + γpJ − ε0ψE = 0 in Ω, t>0 (13b)

µ0∂tH + ∇ × E = 0 in Ω, t>0 (13c)

Et + η n ×H = g on Γ, t>0 (13d)

E = 0,J = 0 ,H = 0 in Ω, t = 0, (13e)

where η =
√︁
µ0/(ε0εs) is the intrinsic impedance of the domain Ωs, and Et = E − n(E · n) with

n denoting the outward unit normal at Γ. The boundary condition (13d) is used to impose an
incoming excitation g through Γ. To simplify the notation, the symbol δ is temporarily used to
denote the perturbation of the fields with respect to ψ. We differentiate the system of Eqs. (13)
with respect to ψ,

ε0ε∞∂tδE + δJ + σδE − ∇ × δH = 0 in Ω, t>0 (14a)

∂tδJ + γpδJ − ε0ψδE − ε0Eδψ = 0 in Ω, t>0 (14b)

µ0∂tδH + ∇ × δE = 0 in Ω, t>0 (14c)

δEt + η n × δH = 0 on Γ, t>0 (14d)

δE = 0, δJ = 0, δH = 0 in Ω, t = 0. (14e)

We define the adjoint fields E∗, J∗, and H∗. We perform the scalar product of Eqs. (14a),
(14b), and (14c) with E∗, J∗

ε0ψ
, and H∗, respectively. We add the result of multiplication,

integrating over the whole analysis domain Ω and the observation interval (0, T), and applying
integration by parts, we obtain

ε0ε∞ E∗ δE
|︁|︁T
0 −

∫
Ω

∫ T
0 ε0ε∞∂t E∗ δE+

∫
Ω

∫ T
0 E∗ δJ+

∫
Ω

∫ T
0 σE∗ δE−

∫
Γ

∫ T
0 (n × δH)E

∗+

−
∫
Ω

∫ T
0 (∇ × E

∗) δH− J∗
ε0ψ

δJ
|︁|︁T
0 +

∫
Ω

∫ T
0 ∂t J∗ δJε0ψ

−
∫
Ω

∫ T
0 γpJ∗ δJε0ψ

+
∫
Ω

∫ T
0 J∗ δE +

+ E J∗
ψ δψ+µ0H∗δH

|︁|︁T
0 −

∫
Ω

∫ T
0 µ0∂tH∗ δH+

∫
Γ

∫ T
0 (n × δE)H

∗+
∫
Ω

∫ T
0 ∇ ×H

∗ δE=0.

(15)

We assume that the adjoint fields satisfy the terminal conditions E∗=J∗=H∗=0 at t=T . By
arranging the terms in Eq. (15), utilizing Eq. (14d), and adding and subtracting δψW, we obtain∫

Ω

∫ T
0 (−ε0ε∞∂t E∗ +J∗ + σE∗ + ∇ ×H∗) δE+

∫
Ω

∫ T
0 (∂t J∗−γpJ∗+ε0ψE∗) δJε0ψ

+

+
∫
Ω

∫ T
0 (−∂tµH∗ − ∇ × E∗) δH+

∫
Γ

∫ T
0 (E

∗
t − η n ×H∗) δH+

∫
Ω

∫ T
0

E J∗
ψ δψ+

+δψW −
∫
Ωg

∫ T
0 εgE δE = 0.

(16)

Now, if we require

−ε0ε∞∂t E∗+J∗+σE∗+∇×H∗=εgE in Ω, t>0 (17a)

∂t J∗ − γpJ∗+ε0ψE∗= 0 in Ω, t>0 (17b)

∂tµH∗+∇ × E∗= 0 in Ω, t>0 (17c)

E∗t −η n ×H∗= 0 on Γ, t>0 (17d)

E∗=0,J∗=0,H∗= 0 in Ω, t=T , (17e)
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then Eq. (16) reduces to
δψW = −

∫
Ω

∫ T
0

E J∗
ψ δψ. (18)

Expression (18) is the directional derivative of W when ψ is perturbed by δψ. The gradient of
W with respect to ψ can be identified as the integral kernel

∇ψW = −
∫ T
0

E J∗
ψ . (19)

The adjoint system (17) is a terminal-value-problem which, by changing the time variable (i.e.,
t=T − τ) and the sign of the magnetic field H∗ (i.e., to preserve the direction of the Poynting
vector), can be written as

ε0ε∞∂τE∗+J∗+σE∗−∇×H∗=εg
←−E in Ω, τ<T (20a)

∂τJ∗ + γpJ∗ − ε0ψE∗ = 0 in Ω, τ<T (20b)

∂τµH∗ + ∇ × E∗ = 0 in Ω, τ<T (20c)

E∗t + η n ×H∗ = 0 on Γ, τ<T (20d)

E∗=0,J∗=0,H∗ = 0 in Ω, τ = 0, (20e)

and (19) becomes
∇ψW = −

∫ T
0

←−E J∗
ψ , (21)

where
←−E = E(T−τ) is the electric field of the forward system (13) reversed in time. The

singularity of Eq. (21) can be avoided by ensuring the condition ψ = ω2
p>0. The only difference

between the adjoint system (20) and the forward system (13) is the source. In the forward system
(13), the source is a plane-wave imposed through the boundary Γ, see Eq. (13d). In the adjoint
system (20), the source is the time-reversal of the forward electric field monitored at Ωg.

By differentiating system (13) with respect to ε∞ and σ, and following similar procedures as
before, we obtain the same adjoint system (20) and the following gradient expressions

∇ε∞W = −
∫ T
0 ε0
←−E ∂τE∗, (22)

∇σW = −
∫ T
0
←−E E∗. (23)

Thus, to evaluate the gradient of the objective function, we solve the forward system (13)
and the adjoint system (20), then we use Eqs. (21), (22), and (23) to form the full gradient
components.

3.2. Numerical treatments and optimization algorithm

We solve numerically the system of governing equations, discussed in the previous section, using
the FDTD method [13]. We adopt the auxiliary differential equation approach to implement the
Drude model in the FDTD method, and the uniaxial perfectly matched layer (UPML) is used to
simulate the open-space radiation boundary condition [13,40]. The computational domain is
discretized into uniform square (2D) or cubical (3D) Yee cells with spatial steps ∆x=∆y=∆z in
all Cartesian directions.

In the forward system, we use the FDTD method and discretize the electric field at full-time
indices and the magnetic field at half-time indices. In the adjoint system, however, the FDTD
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discretization of the electric- and magnetic fields are performed at half-time indices and full-time
indices, respectively [25,30]. The discretized objective function is

W̃ = εg∆t(∆x)3
2

∑︁
Ω̃g

∑︁N
n=0(Ẽ

n
)2 (24)

where Ẽn is the discretized electric field at time index n, ∆t is the FDTD’s temporal discretization
step, and N is the number of time steps used in the simulations. Based on the FDTD discretization,
the pointwise derivatives of the gradient expressions, given in Section 3.1, are

∂W̃
∂ψi
= −

∆t(∆x)3
ψi

∑︁N
n=0 Ẽ

N−n
i

J̃
∗n+ 1

2
i +J̃

∗n− 1
2

i
2 (25a)

∂W̃
∂ε∞ i

= −ε0(∆x)3
∑︁N

n=0 Ẽ
N−n
i (Ẽ∗n+

1
2

i − Ẽ∗n−
1
2

i ) (25b)

∂W̃
∂σi
= −∆t(∆x)3

∑︁N
n=0 Ẽ

N−n
i

Ẽ
∗n+ 1

2
i +Ẽ

∗n− 1
2

i
2 (25c)

where i denotes the index of the ithedge in Ωd. Note that the temporal averaging of the discrete
adjoint fields in Eqs. (25a) and (25c) is related to the time shift between the forward and the
adjoint discrete systems [30].

To avoid mesh-dependency or self-penalization issues, in density-based TopOpt it is common
to filter the design variables [48–52]. That is, instead of using ρi in Eq. (5), we replace it with ρ̃i,
where the filtered design vector ρ̃ is obtained through the mapping

ρ̃ = F (ρ). (26)

In this work, we use an open-close, nonlinear filter operator F (·) that consists of a cascade
of four fW-mean filters [52]. The filter has two tuning parameters that determine its size and
the level of nonlinearity. Here, we fix the filter size to a constant value of 5∆x and only employ
the nonlinearity parameter to smoothly decrease the level of greyness in the design during the
optimization process [52,53]. Using the chain rule, the derivative of the discrete objective
function with respect to the design variable ρi is evaluated by

∂W̃
∂ρi
=
∂ρ̃i

∂ρi

∂ψi

∂ρ̃i

∂W̃
∂ψi
+
∂ρ̃i

∂ρi

∂ε∞ i

∂ρ̃i

∂W̃
∂ε∞ i

+
∂ρ̃i

∂ρi

∂σi

∂ρ̃i

∂W̃
∂σi

. (27)

We compared the derivatives computed using Eq. (27) against those evaluated by finite
differences. The comparison showed more than 4 digits match in precision between the two
methods. We write the discrete version of the optimization problem as

maximize
ρ

W̃

subject to: the governing equations,
a specified spectral content,
0<ρi<1,

(28)

which we solve iteratively through the solution of a sequence of subproblems. Fig. 3 shows the
flowchart of the optimization algorithm that we use to solve problem (28). To update the design
variables, we use the globally convergent method of moving asymptotes (GCMMA) [54]. As a
stopping criterion for the inner iteration loop, we monitor the norm of the first-order optimality
condition after 12 iterations. Then, we mark the decrease of this norm by 70% as the termination
condition of a subproblem. For the termination of the outer loop, we monitor the decrease of
the level of non-discreteness, ζ = 4ρ̃T (1 − ρ̃)/M with 1 denoting a vector of a length M and
all entries equal one [49]. We terminate the optimization process either when the value of ζ
decreases below ζmin = 0.5% or a maximum number of 600 iterations is reached. Then, the
entries of the obtained design are thresholded around ρth = 0.5 to yield the final design.
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Fig. 3. Flowchart of the optimization algorithm.

4. Results

In this section, we demonstrate our method through some design examples of 2D and 3D
plasmonic nanostructures. In 2D, only the case of TM excitation is presented. In fact, TE
excitation does not lead to plasmonic effects, and the optimization algorithm shows regular
convergence to traditional focusing mirror structures. To enable fast simulation, we implement the
FDTD method to execute on graphics processing units (GPUs). The computations are executed
on nodes equipped with NVidia V100 GPUs and 64 GB of memory. Based on the problem size,
one call to the Maxwell solver uses a simulation time between less than a minute and few minutes.

4.1. 2D, TM nanoantennas

We chose a design domain Ωd with dimensions wd=hd=100 nm, and the observation domain
Ωg is centered within Ωd and has dimensions wg=hg=10 nm, see Fig. 1(a). We use a space-step
∆x = 0.5 nm, and a time-step ∆t satisfying the Courant stability criterion. The simulation
domain is truncated by 15 UPML cells placed 30 cells away from Ωd. The excitation is anHx
polarized plane-wave propagating towards the positive y axis. The excitation spectrum has a
bandwidth of 20% at half-maximum and is centered at 413 nm, as shown in Fig. 4(c) along
with the results of optimization. The design variables are mapped to the in-plane permittivity
components associated with the Yee edges where the electric field components Ey and Ez are
located. Excluding the observation region, the design domain includes 79 560 design edges.

Figure 4(a) shows the progress of the normalized objective function W̃ versus the iteration
numbers. We start the algorithm with a uniform initial distribution ρi=0.5 for all design variables.
Included in the same figure are some snapshots to show the development of the design. The black
color indicates silver (ρ=1) and the white color indicates air (ρ=0). Notably, the main topology
of the antenna evolves after only a few tens of iterations. However, most of the late iterations
are used to remove the intermediate material and form crisp boundaries, while the objective
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Fig. 4. (a) Progress of the objective function and some samples showing the development
of AntTM1 (see Visualization 1). (b) AntTM1 topology. (c) Average field enhancement in
Ωg together with the excitation spectrum. (d)-(j) Field distribution at λ = 375, 410, 430, and
460 nm.

function keeps increasing monotonically. The design algorithm converged after 308 iterations to
a design with a grayness level ζ<0.2%. We threshold this design around ρth = 0.5 and show
the final design, AntTM1, in Fig. 4(b). On the side facing the incident wave, the topology of
AntTM1 developed as a flared horn, backed by a small cavity region. On the other side, we see
two slightly tilted vertical arms. This optimized topology shares similarities with results reported
in the literature using the FEM method [37].

Fig. 4(c) shows the average field enhancement of AntTM1 at Ωg, which correlates well with
the excitation spectrum shown in the same figure. We cross-validate our computations with
the commercial software package Ansys Lumerical FDTD [55]. Slight differences between the
two computations are attributed to differences in geometry descriptions. Inside Ωg and within
the excitation window, AntTM1 exhibits more than 20-fold field enhancement. The peak of
the performance, (|E |/|Ein |)Ωg= 27.8, occurs at the wavelength λ = 430 nm, which resides at
long wavelengths in the excitation window. Figs. 4(d)-(j) show the electric field distribution of
AntTM1 at four wavelengths, marked in Fig. 4(c). The electric field is maximum at Ωg, marked
by the box at the center. However, we observe a field localization and enhancement at the device’s
boundaries for short wavelengths, which justifies the decrease of the energy enhancement in Ωg
at short wavelengths. We attempt to improve the optimization results further by exploring the
following investigations.

https://doi.org/10.6084/m9.figshare.19336442
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4.1.1. Effect of the design domain size

The design obtained in Fig. 4 hits the boundary of the design domain, which suggests the need
for a larger design space. We double the size of the design domain to 200×200 nm2, and we
solve the optimization problem, which now includes 319 960 design variables. The algorithm
converged in 297 iterations to the topology shown in Fig. 5(a). The new design, AntTM2, has
more topological features compared to AntTM1. We observe an additional vertical arm that
evolved in the rear-side of the device, and the arm around Ωg appears straight. The performance
of AntTM2 has improved at short wavelengths, and it attains a nearly flat response within the
excitation window, as shown in Fig. 5(b). Fig. 5(c) shows the field distribution at λ=440 nm.

Fig. 5. Topology, average field enhancement in Ωg, and field distribution at wavelength
of maximum performance for (a)-(c) AntTM2 (see Visualization 2), (d)-(f) AntTM3 (see
Visualization 3), and (g)-(i) AntTM4 (see Visualization 4), respectively. The colored insets
in (d) shows the design at iteration #1.

4.1.2. Effect of a fixed gap geometry

Maximizing the energy in Ωg suggests that the objective function is more sensitive to design
variables close to Ωg compared to those away from it. We attempt to relax such a non-uniform
sensitivity distribution and investigate its effect on the results. We fix the geometry region below
and above Ωg to silver with the same area as Ωg. Figs. 5(d)-(f) shows AntTM3 optimized over a
design domain with size 100 × 100 nm2. For AntTM3, fixing the area around the gap boosts the
average field enhancement to a maximum value of 40.6 at the wavelength 435 nm; AntTM1 has a

https://doi.org/10.6084/m9.figshare.19336469
https://doi.org/10.6084/m9.figshare.19336475
https://doi.org/10.6084/m9.figshare.19336478
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maximum value of 27.8. The new nanoantenna exhibits better performance at long wavelengths,
however, the performance at short wavelengths stays essentially the same as in the previous cases.
These results indicate the challenges that plasmonic effects pose on optimizing nanoantennas
near the surface plasmon frequency.

4.1.3. Wideband optimization

We use the previous setup and attempt to optimize over a wider spectrum covering the wavelength
window 375–900 nm. That is, we use an excitation signal with a half-maximum bandwidth of
82% centered around 637.5 nm. Figs. 5(g)-(i) show the topology, the average field enhancement,
and the field distribution at the wavelength of maximum performance for the new design. The
new nanoantenna, AntTM4, shows a wideband performance. An average field enhancement
above 10-fold is possible to achieve. Moreover, the average field enhancement hits a maximum
of 41.5 at the wavelength 810 nm. Here, we still observe the performance bias of the optimized
nanoantennas towards long wavelengths.

4.2. 3D antennas

We use the developed method to optimize antennas in a 3D setup. We extend the problem
model (Fig. 1) to include a 30 nm thickness in the x-direction. The design space has a volume
Ωd = 200×200×30 nm3 with Ωg = 12×12×30 nm3, and we use ∆x = 2 nm. Similar to the
2D case, here we fix the geometry region below and above Ωg to silver with the same area
as Ωg. The discretized design domain includes 469 341 design variables associated with its
interior edges. We impose symmetry along the x-axis to enable antennas producible by current
technologies. That is, we optimize 3D antennas and aim for planar structures. The excitation
is an Ez polarized plane-wave propagating in the positive x axis. We use the same setup and
solve the optimization problem for three different wavelength excitation windows. The first and
second excitation spectra, shown in Fig. 6(a), have a half-maximum bandwidth of 20% centered
around 413 nm and 513 nm, respectively. The third excitation spectrum, shown in Fig. 6(b), has a
half-maximum bandwidth covering the spectral window 375–900 nm. Each excitation spectrum
results in a different topology which we name Ant3D1, Ant3D2, and Ant3D3, see Figs. 6(c)-(e).
Interestingly, we observe the increase of the figure-of-eight void area of the three nanoantennas,
around Ωg, as the excitation spectrum includes long wavelengths.

Fig. 6(a) shows the average field enhancement of Ant3D1 and Ant3D2, and Fig. 6(b) shows
the performance of Ant3D3. Inside Ωg, the nanoantennas Ant3D1, Ant3D2, and Ant3D3 exhibit
a maximum average field enhancement of 50.5, 52.8, and 46.7 at the wavelength 445 nm, 545 nm,
and 615 nm, respectively. Ant3D3 exhibits another peak of 74.0 at 970 nm, which resides slightly
outside the intended excitation spectrum. The optimized structures tend to exhibit a better
field enhancement at long wavelengths. Figs. 6(f)-(i) show the field distribution of Ant3D3 at
wavelengths marked in Figs. 6(b). The optimized structures are capable to maximize the electric
energy at the observation domain Ωg. At short wavelengths, however, we observe high-field
localization near nanoantenna’s boundaries, which indicates strong plasmonic effects that are
responsible for the decrease in the achieved performance. Further investigations are needed to
obtain a balanced performance over the wavelength window of interest.
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Fig. 6. Average field enhancements inside Ωg together with the excitation spectrum for
(a) Ant3D1 and Ant3D2, (b) Ant3D3. Topologies of (c) Ant3D1 (see Visualization 5), (d)
Ant3D2 (see Visualization 6), and (e) Ant3D3 (see Visualization 7). Field enhancements at
the middle layer of (f)-(i) Ant3D1 at wavelengths marked in Fig. 6(b).

5. Conclusion

We introduced a density-based TopOpt approach to design plasmonic dispersive nanoantennas.
Our approach is based on Maxwell’s equations in the time-domain, and we use the Drude
model, which can fit the material dispersion of metals and conductive polymers, as well as
epsilon-near-zero materials, such as conductive oxides. For the TM and the 3D setups, the
interpolation between metallic and dielectric phases results in high field-localization associated
with plasmonic effects, which prevent the algorithm from converging to well-performing designs.
Guided by dispersion diagrams of metal-dielectric interfaces, we proposed an artificial damping
approach to suppress the field-localization during the optimization process, which enables the
algorithm to converge to good designs. For the TE setup, artificial damping is not needed and
the algorithm encounters no convergence issues. Various setups for narrowband and wideband
optimization are presented, resulting in novel 2D and 3D nanoantenna designs with outstanding
performances. Our method opens new opportunities for the automatic design and optimization of
dispersive nanophotonic structures with broadband optical response for applications in nonlinear
plasmonics, integrated optics, plasmonic colouring and absorbers, epsilon-near-zero photonics,
thermoplasmonics, biosensors, and ultrafast optics.

https://doi.org/10.6084/m9.figshare.19336472
https://doi.org/10.6084/m9.figshare.19336463
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