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Abstract. Digitalization, especially in the form of a digital twin, is fast becoming a key instrument for the
monitoring of a product’s life cycle from manufacturing to operation and maintenance and has recently been
applied to wind turbine blades. Here, model updating plays an important role for digital twins, in the form
of adjusting the model to best replicate the corresponding real-world counterpart. However, classical updating
methods are generally limited to a reduced parameter space due to low computational efficiency. Moreover, these
approaches most likely lack a probabilistic evaluation of the result.

The purpose of this paper is to extend a previous feasibility study to a finite element Timoshenko beam model
of a full blade for which the model updating process is conducted through the novel approach with invertible
neural networks (INNs). This type of artificial neural network is trained to represent an inversion of the physical
model, which in general is complex and non-linear. During the updating process, the inverse model is evaluated
based on the target model’s modal responses. It then returns the posterior prediction for the input parameters. In
advance, a global sensitivity study will reduce the parameter space to a significant subset on which the updating
process will focus.

The finally trained INN excellently predicts the input parameters’ posterior distributions of the proposed
generic updating problem. Moreover, intrinsic model ambiguities, such as material densities of two closely lo-
cated laminates, are correctly captured. A robustness analysis with noisy response reveals a few sensitive param-
eters, though most can still be recovered with equal accuracy. And, finally, after the resimulation analysis with
the updated model, the modal response perfectly matches the target values. Thus, we successfully confirmed that
INNSs offer an extraordinary capability for structural model updating of even more complex and larger models of

wind turbine blades.

1 Introduction

Wind turbine blades are enormous composite structures ex-
posed to extreme and harsh environmental conditions. Due
to these circumstances, structural health or condition moni-
toring plays a critical role in reliably ensuring the endurance
of the rotor blade. However, this raises the need for an ac-
curate model representation of the structure as built. In this
context, the digital twin is emerging as a powerful instrument
(Grieves, 2019) for these monitoring systems during opera-
tional time, though it can already be involved in early stages

of manufacturing (Sayer et al., 2020). The concept of model
updating is central to achieving a digital product twin, for
example, by updating the preliminary blade design based on
sensor responses from blade characterization tests. This pro-
cess of model updating ensures that the current stage of the
digital twin represents the blade as built.

1.1 Model updating of wind turbine blades

Model updating has grown in importance in light of digi-
talization of the wind turbine blades; however, it has only
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been marginally explored in the literature. Similarly to other
structural dynamic model updating applications (Sehgal and
Kumar, 2016), the publications on rotor blade model updat-
ing typically follow metaheuristic optimization techniques
and define the objective function based on the modal assur-
ance criterion (MAC), which represents a common metric for
the quantitative comparison of modal shapes (Pastor et al.,
2012). Other related modal metrics can be found in Alle-
mang (2003). The most recent publications, such as Hofmeis-
ter et al. (2019) and Bruns et al. (2019), apply classical meta-
heuristic optimization algorithms to update the model param-
eters and localize damage in a generic problem with a finite
element beam blade model. These publications evaluate a
global pattern search and compare it to evolutionary, particle
swarm, and genetic optimization algorithms. The objective
function is based upon the natural frequencies and the MAC
value. Furthermore, the MAC and the coordinate modal as-
surance criterion (COMAC) are applied in the model updat-
ing process of a finite element shell model of a rotor blade
conducted by Knebusch et al. (2020). That study aims to
update the blade model of a built blade along with high-
fidelity modal measurements and a gradient-based optimiza-
tion approach. Another approach presented by Schroder et al.
(2018) uses a two-stage metaheuristic optimization to detect
damage and ice accretion on a rotor blade. A global optimiza-
tion with a simulated quenching algorithm is followed by a
local method (sequential quadratic programming) to mini-
mize the objective function, consisting of natural frequen-
cies and mode shapes. Omenzetter and Turnbull (2018) im-
plemented metaheuristic optimization methods (fireflies and
virus optimization) to detect damage in a finite element beam
model of a blade and compare the performance to a simpli-
fied beam experiment. Other publications cover simplified
model updating procedures of low-level wind turbine blade
models (Velazquez and Swartz, 2015; Liu et al., 2012; Lin
et al., 2018). While most of the referred contributions focus
on the field of damage detection, the model updating con-
ducted by Luczak et al. (2014) highlights the impact of a
flexible support structure of the test setup of modern blades,
which was also revealed by Knebusch et al. (2020).

1.2 Drawbacks of current updating approaches

Most of these publications encounter three major problems:

1. Due to the aforementioned computational effort, the
studies have been restricted to simple models.

2. They typically lack an efficient probabilistic approach
to evaluate the uncertainty in the results.

3. All approaches only address one particular state of the
blade at a defined condition and not a generalized in-
verse model.

The aforementioned approaches can be classified as deter-
ministic and thus lead to results which are not necessarily the
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global optima. Therefore, these methodologies may require
the process to be run several times to ensure result validity
(Schroder et al., 2018; Omenzetter and Turnbull, 2018). This
is especially problematic since metaheuristic optimization al-
gorithms are computationally expensive due to their iterative
model evaluation (Chopard and Tomassini, 2018). As a ref-
erence, Bruns et al. (2019) performed 500 iterations for two
updating parameters and 1500 iterations for five updating pa-
rameters, while in Omenzetter and Turnbull (2018) the firefly
optimization of two updating parameters required 157 itera-
tions until convergence and the virus optimization required
5000 iterations. Newer model updating techniques involve
probabilistic approaches such as a sensitivity-based method
(Augustyn et al., 2020) or Bayesian optimization (Marwala
et al., 2016). The latter is based on sampling techniques such
as Markov chain Monte Carlo methods to cover the com-
plete parameter space. However, these approaches typically
require even more model evaluations as stated in Patelli et al.
(2017). There, a relatively simple model of a 3-degree-of-
freedom (DOF) mass-spring system demanded 12 000 sam-
ples for the Bayesian solution, which was approximately
10 times higher than for the sensitivity-based method. Iter-
ations are always model dependent, but to give a reference
for real-time consumption, the model generator used in this
publication (Noever-Castelos et al., 2021) takes on average
approx. 80s on a single-core device for one iteration, i.e.,
model creation. And finally, from the model updating we ob-
tain one solution of input parameters for a particular set of
model response parameters. However, if the model response
changes, the whole optimization process has to be repeated.
While in most applications a solution for a particular model
is sufficient, an inverted model, which maps model responses
to input parameters, can be beneficial, e.g., in quality man-
agement during serial production. This reveals a niche for an
efficient method to invert the physical model, enabling a fast
evaluation of the model states at any time.

1.3 Model updating via invertible neural networks

This research framework is based on Noever-Castelos et al.
(2021), a feasibility study on a first structural level of wind
turbine blades. The research performs a model updating with
conditional invertible neural networks (cINNs) (Ardizzone
et al., 2019b) for four selected cross-sections of a wind tur-
bine blade. Noever-Castelos et al. (2021) consider a set of
material and layup parameters as updateable inputs and take
cross-sectional structural beam properties, such as stiffness
and mass matrix, as model outputs to define the objective
values. A sensitivity analysis following a one-at-a-time ap-
proach identified a parameter subspace selection of 19 sig-
nificant input parameters for the updating process. The spe-
cific objective of this current investigation in contrast to the
aforementioned publication (Noever-Castelos et al., 2021) is
to
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1. extend the feasibility study and methodology to a
complete three-dimensional finite element Timoshenko
beam model of a wind turbine blade as applied in real-
world problems, instead of analyzing isolated cross-
sections;

2. introduce parameter splines for the input variation along
the blade;

3. use modal blade shapes and frequencies as the model
response;

4. replace the sensitivity analysis for the parameter sub-
space selection by the global variance-based Sobol’
method (Sobol’, 1993), which takes interactions of in-
put parameters into account;

5. implement a preprocessing feed-forward neural net-
work for the cINN conditions;

6. analyze the potential of replacing or neglecting the sen-
sitivity analysis by training the cINN on the full param-
eter space.

However, this investigation is still designed to reveal the fea-
sibility with respect to a complex full three-dimensional Tim-
oshenko beam model, before applying the method to a high
dimensional real-world and non-generic problem.

1.4 Outline

This study will follow the outline of Noever-Castelos et al.
(2021). The first section after the Introduction presents the
sensitivity analysis procedure and discusses the physical
model built in MoCA (Model Creation and Analysis Tool
for Wind Turbine Rotor Blades) (Noever-Castelos et al.,
2022) and BECAS (BEam Cross section Analysis Software)
(Blasques and Stolpe, 2012). The chosen architecture of the
cINN is explained in Sect. 3. Section 4 covers the discussion
of results, with a general analysis of the updating results in
Sect. 4.1. Section 4.2 reveals intrinsic model ambiguities be-
fore the model robustness to noisy model responses is exam-
ined in Sect. 4.3. A resimulation analysis to ensure high up-
dating quality is performed in Sect. 4.4. Section 4.5 presents
a method to replace the computationally expensive sensitiv-
ity analysis. This is then all followed by the conclusion in
Sect. 5.

2 Sensitivity analysis of modal responses of a rotor
blade finite element beam model

Typically a physical model consists of several input param-
eters defining the model behavior. The model is then evalu-
ated, or simulations are performed, which yield a model re-
sponse. However, not all input parameters equally contribute
to the particular model response. A sensitivity analysis helps
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to identify the most significant input parameters. It is an un-
derestimated powerful tool to reduce the model dimensions
without losing significant information. Especially for model
updating purposes this can make a huge difference in per-
formance. This section will discuss the applied sensitivity
method as well as the applied model and parameter subspace
selection.

2.1 Sobol’ sensitivity method

Noever-Castelos et al. (2021) performed a sensitivity analy-
sis to reflect how input distributions influence the output dis-
tribution’s variance and mean value in order to identify rele-
vant input and output features for the model updating process
with the invertible neural network. There, a one-at-a-time ap-
proach is used, where values vary individually and their im-
pact on the output is analyzed. In contrast to Noever-Castelos
et al. (2021), this contribution will make use of a variance-
based approach, called the Sobol’ method, or Sobol’ index
(Sobol’, 1993, 2001). This method is widely used in research
and is used here, as it also applies globally to non-linear
models and analyzes the influence of input parameter inter-
action on the model response. For a multivariate function

y= f(x1,...,x,), Sobol’ derived the first-order Sobol’ in-
dex S; for the variable x; as follows:
V[E(y|xi)]
Si=———7— (1)
V(y)

This is a measure of to what extent the impact of varying x;
will have on the output y. On the basis of a random sampling
of the parameters x, E(y|x;) represents the expectation E of
all y values for a constant value of x;. It can be understood
as an average of y corresponding to a slice of the x; domain
in the parameter space. V[E(y|x;)] is then the variance of all
expectations over the range of values of x;, i.e., slices of the
x; domain (Saltelli et al., 2008). This variance is finally re-
lated to the overall variance of y. The first-order Sobol” index
range is 0 < S; < 1. Higher-order Sobol’ indices can also be
extracted, see Saltelli et al. (2008), which measure the sen-
sitivity of parameter interactions. For instance the second-
order Sobol” index shows the joint effect of two parameters
on the output, whereas third indices express the joint effect
of three parameter interactions and so on. Although these in-
dices can give a significant insight into the model, such as
existing collinearities, the number of indices grows geomet-
rically with the number of parameters, which quickly makes
the computation intractable. However, the total Sobol’ in-
dex ST, gathers the total sensitivity for a parameter including
the first-order and all higher-order interactions. According to
Saltelli et al. (2008) the total index S, is calculated as fol-
lows:

V[E(ylx~i)]
Spo=1— Lt 2 2
T; Vo) (2)
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Figure 1. Exemplary finite element beam with reduced number of elements and exemplary cross-sectional illustration. The detail shows a
cross-sectional BECAS output (Blasques and Stolpe, 2012) as used in the feasibility study (Noever-Castelos et al., 2021).

where V[E(y|x~;)] describes the variance of all expectations
over the range where x; is not included. If the model is purely
additive for a particular parameter, the corresponding total
Sobol’ index should be equal to the first-order index. While
the total index does not provide the information about which
interaction is significant, it does identify if any interaction
exists, with the benefit that it is computed alongside the first-
order Sobol’ index without any significant additional compu-
tational effort.

For a multivariate function with multiple outputs
1s--esYm) = f(x1,...,x,), Egs. (1) and (2) can be ex-
pressed, respectively, as

S, =% )
st =1—%. )

2.2 Rotor blade finite element beam model

The necessary model generation and variation are performed
with the model creator MoCA (Noever-Castelos et al., 2022)
and its interface to BECAS (Blasques and Stolpe, 2012)
to create cross-sectional beam properties, which are assem-
bled into a finite element beam (FE beam) and evaluated
in ANSYS Mechanical (ANSYS Inc., 2021a). We will be
performing the analysis on the DemoBlade of the Smart-
Blades2 project (SmartBlades2, 2016-2020). Figure 1 de-
picts a coarse version of the FE beam used in this study. In
contrast to this simplified visualization in Fig. 1, the applied
FE beam model is built of 50 three-dimensional linear beam
elements (BEAM188) (ANSYS Inc., 2021a) with higher
mesh density to the root and tip sections of the blade, where
greater geometrical and material changes are expected. Thus,
the finite element model consists of 51 nodes (Ngg). The in-
put parameter selection of Noever-Castelos et al. (2021) was
slightly expanded to cover more material properties, which
will be discussed in detail later. The input parameter selec-
tion spans a space with a maximum dimension of Dcg = 33
for each cross-section, though varying these for each of the
50 cross-sections would result in Dy = 1650 parameters.
Assuming a smooth variation in each parameter over the ra-
dius, Akima splines (Akima, 1970) were introduced to rep-
resent the parameter variation along the blade. An exemplary
spline is depicted in Fig. 2. The spline is built based upon
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Figure 2. Exemplary variation spline with five nodes.

five equidistant nodes that may vary in the y direction within
the given variation range of the parameter. The number of
spline nodes can be chosen arbitrarily; however, a high num-
ber increases the computational costs (more updating param-
eters) and can lead to collinear behavior if the nodes are too
near, whereas a low number reduces the flexibility to adapt
to short-distance changes. For this study the number were
chosen based on experience as a trade-off between compu-
tational costs and a sufficient approximation of a global pa-
rameter variation.

Table 1 summarizes all the investigated input parame-
ters x; and corresponding properties. Moreover, Table 1 lists
the number of spline nodes with their respective normalized
radial range and variance limits for each property. In this fea-
sibility study, we consider the most significant independent
elastic properties for each material — the density p, Young’s
modulus E11, the shear modulus G 17, and Poisson’s ratio vip
— which may be varied over all five nodes in a range of
+10%. Here, we have neglected all thickness-related elas-
tic constants, i.e., parameters including the index/direction 3
and Ej), as these parameters offer no significant contribu-
tion to the stiffness terms of the beam cross-sectional prop-
erties according to Hodges (2006) and Noever-Castelos et al.
(2021). Since foam is modeled as an isotropic material, only
two independent elastic properties £ and G and the den-
sity p are considered. In addition to the material properties,
the division points are also varied. These subdivide the shell
in the cross-sectional direction into different sections with a
constant material layup or define sub-component positions
such as the web or adhesive (Noever-Castelos et al., 2022).
The division point parameters P are allowed to vary on the
three mid-nodes by the given absolute range. The root and
tip nodes cannot be varied due to model generation issues
within MoCA; thus the variance for node Ny and N4 will
be kept at zero, similarly to in Fig. 2. All applied varia-
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Table 1. Input feature list analyzed in this study. Each feature and

property builds a distribution spline based on the given number of

equidistant nodes within the given normalized radial range of the
blade. Each node value may then vary in the listed variance range.

Parameter Property Nodes Norm.range Variance
UuD P, E11, G2, v12 5 [0, 1] +10%
Biax45° p, E11, G2, v12 5 [0, 1] +10%
Biax90° 0, E11, G2, v12 5 [0, 1] +10%
Triax P, E]],Glz, V12 5 [0, l] +10%
Flange 0, E11, G2, v12 5 [0, 0.1] +10 %
Balsa p, E11, G2, v12 5 [0, 1] +10%
Foam 0, E,G 5 [0, 1] +10%
Pss. TE, offset Location 3 [0.25,0.75] +10mm
PSS Mid,spar cap ~ Location 3 [0.25,0.75] +15mm
Pss LE, offset Location 3 [0.25,0.75] +10mm
Pps. TE, offset Location 3 [0.25,0.75] +10mm
Pps Mid,spar cap ~ Location 3 [0.25,0.75] +£15mm
Pps. LE, offset Location 3 [0.25,0.75] +£10mm

UD: uni-directional layer; Biax45°: biaxial layer with —45, +45°; Biax90°: biaxial layer with 0,
90°; Triax: triaxial layer with —45, 0, 45°; SS: suction side; PS: pressure side; TE: trailing edge;
LE: leading edge.

tions are approximately twice the permitted manufacturing
tolerances (Noever-Castelos et al., 2021) in order to assure
some flexibility of the inverse model. Summing up all pa-
rameters and nodes, the problem spans a parameter space
of dim(x) = 153. The sensitivity study is conducted based
on the Python package “SALib” (Herman and Usher, 2017)
and a random sampling dimension of n =2° =512 sam-
ples. SALib uses the quasi-random sampling with a low-
discrepancy sequence technique from Saltelli et al. (2008)
for the sensitivity analysis. To compute the Sobol’ index, the
algorithms require a variation in each input feature individu-
ally for each of the n samples, which results in a total sample
size of nyoar - (dim(x)+2) = 79360 to compute the first-order
and total Sobol’ indices. The sensitivity study as well as the
updating process is based on the modal beam response y, as
described in Gundlach and Govers (2019), in a free—free and
a clamped scenario, which are comparable to an elastic sus-
pension of the blade and a fixation of its root to a test rig,
respectively. In each case, the first 10 eigenmodes are ex-
tracted, excluding the rigid body motion modes in the free—
free scenario. For all 10 mode shapes of each configuration
(free—free and clamped), the natural frequency and the three
deflections and three rotations of each finite element beam
node Nrg are saved. These are collected in a response matrix
with dim(y) = (10+10)-(146) = 140 columns. Throughout
this paper, input parameters and model responses will also be
referred to as input and output features or conditions, respec-
tively.

2.3 Feature subspace selection with Sobol’ indices

After computing the first-order and total Sobol’ index S;;
and St;;, respectively, for each input feature x; and output
feature y; at every Npg position, we obtain a matrix of size
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140x51x 153, i.e., dim(y) x dim(Npg) x dim(x). For the sub-
space selection we follow two selection methods:

1. by computing the maximum-appearing first-order
Sobol’ index of each input feature and comparing it to a
threshold;

2. by performing singular value decomposition (SVD) on
the total Sobol’ sensitivity matrix to identify the most
relevant contributions and mapping these back onto the
input feature with a QR factorization with column pivot-
ing (Chakroborty and Saha, 2010; Olufsen and Ottesen,
2013).

The selected subspaces are merged into a final subspace,
which is applied for the model updating process.

For the first selection method the sensitivity matrix con-
taining the first-order Sobol’ index is condensed into a single
maximum value Spay,; for each input feature x;. Therefore,
it is reduced to identify relevant input features y by comput-
ing the maximum value along the other non-corresponding
dimensions, i.e., dimensions 2 and 3. Subsequently, an arbi-
trary threshold Syyg is defined to reject all features with a
lower maximum index Smax ;. By this, we aim to consider
only features which have a significant impact during at least
one event at one location, thus containing enough informa-
tion for the updating process. Based on experience, we have
chosen Sgg =0.1.

The second method follows a combination of SVD and
QR factorization on the sensitivity matrix of the total Sobol’
index according to Chakroborty and Saha (2010) for a given
set of n input parameters x. Here each mode shape is an-
alyzed individually. Therefore, the sensitivity matrix is di-
vided and reshaped; the first dimension, i.e., the 6 DOFs
plus frequency, and second dimension, i.e., the node posi-
tions Ngg, are flattened, while the third dimension, i.e., in-
put features, is kept yielding an (m x n) matrix. Given this
individual total Sobol” sensitivity matrix Sz for each mode
shape, the singular value decomposition according to Golub
and van Loan (2013) is

S =UxV’, (5)

U and V denote the left and right singular vector matri-
ces, each column corresponding to the singular values in
X =diag{s1,s2, -+, sp} with p =min(m, n). According to
Chakroborty and Saha (2010), the criterion percentage of en-
ergy explained by the singular values is used to identify the
g most relevant features. The percentage of energy Pey is cal-
culated as the normalized cumulative sum of the singular val-
ues:

8
> st

Py = ’=p1 100 %. (©6)
>s?

i=1
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The number of relevant singular values g is equal to the high-
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columns of the left singular vector matrix V of size n x n in
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applied to the input parameter vector x to re-sort the vector CEECRREE3EE |5

according to sensitivity significance:

xs=x!.P. (8)
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The sorted input vector x; is than reduced to the first g en-

tries, representing the most significant parameters for the an- QoQEmEmEEEY Y | &
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After computing all x values for each mode shape, they are FEEEREERZZ |°
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tried to identify parameters that are significant either on their
own or in interaction with others. However, the significance
is not measured as the maximum value on one occasion, such
as in the first method, but rather contributes substantially on
average over a complete mode shape.
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theorem or to the overall bending stiffness (Gross et al.,
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model. However, its shear modulus G2 Biax45 does have EEsEEE z = E @
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neglectable, while the mass contributions depending on the wemEevR RO
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out

Figure 3. The conditional coupling blocks (CCs) with their embed-
ded sub-network s1, #1, 52, and #,. This CC architecture can easily
be inverted (Ardizzone et al., 2019b).

approximately 30 % of dim(x). The output features were all
kept according to the feature selection approach. However,
a reduced set of radial positions can be applicable as the in-
trinsic information might be repeated in neighboring Ngg.
This repeated information does not necessarily improve the
updating results but reduces the computational performance.
Therefore, the output of each third node is selected, end-
ing up with a radial output dimension of dim(Ngg s1) = 17.
Thus, the final dimension for the model updating process of
the input feature space is dim(input) = dim(xse]) =45 and
of the output feature space is dim(output) = dim(NVgg sel) X
dim(y) = 17 x 140.

3 Invertible neural network architecture

Before proceeding to the model updating process, it is neces-
sary to define the invertible neural network architecture. Sim-
ilarly to Noever-Castelos et al. (2021), this work will build on
conditional invertible neural networks (cINNs) (Ardizzone
et al., 2019b) implemented in FrEIA — the Framework for
Easily Invertible Architectures (Visual Learning Lab Heidel-
berg, 2021). A basic cINN consists of a sequence of condi-
tional coupling blocks (CCs), as shown in Fig. 3. Each of
these represents affine transformations that can easily be in-
verted. The embedded sub-networks s1, t1, s2, and t, embody
the trainable functions of this type of artificial neural net-
work.

These sub-networks stack the conditions ¢ and the input
slice up or vy and transform them for further processing.
The stacking necessarily requires similar spacial dimensions
of ¢ and u; or vy, respectively. For a further brief introduc-
tion to cINNs with a topic-related application, please refer to
Noever-Castelos et al. (2021). A more in-depth explanation
can also be found in Ardizzone et al. (2019b, 2018).

After an extensive hyperparameter study, the presented in-
vestigation applies the network depicted in Fig. 4. Hyperpa-
rameters describe the network or architecture parameters of
artificial neural networks, like the number of layers or per-
ceptrons. It consists of a cINN (blue) with a sequence of
15 CCs, grouped into clusters of 3. This cINN transforms be-
tween the beam input x and the latent space z. However, un-
like the underlying feasibility study of Noever-Castelos et al.
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(2021), an additional feed-forward network is implemented,
referred to as a conditional network (orange). The idea is to
preprocess the raw conditions c, i.e., beam responses, before
passing them to the sub-networks in the CCs. It is trained
in conjunction with the cINN to extract relevant feature in-
formation optimally for each stage. The conditional net-
work architecture is inspired by Ardizzone et al. (2019b) and
should extract higher-level features of ¢ to feed into the se-
quential CCs, which, according to Ardizzone et al. (2019b),
should relieve the sub-networks from having to relearn these
higher-level features each time again. With a conditional
beam response ¢ of shape dim(c) = dim(NVEg se1) X dim(y),
the conditional network applies 1D convolutions (conv 1D)
to process the data, which gradually increase in size to pro-
gressively extract higher-level features, which are fed into the
different clusters of the cINN.

In general, the beam input would also be available in a
2D shape (property x spline nodes), though the feature selec-
tion of the sensitivity analysis reduced the splines irregularly.
Thus, a 2D shape cannot be maintained anymore, as not all
splines have the same number of nodes. Therefore, the se-
lected beam input x for the updating process going into the
cINN is flattened to a vector and is not present in a 2D shape,
as for example the beam response c. A consequence is that
the sub-networks cannot make use of convolutional layers
but have to include feed-forward layers. However, this will
not have any significant impact on the result. As mentioned
before, the conditions and input features are stacked in the
sub-networks, which thus need a similar spacial shape. Con-
sequently, the conditional network has to flatten the shape
to a vector for each output in order to agree with the input
shape in the sub-networks. Before flattening the output, the
conditional network activates the convolutional layer output
with a parametric rectified linear unit (PReLU) (He et al.,
2015) and halves the dimension with an average 1D pooling
layer (Chollet, 2018) (avg. pool 1D). After flattening, the di-
mension is additionally reduced with a fully connected layer
(fc-layer) to subsequently relieve the sub-network’s compu-
tation.

Within the cINN, the CCs are clustered into groups, which
are then each fed by the progressively processed condi-
tions c. All sub-networks have one hidden fc-layer, followed
by a batch normalization to improve generalization and a
PReLU (Chollet, 2018) activation layer, as depicted in Fig. 5.
As previously explained the conditional network processes
the conditions ¢ and has five outputs at different stages of
the processing. Each of these outputs is fed into a cluster
of three CCs. The configuration for each cluster and the
corresponding hyperparameters for the conditional network,
cINN, and sub-networks are summarized in Table 3.

The training is performed with an AdaGrad optimizer
(Duchi et al., 2011) and an initial learning rate of 0.3,
which is gradually decreased throughout the training process.
The optimization minimizes the negative logarithmic likeli-
hood (NLL) given in Eq. (9) in order to match the model’s
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Figure 4. Conditional invertible neural networks (cINNs, in blue frame) with sequentially connected conditional coupling blocks (CCs).
The conditional feed-forward network (cond. net, in orange frame) preprocesses the condition y with 1D convolutional layers and PReLU
(parametric rectified linear unit) activations. Average 1D pooling is performed on the output before it is flattened and reduced in dimensions
with a fully connected layer (fc-layer) to be then fed into the sub-networks of the CCs. The convolutions gradually increase in size in order
to progressively extract higher-level features from the condition c.

Table 3. Hyperparameter set of the complete network, including conditional network, conditional invertible neural networks (cINNs), and
sub-network. The cINN is divided into five clusters, for which the hyperparameters are listed separately. In Cluster 1, the conditions are
directly fed into the conditional coupling blocks (CCs), without a prior convolutional layer (see Fig. 4).

Cluster 1  Cluster2 Cluster 3  Cluster4  Cluster 5

Conditional Conv 1D kernel k 3 3 3 3
network stride s 1 1 1 1
padding p 1 1 1 1
out chan. “out” 32 64 128 256
Activation PReLU PReLU PReLU PReLU
Average 1D pooling  kernel k 2 2 2 2
stride s 2 2 2 2
padding p 0 0 0 0
Flatten ‘ v v v v v
Fully connected nodes ‘ 100 200 300 400 500
cINN Conditional coupling block (CC) ‘ 3 3 3 3 3
Sub-network  Fully connected nodes ‘ 400 500 600 700 800
Batch normalization ‘ v v v v v
Activation ‘ PReLLU PReLLU PRelLU PReLLU PReLLU
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sub-net

Figure 5. Sub-network with one hidden fully connected layer (fc-
layer), batch normalization, and a PReLU activation layer. Each
conditional coupling block (CC) has such a sub-network embedded.

posterior prediction of p,(x|y) with the true posterior of the
inverse problem (Noever-Castelos et al., 2021).

L = E[—log(p(xi | yi))]

v 12
=E{||f<x,,yl>||

> —log ||det(J,-)||:| + const. 9

4 Model updating of a rotor blade beam model

Having selected the significant features with the sensitiv-
ity analysis and defined the cINN architecture, we will now
move on to the model updating process and its evaluation.
Therefore, the workflow of the cINN if briefly explained
along with the schematic view of the transformations per-
formed by the cINN in Fig. 6. The presented cINN in Sect. 3
is trained and tested with sample sets of input features x and
their corresponding conditions ¢ in the form of the modal
beam responses as described in Sect. 2. The concept and
training of the cINN are based on Bayes’ theorem to infer
a posterior distribution py(x|c) from a set of conditions c.
Therefore, the cINN learns the conditioned transformation
from the posterior distribution py(x|c) onto the latent dis-
tribution p.(z), as depicted in Fig. 6. This mapping can be
achieved through maximum likelihood training. The training
is performed over 150 epochs, i.e., training iterations, with
a samples size of 30000 training samples in order to mini-
mize the negative log likelihood Lny1. (given in Eq. 9). For
a more detailed description of the inherent method of cINNs
please refer to Noever-Castelos et al. (2022) or Ardizzone
etal. (2019a). Additionally a sample set of 5000 test samples,
which have not been seen by the cINN during its training, are
used for validating and testing the cINN after the training.
All input features are always sampled randomly and inde-
pendently but at the same time in order to span the complete
parameter space. However, only features selected by the sen-
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forward f(z;c)

inverse f~'(z;c) p=(2)

Figure 6. Schematic view of the transformation between the input
features x and the latent space z for a given condition ¢ performed
by the conditional invertible neural network (Noever-Castelos et al.,
2021).

sitivity study (see Table 2) are passed on to the cINN as the
other parameters are identified to be less relevant.

As the cINN is trained to map the input features x into
a normally distributed latent space p,(z), during the inverse
evaluation the process is reversed: the latent space is sam-
pled from a Gaussian normal distribution (e.g., 50-100 sam-
ples), which the cINN then transforms along with the beam
response as condition c to the posterior prediction of the in-
put features. This prediction results in a distribution for each
input feature p,(x|y) as depicted in Fig. 6. In order to gen-
eralize the data for the training process and make them more
comparable for the evaluation, all input features and condi-
tions are standardized to zero mean and a standard devia-
tion of 1 over the complete training set. The necessary scal-
ing factors are additionally saved in the cINN to transform
back and forth any input features or conditions used in the
cINN besides the training process. Consequently, all features
and conditions during the evaluation of the cINN are related
to the complete training set’s mean and standard deviation.
Generally, the posterior predictions are also depicted with re-
spect to their ground truth, i.e., target value of the sample, to
align multiple samples for enhanced comparison.

This section first analyses the overall updating results of
the model. The identified inference ambiguities are then
highlighted and discussed before the model is checked
against its robustness to noisy conditions cnoisy. Based on the
predicted posterior distribution of the input features p(x|y),
a resimulation analysis is performed where the updated pa-
rameters are used to feed the physical model and calculate
the beam response in order to check the quality of the up-
dating and sensitivity analysis results. Finally, a method for
avoiding the computational intensive sensitivity analysis is
presented.

4.1 General analysis of the updating results

In the first instance the posterior distributions have to be ex-
amined. Figure 7 shows as an example the predicted posterior
distribution of four different input features as a histogram and
fitted Gaussian distribution. The ground truth on the x axis
represents the real value used to generate the sample, while
the distribution is obtained from the cINN. For the further
analysis, the type of distribution must be known in advance
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Figure 7. Conditional invertible neural network’s standardized pos-
terior prediction distributions p(x|y) for four input features of one
example. Plotted as a histogram and fitted Gaussian distribution.

for it to be possible to apply the correct metric, e.g., mean
or median. In this case of a Gaussian distribution, the mean
is the most significant value and will thus be applied in this
study to reduce the posterior prediction distribution to a sin-
gle value accompanied by the standard deviation as a mea-
sure of uncertainty.

By shifting the former x axis from Fig. 7 onto the y axis
and reducing the distributions to their mean and standard de-
viation, as stated before, we obtain the graphs depicted in
Fig. 8 for the same exemplary sample but with all updated pa-
rameters. Most values range close to their ground truth value
and with a narrow distribution, which is desired. For some
input features, e.g., pBiax90, N, the prediction is less accurate.
However, the overall posterior prediction in this example is
very good, as approx. 70 % of the predictions are within a
range of +0.05 (standardized scale) of the ground truth.

After having checked the results in detail for one exem-
plary sample, Fig. 9 shows the prediction result of all selected
input features for the 5000 test samples. The graphs scatter
the standardized mean posterior predictions p(x|y) against
their corresponding target value from the sample set. Thus,
the ideal case would correlate to an exact line with a slope
m =1 and an interception b =0. Each graph is equipped
with the coefficient of determination R and shows a corre-
sponding regression line with slope m. Approximately 70 %
of the selected features reach a very satisfying linear corre-
lation with R? > 0.9 while showing a slope m of approx. 0.9
or higher. For the rest of the discussion we will be sticking
with the R? value for the accuracy, as the slope accuracy cor-
relates with the R? value.

In the following we will create the link between the sen-
sitivity results to enhance comprehension and explain pos-
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sible discrepancies. In general a high sensitivity of Spax,; >
0.35 leads to a high prediction accuracy (R? > 0.9). A sec-
ond major metric to fully understand the prediction accu-
racy is the cross-correlation of the input features, which re-
veals collinearities within the physical model. These present
a problem for the inversion of the model as the output re-
sponse of the physical model is ambiguous and can be traced
back to different combinations of input features. However,
this will be addressed in Sect. 4.2. Input features that do
not have any substantial cross-correlation but high Spax i
reach prediction accuracies of R? 1.0, e.g., all spar cap
position points Pyidsc or Young’s modulus of the UD ma-
terial E11,up. For instance, pplange, v, has one of the high-
est sensitivity index values, Smax,; = 0.62, but a comparably
poor prediction accuracy of R? = 0.82. This fact is due to
a strong collinearity with the input features pfjange,n, and
PFlange,N,- In contrast, the feature G2 Biaxds,n, has a low
sensitivity Smax,; = 0.1 but an excellent prediction accuracy
of R? = 1.0. The reason for this is that this feature does not
show any collinearity to other features. Although the Sy, ; is
low, according to the first-order Sobol” index matrix it has at
three nodes Ngg the second- and third-highest contribution of
all input features for a particular mode shape and DOF, reach-
ing a magnitude of 50 %—75 % of the maximum value for
that DOF. That shows the powerful capability of the cINN to
learn the mapping of an input feature to only very few output
features out of the complete response data. Table 4 completes
this list of examples with the most striking discrepancies of
the sensitivity index and prediction accuracy of the input fea-
tures. Hence, the sensitivity analysis is a good indication to
detect a significant parameter subspace for the model updat-
ing, though high sensitivities do not directly promise highly
accurate inverse prediction.

4.2 Intrinsic model ambiguities

Ambiguities can originate from different sources, such as lit-
tle significant responses or modeling issues (Ardizzone et al.,
2019a). Noever-Castelos et al. (2021) revealed some intrin-
sic model ambiguities of counteracting density values of the
Biax90° and Triax layer in the blade cross-section. This was
also handled by the cINN in this study, although it was only
checked for the two spline nodes N3 and N4 as these coincide
in the feature selection. The results are depicted in Fig. 10,
showing the standardized mean posterior prediction for the
5000 test samples related to their ground truth and the lin-
ear regression as well as the corresponding slope m in the
label. While the mean posterior predictions at node N3 were
detected rather accurately (see Fig. 8), i.e., representing a cir-
cular area in Fig. 10, the values of node N4 spread more and
correlate to the plotted regression line.

In addition to the density, another ambiguity was detected
in Young’s modulus Ej; of both these materials, shown in
Fig. 11 for the nodes No_3. Here, the correlation of the
mean posterior predictions is reasonably well described by
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Figure 8. The two graphs show the standardized posterior prediction for all updated input features related to the target value with 1o standard
deviation as error; thus the mean value marks the distance to the target value, i.e., ground truth.

Table 4. Most striking discrepancies of the sensitivity and prediction accuracy of input features.

Feature Smax, i R? XCorrpi,  Explanation

E11,UD,Ny 0.110  1.000 —0.663 Low Smax,i; however, for two sensors it has the third-highest contribution in a
DOF during one mode shape. The values reach a magnitude of 66 % and 50 %
of the maximum value in their corresponding DOF.

G12,Biax4s5,N,  0.100  1.000 —0.179  Low Spax,i; however, for three sensors it has the second- and third-highest con-
tribution in a DOF during one mode shape. The values reach a magnitude of
75 %, 55 %, and 53 % of the maximum value in their corresponding DOF.

G12,Biax4s,N;  0.149  1.000 —0.383 Low Smax,i; however, for one sensor it has the third-highest contribution in a
DOF during one mode shape. The value reaches a magnitude of 83 % of the
maximum value in its corresponding DOF.

PTriax, Ny 0.292  0.790 —0.537 Mid-Smax,; ; mixed collinearity with pgjax90, ; and pBaisa, N,

PTriax, Ny 0.211  0.770 —0.678 Mid-Siax, i ; mixed collinearity with pgjax90, N, and PBalsa, N,

PFlange, Ny 0.214  0.660 —0.952 Mid-Smax,;; strong collinearity with ppjange, N,

PFlange, Ny 0.620  0.820 —0.952 High Smax,;; strong collinearity with pfjange, Ny a0d OFlange, N,

G 12,Flange, N, 0.332  0.720 —0.857  Mid-Smax,;; strong collinearity with G| Flange, N,

G 12,Flange, N> 0.276  0.690 —0.876 Mid-Smax,;; strong collinearity with G 12 Flange, Ny and G 12 Flange, N,
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Figure 9. Standardized mean of posterior prediction X of the updated inputs over the corresponding target standardized value for the 5000 test
samples. The coefficient of determination and a corresponding linear regression line are shown. The corresponding parameter description of
the features can be found in Table 2.

the calculated regression lines. Finally, the last correlation is schematically illustrated in Fig. 13 with a detailed
was found for the shear modulus G2, n, between the same view of the shell, showing the stacking in an exploded
materials (Fig. 12). view. Together, these layers build the symmetric in-

All ambiguities rely on the same fact that the Biax90° ner and outer face sheets of the shell, with a layer
and Triax layers appear subsequently in the stacking thickness of fgjaxg0 = 0.651 mm and try,x = 0.922 mm,
of the sandwich panels of the blade shell. The stacking the same density PBiax90 = PTriax = 1875kg m™3
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Figure 10. Interaction of density pgjax90 and prriax describing the
intrinsic model ambiguities. The depicted values correspond to the
standardized mean posterior prediction for the 5000 test samples.
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Figure 11. Interaction of stiffness E71 Bjaxo0 and E11 Triax de-
scribing the intrinsic model ambiguities. The depicted values cor-
respond to the standardized mean posterior prediction for the
5000 test samples.

Young’s modulus  Ejqj Biax90 = 26430 Nmm~—2, and
E11,Triax =29873N mm~2, and shear modulus
G12.Biax00 = 3464 N mm~2 and G2 Tyiax = 6918 Nmm 2.
The contributions of the properties to the model behavior
must be analyzed for it to be possible to understand these
ambiguities further. As described in Sect. 2, a finite element
beam model is composed of beam elements containing cross-
sectional properties (Blasques and Stolpe, 2012). These ba-
sically consist of mass and stiffness terms, which can be
directly linked to p and E;; or Gz, respectively (Hodges,
2006). The upcoming deductions follow classical mechanics
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Figure 12. Interaction of shear stiffness G2 Biaxgo and
G 12, Triax describing the intrinsic model ambiguities. The depicted
values correspond to the standardized mean posterior prediction for
the 5000 test samples.
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Figure 13. Schematic blade cross-sectional view at a radial position
of r = 12 m with a detailed explosion drawing of the shell.

theories found for example in Gross et al. (2012). First, con-
sidering the mass contribution, we stick with the simplified
example of the center of gravity:

1 2 1 2
X = x“dm = E xsmi, (10)
) mto[/ Mot I

where x; represents the center of gravity of each component
and m; the corresponding mass. Due to the very thin thick-
ness of both layers and the overall cross-sectional dimension
being about 10° greater for both materials, it can be assumed
that x; = x;. And by expecting that the cINN correctly pre-
dicts the total mass m o, Eq. (10) yields

1
<X mij, (11D
Mot SZ /

Mot = Z m; = kBiax90 - IBiax90 * OBiax90 + KTriax

Xg =

* ITriax * PTriax - (12)

And this obviously leads to the summation of all individ-
ual masses to the total mass, where k represents the number
of layers. This of course holds for higher-order moments of
mass due to the given proximity of both layers. Thus, a ratio
between both materials can be expressed:

kBiax90 * 1Biax90 * PBiax90 : KTriax * ITriax * OTriax - (13)
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Figure 14. Layup of the sandwich laminate face sheets of the blade
shell, consisting of Triax and Biax90°. The inner and outer face
sheets are symmetric.

A similar behavior is also found for the stiffness. This is ex-
plained in a simplified example for the flexural rigidity of a
beam in Eq. (14), which extends with the Steiner theorem to
Eq. (15).

Elz=Y Ejl, (14)
=Y Ej (L +22-4)) (15)

Assuming the layers have a rectangular shape, the area mo-
ment of inertiais I, ; = wl;;, though the width w of the layer
is large and the thickness ¢ is 1073 smaller, and thus this term
vanishes. With that, Eq. (15) reduces to Eq. (16). As stated
before, x5 can be assumed to be constant, and the same holds
for the width w; as in the cross-sectional direction both ma-
terial layers cover the complete circumference of the blade.
This results in the proportionality in Eq. (17):

Elroc) Ej-kj-t;. an

Similarly to the total mass m, we expect the cINN to pre-
dict the global E I accurately, and, consequently, we can es-
tablish the following ratio for the stiffness:

kBiax90 * 1Biax90 - EBiax90 : kTriax * MTriax - ETriax - (18)

Analog derivations can be made for the shear modulus, which
ends up in the following ratio:

kBiax90 - 1Biax90 * GBiax90 : KTriax * ITriax - G'Triax - 19)

Figure 14 shows the number of each layer for the respective
material along the blade, which corresponds to both the inner
and outer face sheet of the shell. The corresponding spline
nodes positions are also depicted. Table 5 shows the ratios
according to Eqgs. (13), (18), and (19) of the different possible
stacking options in Fig. 14.

Looking back to the identified ambiguities in Fig. 10 of
the density at node N4, the linear regression shows a slope
of m = —0.355. Assuming each spline node contributes to
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Table 5. Ratio between Biax90° and Triax layers for density and
stiffness contribution, considering different layer constellations.

KBiax90 1 1 1 2 2
KTriax 1 2 3 1 2

kBiax90° PBiax90 ‘[Biax90 0.706 0.353 0.235 1.412 0.706 0.471
I I

KTriax - OTriax Triax

Triax * £ Triax I Triax

1
kBiax90° EBiax90Biax90 0.625 0312 0.208 1.249  0.625  0.416
1 1 1 1
11

1
kBiax90° G Biax90/Biax90 0.354 0.177 0.118 0.707 0.354 0.236
1 1 1

Triax * O Triax I Triax 1 1

the variance of half of the space to the left and right of
it, the given slope agrees extremely well with the ratio of
kBiaxoo = 1 and ktriax = 2. This corresponds to the stacking
shown near the node Ny in Fig. 14. Due to the poor linear re-
gression of node N3 in Fig. 10, the slope is not reliable; thus
no conclusion can be drawn.

However, the counteracting Young’s moduli in Fig. 11 can
be very accurately captured by the ratios for most spline
nodes. Starting with node N, (Fig. 11, bottom left), which
is clearly affected by only one layer to the left and right of it
(see Fig. 14), the line slope m = —0.618 matches the value
in Table 5 (kBiax90 = 1; kTriax = 1) of 0.625. Node Ny has a
slope of m = —0.579, which agrees well with the value cor-
responding to kBijax90 = 2 and kTrax = 2 but tends towards
kBiaxo0 = 1 and ktrjax = 2, which is also in the scope of this
node according to the layup in Fig. 14. Similar behavior is
found for node Nj. Node N3 does not fully agree with this
argumentation, though the point scatters less and the regres-
sion line might not be accurate enough. The same holds for
the shear modulus in Fig. 12.

As assumed in the derivation of the ratios, we can state
that the cINN should correctly predict the total mass and the
stiffness contributions in a global manner but suffers from
an intrinsic model ambiguity affected by the counteracting
densities p, Young’s moduli Eq;, and shear moduli G, of
the neighboring materials Biax90° and Triax. However, it of-
fers posterior predictions for these features but with a wide
distribution expressing the uncertainty in the cINN based on
the given ambiguity. Merging both materials to a face sheet
material following laminate theory would avoid these ambi-
guities and improve the prediction qualities for the overall
laminate. It is assumed that, based on the relatively low layer
thickness, the infusion and therefore the fiber volume frac-
tion of both layers are very similar, so this approach should
be valid.

4.3 Model robustness

So far the analysis of this feasibility study was conducted
on the exact test sample data; i.e., for a given input sam-
ple the corresponding exact output sample is generated with
the tool chain MoCA + BECAS + ANSYS. In future stud-
ies, this presented method should be applied to real measured
data of a blade, and these normally suffer from measurement
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uncertainties. It is thus important to analyze the model ro-
bustness with respect to a measurement error in the output
features. Therefore, an error of 5 % as normally distributed
random noise is applied to the clean output response of each
sample, which is then used as a condition to infer the poste-
rior prediction of the input features. The results are shown in
Fig. Al in the Appendix, comparing the noisy (orange) and
the clean (blue) mean posterior predictions p(x|y) against
their corresponding targets for all 5000 test samples. The
graphs show some features that are sensitive to noise, such
as E11 Flange,Ny_; and G2 Flange,n;- As visually confirmed
in Fig. Al, the other features do not show a wider spread
(orange) than the original values (blue) and therefore do not
suffer from any accuracy loss. Additionally, tests were per-
formed resuming the training of the cINN with noisy con-
ditions in order to improve the prediction quality, though no
benefit was identified.

4.4 Resimulation analysis

A resimulation analysis aims to utilize the posterior predic-
tions of the cINN based on the original response to resimu-
late/recalculate the response with the physical model in or-
der to compare it to the original response used to perform
the prediction. For all samples, the correct input features and
their corresponding response features are known, which we
will be referring to as targets. The target response is used as
a condition for the cINN to infer the posterior prediction of
the selected input features. From these inferred input features
we can create new input splines for each input, as depicted
exemplarily in Fig. 15. However, the prediction is not a dis-
crete value but a Gaussian distribution as we have seen before
in Sect. 4.1. Additionally, there are nodes that the sensitivity
analysis excluded from the updating process; these may take
every value within their variation range as they were sampled
uniformly. Hence, for each input feature we obtain a range of
possible splines as Fig. 15 illustrates. Here, the orange spline
represents the target variance of the input parameter and the
dark blue area represents the expected value, i.e., the mean
prediction from the updated nodes. In the case of the first
spline for pyp, nodes Ng and N4 were excluded from the up-
dating process and can thus take any value in the range of
410 % as we do not have any prediction for them. As such
the blue area covers all possible splines a user would take
as the result from the model updating process. However, the
purpose of this first evaluation of the resimulation analysis is
to examine if sampling splines from the given distributions
will all lead to appropriate results. Therefore, the 1o uncer-
tainty displayed in light blue shows the standard deviation
of the predicted nodes. In this first analysis, we sample from
a uniform distribution for the non-updated nodes (dark blue
range) and from a normal distribution for the updated nodes
(light blue) to create a spline. This will be done 1000 times
for the same given target response of the selected single test
sample. Subsequently, these 1000 sets of input splines are
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Figure 15. Exemplary inferred spline prediction range for pyp,
E11,Biax90, and Ejq Triax- The graphs depict the target spline in
orange, the mean prediction in dark blue, and the 1o uncertainty in
light blue, for the updated spline nodes.

then used to create the model and calculate its modal re-
sponse. For the sake of completeness, Table A2 gathers the
identified mode shapes of both configurations. The resultant
mode shapes of the free—free and the clamped configurations
are then compared to the target response with the help of the
modal assurance criterion (MAC) (Allemang, 2003).

;- @[
|®; - D] - | D - D]

MAC;; = (20)

The MAC is the scalar product of two normalized vectors,
each representing all the model’s degrees of freedom of a
particular mode shape. It is basically an orthogonality check:
equal mode shapes reach a value of MAC = 1, and a value
of MAC > 0.8 is already assumed to show good coherence
(Pastor et al., 2012). For a multiple number of modes, a MAC
matrix summarizes all MAC values of all mode shapes com-
pared against each other.

In our use case, the MAC matrix is computed individually
for all responses of the previously generated 1000 samples
against the target response. For the free—free configuration,
Fig. 16 illustrates the mean value of the MAC matrix over
all samples in the top graph. The corresponding standard de-
viation is depicted below. The main diagonal ideally takes
values of MAC;; = 1, as the same mode shape of the sample
and the target is compared. Additionally, the matrix should
be symmetric, as the comparison of MAC;; = MAC}; rep-
resents the same two mode shapes. Figure 16 confirms this
ideal symmetric matrix structure for the resimulated sam-
ples, with mean values MAC > 0.9975 in the diagonal and
extremely low standard deviations of opac < 0.003. For the
clamped configuration, the values on the diagonal are also
strikingly close to 1 (MAC > 0.9960; omac < 0.005) and the
overall matrix appears symmetric. In this way, sampling from
the distribution predicted by the cINN for each selected input
feature and arbitrarily choosing a value for the non-updated
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Figure 16. Mean values (a) and standard deviations (b) of the MAC
matrix for the free—free modal configuration based on 1000 spline
samples inferred for one target response.
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values yield an exact coherence of target and computed mode
shapes.

After having analyzed a single target sample, the resim-
ulation is expanded to more samples to show the cINN’s
general performance. Therefore, posterior predictions for the
5000 test samples of the test set are inferred with the cINN.
Contrary to the resimulation case before, only one input is
generated for each of the samples by choosing the mean
value of the prediction and, in the case of excluded variables,
anode value of zero (i.e., no variation). That represents a typ-
ical choice a user would make, based on predicted posterior
distributions. Figure 17 depicts the mean (horizontal marker)
and max and min values (bar) of the diagonal entries of the
MAC matrices, which are computed for all samples and both
configurations, to compare the resimulated model and its re-
spective target response. Again, all mean values are close
to 1 (90 % with a MAC > 0.995), so an overall excellent up-
dating performance can be stated. Single predictions lead to
worse results, as depicted by the minimum value (4.3 % of all
have a MAC < 0.98), especially for the higher-order modes,
though the MAC value of less than 0.8 is only obtained for
the 10th eigenmode of the free—free configuration.

The generally good performance is also confirmed by
the predicted corresponding natural frequencies. Figure 18
shows the relative error from the resimulated frequencies to
the target frequencies of each mode for both configurations,
giving the mean and standard deviation over all resimulated
samples. The range of the mean error is |ef| < 0.25 % and the
standard deviation o,; < 1.50 %.
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Figure 17. Mean, maximum, and minimum diagonal entries of the
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Figure 18. Mean and standard deviation of the natural frequency
error ef computed for 1000 target responses.

The results of the presented resimulation analysis show the
following:

1. The counteracting intrinsic model ambiguities dis-
cussed in Sect. 4.2 cancel each other out; i.e., the over-
all shell laminate properties are correctly predicted, al-
though the individual stiffness or density of the layers
(Biax90 and Triax) is not predicted accurately. So the
cINN still correctly captures the global model behavior
with respect to mass and stiffness distribution.

2. As expected, the insensitive and thereby excluded input
parameters really do not have an impact on the results
and can be chosen arbitrarily (see Fig. 15).

3. The overall cINN updating performance is strikingly
good, with on average 90 % of the mode shapes of the
resimulated samples showing a MAC > 0.995. The fre-
quencies were recovered with a mean error of |ef| <
0.25 %.

4.5 Replacing sensitivity analysis

Similarly to other model updating studies such as Luczak
et al. (2014), this work relies on a sensitivity study to reduce
the parameter space of the updating problem to significant
parameters. This so-called feature selection is performed in
this particular investigation with the aforementioned Sobol’
method. A quasi-random sampling with low-discrepancy se-
quences (Dick and Pillichshammer, 2010) is applied to com-
pute the Sobol’ indices, which is a computationally efficient
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and space-efficient sampling method for the sensitivity anal-
ysis. However, the sampling set to train the cINN in general
has to span a real random sampling space, where all features
are varied independently but simultaneously. That means, de-
spite the 79 360 samples for the sensitivity analysis, an addi-
tional set of 30000 samples has to be generated for training
purposes and a second variably sized set for validation and
testing of the cINN. In total, this results in approximately
115000 samples and thus model evaluations. This is crucial
considering that the model evaluation in general is the com-
putational bottleneck. Although a classical optimization al-
gorithm would also need a feature selection to reduce the up-
dating problem complexity on top of its usual model evalua-
tion number for the optimization process, the overhead of the
sensitivity cuts down the computational benefit of the cINN.
A single model evaluation from creating the input parameter
set to importing the modal response of the model took on av-
erage approx. 80s on a single-core device. We generated the
115000 samples on a 40-core computing cluster in slightly
less than 2.66 d. In contrast, the cINN training for 150 epochs
took only 0.67 h on an NVIDIA Tesla P100 GPU.

To reduce the computational sampling time, the idea is to
apply the cINN to the full input parameter set x to identify
relevant parameters. The cINN implicitly detects irrelevant
features by predicting an uncertain posterior distribution, i.e.,
high standard deviation, due to missing information for the
inference in the response. However, Sect. 4 and 4.2 showed
that intrinsic model ambiguities lead to wider distributions,
without being inaccurate in the global model behavior. This
means the respective input parameters should not be rejected
due only to a widely distributed posterior prediction. There-
fore, we combine three metrics to perform the feature selec-
tion on the posterior predictions of the full input parameter
set with respect to standardized values:

1. root mean square error (RMSE) of the predicted poste-
rior’s mean and target value,

2. standard deviation of the predicted posterior distribu-
tion,

3. cross-correlation matrix of the predicted posterior’s
mean values.

The RMSE should reject features that might have a narrow
predicted posterior distribution but do not match the target
value. This is more a security or backup metric. The stan-
dard deviation is a metric for the confidence of the cINN and
should reject features that are not significantly included in
the information of the modal beam response. And finally, a
cross-correlation matrix should reveal intrinsic model ambi-
guities from feature interactions, in order to keep the respec-
tive features, though the other two metrics would reject them.
The cross-correlation matrix of this inverse problem is de-
picted in Fig. 19. The inputs featso_s4 and featgg_74 in the
matrix correspond tO PBiax90, Ng—Ny> E£11,Biax90,Ng—N,»> and
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Figure 19. Cross-correlation of all input features based on mean
posterior prediction of the 5000 test samples.

G12,Biax90,Ng—N, and tO OTriax, Ng—Ny» E11,Triax, No—Ny» and
G 12, Triax, No— N4 » Tespectively, which show the high negative
correlation of the interacting features discussed in Sect. 4.2.
This matrix also helps to detect other relevant correlations.
Especially nearby nodes of the same feature (e.g., featgs_g7,
E11,Flange, No_,) can counteract each other, as these have to
predict in combination the spline behavior in between them;
i.e., if one increases, the other has to diminish. Similar be-
havior was already detected in Bruns et al. (2019).

Similarly to the Sobol’ threshold S;; mia = 0.1, thresholds
for the given metrics can be chosen arbitrarily again and rely
on experience. In this case we have chosen RMSEy,g = 0.5,
othid = 0.5, and XCorrnid,max = —0.75. Table Al lists all
features selected by the sensitivity analysis and the cINN
in comparison. The sensitivity analysis selects 49 features,
while the cINN includes 54 features. Most of the features
agree for both selection methods, except those included in
Table 6. The cINN, for example, includes the input features
E11,up,n, and G 12 Balsa, N, » Which can be very well predicted
by the cINN but which are not detected by the sensitivity
analysis to be significant for the response variations. Ad-
ditionally, it detects a few highly negative correlating fea-
tures — E11 Biax90, N, and G12,]313,(9()‘1\1072_4 — which follow the
similarly ambiguous behavior shown in Sect. 4.2, counter-
acting the respective Triax properties. However, the features
PTriax,N; » and PFoam, N, , detected by the sensitivity analysis,
were excluded by the cINN, though at least the first two show
a significant Spyax > 0.200.

Finally, this procedure is based on 30000 samples and
the same cINN architecture and hyperparameters. Figure A2
shows the correlation results for all features included in the
sensitivity analysis, where the orange scatter represents the
prediction with the model trained on the full input set and
the blue scatter the prediction by the former model based
on the feature selection from the sensitivity analysis. Only
very few features show a significant loss in accuracy com-
pared to the original model and most likely for the feature
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Table 6. Feature selection discrepancies between both methods —
sensitivity analysis (SA) and the cINN-based approach — and their
corresponding metrics. All values depicted in bold meet their corre-
sponding threshold and are thus selected by the respective approach.

Feature SA  Smax SVD <CcINN RMSE o XCortmin
E11,uD.N4 0.006 v 0.340 0.354  —0.4407
E11 Biax90,N4 0.051 v 0913 0.881 -0.9524
G 12,Biax90,N0O 0.040 v 0.862  0.833 —0.8341
G12,Biax90,N1 0.062 v 0454  0.374 —0.8889
G12,Biax90,N2 0.078 v 0.941  0.920 —-0.986
G 12,Biax90,N4 0.009 v 1.014  0.991 —0.9485
PTriax,N1 v o 0.292 v 0.648  0.531 —0.5367
PTriax,N2 v 0211 v 0.652 0.604  —0.6785
GBalsa,N1 0.017 v 0.285 0.230  —0.2985
PFoam,N2 v 0.163 v 0.623  0.538 —0.4732
PFoam,N3 0.072 v 0478 0.483  —0.5273

with a worse prediction quality. Thus, there is no need to
perform a second training process with a reduced data set
for the sensitivity-free procedure, though the selection of the
samples should still reveal the significant parameters of the
model. Relying on the same computing resources mentioned
above, the overall process in this particular case adds up to
a complete computation time of approximately 20h, which
corresponds to a reduction of 69 %. It also reveals that the
cINN can handle a higher number of parameters while ex-
tracting the relevant information from the response to predict
the significant input features. On account of that, there is no
need for a pre-analyzing sensitivity study in future investiga-
tions. This gives cINNs a huge advantage over common ap-
proaches as discussed in the Introduction. They rely on a sen-
sitivity analysis to identify a significant subspace to reduce
the problem dimension. With 30 000 model evaluations for
a total of 49 updated features, the cINN is quite efficient. A
stochastic updating approach demanded 1200-12 000 evalu-
ations for a simple three-feature updating problem (Augustyn
et al., 2020; Marwala et al., 2016). Higher dimensional prob-
lems could explode in computational costs for common de-
terministic approaches, relying even more on an additional
preprocessed subspace selection (here, 79 000 model evalu-
ations). However, to the best of the authors knowledge, no
model updating was found in the literature for such a high
parameter space as presented in this work.

5 Conclusions

The current study aims to extend the feasibility study of
model updating with invertible neural networks presented
in Noever-Castelos et al. (2021) to a more complex and
application-oriented level in the form of a Timoshenko beam.
The model updating was performed on a global level. This
took into account five-noded splines for input feature repre-
sentation over the blade span of material density and stiff-
ness, as well as layup geometry. The blade response used
for the updating process is in the form of modal shapes and
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frequencies. The outstanding updating results presented in
this study strengthen the conclusion in Noever-Castelos et al.
(2021) that invertible neural networks are highly capable of
efficiently dealing with wind turbine blade model updating
for the given global fidelity level.

In comparison with Noever-Castelos et al. (2021), this
investigation increased the model complexity from a sin-
gle cross-sectional representation to a finite element Timo-
shenko beam model of the complete blade. The update pa-
rameter space was only slightly expanded for the materials to
cover the most relevant, independent elastic properties of or-
thotropic materials. These, however, are varied over the com-
plete blade length with three- to five-noded splines. More-
over, an established, global, variance-based sensitivity anal-
ysis with the Sobol’ method was performed to determine the
relevant update parameters. A total of 49 input parameters
were updated based on modal responses of the blade in a
free—free boundary configuration and a root-clamped config-
uration. The applied cINN approximately doubled its depth,
and an additional feed-forward network was implemented to
preprocess the conditions of the cINN in order to improve the
network’s flexibility and accuracy.

The result analysis of the predicted parameters shows
strikingly high coherence with the target values with
R? scores over 0.9 for 75 % of the updated parameters. The
very high updating certainty of the network is reflected in the
narrow predicted posterior distributions of the updated pa-
rameters. Moreover, this study revealed more intrinsic model
ambiguities of material properties (E11, G132, p) of the lam-
inate face sheets Biax90° and Triax due to their proximity
in the layup. The cINN learns and understands the intrin-
sic collinearities of the physical model, which result in am-
biguous inverse paths. However, the cINN is still not able to
distinguish from which parameter the individual contribution
comes. Nevertheless, in contrast to a deterministic approach,
the user can see how uncertain the cINN is about the predic-
tion due to its wide spreading of affected features’ predic-
tion. In future contributions this can be handled by updating
a joint density or stiffness variation, instead of individual fea-
tures. However, the resimulation analysis revealed the modal
response of the updated models matches the target results ex-
ceptionally well: 90 % of the mode shapes of the resimulated
samples show a MAC > 0.995 and a mean error in the nat-
ural frequencies of |ef| < 0.25% over 1000 randomly cho-
sen test samples. Finally, this study presents a method for
avoiding the computationally expensive sensitivity analysis
by fully exploiting the opportunities of the cINN. For this
reason, the full parameter set of Dy, = 153 was used for the
update process. Thanks to the underlying probabilistic ap-
proach of the cINN, a similar set of significant input features
was detected from the complete parameter space, based on
the predicted posterior distributions and a cross-correlation
between the input feature to identify the ambiguities. Thus,
the necessary sample number for the complete process was
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reduced to 30000 samples and the computational time by
69 % while maintaining similar outstanding updating results.

Referring back to the three major problems of the ap-
proaches studied in the Introduction, the cINN tackles these
in the following ways:

1. It has a high computational efficiency in relation to the
model complexity, i.e., updating parameter space, and
even more by evading computationally expensive sensi-
tivity analysis. The cINN only demanded 30 000 model
evaluations (& 20h) for a total of 49 updated features
within an original space of 153 features.

2. It makes an inherent probabilistic evaluation, as it fol-
lows Bayes’ theorem and is trained to minimize the neg-
ative log likelihood of the mapping between posterior
distribution and latent distribution.

3. A surrogate of the inverted model is represented. By
that, the cINN can be evaluated for any given response
(in the model boundaries) at practically no additional
cost after training. Any other approach is solved only
for one particular model response and has to be repeated
in the case of a different set of responses.

In conclusion, the feasibility study was highly successfully
extended to a full-blade beam model, though with a still lim-
ited parameter set. The cINN proved to be extremely capable
of performing efficient model updating with a larger param-
eter space. The physical model complexity in the form of a
Timoshenko finite element beam is already at the state-of-
the-art level applied in industry. However, to ensure that the
cINN learns the complete inverted physical model, it is im-
portant that all possibly relevant parameters have to be varied
so that the cINN is trained for all circumstances of varia-
tions for the model updating. Therefore, ongoing and future
investigations should bring this method to a real life appli-
cation, where the parameter space will span more relevant
aspects of blade manufacturing deviations, such as adhesive
joints. Moreover, the combined laminate properties of the
face sheets might be able to prevent the model ambiguities
and even improve the already good prediction accuracy. One
possible application scenario could be a final quality control
after manufacturing if the response generation can be auto-
mated. The benefit would be to find rough manufacturing de-
viations and even provide individually updated models for
each blade, which could for example enhance turbine con-
trols.
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Appendix A: Tables and figures

Table A1. Comparison of the feature selection performed by the
sensitivity analysis (SA) and directly with the cINN applied to the
full input parameter set.

Feature Smax,i SVD  cINN  Feature Smax,i SVD  cINN
PUD,NO v v v E11,Triax,N1 v v v
PUD,N2 v v v E11Triax.N2 v v v
PUD,N3 4 v v E11,Triax,N3 v v v
E11,UD.No v v v E11,Triax,N4 v v v
Ej1,up,N1 v v v G 12, Triax,NO v v v
Ej1,up,N2 v v v G 12, Triax,N1 v v v
E11,upb,N3 4 v v G 12, Triax,N2 v 14 v
Ej1,up,N4 v G 12, Triax,N3 v v v
G 12, Biax45,NO v v G2, Triax, N4 v v v
G 12 Biax45,N1 v v 4 PFlange,NO v v
G 12 Biax45,N2 v v 14 PFlange,N1 v v v
G 12,Biax45,N3 v v v E11,Flange,NO v v
PBiax90,N3 v v v E11,Flange,N1 v v v
PBiax90,N4 v v E11,Flange,N2 v v v
E11,Biax90,NO v v v E11,Flange,N3 v v
E11,Biax90,N1 v v G12,Flange,N1 v v v
E11,Biax90,N2 v 4 v G 12, Flange,N2 v v v
E11 Biax90,N3 v v 4 G 12, Flange, N3 14 v
E11,Biax90,N4 v PBalsa,N1 v v v
G 12,Biax90,NO v GRalsa,N1 v
G12,Biax90,N1 v PFoam,N2 v v

G 12,Biax90,N2 v PFoam,N3 v
G 12,Biax90,N3 v v v Pss Mid, spar cap,NO v v v
G 12,Biax90,N4 v Pss Mid, spar cap,N1 v v v
PTriax,N1 v v PSS.Mid,spar cap,N2 v v v
PTriax,N2 v v PPS.Mid,spar cap,NO v v v
PTriax,N3 v v v PPS.Mid,spar cap,N1 v v v
PTriax,N4 v v 4 PPS.Mid,spar cap,N2 v 14 v
E11,Triax,NO v v v

Table A2. Identified mode shapes of the first 10 modes (excluding
rigid body motion) of the free—free and the clamped modal config-
uration.

Mode no.  Free—free = Clamped
1 1. Flap 1. Flap

2 1. Edge 1. Edge

3 2. Flap 2. Flap

4 1. Torsion 2. Edge

5 3. Flap 3. Flap

6 2. Edge 1. Torsion
7 4. Flap 4. Flap

8 2. Torsion 2. Torsion
9 5. Flap 3. Torsion
10 3. Edge 5. Flap
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Figure A1. Standardized mean of posterior prediction X of the updated inputs over the corresponding target standardized value for the
5000 test samples. The original samples predicted with clean conditions are in blue, compared to samples with noisy flawed conditions (5 %
random noise) in orange. The noisy conditions are intended to simulate measurement inaccuracies of the modal beam response.
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