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Abstract
Cold quantum gases are versatile tools not only to investigate quantum many-body physics
and ultracold chemistry, but also for testing fundamental theories. Many degenerate quan-
tum gases, however, consist of atoms and provide only short-range interactions between
different particles limiting research opportunities. Hence, shortly after the production of
the first atomic gases an interest arose in ensembles of cold polar molecules that exhibit ad-
justable long-range anisotropic dipole-dipole interactions to expand research fields further.
Loading such a molecular cloud into an optical lattice provides an excellent experimental
control regarding particle-particle interactions and to simulate condensed matter physics.

Experiments with cold quantum gases require imaging techniques to determine proper-
ties like the number of atoms and molecules or the position of single particles. For atomic
ensembles, absorption or fluorescence techniques are often utilised since atoms usually pro-
vide closed cycling transitions allowing to scatter a large number of photons for the imaging
signal. The internal level structure of molecules, though, is more complex compared to
atoms due to additional rovibrational states and many molecules do not provide closed
cycling transitions. For these molecules new imaging techniques need to be developed.

In this thesis such a novel detection scheme for cold molecules is proposed. The presented
method utilises dispersive light-matter interactions to scatter multiple photons even in the
absence of closed cycling transitions. By using either large laser detunings or low powers,
absorption can be suppressed during the detection of the particles. The imaging signal is
enhanced by placing the molecules inside an optical cavity and a superposition of several
transverse modes allows to detect single molecules spatially resolved. Finally, the imaging
signal is measured by a homodyne detector.

In the first part of the thesis a theoretical background of the imaging technique is provided,
starting with a classical approach. The advantages of a classical theory are an intuitive
understanding of the detection method and an applicability to spherical nanoparticles, which
can then be utilised as test objects for the proposed imaging scheme. The resolution capability
of the detection technique is discussed and the important role of small cavity waists for high
resolutions is highlighted. In a next step, a full quantum mechanical approach is presented
and compared to the classical theory. It is shown that both theories are equivalent except
for vacuum fluctuations, a pure quantum physical effect important to determine quantum
noise correctly.

After introducing theoretical backgrounds, cavity geometries suitable for the detection of
molecules are discussed. Properties, directly important for the imaging process, e. g. waist,
mode number and linewidth, and technical aspects like misalignment sensitivity are taken
into account. A simultaneous optimisation of all these properties is not possible since they
are partially contradicting each other. However, a balance between these different aspects
is found. Two cavity geometrics, feasible for imaging NaK molecules, a hemispherical
resonator and a concentric cavity are proposed.

Finally, an experimental setup to demonstrate the general feasibility of the imaging
technique is developed. Titania and silver are identified as materials for nanoparticles
best suited to imitate NaK molecules. Imaging resonators are designed and an alignment
procedure for these cavities is presented.

Keywords: molecules, imaging, optical resonators, transverse modes, resolution, dis-
persive light-matter interaction, cold quantum gases





Zusammenfassung
Kalte Quantengase ermöglichen die Erforschung von Quanten-Vielteilchensystemen und
ultrakalter Chemie sowie die Verifizierung fundamentaler physikalischer Theorien. Viele
entartete Quantengase bestehen aus Atomen und unterstützen lediglich kurzreichweitige
Wechselwirkungen zwischen den einzelnen Teilchen. Schon kurz nach der Erzeugung erster
atomarer Gase wuchs daher ein Interesse an Ensembles bestehend aus kalten polaren Mole-
külen, welche durchstimmbare langreichweitige anisotrope dipol-dipol Wechselwirkungen
zwischen einzelnen Partikeln aufweisen und die Erforschung komplexerer Theorien ermög-
lichen. Wird eine entsprechende molekulare Wolke in ein optisches Gitter geladen, erlaubt
dies eine exzellente Kontrolle der Wechselwirkungen zwischen verschiedenen Teilchen und
ermöglicht es, kondensierte Materie gezielt nachzubilden.

Abbildungstechniken sind für die experimentelle Untersuchung von Quantengasen wich-
tig, um beispielsweise die Anzahl von Partikeln oder die Position von einzelnen Teilchen zu
bestimmen. Für atomare Gase werden häufig Absorptions- oder Fluoreszenzverfahren ver-
wendet, da Atome üblicherweise über geschlossene Übergänge verfügen, die es erlauben,
mehrere Photonen an einem einzelnen Teilchen zu streuen. Für kalte Moleküle ist dies oft
nicht möglich, da diese aufgrund einer komplexeren internen Zustandsstruktur meist über
keine solchen geschlossenen Übergänge verfügen.

In dieser Arbeit wird eine neue Abbildungstechnik vorgestellt, welche sich auch für
Moleküle eignet. Diese basiert auf dispersiven Licht-Materie Wechselwirkungen, um meh-
rere Photonen auch ohne geschlossene Übergänge streuen zu können. Absorption kann
dabei durch größere Frequenzverstimmungen oder durch geringe Laserleistungen unter-
drückt werden. Das Abbildungssignal wird durch einen Resonator verstärkt und mithilfe
eines homodynen Detektors gemessen. Einzelne Moleküle können durch eine Überlagerung
verschiedener transversaler Moden ortsaufgelöst detektiert werden.

Zunächst werden die theoretischen Grundlagen des neuen Abbildungsverfahrens ent-
wickelt, wobei zunächst ein klassischer Ansatz verfolgt wird. Ein Vorteil dieser klassischen
Theorie ist ihre Anwendbarkeit auf Streuprozesse von sphärischen Nanopartikeln, wodurch
diese als Testobjekte für die Detektionsmethode verwendet werden können. Ebenfalls wird
das Auflösungsvermögen diskutiert, welches insbesondere von der Größe der Taille des
Resonatorfeldes abhängt. Anschließend wird eine quantenmechanische Version der Theo-
rie entwickelt und mit dem klassischen Ansatz verglichen. Dabei wird gezeigt, dass beide
Theorien äquivalent sind, abgesehen von Vakuumfluktuationen, einem rein quantenphysi-
kalischem Effekt, welcher für die korrekte Beschreibung quantenlimiterten Rauschens rele-
vant ist.

Im Folgenden werden mögliche Resonatorgeometrien im Hinblick auf die Detektion kal-
ter Moleküle diskutiert. Dabei werden Eigenschaften, die unmittelbar relevant für eine er-
folgreiche Abbildung sind, z. B. Strahltaille, Modenanzahl und Linienbreite, und technische
Aspekte, wie Robustheit gegenüber Fehljustage, berücksichtigt. Eine gleichzeitige Optimie-
rung aller dieser Eigenschaften ist nicht möglich, da diese einander teilweise entgegenstehen.
Ein Kompromiss zwischen diesen sich widersprechenden Aspekten wird vorgeschlagen. Es
wird je eine hemisphärische und eine konzentrische Resonatorgeometrie bestimmt, welche
für die Detektion von NaK Molekülen geeignet sind.

Im letzten Teil der Arbeit wird ein experimenteller Aufbau entwickelt, welcher geeignet
ist, um die allgemeine Anwendbarkeit des Abbildungsverfahrens zu demonstrieren. Titan-
oxid und Silber werden als mögliche Materialien für Nanopartikel vorgeschlagen, um NaK
Moleküle zu imitieren. Abbildungsresonatoren werden konzipiert und ein Justageverfahren
für diese wird vorgestellt.

Schlagwörter: Moleküle, Abbildung, optische Resonatoren, transversale Moden, Auflö-
sung, dispersive Licht-Materie Wechselwirkung, kalte Quantengase
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Chapter 1

Introduction

1.1 History

In 1900, the physicist Max Planck derived the law of black-body radiation by introducing
quantised energy packages [1]. This work also introduced the Planck constant h, one of
the most fundamental physical constants, for the first time. Planck himself, however, was
initially not convinced of a physical meaning behind his concept of discrete energy portions
[2] and saw it more as a mathematical tool [3]. It was Albert Einstein who conceded a physical
reality to quantised particles, by interpreting light as photons and, thus, explaining the
photoelectric effect in 1905 [4]. These two groundbreaking works by Planck and Einstein are
the starting point for all modern quantum theories. The existence of quanta allows to explain
properties and effects that cannot be covered by classical theories and quantum physics has
been applied to many fields of science, e. g. chemistry [5], medicine [6] or engineering [7].
Quantum optics [8] is an important field utilising quanta to describe interactions between
matter and light. To govern these interactions correctly, a quantisation of field theories is
necessary. This quantisation was first done by Paul Dirac in 1927 [9] and further developed
in the following decades, e. g. in [10, 11, 12]. In combination with technical innovations like
lasers [13], quantum optical theories opened a whole new set of research fields.

One of these research fields relates to (ultra-)cold quantum gases, which typically consist
of particles at temperatures in the range of nK or µK and allow to investigate quantum many
body problems [14] and condensed matter physics [15] or may serve as quantum simulators
[16]. Important requirements for experiments in the field of quantum gases are cooling and
storing methods for atoms, the first of these techniques demonstrated was Doppler cooling in
1978 [17]. Further historical milestones were Zeeman deceleration [18], evaporative cooling
[19], magneto-optical traps [20] and optical molasses [21]. Finally, the breakthrough was the
realisation of the first Bose-Einstein condensates [22, 23], an exotic state of matter already
predicted by Einstein in 1925 [24, 25] relying on a work from Bose [26], where a large fraction
of bosonic atoms occupy the absolute ground state. Shortly after, quantum degenerate Fermi
gases were also realised [27]. The capability to produce these quantum states of matter leads
to an extensive growth of the research field of quantum gases and enabled physicists to
investigate many quantum phenomena and properties experimentally, like quantum phase
transitions [28, 29], Sakharov oscillations [30] or superconducitivty [31].

The first produced cold quantum gases consisted of atoms, which often provide only short
interparticle interaction length and, thus, limited research opportunities. Hence, shortly after
the production of the first quantum gases, an interest arose for quantum gases to provide
long range anisotropic dipole-dipole interactions between particles [32], which would allow
to investigate a broader research field [32, 33]. For example, atom species like Chromium
[34], Dysprosium [35] and Erbium [36] provide a permanent dipole moment and, therefore,
facilitate the existence of dipolar quantum gases. However, the dipole moments of these
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2 1. INTRODUCTION

Figure 1.1: One dimensional optical lattice along the x-direction. A periodic potential Vpot
captures atoms or molecules at discrete positions, which are called the lattice sites. Not all
sites are necessarily occupied by a particle. The distance between two adjacent sites is called
the lattice constant.

atoms are too weak to investigate contact interaction forces or to overcome the spacing
between the sites of most utilised optical lattices [37] and particles with stronger dipole
moments are desired.

Possible candidates for strong long-range interactions are heteronuclear polar molecules,
which are able to exceed the strength of atomic dipole moments by magnitudes [38]. Addi-
tionally, the dipole moment of these molecules is induced by external electric fields and,
therefore, the interaction strength can be adjusted as desired [39]. Furthermore, polar
molecules also exhibit rotational and vibrational quantum states [39] and this complex level
structure expands the research fields of fundamental theory testing, ultracold chemistry or
new many-body quantum phases in comparison to atoms [40]. However, the rovibrational
states make is also more difficult to handle these molecules experimentally. Especially, direct
cooling is not feasible for molecules, except for some few species, e. g. [41, 42]. Therefore,
the standard procedure to produce ultracold polar molecules is to cool both atom species of
the molecule separately and then combine them to a weakly bound molecule through a so
called Feshbach resonance [43]. Subsequently, these Feshbach molecules are transferred into
the ground state by applying a Stimulated Raman Adiabatic Passage (STIRAP) [44], thus
enabling the creation of quantum gases with high phase-space densities [45].

1.2 Imaging of cold quantum gases

Parallel to the feasibility to produce cold quantum gases a necessity for imaging techniques,
which allow to determine properties like temperature or the number of particles, arose.
Especially, imaging techniques are necessary to measure the density of the gaseous clouds
or the position of single particles. The latter is important for atoms or molecules loaded
into an optical lattice [46] that allows, for example, to simulate condensed matter systems
[16] and to experimentally control the particles effectively. An optical lattice is a periodic
potential allowing to trap particles at different potential minima, also called lattice sites, by
applying a dipole force to the atoms or molecules [46], see figure 1.1. Therefore, optical
lattices allow to arrange cold particles periodically and, thus, imitating solids. The spacing
between two adjacent sites, in the following also called lattice constant, is equal to λ

2 , where
λ is the wavelength of the lasers forming the lattice [47]. The lattice constant is often set to
532 nm [48, 49]. Resolving particles in an optical lattice is an important obstacle that needs
to be overcome by imaging techniques applied to quantum gases in such lattices to detect
single atoms or molecules.

All measurement techniques for quantum gases rely on the interaction with light. The
interaction of a photon with an atom or molecule can be divided into three processes, which
are absorption, emission and a phase shift [50]. For absorption, the photon is annihilated and
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Figure 1.2: Schematical representation of the two most common dispersive imaging tech-
niques. The left side illustrates dark ground imaging, while the right side shows phase
contrast imaging. Both methods appear to be similar, the only difference is that the unscat-
tered light in the case of dark ground imaging is blocked, while it is shifted in phase for
phase contrast techniques. However, the difference in the signal quality is significant since
the overlap with the unscattered beam leads to improved signals for small phase shifts for
phase contrast imaging.

the particle enters an excited state with a higher energy than before, while emission is the
opposite process, where a photon is created and the particles energy is reduced. Finally, the
phase of the light can be shifted through the interaction with matter. The first two processes
are classified as absorptive, while phase shifts are considered as dispersive interactions.

The imaging techniques for the first created Bose-Einstein condensates were based on
absorptive imaging [22, 23], where quantum gases are illuminated with a light beam and
the shadow cast is measured with a detector, e. g. a CCD camera [50]. In comparison,
fluorescence imaging methods collect and detect photons emitted by the probe of interest.
Since photons are randomly emitted into an arbitrary direction and imaging systems are
limited by numerical apertures, only a fraction of all photons can be detected and, thus,
fluorescence signals are usually considered to be weaker than absorption imaging techniques
[50]. However, fluorescence imaging is often background free, which is in turn an advantage
[50].

Dispersive imaging methods, i. e. techniques that utilise the induced phase shift, can
be separated into two categories, dark ground and phase contrast imaging. Both handle
the light not scattered by the quantum gas differently [50]. Both methods are schematically
depicted in figure 1.2. In dark ground techniques, the unscattered light is simply blocked
and only photons that have dispersively interacted with the probe of interest are detected. In
contrast to this, phase contrast imaging [51] schemes utilise the unscattered light by shifting
its phase by ±π2 and overlapping it with the scattered field, which provides improved signal
quality for small phase shifts in comparison to dark ground imaging [50].

Dispersive imaging methods may utilise the phase shift of the light in different ways. For
example, a cloud of cold particles refracts a light beam like a lens. If the beam is detected,
conclusions can be drawn regarding the quantum gases properties. Another possibility to
image cold quantum gases dispersively is polarisation imaging, applied e. g. in [52]. These
techniques gain their information regarding the quantum gases properties by the interaction
of light with anisotropic matter, where different polarisation directions experience different
phase shifts.

Atomic quantum gas experiments often utilise absorption imaging [23, 22, 27, 53, 54] or
fluorescence imaging [55]. Especially fluorescence imaging is often used to detect atoms
single-site resolved inside an optical lattice, e.g. [56, 57, 58, 59, 60]. Absorption and fluores-
cence imaging were also modified to improve resolution, e. g. in [61] an optical pumping
lattice was utilised for this purpose. Dispersive techniques have, for example, been demon-
strated with dark field [62, 63], holography [64, 65] and Faraday imaging methods [66, 67].
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An important figure of merit is the destructiveness for the respective method, i. e. how much
the quantum gas properties are disturbed by the imaging process. For example absorption
and emission automatically apply a momentum to the particle and, thus, are effectively
increasing the kinetic energy of the atom or molecule subsequently leading to higher tem-
peratures of particle clouds. Therefore, absorption and fluorescence imaging are usually
considered as destructive.

A dispersively scattered photon does not change the quantum state of motion of the
particle and, therefore, dispersive interactions are more suitable for non-destructive imaging
than absorption of fluorescence methods. However, it is important to note that dispersive
imaging schemes are not non-destructive in general. Even if only the phase shift is utilised
to gain information, one or multiple photons can still be absorbed during the detection
process leading to destructive behaviour. For example, dispersive imaging methods have no
advantage for quantum gases with small optical densities compared to absorption imaging
regarding its destructive nature [50].

While there is a large number of established imaging techniques for atomic quantum
gases, there is still a lack of satisfying detection schemes for polar molecules. Atoms can be
approximated as two-level systems with a ground and excited state and after absorbing a
photon the atom will decay back into the ground state by reemitting another light quanta.
Such a system provides a closed cycling transition, i. e. the process of absorption and
emission can be repeated many times and, thus, increasing the number of scattered photons
improving the signal strength. However, most molecules do not have such closed cycling
transitions due to their rovibrational level structure, which is depicted in figure 1.3. An
absorption process excites the molecule to an excited electronic state and, subsequently, the
molecule can decay back into many rovibrational states of the electronic ground state as
indicated by the arrows in the figure. This limits the number of absorbed and reemitted
photons drastically since the process cannot be repeated after the molecule has entered
an unknown state. Due to the large number of rovibrational states, this also cannot be
compensated for by repumping lasers as sometimes utilised for atoms. In conclusion, the
lack of closed cycling transitions make absorption and fluorescence imaging unsuitable for
many molecules.

It should be noted that there are some molecules providing nearly closed cycling tran-
sitions [68, 69], which are the molecules that are directly laser coolable, e. g. CaF and SrF
[38]. Though for these species, absorption or fluorescence imaging, as done in [70], can
be applied, molecules with nearly closed cycling transitions are rare and more universal
imaging techniques are favourable. Early molecular quantum gases were imaged through
ionisation [71, 72] and absorption imaging with a small number of scattered photons has
also been demonstrated [73]. Maybe the most common method to detect polar molecules
without closed cycling transitions is to reverse the production process and disassemble the
molecule into its constituting atoms, which can then be imaged using established techniques
[45, 74, 75]. However, all these methods are highly destructive.

Several dispersive imaging techniques have been proposed and demonstrated for non-
destructive detection of cold molecules. Vacuum Rabi splitting (VRS) and electromagneti-
cally induced transparency has been suggested in [76] to measure the number of molecules
of a quantum gas and VRS was successfully demonstrated [77]. For the detection of sin-
gle molecules optical birefringence induced by excited rotational states [78] and Faraday
imaging [79] have been proposed, but both techniques have unsuitable signal-to-noise ratios
[78, 79]. So far no imaging technique is universally applicable to molecules and able to
resolve single particles without destroying the molecule.

As previously explained, the absence of closed cycling transitions makes dispersive
interactions more suitable for the detection of cold molecules. However, if only a single
photon is absorbed the molecule might enter an unknown state and the imaging process
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Figure 1.3: Schematic representation of the state structure of a cold molecule consisting of
two atoms. The figure depicts the molecular potential depending on the distance between
the cores of the atoms, where the curved lines indicate the electronic ground, and an arbi-
trary electronically excited state. Both states have a set of sub-levels representing possible
rotational and vibrational states. If a photon is absorbed from the ground to the excited state,
the molecule can decay back into several rovibrational levels of the ground state, as indicated
by the arrows. The different sizes of the arrows imply that the transition probability is in
general different for the various rotational and vibrational states.

is interrupted. Hence, it must be ensured that the probability of a photon to be scattered
dispersively is significantly higher than being absorbed. This can be done by applying a
laser beam with a relatively large detuning, i. e. the frequency of the laser is slightly shifted
in comparison to the resonance frequency of the molecules transition [80, 8].

Another obstacle for dispersive imaging techniques are weak signals, which can be
solved by placing the molecules inside an optical resonator to enhance the signal strength.
If the resonator also supports multiple transverse modes simultaneously, the superposition
of these modes allows to detect the molecule spatially resolved. Transverse modes with
higher orders carry more momentum that can be utilised to improve the resolution of the
imaging scheme [81]. Since the phase shift induced by single molecules through dispersive
interaction is usually small, phase contrast methods are more suitable than dark ground
techniques. Phase contrast imaging can be realised with a homodyne detector [50].

1.3 The aim of the thesis

The aim of this thesis is to develop and investigate an imaging scheme applicable for cold
molecules relying on the ideas given at the end of the preceding section. For this purpose
the thesis is organised as follows:

In chapter 2 and 3 literature reviews of Gaussian optics and optical resonators are pro-
vided. Expressions for Gaussian beams and higher-order Hermite-Gaussian modes are
derived and the propagation of these beams through optical systems is explained. Stability
criteria, resonance frequencies, beam shapes and cavity linewidths of two-mirror and ring
resonators are discussed.



6 1. INTRODUCTION

The concepts from these two chapters are then applied in chapter 4 and 5 to develop a
theoretical background for the imaging technique. The focus in chapter 4 is set on an intuitive
classical approach that also governs other objects beside molecules that scatter light in form of
dipole radiation like nanoparticles. The theory presented in this chapter covers the aspects
of light-molecule interaction, cavity optics and the homodyne detection scheme. Finally,
simulations of the imaging signals are provided and the resolution capability is discussed.
In the fifth chapter, the interaction between molecules and light inside a resonator is treated
quantum mechanically to include vacuum fluctuations into the imaging theory. At the end
of chapter 5 the quantum mechanical and classical theories are compared and it is shown
that both are equivalent, apart from these vacuum fluctuations.

In chapter 6, cavity configurations suitable for the detection of cold molecules are dis-
cussed. Properties relevant for the imaging like multimode regimes and small cavity waists,
are taken into account and the effects of technical aspects like finite mirror sizes and misalign-
ment sensitivity are explained. Finally, two cavity configurations applicable for the detection
of single molecules inside an optical lattice are presented. These resonators are designed
to resolve sodium-potassium (NaK) molecules inside an optical lattice with periodicity of
532 nm as provided in experiments of the POLAR group at the Leibniz University Hanover
[75].

In chapter 7 these theoretical resonator concepts are translated in technical feasible de-
signs and nanoparticles are introduced as possible test objects to simulate cold molecules. An
alignment concept for the cavity is explained and an experimental setup to test the imaging
technique is developed.

The last chapter of this thesis ends with a summary and an outlook of future steps.



Chapter 2

The Fundamentals of Gaussian Beams

This chapter provides a brief overview of the properties of Gaussian beams. These beams
are an important concept in the field of optics since they describe light fields emitted by
many lasers and optical cavities. Gaussian beams play a fundamental role for the molecular
detection scheme introduced in this thesis. The described concepts follow the established
literature, see e.g. [82], [83] and [84] for more details.

The first section of this chapter introduces the origin and properties of the most basic
Gaussian modes, often referred to as fundamental modes. A short derivation of the wave
equation for electromagnetic radiation is given. For this derivation the paraxial approx-
imation is used. The last part of the first section discusses the validity of this approach.
The second section introduces the rule of propagation of Gaussian beams through space
and optical systems. Furthermore, the beam parameter product and its consequences for
the beam waist and far-field angle are explained. The last section of this chapter gener-
alises Gaussian beams into a broader set of transverse light fields with a particular focus on
Hermite-Gaussian modes.

2.1 Gaussian beams

The whole field of electrodynamics can mostly be described by a set of four coupled dif-
ferential equations, known as the Maxwell’s equations [85]. In particular, these equations
reveal a coupling between electric and magnetic fields. Temporal changes in one of those
fields lead to spatial alterations within the other field and vice versa. Maxwell’s equations
allow the derivation of electromagnetic waves or radiation, where oscillating electric and
magnetic fields propagate through space. The following wave equation for electric fields E⃗
can be derived from Maxwell’s equations [82]:

c2∆E⃗(x, y, z, t) =
∂2E⃗(x, y, z, t)

∂t2 , (2.1)

where c is the vacuum speed of light and ∆ is the Laplace operator. x, y, z are the spatial
coordinates, while t is the time. The following ansatz for the electric field E⃗ can be used
assuming that time and space coordinates are separable

E⃗(x, y, z, t) = e⃗ψ(x, y, z) exp (iωt). (2.2)

e⃗ is the unity polarisation vector, ω is the angular frequency of the radiation and ψ(x, y, z) is
a complex amplitude summarising all spatial terms. Inserting equation 2.2 into equation 2.1
leads to the Helmholtz equation

∆ψ(x, y, z) = −k2ψ(x, y, z) (2.3)

7
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that exploits the dispersion relation of lightω = ck, with k being the wavenumber. An ansatz
to solve the differential equation above is to separate the propagation factor exp (−ikz) from
the amplitude

ψ(x, y, z) = a(x, y, z) exp (−ikz). (2.4)

This form divides the amplitude into two parts, one describing a harmonic oscillation,
the other, a yet unknown amplitude a(x, y, z), describing the field pattern of the mode.
In particular, the amplitude contains information about the field distribution in planes
perpendicular to the direction of propagation z. These patterns are also called transverse
profiles. Substituting the new ansatz from equation 2.4 into the Helmholtz equation 2.3
yields

∆a(x, y, z) − 2ika(x, y, z) = 0. (2.5)

A slow variation of the transverse profile over the distance of one wavelength λ along the
direction of propagation, which is known as the paraxial approximation, is assumed [82]∣∣∣∣∣∣∂2a

∂z2

∣∣∣∣∣∣≪
∣∣∣∣∣2k
∂a
∂z

∣∣∣∣∣ ,
∣∣∣∣∣∣∂2a
∂x2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ ∂2a
∂y2

∣∣∣∣∣∣ . (2.6)

By dropping the second derivative in z equation 2.5 reduces to the paraxial Helmholtz
equation [84]

∆ta(x, y, z) − i2k
∂a(x, y, z)

∂z
= 0. (2.7)

∆t is the transverse Laplace operator, only taking into account derivatives orthogonal to the
direction of propagation. A trial solution of this equation is

a(x, y, z) = a1(z) exp
(
−ik

x2 + y2

2q(z)

)
, (2.8)

where q(z) is a complex number and a1(z) is a yet unknown function. Inserting this ansatz
into the paraxial Helmholtz equation provides

ψ(x, y, z) = a(x, y, z) exp (−ikz)

=

√
2
π

1
w(z)

exp
(
−

x2 + y2

w2 (z)

)
exp

(
−ikz − ik

x2 + y2

2R(z)
+ iζ(z)

)
.

(2.9)

Chapter 16 and 17 of [82] contain a detailed derivation of this equation representing the
mathematical expression of a Gaussian beam. Gaussian beams combine properties of ray
and wave optics and are often used to describe the output radiation of lasers. The yet
undefined expressions in equation 2.9 are

beam radius w(z) = w0

√
1 +

( z
zR

)2
, (2.10)

curvature of the phase front R(z) = z
(
1 +

(zR

z

)2
)
, (2.11)

Gouy phase ζ(z) = arctan
( z
zR

)
(2.12)

and beam waist w0 =

√
λzR

π
. (2.13)
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Figure 2.1: Representation of a Gaussian beam in the x-z-plane. The red lines indicate beam
size (solid) and phase fronts (dashed) of the beam. For long propagation distances, the size
increases approximately linearly and the shape of the wavefront becomes spherical. The blue
dashed lines indicate phase fronts of spherical waves centred at the origin of the Gaussian
beam. The Gouy phase shift leads to forward shifted phase fronts of the Gaussian beam in
comparison to the spherical waves.

The smallest radius of the Gaussian beam is the beam waist. zR is the Rayleigh range, i.e.
the distance along the direction of propagation doubling the spot size of the beam. Figure
2.1 visualises a Gaussian beam in the x-z-plane. For a deeper understanding of Gaussian
beams, some physical properties are highlighted here. As before, z is defined as the direction
of propagation of the wave. The position of the waist is set as z = 0. At this point, the phase
front of the Gaussian beam is plane. During propagation the radius R(z) shrinks to 2zR at
z = zR before increasing again. Equation 2.9 also reveals that the field of an ideal Gaussian
beam never drops to zero within a transverse plane since the field distribution is given by a
Gaussian profile. Hence, handling beam sizes is not straightforward, since several different
definitions for the beam radius are common. Here it is defined as the radius at which the
intensity has dropped to 1/e2 of its maximum value [83]. Furthermore, for z≫ zR, the beam
size increases approximately linearly. This allows to define the far field angle or angle of
divergence Θ. Usually Θ is small, otherwise the paraxial approximation would be violated,
as explained at the end of this section.

In equation 2.9 three different phase terms can be distinguished. The −ikz-term is the
phase of a plane wave travelling along its optical axis, whereas the profile of the phase front

is described by the −ik x2+y2

2R(z) -term. At first, the last term governing the Gouy phase shift
ζ(z) seems unintuitive. In 1890, the French physicist Louis G. Gouy discovered this effect
[86], leading to a phase shift from −π/2 at z → −∞ to π/2 at z → ∞. The Gouy phase
originates from the uncertainty principle [87]. A strongly focused light field, like the waist of
a Gaussian beam, leads to an uncertain value for the transverse momentum. This results in
a locally increased phase velocity and wavelength and eventually into the above mentioned
phase shift.

Since some physical values of Gaussian beams depend on each other, the set of quantities
defining a Gaussian beam completely needs to be specified. First, the direction of propaga-
tion is mandatory and is set to be the z-axis for this thesis. Furthermore, the position of the
waist needs to be known. In combination with the wavelength and the waist, the Gaussian
beam is fully determined. A single complex number allows to express the properties of a
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Gaussian beam at any point in space, if these four values are known. This quantity is called
the complex beam parameter [84] and is defined as

q(z) = z + izR. (2.14)

The reciprocal of the complex beam parameter directly reveals the radius of curvature of the
phase front and the beam size since both values are connected to the real and imaginary part
of the inverse of q(z):

1
q(z)
=

1
R(z)

− i
λ

πw2(z)
. (2.15)

The complex beam parameter is identical to the complex number q(z) in equation 2.8. It
allows to express the propagation and transformation of Gaussian beams through optical
systems in a very elegant and simple way, see chapter 2.1.

To apply the theory of Gaussian beams correctly, it is important to know in which cases
the paraxial approximation is valid. The following passage is based on chapter 16.1 in [82].
An optical field can be written as a superposition of plane waves travelling along the optical
axis with different anglesΘ. In the paraxial approximation such a wave can be expressed as

E(x, z)a(x, z) exp (−ikz) ≈ exp
(
−ikΘx + ik

Θ2z
2

)
. (2.16)

Without loss of generality, a wave in the x-z-plane is assumed here and the wave is prop-
agating along the z-axis. For the first derivative of a(x, z) in the z-direction and the second
derivatives in x- and z-direction it follows

−i
2k
a
∂a
∂z
≈ kΘ2, (2.17)

1
a
∂2a
∂x2 ≈ −k2Θ2, (2.18)

1
a
∂2a
∂z2 ≈ −k2Θ

4

4
. (2.19)

For the paraxial approximation to be true, the last term must be significantly smaller than
the terms above. This is the case for a Θ below 0.5 rad or 30◦. Hence, the derivations above
remain valid as long as the far field angles do not exceed this threshold.

Propagation of Gaussian beams through optical systems

Propagation through space and optical systems changes the properties of Gaussian beams,
like beam size and phase front. Therefore, it is important to know how these alterations
can be expressed mathematically. Ray transfer matrices are a possible tool for this purpose
[82, 83, 84]. Often rays can be used to describe the propagation of light in a very simple,
yet effective way. A ray is a straight line. The model considering light as rays, is called
geometrical optics. Geometrical optics describes a beam by its distance h from the optical
axis and the angle φ between this axis and the ray, see figure 2.2. An optical system
consists of several optical elements separated by finite distances. These elements are either
reflective surfaces or boundaries between materials with different indices of refraction. When
encountering an optical system, the ray will change its distance and angle to the optical axis.
If only paraxial rays, i.e. rays close to the optical axis, with angles small enough for the
validity of the small-angle approximation sin (φ) ≈ φ contribute to the beam, the connection
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Figure 2.2: The distance h from the optical axis z and the angle φ define an optical ray.
Propagation through an optical system changes both parameters.

between distance and angle before (index 1) and behind (index 2) the optical system is given
by a system of linear equations:

h2 = Ah1 + Bφ1, (2.20)
φ2 = Ch1 +Dφ1. (2.21)

This equation system can be expressed using vectors and a matrix

(
h2
φ2

)
=

(
A B
C D

) (
h1
φ1

)
. (2.22)

The matrix in the equation above is a ray transfer matrix or ABCD matrix. The ray transfer
matrix of an arbitrary optical system is the product of the ABCD matrices of the elements
the system consists off. For example, the matrix of a thick lens comprises three components
namely, two curved surfaces and the distance between them. To receive a proper result, it
is necessary to obtain a correct order of the components, as the commutative property does
not hold for matrices in general. Therefore, the correct order of the components for the ray
transfer matrix of a thick lens during beam propagation is firstly a curved surface, than the
propagation between the interfaces and lastly the second surface. Ray transfer matrices are
a powerful tool since even complicated systems can be represented by a product of a small
set of matrices. The matrices of common optical elements and systems can be found in the
literature, e.g. [83].

Furthermore, ray transfer matrices allow to describe the propagation of Gaussian beams
through optical systems. The transformation law is expressed as

q2 =
Aq1 + B
Cq1 +D

. (2.23)

This equation is known as the ABCD law [83]. q1 and q2 are the complex beam parameters
in front of and behind the optical system, respectively. Since often the reciprocal of the beam
parameter is used, it might be helpful to provide the corresponding expression as well:

1
q2
=

C + D
q1

A + B
q1

. (2.24)

Another important property of Gaussian beams is the beam parameter product

w0Θ =
λ
2
. (2.25)
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Since the wavelengthλ is constant for a monochromatic Gaussian beam, decreasing the waist
automatically leads to an increase of the far field angle and vice versa. The beam parameter
product can be seen in the context of the uncertainty principle. If the waist (and by this the
position) is defined very well, information regarding the wavenumber (i. e. the momentum)
is uncertain. Since the product of the waist and the far field angle is a constant, the beam
parameter product of a Gaussian beam cannot be changed by propagating through any
optical system. Therefore, it is not possible to generate a Gaussian beam with an arbitrarily
precise waist that is also collimated. The consequences for the detection scheme discussed
in this thesis are severe (see chapter 6).

2.2 Hermite-Gaussian modes

The Gaussian beam is not the only solution of the paraxial Helmholtz equation. Indeed,
the number of modes solving this equation is infinite. Depending on the symmetry of the
system, different sets of solutions are used. Either Hermite-Gaussian modes for rectangular
cases or Laguerre-Gaussian modes for circular ones. In fact, there is even a more general third
family called Ince-Gaussian modes that contains Hermite-Gaussian and Laguerre-Gaussian
modes as special cases [88].

Since the optical lattice containing the cold molecules imprints a rectangular symmetry
to the system, this chapter concentrates on Hermite-Gaussian modes. These modes are given
by [82]

ψnm(x, y, z) =

√
1

2n+mn!m!

√
2

πw2(z)
Hn

(
√

2
x

w(z)

)
Hm

(
√

2
y

w(z)

)
exp

(
−

x2 + y2

w2(z)

)
· exp

−ikz − i
k
(
x2 + y2

)
2R(z)

+ i(n +m + 1) arctan
( z
zR

)
= CNHn

(
√

2
x

w(z)

)
Hm

(
√

2
y

w(z)

)
exp

(
−

x2 + y2

w2(z)

)
· exp

−ikz − i
k
(
x2 + y2

)
2R(z)

+ i(n +m + 1) arctan
( z
zR

),

(2.26)

where CN =
√

1
2n+mn!m!

√
2

πw2(z) is a normalisation factor. Hn
(√

2 x
w(z)

)
and Hm

(√
2 y

w(z)

)
are

Hermite polynomials. A recurrence formula defines these polynomials by [84]

H j+1 (t) = 2tH j (t) − 2 jH j−1 (t) , (2.27)
H0(t) = 1, (2.28)
H1(t) = 2t, (2.29)

where j is the order of the Hermite polynomial. In equation 2.26 n and m are the orders of
the x- and y-directions, respectively. For n = m = 0 equation 2.26 reduces to the Gaussian
beam from equation 2.9. Hence, the 00-mode is also called the fundamental mode. Equation
2.26 also reveals that all Hermite-Gaussian modes share a parabolic wavefront with an
identical radius of curvature R(z). The Gouy phase increases with the total order n+m of the
corresponding Hermite-Gaussian mode. Furthermore, the Hermite polynomials modulate
the intensity profile of the Gaussian beam significantly. The intensity profiles for lower
order modes are shown in figure 2.3. Note that the shape of the profiles is independent of
the position along the optical axis and scales with the beam size w00(z) of the fundamental



2.2. HERMITE-GAUSSIAN MODES 13

Figure 2.3: Intensity profiles of some Hermite-Gaussian modes. The numbers below each
mode refer to the orders in x- and y-direction, respectively.

mode. Equation 2.26 also shows that the beam size wm(z) and the angle of divergence Θm
of higher order Hermite-Gaussian modes are magnified in comparison to the fundamental
mode. However, different sources use different definitions for these radii and angles. In [89]
the beam size is defined as twice the variance of x or y in a plane transverse to the optical
axis resulting in

wm(z) =
√

2m + 1w(z), (2.30)

Θm =
√

2m + 1Θ. (2.31)

Different sources also utilise other definitions for the beam size, leading to alternative factors
of probability between fundamental and higher order modes, e. g.

√
m [82, 90]. In this thesis,

the definition of twice the variance is used since this concept predicts larger beam sizes. Later,
it will be shown that the beam size is important for the number of modes supported by a
cavity, see chapter 4. A convention predicting larger beam sizes is favourable to reduce the
probability to overestimate the number of modes supported by a resonator.

Due to their increased beam sizes higher-order modes add an additional factor in the
beam parameter product, known as the propagation factor M2 [83]. The maximum of this
propagation factor is determined by the highest order mode of a light field M2

max = 2mmax+1.
In the case of a rectangular symmetry, two M2 values exist for both directions perpendicular
to the optical axis. In combination with the propagation factor, the beam parameter product
takes the form

w0,mΘm =M2λ
2
. (2.32)

Hermite-Gaussian modes also have another important property. All orders share the same
complex beam parameter q [90] that is defined by the waist and wavelength of the funda-
mental mode. According to the ABCD law, all modes are then transformed in the same way
by an optical system. Hence, optical elements preserve the order of a mode.
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Another important feature of Hermite-Gaussian modes is that different modes are or-
thonormal to each other [82]

∫
∞

−∞

dx
∫
∞

−∞

dyψn1,m1(x, y, z)ψn2,m2(x, y, z) = δn1,n2δm1,m2 , (2.33)

where δn1,n2 and δm1,m2 are Kronecker deltas. This relation applies independently for the x-
and y-direction. The coefficients in equation 2.26 must be chosen correctly for the normalisa-
tion. In the literature, the coefficients are not uniformly defined. Depending on the definition
of Hermite-Gaussian modes a normalisation factor needs to be added to the equation above.

By obeying to the relation in equation 2.33, Hermite-Gaussian modes form a complete set
in any plane transverse to the optical axis [82]. This allows to write any arbitrarily paraxial
beam as a superposition of Hermite-Gaussian modes

E(x, y, z) =
∑

N

αNψN(x, y, z), (2.34)

where N refers to the different modes. N = (n,m) is a combination of the direction orders
n and m and is therefore an element of the set N ∈ {(00) , (10) , (01) , (11) , (20) , ...}. αN is the
amplitude of mode N and can be interpreted as the ’weight’ mode N is contributing to the
total field.



Chapter 3

Optical Resonators

An optical resonator or cavity is a device that traps optical electromagnetic radiation by
multiple reflections between several mirrors. Resonators are used primarily to enable optical
feedback in lasers [82], but the scope of application of resonators is broader. For instance,
cavities are used as frequency filters for radiation [83, 91], in gravitational-wave detectors
[92] or generally in cavity quantum electrodynamics [93].

Optical cavities allow to increase and control the interaction strength between matter and
light fields and are used for the molecular detection scheme presented in this thesis. The
aim of this chapter is to introduce the theory behind stable optical resonators. The presented
concepts follow the established literature, see e. g. [82, 83, 84, 90] for more details. The
first section covers the simplest cavities consisting of two mirrors. A criterion for stability
is defined and relations between resonator design and beam properties inside the cavity
are derived. Boundary conditions of the mirrors are used to determine the frequencies that
are supported by the cavity. Finally, the cavity linewidth, which is an important quantity
regarding the interaction strength between radiation and molecules as well as for the number
of modes supported by the cavity, is introduced. The second section derives all these
properties and conditions for ring resonators consisting of four mirrors.

3.1 Two-mirror optical resonators

A two-mirror cavity consists of two spherical mirrors with radii r1 and r2, respectively. Both
mirrors are separated by a distance L from each other, see figure 3.1. Furthermore, the
mirrors are approximated as being unconfined, i. e. the reflective surface is infinitely large.
The combination of radii of curvature and mirror separation defines the resonator geometry
and determines the shapes and frequencies of light fields inside the cavity entirely. Light
fields supported by a resonator are solutions of the paraxial Helmholtz equation 2.7, where
boundary conditions are defined by the cavity geometry. Alternatively, these solutions can
be found by solving the Fresnel-Kirchhoff integral arising from Huygens’ theory. Since both
derivations are quite extensive, they are not discussed in detail here, but can be found in
the literature, e. g. in [84] for the Helmholtz equation or in [83] for the Fresnel-Kirchhoff
approach. For an ideal case, i. e. without consideration of losses (power reduction due to
absorption or the finite surface of a mirror) and for perfectly reflective mirrors the solutions
are the Hermite-Gaussian modes discussed in chapter 2.2. Even for most non-ideal mirrors,
these modes approximate the experimentally observed light fields in cavities very well [83].

Ray transfer matrices allow to determine many properties of resonators in a very simple
way. To estimate the total ABCD matrix of a two-mirror cavity two types of ray transfer
matrices are needed, the first type describing a reflection at a mirror and the second type
characterising propagation through space. The matrices are given by

15
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Figure 3.1: Two-mirror cavity consisting of two opposing mirrors separated by a distance L.
The radii of curvature of the mirrors are r1 and r2. The waist of the optical beam inside the
resonator is w0 and beam sizes at the mirrors are wm1 and wm2 .

reflection at mirror:
(

1 0
−

2
r 1

)
propagation through space:

(
1 L
0 1

)
. (3.1)

Without loss of generality, the reference point, i. e. the position where the beam starts
and ends during a complete cycle inside the cavity, is at the left mirror in figure 3.1. The
beam directly propagates to the mirror on the right side, is then reflected and propagates
back, where it is finally reflected by the first mirror. The ray transfer matrix for a two-mirror
resonator is hence given by

(
A B
C D

)
=

(
1 0
−

2
r1

1

) (
1 L
0 1

) (
1 0
−

2
r2

1

) (
1 L
0 1

)
. (3.2)

By defining

gi B 1 −
L
ri
, (3.3)

where i is the corresponding mirror index, the ABCD matrix takes the form

(
2g2 − 1 2g2L

2
L
(
2g1g2 − g1 − g2

)
4g1g2 − 2g2 − 1

)
. (3.4)

g1 and g2 are called cavity or mirror parameters. Many resonator properties depend directly
on these two quantities.

Beam sizes and radii of curvature of the phase front

By considering the reciprocal of the complex beam parameter 1
q , the beam size and radius

of curvature of the phase front for cavity fields can be derived in a very simple way. The
following derivation is based on [90]. Cavity fields are stationary solutions of the paraxial
Helmholtz equation. Therefore, a resonator mode should replicate itself after one round
trip. In particular, this means that the complex beam parameter is unaltered after a complete
cycle within the cavity. Applying the ABCD law leads to

1
q
=

C + D
q

A + B
q

, (3.5)
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which is a quadratic equation and can be written as

B
(

1
q

)2

+ (A −D)
(

1
q

)
− C = 0. (3.6)

The solutions of this equation are given by

1
q
=

D − A
2B

±
1

2B

√
(A −D)2 + 4BC. (3.7)

The elements of the ray transfer matrix in equation 3.4 are real. By definition, the imaginary
part of 1/q cannot be equal to zero, since otherwise the value of the beam size would be
physically unreasonable. Therefore, it can be assumed that the expression (A −D)2 + 4BC is
negative. Later, it is shown, that this assumption can be used to define a stability criterion
for resonators. The distance to the waist for any q is identical to the negative value of the
respective beam parameter. Hence, the first term in the equation above is identical to the real
part of 1/q and the second term to its imaginary part. Finally, comparing equations 2.15 and
3.7 enables the connection of the beam size and the curvature of the phase front at mirror 1
with the entries of the ray transfer matrix for cavities:

Rm1(z) =
2B

D − A
, (3.8)

−i
λ

πw2 = ±
1

2B

√
(A −D)2 + 4BC. (3.9)

Since the determinant of a ray transfer matrix is equal to unity [90], the beam size can be
written as

w2
m1
=

√
2λ
π

|B|

4 − (A +D)2 . (3.10)

Inserting the matrix elements given by equation 3.4 leads to

wm1 =
λL
π

√
g2

g1
(
1 − g1g2

) . (3.11)

Substituting the matrix elements in equation 3.8 reveals that the radius of curvature of the
phase front is identical to the negative radius of the first mirror −r1. The minus sign arises
from the convention that radii of phase fronts are negative when the centre of the Gaussian
beam is located to the right of the wavefront [90].

So far, the beam size and wavefront curvature are only known for one position in the
cavity. The values for any other point can be found by applying the ABCD law.

In particular, the waist of the cavity field is of interest. Since the radius of the wavefront
is vanishing at the origin of a Gaussian beam, the complex beam parameter q0 = q(z = 0)
becomes purely imaginary at the position of the waist. Substituting equation 2.13 into 2.14
leads to

q0 = izR = i
πw2

0

λ
. (3.12)

Furthermore, it is easy to show that the imaginary part of any complex number ξ is connected
to the imaginary part of 1/ξ through

Im(ξ) = −
Im( 1

ξ )

|ξ|2
. (3.13)
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This allows to write the beam waist as

w2
0 = −

λ
π

Im
(

1
q

)
∣∣∣∣1

q

∣∣∣∣2 . (3.14)

Substituting the entries of the ray transfer matrix for two-mirror cavities leads to

w2
0 =

λL
π

√
g1g2

(
1 − g1g2

)(
g1 + g2 − 2g1g2

)2 . (3.15)

The distance z1 between waist and mirror 1 can be found in a similar way. The separation to
the waist for any point of a Gaussian beam is identical to the negative value of the respective
beam parameter q. The relation in equation 3.13 also holds for real parts. Applying some
algebraic transformations the distance between waist and mirror 1 obtains the form [90]

z1 = L
g2

(
g1 − 1

)∣∣∣g1g2 − 2g1g2
∣∣∣ . (3.16)

If the beam inside the cavity starts from the second mirror instead of the first one, all
expressions given above stay the same, except that the indices of the mirrors need to be
interchanged. This allows to conclude for the beam size at mirror 2 and for the corresponding
distance to the waist

w2
m2
=
λL
π

√
g1

g2
(
1 − g1g2

) , (3.17)

z2 = L
g1

(
g2 − 1

)∣∣∣g1g2 − 2g1g2
∣∣∣ . (3.18)

Criterion of stability

As mentioned above, the expression below the square root in equation 3.7 must be negative
and therefore

2 ≥ |A +D| (3.19)

applies. Inserting the ray matrix elements for A and D into this equation leads to

0 ≤ g1g2 ≤ 1. (3.20)

This is the criterion of stability for two-mirror cavities. If the resonator geometry satisfies this
inequality, it is considered stable and a ray will remain in-between the mirrors for an infinite
or at least a large number of reflections. This does not mean that light fields will not build
up in unstable cavities. But rays inside unstable resonators will be lost after a few round
trips. Due to the boundary conditions defined by the resonator geometry, Hermite-Gaussian
modes are no longer solutions of the paraxial Helmholtz equation in the unstable regime.
Usually the losses of unstable resonators are large compared to stable cavities, the mode
structure is complicated and obtaining higher order modes inside the cavity is difficult [83].
In chapter 6 it is explained that these properties make unstable resonators unsuitable for the
molecular detection scheme presented in this thesis. Therefore, unstable resonators are not
further discussed here.
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Resonance frequencies

Apart from the complex beam parameter the phase of a cavity field also needs to reproduce
itself after one round trip in the cavity in order to generate a stationary solution. The total
phase shift at the optical axis after one complete transition cycle is

∆ϕ = 2kL − 2(n +m + 1)
(
arctan

( z2

rR

)
− arctan

( z1

rR

))
, (3.21)

where n and m are the orders of the Gouy phases. The difference between these Gouy phases
can be written as [82] (

arctan
( z2

rR

)
− arctan

( z1

rR

))
= arccos

(
±
√

g1g2

)
. (3.22)

A plus sign is used when both mirror parameters are positive, otherwise a minus sign
applies. To reproduce itself, the phase needs to satisfy the condition

∆ϕ = q2π, (3.23)

otherwise destructive interference will annihilate the light field. q is an integer here and
not the complex beam parameter as before. This duplication of use is unfortunate, though
common in the literature. Hence, this convention is also used here. The respective context
clarifies which q is meant.

Combing the equations 3.21, 3.22 and 3.23 and using the dispersion relation of light
ω = kc leads to

qπ =
ωL
c
− (n +m + 1) arccos

(
±
√

g1g2

)
. (3.24)

Finally, solving this equation for the angular frequency of the cavity field ω = ωqnm this
results in

ωqnm =
πc
L

q + (n +m + 1)
arccos

(
±
√

g1g2

)
π

 . (3.25)

Only light fields satisfying this condition are supported by the cavity. There are two different
categories of resonator modes. Longitudinal modes depend on the integer q, where q is the
number of half wavelengths fitting between both cavity mirrors. The frequencies of these
modes rely on the distance L between the mirrors, but are independent from the mirror
shapes. The difference in frequency between two ’neighbouring’ longitudinal modes q and
q + 1 is constant and called the free spectral range:

∆ωFSR =
πc
L
. (3.26)

The second category of light fields is called transverse modes, since these beams have
different profiles in planes orthogonal to the optical axis for integers n and m. For Hermite-
Gaussian modes n and m are identical to the orders of the Hermite polynomials. Note, that
a cavity mode is not either longitudinal or transverse. Each cavity mode can be seen as
a combination of these two types and a longitudinal mode q can be divided in an infinite
set of corresponding transverse modes. The set of all frequencies supported by the cavity,
determined by all possible combinations of q, n and m, is the spectrum of the cavity. This
spectrum of modes strongly depends on the resonator geometry. More details are given in
chapter 6, where proper cavity designs for the molecular detection scheme are discussed.
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Cavity linewidth

A cavity can store a light field for an infinite amount of time only when the mirrors are
perfectly reflective and no losses occur. However, this is an ideal case never achieved for real
mirrors. Furthermore, mirrors with a finite transmission might be needed to couple light into
the cavity in the first place. Non-perfectly reflective mirrors reduce the lifetime of a photon
within the cavity. Usually, mirror losses are small compared to reflection and transmission.
Therefore, it is assumed that light, which is not reflected by a mirror, is transmitted. r̃1 and
r̃2 are the amplitude reflectivities (r̃ is used instead of r to distinguish reflectivity and mirror
curvature) for the cavity mirrors and R1 and R2 are the intensity reflectivities. t1, t2 and T1,
T2 are the amplitude and intensity transmissions, respectively.

The following section investigates a cavity in transmission design, i. e. an electromagnetic
wave is coupled to the cavity through one of the mirrors and leaves the resonator through
the other. The presented derivation is published in the literature, e. g. in [94]. Without loss
of generality, mirror 2 is the output mirror. Ep is the field strength of the pump beam. Each
time the beam interacts with a mirror it is either reflected or transmitted. Therefore, the
transmitted field can be written as

Et = Ept1t2 exp
(
−i
∆ϕ

2

)
+ Ept1t2r̃1r̃2 exp

(
−i3
∆ϕ

2

)
+ Ept1t2r̃2

1r̃2
2 exp

(
−i5
∆ϕ

2

)
+ ...

= t1t2Ep exp
(
−i
∆ϕ

2

) ∞∑
l=0

r̃l
1r̃l

2 exp
(
−il∆ϕ

)
=

Ept1t2 exp
(
−i∆ϕ2

)
1 − r̃1r̃2 exp

(
−i∆ϕ

) .
(3.27)

In the last step a geometric series is used [95]. For the intensity transmitted through the
cavity follows

It = |Et|
2 = I0

t2
1t2

2(
1 − r̃1r̃2 exp−i∆ϕ

) (
1 − r̃1r̃2 exp i∆ϕ

)
= I0

t2
1t2

2

(1 − r̃1r̃2)2
(
1 + F sin2

(
∆ϕ
2

)) , (3.28)

where F = 4r̃1r̃2/ ((1 − r̃1r̃2)2. From energy conservation it follows r̃2
i + t2

i = 1. By assuming
identical mirror reflectivities and transmissions, this allows to write the fraction of transmit-
ted intensity or transmission as

T =
It

I0
=

1

1 + F sin2
(
∆ϕ
2

) . (3.29)

These are the Airy functions of optical resonators. Figure 3.2 depicts them for different
reflectivities and flat mirrors. The figure illustrates that lower reflectivities lead to broader
resonances. The width of the resonances is called the cavity linewidth κ and is an important
property of cavities. The linewidth is either defined as the full width at half maximum
(FWHM) or half of it (HWHM). In this thesis it is defined as HWHM. Furthermore, κ is
here given in units of an angular frequency. Without loss of generality the linewidth can be
determined from the resonance at ωqnm = 0:

T =
1
2
=

1

1 + F sin2
(
κL
c

) . (3.30)
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Figure 3.2: Airy functions for a cavity consisting of flat mirrors and different reflectivities.
The cavity length is set to L = 1 cm. Decreasing the reflectivity of the mirrors leads to broader
resonances.

Since κL
c is usually small, the small-angle approximation can be applied. After some algebra

this leads to

κ =
c

2L
1 − R
√

R
, (3.31)

where R is the intensity reflectivity of one mirror. The reciprocal of the linewidth is a measure
for the lifetime of a photon inside the cavity [84]:

τ =
1
κ
. (3.32)

Another quantity often used to characterise the quality of resonators is the finesse, defined
as the quotient of the free spectral range and the cavity linewidth:

F =
∆ωFSR

κ
=
π
√

R
1 − R

. (3.33)

The finesse is a measure for the resolution of a cavity regarding its resonances. Usually
large finesses are desired. However, for the detection of molecules moderate values, which
are discussed in detail in chapter 6, might be desirable.

3.2 Ring resonators

Another important class of optical cavities are so-called ring resonators. This type consists
of more than two mirrors or optical fibres [84]. Ring resonators and two-mirror cavities
have many properties in common, however, there are also some important differences. The
electromagnetic wave in a two-mirror cavity is reflected back into itself, forming a standing
wave. In ring resonators travelling waves propagate. In [90] a very simple, yet effective
derivation for the properties of ring resonators is introduced, using ray transfer matrices.
The first part of this section follows largely this approach.

Figure 3.3 depicts two possible configurations of ring resonators consisting of four mir-
rors, two flat and two curved mirrors each. The radii of curvature r of the spherical mirrors
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Figure 3.3: Two possible configurations of ring resonator consisting of four mirrors. The
cavity on the left side is commonly referred to as a bow-tie cavity.

are identical. L1 is the distance between the flat mirrors, L2 between the flat and the curved
mirrors and L3 between the curved mirrors. The ray transfer matrix of these ring resonators
is again a product of four matrices:(

A B
C D

)
=

(
1 0
−

2
r 1

) (
1 L1 + 2L2
0 1

) (
1 0
−

2
r 1

) (
1 L3
0 1

)
. (3.34)

The reference point for this matrix is located at the left of the curved mirrors and the beam
propagates directly to the other curved mirror. The complex beam parameter is not altered
by reflections at flat mirrors. Therefore, the corresponding distances can be summarised as
Ls = 2L2 + L1. By defining new g-parameters for ring resonators

g1 = 1 −
Ls

r
, (3.35)

g2 = 1 −
L3

r
(3.36)

the ray transfer matrix can be written as

(
2g1 − 1 r

(
−2g1g2 + g1 + g2

)
−

4g1
r 4g1g2 − 2g1 − 1.

)
. (3.37)

Beam sizes and radii of curvature of the phase front

The reflections at spherical mirrors alter the complex beam parameter of a Gaussian beam.
Since the beam is not reflected back into itself in a ring cavity, there are two different values
for the complex beam parameter q inside these resonators. This is equivalent to two different
Gaussian beams inside the four-mirror ring cavity. The first beam is located within the range
L3, see figure 3.3 and its properties are indicated by unprimed variables, whereas the second
beam is located in the remaining interval Ls = 2L2 + L1 and for the quantities of this beam
primed variables are used. As for the two-mirror case, the complex beam parameters need
to replicate themselves after one round trip. Hence, the ABCD law implicates

1
q
=

2g1
(
g2 − 1

)
r
(
g1 + g2 − 2g1g2

) ± 2
√

g1g2
(
1 − g1g2

)
r
(
g1 + g2 − 2g1g2

) , (3.38)

1
q′
=

2g2
(
1 − g1

)
r
(
g1 + g2 − 2g1g2

) ± 2
√

g1g2
(
1 − g1g2

)
r
(
g1 + g2 − 2g1g2

) . (3.39)
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The beam size at the curved mirrors and the waists of the Gaussian beams can be found in
the same way as for the two-mirror cavity. This leads to

w2
m =

λr
2π

g1 + g2 − 2g1g2√
g1g2

(
1 − g1g2

) (3.40)

for the beam size at the mirror. The waists are given by

w2
0 =

λr
√

g1g2
(
1 − g1g2

)
2πg1

, (3.41)

w′20 =
λr

√
g1g2

(
1 − g1g2

)
2πg2

. (3.42)

Another interesting feature is revealed by calculating the quotient between the two waists
above:

w0

w′0
=

√
g2

g1
. (3.43)

Therefore, the ratio of the waists can be adjusted by changing either L3 or Ls.

Criterion of stability

The criterion of stability for ring resonators can be derived similarly as for the two-mirror
resonator. The inequality is the same [90]

0 < g1g2 < 1. (3.44)

However, there is an important difference, namely that the lengths in the g-parameters for
ring resonators are independent from each other. Hence, the distance between the curved
mirrors cannot become arbitrarily small and stable ring resonators need to satisfy

r ≤ L3 ≤
rL3

L1 − r
. (3.45)

Assuming that r≪ L3 yields

L3,stab ≈
r2

L3
(3.46)

for the distance between the curved mirrors, that can be adjusted, without violating the
criterion of stability for ring resonators.

Resonance frequencies

As for the two-mirror cavity, the resonance frequencies are determined by the phase after a
complete cycle in the ring resonator. The corresponding expression takes a similar form as
before [90]:

ωqnm =
2πc
Ltotal

q + (n +m + 1)
arccos

(
±
√

g1g2

)
π

 . (3.47)

The length is defined as Ltotal = L1 + 2L2 + L3. In comparison to the resonance frequencies
of two-mirror cavities, this equation includes a factor of 2 since the beam is not reflected
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back into itself here. The free spectral range of ring cavities is therefore twice as large as for
two-mirror resonators:

∆ωFSR =
2πc
Ltotal

. (3.48)

Cavity linewidth

The cavity linewidth of ring resonators can be determined in the same way as for two-mirror
cavities. The four mirrors are labelled as depicted in figure 3.3. In the following the field
transmitted through the second mirror is investigated. Each cycle the field is either reflected
or transmitted, leading to

Et,2 = t1t2Ep exp
(
−i∆ϕ12

)
+ t1r̃2r̃3r̃4r̃1t2Ep exp

(
−i

(
∆ϕ12 + ∆ϕ

))
+ ...

= Ep exp
(
−i∆ϕ12

)
t1t2

∞∑
l=0

r̃l exp
(
−il∆ϕ

)
=

Ep exp
(
−i∆ϕ12

)
t1t2

1 − r̃ exp
(
−i∆ϕ

) ,

(3.49)

with amplitude transmissions ti and reflectivities r̃i. ∆ϕ12 is the phase shift between mirror
1 and 2 and r̃ = r̃1r̃2r̃3r̃4. The transmitted intensity can then be written as

It,2 =
∣∣∣Et,2

∣∣∣2 = I0
T1T2

(1 − r̃)2
(
1 + F sin2

(
∆ϕ
2

)) , (3.50)

where Ti is the intensity transmission of mirror i and F = 4r̃
(1−r̃)2 . Again, the HWHM is

calculated for the resonance atωqnm = 0. It is important to note, that the intensity transmitted
through the second mirror does not equal unity at resonance since the other mirrors are
not perfectly reflective in general. Therefore, the linewidth can be found by setting the
transmission to 1

2
T1T2

(1−r̃)2 :

κ =
c

Ltotal

(1 − r̃)
√

r̃
. (3.51)

Again, this is twice the size of a two-mirror cavity with an equal length, since the beam is
not reflected back into itself. The reflectivity of mirrors not used to couple light into the
cavity or for the transmission signal should be close to unity, since otherwise power is lost
unnecessarily through these mirrors.



Chapter 4

Detection of Cold Particles - Classical
Description

Quantum mechanical approaches are typically used to describe the interaction between
particles, i. e. atoms or molecules, and electromagnetic fields within an optical resonator.
This research field is often called cavity quantum electrodynamics (cQED). A common theory
in cQED is the Jaynes-Cummings model [8, 96] explaining many experimentally observed
phenomena, like vacuum Rabi oscillations [97] or sub-Poissonian distributions of emitted
photons [98, 99]. Some off these observations such as the revival of Rabi oscillations [100]
cannot be explained classically, other phenomena like for example vacuum Rabi splitting
[101] or laser cooling of particles [102] can be interpreted in a classical framework.

Classical theories describing the interaction between particles and light are valid in the
low-saturation regime, i. e. when the particles mostly remain in the ground state. Since
the fundamental idea for the molecular detection scheme discussed in this thesis relies on
dispersive light-molecule interactions and the suppression of absorption either due to large
detunings or low intensities, classical theories are applicable. The advantages of a classical
approach might provide a more intuitive understanding behind the physics of the detection
scheme as well as a transfer to other objects often described classically, like nanoparticles,
see chapter 7.1. The aim of the following chapter is to introduce a classical description for
the imaging of cold molecules.

In the first section, the interaction between a single particle and a single Hermite-
Gaussian mode is investigated. An overlap integral between dipole radiation and an arbi-
trary Hermite-Gaussian mode, similar to the approach in [103] is calculated for this purpose.
However, the calculations presented here are more general and contain the results from [103]
as special cases. In the second section, multiple particles inside a multimode resonator are
considered and the cavity field is determined. Subsequently, the homodyne detection tech-
nique is introduced and specialised for the spatially resolved imaging of particles. Finally,
the spatial resolution of the proposed detection scheme is discussed.

4.1 Interaction between a single particle and a paraxial beam

In the following, the interaction between a single particle and a linearly polarised electric
field

E⃗ =
1
2

E0 exp (−iωt)⃗e + c.c., (4.1)

is considered, where E0 is the amplitude, ω the angular frequency of the field, t the time
and e⃗ the polarisation unity vector. c.c. is short for complex conjugate. Compared to
the corresponding atomic or molecular core the mass of an electron is small. Hence, the

25
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negatively charged electron starts to oscillate with the same frequency and in the same
direction as the applied electric field, whereas the positive core remains stationary. The
particle is then an oscillating dipole, i. e. is described by the Lorentz oscillator model, with
the dipole moment given by

p⃗ =
1
2

p0 exp (−iωt)⃗e + c.c. (4.2)

The amplitude p0 is proportional to the amplitude of the electric field: p0 = αE0. The factor
of proportionality is the complex polarisability of the particle [103]

α = 6πϵ0c3
Γ/ω2

0

ω2
0 − ω

2 − i
(
ω3/ω2

0

)
Γ
, (4.3)

where ω0 is the resonance frequency of the particles transition, Γ the linewidth of the par-
ticles transition and ϵ0 is the vacuum permittivity. The real and the imaginary part of the
polarisability have different physical meanings. While the real part characterises dispersive
interaction, the imaginary part describes absorption [104]. Defining the detuning between
the driving field and the frequency of the particles transition ∆ B ω − ω0 and applying the
rotating wave approximation [105, 106], with ∆ ≪ ω, ω0 and ω + ω0 ≈ 2ω0 allows to write
the polarisability as

α ≈
6πϵ0

k3

(
2∆Γ

4∆2 + Γ2 + i
Γ2

4∆2 + Γ2

)
. (4.4)

The equation above reveals that dispersive and absorptive effects depend differently on
the detuning. While the real part of the complex polarisability decreases linearly with
increasing the detuning ∆ (at least for ∆ ≫ Γ), the imaginary part decreases quadratically.
Hence, the absorption can be suppressed in comparison to dispersive interaction by using
large detunings. Utilising large detunings is therefore an effective method to enter the low-
saturation regime. The model described above corresponds to the Lorentz oscillator model
[107, 108], which allows to describe a quantum mechanical two-level system classically as
long as the excitations of the particle can be neglected.

An accelerated charge, like the oscillating electron, emits radiation itself. As long as a
particle is small compared to the wavelength of the driving field it can be considered as
pointlike. Hence, the oscillating electron emits an electric field for R≫ λ according to [109]

Erad =
k2

4πϵ0
sin (θ)

exp (ikR)
R

αE. (4.5)

R is the distance between the dipole emitter and the point of observation and θ is the angle
between the polarisation vector e⃗ and the direction of observation, see figure 4.1. The field
is written as a scalar since polarisation effects are not considered in the following.

Next, the fraction of light scattered into an arbitrary Hermite-Gaussian mode ψN by the
particle is determined. This fraction is called the amplitudeαN of the mode. It is assumed that
the optical axis of the Hermite-Gaussian mode is orthogonal to the direction of oscillation of
the electron. Mathematically, an electric field can be seen as a vector and αN as the projection
of Erad onψN. Therefore, the mode amplitude for an arbitrary plane orthogonal to the optical
axis of the Hermite-Gaussian mode is given by the scalar product

αN =

∫
∞

−∞

∫
∞

−∞

ψ∗NEraddxdy. (4.6)

It is important to note, that the coordinate systems of the scattered field and the mode do
not coincide in general, as depicted in figure 4.1. Before solving the above integral, it is
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Figure 4.1: Coordinate systems of the particle (primed) and the mode (unprimed). The
origins of the coordinate systems are separated by xi, yi and zi.

necessary to perform a coordinate transformation. Primed variables indicate coordinates in
the particles system, whereas unprimed variables refer to the coordinate system of the mode.
The transformation is then

x′ = x − xi, (4.7)
y′ = y − yi, (4.8)
z′ = z − zi. (4.9)

Later in the experiment, several molecules are placed inside a multimode resonator. The
origin of the coordinate system in equation 4.5 is located at the position of the emitter and
therefore each molecule defines its own coordinate system, whereas all modes of the cavity
share the same. Hence, the position of a particle is transformed into the coordinate system
of the modes here since this is more universal.

Hermite-Gaussian modes are paraxial beams and therefore only a small far field cone
contributes to the overlap integral above. This allows to approximate sin (θ′) ≈ sin (θ) ≈ 1 as
well as R′ ≈

(
(z − zi) +

(
(x − xi)

2 +
(
y − yi

)2
)
/ (2 (z − zi))

)
. The scattered field in coordinates

of the mode is then

Erad ≈
k2

4πϵ0
αE(⃗rp)

exp
(
ik (z − zi)

(
1 +

(x−xi)
2+(y−yi)2

2(z−zi)
2

))
z − zi

. (4.10)

r⃗p =
(
xp, yp, zp

)
is the position of the particle in coordinates of the mode. After considering

the paraxial approximation and the coordinate transformation and using equation 2.26 the
mode amplitude takes the form

αN =CN
k2

4πϵ0
αE(⃗rp) exp

(
−ikz + i(n +m + 1) arctan

( z
zR

)) 1
z − zi

·

∫
∞

−∞

∫
∞

−∞

Hn

( √
2x

w(z)

)
Hm

 √2y
w(z)

 exp

−ik

(
x2 + y2

)
2R(z)


· exp

(
−

x2 + y2

w2(z)

)
exp

ik (z − zi)

1 +
(x − xi)

2 +
(
y − yi

)2

2 (z − zi)
2

dxdy.

(4.11)
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Note that the sign convention for the phase of the Hermite-Gaussian mode is the opposite
here in comparison to the situation in chapter 2. This is allowed since usually the absolute
phase is not relevant and only phase differences are important. Switching the phase conven-
tion is also common in the literature, e. g. in [84]. Changing the sign of the phase simplifies
the following calculation significantly.

The integrals for the x- and y-direction in the equation above are identical. Hence, it is
sufficient to solve one of them. The integral in the x-direction can be written in the following
form:

I B
∫
∞

−∞

Hn

(√
2

x
w

)
exp

(
−

x2

w2

)
exp

(
i
k (x − xi)

2

2 (z − zi)

)
exp

(
−i

kx2

2R

)
dx

= exp

i
kx2

i

2 (z − zi)

 ∫ ∞

−∞

Hn

(√
2

x
w

)
exp

(
−

x2

w2

)
exp

(
−i

kxxi

z − zi
+ i

kx2

2

( 1
z − zi

−
1
R

))
dx.

(4.12)

By substituting

x̃ =
√

2
x
w

and dx̃ =
√

2
w

dx (4.13)

the integral takes the form

I = exp

i
kx2

i

2 (z − zi)

 w
√

2

∫
∞

−∞

Hn(x̃)

· exp
(
i
kw2

4
x̃2

( 1
z − zi

−
1
R

)
− i

kxi

z − zi

w
√

2
x
)
dx̃.

(4.14)

Next, all constants and quantities not depending on x̃ are summarised by defining

ϕ B
kw2

4

( 1
z − zi

−
1
R

)
and ξx B

k
z − zi

w
√

2
xi. (4.15)

The integral thus takes on a more compact form:

I = exp

i
kx2

i

2 (z − zi)

 w
√

2

∫
∞

−∞

Hn (x̃) exp
(
−

x̃2

2

)
exp

(
iϕx̃2

− iξxx̃
)
dx̃. (4.16)

This integral can be solved by summing over tn/n! and using the generating function for
Hermite polynomials [110]

∞∑
n=0

Hn(x̃)
tn

n!
= exp

(
2x̃t − t2

)
. (4.17)

Switching the sum and the integral allows to write

Ĩ B
∫
∞

−∞

∞∑
n=0

Hn(x̃)
tn

n!
exp

(
−

x̃2

2

)
exp

(
iϕx̃2

− iξxx̃
)
dx̃

=

∫
∞

−∞

exp
(
2x̃t − t2

)
exp

(
−

x̃2

2

)
exp

(
iϕx̃2

− iξxx̃
)
dx̃

(4.18)
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The factor in front of the integral is dropped for simplicity and Ĩ B I exp
(
−i

kx2
i

2(z−zi)

) √
2

w is

defined. Next, the integral is transformed into

Ĩ = exp
(
−t2

) ∫ ∞

−∞

exp
(
−

(1
2
− iϕ

)
x̃2 + (2t − iξx) x̃

)
dx̃. (4.19)

The solution for this integral can be found in the literature [110]:∫
∞

−∞

exp
(
−p2x̃2

± qx̃
)
dx̃ =

√
π

p
exp

(
q2

4p2

)
, Re

(
p2

)
> 0. (4.20)

Comparing the equations 4.19 and 4.20 reveals p2 =
(

1
2 − iϕ

)
and q = (2t − iξx). Hence, the

real part of p2 is always positive and the application of equation 4.20 is valid. After some
algebraic transformations equation 4.19 can then be written as

Ĩ =
√

2π√
1 − 2iϕ

exp

4tξx − iξ2
x − t2

(
4ϕ − 2i

)
4ϕ + 2i

. (4.21)

Next, the exponent in the exponential function is multiplied with 1 = 4ϕ−2i
4ϕ−2i . The result is

Ĩ =
√

2π√
1 − 2iϕ

exp

4tξx
(
4ϕ − 2i

)
− t2

(
4ϕ − 2i

)2
− iξ2

x

(
4ϕ − 2i

)
16ϕ2 + 4

. (4.22)

Performing another substitution

t̃ B t
4ϕ − 2i√
16ϕ2 + 4

(4.23)

allows to transform equation 4.22 into

Ĩ =
√

2π√
1 − 2iϕ

exp

 4ξx√
16ϕ2 + 4

t̃ − t̃2
− iξ2

x
4ϕ − 2i

16ϕ2 + 4

. (4.24)

Applying the generating function for Hermite polynomials once again results in

Ĩ =
√

2π√
1 − 2iϕ

∞∑
n=0

Hn

 ξx√
4ϕ2 + 1

 t̃n

n!
exp

−iξ2
x

(
4ϕ − 2i

)
16ϕ2 + 4

. (4.25)

Next the substitution from equation 4.23 is inverted. For the equation above follows

Ĩ =
√

2π√
1 − 2iϕ

∞∑
n=0

Hn

 ξx√
4ϕ2 + 1

 tn

n!
exp (inΨ) exp

−iξ2
x

(
4ϕ − 2i

)
16ϕ2 + 4

, (4.26)

where exp (iΨ) B 4ϕ−2i
|4ϕ−2i|

is defined. This is allowed since the modulus of this expression is
equal to 1.

By comparing identical n in the equations 4.18 and 4.26 the solution of the integral in
equation 4.16 can be found and by adding the factor dropped in equation 4.18 again, the
result is
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I = exp

i
kx2

i

2 (z − zi)

 w
√

2

∫
∞

−∞

Hn (x̃) exp
(
−

x̃2

2

)
exp

(
iϕx̃2

− iξxx̃
)
dx̃

= exp

i
kx2

i

2 (z − zi)

 w
√

2

√
2π√

1 − 2iϕ
Hn

 ξx√
4ϕ2 + 1

 exp

−iξ2
x

(
4ϕ − 2i

)
16ϕ2 + 4

+ inΨ

.
(4.27)

The solution of the integrals in x- and y-direction permits to write the mode amplitude as

αN =

√
1

2n+mn!m!

√
2

πw (z)
k2

4πϵ0
αE(⃗rp) exp

(
−ikz + i(n +m + 1) arctan

( z
zR

))
·

1
z − zi

exp

i
k
(
x2

i + y2
i

)
2 (z − zi)


(

w (z)
√

2

)2

Hn

 ξx√
4ϕ2 + 1

 Hm

 ξy√
4ϕ2 + 1


·

2π
1 − i2ϕ

exp

−i

(
ξ2

x + ξ
2
y

) (
4ϕ − 2i

)
16ϕ2 + 4

+ i (n +m)Ψ+ ik (z − zi)

.
(4.28)

This rather complicated equation can be simplified significantly. The following expressions
can be used for this purpose:

ϕ =
zzi + z2

R

2zR (z − zi)
, (4.29)

ξx√
4ϕ2 + 1

=

√
2xi

w (zi)
sgn(z − zi), (4.30)

ξy√
4ϕ2 + 1

=

√
2yi

w (zi)
sgn(z − zi), (4.31)

4
(
ξ2

x + ξ
2
y

)
ϕ

16ϕ2 + 4
=

k
(
x2

i + y2
i

)
2 (z − zi)

+
k
(
x2

i + y2
i

)
2R (zi)

, (4.32)

Ψ = arctan
( zi

zR

)
− arctan

( z
zR

)
−Hea

(
sgn (z − zi)

)
π, (4.33)

1
1 − i2ϕ

=

√√√
(z − zi)

2 z2
R(

z2 + z2
R

) (
z2

i + z2
R

) exp
(
i arctan

( zi

zR

)
+ i arctan

(zR

z

)
− iHea

(
sgn

(zi

z
− 1

))
π
)
.

(4.34)

The derivations of the equations above contain a large amount of algebraic transformations,
which are not specified here, but can be found in the appendix A. sgn is the sign function
that gives a +1 for positive and a −1 for negative function values. Hea is the Heaviside step
function that is Hea(x) = 0 for x ≥ 0 and Hea(x) = 1 for x < 0.

Applying equation 4.29 to 4.34 allows to write for the amplitude of the mode
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αN =

√
1

2n+mn!m!

√
2
π

k2

4πϵ0
αE(⃗rp)π

w (z)
z − zi

√√√
z2

R (z − zi)
2(

z2 + z2
R

) (
z2

i + z2
R

)
·Hn

( √
2xi

w (zi)

)
Hm

 √2yi

w (zi)

 sgn(z − zi)n+m+1 exp

−x2
i + y2

i

w2 (zi)


· exp

(
i arctan

( z
zR

)
+ i arctan

(zR

z

)
− iHea

(
sgn

(zi

z
− 1

)))
· exp

−ikzi − i
k
(
x2

i + y2
i

)
2R (zi)

+ i (n +m + 1)
(
arctan

( zi

zR

)
Hea

(
sgn (z − zi)

)).

(4.35)

The next possible simplification of this equation is exp
(
i arctan

(
z

zR

)
+ i arctan

(
zR
z

))
= exp

(
sgn(z)iπ2

)
=

sgn(z)i [110]. For the remaining terms that depend on the z-coordinate, the following ex-
pression can be found:

w (z)
z − zi

√√√
z2

R (z − zi)
2(

z2 + z2
R

) (
z2

i + z2
R

) = w2
0

zRw (zi)
sgn(z − zi). (4.36)

The derivation of this equation is also demonstrated in the appendix A. In the appendix it is
also explained that all sgn-terms and -factors eliminate each other. For the mode amplitude
follows

αN =i

√
1

2n+mn!m!

√
2

πw2 (zi)
Hn

( √
2xi

w (zi)

)
Hm

 √2yi

w (zi)

 exp

−x2
i + y2

i

w2 (zi)


· exp

−ikzi − i
k
(
x2

i + y2
i

)
2R (zi)

+ i (n +m + 1) arctan
( zi

zR

) k2

4πϵ0
αE(⃗rp)

w2
0π

zR
.

(4.37)

This expression reveals that the mode amplitude is independent of the z-coordinate. Hence,
the fraction of the light field scattered into an arbitrary mode N is the same for all planes
orthogonal to the optical axis. Furthermore, the equation above is proportional to the
complex conjugate of the Hermite-Gaussian mode N at the position of the particle r⃗p. The
corresponding expression is given by

ψ∗N
(⃗
rp
)
=

√
1

2n+mn!m!

√
2

πw2 (zi)
Hn

( √
2xi

w (zi)

)
Hm

 √2yi

w (zi)

 exp

−x2
i + y2

i

w2 (zi)


· exp

−ikzi − i
k
(
x2

i + y2
i

)
2R (zi)

+ i (n +m + 1) arctan
( zi

zR

).
(4.38)

This allows to write the mode amplitude as

αN = i
w2

0π

2
ψ∗N

(⃗
rp
) k2

2πϵ0
αE(⃗rp)

1
zR
. (4.39)

The effective mode area of the fundamental Gaussian mode
w2

0π

2 is defined as η. In [103] the
dimensionless parameter

β =
k
πw2

0

α
ϵ0
, (4.40)
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which is a measure for the coupling strength between particle and mode N, is defined.
Finally, substituting this quantity in combination with equation 2.13 allows to write

αN = iηβE(⃗rp)ψ∗N
(⃗
rp
)

(4.41)

for the mode amplitude. Modes with an antinode at the particles position r⃗p are strongly
populated, whereas the particle does not scatter into modes with a node at the corresponding
coordinates. For the fundamental mode equation 4.41 replicates equation 5 from [103]. Note
that the additional factor of η arises from a different definition of the normalisation factor
for Gaussian beams.

4.2 Multiple particles inside a multimode cavity

In free space, the phase shift of an electromagnetic wave imprinted by a scattering particle is
usually small. Cavities allow to enhance the interactions between particles and light fields
and, thus, amplify the phase shift. In free space, the beam can only interact once with the
particle. However, in a resonator the radiation is reflected several times and during each
cycle the phase shift increases. Hence, the total phase shift of a light field in the resonator is
increased in comparison to the free space case.

In the following, a number of Np particles with fixed positions are placed inside a two-
mirror resonator. The cavity is assumed to be in the multimode regime, i. e. the resonator
frequencies ωM for different transverse modes M are nearly degenerated. The number of
Hermite-Gaussian modes supported by the cavity is Nm. The resonator length is L, the
amplitude reflectivities and transmissions of the mirrors are r̃ and q, respectively. q is
used instead of t to avoid confusion with time abbreviations used later in this chapter. An
electromagnetic wave Ein drives or pumps the resonator to maintain the cavity field. This
driving beam is paraxial, i. e. the beam is decomposable into Hermite-Gaussian modes,
which applies for most laser beams. The angular frequency of the pumping beam is ω. The
cavity field is assumed to be stationary, i. e. independent of time.

The amplitude αM of an arbitrary resonator mode M consists of three parts. The first
contribution originates from the circulating cavity field itself. During a complete cycle within
the resonator this beam is reflected at both mirrors and accumulates a total phase of 2kL, with
k being the wavenumber. The second term arises from the mode amplitude of the pumping
beam αM,in. Finally, the last part originates from the field scattered by the particles and the
corresponding mode amplitudes are denoted as αM,s. Thus, the mode amplitude inside the
resonator is

αM = r̃2 exp (i2kL)αM + qαM,in + 2
Np∑
p=1

αM,s
(⃗
rp
)
. (4.42)

The factor 2 in front of the last term occurs since the particles scatter the light field in both
cavity directions [103]. The beam driving the particles is the cavity field itself. Hence, it is
decomposable into the individual resonator modes according to

E
(⃗
rp
)
=

Nm∑
N=1

αNψ
∗

N

(⃗
rp
)
. (4.43)

By substituting this expression into equation 4.41 the mode amplitude of the scattered field
can be written as
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αM,s
(⃗
rp
)
= i2βη

 Nm∑
N=1

αNψ
∗

N

(⃗
rp
)ψM

(⃗
rp
)
. (4.44)

For the mode amplitude of the cavity follows

αM = r̃2 exp (i2kL)αM + qαM,in + i4βη
Np∑
p=1

Nm∑
N=1

αNψ
∗

N

(⃗
rp
)
ψM

(⃗
rp
)
. (4.45)

Finally, converting this equation to αM yields

αM =

qαM,in + i4βη
Np∑
p=1

Nm∑
N=1,N,M

αNψ
∗

N

(⃗
rp
)
ψM

(⃗
rp
)

1 − r̃2 exp (i2kL) − i4βη
Np∑
p=1

ψ∗M
(⃗
rp
)
ψM

(⃗
rp
) . (4.46)

The expression N = 1,N , M below the sum in the numerator implies summation over all
modes except the M-mode.

Equation 4.46 applies for all modes supported by the cavity. Therefore, the set of all these
equations forms a system of Nm coupled equations. This set can be written in a more compact
form. First, the cavity detuning is defined as δM B ω − ωM. Furthermore, it is assumed that
the mirror reflectivities are close to unity and that the rotating wave approximation can be
applied (see chapter 4.1). These assumptions allow to approximate the phase shift after one
round-trip within the cavity as

r̃2 exp (i2kL) ≈ 1 − q2 + iq2 δM

κ
, (4.47)

with κ being the linewidth of the optical resonator. This permits to write for the amplitude
of mode M

0 = αM

(
−q2 + iq2 δM

κ

)
+ qαM,in + i4βη

Np∑
p=1

Nm∑
N=1

αNψ
∗

N

(⃗
rp
)
ψM

(⃗
rp
)
. (4.48)

Next, the following vector and matrices are defined

A⃗ =


α1
α2
...

αNm

 , T =


q2 0 · · ·

0 q2

...
. . .

 , D =


q2 δ1

κ 0 · · ·

0 q2 δ2
κ

...
. . .

q2 δNm
κ

 ,

M = 4βη



Np∑
p=1

ψ∗1
(⃗
rp
)
ψ1

(⃗
rp
) Np∑

p=1

ψ∗1
(⃗
rp
)
ψ2

(⃗
rp
)
· · ·

Np∑
p=1

ψ∗1
(⃗
rp
)
ψNm

(⃗
rp
)

Np∑
p=1

ψ∗2
(⃗
rp
)
ψ1
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. (4.49)
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The vector A⃗in is defined identical to A⃗. Similar definitions were already used in [111] in the
context of a quantum mechanical approach of the detection theory. This allows to write the
system of equations above as

0⃗ = (−T + i (D +M)) A⃗ + qA⃗in, (4.50)

where 0⃗ is the null vector. Rearranging yields

A⃗ = − (−T + i (D +M))−1 qA⃗in. (4.51)

The solution of this equation contains all amplitudes of Hermite-Gaussian modes supported
by the cavity. These amplitudes allow to write the total cavity field as

Ec(⃗rp, r⃗, t) =
Nm∑

N=1

αN (⃗rp)ψN (⃗r) exp (−iωNt) + c.c. (4.52)

r⃗ is the vector of the coordinates x, y, and z and t is the time. Note that the expression above
is just an approximation since the number of modes supported by a real non-ideal cavity
is not infinitely large and Hermite-Gaussian modes are only solutions for the ideal cavity,
i. e. perfectly shaped and arranged mirrors and no resonator losses. Nevertheless, most real
cavity fields are well approximated by a finite set of Hermite-Gaussian modes [83].

The fields of a cavity, either from a transmittive or reflective setup, are [94]

Etr = tEc, (4.53)
Er = −rEin + rt exp (ikL)Ec, (4.54)

respectively. These fields contain information regarding the particles positions, see equation
4.52. However, the imprinted phase shift cannot be directly measured due to its low magni-
tude. To determine the phase shift, special techniques such as homodyne detection can be
applied.

4.3 Homodyne Detection

Fluctuations of the amplitude or the phase of an electromagnetic wave, as they occur in
modulated light beams or quantum noise, are usually small. By overlapping the beam of
interest with a reference beam, these fluctuations can be measured. For signal and reference
fields with identical and different frequencies, these techniques are called homodyne and
heterodyne detection, respectively. A modification of homodyne detection can be applied
to measure the positions of particles inside a resonator. Therefore, the basic principle of
a homodyne detector is explained in the following. Further details can be found in the
literature, e. g. in [112], which provides the foundation of this section.

Electromagnetic fields are often represented with complex numbers and usually polar
coordinates, as in equation 2.2, are used for this purpose. However, Cartesian coordinates
can also be utilised. In the following, the complex amplitude of an arbitrary electric field
is denoted as u

(⃗
r, t

)
with r⃗ = (x, y). The time dependence t of the amplitude arises due

to modulation or noise, though the propagation factor exp (−iωt) is not contained in this
quantity.

For the representation of the electric field in Cartesian coordinates the quadrature ampli-
tudes X1 and X2 are defined:
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Figure 4.2: Schematic representation of the homodyne detection technique. The beam of a
monochromatic light source is split into two different paths to obtain a signal and a reference
(local oscillator) beam. The phase of the local oscillator ϕlo can be shifted, e. g. by adjusting
the length of the corresponding path. Both beams are mixed again and the intensities of
the two resulting beams are measured at the detectors D1 and D2 and are subsequently
subtracted from each other. In dependence of the phase shift of the local oscillator, this
allows to detect the quadratures of the signal directly.

X1
(⃗
r, t

)
B u

(⃗
r, t

)
+ u

(⃗
r, t

)∗ , (4.55)

X2
(⃗
r, t

)
B −i

(
u
(⃗
r, t

)
− u

(⃗
r, t

)∗) . (4.56)

The electric field is then

E
(⃗
r, t

)
= X1

(⃗
r, t

)
cos (ωt) + X2

(⃗
r, t

)
sin (ωt). (4.57)

Fluctuations of the amplitude and phase entail alterations of the quadrature amplitudes
denoted as δX1 and δX2. The complex amplitude can then be written as

u
(⃗
r, t

)
= u0

(⃗
r
)
+ δX1 (t) + iδX2 (t) , (4.58)

where u0
(⃗
r
)

represents the constant fraction of the amplitude.
Homodyne detection allows to measure the fluctuations δX1 and δX2 of an electromag-

netic wave. This electromagnetic wave is denoted as the signal beam in the following. Figure
4.2 depicts a schematic representation of the homodyne measurement. The amplitudes of the
signal beam and local oscillator are us and ulo, respectively. A stable phase relation between
both electromagnetic waves is required. For this purpose, both beams can be created by an
identical source, e. g. a laser, and a beam splitter. Using identical sources also ensures equal
frequencies for both beams. The power of the reference beam should be significantly larger
in comparison to the signal.

According to equation 4.58, the amplitudes of the signal and local oscillator beam can be
written as

us (t) = u0,s + δX1,s (t) + iδX2,s (t) , (4.59)

ulo (t) =
(
u0,lo + δX1,lo (t) + iδX2,lo (t)

)
exp

(
iϕlo

)
. (4.60)

The phase of the local oscillator can be controlled in a homodyne detector, either due to optical
elements or simply by adjusting the path length with a piezo element. This allows to control
the phase relation between both beams which is mathematically expressed by the factor of
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exp
(
iϕlo

)
for the reference wave. This additional phase control ensures a constant phase

relation between signal and local oscillator. Furthermore, it allows the specific measurement
of either δX1,s (t) or δX2,s (t) as explained later.

After imprinting the additional phase of ϕlo to the local oscillator, both beams are mixed
by a beam splitter. Since no further phase control behind the reference beam path is possible,
the effects of a beam splitter regarding the phases are discussed here. For simplicity, the
phases of the incoming beams are set to zero, in particular the local oscillator ϕlo is dropped
for the moment. The beam splitter divides an incoming beam equivalently into two partial
beams, i. e. half of the light amplitude is reflected, while the other half is transmitted. The
phases imprinted by the beam splitter for reflection and transmission of the signal beam
are ϕr,s and ϕt,s, respectively, while phase shifts regarding reflections and transmission of
the local oscillator are defined accordingly as ϕr,lo and ϕt,lo. There is no general rule for
these phase shifts, different sizes and materials of the beam splitter imprint different phase
shifts. However, it is possible to derive phase relations by assuming energy conservation,
i. e. lossless beam splitters. The amplitudes of the outgoing beams of a beam splitter with
properties as assumed above are

uD1(t) =

√
1
2

us(t) exp
(
iϕr,s

)
+

√
1
2

ulo(t) exp
(
iϕt,lo

)
, (4.61)

uD2(t) =

√
1
2

us(t) exp
(
iϕt,s

)
+

√
1
2

ulo(t) exp
(
iϕr,lo

)
. (4.62)

Due to energy conservation the splitter must preserve power, hence

|ulo(t)|2 + |us(t)|2 =
∣∣∣uD1(t)

∣∣∣2 + ∣∣∣uD2(t)
∣∣∣2

= |ulo(t)|2 + |us(t)|2

+
1
2

u∗lo(t)us(t) exp
(
i
(
ϕt,s − ϕt,lo

))
+ c.c.

+
1
2

u∗lo(t)us(t) exp
(
i
(
ϕr,s − ϕr,lo

))
+ c.c.

(4.63)

This implies

0 = exp
(
i
(
ϕt,s − ϕt,lo

))
+ exp

(
i
(
ϕr,s − ϕr,lo

))
. (4.64)

Every lossless beam splitter needs to satisfy this expression. Without loss of generality, the
phases are chosen as ϕt,lo = ϕr,lo = ϕr,s = 0 and ϕt,s = −π. The amplitudes of the outgoing
beams of the second beam splitter in the homodyne detector are then

uD1(t) =

√
1
2

ulo(t) +

√
1
2

us(t), (4.65)

uD2(t) =

√
1
2

ulo(t) −

√
1
2

us(t). (4.66)

The phase of the local oscillator ϕlo can now be added again. Next, the larger power of
the reference beam is considered, hence |ulo(t)|2 ≫ |us(t)|2 applies and weak terms can be
neglected. Combining the two expressions above with the equations 4.59 and 4.60 allows to
determine the intensities measured for both detectors:
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ID1(t) =
1
2

cϵ0
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(4.67)

ID2(t) =
1
2

cϵ0
∣∣∣uD1(t)
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(4.68)

Finally, subtracting both intensities from each other yields

∆I = ID2 − ID1 = cϵ0u0,lo

(
δX1,s(t) cos

(
ϕlo

)
+ iδX2,s(t) sin

(
ϕlo

))
. (4.69)

This is a very powerful and astonishing result. The noise of the local oscillator and the time-
independent part of the signal amplitude are completely suppressed. By choosing the phase
shift of the local oscillator ϕlo accordingly, both quadrature fluctuations of the signal are
separately measurable, which allows to determine the corresponding phase. Furthermore,
the amplitude of the local oscillator allows to amplify the homodyne signal ∆I. A slight
modification of a homodyne detector can be used for the detection of cold molecules, see
chapter 4.4.

4.4 Homodyne detection of particles inside an optical resonator

Homodyne detection is normally used to measure time dependent signals, i. e. modulation
or noise. However, the signal for imaging the particles does not depend on time. The
particles imprint a phase shift to the cavity field regarding their positions. To extract the
localisation of the particles a spatially resolved measurement of the cavity field is required.
Since the interaction effects between field and particles are small, homodyne detection with
spatially resolved detectors can be used for this purpose. This measurement of spatially
resolved fields is the main difference to conventional homodyne detectors where only the
power in both arms is considered. The application of spatially resolved detectors can be
seen as a regular homodyne detection done for each pixel of the detectors simultaneously.

A schematic representation of the homodyne detection scheme for particles is depicted
in figure 4.3. A beam splitter mixes the transmitted field (optionally the reflected field can be
used) through the cavity Es, which contains information regarding the particles’ positions,
with a local oscillator Elo. The amplitudes of the beams behind the beam splitter are then
Es−Elo
√

2
and Es+Elo

√
2

. The intensities of these two fields are then measured spatially resolved, e. g.
by CCD cameras. The intensity of an arbitrary light field with the corresponding electric
field amplitude E is given by I = 1

2 cϵ0 |E|2 [83]. The electric fields at the positions of the
detectors are given by

ED1

(⃗
r, r⃗p

)
=
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)
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(⃗
r
)

√
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2

Nm∑
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)
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r
)

exp (−iωt) + c.c., (4.70)

ED2
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)
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)
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(⃗
r
)

exp (−iωt) + c.c. (4.71)

αs and αlo are the mode amplitudes of the signal and local oscillator beam, respectively. ψ̃ are
Hermite-Gaussian modes, however, these are not identical to the cavity modes. After being
outcoupled through the cavity mirror, the modes change their properties as they propagate
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Figure 4.3: Imaging scheme for cold molecules. A homodyne detector is used to read out the
alterations of the cavity field induced by the particles. In comparison to common homodyne
detection techniques the detectors measure the fields spatially resolved.

over an arbitrary distance and through optical components like lenses. By using the ABCD
law, these alterations can be taken into account. The new modes are than indicated by ψ̃N.
Note that the local oscillator beam in general is not described by the same set of Hermite-
Gaussian modes as the signal beam. This can be achieved, however, by placing the correct
optical elements into the path of the local oscillator.

The intensity difference between detector 1 and 2 is then

∆I
(⃗
r, r⃗p

)
= ID1

(⃗
r, r⃗p

)
− ID2

(⃗
r, r⃗p

)
=
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)
ψ̃∗M

(⃗
r
)
αs,N

(⃗
rp
)
α∗lo,M + c.c. (4.72)

This is the general expression for the homodyne signal.
Next, assumptions regarding the cavity field are formulated. The interaction between

light and particles is usually weak. Hence, the entries in the matrix M in equation 4.51 are
much smaller than the entries in T and D. This allows to perform a Taylor expansion leading
to

A⃗ = (−T + iD + iM)−1 qA⃗in

≈ (−T + iD)−1 qA⃗in + (−T + iD)−1 M (−T + iD)−1 qA⃗in.
(4.73)

Furthermore, it is assumed that all cavity modes have the same frequency, i. e. the cavity
detuning δ is for all modes the same. T and D are then diagonal matrices with identical
values. This allows to write

A⃗ ≈
1

q2
(
−1 + i2 δκ

) IdqA⃗in +
1(

q2
(
−1 + i2 δκ

))2 qA⃗in, (4.74)

for the cavity amplitudes. Id is the unity matrix. The first term takes into account the effects of
an empty cavity, while the second term contains light-particle interactions. A last assumption
is that only the fundamental 00-mode of the cavity is pumped and the corresponding mode
amplitude is ain,1. Hence, only the first column of the matrix M contributes to the cavity
field:
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)qain,1e⃗1 +
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)

e⃗N. (4.75)

The amplitudes of the signal are the transmitted amplitudes of the cavity field and, hence,

αs,N = qαN, (4.76)

where αN are the entries of A⃗.
Inserting the mode amplitudes into equation 4.72 allows to write
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(4.77)

As mentioned before, the first terms do not contain information regarding the particles posi-
tions. Hence, they need to be dropped by subtracting an empty cavity field. By rearranging
the sums, the homodyne detection signal for the particles is
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=
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+ c.c. (4.78)

To simplify this expression the two following functions are defined
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For the detection signal follows
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+ c.c. (4.81)

Lo
(⃗
r
)

is simply the local oscillator field without the oscillating part. ψ̃∗1
(⃗
rp
)

J
(⃗
r, r⃗p

)
can be

interpreted as the resolution defining term of the detection method. In particular, the cavity
waist and number of involved modes are responsible for the resolution capability through
ψ̃∗1

(⃗
rp
)

J
(⃗
r, r⃗p

)
.

4.5 Resolution capability

For the detection of particles homodyne signals are measured spatially resolved. The equa-
tions 4.72 and 4.81 allow to determine the signal profiles for different particle configurations
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Figure 4.4: Homodyne signals for a single particle along the x-direction. The x-coordinate
is depicted in units of the beam size at the detectors positions. A 00-mode drives the cavity,
while also serving as a local oscillator with a waist of w0,lo = 5 mm. All cavity modes are
degenerate. The left side of the figure depicts homodyne signals for different maximum
mode orders and a waist of w0 = 1.5µm. The right side shows signals for a maximum mode
order equal to 8 for different cavity waists. While the particle at the left side of the figure is
placed at xp = 0µm, the position of the particle on the right side is xp = 1µm.

within the resonator. Note that equation 4.72 contains the signal from the cavity background
that needs to be subtracted to receive a pure particle driven signal, i. e. the signal of an empty
cavity needs to be subtracted. Figure 4.4 depicts normalised homodyne signals∆I of a single
particle placed at the position of the cavity waist. For simplicity, the signal is investigated
along the x-direction and the values of x are given in units of the beam size at the detectors
surfaces. The cavity modes are assumed to be degenerate, i. e. the resonance frequencies of
all modes are identical. A 00-mode serves as the local oscillator and also drives the cavity.
The waist of the local oscillator field is w0,lo = 5 mm. All these assumptions are also used for
the other simulations in this chapter, if not explicitly stated otherwise.

The homodyne signals at the left side of figure 4.4 refer to the maximum mode orders
n + m of 2, 8 and 15. Each mode of every order contributes to the signal, hence, the mode
numbers given by any possible combination of n and m are 6, 45 and 136, respectively. The
cavity waist and particle position for all curves are w0 = 1.5µm and xp = 0µm, respectively.
A peak in the homodyne signal appears at the corresponding position of the particle that
resembles a Lorentzian or Gaussian profile. However, the correct mathematical expression
to describe these profiles is ψ̃∗1

(⃗
rp
)

J
(⃗
r, r⃗p

)
. Furthermore, larger mode orders lead to narrower

signal peaks. The homodyne signal can also adopt negative values since it is an intensity
difference and not a pure intensity. The number of ripples next to the main peak depend on
the maximum mode order and should not be misinterpreted as diffraction.

The left side of figure 4.4 depicts the homodyne signal for different cavity waists. The
maximum mode order is equal to 8 for all curves. In this diagram, the particle is not
positioned at the optical axis as on the right side of the figure, but at xp = 1µm. The
linewidth of the peak is unaffected by using various cavity waists. However, the peak is
shifted to the centre of the diagram for larger resonator waists. Hence, it is more difficult to
distinguish between adjacent particles. Both, the maximum mode order supported by the
cavity and the waist of the resonator field have an impact on the resolution capability, but
in different ways. While larger mode numbers lead to decreased linewidths of the peaks,
smaller waists allow to distinguish the different particles more effectively.

To investigate the impact of the cavity waist and mode order further, a suitable definition
for the resolution is needed. However, such a resolution criterion can be unambiguous since
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Figure 4.5: Homodyne signals for two adjacent particles. The plot parameters are identical
to those from figure 4.4. The particles’ positions for the left side of the figure are xp1 = 1µm
and xp1 = −1µm. Homodyne signals for three different waists are depicted. The right side of
the figure shows the homodyne signal of two particles that are considered at the resolution
limit, where the intensity drops between the main peaks by 26.3%.

the resolution might depend on the evaluation technique applied to the homodyne signal.
Several definitions for the resolution capability exist for microscopes, telescopes and other
optical imaging systems.

For classical optical microscopes, the Abbe limit is common and given by λ
2NA [113, 114].

NA is the numerical aperture of the optical system and depends on the half angle θ of
the imaging beam. This definition could also be applied to the proposed particle detection
scheme by using the far-field angle of the cavity field asθ in the numerical aperture. However,
this definition might oversimplify the mechanisms behind the detection technique since the
effects of higher order modes could only be taken into account indirectly. Therefore, other
definitions might be more suitable.

Another common definition for the resolution for two adjacent particles is the Rayleigh
criterion first suggested by Lord Rayleigh [115]. The Rayleigh criterion is applicable for
diffraction limited systems, assuming that each of the particles emits radiation itself. Due to
diffraction, the corresponding intensity profiles have one global main maximum and several
local maxima and minima. Two particles are considered to be at the resolution limit when
one of the particles is placed at the first minimum of the intensity profile of the other particle
[116]. This corresponds to an intensity drop of I(x = 0) = 0.737 Imax between the particles, if
Imax is the intensity at one of the two intensity peaks, assuming the corresponding particle
positions are xp and −xp. This intensity drop is represented at the right side of figure 4.5 and
corresponds to a drop by 26.3%.

The Rayleigh criterion is not an absolute limit since an observer might distinguish two
particles even closer to each other. For example, the Dawes limit defines the border for
resolvability by an intensity drop of 5% since it was empirically found that a significant
number of people are still able to resolve two particles at the corresponding positions [117].
Even if the resolution capability of the proposed detection scheme might depend on the
evaluation of the measured signal, the Rayleigh criterion is still an appropriate definition to
investigate the impact of cavity waist and maximum mode order on the resolution since it
defines an universal criterion, which can be applied for an arbitrary particle-cavity system.
As described above the ripples next to the main peak in figure 4.4 do not arise through
diffraction and the resolution cannot be defined as the distance between main maxima and
first minima. However, the intensity drop between the main maxima of 26.3% can be utilised
to define the resolution capability.
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Figure 4.6: Resolution regarding different mode orders and cavity waists. The plot param-
eters for the curves are identical to those in figure 4.4. The left side depicts the dependency
of the resolution regarding the maximum mode order supported by the cavity for different
cavity waists. The right side shows the resolution capabilities in dependence of the waist for
three different maximum mode orders.

Figure 4.5 depicts the homodyne signal for two particles placed in the waist of the cavity
and a maximum mode order equal to 8. The left side of the figure shows the signals for
particles located at xp1 = 1µm and xp1 = −1µm for different cavity waists. As expected,
larger waists make it more difficult to distinguish the signal maxima until both peaks merge
together. The right side of the figure depicts a homodyne signal of two particles at the
resolution limit according to the above defined resolution criterion.

To find the resolution capabilities for a given set of maximum order modes and resonator
waists the position of two particles is tuned until the intensity drop between the main maxima
of the homodyne signal is equal to ∆I(x = 0) = 0.737 ∆Imax. The distance to the cavity axis
is always the same for both particles, hence, the homodyne signals are symmetric to x = 0.
Results are depicted in figure 4.6. At the left side of the figure, resolution capabilities for
three different waists are represented depending on the maximum mode order supported
by the cavity. At the right side of the figure, the resolution is shown for three different
maximum orders depending on the the cavity waist. As expected, small waists and large
mode numbers lead to high resolutions. However, the effect of both quantities regarding the
resolution is not the same. While the resolution improves linearly with decreasing waists,
the resolutions curves for maximum mode orders flatten for higher orders. Furthermore,
the effect of additional mode orders is stronger for larger waists. High resolutions can
be obtained for lower mode numbers as long as the waist is small enough. To achieve
high resolutions for large cavity waists, although, a very high number of modes would be
necessary.

Furthermore, it should be noted that the left side of figure 4.6 only represents the res-
olutions capability of even modes. In a symmetric configuration, i. e. the distance of both
particles to the optical axis is identical, the odd modes do not contribute to the signal since
these modes are point symmetric and, therefore, the signals of both particles annihilate each
other. However, odd modes contribute to the signal for non symmetric arrangements. The
behaviour regarding additional mode orders for the resolution stays the same.



Chapter 5

Detection of Cold Particles - Quantum
Description

Classical approaches require less abstract physics in comparison to quantum physical the-
ories and are therefore often more straightforward to understand and may yield simpler
dynamics [103]. However, only quantum mechanical theories ensure a complete description
of the interaction between light and matter with certainty. A quantum mechanical approach
for the molecular detection scheme was developed in the master thesis of Jan Bischoff [111]
which relies on the Jaynes-Cummings model explained in the literature, e. g. [118].

In the first section, the Jaynes-Cummings model for an arbitrary number of particles and
cavity modes is introduced. The three parts defining the corresponding Hamiltonian are
discussed and the Hamiltonian is transformed into the interaction picture. In the second
section, the amplitudes of the cavity modes are determined by using the previous defined
Jaynes-Cummings Hamiltonian. In the section afterwards the signal-to-noise ratio and
number of spontaneously scattered photons is investigated. These first three sections are
based on [111]. Finally, the quantum mechanical theory is compared to the classical approach.

5.1 Jaynes-Cummings Hamiltonian

The Hamiltonian of a particle inside an optical cavity consists of three parts describing the
particle, the resonator field and the light-matter interaction, respectively. This Hamiltonian
is also called the Jaynes-Cummings Hamiltonian [8] and can generally be expressed as

Ĥ = Ĥparticle + Ĥcavity + Ĥinteraction. (5.1)

Variables with roofs indicate operators and operators being a mapping between mathemat-
ical spaces. Operators are widely used in quantum mechanics, further information can be
found in the literature, e. g. in [119].

Particle Hamiltonian

To suppress absorption the low-saturation regime is considered for the particle. Hence, the
particle can be approximated as two-state system, especially valid for molecules despite
their complex internal level structure. |g⟩ and |e⟩ denote the ground and excited state of
the particle, respectively. The energy of the ground state is set equal to zero and the energy
difference between ground and excited state is Ee−Eg = ℏωe. The Hamiltonian of the particle
is then [111]

Ĥparticle = ℏωe |e⟩ ⟨e| = ℏωeσ̂e. (5.2)

43
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ℏ is the reduced Planck constant and the operator σ̂ B |e⟩ ⟨e| is the probability for the particle
to be in the excited state.

Cavity field Hamiltonian

The Hamiltonian of the cavity consists of two parts, the field inside the cavity itself and
the field pumping the resonator. The first part, the cavity field, is proportional to the
number of photons inside the resonator given by the number operator â†a where â and â† are
the annihilation and creation operators of the cavity field, respectively, with the †-symbol
indicating that â† is the Hermitian conjugated operator of â. The second part, the resonator
mode, is driven by an external field Ee with frequency ωL. Power losses are taken into
account in this term by

√
2κ, with κ being the linewidth of the resonator. The Hamiltonian

for a cavity mode with frequency ωc is therefore [111]

Ĥcavity = ℏωcâ†â + i
(√

2κEeâ exp (−iωLt) − h.c.
)

(5.3)

where h.c. is an acronym for Hermitian conjugated.

Interaction Hamiltonian

The third Hamiltonian in equation 5.1 describes the interaction between the particle and
cavity mode. This term contains information regarding the particles’ position inside the
resonator. The interaction Hamiltonian is given by [8]

Ĥinteraction = −
⃗̂d⃗̂E. (5.4)

⃗̂d is the dipole operator discussed further below and ⃗̂E
(⃗
rp
)

is the electric field operator at the
particles’ position r⃗p, given by

⃗̂E =

√
ℏωc

2ϵ0V
√
ηψ

(⃗
rp
) (

â + â†
)

e⃗. (5.5)

V is the mode volume of the resonator, e⃗ is the unity vector in direction of the polarisation
of the light field and ψ is the electric field distribution of the cavity mode, e. g. a Hermite-

Gaussian mode. The factor of the square root of the effective mode area
√
η =

√
2
πw2 is

usually not found in the literature. It is implemented here, since the Hermite-Gaussian
modes in chapter 2 are not dimensionless, but have units of a reciprocal length from the

factor of
√

2
πw2 . This factor ensures that the Hermite-Gaussian modes form an orthonormal

set. To avoid two different conventions for Hermite-Gaussian modes it is assumed that the
field distribution ψ always contains the factor

√
2
πw2 .

Next, the particles creation and annihilation operators are introduced by [8]

σ̂+ = |e⟩ ⟨g| , (5.6)
σ̂− = |g⟩ ⟨e| , (5.7)

respectively. Using parity consideration, i. e. ⟨g| d̂ |g⟩ = ⟨e| d̂ |e⟩ = 0, the projection of the

dipole operator onto the cavity fields polarisation d̂ = ⃗̂de⃗ can be written as [8]

d̂ = d |g⟩ ⟨e| + d∗ |e⟩ ⟨g| = dσ̂− + d∗σ̂+ (5.8)
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where d = ⟨e| d̂ |g⟩. d is the transition dipole matrix element describing the coupling strength
between the ground and excited state of the particle [8]. Without loss of generality, d is
assumed as real-valued [8] which allows to write the interaction Hamiltonian as

Ĥinteraction = d

√
ℏωc

2ϵ0V
ψ

(⃗
rp
)

(σ̂+ + σ̂−)
(
â + â†

)
. (5.9)

Next, the coupling parameter is introduced:

g̃ = d
√

ωc

2ℏϵ0V
√
ηψ

(⃗
rp
)
= g̃0ψ

(⃗
rp
)
. (5.10)

This quantity is a measure for the interaction strength between particle and cavity mode.
The coupling parameter allows to write the interaction Hamiltonian as

Ĥinteraction = ℏg̃ (σ̂+ + σ̂−)
(
â + â†

)
. (5.11)

In the interaction picture the creation and annihilation operators depend on the time t. The
time evolution of the operators are [8]

σ̂−(t) = σ̂−(0) exp (−iωet), (5.12)
σ̂+(t) = σ̂+(0) exp (iωet), (5.13)

â(t) = â(0) exp (−iωct), (5.14)

â†(t) = â†(0) exp (iωct). (5.15)

The product of these operators in equation 5.11 are therefore proportional to the following
factors [8]:

σ̂+â ∝ exp (i (ωe − ωc) t), (5.16)

σ̂−â† ∝ exp (−i (ωe − ωc) t), (5.17)
σ̂−â ∝ exp (−i (ωe + ωc) t), (5.18)

σ̂+â† ∝ exp (i (ωe + ωc) t). (5.19)

σ̂+â excites the particle and annihilates a photon, while σ̂−â† does the opposite. σ̂−â and
σ̂+â† do not preserve energy conservation since either the particle is excited and a photon is
created or the state of the particle and a photon are destroyed at the same time. However,
applying the rotating wave approximation, and therefore ωe ≈ ωc, leads to fast oscillations
in the non-energy conserving products and the corresponding terms can be omitted [8]. The
interaction Hamiltonian can then be written as

Ĥinteraction ≈ ℏg̃σ̂+â + h.c. (5.20)

Jaynes-Cummings Hamiltonian for a single particle inside a single mode cavity

Inserting the three individual Hamiltonians from equations 5.2, 5.3 and 5.11 into equation 5.1
allows to determine the Jaynes-Cummings Hamiltonian for a single particle inside a single
mode resonator. The Hamiltonian can be written as

Ĥ = ℏωeσ̂e + ℏωcâ†â + i
(√

2κEeâ exp (−iωLt) − h.c.
)
+ ℏ

(
g̃σ̂+â + h.c.

)
. (5.21)
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Jaynes-Cummings Hamiltonian for multiple particles inside a multimode cavity

To generalise the Jaynes-Cummings Hamiltonian for multiple particles and multimode cav-
ities accumulations over the number of all particles Np and modes Nm for the corresponding
terms are necessary:

Ĥ =
Np∑
p=1

ℏωe,pσ̂e,p +

Nm∑
N=1

ℏωc,Nâ†NâN + i
Nm∑

N=1

(√
2κEe,NâN exp (−iωLt) − h.c.

)

+

Nm∑
N=1

Np∑
p=1

ℏ
(
g̃pσ̂+,pâN + h.c.

)
.

(5.22)

To transform the Hamiltonian into the interaction picture, i. e. to get rid of the time dependent
exponential function in the term driving the cavity, the unitary operator [120]

Û = exp
(
−iωL

(
â†NâN + σ̂e,p

))
(5.23)

can be applied. The new Hamiltonian is then obtained by [111]

ĤIP = i
dÛ
dt

Û + ÛĤÛ†. (5.24)

Finally, the Jaynes-Cummings Hamiltonian in the interaction picture takes the form

ĤIP =

Np∑
p=1

ℏ∆pσ̂e,p +

Nm∑
N=1

ℏδNâ†NâN + i
Nm∑

N=1

(√
2κEe,NâN + h.c.

)

+

Nm∑
N=1

Np∑
p=1

ℏ
(
g̃N,pσ̂+,pâN + h.c.

)
.

(5.25)

As before, ∆p and δN are the particle-laser and mode-laser detunings, respectively.

5.2 Amplitudes of the cavity modes

The cavity field contains information regarding the particles positions and, hence, the am-
plitudes of the modes âN supported by the cavity also contain this information. The time
evolutions of the annihilation operators of an arbitrary mode N for a reflective resonator and
particle p are given by [111]

dâN

dt
= i

[
ĤIP, âN

]
− κâN +

√

2κâvac,N, (5.26)

dσ̂−,p
dt
= i

[
ĤIP, σ̂−,p

]
. (5.27)

The brackets in the equations above indicate commutators which are defined for two arbitrary
operators Â and B̂ as

[
Â, B̂

]
= ÂB̂ − B̂Â. âvac,N is the operator of the vacuum field of mode

N. After some algebraic transformations, the time evolutions of the operators are given by
[111]
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dâN

dt
= − (κ + iδN) âN +

√

2κ
(
Ee,N + âvac,N

)
− i

Np∑
p=1

g̃∗N,pσ̂−,p, (5.28)

dσ̂−,p
dt
= −i∆pσ̂−,p − i

Nm∑
N=1

g̃N,pσ̂3,pâN. (5.29)

Similar results are obtained for atomic cases in [121]. σ̂3,p is the inversion operator for particle
p and given by σ̂3 = |e⟩ ⟨e| − |g⟩ ⟨g| [8]. Due to the low-saturation regime ˆσ3,p ≈ −1 can be
assumed. Furthermore, for σ̂−,p an adiabatic elimination [106] is assumed and, therefore,
[111]

σ̂−,p = i
Nm∑

N=1

g̃N,p

∆p
âN. (5.30)

Next, this expression is inserted into equation 5.28 and a steady state solution is considered,
since a state of equilibrium for the cavity field is assumed. This leads to

0 = − (κ + iδN) âN +
√

2κ
(
Ee,N + âvac,N

)
− i

Nm∑
M=1

Np∑
p=1

g̃∗N,p g̃M,p

∆p
σ̂−,pâM. (5.31)

This expression reveals that the annihilation operator for an arbitrary mode N depends
on all other modes M supported by the cavity. The annihilation operators of all modes form
therefore a set of coupled equations. Analogue to the classical case this system of equations
can be written in a more compact form by defining the following vectors and matrices [111]:

A⃗ =


â1
â2
...

âNm

 ,
√

K =


√
κ 0 · · ·

0
√
κ

...
. . .

 ,D =

∆c,1 0 · · ·

0 ∆c,2
...

. . .
∆c,Nm



M =



Np∑
p=1

g∗1,pg1,p

∆a,p

Np∑
p=1

g∗1,pg2,p

∆a,p
· · ·

Np∑
p=1

g∗1,pgNm,p

∆a,p

Np∑
p=1

g∗2,pg1,p

∆a,p

Np∑
p=1

g∗2,pg2,p

∆a,p

...
. . .

Np∑
p=1

g∗Nm,p
g1,p

∆a,p

Np∑
p=1

g∗Nm,p
gNm,p

∆a,p



.

(5.32)

Vectors for the vacuum fields A⃗vac and driving field E⃗e are defined in the same way as A⃗.
This allows to write the system of equations for the modes as

A⃗ = (K + i (D +M))−1
√

2
√

K
(
E⃗e + A⃗vac

)
. (5.33)

The vector A⃗ contains all amplitudes of the modes supported by the cavity. The cavity
field, in turn, can be used to determine the positions of the particles.
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5.3 Signal-to-noise ratio

There are two important properties describing the quality of the proposed imaging technique.
The first of these properties is the so-called signal-to-noise ratio (SNR). As the name indicates,
the SNR is defined as the ratio between signal strength and measurement noise. This ratio
should be at least equal to unity for prober signal qualities since the measurement signal can
not be distinguished from the detection noise otherwise. The second important quantity is
the number of photons spontaneously scattered by a molecule Nsp. In general, the SNR can
be increased by longer measurement times, however, this also increases the probability of
spontaneously scattered photons.

To obtain an expression for the SNR the signal strength of the homodyne detector as well
as the corresponding noise need to be determined. As the previous sections, the following
derivations rely on [111]. For the purpose to determine signal strength and noise, the field
leaving the cavity is required and given by

A⃗out(⃗r, t) = A⃗in
(⃗
r, t

)
+ E⃗

(⃗
r
)
−

√

2
√

KA⃗
(⃗
r, t

)
=

(
Id − 2

(
Id + i

√

K−1 (D +M)
√

K−1
)−1) (

A⃗in
(⃗
r, t

)
+ E⃗

(⃗
r
))
.

(5.34)

For simplicity, a single particle at the centre of a single mode cavity is considered, this leads
to

âout(t) =

1 − 2
(
1 + i

g∗0g0

κ∆

)−1 (âin(t) − Êin

)
≈ (1 − iΦ)

(
âin(t) − Êin

)
.

(5.35)

for the outgoing cavity field. Φ is defined as

Φ B
2g∗0g0

κ∆
(5.36)

and can be interpreted as the phase shift induced by the molecule.
Next, the homodyne signal must be determined. A schematic representation of a homo-

dyne detector is illustrated in figure 4.2 and the corresponding classical theory is described
in chapter 4.3. Further information regarding the quantum physical theory can be found
in the literature, e. g. [122]. The signal of a homodyne detector is given by the difference
between the signals of the detectors

∆Îhs(⃗r, t) = Î2(⃗r, t) − Î1(⃗r, t) = 2cϵ0

(
Ê2

(⃗
r, t

)
Ê†2

(⃗
r, t

)
− Ê1

(⃗
r, t

)
Ê†1

(⃗
r, t

))
(5.37)

with

Ê1
(⃗
r, t

)
= iψ̃

(⃗
r
) ( ℏωL

2ϵ0cA

)
âout (t) − âlo (t)

√
2

exp (−iωLt), (5.38)

Ê2
(⃗
r, t

)
= iψ̃

(⃗
r
) ( ℏωL

2ϵ0cA

)
âout (t) + âlo (t)

√
2

exp (−iωLt) (5.39)

being the electric fields at the surfaces of the detectors 1 and 2, respectively. A is the effective
mode area of the fields, âlo(t) is the annihilation operator of the local oscillator and ψ

(⃗
r
)

is
the field distribution of the electric fields. Inserting these fields into equation 5.37 leads to
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∆Îhs(⃗r, t) =
ℏωL

2A

∣∣∣ψ(⃗r)
∣∣∣2 (

âout (t) â†lo (t) − â†out (t) âlo (t)
)
. (5.40)

The local oscillator is assumed to be in a coherent state

âloc
(⃗
r, t

)
|αlo⟩ = α (t) |αlo⟩ = |α| exp (iΘ) (t) |αlo⟩ . (5.41)

Applying this state to ∆Îhs yields

∆Îloc
(⃗
r, t

)
= ⟨αlo|∆Îhs

(⃗
r, t

)
|αlo⟩ =

ℏωL

2A

∣∣∣ψ (⃗
r
)∣∣∣2 (

âout (t)α∗ (t) − â†out (t)α (t)
)
. (5.42)

Inserting the cavity field from equation 5.35 and applying some algebraic transformations
allows to write

∆Îloc
(⃗
r, t

)
=
ℏωL

2A

∣∣∣ψ(⃗r)
∣∣∣2 |α| ( cos(Θ)Êin +

(
ain (t) exp (iΘ) + a†in (t) exp (−iΘ)

)
−Φ sin(Θ)Êin − iΦ

(
ain (t) exp (iΘ) − a†in (t) exp (−iΘ)

)
)

(5.43)

with Θ being the phase of the local oscillator. Setting this phase to Θ = −π2 and assuming
that Êin yields

∆Îloc
(⃗
r, t

)
=
ℏωL

A

∣∣∣ψ(⃗r)
∣∣∣2 |α| (i (ain (t) − a†in (t)

)
+ ΦÊin + Φ

(
i
(
ain (t) + a†in (t)

)))
. (5.44)

The product of the phase shift with the noise terms is usually small and can be dropped,
allowing to write

∆Îloc
(⃗
r, t

)
=
ℏωL

A

∣∣∣ψ∣∣∣2 |α| (i (ain (t) − a†in (t)
)
+ ΦÊin

)
. (5.45)

In the simplified case of a single molecule placed at the centre of the cavity, a spatially
resolved detection of the electric fields is not necessary and the above expression can be
integrated:

∆Î (t) =
∫
∆Îloc

(⃗
r, t

)
d2r = ℏωL |α|

(
i
(
ain (t) − a†in (t)

)
+ ΦÊin

)
. (5.46)

As in the classical case, the noise of the local oscillator is completely suppressed while its
amplitude enhances the cavity signal. The time dependent quadrature is given by:

ˆ̃pout(t) = ˆ̃pin(t) + ˆ̃Φ, (5.47)

where ˆ̃pin(t) is the noise term and Φ̃ the total phase shift induced by the molecule. Detectors
measure signals integrated over time and, thus,

p̂out =
1
√

T

∫
T

ˆ̃pout(t)dt, (5.48)

p̂in =
1
√

T

∫
T

ˆ̃pin(t)dt. (5.49)

From this follows:

p̂out = p̂in + Φ̃. (5.50)
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Finally, the SNR can be obtained through

SNR =
〈
p̂out

〉
∆p̂out

. (5.51)

The noise is given by

∆pout =

√〈
p2

out

〉
−

〈
pout

〉2

=

√〈
p2

in

〉
+

〈
p†inΦ̃ + pinΦ̃∗

〉
+

〈
pout

〉2
−

〈
pout

〉2

=

√〈
p2

in

〉
= ℏωL |α| .

(5.52)

For the SNR follows

SNR =

〈
pin + Φ̃

〉
ℏωL |α|

=
1
√

T

∫
T

〈
i
(
ain − a†in

)
+ ΦÊin

〉
dt

=
Φ
√

T

∫
T

Êindt.

(5.53)

Inserting the phase shift from equation 5.36 yields

SNR =
2g2

0

κ∆
√

T

∫
T

Êindt. (5.54)

The modulus square of the electric field Êin is the photon flux and, hence, the normalised
integral is equal to the square root of the photon number Np:

SNR =
2g2

0

κ∆

√
Np. (5.55)

The SNR can be increased by stronger light-particle interactions, longer lifetimes of the
photons inside the cavity or by exposing the molecule to a larger number of photons.
However, all these parameters are also affecting the number of spontaneously scattered
photons. This number is given by

Nsp = γspr(t)T (5.56)

with γs being the decay rate of the excited state and pr(t) being the probability to measure
the molecule in the excited state given by

pr(t) =
Ω2

Ω2 + ∆2 sin2
(
Ωt
2

)
. (5.57)

Ω is the rabi frequency which can be obtained through

Ω = g0

√
P
ℏωκ

. (5.58)

Assuming that Ω ≪ ∆ applies, which corresponds to the low-saturation regime, allows to
write
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prop(t) ≈
Ω2

∆2 sin2
(
Ωt
2

)
. (5.59)

For the number of spontaneously scattered photons follows

Nsp = γs
Ω2

2∆2 T

=
γsg2

0PT

∆2ℏωLκ

=
γsg2

0

κ∆2 Np

= SNR
γs

2∆

√
Np

(5.60)

with

Np =
PT
ℏωL

(5.61)

being the number of photons interacting with the molecule. Nsp depends on the SNR itself
and a careful balance between both quantities needs to be found. Inserting equation 5.55
into equation 5.60 yields

Nsp = SNR2γsκ

8g2
0

. (5.62)

The equation above contains a quantity called the single particle cooperativity given by [103]

C =
4g2

0

κγs
. (5.63)

This is a common quantity in the field of cavity quantum electrodynamics and determine if
either light-matter interactions or photon losses dominate a particle-cavity system. Inserting
the cooperativity into equation 5.62 yields

Nsp =
SNR2

2C
. (5.64)

Hence, the cooperativity is an important measure for the quality of the proposed imaging
method. The cooperativity needs to increase quadratically with the SNR to maintain a
constant number of spontaneously scattered photons making large SNRs difficult to obtain.
For a SNR equal to unity, the cooperativity should at least be C = 0.5 so that not more than
one photon is scattered. However, larger cooperativities are preferable to reduce Nsp below
unity.

5.4 Comparison of the classical and quantum mechanical model

A comparison of the classical and quantum mechanical model for the detection of particles
helps to understand whether a classical description of the detection scheme is appropriate
or not. The amplitudes of the cavity modes in the classical description are determined
by equation 4.51, whereas the quantum physical amplitudes are given by equation 5.33.
Qualitatively, both expressions are similar, except the additional vacuum field term for the
quantum mechanical model. This meets general expectations since vacuum field fluctuations
are a purely quantum optical effect. Furthermore, the matrices in equation 4.51 and 5.33
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are different. However, the corresponding classical and quantum mechanical matrices are
approximately proportional to each other, the proportionality factor is c

2L , i. e. K = c
2L T.

To prove this, two approximations regarding the cavity linewidth from equation 3.31 are
applied. The square root in the denominator can be omitted since the reflectivity of cavity
mirrors is usually close to unity. Furthermore, 1 − R = T = q2 applies and therefore

κ ≈ q2 c
2L
. (5.65)

From this approximation also follows q2 1
κ

c
2L = 1 and therefore the classical and quantum me-

chanical D-matrices are proportional to each other, the proportionality factor is c
2L . K = c

2L T
follows also directly from equation 5.65. To show that the classical and quantum mechanical
M-matrices are also proportional to each other by a factor of c

2L the expression[103]

d2 =
3πℏϵ0Γ

k3
e

(5.66)

between dipole matrix element d and transition linewidth Γ is utilised. ke is the wavenumber
corresponding to the particles transition. Furthermore, either a laser beam far detuned from
the particles transition frequency or a low intensity beam can be assumed to suppresses
excitations and fulfil the low-saturation regime assumption of the particles. Hence, the
imaginary part of the polarisability of the particles can be omitted and

α ≈
3πϵ0

k3
e

Γ

∆
(5.67)

applies. Some algebraic transformations using equations 5.66 and 5.67, explained in the
appendix A, yield

4β
c

2L
=

∣∣∣g̃∣∣∣2
∆

(5.68)

which proves the suggested proportionality between the classical and quantum mechanical
M-matrices.

Comparing equation 4.51 and 5.33 reveals different signs between the D- and M-matrices.
Both matrices are imaginary and therefore the sign equalises if the complex conjugation of
either the classical or quantum physical amplitudes is considered. This can be explained by
the change of the sign convention for the Hermite-Gaussian modes in chapter 4.1. The sign
is reversed to simplify the overlap integral between dipole radiation and Hermite-Gaussian
mode. Switching back to the original sign convention finally equalises the classical and
quantum mechanical matrices.

Equation 5.65 reveals that the numerators in equation 4.51 and 5.33 are proportional to
each other by a factor of

√ c
L . Hence, the proportionality between classical and quantum

mechanical model is given by

(
Kqm + i

(
Dqm +Mqm

))−1 √
2
√

Kqm = 2

√
L
c

(Tcl + i (Dcl +Mcl))
−1 . (5.69)

In conclusion, both theories predict identical results for the particles’ positions as long as
vacuum field noise can be neglected. The vacuum fluctuations are a pure quantum physical
effect and that it is not occurring in the classical theory meets the expectations.



Chapter 6

Cavity Geometries for the Detection of
Cold Particles

The fundamental properties of optical cavities are explained in chapter 3. After developing
the theoretical foundations behind the detection of cold particles, these properties can be
further investigated with respect to their impact on the imaging of the particles. This is
necessary to determine resonator geometries that are suitable for the proposed detection
scheme. In the following paragraphs the most important properties are briefly summarised.

(i): There are several reasons why a cavity should operate in the stable regime for the
detection of particles. First, diffraction losses are significantly larger for unstable resonators
[123] weakening the homodyne signals. For higher order modes the diffraction loss even
increases further, which might lead to a complete suppression of these modes [123]. Finally,
the field distributions of the eigenmodes of unstable cavities are often complicated and might
require numerical calculations [123].

(ii): The second requirement for the resonator, the multimode regime, is necessary to
enable spatially resolved detection of particles that relies on different field distributions
of the cavity modes. A superposition of different transverse modes contains information
regarding the particles positions.

(iii): The presence of higher order modes also improves the resolution capability that is
the third requirement for the resonator. Apart from the maximum mode order supported by
the cavity, small waists are advantageous for this purpose as discussed in chapter 4.5. In the
future the detection method should be implemented in the POLAR experiment at the Leibniz
University Hannover [75]. This experiment utilises sodium-potassium (NaK) molecules that
are loaded into an optical lattice with a lattice constant of 0.532µm. A suitable combination
of waist and maximum mode order needs to be chosen that allows to resolve two particles
in adjacent lattice sites.

(iv): The fourth requirement is a suitable cooperativity. As previously explained in
chapter 5.3 the number of spontaneously scattered photons by a molecule depends on the
cooperativity and the signal-to-noise ratio. A SNR of at least unity requires a single particle
cooperativity C > 0.5 to ensure the number of scattered photons is not to large.

The following list summarises all these requirements that a cavity must fulfil to be
applicable for the detection of cold atoms or molecules:

• (i) Stable resonator

• (ii) Multimode regime

• (iii) Suitable spatial resolution for an optical lattice with a periodicity of 0.532µm

• (iv) C > 0.5

53
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Meeting all these requirements at the same time is challenging, especially since improving
one property often impairs another. For example, a small cavity waist increases the resolution
but might lead to larger cavity linewidths due to additional diffraction losses. The different
requirements and their mutual dependences are discussed in the following chapter.

This chapter is organised as follows. First, the most common stable resonators are
introduced and their most important properties are summarised to give a brief overview
about stable resonators. In the second section, requirements to enter the multimode regime
are discussed and a connection between the number of supported modes, mirror reflectivities
and cavity parameters, which determine resonator stability, is derived. Hereinafter, the
potential waist of a cavity is discussed and the equations relating mode number, mirror
reflectivity and cavity parameters are expanded by resonator waist and length. This ensures
an expression relating the most important quantities, which define the resolution capability,
with each other.

In the fourth section the focus is set on finitely sized mirror apertures and their impact
on the photon lifetime in the resonator. Diffraction losses are calculated and the sensitivity
of mirror misalignment is discussed. The cooperativity is investigated in the fifth section.
In the section afterwards, the critical distance, i. e. the distance of a cavity geometry to
the area of instability, necessary to verify the technical feasibility of resonator geometries
is introduced. Finally, all aspects are combined to determine cavity geometries suitable for
the detection of cold molecules. In this last section, a possible transition of NaK ground-
state molecules suitable to utilise the presented detection scheme is proposed, resonator
properties are defined and the resulting homodyne signals are simulated.

6.1 Stable resonators

As explained previously in chapter 3, the range of stability for cavities is defined by the
mirror parameters: 0 < g1g2 < 1. Figure 6.1 depicts the area of stability and indicates some
of the most commonly used resonator geometries. Note that the presented geometries are
located at the edges of stability in the g1 − g2-diagram and are therefore strictly speaking
not stable. Nevertheless, they are commonly referred to in the literature, e. g. in [82], since
often resonators with geometries close to these extreme configurations are utilised, e. g.
near-confocal or near-concentric resonators.

(Near-)plane-parallel resonator: This resonator type consists of two (nearly) plane mirrors.
The mirror parameters g1 and g2 are identical and approach a value equal to unity:
g1 ≈ g2 ≈ 1. The beam profiles of these resonators are nearly cylindrical, see figure
6.1, and the waist is usually large in comparison to other cavity configurations with
identical mirror distances L. Plane-parallel cavities were commonly used in early lasers
[82], but are avoided in modern laser applications due to a large mirror misalignment
sensitivity.

(Near-)confocal resonator: The length of a confocal cavity is (nearly) identical to the radius
of curvature of the resonator mirrors. Therefore, the cavity parameters are approaching
values equal to zero. The cavity length is approximately twice the Rayleigh range of
the cavity field and confocal resonators have the smallest average beam radius of stable
resonators [82]. Commercial Fabry-Pérot interferometers are often confocal resonators
since this type is robust against misalignment of the cavity mirrors.

(Near-)concentric resonator: In this configuration, the length of the cavity is twice as large
as the mirror radii. The concentric resonator can be seen as the counterpart of the plane-
parallel cavity as the absolute value of the mirror parameters of both geometries are
identical but have reversed signs. Both types are similarly sensitive to misalignment
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Figure 6.1: Area of stable two-mirror resonators defined by the cavity parameters g1 and g2.
The green shaded area indicates stable resonator geometries. Geometries along the dashed
line are symmetric, i. e. the cavity mirrors have identical radii of curvature and the waist
of the cavity field is placed at the centre. Four common resonator types are indicated by
numbered red dots and the corresponding geometries and fields are depicted at the right
side of the figure.

and have identical beam sizes at the mirror surfaces. However, the waist of concentric
cavities is small compared to other configurations leading to a hourglass shaped beam
profile, see figure 6.1.

(Near-)hemisperical resonator: This resonator type consists of a plane and a spherical mir-
ror and the cavity length is identical to the radius of curvature of the spherical mir-
ror. Therefore, one cavity parameter is equal to unity, while the other approaches a
value equal to zero. This configuration combines aspects of confocal and concentric
resonators, for example, it provides the beam profile of a concentric cavity and the
robustness against misalignment of a confocal resonator. Hemispherical resonators
are often used for the construction of lasers [82].

6.2 Multimode resonators

The resonance frequencies of a cavity mode depend on the Gouy phase and are given
by equation 3.25. This expression reveals that transverse modes of identical orders are
always degenerate, e. g. the Hermite-Gaussian 02- and 11-mode have identical frequencies.
According to equation 3.25, degeneracy between transverse modes for identical longitudinal
orders q is only obtained for a plane-parallel resonator, corresponding not even to a stable
geometry, see chapter 3. However, the distance between frequencies of different transverse
mode orders can be arbitrarily reduced by approaching unity for the cavity parameters g1 and
g2. Other geometries, beside the plane-parallel resonator, also provide (nearly) degenerate
modes, but the transverse mode orders belong to different longitudinal modes. For example,
in concentric cavities the resonance frequency of the mode with longitudinal order q+ 1 and
transverse order n+m are identical to the frequency of the mode with orders q and n+m+ 1.
Figure 6.2 shows the spectra for different cavity geometries and reveals that decreasing the
mirror parameters leads to an increased spacing between the modes q,n+m and q,n+m+ 1,
until the difference is equal to a full free spectral range for g = −1 and, hence, leading
effectively to mode degeneracy.

Figure 6.2 also shows that the frequency distance of two adjacent mode orders for confocal
resonators becomes half the free spectral range, leading to a degeneracy of every second
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Figure 6.2: Mode spectra for different resonator geometries. Bars with various heights imply
different transverse mode orders, denoted by the numbers 1 to 3, while q, ..., q + 3 indicate
different longitudinal modes. When the cavity parameter product g1g2 is close to unity, the
different transverse modes become approximately degenerate. By decreasing the parameter
product, the distance between neighbouring transverse modes increases until it reaches
half of a free spectral range of longitudinal modes for resonators with g1g2 = 0. In such
geometries, like the confocal resonator, every second order is degenerate. If the product is
increased again, but for negative cavity parameters, the distance between adjacent transverse
mode order becomes equal to a full free spectral range for g1g2 = 1 configurations. This
leads to a degeneracy for transverse modes belonging to different longitudinal modes.

mode order. Therefore, confocal resonators and all other geometries with g1g2 = 0, like the
hemispherical cavity, are also supporting the multimode regime, even if the number of modes
is effectively reduced. Beside the confocal resonator, there are even more geometries where
every n-th mode order is degenerate, e. g. every third order for cavities with g1g2 = 0.25 or
every fourth order for g1g2 =

1
√

2
.

It appears that near-plane-parallel and near-concentric resonators support the largest
number of modes since all transverse mode orders are simultaneously degenerated. How-
ever, there are other effects that might reduce the number of modes supported by a cavity.
First, finite mirror sizes are able to introduce diffraction losses especially for higher-order
modes effectively suppressing a mode, see chapter 6.4. Second, the frequency distance be-
tween the transverse mode orders does not scale linearly with g1g2 due to the dependence
on the arccos-function. The frequency difference of transverse modes for confocal resonators
is usually smaller than for concentric or plane-parallel cavities. Hence, confocal geometries
usually support a higher number of modes than other configurations.

As previously mentioned, a complete degeneracy of transverse modes exists only for
geometries at the border of stability. However, full degeneracy can, at least theoretically,
be approximated as close as desired by approaching the corresponding unstable resonator
configurations, i. e. plane-parallel, concentric or confocal. As explained in chapter 3 the
different resonance frequency peaks of a non-ideal cavity are not infinitely sharp, but broad-
ened due to non-perfectly reflecting mirrors, see the definition of the cavity linewidth in
equation 3.31. When the broadened resonance peaks of two or more different transverse
modes of a resonator overlap the cavity is able to support these modes simultaneously, i. e.
the resonator is considered to be in the multimode regime. The multimode regime is a con-
tinuous property depending on how strong the peaks of the different modes are overlapping.
If the overlap is small the amplitudes of the modes cannot be large at the same time, while
strongly overlapping modes can have large values for their corresponding mode amplitudes
simultaneously. Thus, it is necessary to define a measure for the number of modes supported
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by the cavity. The fundamental 00-mode is used as a reference mode and if the frequency
of a transverse mode lies within the linewidth of this reference mode, it is considered as
degenerate with the 00-mode. The frequency separation of two different adjacent transverse
orders is identical for all orders and in the following called the transverse free spectral range
(TFSR). Two modes are considered adjacent when the frequency difference of both is smaller
than the frequency difference to any other mode. Hence, adjacent modes do not necessarily
belong to the same longitudinal mode. For example, for a confocal resonator the modes
q,n + m + 2 and q + 1,n + m are considered adjacent, while for a concentric resonator the
modes q,n +m + 1 and q + 1,n +m are adjacent to each other, see figure 6.2.

Note that the number of modes supported by a cavity in reality might differ from the
definition above. Modes might be suppressed by the finite size of the mirrors, see chapter
6.4 or modes can also contribute to the signal even if their resonance frequency is outside
of the linewidths of the reference beam. The proposed definition for the number of modes
supported by the cavity is supposed to ensure that the contribution of the higher order
modes to the homodyne signal is not too weak.

The TFSR of an arbitrary resonator geometry can be estimated from equation 3.25 and is
given by

∆ωTFSR =
πc
L

1 − u
arccos

(
±
√

g1g2

)
π

 , (6.1)

where every u-th order is degenerated, e. g. u = 1 for concentric, u = 2 for confocal and u = 3
for g1g2 = 0.25 resonators. The maximum transverse mode order supported by the cavity is
denoted as v defined as the ratio between the linewidth of the resonator and the TFSR:

v B
κ

∆ωTFSR
=

1 − R

2π
(
1 − u

arccos (±√g1 g2)
π

) . (6.2)

For simplicity both mirror reflectivities are assumed to be identical. Resolving this equation
for ±

√
g1g2 leads to

±
√

g1g2 = cos
(
π
u

(
1 −

1 − R
2πv

))
. (6.3)

This expression allows to connect the product of the cavity parameters with the reflectivity
of the mirrors and the number of supported modes. For concentric and confocal resonators
this equation simplifies to

√
g1g2 = − cos

(1 − R
2v

)
, (6.4)

√
g1g2 = sin

(1 − R
4v

)
, (6.5)

respectively. Equation 6.3 is later used to connect the mirror reflectivity and maximum mode
order with the waist provided by a certain cavity geometry, see chapter 6.3.

6.3 Resonator waist

As previously shown in chapter 4.5, the waist of the cavity field has a strong impact on the
resolution capability. An expression for the waist of a resonator is derived in chapter 3, see
equation 3.15. According to this expression, several quantities allow to control the waist of
resonator, e. g. smaller wavelengths lead to reduced waists. However, since the wavelength
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Figure 6.3: Waist of the cavity field as a function of the mirror parameters. The waist is
normalised with respect to the waist of a confocal resonator. The left figure depicts the case
of symmetrical resonators, i. e. g1 = g2. The plots on the right side depict 3D diagrams for
positive (upper) and negative (lower) cavity parameters.

is determined by accessible transitions of the particles that should be detected, this quantity
is unsuitable for the adjustment of the waist. The length of the resonator might also be
utilised to modify the cavity waist, but is less suitable since it only scales with the square
root and, therefore, very short mirror separations are required for small waists.

Finally, the cavity parameters g1 and g2 also impact the resonator waist, however, the
corresponding dependency is not straightforward to recognize. Figure 6.3 therefore shows
the waist as a function of g1 and g2, where a normalisation by the waist of a confocal resonator
is applied. The left side of the figure shows w0 for symmetric resonators, where small waists
are achieved for cavity parameters approaching values of −1, i. e. for concentric cavities.
The dependency in this area is highly non-linear and, hence, sensitive length control might
be required to enter the small waist regime. The 3D diagrams on the right side of figure 6.3
reveal another class of resonators with small waists, where asymmetrical cavities with one
mirror parameter approaching a value of zero tend to small beam waists.

Equation 6.2 connects the product of the mirror parameters with the mirror reflectivities.
This expression can be used to find a mathematical relationship between the waist of a cavity
and the number of supported modes by inserting it into equation 3.15. Since the u in equation
6.2 depends on the cavity geometry a case discrimination can be made.

6.3.1 Near-concentric resonators

The connection between mirror reflectivity, mode number and cavity parameter for near-
concentric resonators is given by equation 6.4. Inserting this expression into equation 3.15
allows to write
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g1g2
(
1 − g1g2

)(
g1 + g2 − 2g1g2

)2 =
(1 − R)2

64v2 , (6.6)

where the addition identities 1 + cos (x) = 2 cos2
(

x
2

)
and sin (x)

cos ( x
2 ) = 2 sin

(
x
2

)
[110] are applied.

Hence, the waist can be expressed as

w2
0 =

λL (1 − R)
8vπ

. (6.7)

This equation contains the cavity waist and also the maximum transverse mode order sup-
ported by the cavity with both quantities impacting the resolution capability significantly,
see chapter 4.5. Therefore, the expression above is suitable to determine the reflectivities of
the mirrors and cavity length for a desired waist and mode number. Furthermore, equation
6.7 is applied in chapter 6.5 to find an expression for the single particle cooperativity.

6.3.2 Near-confocal resonators

Since the mirror reflectivity is usually close to unity, the small-angle approximation can be
applied for the product of cavity parameters for near-confocal resonators from equation 6.5,
i. e. leading to sin

(
1−R
4v

)
≈

1−R
4v . Inserting this expression into equation 3.15 and applying

some algebraic transformations yields

w2
0 =

λL
2π

4v + (1 − R)
4v − (1 − R)

≈
λL
2π
. (6.8)

Since R is close to unity, the waist of the cavity is approximately independent of the mirror
reflectivity and number of supported modes, which is advantageous as there are less restric-
tions in the construction of confocal resonators. The waist of this resonator type, on the other
hand, is independent of the mirror parameters leaving only L and λ to adjust the minimal
beam size within the resonator making it more difficult to reach small waist regimes.

6.3.3 Near-hemispherical resonators

Without loss of generality, the first mirror is set as the plane mirror and hence g1 = 1 applies.
The other spherical mirror has a radius of curvature similar to the length of the cavity and
is therefore approaching a value close to zero. Hence, the cavity parameter product is also
approximately equal to zero and every second transverse mode order is degenerated. This
yields

√
g2 = sin

(1 − R
4v

)
≈

1 − R
4v

, (6.9)

for the second mirror parameter, where the small-angle approximation is applied. Inserting
the expression above and g1 = 1 into equation 3.15 leads to

w2
0 =

λL (1 − R)
4vπ

(6.10)

for the resonator waist. Initially, this expression seems to differ from the result for near-
concentric cavities by a factor of 1/2. However, a hemispherical cavity is half a concentric
resonator and both provide similar fields for identical spherical mirrors, provided that the
length of the hemispherical resonator is half the value of the concentric cavity. This effectively
eliminates the factor of 1/2 leading to similar values for the waist for both resonator types.
This also underlines the hybrid character of hemispherical cavities, where the mode spectrum
resembles the spectrum of a confocal resonator and the waist is identical to concentric cavities.
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λ in nm w0 in µm v

532 1.0 4
532 1.5 10
532 2.0 18
767 1.0 1
767 1.5 4
767 2.0 8

Table 6.1: The maximum mode order v that does not violate the paraxial approximation due
to large far-field angles for different cavity waists w0 and wavelengths λ.

6.3.4 Paraxial approximation and maximum number of supported modes

Equations 6.7 and 6.10 connect the number of supported modes with the cavity waist for
concentric and hemispherical cavities, respectively, while equation 6.8 reveals that both
quantities are independent in the case of confocal resonators. However, these expressions
take only the overlap of mode frequencies and linewidth of the fundamental mode into
account.

There are other properties potentially limiting the number of supported modes by a
cavity, the most fundamental probably is the far-field angleΘ of the resonator field. A critical
assumption in the derivation of Hermite-Gaussian modes is the paraxial approximation (an
approximation also made indirectly for the overlap integral in equation 4.6) that is violated
for far-field angles above 30◦, see chapter 2.1. Due to the beam parameter product in equation
2.25, this angle depends on the fields waist, i. e. small waists entail large values for Θ. This
effect is even stronger for higher order modes, where the far-field angle scales with the mode
order m by a factor of

√
2m + 1. Hence, the number of modes might limit the minimal beam

size and vice versa due to the beam parameter product and balance between both quantities
needs to be found. An overview of different combinations for waist and mode number is
depicted in table 6.1, where two different wavelengths are taken into account.

Table 6.1 indicates the significant limitation of the maximum mode order due to the
paraxial approximation. According to equation 6.7, a concentric cavity with a mirror reflec-
tivity of R = 0.98, a wavelength of λ = 532 nm and a waist of w0 = 1µm could still support a
maximum transverse mode order of 8. However, table 6.1 reveals that this value is limited
to 4. Nonetheless, the equations 6.7, 6.8 and 6.10 are still required to determine the resonator
length and mirror reflectivity once the number of modes and waist is given.

Note that the number of modes might be also limited by other effects, e. g. by the finite
size of the mirrors, see chapter 6.4. However, the paraxial approximation gives a finite upper
limit for the number of modes supported by a cavity.

6.4 Finitely sized resonator mirrors

6.4.1 Diffraction loss

The previous assumption of infinitely sized mirrors is valid as long as the beam size at
the surface of the mirrors is small compared to the width of the mirrors. However, since
small waists are required for a suitable particle resolution the corresponding far-field angles,
especially of the higher-order modes, are large leading to increased beam sizes at the mirrors
surfaces. A compensation of the magnified beam radii due to large mirror apertures is
restricted since the maximum width of a spherical mirror is twice the radius of curvature r.
Only plane mirrors can be constructed as large as desired. In conclusion, the assumption of
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unconfined cavity mirrors is not certainly valid for the proposed detection scheme. Finitely
sized mirrors also change the mirror parameters according to [124]

G1 =
a1

a2
g1, (6.11)

G2 =
a2

a1
g2, (6.12)

where a1 and a2 are the widths of the mirrors. In the following, identical mirror apertures
are assumed to avoid more complications regarding the cavity parameters g1 and g2. The
beam sizes at the mirrors are also functions of these parameters and given by the equations
3.11 and 3.17, respectively, figure 6.4 depicts the beam size depending on g1 and g2, where

the beam size is normalised by the value wm,confocal =
√
λL
π of a confocal cavity. The left side

of the figure shows the symmetric case for identical cavity parameters, while the diagrams
on the right side show the beam sizes at mirror 1 (upper) and mirror 2 (lower).

Initially, it might seem logically that only small waist geometries provide large beam
sizes at the mirrors due to large far-field angles. However, concentric and plane-parallel
resonators have identical values revealed by the equations 3.11 and 3.17. Therefore, small
waist configurations can be applied without disadvantage. The right side of figure 6.4 reveals
that asymmetrical resonators have a large beam size at one mirror, while the beam size at
the other mirror is small.

As previously mentioned the finite size of the mirrors might limit the number of modes
supported by a cavity. As a rule of thumb, a mode is oscillating in a resonator when the
beam size at the mirrors does not exceed the aperture of the mirror a. However, even when
the mirror width is large enough to support a certain mode, diffraction loss might still occur
leading to an broadened linewidths of the mode. This additional diffraction loss can be
interpreted geometrically. The cavity field is given by a cone and the fraction of the cone not
covered by the mirror aperture cannot be reflected and therefore leaks out of the resonator.

Beside additional diffraction loss, the field distribution of the modes can also deviate
from ideal Hermite-Gaussian beams, if the mirror aperture is too small. Correct results for
real field profiles and losses can be obtained by solving a coupled system of two Kirchhoff
integral equations [83, 125]. There exists no analytical solutions for this equation system
and general statements regarding the solution are difficult to make [83]. In more recent
publications superpositions of modes for unconfined mirrors [126] or numerical simulations
of the eigenvalue problem [127] were used to determine correct mode structures and losses.
However, in [128] a less complicated approach was suggested to estimate at least diffraction
loss for confined mirrors by performing an integration of an arbitrary (ideal) cavity mode
over the range of the mirror surface:

γ =

∫ a

0

∫ 2π

0

∣∣∣ψN
∣∣∣2 ρdϕdρ. (6.13)

√
γ is the loss factor of the cavity. To avoid confusion, it should be noted that in the literature

two different quantities are common as a measure for reduced photon lifetimes, the loss ∆V
and the loss factor

√
γ, both connected through ∆V = 1 −

√
γ [83]. If

√
γ is close to unity,

i. e. if ∆V approaches a value of zero, the diffraction loss of a cavity is small.
In equation 6.13 ψN are again the Hermite-Gaussian modes of the cavity. Since cavity

mirrors have usually round shapes, polar coordinates are suitable, which are usually used
for Laguerre-Gaussian modes. However, Hermite-Gaussian modes are more commonly
observed in resonators due to mirror imperfections and therefore these are used to estimate
the diffraction loss that requires a coordinate transformation according to x2 + y2 = ρ2,
x = ρ cos (ϕ) and y = ρ sin (ϕ). Furthermore, it should be noted that a correct normalisation
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Figure 6.4: Beam sizes at the mirror surfaces for different cavity parameters g1 and g2. The
figure on the left side shows the symmetric case, where both parameters are identical. The
beam size is independent from the sign of the cavity parameters and, hence, concentric and
plane-parallel configurations have identical beam sizes at the position of the mirrors. The
upper figure on the right side shows beam sizes at the first and the bottom figure at the
second mirror for asymmetrical cavities. Strong asymmetrical geometries have large beam
sizes at one mirror, while the size at the other mirror is small.

of the modes is required to obtain correct results for the loss factor in equation 6.13. If other
factors than the ones in equation 2.26 are utilised, equation 6.13 must be normalised again

by a division of an integral over an infinite large mirror surface
∫
∞

0

∫ 2π
0

∣∣∣ψN
∣∣∣2 ρdϕdρ.

The additional diffraction loss leads to a reduced lifetime of a photon within the cavity,
i. e. the resonator linewidth is broadened. Mathematically, this can be taken into account
by multiplying the mirror reflectivity with

√
γ leading to an effective reflectivity Re = R

√
γ.

For the resonator linewidth then follows

κe =
c

2L
1 − Re
√

Re
. (6.14)

Figure 6.5 depicts the diffraction loss estimated by equation 6.13 for different Hermite-
Gaussian modes in dependency of the mirror width a, where a is given in units of the beam
size of the fundamental 00-mode at the mirrors surface. The left side of the figure indicates
that the mode order significantly impacts the diffraction loss meeting the expectations since
higher order modes also have large beam radii. Furthermore, the loss factors for different
transverse modes of identical orders differ from each other. This is shown in more detail on
the right side of figure 6.5, where the diffraction loss for the modes of order 6 is depicted.
The highest order in either the x- or y-direction mostly determines the diffraction loss of
a mode due to the more rectangular shape of the corresponding profile. In conclusion, it
must be ensured that the diffraction loss of the most rectangular mode of the highest order
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Figure 6.5: Diffraction losses of resonators due to finitely sized mirrors. The left side shows
the square of the loss factor γ for the Hermite-Gaussian modes 00, 20, 11, 80 and 44. For
identical mirror apertures a, larger mode order leads to increased losses. The diagram also
indicates that the loss is different for various transverse modes of identical order. This is
specifically shown on the right side of the figure, where γ is plotted for the modes of order
6. More rectangular modes have larger losses since they have larger beam dimensions either
along the x- or y-direction.

supported by the cavity does not broaden the linewidth of the cavity to much to ensure
suitable homodyne signal quality for the detection of cold particles.

The diffraction loss alone has only limited significance since identical loss factors entail
different effects on the cavity linewidths for different mirror reflectivities. Therefore, figure
6.6 depicts the broadened resonator linewidths from equation 6.14 for various reflectivities
and modes. The values within the figure are normalised by the linewidth of an unconfined
cavity, i. e. with a loss factor equal to unity.

The left side of figure 6.6 depicts the linewidth broadening of a 00-mode depending on
the mirror aperture for mirror reflectivities of 0.98, 0.99 and 0.995. Even for the smallest
reflectivity, a ratio of approximately a/wm = 1.7 is required to avoid an increase of the
linewidth by 1.1. The right side of the figure depicts linewidths broadening for different
transverse modes of order 6 with a mirror reflectivity of 0.98. Here, a ratio of roughly
a/wm = 3.1 is necessary to keep the broadening of the linewidth of the 60-mode below 1.1.
Such ratios between aperture and beam size are still feasible.

6.4.2 Misalignment sensitivity

In the previous section the diffraction loss is interpreted by a cone of the cavity field that
does not completely overlap with the mirror due to a finite aperture. Another effect that
might increase cavity loss is a misalignment of the mirrors leading to a shift between cone
and mirror surface. Figure 6.7 illustrates a resonator where the second, i. e. the right mirror,
is tilted by an angle α2 leading to a rotation of the optical axis of the cavity that is defined as
the line passing through the centres of curvature of the resonator mirrors c1 and c2 [83]. The
rotation of the optical axis entails a shift of the intersection between the axis and the mirror
surface by ∆12 for the first and ∆22 for the second mirror in comparison to a perfectly aligned
resonator. These distances are given by [83]
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Figure 6.6: Broadened cavity linewidth κe normalised by the cavity linewidth without
additional diffraction loss. The left side of the figure shows linewidth broadening of the
00-mode for different reflectivities. The right side depicts the increased linewidth for the
modes of order 6. The corresponding mirror reflectivity is R = 0.98.

θ2 = α2
1 − g1

1 − g1g2
, (6.15)

∆12 = α2
L

1 − g1g2
, (6.16)

∆22 = α2
g1L

1 − g1g2
. (6.17)

Cavity eigenmodes propagate along the optical axis and the shifted intersection points
result in increased diffraction losses due to a decreased overlap of the cavity field with the
mirror surface. Again, an exact estimation of these losses would require to solve the coupled
Kirchhoff integral equations. However, in [129] the impact of misalignment was investigated
with perturbation theory leading to a less complicated approach to determine the diffraction
loss. The loss factor for tilting mirror i by an angle αi is given by

Vi = V0

1 − α2
i

s2

exp (2s2) − 1
πL
λ

√
g j

gi

1 + g1g2(
1 − g1g2

)3/2

 , (6.18)

Figure 6.7: Misaligned cavity due to rotation of the right (second) mirror by an angle of α2.
The tilt of the mirror leads to a rotation of the optical axis by θ2 shifting the intersection
points of the optical axis and the mirrors surfaces.
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Figure 6.8: Loss factor depending on the mirror width for different cavity geometries. The
left side shows configurations with a cavity parameter product close to unity, while the right
side shows the case of g1g2 approaching a value equals to zero. The length of the resonator
is set to L = 1 cm, the wavelength to λ = 532 nm and the mirror rotation is α = 0.01◦.

where s = a
wm

is the ratio between the mirror aperture a and the beam size at the mirrors
surface wm. V0 is the loss factor for perfectly aligned mirrors. If the only source of diffraction
loss beside cavity misalignment is the finite size of the aperture of the mirror, V0 =

√
γ

applies. Note that equation 6.18 is only valid for 00-modes, but in a multimode resonator
higher order modes have larger beam sizes and therefore inflict more losses than the pure
Gaussian beam. However, calculations have shown that diffraction losses of 00-modes are
larger than losses of higher order modes, if both fields are scaled to identical sizes. Therefore,
the application of equation 6.18 might still be useful to approximate appropriate angles.

According to equation 6.18, the misalignment sensitivity depends on several quantities
in different ways, for example, the loss factor scales linearly with the cavity length and
wavelength. The impact of the mirror rotation α, in comparison, contributes quadratically
to the diffraction loss. Mirror aperture and cavity parameters have the most critical effect
regarding the loss factor due to their strong non-linear behaviour.

To illustrate this, figure 6.8 depicts the loss factor as a function of the mirror width
a for different resonator geometries with V0 = 1. The left side visualises configurations
with mirror parameters close to unity, while the right side shows configurations where g1g2
approaches a value of zero. The effect of mirror misalignment becomes more severe for
mirror parameter products closer to a value of unity, the effect is also independent from
the sign of the g’s, i. e. concentric and plane-parallel resonators are the geometries most
sensitive to misalignment, while confocal cavities are most robust against tilted mirrors.

The diagram for g1g2 ≈ 0 on the right side of the figure illustrates the loss factor due
to mirror misalignment for a near-confocal and a near-hemispherical cavity with identical
mirror parameter products. The loss factors for both mirrors of the confocal cavity are
identical due to the symmetry of the resonator. In comparison to this, the loss factor of
the plane mirror is slightly reduced, while the losses of the spherical mirror are significantly
enhanced and in total the diffraction loss of the hemispherical and other asymmetrical cavities
is larger than the losses of confocal resonators assuming both have identical tilted mirrors.
The total increased loss for asymmetrical cavities is a general result for all geometries and
not only for the special case depicted in figure 6.8. Compared to concentric or plane-parallel
resonators the losses of asymmetrical cavities with g1g2 ≈ 0 are quite small.

In conclusion, cavity geometries where the product of the mirror parameters is close to
zero are more stable and more suitable than plane-parallel or concentric configurations with
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regard to misalignment sensitivity. However, cavities with g1g2 ≈ 1 are also valid options,
but might be more technically challenging to be implemented.

6.5 Cooperativity

The idea behind the application of a cavity for the proposed detection scheme is to enhance
the signal by increasing the probability of interaction between photon and particle. However,
the repeated interaction also increases the chance of s spontaneously scattered photon that,
in turn, changes the state of the molecule. As previously explained in chapter 5.3 the single
particle cooperativity determines for a certain SNR the number of spontaneously scattered
photons. For a SNR equal to unity the cooperativity should be C > 0.5 to avoid a larger
number of scattered photons. However, this value should be seen as a lower threshold for
the cooperativity since larger values reduces the probability to lose the molecular state.

The cooperativity is proportional to the product of g̃0
γs

and g̃0
κ . These ratios are also

important for cQED [103] e. g. by defining the strong coupling regime [130] and in the
following the cooperativity is determined by the product of these two ratios for the case that
the ratios should be required for later experiments.

Since γs is a constant, the ratio g̃0
γs

can only be adjusted through the coupling parameter
g̃0, which depends on the wavelength of the particles’ transition and the mode volume of

the cavity V. The mode volume is V =
∫

cavity

∣∣∣ψ∣∣∣2 dV =
πw2

0L
4 with ψ being the cavity mode.

Hence, the coupling parameter is adjustable through λ, w0 and L. For multimode cavities,
appropriate for the detection of cold particles, these quantities are not independent from
each other and the corresponding connections for concentric, confocal and hemispherical
resonators are given by the equations 6.7, 6.8 and 6.10, respectively. Inserting these equations
into g̃0

γs
and applying some algebraic transformations allows to write

(
g̃0

γs

)
concentric

= d

√
(1 − R) c
2ℏϵ0vπ

1
w2

0γs
, (6.19)(
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γs

)
hemispherical
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√
(1 − R) c
ℏϵ0vπ

1
w2

0γs
, (6.20)(

g̃0

γs

)
confocal

=
√

2d
√

c
πℏϵ0

1
w2

0γs
(6.21)

for concentric, hemispherical and confocal resonators. For all three geometries, g̃0
γs

becomes
large for small cavity waists. For the confocal configuration, the waist is also the only
property that can be effectively adjusted. Large mode numbers reduce the ratio between
coupling parameter and decay rate originating indirectly from broader cavity linewidths
required to support a higher number of modes. This is an opposite behaviour compared to
the resolution capability, where a large v leads to improved resolutions. However, the effect
of v for the ratio g̃0

γs
is not that severe since it scales only with the square root.

The ratio between coupling parameter and linewidth g̃0
κ can be determined in a similar

way by using equations 6.7, 6.8 and 6.10. This yields
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(
g̃0

κ

)
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dL3/2

√
λ

2
√
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, (6.22)(
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κ

)
hemispherical
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dL3/2

√
λ

√
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0

, (6.23)(
g̃0

κ
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confocal
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8πd

√
2πℏϵ0c (1 − R)

, (6.24)

for the concentric, hemispherical and confocal resonator, respectively. The ratio decreases
with the third power of the waist for concentric and hemispherical resonators. Therefore,
small cavity waists are an effective way to generate large values for g̃0

κ . The waist not
occurring in the expression for confocal cavities might be unexpected. This arises, however,
through equation 6.8 that connects the waist with the resonator length and wavelength.
Since the wavelength is defined by the transition of the particle, L and w0 cannot be chosen
independently. If small waists are utilised to ensure a large g̃0

κ , this would directly be
compensated by the necessity of shorter cavities.

Similar to g̃0
γs

the ratio between coupling parameter and linewidth decreases for large

v, but for g̃0
κ it scales linearly and the conflict between a large ratio and high resolution

capabilities might become more severe. Furthermore, longer resonators lead to larger values
for g̃0

κ but are also more prone to mirror misalignment. This might be critical especially for
the concentric cavity, which is the geometry most vulnerable to mirror misalignment, see
chapter 6.4.2.

The cooperativity, defined in equation 5.63, can be determined by multiplying g0
γs

and g0
κ .

Multiplying the corresponding ratios g̃0
γs

and g̃0
κ for concentric, hemispherical and confocal

resonators and applying equations 6.7, 6.8 and 6.10, respectively, yields

Cconcentric =
d2L

2ℏϵ0πvw4
0γs

, (6.25)

Chemispherical =
d2L

ℏϵ0πvw4
0γs

, (6.26)

Cconfocal =
8d2

ℏϵ0w2
0 (1 − R)λγs

. (6.27)

The cooperativity depends strongly on the waist of the cavity, for concentric and hemispher-
ical geometries it even scales with the fourth power. For both configurations small mode
numbers and long resonators are also desirable. Furthermore, the cooperativity of concen-
tric and hemispherical cavities effectively does not depend on the wavelength, if waist and
mode number are given. For confocal resonators, a small waist, wavelength and also large
reflectivities are suitable for large cooperativities.

6.6 Critical distance

The critical distance is another important property regarding cavity geometries applicable
for particle detection. Many of these geometries are on the verge of instability and require
therefore precise length control. The critical distance is defined as the length difference of
a certain cavity geometry to the closest unstable configuration. For example, for a near-
concentric cavity with g = −0.9999 and a corresponding (unstable) concentric cavity with
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L = 2 cm and r = 1 cm, the critical distance would be ∆L = 1µm with g = 1 − L−∆L
r . The

critical distance does not effect the resolution capability or homodyne signal directly, but is
important due to two other reasons. First, length variations in the range of the critical distance
needs to be technically controllable. Piezo stages allow to apply translational shifts in the
sub-nanometre range, which is usually good enough for most critical lengths. Second, length
fluctuations might occur in a cavity leading to fluctuations of the mirror parameters. For
shorter critical distances, these fluctuations are more severe and might lead to unstable waists
and mode numbers. For example a cavity with a length of L =

(
0.01 − 27 · 10−9

)
m, a mirror

radius of r = 0.01 m and a wavelength of 532 nm corresponds to values of g = −0.999997 and
w0 = 1.4µm for the mirror parameter and waist, respectively. If the length is changed to be
equal to L =

(
0.01 − 37 · 10−9

)
m the new values are g = −0.999996 and w0 = 1.52µm. This

seem to be minor changes, however, might already impact the resolution capability. Hence,
the critical distance should not exceed values below 10 nm.

The absolute value of the difference between the g of a cavity close to an unstable point
and the corresponding gunstable of the unstable resonator itself is ∆g =

∣∣∣gunstable − g
∣∣∣ and can

be used to determine the critical length according to

∆L = ∆gr. (6.28)

In the following, a case discrimination is made to estimate the critical distances of different
cavity geometries.

6.6.1 Near-concentric resonators

The mirror parameters of a near-concentric cavity are given by equation 6.4. Expanding this
expression to the first order allows to write

∆g =
1
2

(1 − R
2v

)2
. (6.29)

Inserting this expression in combination with equation 6.7 into 6.28 leads to

∆L =
4π2w4

0

λ2L
. (6.30)

The critical distance for near-concentric resonator scales with the fourth power on the waist
of the cavity. This might limit the realisability of concentric resonators and needs to be
examined for these cavity types before construction. For example a resonator with w0 = 1µm,
λ = 532 nm and L = 2 cm has already a critical distance below 10 nm.

6.6.2 Near-confocal resonators

The cavity waist of resonators close to g1 = g2 = 0 is nearly not effected by changes of the
cavity length, however, the resonance frequencies of the transverse modes need to lie within
the linewidth of the resonator to enter the multimode regime. Hence, the critical distance of
confocal cavities depends on the mirror reflectivities and desired mode numbers. Equation
6.5 connects these quantities with the mirror parameter and can be inserted into equation
6.28 after applying the small-angle approximation to obtain

∆L =
1 − R

4v
L. (6.31)

The proportionality of the critical distance to the total length of the resonator might entail
problems in the construction of confocal resonators since short cavity lengths are required
for small waists for this resonator type.
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6.6.3 Near-hemispherical resonators

The critical distance for near-hemispherical resonators can be determined similarly to the
near-concentric geometry. Inserting equations 6.9 and 6.10 into the expression for the critical
distance, 6.28, leads to

∆L =
π2w4

0

λ2L
, (6.32)

which is four times smaller than the value of a concentric cavity of the same length. Since a
hemispherical resonator is a half-concentric cavity, the critical distance is effectively half the
critical distance of a concentric resonator with comparable beam size.

6.7 Resonator geometries for imaging NaK molecules

After discussing the different properties of resonators that are relevant for the detection of
particles or technical feasibility, geometries suitable for the detection of NaK molecules can
be determined.

6.7.1 Transitions in NaK molecules

An envisaged application of the proposed detection scheme is the imaging of cold NaK
molecules inside an optical lattice with a lattice constant of 0.532µm. Discussing possible
transitions of these molecules is necessary since wavelength λ and dipole transition matrix
element d are defined by the molecule and cannot be adjusted later. Transitions of NaK
molecules were investigated in [131, 132]. There are two transitions with relatively large
matrix elements, the first at λ0 = 576.2 nm with d = 2.52 D and the second at λ0 = 769.6 nm
with corresponding d = 2.92 D. Even if the dipole matrix element for the λ0 = 576.2 nm
transition is slightly weaker, it is more desirable due to the shorter wavelength. This is
advantageous for many cavity properties like misalignment sensitivity or resonator waist.

Absorption is suppressed by an assumed detuning of ω0−ω = 2π · 0.5 GHz leading to an
600 times larger real part of the polarisability in comparison to the imaginary part according
to equation 4.3. This ensures that dispersive interactions are more dominant with respect to
absorptive interactions. The linewidth of the transition Γ can be estimated by equation 5.66
and is 2π · 1.7 MHz.

6.7.2 Resonator properties

After examining possible transitions in the NaK molecule the waist and mode number can
be determined since these are the properties primarily defining the resolution capability.
As previously discussed in chapter 4.5 small waists are more crucial for high resolutions
than the number of modes. Furthermore, large mode numbers reduce the cooperativity and
increase diffraction loss due to finite mirror sizes and misalignment sensitivity.

A resonator waist of 1.5µm is equivalent to a far-field angle of θ = 7◦ for λ0 = 576.2 nm
and modes with a total order of 8 would be still within the paraxial approximation. How-
ever, the maximum mode order supported by the cavity is set to v = 4 for concentric and
hemispherical resonators since the gain in resolution is negligible compared to the reduction
of cooperativity and increased mirror sensitivity for larger mode numbers. For confocal ge-
ometries higher mode orders are feasible as the waist is independent from the mode number
and this resonator type is robust against misalignment.

To investigate the other cavity properties, a case discrimination is applied for the different
resonator geometries.
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6.7.3 Near-concentric resonators

The concentric resonator geometry allows to achieve small waists even for longer cavities
due to the small mirror parameters, increasing the cooperativity and leave more space for
cold particles between the mirrors. In cQED, this resonator type is not common, however, the
group of Christian Kurtsiefer has successfully implemented a concentric cavity successfully
to couple single atoms to the cavity field, see [128, 133, 134]. Another advantage of concen-
tric cavities is that they automatically support multimode regimes. The probably biggest
disadvantage of these resonators is the large misalignment sensitivity, making it technically
challenging that is also the reason why this geometry is not often utilised.

Longer cavity lengths lead to larger cooperativities but also increase the sensitivity of
misaligned mirrors. Hence, a balance between both quantities needs to be found. Calcu-
lations of the different properties have shown that a length of 2 cm is a good compromise.
The corresponding mirror radii are then 1 cm. The radius of curvature of the mirrors also
limits the maximum mirror aperture. The theoretically largest aperture is a = r, however, the
cavity would than be a sphere leaving no possibility to load molecules into the resonator. A
mirror width of 0.9 r = 0.9 cm is realistic with regard to feasibility of mirror production and
leaves a gap of 1.3 cm between the mirrors for the laser beams forming the optical lattice of
the molecules.

Values of w0 = 1.5µm, λ = 576.2 nm, v = 4 and L = 2 cm set the mirror reflectivities
to 0.9794, the cavity parameter g to −0.9999967 and the corresponding critical distance is
30 nm. Diffraction loss due to finite mirror widths is negligible for all transverse modes and
a control of the mirrors angle of 1µrad allows to limit misalignment losses to Vl = 0.9995.
The resulting linewidth broadening is also negligible.

An angle control in the range of 1µrad is possible but the corresponding mirror mounts
are usually expensive. Initially, it seems possible to reduce the misalignment sensitivity
instead by constructing longer resonators since the maximum mirror aperture scales with L,
while the beam size at the mirror surface increases with

√
L, see equation 3.11. However,

changes of the resonator length entail adjustment of the mirror parameter g to keep a constant
value for the waist of the cavity field, as indicated by equation 3.15. Expanding equation 6.4,
which enables to determine the cavity parameters for constant waists and mode numbers,
to the first order and inserting it into equation 3.11 in combination with equation 6.7 yields

wm =
λL

2πw0
. (6.33)

Hence, the beam size at the mirrors surface effectively scales with the length of the resonator
and longer cavities cannot compensate mirror misalignment.

The ratios between coupling strength and decay rate or rather cavity linewidth are
g̃0
γs
= 1.22 and g̃0

κ = 0.29 with a spontaneous decay rate of γs = 2π · 5.5 MHz [75], leading to a
cooperativity of C = 1.94. These values are slightly lower than expected when consulting the
corresponding equations. This is the case as even and odd transverse modes have different
nodes. All modes inside a two-mirror cavity are standing waves and while the even modes
are described by a cosine function, the odd modes are sine functions. Thus, the nodes of
the even modes are located at the positions of the antinodes of the odd modes. To enable
a particle to couple to both mode groups simultaneously it needs to be positioned between
the nodes and antinodes leading to an additional factor of 1

√
2

for the ratios.
The single particle cooperativity defined by equation 5.63 is a measure for a particle

located at the centre of the cavity field. However, the distance of the molecules inside
the optical lattice from this centre is large enough to significantly weaken the particle-
light interaction strength and, hence, the actual cooperativity of the different particles. To
determine the correct values, the cooperativity is modulated by the intensity profiles of the
different transverse modes. A total of 16 lattice sites is considered with the centre of the
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Figure 6.9: Cooperativities of a NaK molecule located at different lattice sites for the concen-
tric resonator. The two numbers below the cooperativity indicate the mode which couples
strongest to the molecule. The first number is the order in the x-direction, while the second
number gives the order in the y-direction.

waist coinciding with the centre of the lattice. Figure 6.9 depicts the strongest effective
cooperativity, i. e. the value of the mode that leads to the largest cooperativity, for each
site of the lattice. The two numbers below each cooperativity indicate which mode couples
the strongest to a particle at the corresponding lattice site. The figure reveals that each site
supports a cooperativity value above 0.5 and, hence, can contribute to the total signal.

For an overview, all cavity properties of the near-concentric cavity are summarised in
table 6.2.

concentric hemispherical

Wavelength in nm 576.2 576.2
Length in cm 2 1

Mirror radii in cm 1 1
Reflectivity 0.9794 0.9794

Mirror aperture in cm 0.9 0.9
Critical distance in nm 30 15

Cavity parameters -0.9999967 1 and 1.5 · 10−6

Mirror misalignment 1µrad 1 mrad
Loss factor 0.9994 0.9984

g̃0/γs 1.22 1.22
g̃0/κ 0.29 0.29

Cooperativity 1.94 1.94

Table 6.2: Overview of cavity properties for geometries suitable for the detection of NaK
molecules.
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6.7.4 Near-confocal resonators

Confocal resonators allow to set the waist and the number of supported modes nearly
independently from each other and are robust against misalignment making them a feasible
choice for the detection of particles. However, the only possibility to adjust the cavity waist
is to change the length of the resonator. According to equation 6.8, the length of a confocal
resonator with a waist of 1.5µm needs to be L = 25.7µm. Fibre cavities [135] are often used to
achieve short resonators that are able to realise cavity lengths below 100µm, e.g. [136]. It is
possible to produce mirror curvatures up to 5µm [137] and, hence, it is at least theoretically
possible to construct a resonator with the desired length of L = 25.7µm. However, the
aperture of fibre mirrors is usually equal to or smaller than the radius of curvature [137]
and, therefore, the losses would be too large to realise a multimode cavity. Furthermore, the
profile of the fibre mirrors is not spherical introducing effects like mode mixing, where the
eigenmodes of the resonator are no longer described by pure Hermite-Gaussian modes [137].
Finally, the laser beams forming the optical lattice have diameters of 100µm and, therefore,
such short cavities are also not feasible.

In summary, confocal resonators are not suitable for the detection of particles with
resolutions in the micrometre range. If a resolution of 10µm or larger is desired, the confocal
resonator is superior compared to the concentric cavity.

6.7.5 Near-hemispherical resonators

Near-hemispherical resonators are hybrid resonators combining properties of confocal and
concentric cavities. Small waists can be achieved similarly to concentric resonators, but
hemispherical geometries are less sensitive to mirror misalignment. The parameters of a
hemispherical cavity suitable for the detection of cold NaK molecules comply to a half-
resonator version of the concentric cavity from the preceding section. The cavity length
is L = 1 cm and the radius of the spherical mirror is accordingly also r = 1 cm with a

Figure 6.10: Cooperativities of a NaK molecule placed at the different lattice sites for the
hemispherical resonator. The two numbers below the cooperativity indicate the mode which
couples the strongest to the molecule. The first number indicates the order in the x-direction,
while the second number is the order in the y-direction. Some numbers are different from
the concentric cavity since hemispherical resonators only support even modes.
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reflectivity of 0.9794. Since the mirror radii of the hemispherical and concentric resonator
and reflectivities are equal, identical mirrors for both resonators can be used, leading to a
mirror aperture of 0.9 cm. Diffraction losses are again negligible and a mirror rotation of
1 mrad leads to a loss factor of Vl = 0.9984 at the spherical mirror. The cavity parameters
are g1 = 1 and g2 = 1.5 · 10−6 and the critical distance is 15 nm. The ratios between coupling
parameter and loss channels g̃0

γs
, g̃0
κ and the cooperativity are identical to the concentric cavity.

The cooperativities for the different lattice sites differ slightly from the concentric case and
are depicted in figure 6.10. An overview of all quantities is given in table 6.2.

In conclusion, hemispherical resonators are also suitable for the detection of cold molecules
and are in some aspects superior to concentric cavities, e. g. regarding misalignment sensitiv-
ity. A disadvantage of this geometry is the position of the waist that is directly located at the
surface of the plane mirror complicating a potential implementation of an optical lattice. To
compensate for the latter a mirror with a large radius can be used instead of the plane mirror
leaving some space for the optical lattice and almost maintaining the previously discussed
properties. Another disadvantage of all resonators with cavity parameter products close to
zero is that only even or odd modes are degenerate simultaneously leading to symmetric
homodyne signals. This issue is discussed in more detail in chapter 6.7.7. However, the pro-
posed hemispherical mirror is still a valid choice to verify the basic principle experimentally
since it is less complicated to be built than the concentric cavity.

6.7.6 Other resonator geometries

Other cavity geometries apart from the concentric, hemispherical or confocal type are usually
similar to one of these configurations or a combination of them, e. g. resonators with the
first g being close to unity and the second close to zero share similar properties with the
hemispherical cavity. Plane-parallel resonators are not suitable for the proposed detection
scheme since they require even shorter cavity lengths than the confocal geometry and are also
sensitive to mirror misalignment. Resonators with g = 0.5 or g = −0.5 support a multimode
regime but also require cavity lengths that are to short for implementation.

Figure 6.11: Homodyne signals of NaK molecules inside a concentric resonator. The centre
of the cavity field is located at the centre of the four different sites of the optical lattice. The
occupied sites for each signals are indicated in the legend. The numbering begins on the left
site of the lattice and the lattice constant is 0.532µm.
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Figure 6.12: Two dimensional homodyne signal of a single particle inside a concentric cavity.
On the left side of the figure, the particle is located at the centre of the cavity field, while on
the right side, it is shifted by 0.798µm to the left.

6.7.7 Homodyne signal

According to figure 4.6, the resolution capability of a cavity with a waist of 1.5µm and a
maximum mode order of 4 should be too low to resolve particles inside an optical lattice with
a lattice constant of 0.532µm. This figure indicates also that a resonator would require a waist
of w0 = 0.7µm and a maximum mode order of 14 to resolve two adjacent lattice sites. As
explained in the preceding sections, such mode numbers cannot be realised simultaneously
for such small waists, e. g. due to violation of the paraxial approximation.

However, as mentioned in chapter 4.5, the defined resolution capability is not absolute
and relies on the feasibility to resolve two peaks in the homodyne signal. Even if the peaks
of the homodyne signal merge together, information regarding the position of the particles
can still be extracted from the linewidth, the amplitude and the position of the peak.

Figure 6.11 depicts the homodyne signals of a NaK molecules placed inside a concentric
cavity with the parameters determined in chapter 6.7. The local oscillator and the beam
pumping the cavity are 00-modes with powers of 1 W and 10 mW, respectively. The waist
of the local oscillator is 5 mm, while the value for the propagated cavity mode is 1 mm. The
origins of the coordinate systems of both beams overlap. These parameters are also used for
all other simulations in this section.

A lattice with four sites is considered and the different sites are numbered consecutively,
where the numbers correspond to the positions 1 =̂− 0.798µm, 2 =̂− 0.266µm, 3 =̂ 0.266µm
and 4 =̂ 0.798µm. The centre of the lattice and cavity field overlap. The left side of the
figure shows different signals for two particles inside the lattice, while the right side shows
an occupation of three and all four sites. All signals are normalised to the signal strength
of a single particle placed in the centre of the waist. This normalisation is also applied for
all other figures in this section. As expected, all peaks of the homodyne signals are merged
together, except when two particles are placed in the outer sites. However, the linewidths,
the position of the peaks and the signal strengths are different and allow to distinguish
between the different lattice site occupations. Even the shape of the homodyne signal might
provide information regarding the particles position, e. g. the ripple on the left side of the
2, 3, 4-signal indicates on which side an empty lattice site is located.

So far only homodyne signals along a single axis have been discussed. However, in the
experiment the lattice is two dimensional and the fields are also two dimensionally detected.
Therefore, figure 6.12 depicts two simulated homodyne signals of a single particle placed
inside a concentric cavity. On the left side of the figure, the particle is located at the centre of



6.7. RESONATOR GEOMETRIES FOR IMAGING NAK MOLECULES 75

Figure 6.13: Homodyne signals for an optical lattice with 16 sites. The black dots in a)
indicate which lattice sites are occupied by a molecule for the homodyne signal in b). For the
signal in c), the molecule in the upper right corner is shifted to the adjacent site as indicated
by the arrow. For d) another particle is pushed to a bottom lattice site, again indicated by an
arrow (the upper right molecule is in this case not shifted). e) depicts the difference between
the homodyne signals from b) and c), while f) shows the difference between b) and d). e)
and f) have significantly other profiles indicating that even the shift of a single particle to an
adjacent lattice site is detectable.
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Figure 6.14: Homodyne signal of a single particle inside a hemispherical resonator. Since
only even or odd modes are degenerate, the homodyne signals become symmetrical making
it more difficult to decide if the molecule is located on the right or left side. This can be
solved by shifting the lattice with the molecules either to the left or to the right side and then
comparing both signals as indicated by the different curves in the figure.

the waist, while it is shifted by 0.798µm to the left on the right side of figure 6.12. This shift
is clearly observable by comparing both signals.

It should also be examined if signals with similar lattice site occupations can be identified
uniquely. A two dimensional lattice with a total of 16 sites is assumed and the centres of the
lattice and waist overlap. The lattice constant is again 0.532µm. Three different signals are
compared and the corresponding occupation of sites is depicted by black dots and arrows in
a) of figure 6.13. The homodyne signals for the three different occupation configurations are
shown in b), c) and d) of figure 6.13. e) and f) depict the difference of the profiles for each
picture implying that even similar site occupations can be identified uniquely.

In the simulations of the homodyne signals for concentric resonators, all mode orders
contribute to the signal. However, in hemispherical cavities and other resonator with g1g2 =
0 only the even or odd modes are degenerate and are able to contribute to the signal. This
leads to a symmetrical profile of the homodyne signal complicating the process to determine
at which side the particle is located. An example is depicted in figure 6.14 showing the
homodyne signal for a particle positioned at different x-values on the right side. A single
homodyne signal does not allow to decide where the molecule is located exactly. However,
shifting the whole lattice either to the left or right site and comparing both signals allows to
examine the exact position of the particle.

The simulations in this chapter demonstrate that the suggested geometries are suitable
for the detection of cold NaK molecules. An additional advantage regarding the particles’
detection is the discrete nature of the positions due to the optical lattice leading to a discrete
set of expectable signals.



Chapter 7

Cavity Design for the Detection of
Particles

After determining appropriate cavity geometries for the detection of particles technically
feasible resonators and experimental concepts can be developed to realise the proposed
imaging technique. The final objective is to construct a cavity able to detect cold NaK
molecules within an optical lattice. However, to realise such an apparatus many problems
need to be overcome. As explained in the previous chapter, the construction of a resonator
that fulfils all constraints and requirements, is at the limit of what is feasible. To realise such a
cavity inside the vacuum chamber containing a cold quantum gas is even more challenging.
Hence, it might be advantageous to verify the principle of the imaging technique in a less
complicate environment in the first place.

The demonstration of the feasibility of the detection scheme can be split into several
steps. First, objects with the capability to imitate cold molecules inside the resonator need
to be determined. Nanoparticles, for example, can be used for this purpose. Second, the
general applicability of the imaging technique can be shown. As this does not necessarily
require a high resolution, a confocal resonator can be constructed for this purpose that is less
complicate to realise compared to a concentric or hemispherical cavity. For an explanation
why a confocal resonator is less complicated to construct, see chapter 6.

After demonstrating the general feasibility of the detection method the resolution can be
increased by using small waist cavities to examine if the imaging technique is also suitable for
resolving single molecules inside an optical lattice. A hemispherical cavity allows to achieve
high resolution and low misalignment sensitivity at the cost of a symmetrical homodyne
signal, see chapter 6. Finally, a concentric resonator can be utilised to realise particle imaging
with resolutions in the range of 500 nm and non-symmetrical homodyne signals.

The aim of this chapter is to develop experimental setups for the above described tasks.
In the first section, the characteristics of nanoparticles are explained and similarities and
differences to cold molecules are discussed. The focus of the second section lies on an
experimental scheme for the detection of nanoparticles. Modular cavity designs, applicable
for confocal, hemispherical and concentric geometries, are developed. Mode matching is
discussed and an alignment procedure for concentric resonators is presented. Furthermore,
a method to determine the cavity parameters close to unstable geometries is explained to
ensure a correct cavity configuration for the detection of the nanoparticles. Finally, all
these aspects are combined to propose an experimental setup with all necessary technical
components for the imaging scheme.

77
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7.1 Nanoparticles

For an apparatus to prove the imaging concept, test objects, which scatter light similar to cold
molecules, are required. Nanoparticles are objects with a size between 1 and 100 nm [138] and
can emit dipole fields similar to atoms and molecules. Classically, the fundamental equations
describing interactions between nanoparticles and light are the Maxwell’s equations [139].
The properties of these interactions strongly depend on the nanoparticles’ shape that can
be, for example, a plate, rod or cube. However, for spherical particles, the corresponding
interaction simplifies significantly, i. e. such nanoobjects can scatter light similarly to atoms
or molecules, making them suitable test objects for the proposed detection scheme.

An electromagnetic wave induces oscillations in the free electron gas of a metallic
nanoparticle. These oscillations are called plasmons [139]. Since accelerated charges emit ra-
diation, nanoparticles exposed to an electromagnetic wave start to radiate light themselves.
This reemitted field interacts with the initial wave leading to partially destructive inter-
ference and a phase shift that can be interpreted as absorptive and dispersive light-matter
interactions, respectively.

The exact form of a field scattered by a nanoparticle can be determined by applying Mie
theory [140] that can be derived from the Maxwell’s equations. However, Mie solutions
reveal that the scattered field often contains higher order multipole fields [139] in contrast
to atoms or molecules that can be approximated as dipole emitters. But it can also be shown
that theses higher order terms become negligible if the radius of the spherical nanoparticle
a is significantly smaller than the wavelength of the light λ [139, 141]

a
λ
≪ 1. (7.1)

This is called the Rayleigh approximation since the particle in this regime behave like a
Rayleigh scatterer. As for molecules, the induced dipole moment of the nanoparticles is
proportional to the field exciting the electron oscillations: p0 = αE0. The quasi-static polar-
isability α of a nanoparticle can be derived from the Clausius-Mossotti relation according to
[142, 143]

αnp = 4πϵ0a3 ϵnp−ϵm

ϵnp + 2ϵm
. (7.2)

ϵnp and ϵm are the relative permittivities of the nanoparticle and the surrounding environ-
ment, respectively. According to equation 7.2, the polarisability diverges for ϵnp + 2ϵm = 0
leading to a strongly increased interaction between nanoparticle and light. Since the relative
permittivity is primarily a function of the wavelength of the incident light, resonances in
nanoparticles occur similarly to atoms or molecules. However, the resonances of nanoparti-
cles, also called plasmon resonances [139], are broad and do not show the discrete nature of
atomic or molecular particles, see figure 7.1.

To serve as test objects for the imaging scheme nanoparticles need to be placed inside
the cavity. The most efficient method would probably be an optical tweezer [150], i. e.
trapping a particle with a focused laser beam. With an optical tweezer, a nanoparticle can be
positioned between the mirrors without additional objects, which could induce disturbance
effects during the imaging. However, the implementation of such a tweezer is complex
and simpler methods are also feasible. For example, the nanoparticles can be placed on a
dielectric substrate, e. g. glass. This method has been applied successfully in [151] to image
gold nanoparticles with fluorescence imaging.

If the nanoparticles are placed on a substrate within the cavity, this substrate might alter
the properties of the resonator. By introducing a corresponding ray transfer matrix for this
dielectric plate into the ABCD matrix of a cavity, see chapter 3, the effects of the substrate can
be determined. After some algebraic transformations, it becomes apparent that the length
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Figure 7.1: Absorption and scattering cross sections for a nanoparticle consisting of silver,
gold, silica and titania depending on the wavelength of the light. The values are obtained
through equations 7.5 and 7.6. The relative permittivities required to determine the corre-
sponding polarizabilities are calculated from the complex index of refraction ñ = n + iκ by
using equations ϵreal = n2

− κ2 and ϵimag = 2nκ [144]. All data is obtained from [145], which
obtained data from [146] (silver), [147] (gold), [148] (silica) and [149] (titania).

of the cavity needs to be slightly increased to obtain identical properties compared to a
resonator without a substrate. The additional length depend on the thickness and material
of the glass plate. In conclusion, a substrate can be used if the cavity length is corrected.

The placement of the nanoparticles on a substrate also leads to a modification of the
polarisability through a so-called mirror charge. The new polarisability is then given by
[152]
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αnp,s = ϵ0

Vp
(
ϵnp − ϵm

)
ϵm + Ls

(
ϵnp − ϵm

) (7.3)

with Ls =
1
3

1 −
1
8

(
d
a

)3 (ϵs − ϵm

ϵs + ϵm

)
. (7.4)

Vp is the volume of the nanoparticle, d the distance between the particles centre and the
surface of the substrate and ϵs the relative permittivity of the substrate.

The interaction of an incident electromagnetic wave with a nanoparticle is slightly dif-
ferent than with an atom or a molecule. While atomic or molecular particles can reemit an
absorbed photon, light absorbed by a nanoparticle is dissipated into another energy form,
e. g. heat [153]. Light emitted by the oscillating electrons is considered as scattered [153]. In
contrast to atoms or molecules, a nanoparticle absorbing a photon can still scatter light and,
hence, the imaging process must not be completed before the first absorption occurs.

However, an absorbed photon may still not contribute to the detection signal and dom-
inating dispersive interactions would also be favourable for nanoparticles. Interaction
strengths for nanoparticles are usually given in terms of the cross sections, where larger
values correspond to higher probabilities for interaction. The absorption and scattering
cross sections are

σabs =
k
ϵ0

Im (α) , (7.5)

σsca =
k4

6πϵ2
0

|α| , (7.6)

respectively. The absorption cross section depends on the imaginary part of the polarisability,
while the scattering cross section is proportional to the modulus square of α. Hence, both
values scale with a3 and a6, respectively, and dispersive interactions dominate for larger
particles. This might be disadvantageous since the scattered field of larger nanoparticles
also contains higher order multipole terms. A careful balance between strong dispersive
interactions and suppressed multipole fields needs to be found.

The material of a nanoparticle also impacts the light-matter interaction significantly.
A nanoparticle can be made either from a metallic or dielectric material. Scattering and
absorption is usually stronger for metallic nanoparticles compared to dielectric materials
and for particle sizes satisfying the Rayleigh approximation absorptive interaction normally
dominates over dispersive processes or both cross sections have similar values at most. In
contrast, the extinction coefficient of dielectrics is equal to zero and, hence, absorption does
not occur in these materials.

Gold, silver, silica and titania (titanium dioxide) are discussed as materials for the
nanoparticles to examine the feasibility of these materials as test objects for the proposed
imaging scheme. These materials are considered since corresponding nanoparticles are
available, inexpensive, can be purchased in different sizes and the optical properties of these
objects are well known. Gold and silver are typical materials for metallic nanoparticles,
while silica and titania are dielectrics.

The absorption and scattering cross sections for a nanoparticle with a size of 25 nm are
depicted for the above mentioned materials in figure 7.1. The plasmon resonances of the
metallic particles is clearly visible in the spectra, for silver at 355 nm and for gold in the range
of 500 nm. At these wavelengths, the cross sections are significantly enhanced, for silver the
absorption and scattering cross section differ less than for gold. For longer wavelengths, the
scattering cross section becomes larger than the absorptive cross section. For silica and titania
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absorption is completely suppressed, as expected, a plasmon resonance does not occur in
the visible light spectrum and dispersive interactions are stronger for shorter wavelengths.

Note that the ratios between absorption and scattering cross section in figure 7.1 are not
universal, but significantly depend on the particles size, as previously explained.

Each material has advantages and disadvantages. While metallic particles provide a
larger number of dispersively scattered photons due to larger scattering cross sections,
absorption does not occur for dielectrics. The nanoparticles should serve as test objects for
the imaging scheme prior to the application in the detection process for NaK molecules.
Hence, if the scattering rates of the dielectrics and the molecules are in the same order of
magnitude, titania or silica are more favourable than silver or gold. Since the cross section
for titania is larger than for silica, as indicated in figure 7.1, titania should be preferred over
silica.

A comparison of the scattering rates of molecules and nanoparticles is possible by com-
paring the corresponding polarizabilities. In chapter 6.7 a large detuning of 2π · 500 MHz
is assumed and, hence, the imaginary part of the polarisability of the molecules can be ne-
glected. Due to the vanishing extinction coefficient of titania, it is sufficient to compare the
real parts of the polarizabilities of molecules and nanoparticles. Values in the same order
as for NaK molecules with a detuning of 2π · 500 MHz are obtained by titania nanoparticles
with a size of 15 nm. This is significantly smaller than all optical wavelengths and, therefore,
titania nanoparticles should be feasible as test objects for the imaging method. If the differ-
ence between a field scattered by such a nanoparticle compared to an ideal dipole emitter
is still too large, silver can be used instead since the larger cross section allows to utilize
smaller particle radii. In this case, however, it would be necessary to use more power for the
imaging process due to the non-negligible absorption cross section.

The scattering cross section of titania nanoparticles is more effected by the size of the
sphere than the wavelength and, hence, in principle all optical wavelengths can be used
for the imaging scheme. Longer wavelength would suppress non-dipole terms from the
scattered field and are therefore more suitable. Nevertheless, as explained in chapter 6,
multimode cavities with small waists are also more difficult to realise in this case due to
larger misalignment sensitivity and the paraxial approximation. Hence, longer wavelength
should only be considered for resonators that are robust against misalignment, i. e. confocal
or hemispherical geometries.

In conclusion, nanoparticles are feasible test objects for the proposed imaging scheme.
Titania nanoparticles should provide dispersive scattering rates strong enough to imitate
NaK molecules. For confocal and hemispherical cavities longer wavelengths should be
utilised to suppress higher multipole fields in the scattered light. For concentric cavities
shorter wavelengths are more feasible to reduce misalignment sensitivity. If the scattered
field of titania particles differs too much from an ideal dipole field smaller nanoparticles
should be used and silver can be utilised instead of titania.

7.2 Experimental setups for the detection of nanoparticles

7.2.1 Mode matching

Before the cavity design is presented, mode matching should be discussed. Mode matching
characterises which transverse modes supported by a cavity are pumped by an incoming
laser beam. An arbitrary resonator mode ψN and an incoming beam Ee are considered as
ideally matched when the intensity distribution and phase profiles overlap perfectly [154].
In this case only mode N of the cavity is populated by the pumping beam, while other modes
are not oscillating within the resonator. In reality, ideal mode matching is never reached and
the mode matching efficiency can mathematically be expressed by an overlap integral [154]:
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ηmode =

∣∣∣∫ EeψNdA
∣∣∣2∫

|Ee|
2 dA

∫ ∣∣∣ψN
∣∣∣2 dA

. (7.7)

Mode matching is important since resonators are usually operated in the single-mode regime
and other modes apart from the desired one should be suppressed. At first sight, mode
matching might appear irrelevant for the proposed imaging scheme due to the desired
multimode regime of the cavity. This is not the case for two reasons. Firstly, resonators are
usually aligned far in the stable regime, i e. the cavity parameter product g1g2 is neither
equal to zero or unity, and the length is then successively adjusted to reach the desired
geometry. If the transverse modes are not degenerated, which is the case for most resonators
not close to the border of stability, no transmittive or reflective resonator signal occurs for
non-mode matched pumping beams and the cavity cannot be aligned. Secondly, coupling
modes with larger orders than required for the imaging process might lead to an increase of
the linewidth [128].

The fields of many cavities are approximately cylindrical and the backsides of the mirrors
are plane. In this case, it is possible to achieve large mode matching efficiencies by coupling
a collimated beam with the size of the resonator field into the cavity. However, due to the
small waist, the resonator fields of concentric and hemispherical geometries have large far
field angles and pumping the cavities with a collimated beam does not provide sufficient
mode matching. Large matching efficiencies are usually obtained through lens systems in
front of the resonator. The alignment procedure of these lenses is complex and cavities with
different field profiles require individually designed lens systems. A less complicated and
more universal method would be preferable.

In [128], an anaclastic lens is utilised to achieve suitable mode matching efficiencies for a
near-concentric resonator. Such a lens has an aspheric shape on one side (in the case of [128]
an elliptical profile), while the other side is spherical. The latter is coated with a reflective
layer and used as a cavity mirror. The aspheric side is designed in a way that a collimated
beam is focused at the centre of the cavity. The aspheric shape also eliminates possible
aberrations and, thus, increasing the mode matching efficiency further. Hence, an anaclastic
lens ensures large mode matching efficiencies simply and universally applicable in contrast
to lens systems. However, due to the aspheric profile the maximum numerical aperture is
limited and the far field angles of higher order modes of the required imaging cavities are
too large to be covered by anaclastic lenses.

An alternative approach for mode matching is to use a cavity mirror where both sides
are spherical. The purpose of the outer spherical profile is simply to suppress refractions.
This allows to use a common aspheric lens for effective mode matching. This is illustrated in
figure 7.2. The proposed solution is similar to the anaclastic lens and in this case the aspheric
and spherical side are only distributed over two different optical elements. This allows
to increase the separation between aspheric and spherical profile and, thus, the numerical
aperture can be further increased compared to the anaclastic design. However, it is necessary
to control the position of the lens independently of the mirror. A control over the angles with
axes of rotation perpendicular to the optical axis is also required for high mode matching
rates. These angles are also called yaw (x-axis) and pitch (y-axis) and are shown in figure
7.2.

All these mode matching methods only allow to couple the fundamental 00-mode into
the cavity since this is usually the mode emitted by lasers. If higher order transverse modes
should be coupled to the cavity, spatial light modulators can be utilised for this purpose, see
[155] and [156].
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Figure 7.2: Mode matching for small-waist cavities. Both sides of the resonator mirror are
spherical allowing to focus a collimated beam at the centre of the cavity with a common lens.
This lens requires five degrees of freedom, three for transitions in space and two angles that
allow to control the yaw (rotation around x-axis, φ) and the pitch (rotation around y-axis, ϕ).

7.2.2 Imaging resonators

As explained at the beginning of the chapter, the demonstration of the imaging technique can
be split into several steps, each utilising another resonator geometry. Confocal resonators
are technically the least challenging and can be used to show the general feasibility of
the detection scheme. Hemispherical cavities are then used to improve the resolution and
finally concentric cavities are utilised to obtain non-symmetrical homodyne signals. To
reduce the number of technical elements, the components of the resonators are chosen
and constructed to operate with all three cavity configurations. Furthermore, a modular
design is advantageous to switch between the geometries. In the following, this modular
resonator design is presented with respect to the concentric cavity since this is the most
challenging design. However, the construction can also be used for hemispherical and
confocal resonators.

Figure 7.3 depicts a 3D representation of the resonators components. The left side shows
the assembled cavity, while on the right side an expanded view is represented. Due to large
misalignment sensitivity, a control of five degrees of freedom for each mirror is required
for the concentric cavity. These are three translational directions and two angles. The axes
of rotation of the angles need to be perpendicular to the optical axis of the cavity and are
illustrated in figure 7.2.

For a proper cavity alignment, translational shifts need to be controllable in the range of
nanometres. Such small displacements can be handled with piezo elements. These elements
rely on the inverse piezoelectric effect, where the elongation of the material depends on
the applied voltage [157]. Piezo components allow a precise length control of the cavity
including fast responses to fluctuations. A suitable piezo stage for the imaging cavities
would be the P-611.3o NanoCube XYZ system from the company Physikinstrumente [158].
This stage supports translations over 120µm for three directions with a resolution of 0.2 nm.
Furthermore, the piezo system is capable to hold masses up to 1.5 kg if the centre of mass is
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Figure 7.3: Modular design of the imaging cavities. The left side shows an assembled
version, while the right side depicts an expanded view. a): Gimbal mounts, b): Mirror rings
c): Cavity mirrors d): Ring-gimbal mount adapters e): Outcoupling lens f): Mode matching
lens g): Piezo stage h:) Translation stage.

located centrally above the stage which is sufficient for the remaining components required
for the cavity.

A translation range of 120µm is sufficient for fine tuning, but too small for pre-aligning
the cavity. In principle, piezo stages can cover larger ranges, however, this usually reduces
the resolution. Hence, an additional stage for rough alignment is required. An inexpensive
tool for this purpose is the linear M-DS65-XYZ stage from Newport [159]. The travel range
for this stage is 25.4 mm that is sufficiently large and the resolution is 1µm, which overlaps
with the range of the piezo element. Furthermore, the resolution is small enough to align
the cavity in respect to the mode matching lens and pumping beam. Fine tuning is only
required for aligning the mirrors in respect to each other and, hence, the M-DS65-XYZ stages
allow to use a single piezo element for fine control.

There is a large number of mounts and stages for controlling the yaw and pitch of an
optical element precisely. However, usually the axis of rotation does not coincide with the
centre of the corresponding mirror, see figure 7.4. If the point of rotation, defined as the
position where both rotational axes cross each other, does not coincide with the centres of
the mirrors surfaces, tilting the yaw or pitch angle leads to a translational shift of the mirror
in two directions. This is also illustrated in figure 7.4. For a less complicated alignment
procedure, the degrees of freedom should be independent from each other. Independences
can be ensured by using so-called gimbal mounts, where the centre of the mirror is located
at the point of rotation.

A suitable gimbal mount is the U200-G2k mirror mount from Newport [160] providing
different advantages. The precision of angle adjustment is 1.12µrad and the total alignment
range is 8, which is suitable for both pre- and fine alignment. Furthermore, the adjustment
screws can be exchanged to increase angle sensitivity even beyond 1.12µrad if required. It
is also possible to use motorized piezo actuators instead of manual screws to adjust angles
contactless.

Cavity mirrors for the concentric resonators have been designed in-house and produced
by Asphericon. Both sides are spherical to allow uncomplicated mode matching, the inner
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Figure 7.4: Difference between non-gimbal and gimbal mirror mounts. For non-gimbal
mounts the axis of rotation is not crossing the centre of the mirrors surface, leading to
a translational shift of the mirror when the angle is tilted. In contrast, gimbal mounts
decouple translational degrees of freedom from angle adjustments.

side has an intensity reflectivity of 0.979, while the outer side provides an anti-reflection
coating. The radius of curvature of the reflective side is 1 cm and the corresponding aperture
is 0.9 cm. Plane mirrors with identical apertures and reflectivities have been also realised by
Asphericon and can be used for the hemispherical cavity.

Remaining parts for the modular cavity have been designed and manufactured in-house.
The mirrors are glued at four spots to mirror-holding rings, which, in turn, can be attached
to a ring-gimbal mount adapter through screws. This adapter provides an external thread
and can be screwed to the gimbal mirror mount. Furthermore, the adapter is designed
such that the centre of the cavity mirrors’ surface is located at the point of rotation of this
gimbal mount. A lens can be placed inside the adapter with a retaining ring to collimate the
beam transmitted through the cavity. The other parts are needed to connect the technical
components to each other or with the optical table.

An aspheric lens AL4532-A from Thorlabs [161] lens is placed in front of the incoupling
mirror of the cavity for mode matching. Another M-DS65-XYZ stage is used to control
translational adjustments of this lens. For the alignment of the angle an inexpensive non-
gimbal mirror mount can be used since the translational shifts due mirror tilting are negligible
in terms of mode matching.

7.2.3 Cavity alignment

Concentric cavities are more sensitive to misplacement of the mirrors leading to more com-
plicated alignment procedures compared to other geometries. The process of alignment
described in this section is based on a concept presented in [162]. During cavity adjustment,
the mirrors and mode matching lens are aligned independently from each other, effectively
decoupling the degrees of freedom of the different components simplifying the setup of the
cavity significantly. The feasibility of the proposed alignment procedure has been examined
with a test cavity.

The adjustment procedure is schematically represented in figure 7.5. Several axes need
to coincide to ensure a proper cavity alignment. As previously explained, the optical axis
of a cavity is defined as the line passing through the centres of curvature c1 and c2 of the
mirrors. To reduce diffraction loss, this optical axis need to cross the centres of the mirror
surfaces, see chapter 6.4.2. To ensure large mode matching efficiency, the optical axis of the
resonator should coincide with the optical axis of the beam pumping the cavity.

First, the pumping beam is aligned to define a reference line for mirrors and the mode
matching lens. In principle this beam can be orientated arbitrarily and the optical com-
ponents can be adjusted accordingly. For practical reasons, however, the beam should
propagate parallel to the surface of the optical table and the distance from this surface
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Figure 7.5: Pre-alignment of the (concentric) cavity. Two counter-propagating beams from
the fibres define a reference line. Mirror 2 is than placed along this line and adjusted that
the beam from fibre 2 is reflected back into itself. Afterwards, the mode matching lens is
positioned and finally mirror 1 is placed and adjusted. The focus of the lens should coincide
with the centre of curvature of the first mirror.

should match the height of the assembled resonator represented in figure 7.3. Furthermore,
the beam should propagate into two opposite directions, which is used to align both mirrors
separately. Therefore, the beam is outcoupled by two fibres and a total of four mirrors is
utilised to overlap the counter-propagating beams, see figure 7.5.

In the next step mirror 2 from figure 7.5 is positioned along the reference line and adjusted
that the beam from fibre 2 is reflected back into itself. Translational misalignment can be
corrected by observing the symmetry of the back reflected beam with a camera [162]. After
the alignment of the mirror, the beam from fibre 2 is not needed any more and can be blocked.
The mode matching lens can now be placed along the beam from fibre 1 and can be adjusted.
Initially, the lens is roughly aligned, but corrections can be applied later. Finally, the mirror
1 is positioned and adjusted such that the beam from fibre 1 is reflected back into itself. The
focus of the lens should roughly coincide with the centre of curvature of mirror 1.

After the placement and adjustment of mirror 1, pre-alignment is completed. Next, the
transmission signal of the cavity can be observed with a beam camera and a photodiode.
A sawtooth or triangular voltage signal can be applied to the piezo stage connected to the
second mirror to measure the spectrum of the cavity with the photodiode. The oscillating
piezo signal leads to a periodic change of the cavity length and allows to observe the different
transverse modes. Two examples of cavity spectra are shown in figure 7.6. The left side
of the figure depicts a cavity with non-perfect mode matching. Peaks with various heights
correspond to different transverse modes. The transmission signal of the cavity should look
roughly like this after the pre-alignment. If no transmission signal occurs, the distance
between the mirror might be too large and should be reduced. Also, it should be examined,
if the amplitude of the voltage signal is large enough to alter the cavity length by λ

2 or more
to ensure that at least one mode is in resonance with the laser during the measurement.
If still no signal can be measured the mode matching is probably not sufficient and the
pre-alignment must be repeated.

If a suitable transmission signal of the cavity can be measured, fine adjustments can be
made. By altering the positions and angles of the mirrors and the lens consecutively, mode
matching can be improved. During this process higher order transverse modes should
become more suppressed, while the signal of the 00-mode increases, which can also be
checked with a beam camera. An ideal case is shown on the right side of 7.6. Due to the
pre-alignment, only small changes for each degree of freedom, which are still approximately
independent from each other, are necessary.

After pre- and fine alignment, the cavity is usually far in the stable regime, i. e. g1g2 ,
0 and 1. The distances between the mirrors can successively be increased to approach the
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Figure 7.6: Transmissions of cavities far in the stable regime. The transmission signal is
measured with a photodiode, while the length of the cavity is altered by applying periodic
voltage signals to the piezo stage. The left side depicts a detail of a spectrum for non-
perfect mode matching, where peaks with different heights correspond to different transverse
modes. The values of the x-axis are proportional to the length of the resonator in this
case and the total length change is approximately 540 nm, hence every transverse mode is
represented twice in this spectrum. The right side shows the transmission signal for a better
mode matching efficiency. All peaks correspond to the same transverse mode. The spectrum
corresponds to four periods of the triangular piezo signal.

desired cavity geometry. This requires a measurement of the mirror parameter g and is
further discussed in the next section. However, when the length of the cavity is changed the
mode matching condition might change and the cavity becomes more sensitive to misalign-
ment. Further adjustments are therefore required. However, tests have shown that only the
position and angle of one mirror needs to be corrected to keep the cavity aligned.

7.2.4 Operating near-unstable cavities on the last stable mode

To provide small cavity waists, near-concentric and -hemispherical resonators need to be
close to the edge of stability. Depending on their length and the pumping beam, cavities
only support discrete resonance frequencies, see chapter 3. The distance between two
longitudinal modes is λ

2 . For each resonator a last stable mode exists, i. e. if the cavity
length is increased by λ

2 the resonator enters the regime of instability. For cavity waists in
the range of 1.5µm it is necessary to operate the resonators presented in chapter 6.7 at their
corresponding last stable modes.

When a cavity is properly aligned, as described in the preceding section, the last stable
mode of resonators can, in theory, be found by increasing the cavity length. The linewidths of
the different longitudinal modes occurring in the transmission signal can be measured. After
the last stable mode a sudden drop of transmission strength should occur and the linewidth
is significantly broadened, as observed in [134]. However, this approach is afflicted with
uncertainties. Linewidth broadening and reduced signal strength can also occur due to
mirror misalignment. Furthermore, the width and strength of the signal might not change
so drastically for the first unstable mode of hemispherical resonators due to their general
reduced misalignment sensitivity. Hence, a more suitable method is required to determine
the last stable mode of a cavity.

The last stable mode can be examined if the length of the cavity is known. Several
techniques to measure the mirror separation are discussed in [162]. For example, side bands
can be imprinted to the beam pumping the cavity. If the frequency difference to the carrier
frequency is equal to half a free spectral range, the transmission signal of the sidebands is
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Figure 7.7: Theoretical concept to measure the cavity parameters indirectly through the
TFSR. The mode matching of the cavity is chosen such that the fundamental 00-mode and a
transverse mode of order 1 are pumped. The frequency of the laser, or alternatively the cavity
length, is scanned and the cavity transmission is detected to receive a transmission spectra
similar to the two bottom diagrams of the figure. The TFSR is determined by measuring
the difference between the transmission peaks of order 0 and 1. According to equation 6.1
the cavity parameter product depends on the TFSR. This relation is also shown in the upper
part of the figure. The solid line corresponds to equation 3.25, while the dots indicate the
different longitudinal modes for a wavelength of 576.2 nm.

significantly enhanced and the cavity length can be determined. However, this method is
only applicable for resonators with narrow linewidths and, therefore, not feasible for the
imaging cavities.

Another technique suggested in [134] allows a direct determination of the mirror param-
eter product. This is even superior to the measurement of the length since the properties of
the cavity primarily depend on this product and the mirror radii are not perfectly known.
The measurement technique utilises the TFSR, see equation 6.1. The upper part of figure 7.7
shows the TFSR depending on the mirror parameter of a near-concentric cavity according
to equation 3.25. The blue dots indicate the longitudinal 00-modes with index numbers of
q = 2L/λ supported by the cavity for a wavelength of λ = 576.2 nm. The length difference of
the cavity for each dot is λ

2
To determine the TFSR a periodic signal is applied to the piezo stage of the cavity mirror

inducing oscillations of the resonator length, see chapter 7.2.3. A non-perfect mode matching
is chosen such that transverse modes of order 1 are pumped beside the fundamental 00-mode.
During the scan of the piezo two peaks should occur, referring to transverse mode orders 0
and 1, respectively. The distance between the peaks can than be measured to obtain the TFSR
of the cavity. Two examples are depicted in the lower part of figure 7.7, corresponding to two
different longitudinal modes as indicated by the numbers. The larger peak corresponds to
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order 0, while the lower peak belongs to transverse mode order 1. The transmission spectrum
corresponding to the resonator closer to the border of stability shows a significantly reduced
difference between the resonance frequencies.

To determine the TFSR from transmission spectra, the data can be fitted by two Lorentzian
profiles [134] according to

T =
T1

(ω−ω1)2

κ2 + 1
+

T2

(ω−ω2)2

κ2 + 1
. (7.8)

T1 and T2 are determining the amplitudes of the peaks and ω1 and ω2 are the resonance
frequencies of the 00- and 01-mode, respectively. The TFSR corresponds then to ω1 − ω2.

This measurement scheme is examined with a hemispherical test cavity. The radius of
curvature of the spherical mirror is r = 1 cm, while the reflectivity of both mirror is R = 0.979.
The wavelength of the pumping laser is 532 nm. The test cavity is similar to the resonator
in figure 7.3. To obtain the transmission spectra necessary for determining the TFSR, an
triangular voltage signal is applied to the piezo stage. Cavity transmissions are measured
with a photodiode and an oscilloscope and, hence, the physical units of the spectra are
voltage and time. The voltage is directly proportional to the intensity, but the time must be

Figure 7.8: Measurement of the mirror parameter product for a near-hemispherical cavity
with a length of approximately L = 1 cm. The dots in the upper part of the figure are obtained
by measuring transmission spectra from which the TFSRs are determined. The solid line is
the theoretically expected curve. For example, two spectra are shown in the lower part of the
figure, the corresponding dots in the upper diagram are indicated by numbers. Lorentzian
profiles are fitted to the data and multiple transverse mode orders are used to improve the
quality of these fits. However, measurements for the last stable modes are not possible due
to the large linewidth of the cavity. This is also indicated by the transmission spectrum in
the lower right part of the figure, where different peaks cannot be clearly distinguished.
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Figure 7.9: Two Spectra of a near-concentric resonator supporting the 00-/01-mode and the
00-/06-mode. Parameters are g = −0.999968 and R = 0.9794. If a 00-mode and 06-mode are
coupled to the cavity, the peaks can clearly be distinguished allowing the determination of
the TFSR even close to the border of stability.

converted into frequency units. This can be done by applying a reference frequency. For this
purpose, the pumping beam of the cavity is phase modulated by a double pass acousto-optic
modulator (AOM) to imprint a sideband. This side band also occurs in the transmission
spectrum and since the frequency of the AOM is known to be 2π · 350 MHz, the difference
between the 00-modes of the carrier and side band is equal to 2π · 700 MHz. From this, the
difference between the 00- and 01-mode of can be obtained in frequency units.

A measurement of the cavity parameters is depicted in figure 7.8. As before, the upper
part of the figure shows the theoretical expected curve and the blue dots correspond to
the measured TFSRs for the different longitudinal modes. In the bottom part of the figure,
two transmission spectra are shown and corresponding longitudinal modes are indicated
by numbers. Lorentz profiles are fitted to the data with the optimize.curve_fit function from
the SciPy Python library, which relies on the non-linear square method [163]. Several peaks
occur in the transmission spectra due to two reasons. Firstly, the sideband reference is also
included in the signal. Secondly, the quality of the fits is improved by including multiple
transverse mode orders to the transmission spectrum. The peaks left to the maximum value
correspond to transverse orders of 2, 4, 6, 8 and 10.

The measurement in figure 7.8 stops before the last stable modes of the resonator are
reached since no reasonable data could be provided. This is probably a result of the broad
linewidth of the cavity preventing a distinction of the different mode peaks. The transmission
spectrum in the lower right part of the figure is also an indicator for this. To overcome this
problem and to allow measurements for modes closer to the border of stability, the frequency
difference between the 00-mode and a larger order could be utilised, e. g. the 06-mode since
the linewidths of these modes would not overlap. The corresponding spectrum is shown in
figure 7.9, where it is compared to the spectrum with only a 00- and 01-mode for a cavity
with mirror parameters of g = −0.999968.

The measurement of the TFSR can only be improved by using higher order modes, if all
orders between the modes of interest are suppressed. Such exotic mode matching profiles
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cannot be obtained with common laser beams and lens systems. However, in [155] and
[156], spatial light modulators (SLMs) are used to successfully demonstrate the simultaneous
coupling of different transverse modes to a cavity. To couple a specific combination of these
modes to a cavity, the profile of the pumping beam must be equal to a superposition of the
corresponding modes. SLMs allow to modulate the phase or amplitude of an incoming beam
pixel-wise and, hence, arbitrary beam profiles can be created, specifically combinations of
Hermite-Gaussian modes. Further details, on how to apply SLMs can be found in [155].

A final remark regarding the operation of a cavity at the last stable mode concerns the
resonance frequency. Specific values for the mirror parameters are required to ensure a
waist of 1.5µm. However, even if the cavity is adjusted to the corresponding length it is not
guaranteed that the wavelength of the pumping beam matches the resonance frequency of
the resonator. Therefore, it must be ensured that the frequency of the laser at least can be
tuned over the free spectral range of the cavity.

7.2.5 Experimental setup

An experimental setup suitable to verify the proposed imaging scheme is illustrated in figure
7.10. Parts of the design of the experiment are inspired by [134] and [164]. Apart from a
laser used for the detection itself, a second laser can be utilised to stabilise the cavity. The
first laser is called the probe laser, while the second is referred to as the lock laser. The
frequencies of both, the probe and the lock laser, need to be stabilised. For this purpose, a
reference frequency is required. Such a reference can be generated by a second ultra-stable
high finesse resonator consisting of ultra-low expansion glass to reduce thermal fluctuations.
Both lasers can be locked to the reference cavity through the so called Pound-Drever-Hall
technique [165, 166]. This kind of locking scheme is also utilised for all other stabilisation
mechanisms in the presented setup. A detailed introduction of this technique can be found
in [167].

The wavelength of the probe laser is set to 576.2 nm. Nanoparticles could also be detected
by other wavelengths but using this value proves the technical feasibility of resonators
suitable for detecting cold NaK molecules. The frequency of the lock laser can be chosen
more freely, but must match the reflectivity of the mirrors.

The different technical components can be found in figure 7.10.
The optical isolators prevent back scattering into the lasers and by this disturbances of the

beams. The probe beam is split into two partial beams by a polarizing beam splitter (PBS), one
of them used for stabilising the laser frequency, while the other is used to pump the imaging
cavity. A half-waveplate in front of the PBS allows to control the power distribution among
the partial beams. Electro-optic modulators (EOMs) imprint sidebands with frequencies of
50 MHz to the laser fields used, to stabilise their corresponding frequencies. A suitable EOM
for this purpose is the PM8-VIS from QUBIG [168].

After imprinting the sidebands with frequencies of 50 MHz, the lock laser is also split into
two partial beams. The first beam is used to stabilize the lock laser’s frequency itself, while
the other is used to stabilise the imaging cavity in respect to the frequency of the reference
resonator. The first beam is phase modulated by another EOM and one of the sidebands is
finally used to stabilize the frequency of the lock laser to the reference cavity. This allows
to adjust the resonance frequency of the imaging cavity independently from the reference
resonator. To ensure this independence, the frequency of the second EOM can be adjusted
and is generally larger with values in the GHz range. Suitable EOMs are PM9-VIS from
QUBIG [168]

The partial beam of the probe laser used to stabilise its frequency with the reference
cavity is a second time phase modulated by another EOM. Similar to the lock laser, this
allows to adjust the frequency of the probe beam to be resonant with the imaging resonator.
The beam not utilised for frequency stabilisation is again split into two partial beams. One
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of these partial beams is used later as the local oscillator for the homodyne detection, while
the other pumps the cavity. The length of the path of the local oscillator can be adjusted by
a piezo stage allowing to stabilise the phase of this beam in respect to the phase of the signal
beam.

A reference signal for the determination of the cavity parameter product (see chapter
7.2.4) can be imprinted on the pump beam through a double pass acousto-optic modulator
(AOM, AOMO 3350-125 from Gooch and Housego [169]). Double pass means that the
beam is reflected and passing through the AOM a second time. This is necessary since the
sidebands of AOMs are also refracted and the double pass allows, therefore, to overlap the
sideband with the carrier again. An AOM is utilised instead of an EOM to imprint only
one sideband to the beam since a single reference for the g-measurement is sufficient. This
reduces the number of modes in the signal of the imaging resonator. After determining the
cavity parameters, the AOM can be switched off to get rid of the sideband in the pumping
beam.

After imprinting the reference sideband, the beam profile is cleaned, i. e. brought into
a pure Gaussian profile, with a fibre for a less complicated implementation of the SLM.
As explained in the previous section, one purpose of the SLM is to couple specific Hermite-
Gaussian modes into the cavity to measure the mirror parameters. When this measurement is
completed, the SLM can still be used for appropriate mode matching, e. g. by compensating
aberrations. SLMs usually require large beam sizes and, hence, a telescope is provided
to enlarge the size of the pumping beam. A suitable SLM is the 512 x 512 Spatial Light
Modulator from Meadowlark [170].

Finally, the beam enters the imaging cavity to detect the nanoparticles and the transmis-
sion signal of the resonator is measured with a homodyne detector to determine the particles’
positions as explained in chapter 4.





Chapter 8

Conclusion and Outlook

In this thesis an imaging technique suitable to detect single cold particles spatially resolved
is proposed. In particular, the detection scheme is applicable for polar molecules by utilising
dispersive light-matter interactions. This allows to scatter a larger number of photons
for the imaging signal compared to absorption or fluorescence methods, which often fail
due to missing closed cycling transitions. During the measurement low power or a large
transition-laser detuning ensures that the molecules remain in the low-saturation regime,
i. e. absorption processes are suppressed. The signal strength is enhanced by an optical
resonator. A superposition of transverse modes allows to determine the positions of the
molecules by utilising a modified homodyne detector, where the fields in both arms of the
detector are measured in a spatially resolved manner.

In the first part of this thesis, two different theoretical backgrounds for the imaging
procedure are derived. First, an intuitive classical approach is developed by interpreting
molecules as dipole emitters. The overlap integral between scattered field and an arbitrary
Hermite-Gaussian mode is calculated and the amplitudes of different transverse modes are
determined. Afterwards, the effect of a cavity on the mode distribution is evaluated and
a system of coupled equations for the Hermite-Gaussian modes is derived. A homodyne
detection scheme is taken into account and an expression for an imaging signal is presented.
The impact of the size of the resonator waist and number of supported modes is investigated
and it is shown that smaller waists are mandatory to achieve resolutions in the sub-µm
regime, while the effect of large mode numbers is not that critical. Subsequently, a quantum
mechanical version of the imaging theory is explained and compared to the classical ap-
proach. It is shown that both theories are equivalent apart from vacuum field fluctuations,
a pure quantum physical effect and important to determine the fundamental limit of signal
noise.

After determining the theoretical background, cavity properties important for an effective
imaging process are discussed with a special focus on resonators capable to resolve bosonic
NaK molecules inside an optical lattice with a periodicity of 0.532µm. A possible transition
in the state structure of NaK molecules is identified with a corresponding dipole transition
matrix element of 2.52 D and excitation wavelength of 576.2 nm. The cavities’ waist is set
to 1.5µm and the reflectivity is 0.9794 such that transverse modes of order 4 lie within
the resonators linewidth. The lengths of the concentric and of the hemispherical cavity are(
0.02 − 30 · 10−9

)
m and

(
1 − 15 · 10−9

)
m, respectively. This corresponds to mirror parameters

of −0.9999967 for the concentric and 1 and 1.5 · 10−6 for the hemispherical resonator. The
single particle cooperativity is 1.94. Simulations of homodyne signals are presented and
differences in signals corresponding to different lattice fillings are pointed out.

In the following, cavities with the above theoretically chosen properties are designed.
A modular construction method is utilised to reduce the number of components and allow
to switch quickly between the different resonator types. Cavity geometries suitable for
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the proposed detection scheme are close to the border of stability and difficult to realise.
Components allowing to operate the different imaging resonators at these extreme points of
the stability diagram are suggested. A measurement technique for the mirror parameters is
presented, relying on the frequency difference between two adjacent transverse mode orders,
which is necessary to operate the resonators at the last stable mode. This method is also
examined with a test cavity and is in principle feasible except for the last few longitudinal
modes, where the peaks of the different transverse modes start to merge due to the broad
cavity linewidth. It is suggested to overcome this by coupling exact two transverse modes
with significantly different orders to the cavity with a SLM.

An apparatus to prove the principle behind the proposed imaging scheme is developed.
Nanoparticles are proposed as test objects to imitate cold molecules since these particles
are capable to scatter light like a dipole-emitter if their size is significantly smaller than
the corresponding wavelength. A short revision of optical properties of nanoparticles is
given and different materials for the particles are discussed with titania and silver being
the best options. The polarisability of nanoparticles and NaK molecules is compared to
ensure similar scattering behaviours. The classical approach of the imaging scheme allows
to compare the homodyne signals of both, nanoparticles and molecules.

In conclusion, an imaging technique suitable to detect single molecules spatially resolved
is proposed and cavities appropriate for this purpose are developed. Components are sug-
gested to ensure technical feasibility and a test apparatus is designed to verify the detection
method, first with a confocal resonator, followed by a hemispherical and than finally by a
concentric cavity.

The next logical step is to realise the proposed test apparatus and verify the imaging
technique experimentally with nanoparticles. Afterwards, the detection method could be
applied to cold molecules. Cold quantum gases are created in high vacuum chambers
and a resonator suitable for the detection of cold molecules must be applicable in such an
environment. Hence, a more compact design of the cavity is necessary and the components
need to be compatible with the vacuum of the molecules’ production chamber. Gimbal
mounts satisfying this requirements must probably be custom designed and produced.
Furthermore, once the cavity is placed inside this chamber readjustments are only possible
through piezo elements, which can be controlled from the outside. Therefore, the cavity
should be robust enough that only small corrections of the different degrees of freedom are
necessary. In [134] and [171] cavities applied in vacuum chambers are described.

Another option apart from two-mirror cavities are ring resonators, see chapter 3.2. The
total length of ring resonators can be larger compared to two-mirror cavities allowing to
construct the resonator outside of the chamber and the cavity field can than enter the cor-
responding chamber through windows. This approach is realised in [172], for example.
Constructing a resonator outside of the chamber allows to maintain it more easily and the
components are not required to be vacuum compatible.

There might be even more advantages of ring resonators. Compared to two-mirror
cavities ring resonator usually provide propagating waves instead of standing waves. In the
case of standing waves, the nodes of even and odd modes are located at different positions
and molecules must be placed between nodes and antinodes to simultaneously couple the
molecule to all modes. In a propagating wave nodes do not exist and the single particle
cooperativity can effectively be increased by this.

Compared to two-mirror resonators ring cavities provide an additional degree of freedom
since the mirror parameters are defined by two different lengths, see equations 3.35 and 3.36.
This allows to adjust the waist and the TFSR independently from each other. Different
values for the mirror parameters and longer resonator lengths allow to achieve smaller
TFSRs compared to two-mirror cavities and, hence, the multimode regime can be entered
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more easily. This, in turn, enables to adjust the linewidth independently from the TFSR and
the cooperativity can be chosen more freely.

To elaborate the advantages of ring resonators further, an example is provided. The
cavity is assumed to consist of two flat and two spherical mirrors, illustrated in figure 3.3.
As explained in chapter 3.2, this type of cavity provides two different Gaussian beams located
at the the different sides of the spherical mirrors and the beam used for imaging the molecules
propagates between mirror 1 and 2 in figure 3.3. The spherical mirrors are separated by a
distance of

(
0.1 − 35 · 10−9

)
m, while the total length of the beam’s path between the spherical

mirrors over the flat mirrors is
(
0.5 − 35 · 10−9

)
m. The corresponding radius of curvature of

the spherical mirrors is 0.0833 m and the wavelength is, as before, set to 576.2 nm.
These values provide an imaging waist of approximately 1.5µm as in the case of the

concentric or hemispherical cavity. The TFSR is, however, 2π·235 kHz and, hence, reduced by
a factor of 25 compared to the TFSR of the two-mirror resonators, see chapter 6.7. Assuming
mirror reflectivities of 0.98 for the spherical and 0.99 for the plane mirrors, respectively,
results in a linewidth approximately ten times smaller compared to the concentric resonator
and, thus, in an increase of the cooperativity by a factor of 4.8.

Ring cavities, however, automatically contain an astigmatism since the effective radius
of curvature of the mirrors depends on the plane of incident of the light beam, see [90]. This
leads to different cavity parameters along the x- and y-direction and the waist cannot be
1.5µm for both directions simultaneously. In [173], parabolic instead of spherical mirrors
are proposed to overcome this issue and, in [172], a parabolic ring resonators is successfully
demonstrated. Also, the aperture of parabolic mirrors is in theory not limited, which allows
to compensate potential misalignment sensitivity.

So far, misalignment sensitivity has not been investigated in the literature and the aper-
ture of parabolic mirrors might be limited due to technical reasons. Furthermore, in [172] it
is explained that the cavity waist is currently limited as a result of angled reflections, but it
is also stated that there are no theoretical restrictions prohibiting diffraction limited values.

Ring resonators might be a powerful tool to image cold molecules, however, before
implementation, further theoretical investigations are necessary. Theories regarding mis-
alignment sensitivity are more complicated compared to two-mirror cavities due to the
higher number of involved mirrors. Also, potential effects of rotated parabolic mirrors re-
garding astigmatism must be investigated. To demonstrate the proposed imaging scheme
with nanoparticles two-mirror resonators are a valid choice since the wealth of experience of
these cavities is large. The above investigations should allow to decide whether a vacuum-
compatible two-mirror resonator or a ring cavity is more suitable for the detection of cold
molecules.





Appendix A

Mathematical transformations

In this chapter, the equations 4.29 to 4.34 and 4.36 are derived. These equations are used to
simplify the overlap integral from equation 4.6. Furthermore, it is shown that all terms and
factors related to the sign- and Heaviside step function occurring during the derivation of
equation 4.41 eliminate each other. In a last step the algebraic transformations for equation
5.68 are shown.

Equation 4.29

First, equations 2.12 and 2.10 are inserted into
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for the radius of curvature of the phase front and the beam size, respectively. Additionally,
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Equations 4.30 and 4.31

Without loss of generality, the derivation is shown for the x-direction. Inserting equations
4.15 and 4.29 leads to
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with sgn(x) being the sign function, i. e. sgn(x) = +1 for positive values of x and sgn(x) = −1
for negative values. In a second step equation 2.10 and kw0 =
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are used to obtain
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Equation 4.32

Again, without loss of generality, the derivation is shown for the x-direction. In a first step
equation 4.29 is used:
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ϕ

4ϕ2 + 1
=

1
4ϕ + 1

ϕ

(A.18)

=
1

4
zzi+z2

R
2zzR−2zizR

+ 2zzR−2zizR
zzi+z2

R

(A.19)

=
1

4(zzi+z2
R)2
+(2zzR−2zizR)2

(2zzR−2zizR)(zzi+z2
R)

(A.20)

=
(2zzR − 2zizR)

(
zzi + z2

R

)
4z2z2

i + 8zziz2
R + z4

R + 4z2z2
R − 8zziz2

R + 4z2
i z2

R

(A.21)

=
(2zzR − 2zizR)

(
zzi + z2

R

)
4z2z2

i + 4z4
R + 4z2z2

R + 4z2
i z2

R

. (A.22)

Next, equation 4.30 and k2 =
4z2

R
w4

0
are utilised:

ξ2
x =


kxiw0

√
1 + z2

z2
R

√
2 (z − zi)


2

(A.23)

=
k2x2

i w2
0

(
1 + z2

z2
R

)
2 (z − zi)

2 (A.24)

=
2
(
z2

R + z2
)

x2
i

(z − zi)
2 w2

0

. (A.25)

From this follows:

4ξ2
xϕ

16ϕ2 + 4
=

2
(
z2

R + z2
)

x2
i

(z − zi)
2 w2

0

(2zzR − 2zizR)
(
zzi + z2

R

)
4z2z2

i + 4z4
R + 4z2z2

R + 4z2
i z2

R

(A.26)

=
1
2

(
z2

R + z2
)

x2
i

(z − zi)
2 w2

0

(2zzR − 2zizR)
(
zzi + z2

R

)
z2z2

i + z2
i z2

R + z2
R

(
z2

R + z2
) (A.27)

=
1
2

x2
i

(z − zi)
2 w2

0

(2zzR − 2zizR)
(
zzi + z2

R

)
z2

R +
z2z2

i +z2
i z2

R
z2

R+z2

(A.28)

=
1
2

x2
i

(z − zi)
2 w2

0

(2zzR − 2zizR)
(
zzi + z2

R

)
z2

R + z2
i

(A.29)

=
1
2

x2
i

(z − zi)
2 w2

0

2zR (z − zi)
(
zzi + z2

R

)
z2

R + z2
i

(A.30)

=
1
2

kx2
i

(z − zi)
2

zzi + z2
R

z2
R + z2

i

(A.31)

=
1
2

kx2
i

(z − zi)
2

z2
R

zi
+ z

zi +
z2

R
zi

(A.32)
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=
1
2

kx2
i

(z − zi)
2

z2
R

zi
+ z + zi − zi

zi

(
1 +

z2
R

z2
i

) (A.33)

=
1
2

kx2
i

(z − zi)
2

zi

(
1 +

z2
R

z2
i

)
+ z − zi

zi

(
1 +

z2
R

z2
i

) (A.34)

=
1
2

kx2
i

(z − zi)
2

1 +
z − zi

zi

(
1 +

z2
R

z2
i

)
 (A.35)

=
kx2

i

2 (z − zi)
+

kxi

2R (zi)
. (A.36)

Equation 4.33

Inserting equation 4.29 into

exp (iΨ) =
4ϕ − 2i∣∣∣4ϕ − 2i

∣∣∣ (A.37)

leads to

exp (iΨ) =

(
2

zzi+z2
R

zzR−zizR
− 2i

)
∣∣∣4ϕ − 2i

∣∣∣ . (A.38)

This complex number is represented in Cartesian coordinates. The correct transformation
of an arbitrary complex number χ = x + iy into polar coordinates depends on the values of
the real (x) and imaginary (y) part. The different transformations are [174]

Ψ = arctan2
(
x, y

)
= arctan

( y
x

)
for x > 0, quadrant 1.) and 4.) (A.39)

Ψ = arctan2
(
x, y

)
= +

π
2

for x = 0, y > 0, (A.40)

Ψ = arctan2
(
x, y

)
= arctan

( y
x

)
+ π for x < 0, y > 0, quadrant 2.)) (A.41)

Ψ = arctan2
(
x, y

)
= ±π for x < 0, y = 0, (A.42)

Ψ = arctan2
(
x, y

)
= arctan

( y
x

)
− π for x < 0, y < 0 quadrant 3.), (A.43)

Ψ = arctan2
(
x, y

)
= −

π
2

for x = 0, y < 0. (A.44)

(A.45)

and the various cases are visualised in figure A.1.
Equation A.38 reveals that the imaginary part of exp (iΨ) is always negative limiting

the number of transformations to obtain the correct phase Ψ. Still, a case discrimination is
necessary. However, before the different cases are investigated, the ratio between imaginary
and real part can be simplified:
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Figure A.1: Polar coordinates of a complex number. The numbers indicate different trans-
formations rules between Cartesian and polar coordinates.

Im
(
exp (iΨ)

)
Re

(
exp (iΨ)

) = −2
|4ϕ−2i|

2
zzi+z2

R
zzR−zizR

|4ϕ−2i|

(A.46)

= −
zzR − zizR

zzi + z2
R

(A.47)

= −
ziz

zR

(
1 + zzi

z2
R

) (A.48)

=

zi
zR
−

z
zR

1 + ziz
z2

R

. (A.49)

For the discrimination of cases the following addition theorems are needed [110]:

arctan
(

x − y
1 + xy

)
= arctan(x) − arctan(y) for xy > −1 (A.50)

arctan
(

x − y
1 + xy

)
= arctan(x) − arctan(y) − π for xy < −1 and x > 0, (A.51)

arctan
(

x − y
1 + xy

)
= arctan(x) − arctan(y) + π for xy < −1 and x < 0. (A.52)

The real part of exp (iΨ) determines if equation A.39, A.43 or A.44 must be applied for
a correct transformation. Without loss of generality, the denominator and factor of 2 in
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equation A.38 can be dropped and, hence, the real part of exp (iΨ) is determined by
zzi+z2

R
zR(z−zi)

.
Depending on the ratio between real and imaginary part, either equation A.50, A.51 or A.52
can be used to simplify the expression for the phase Ψ. In some cases, the requirements
for the phase Ψ and the addition theorem are contradicting each other. This leads to the
necessity of a nested case discrimination, where the different cases are indicated by numbers,
roman letters and greek letters. A mathematical assumption applies for all cases after it is
mentioned until explicitly another case of this prerequisite is investigated.

Note that zR > 0 applies to all cases discussed below since the Rayleigh range is always
larger than zero.

1.) Re
(
exp (iΨ)

)
> 0→

zzi+z2
R

zR(z−zi)
> 0

In this case the phase is given by equation A.39.

a) z − zi > 0

⇒ zzi + z2
R > 0

⇒
zzi
z2

R
> −1

Equation A.50 applies:

Ψ = arctan


zi
zR
−

z
zR

1 + ziz
z2

R

 (A.53)

= arctan
( zi

zR

)
− arctan

( z
zR

)
. (A.54)

b) z − zi < 0

⇒ zzi + z2
R < 0

⇒
zzi
z2

R
< −1

α) zi > 0

Equation A.51 applies:

Ψ = arctan


zi
zR
−

z
zR

1 + ziz
z2

R

 (A.55)

= arctan
( zi

zR

)
− arctan

( z
zR

)
− π. (A.56)

β) zi < 0

From z − zi < 0 follows z < 0.

Contradiction to zzi + z2
R < 0.

⇒ Case not possible.
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γ ) zi = 0

Contradiction to zzi + z2
R < 0.

⇒ Case not possible.

2.) Re
(
exp (iΨ)

)
< 0→

zzi+z2
R

zR(z−zi)
< 0

In this case the phase is given by equation A.43.

a) z − zi > 0

⇒ zzi + z2
R < 0

⇒
zzi
z2

R
< −1

α) zi > 0

From z − zi > 0 follows z > 0.

From zi > 0 and z > 0 follows zzi
z2

R
> 0.

Contraction to 1 + zzi
z2

R
< 0.

⇒ Case not possible.

β) zi < 0

zzi
z2

R
< −1 applies.

Hence, equation A.52 applies:

Ψ = arctan


zi
zR
−

z
zR

1 + ziz
z2

R

 − π (A.57)

= arctan
( zi

zR

)
− arctan

( z
zR

)
+ π − π (A.58)

= arctan
( zi

zR

)
− arctan

( z
zR

)
. (A.59)

γ ) zi = 0

Contradiction to zzi + z2
R < 0.

⇒ Case not possible.

b) z − zi < 0

⇒ zzi + z2
R > 0

⇒
zzi
z2

R
> −1
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Equation A.50 applies:

Ψ = arctan


zi
zR
−

z
zR

1 + ziz
z2

R

 − π (A.60)

= arctan
( zi

zR

)
− arctan

( z
zR

)
− π. (A.61)

3.) Re
(
exp (iΨ)

)
= 0→

zzi+z2
R

zR(z−zi)
= 0

In this case the phase is given by equation A.44 and, hence,Ψ = −π2 .

From zzi + z2
R = 0 follows zi

zR
= − zR

z .

In the following two cases the relation[110] sgn(x)π2 = arctan (x) + arctan
(

1
x

)
is used.

α ) zi > 0

Ψ = −
π
2

(A.62)

=
π
2
− π (A.63)

= arctan
( zi

zR

)
+ arctan

(zR

zi

)
− π (A.64)

= arctan
( zi

zR

)
− arctan

( z
zR

)
− π. (A.65)

β ) zi < 0

Ψ = −
π
2

(A.66)

= arctan
( zi

zR

)
+ arctan

(zR

zi

)
(A.67)

= arctan
( zi

zR

)
− arctan

( z
zR

)
. (A.68)

All these cases are summarised in table A.1. Depending on the sign of z − zi an additional
−π can occur. Further below it is shown that this potential additional −π always cancels out
with other factors in the overlap integral and, thus, is effectively eliminated.

Equation 4.34

First, equation 4.29 is inserted into 1
1−i2ϕ :

1
1 − i2ϕ

=
1

1 − i2
zzi+z2

R
2zR(z−zi)

(A.69)

=
1

zR(z−zi)−i(zzi+z2
R)

zR(z−zi)

(A.70)
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=
zR (z − zi)

zR (z − zi) − i
(
zzi + z2

R

) . (A.71)

Hence, the real and imaginary parts are given by

Re
(

1
1 − i2ϕ

)
=

(z − zi)
2 z2

R

(z − zi)
2 z2

R +
(
zzi + z2

R

)2 , (A.72)

Im
(

1
1 − i2ϕ

)
=

zR (z − zi)
(
zzi + z2

R

)
(z − zi)

2 z2
R +

(
zzi + z2

R

)2 . (A.73)

Since the denominator of the real and imaginary part is always greater than zero the phase
of 1

1−i2ϕ is given by equation A.39 and, thus,

arg
(

1
1 − i2ϕ

)
= arctan

Re
(

1
1−i2ϕ

)
Im

(
1

1−i2ϕ

) (A.74)

= arctan

zR (z − zi)
(
zzi + z2

R

)
(z − zi)

2 z2
R

 (A.75)

= arctan

 (z − zi) zzizR + (z − zi) z3
R

(z − zi)
2 z2

R

 (A.76)

= arctan

 (z − zi)
(

zzi
zR
+ zR

)
(z − zi)

2

 (A.77)

= arctan


(

zzi
zR
+ zR

)
(z − zi)

 (A.78)

= arctan


(

zzi
zR
+ zR

)
z
(
1 − z

zi

)  (A.79)

= arctan

 zi
zR
+ zR

z

1 − zi
z

 . (A.80)

Depending on the values of zi and zi
z , different addition theorems can be applied[110]:

arctan
(

x + y
1 − xy

)
= arctan(x) + arctan(y) for xy < 1, (A.81)

arctan
(

x + y
1 − xy

)
= arctan(x) + arctan(y) − π for xy > 1 and x > 0, (A.82)

arctan
(

x + y
1 − xy

)
= arctan(x) + arctan(y) + π for xy > 1 and x < 0. (A.83)

Another discrimination of cases is necessary:

1.) zi
z < 1
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arg
(

1
1 − i2ϕ

)
= arctan

( zi

zR

)
+ arctan

(zR

z

)
. (A.84)

2.) zi
z > 1 and zi > 0

arg
(

1
1 − i2ϕ

)
= arctan

( zi

zR

)
+ arctan

(zR

z

)
− π. (A.85)

3.) zi
z > 1 and zi < 0

arg
(

1
1 − i2ϕ

)
= arctan

( zi

zR

)
+ arctan

(zR

z

)
+ π. (A.86)

Depending on the sign of zi
z − 1 an additional −πmight be applied. This potential additional

term of −π also in this case cancels out with other factors in the overlap integral, as shown
later.

Apart from the phase, it is also necessary to determine the amplitude of 1
1−i2ϕ correctly.

The amplitude is given by

abs
(

1
1 − i2ϕ

)
=

√
Re

(
1

1 − i2ϕ

)
+ Im

(
1

1 − i2ϕ

)
(A.87)

=

√√√√√√√z4
R (z − zi)

4 + z2
R (z − zi)

2 (zzi + zR)2(
(z − zi)

2 z2
R +

(
zzi + z2

R

)2
)2 . (A.88)

For simplicity, the numerator and denominator are treated separately. The numerator is

z4
R (z − zi)

4 + z2
R (z − zi)

2 (zzi + zR)2 (A.89)

=
(
z2
− 2zzi + z2

i

)2
z4

R +
(
z2z2

R − 2zziz2
R + z2

i z2
R

) (
z2z2

i + 2zziz2
R + z4

R

)
(A.90)

= z4z4
R − 2z3ziz4

R + z2z2
i z4

R − 2z3ziz4
R + 4z2z2

i z4
R − 2zz3

i z4
R + z2z2

i z4
R (A.91)

− 2zz3
i z4

R + z4
i z4

R + z4z2
i z2

R + 2z3ziz4
R + z2z6

R − 2z3z3
i z2

R (A.92)

− 4z2z2
i z4

R − 2zziz6
R + z2z4

i z2
R + 2zz3

i z4
R + z2

i z6
R (A.93)

= z4z4
R − 2z3ziz4

R + 2z2z2
i z4

R − 2zz3
i z4

R + z4
i z4

R + z4z2
i z2

R + z2z6
R (A.94)

− 2z3z3
i z2

R − 2zziz6
R + z2z4

i z2
R + z2

i z6
R (A.95)

= z2
R

(
z4z2

R + 2z2z2
i z2

R + z4
i z2

R + z4z2
i + z2z4

R − 2z3z3
i (A.96)

−2zziz4
R + z2z4

i + z2
i z4

R − 2z3ziz2
R − 2zz3

i z2
R

)
(A.97)

= z2
R

(
(z − zi)

2 z4
R + (z − zi)

2 z2z2
R + z2z2

i z2
R (A.98)

+z4
i z2

R + z4z2
i − 2z3z3

i + z2z4
i − 2zz3

i z2
R

)
(A.99)

= z2
R

(
(z − zi)

2 z4
R + (z − zi)

2 z2z2
R + (z − zi)

2 z2z2
i + (z − zi)

2 z2
i z2

R

)
(A.100)

= z2
R (z − zi)

2
(
z4

R + z2z2
R + z2z2

i + z2
i z2

R

)
(A.101)
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and for the denominator

(
(z − zi)

2 z2
R +

(
zzi + z2

R

)2
)2

(A.102)

=
(
z2z2

R − 2zziz2
R + z2

i z2
R + z2z2

i + 2zziz2
R + z4

R

)2
(A.103)

=
(
z4

R + z2z2
R + z2z2

i + z2
i z2

R

) (
z2 + z2

R

) (
z2

i + z2
R

)
(A.104)

can be found. Inserting the transformed numerator and denominator into the amplitude of
1

1−i2ϕ yields

abs
(

1
1 − i2ϕ

)
=

√√√
z2

R (z − zi)
2(

z2 + z2
R

) (
z2

i + z2
R

) . (A.105)

Equation 4.36

w (z)
z − zi

√√√
z2

R (z − zi)
2(

z2 + z2
R

) (
z2

i + z2
R

) (A.106)

= w0

√√√√√√(
1 + z2

z2
R

)
(z − zi)

2

z2
R (z − zi)

2(
z2 + z2

R

) (
z2

i + z2
R

)sgn(z − zi) (A.107)

= w0

√√√√√√ (
1 + z2

z2
R

)
z2

R(
z2 + z2

R

) (
z2

i + z2
R

)sgn(z − zi) (A.108)

= w0

√√√√ (
z2 + z2

R

)(
z2 + z2

R

) (
z2

i + z2
R

)sgn(z − zi) (A.109)

=
w0

zR

√
1 +

z2
i

z2
R

sgn(z − zi) (A.110)

=
w2

0

zRw (zi)
sgn(z − zi) (A.111)

Summary of phases

The different phases ofΨ and
(

1
1−i2ϕ

)
are summarised in table A.1.

As previously mentioned, the different cases for the phases partially contain addi-
tional terms of −π, which effectively results in a factor of −1 since exp (−iπ) = −1 ap-
plies. Furthermore, equations 4.30 and 4.31 contain the factor of sgn(z − zi), which can
be factored out from the Hermite polynomials. Another sgn(z − zi) is applied due to
the denominator of equation 4.10. During the derivation of equation 4.41 the relation
sgn(z)i = exp

(
isgn(z)π2

)
= exp

(
i
(
arctan

(
z

zR

)
+ arctan

(
zR
z

)))
is used putting another sign

function to the overlap integral given by sgn(z). If all these factors are taken into account
for the eight possible cases defined in table A.1 all minus sign cancel each other out. This is
summarised in table A.2.
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zzi+z2
R

zR(z−zi)
> 0 z − zi > 0 1 < zi

z zi > 0 �

Case I
zzi+z2

R
zR(z−zi)

> 0 z − zi > 0 1 < zi
z zi < 0

Ψ = arctan
(

zi
zR

)
− arctan

(
z

zR

)
arg

(
1

1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
− π

Case II
zzi+z2

R
zR(z−zi)

> 0 z − zi > 0 1 > zi
z zi > 0

Ψ = arctan
(

zi
zR

)
− arctan

(
z

zR

)
arg

(
1

1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
zzi+z2

R
zR(z−zi)

> 0 z − zi > 0 1 > zi
z zi < 0 �

zzi+z2
R

zR(z−zi)
> 0 z − zi < 0 1 < zi

z zi > 0 �

zzi+z2
R

zR(z−zi)
> 0 z − zi < 0 1 < zi

z zi < 0 �

Case III
zzi+z2

R
zR(z−zi)

> 0 z − zi < 0 1 > zi
z zi > 0

Ψ = arctan
(

zi
zR

)
− arctan

(
z

zR

)
− π

arg
(

1
1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
zzi+z2

R
zR(z−zi)

> 0 z − zi < 0 1 > zi
z zi < 0 �

zzi+z2
R

zR(z−zi)
< 0 z − zi > 0 1 < zi

z zi > 0 �

zzi+z2
R

zR(z−zi)
< 0 z − zi > 0 1 < zi

z zi < 0 �

zzi+z2
R

zR(z−zi)
< 0 z − zi > 0 1 > zi

z zi > 0 �

Case IV
zzi+z2

R
zR(z−zi)

< 0 z − zi > 0 1 > zi
z zi < 0

Ψ = arctan
(

zi
zR

)
− arctan

(
z

zR

)
arg

(
1

1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
Case V

zzi+z2
R

zR(z−zi)
< 0 z − zi < 0 1 < zi

z zi > 0
Ψ = arctan

(
zi
zR

)
− arctan

(
z

zR

)
− π

arg
(

1
1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
− π

zzi+z2
R

zR(z−zi)
< 0 z − zi < 0 1 < zi

z zi < 0 �

zzi+z2
R

zR(z−zi)
< 0 z − zi < 0 1 > zi

z zi > 0 �

Case VI
zzi+z2

R
zR(z−zi)

< 0 z − zi < 0 1 > zi
z zi < 0

Ψ = arctan
(

zi
zR

)
− arctan

(
z

zR

)
− π

arg
(

1
1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
zzi+z2

R
zR(z−zi)

= 0 1 < zi
z �

Case VII
zzi+z2

R
zR(z−zi)

= 0 1 > zi
z zi > 0

Ψ = − π2 = arctan
(

zi
zR

)
− arctan

(
z

zR

)
− π

arg
(

1
1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
Case VIII

zzi+z2
R

zR(z−zi)
= 0 1 > zi

z zi < 0
Ψ = − π2 = arctan

(
zi
zR

)
− arctan

(
z

zR

)
arg

(
1

1−i2ϕ

)
= arctan

(
zi
zR

)
+ arctan

(
zR
z

)
Table A.1: Cases for the different phases of the overlap integral in equation 4.6. The
table summarises the results from the paragraphs above. A lightning symbol indicates a
mathematical contradiction of the prerequisites and, hence, the corresponding cases are not
possible. The eight possible cases are labelled with roman numbers.
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Case exp (i (n +m)Ψ) exp
(
i arg

(
1

1−i2ϕ

))
Hn()Hm() 1

z−zi
sgn(z) Π

I 1 −1 1n+m 1 −1 1
II 1 1 1n+m 1 1 1
III (−1)n+m 1 (−1)n+m

−1 −1 1
IV 1 1 1n+m 1 1 1
V (−1)n+m

−1 (−1)n+m
−1 1 1

VI (−1)n+m 1 (−1)n+m
−1 −1 1

VII (−1)n+m 1 (−1)n+m
−1 −1 1

VIII 1 1 1n+m 1 1 1

Table A.2: Table of the product of all possible minus signs in the overlap integral from
equation 4.6. The cases are defined in table A.1. The product is always positive as indicated
by the last column of the table.

Equation 5.68

During the transformation equations 4.40, 5.10, 5.66 and 5.67 and V =
πw2

0L
4 for the mode

volume are used.

4β
c

2L
= 4

kα
πw2

0ϵ0

c
2L

(A.112)

= 2
ck

Lπw2
0ϵ0

3πϵ0

k3
Γ

∆
(A.113)

=
6πc

Lπw2
0k2

Γ

∆
(A.114)

=
ω
ℏϵ0∆L

6π2w2
0ϵ0ℏΓ

k3 (A.115)

=
2 |d|2ω
ℏϵ0∆Lπw2

0

(A.116)

=
|d|2ω

2ℏϵ0∆V
(A.117)

=
|d|2 ω

2ℏϵ0V

∆
(A.118)

=

∣∣∣g0
∣∣∣2
∆

(A.119)
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Alan O. Jamison, and Wolfgang Ketterle. A stripe phase with supersolid properties in
spin–orbit-coupled Bose–Einstein condensates. Nature, 534:91–94, mar 2017.

[34] Axel Griesmaier, Jörg Werner, Sven Hensler, Jürgen Stuhler, and Tilman Pfau. Bose-
Einstein Condensation of Chromium. Phys. Rev. Lett., 94:160401, Apr 2005.

[35] Mingwu Lu, Nathaniel Q. Burdick, Seo Ho Youn, and Benjamin L. Lev. Strongly
Dipolar Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett., 107:190401, Oct
2011.

[36] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-
Einstein Condensation of Erbium. Phys. Rev. Lett., 108:210401, May 2012.

[37] Torsten Hartmann. An experiment apparatus for the production of ultracold bosonic dipolar
ground state 23Na39K molecules and Feshbach spectroscopy in a cold mixture of 23Na and
39K. PhD thesis, Leibniz Universität Hannover, 2019.

[38] Torben A. Schulze. Quantum degenerate mixtures of 23Na−39 K and coherent transfer paths
in NaK molecules. PhD thesis, Leibniz Universität Hannover, 2018.

[39] M W Gempel, T Hartmann, T A Schulze, K K Voges, A Zenesini, and S Ospelkaus.
Versatile electric fields for the manipulation of ultracold NaK molecules. New Journal
of Physics, 18(4):045017, apr 2016.

[40] Steven A. Moses, Jacob P. Covey, Matthew T. Miecnikowski, Deborah S. Jin, and Jun
Ye. New frontiers for quantum gases of polar molecules. Nature Physics, 13:13–20, dec
2017.

[41] S. Chervenkov, X. Wu, J. Bayerl, A. Rohlfes, T. Gantner, M. Zeppenfeld, and G. Rempe.
Continuous Centrifuge Decelerator for Polar Molecules. Phys. Rev. Lett., 112:013001,
Jan 2014.

[42] M Petzold, P Kaebert, P Gersema, M Siercke, and S Ospelkaus. A Zeeman slower for
diatomic molecules. New Journal of Physics, 20(4):042001, apr 2018.

[43] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, T. L. Nicholson, M. L. Olsen, P. S. Julienne, C. E.
Wieman, J. Ye, and D. S. Jin. Heteronuclear molecules in an optical dipole trap. Phys.
Rev. A, 78:013416, Jul 2008.

[44] S. Ospelkaus, A. Pe’er, K.-K. Ni, J. J. Zirbel, B. Neyenhuis, S. Kotochigova, P. S. Julienne,
J. Ye, and D. S Jin. Efficient state transfer in an ultracold dense gas of heteronuclear
molecules. Nature Physics, 4:622–626, Jun 2008.

[45] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. A High Phase-Space-Density Gas of
Polar Molecules. Science, 322(5899):231–235, 2008.

[46] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with
ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.

[47] L Guidoni and P Verkerk. Optical lattices: cold atoms ordered by light. Journal of
Optics B: Quantum and Semiclassical Optics, 1(5):R23–R45, sep 1999.



116 BIBLIOGRAPHY

[48] Yewei Wu, Justin J. Burau, Kameron Mehling, Jun Ye, and Shiqian Ding. High phase-
space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett., 127:263201,
Dec 2021.

[49] Steven A. Moses, Jacob P. Covey, Matthew T. Miecnikowski, Bo Yan, Bryce Gadway,
Jun Ye, and Deborah S. Jin. Creation of a low-entropy quantum gas of polar molecules
in an optical lattice. Science, 350(6261):659–662, 2015.

[50] W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn. Making, probing and understanding
bose-einstein condensates. https://arxiv.org/abs/cond-mat/9904034v2, apr 1999. Arxiv,
Retrieved on 2021-11-19.

[51] F. Zernike. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z.
techn. Physik, 16:454–457, 1935.

[52] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein Condensation of Lithium:
Observation of Limited Condensate Number. Phys. Rev. Lett., 78:985–989, Feb 1997.

[53] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio.
Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling. Science,
294(5545):1320–1322, 2001.

[54] Tino Weber, Jens Herbig, Michael Mark, Hanns-Christoph Nägerl, and Rudolf Grimm.
Bose-Einstein Condensation of Cesium. Science, 299(5604):232–235, 2003.

[55] D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm. Two-Dimensional Bose-Einstein
Condensate in an Optical Surface Trap. Phys. Rev. Lett., 92:173003, Apr 2004.

[56] Martin Miranda, Ryotaro Inoue, Yuki Okuyama, Akimasa Nakamoto, and Mikio
Kozuma. Site-resolved imaging of ytterbium atoms in a two-dimensional optical
lattice. Phys. Rev. A, 91:063414, Jun 2015.

[57] Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, Simon Fölling, and Markus Greiner.
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical
lattice. Nature, 462:74–77, Nov 2009.

[58] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel
Bloch, and Stefan Kuhr. Single-atom-resolved fluorescence imaging of an atomic Mott
insulator. Nature, 467:68–72, Aug 2010.

[59] Lawrence W. Cheuk, Matthew A. Nichols, Melih Okan, Thomas Gersdorf, Vinay V.
Ramasesh, Waseem S. Bakr, Thomas Lompe, and Martin W. Zwierlein. Quantum-Gas
Microscope for Fermionic Atoms. Phys. Rev. Lett., 114:193001, May 2015.

[60] Maxwell F. Parsons, Florian Huber, Anton Mazurenko, Christie S. Chiu, Widagdo Se-
tiawan, Katherine Wooley-Brown, Sebastian Blatt, and Markus Greiner. Site-Resolved
Imaging of Fermionic 6Li in an Optical Lattice. Phys. Rev. Lett., 114:213002, May 2015.

[61] Mickey McDonald, Jonathan Trisnadi, Kai-Xuan Yao, and Cheng Chin. Superreso-
lution Microscopy of Cold Atoms in an Optical Lattice. Phys. Rev. X, 9:021001, Apr
2019.

[62] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ket-
terle. Direct, Nondestructive Observation of a Bose Condensate. Science, 273(5271):84–
87, 1996.



BIBLIOGRAPHY 117

[63] Kali E. Wilson, Zachary L. Newman, Joseph D. Lowney, and Brian P. Anderson. In situ
imaging of vortices in Bose-Einstein condensates. Phys. Rev. A, 91:023621, Feb 2015.

[64] J. Smits, A. P. Mosk, and P. van der Straten. Imaging trapped quantum gases by off-axis
holography. Opt. Lett., 45(4):981–984, Feb 2020.

[65] Daniel Kai Hoffmann, Benjamin Deissler, Wolfgang Limmer, and Johannes
Hecker Denschlag. Holographic method for site-resolved detection of a 2D array
of ultracold atoms. Applied Physics B, 122, 2016.

[66] Miroslav Gajdacz, Poul L. Pedersen, Troels Mørch, Andrew J. Hilliard, Jan Arlt, and Ja-
cob F. Sherson. Non-destructive Faraday imaging of dynamically controlled ultracold
atoms. Review of Scientific Instruments, 84(8):083105, 2013.

[67] Ryuta Yamamoto, Jun Kobayashi, Kohei Kato, Takuma Kuno, Yuto Sakura, and Yoshiro
Takahashi. Site-resolved imaging of single atoms with a Faraday quantum gas micro-
scope. Phys. Rev. A, 96:033610, Sep 2017.

[68] M. D. Di Rosa. Laser-cooling molecules. The European Physical Journal D - Atomic,
Molecular, Optical and Plasma Physics, 31:395–402, 2004.

[69] E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille. Radiative Force from Optical
Cycling on a Diatomic Molecule. Phys. Rev. Lett., 103:223001, Nov 2009.

[70] Lawrence W. Cheuk, Loïc Anderegg, Benjamin L. Augenbraun, Yicheng Bao, Sean
Burchesky, Wolfgang Ketterle, and John M. Doyle. Λ-Enhanced Imaging of Molecules
in an Optical Trap. Phys. Rev. Lett., 121:083201, Aug 2018.

[71] C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, and M. Mazzoni. Cold Rubidium
Molecules Formed in a Magneto-Optical Trap. Phys. Rev. Lett., 84:2814–2817, Mar 2000.

[72] Fredrik K. Fatemi, Kevin M. Jones, Paul D. Lett, and Eite Tiesinga. Ultracold ground-
state molecule production in sodium. Phys. Rev. A, 66:053401, Nov 2002.

[73] D. Wang, B. Neyenhuis, M. H. G. de Miranda, K.-K. Ni, S. Ospelkaus, D. S. Jin, and
J. Ye. Direct absorption imaging of ultracold polar molecules. Phys. Rev. A, 81:061404,
Jun 2010.

[74] Jacob P. Covey, Steven A. Moses, Martin Gärttner, Arghavan Safavi-Naini, Matthew T.
Miecnikowski, Zhengkun Fu, Johannes Schachenmayer, Paul S., Ana Maria Rey, Deb-
orah S. Jin, and Jun Ye. Doublon dynamics and polar molecule production in an optical
lattice. Nature Communications, 7(11279), 2016.

[75] Kai K. Voges, Philipp Gersema, Mara Meyer zum Alten Borgloh, Torben A. Schulze,
Torsten Hartmann, Alessandro Zenesini, and Silke Ospelkaus. Ultracold Gas of
Bosonic 23Na39K Ground-State Molecules. Phys. Rev. Lett., 125:083401, Aug 2020.

[76] Rahul Sawant, Olivier Dulieu, and S. A. Rangwala. Detection of ultracold molecules
using an optical cavity. Phys. Rev. A, 97:063405, Jun 2018.

[77] M. Niranjan, Sourav Dutta, Tridib Ray, and S. A. Rangwala. Measuring spatially
extended density profiles using atom-cavity collective strong coupling to higher-order
modes. Phys. Rev. A, 99:033617, Mar 2019.

[78] Qingze Guan, Michael Highman, Eric J. Meier, Garrett R. Williams, Vito Scarola,
Brian DeMarco, Svetlana Kotochigova, and Bryce Gadway. Nondestructive dispersive
imaging of rotationally excited ultracold molecules. Phys. Chem. Chem. Phys., 22:20531–
20544, 2020.



118 BIBLIOGRAPHY

[79] Daichi Okuno, Yoshiki Amano, Katsunari Enomoto, Nobuyuki Takei, and Yoshiro
Takahashi. Schemes for nondestructive quantum gas microscopy of single atoms in
an optical lattice. New Journal of Physics, 22(1):013041, jan 2020.

[80] C. M. Savage, S. L. Braunstein, and D. F. Walls. Macroscopic quantum superpositions
by means of single-atom dispersion. Opt. Lett., 15(11):628–630, Jun 1990.

[81] Matthias Mader, Jakob Reichel, Theodor W. Hänsch, and David Hunger. A scanning
cavity microscope. Nature Communications, 6, 2015.

[82] Anthony E. Siegman. Lasers. University Science Books, 1986.

[83] Norman Hodgson and Horst Weber. Laser Resonators and Beam Propagation - Fundamen-
tals, Advanced Concepts and Applications. Springer, 2. edition, 2005.

[84] Bahaa E. A. Saleh and Malvin C. Teich. Fundamentals of Photonics. Wiley-VCH, 3rd
edition, 2019.

[85] David J. Griffiths. Introduction to electrodynamics. Pearson, 4th edition, 2013.

[86] Louis G. Gouy. Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris
110, page 1251, 1890.

[87] Simin Feng and Herbert G. Winful. Physical origin of the Gouy phase shift. Opt. Lett.,
26(8):485–487, Apr 2001.

[88] Miguel A. Bandres and Julio C. Gutiérrez-Vega. Ince–Gaussian modes of the paraxial
wave equation and stable resonators. J. Opt. Soc. Am. A, 21(5):873–880, May 2004.

[89] William H. Carter. Spot size and divergence for Hermite Gaussian beams of any order.
Appl. Opt., 19(7):1027–1029, Apr 1980.

[90] Warren Nagourney. Quantum Electronics for Atomic Physics. Oxford University Press,
1st edition, 2010.

[91] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. Cavity optome-
chanics. Rev. Mod. Phys., 86:1391–1452, Dec 2014.

[92] Matthew Pitkin, Stuart Reid, Sheila Rowan, and Jim Hough. Gravitational Wave
Detection by Interferometry (Ground and Space). Living Reviews in Relativity, 14, 2011.

[93] Herbert Walther, Benjamin T H Varcoe, Berthold-Georg Englert, and Thomas Becker.
Cavity quantum electrodynamics. Reports on Progress in Physics, 69(5):1325–1382, apr
2006.

[94] Dieter Meschede. Optics, Light and Lasers: The Practical Approach to Modern Aspects of
Photonics and Laser Physics. Wiley-VCH, 3rd edition, 2017.

[95] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical Methods for
Physicists : A Comprehensive Guide. Elsevier, 7th edition, 2012.

[96] E.T. Jaynes and F.W. Cummings. Comparison of quantum and semiclassical radiation
theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963.

[97] G. S. Agarwal. Vacuum-field Rabi oscillations of atoms in a cavity. J. Opt. Soc. Am. B,
2(3):480–485, Mar 1985.

[98] R. Short and L. Mandel. Observation of Sub-Poissonian Photon Statistics. Phys. Rev.
Lett., 51:384–387, Aug 1983.



BIBLIOGRAPHY 119

[99] Frank Diedrich and Herbert Walther. Nonclassical radiation of a single stored ion.
Phys. Rev. Lett., 58:203–206, Jan 1987.

[100] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon. Periodic Spontaneous
Collapse and Revival in a Simple Quantum Model. Phys. Rev. Lett., 44:1323–1326, May
1980.

[101] Yifu Zhu, Daniel J. Gauthier, S. E. Morin, Qilin Wu, H. J. Carmichael, and T. W.
Mossberg. Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis
and experimental observations. Phys. Rev. Lett., 64:2499–2502, May 1990.
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