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ABSTRACT

Wild bees play a major role in the cultivation of crops for human use, in the reproduction of many wild plants and
are a key component of biodiversity. Mainly due to human activities, wild bees, like other insects, face a rapid
decline in Europe. Understanding species distribution can help to design efficient conservation measures. Species
distribution can also be used to estimate pollination ecosystem service potential, which can benefit the pro-
duction of crops relying on pollination and the reproduction of wild plant communities. The presence of polli-
nators depends on a combination of environmental and biotic factors, each playing a determining role at
different spatial scales. We therefore developed a model composed as a hierarchical framework for environ-
mental predictors: climatic data and Land Use/Land Cover (LULC) variables at the European scale and species-
specific habitat information at the local scale. The model combines the advantages of two different existing
approaches: pollinator species distribution predictions based on their environmental requirements and knowl-
edge on bee species life-history traits and habitats. This paper presents the predicted distribution of twenty-five
wild bee species of the Andrena genus in an agricultural region in Northern Germany. We used oilseed rape
pollinators as a case study and compared the potential pollination services to the potential demand in the Case
Study Area. The developed framework allows to determine the capacity of landscapes to support pollination
ecosystem services from wild bees at the local scale, which can support the identification of vulnerable areas and
the design of local scale measures for habitat improvement and for conservation. The hierarchical approach
leaves potential for further adaptations in order to improve the prediction of wild bee species dynamics and
factors influencing their spatial distribution.

1. Introduction

environmental pollution, land use change and agricultural intensifica-
tion but also climate change (Winfree et al., 2009; Potts et al., 2010;

Pollination is a key ecosystem service, vital to both wild plants and
cultivated crops (Klein et al., 2007). Gallai et al. (2009) estimated that
10% of the total economic value of food production in Europe depends
upon insect pollination. There is growing evidence that wild bees play a
significant role in crop pollination (Javorek et al., 2002; Greenleaf and
Kremen 2006a; Klein et al., 2007; Bommarco et al., 2012; Garibaldi
et al., 2013), and that the pollination service delivered by wild polli-
nators cannot entirely be substituted by honeybees (Brittain et al., 2013;
Garibaldi et al., 2013). An increasing number of insect pollinators are in
decline or threatened, mainly because of anthropogenic stressors such as
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Cameron et al., 2011; Ollerton et al., 2014; Nieto et al., 2014). This
decline of pollinating species will not only have an impact on agricul-
tural productivity and resilience (IPBES 2016), it can also lead to a
parallel decline of wild plant species (Biesmeijer et al., 2006), as globally
estimated 85% of flowering plants (78% in temperate zones) are adapted
to animal pollination (Ollerton et al., 2011), mainly to bees (Potts et al.,
2010). Therefore ongoing declines in pollinator diversity may result in
community cascade effects, i.e., the subsequent loss of other species that
directly or indirectly rely upon extinct or declining species (Chapin
et al., 1997). This in turn can have an impact on wild food, fibre and
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medicine supplies, as well as decrease the cultural and aesthetic values
of a landscape (IPBES 2016).

In light of these observations, there are increasing calls and efforts to
conserve wild pollinator species and their habitats (IPBES 2016). An
effective biodiversity conservation policy should provide a clear guid-
ance to planning authorities on how to develop targeted species-specific
conservation options for organisms that contribute to pollination ser-
vices at relevant scales (Kremen et al., 2007). To this end, there is a need
for better spatial assessments of pollination. Understanding spatial
patterns of pollinators is also crucial for estimating their availability to
pollinate cultivated crops and wild plants (Kremen et al., 2004), to
facilitate monitoring and inform on the habitats and vulnerability of
local pollinators (Kremen et al., 2007; Kremen and Chaplin-Kramer
2007).

Up to now, the main approaches for building pollinator ecosystem
service maps are by using InVEST (Integrated Valuation of Ecosystem
Services and Tradeoffs) (Sharp et al., 2016) and ESTIMAP (Ecosystem
Service Mapping Tool) (Zulian et al., 2013). InVEST and ESTIMAP
models are primarily based on expert judgements on the presence and
preferences of pollinators (essentially nesting places and floral feeding
resources). The main issues with expert-based knowledge are that this
knowledge may strongly depend on their selections, experience and
expertise (Polce et al., 2018; Lonsdorf et al., 2009), and therefore can be
biased towards specific species or species groups. Fewer studies are
based on Species Distribution Models (SDMs) and actual species records
(Polce et al., 2013; Polce et al., 2018; Nogué et al., 2016). SDMs rely on
the correlation between environmental variables and geo-localized
species records to determine the environmental variables that drive
species presence and delineate potential species distribution (Guisan
and Zimmermann 2000; Elith and Leathwick 2009; Aratjo and Guisan
2006). Contrary to SDMs, InVEST and ESTIMAP models do not allow to
dynamically consider different environmental conditions (Lonsdorf
et al., 2009; Zulian et al., 2013). When mapping pollination ecosystem
service potential at national or sub-national scales, bioclimatic condi-
tions can largely vary and be a major determinant of bee species
occurrence. Conversely, existing pollination models based on SDMs are
at relatively coarse resolution, constrained by occurrence data and
environmental variables typically available at coarse spatial resolution.
Especially in highly fragmented landscapes, this resolution may fail to
cover important habitats such as hedgerows, small pastures and forests,
and therefore obtain biased pollinator distribution maps. Thus, to
improve our ability to predict pollinator diversity and the associated
pollination ecosystem service, one possibility could be to combine the
advantages of the two different approaches: species distribution pre-
dictions through SDMs and knowledge on bee species life-history traits
and habitat requirements as implemented in InVEST and ESTIMAP
frameworks.

The aim of this study is to develop a high-resolution pollinator spe-
cies model to predict spatial patterns of pollination ecosystem services
potential from wild bees at the local scale. Hereby we assume that
pollinator species richness and landscape suitability are good proxies of
pollination service potential. This is a common assumption in existing
pollination models (Kremen et al., 2007; Lonsdorf et al., 2009; Zulian
et al.,, 2013) and is supported by the fact that pollination quantity,
quality and stability tend to increase in landscapes with a diverse
pollinator community (Klein et al., 2007; Albrecht et al., 2012; Dainese
et al., 2019). The model is used as a tool to provide clear guidance for
potential users such as planning authorities on how to optimize con-
servation measures for wild bee conservation and to inform on how
management decisions can affect pollination ecosystem services and
therefore pollination-dependant crop productivity. We apply the model
in an agriculture-dominated case study area in northern Germany to test
this approach at the local scale and its applicability for landscape
management, using selected bee species as an example. The approach
also allowed us to assess how and which environmental variables affect
wild bee species distribution, as well as the role of life-history traits on
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their spatial distribution.
2. Materials and methods
2.1. Case study area (CSA)

The CSA is located in the region of the Bornhoved Lake District in the
federal state of Schleswig-Holstein in Northern Germany (Fig. 1). The
extent of the area is approximately 140 km?. Agroecosystems dominate
the landscape in a catchment area of five glacially formed and consec-
utively connected lakes. The CSA shows a suit of habitats with a high
proportion of hedges and wall hedges that are characteristic in the
province, shaping a highly diverse and fragmented landscape (see Fig. 1
and Franzle et al. 2008). Only small settlements, following a north-south
alignment, are located in the CSA.

2.2. Datasets

2.2.1. Bees

We selected species from the genus Andrena, also called mining bees,
as they represent a highly various group including small bees to ones
larger than honey bees, species that differ in seasonality or soil prefer-
ence as well as specialists (oligolectic) and generalist (polylectic) spe-
cies. This genus of bees is therefore a good representative of a broad
range of bee species. From the Andrena genus, we selected species that
were identified in the region and documented in the federal red list (van
der Smissen 2001). This step accounts for historical and current
dispersal limitations and helps to determine which species in the global
source pool could have dispersed to the CSA (Guisan et al., 2017). The
selected Andrena species are listed amongst the most important polli-
nators for crops in Europe, particularly of oilseed rape flowers and apple
trees (Klein et al., 2007; Kleijn et al., 2015), or wild flowers (Westrich
2018). Plant families visited by each species are listed in Table 1 in the
supplementary material. We obtained 125,681 presence-only records of
twenty-six wild bees from the Global Biodiversity Information Facility]
(GBIF). Occurrence records retrieved from GBIF were cleaned using the
“CoordinateCleaner v.2.0-14" package (Zizka et al., 2019). Occurrences
with sea coordinates, zero coordinates or without geographic coordi-
nate, country mismatches, country centroids, outlier coordinates and
coordinates assigned to biodiversity institutions were excluded. We also
removed data older than 1950 as old records are more likely to be un-
reliable (Maldonado et al., 2015), data records with unprecise co-
ordinates and duplicates. We also checked for taxonomic errors,
including spelling mistakes and synonyms. To reduce model overfitting
derived from spatial autocorrelation and overdominance of specific re-
gions due to sampling bias, we then thinned the records using the
package “spThin v.0.2.0” (Aiello-Lammens et al., 2015).

We only selected species that had more than 50 GBIF occurrence
records, as this is a key criterion for SDM modelling quality (Guisan
et al., 2017). After geographic and taxonomic cleaning, only 10,928
records of twenty-five wild bee species were retained for modelling
(Table 1 in the supplementary material).

2.2.2. Environmental variables

We used bioclimatic and Land Use/Land Cover (LULC) data as
environmental predictors (see Table 2 in the supplementary material for
a complete list of the environmental variables). We first selected the
main drivers of species ranges based on knowledge about mechanistic
relationship between environmental variables and physiology of the
targeted species. We further reduced the number of variables as too
many variables increase the risk of overfitting and collinearity issues
between the variables (Dormann et al., 2013; Guisan et al., 2017).
Collinearity refers to the non-independence of predictor variables and

! https://www.gbif.org/
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Fig. 1. Location of the study area in Northern Germany (on the right) and distribution of Land Use / Land Cover classes (AKTIS/InVeKoS (2010)) in the case study

area (on the left).

can be a problem for parameter estimation as it inflates the variance of
regression parameters and potentially leads to the wrong identification
of relevant predictors. Therefore, reducing the number of environmental
variables maximizes the performance of SDMs and the accuracy of the
predictions (Araujo and Guisan 2006). A Principal Component Analysis
(PCA) was used to visualize the correlation between variables, to iden-
tify the main environmental gradients in the study area and to investi-
gate the distribution of species in the environmental space (Guisan et al.,
2017). We conducted our PCA using the “ade4 v.1.7-16" package from R
(Dray and Dufour 2007). We also analysed correlations between envi-
ronmental variables with a Pearson analysis for all bioclimatic and LULC
variables. Only the most relevant uncorrelated variables, i.e. with a
Pearson’s correlation coefficient below 0.7, were finally selected (Dor-
mann et al., 2013).

The bioclimatic variables were first selected based on their impact on
diurnal foraging activity of bees, nesting success and plants availability.
During active months, low temperatures and high precipitation values
reduce the number of foraging days and consequently potentially
decrease bee fitness (Westrich 2018). High precipitation values probably
impact the nesting success for ground nesters (Bystriakova et al., 2018).
Extreme temperature and precipitation also indirectly affect bees by
impacting the bloom of plants and therefore resource availability (Nieto

et al., 2014). Climatic data were retrieved from WorldClim”> on a 30
second resolution raster grids (~1 km? at the equator) from WorldClim
2.0 (Fick and Hijmans 2017). From the 19 available climatic variables,
we first selected the variables expected to be the most causal for the
species distribution: Bio_02 (Mean Diurnal Range), Bio .5 (Max Tem-
perature of Warmest Month), Bio 6 (Min Temperature of Coldest
Month), Bio_7 (Temperature Annual Range, Bio_5 - Bio_6), Bio_8 (Mean
Temperature of Wettest Quarter), Bio_ 10 (Mean Temperature of
Warmest Quarter), Bio_11 (Mean Temperature of Coldest Quarter),
Bio_14 (Precipitation of Driest Month), Bio_16 (Precipitation of Wettest
Quarter), Bio_18 (Precipitation of Warmest Quarter) and Bio_19 (Pre-
cipitation of Coldest Quarter). The results of the PCA indicated that from
the nine pre-selected bioclimatic variables, eight were strongly corre-
lated (Bio_5, Bio_6, Bio_10 and Bio_11, Bio_14 and Bio_18 as well as
Bio_19 and Bio_16) and one (Bio_8) did not significantly contribute to
the overall environmental variation (see Fig. 1 in the supplementary
material). We selected Bio_19, Bio_11, Bio_2, Bio_7 and Bio_14 for the
modelling, as they are good variables for discriminating between bee
species and the rest of the environment.

2 http://worldclim.org/version2
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In temperate zones, wild bee species distribution are influenced by
the proportion of heathland, woodland, grassland and urban areas
coverages at the landscape scale (Senapathi et al., 2015). As major
threats to wild bees in Europe, agricultural intensification and expan-
sion, pollution and urban sprawl will generally have a negatively impact
wild bee species distribution (Nieto et al., 2014). For this study, LULC
data was derived from the CORINE (Coordination of Information on the
Environment) Land Cover 2018 datasetS, with a 100 m resolution. This
dataset is produced by the European Environmental Agency (EEA) and is
composed of 44 different LULC classes belonging to the five main land
cover categories artificial surfaces, agricultural, forest, semi-natural
areas, wetlands or water bodies. We used the hierarchical level 3 from
CORINE and first aggregated the data in 1 km * 1 km grid cells, repre-
senting the percentage cover of each LULC per 1 km * 1 km grid. This
was a necessary first step to generate a clean data structure for modelling
(all predictors having the same resolution). The resolution of the pre-
dicted results is the same as the one of the environmental variables (1 km
* 1 km). We first selected 15 LULC classes based on their ecological
relevance: Continuous urban fabric, discontinuous urban fabric, road
and rail networks and associated land, non-irrigated arable land, pas-
tures, complex cultivation patterns, broad-leaved forest, coniferous
forest, mixed forest, natural grasslands, moors and heathland, transi-
tional woodland-shrub, sparsely vegetated areas, water courses and
water bodies. We run the complete model a first time to select the most
important variables for the select wild bee species distribution. This led
to the selection of the following LULC variables: discontinuous urban
fabric, non-irrigated arable land, pastures, coniferous forest, sparsely
vegetated areas, water courses and water bodies. The selected LULC
variables are neither correlated within each other nor with the selected
bioclimatic variables (see Pearson correlation coefficients in Table 3 in
supplementary material).

In total, five bioclimatic variables and seven LULC classes were
selected for modelling the potential distribution of the twenty-five bee
species.

2.2.3. Habitat filter variables

We used the ATKIS (version 2012, Authoritative Topographic and
Cartographic Information System), the official topographic information
system for Germany and the InVeKoS (version 2010, Integrated
Administration and Control System) datasets to build our species-
specific habitat filters. The ATKIS dataset is originally mapped at a
scale of 1:25.000 and describes 182 object classes that belong to artifi-
cial surfaces, traffic, vegetated areas (mainly agricultural, forest and
natural areas), water bodies and relief (such as dams, cliffs, dunes). The
InVeKoS dataset was used to obtain landscape elements such as hedge-
rows and tree rows for the CSA. For both datasets, the spatial resolution
depends on the feature classes and has a MMU between 0.1 and 1 hectare
(Bach et al., 2006). The ATKIS/InVeKoS datasets was used to map bee
species habitat as described by Westrich (2018). To our knowledge, it is
the most appropriate way to map bee species habitat at a high thematical
and spatial resolution in our CSA. Though the latest generation of sat-
ellite products may allow to map LULC at a high resolution and to
describe the presence of landscape elements at European scale, this data
is not available yet. We created a habitat filter for each of the twenty-five
selected bee species, by keeping only the LULC classes described as
potential habitats (Table 4 in the supplementary material).

2.3. Model calibration and evaluation
2.3.1. Conceptual model
We aimed at developing a species-centred approach based on the

Ecosystem Services Providers (ESP) concept, i.e., species, functional
groups, species communities, or habitats that produce ecosystem

3 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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services (Kremen et al., 2007). In our model, the ESP are wild bees that
provide pollination ecosystem services. The conceptual framework
(Fig. 2) is inspired by the Ecological Production Function framework
from Kremen et al. (2007). Key elements for species geographical dis-
tribution depend on the spatial scale of the influencing factors (Pearson
and Dawson 2003; Thuiller 2004; Milbau et al., 2009; Hortal et al.,
2010). At the global scale, species occurrence is governed by bioclimatic
and land cover variables (Fig. 2a) (Hegland et al., 2009). For bee species,
distribution drivers at the global scale are not yet well understood
(Bystriakova et al., 2018), while local determinants are relatively well
known and mainly depend on the presence of nesting places and floral
resources at the local scale, which define the habitat of a species
(Fig. 2b) (Westrich 2018). The analysis of the role of different envi-
ronmental drivers at their operating scales is required to appropriately
predict wild bee occurrences at the local scale. We therefore use a hi-
erarchical framework that builds on the work of Milbau et al. (2009):
environmental drivers operating at large scales are used to predict
species distribution using SDMs, and the outputs are combined with a
species-specific habitat suitability filter to refine the suitability maps at
the local scale. The pollination efficiency of each species depends on
life-history traits, such as morphology and behaviour (Willcox et al.,
2017). One important trait for the pollination of crops is the foraging
range (Fig. 2¢), because it determines the distance over which pollen can
be transported and if crop fields or target plants are reachable for the
different species. The pollination potential is defined as the sum of each
predicted species probability of presence combined with foraging dis-
tances. The pollination ecosystem service potential on crop fields was
restricted to the probability of presence of crop pollinators on potential
pollination-dependant fields (Fig. 2d).

2.3.2. Species distribution model

Species distribution modelling was carried out with the “biomod2
v.3.4.6" library (Thuiller et al., 2016) implemented in R (Version 4.0.3)
(R Core Team 2017). All maps were created using ArcGIS (Version
10.6.1).

Occurrence data from GBIF are typically presence-only data, with no
recorded absence data, whereas the algorithms used for modelling need
presence-absence points, so pseudo-absence points were generated with
the following approach: several sets of pseudo-absence data were
generated to prevent sampling bias and to be able to test the effect of
each pseudo-absence selection on the predictive ability of the model.
Following Phillips et al. (2009), we restricted the selection of the
background points in a 10 km buffered convex hull around the GBIF
Andrena records to reflect species sampling bias. One thousand
pseudo-absence data points were sampled randomly from the back-
ground region and we repeated the random selection ten times to build a
ten-fold internal cross-validation of the models (Phillips et al., 2009;
Barbet-Massin et al., 2012).

We chose to combine different algorithms with ensemble modelling
as no statistical tools will per se perform better than any other (Elith and
Leathwick 2009; Aguirre-Gutiérrez et al., 2013; Aratjo et al., 2019) and
as predictions based on an ensemble of several algorithms are often
more robust than predictions derived from a single model (Aratijo and
New 2007; Aratjo et al., 2019). For each bee species model, we used
three different algorithms: Generalized Linear Model (GLM), a flexible
regression model allowing to handle non-normally distributed response
variables, Flexible Discriminant Analysis (FDA), a flexible classification
approach derived from Linear Discriminant Analysis methods and
Random Forest, a bagging approach. To train the SDMs and test their
predictive performances, we used a cross-validation with a random
subset of 70% of the points to calibrate the model for every single spe-
cies, while the remaining 30% of the points were used for validation.
Each single model was run on the training data and evaluated on the test
data using performance evaluation metrics. This process was repeated
four times with different partitioning of the original dataset into a
training and a test set. Cross-validation was used to decrease bias in the
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Fig. 2. Flow chart representing the different steps of the hierarchical modelling approach to predict pollination potential at the local scale.

predictive performance of the measuring models (Pearce and Ferrier
2000).

We used different performance evaluation metrics: Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC) plot, True
Skills Statistics (TSS) and the continuous Boyce index (CBI). AUC is a
threshold-independent model evaluation indicator (Franklin 2010),
which continuously discriminates between suitable and unsuitable
habitats, independently of prevalence of target species (Elith and
Burgman 2002). It plots the commission error against omission error and
ranges between 0.5 and 1, where 1 represents a perfect discrimination
between presence and absence, and 0.5 represents a random fit. TSS is a
threshold-dependant measure of model accuracy and, contrary to AUC,
is based on binary predictions of predicted suitability/unsuitability for
each species (Allouche et al., 2006). It ranges from -1 to +1, with +1
indicating perfect agreement between predictions and observations, and
0 or less indicating an agreement no better than a random classification
(Zhang et al., 2015). This metric is negatively related to species preva-
lence (Allouche et al., 2006). Contrary to AUC and TSS, CBI does not
require absence data and is therefore considered as more appropriate
when working with presence-only data. The metric measures how
observed presences are distributed across the gradient of predicted
presences and how this differs from a random distribution. It also varies
from -1 to +1, where positive values indicate a good agreement between
predictions and the distribution of presences in the evaluation dataset,
values close to zero indicate predictions not different from a random
distribution and negative values indicate incorrect models (Hirzel et al.,
2006).

One of the main challenges in modelling pollination potential is that
each pollinator species has its specific potential geographical range and
habitat needs, so each species needs to be modelled independently. For
each bee species, a total of 120 models was built (using three algorithms,
four cross-validations to sample test and training data and ten pseudo-

absences samplings). Only models with a TSS greater or equal to 0.6
were kept to build the final ensemble (Landis and Koch 1977). Ensemble
predictions were calculated as weighted averages of single-model pre-
dictions, with weights assigned to each modelling technique using the
TSS (Allouche et al., 2006).

To ensure transparency and reproducibility of our SDMs, we
included an Overview, Data, Model, Assessment, and Prediction
(ODMAP) protocol from Zurell et al. (2020) in the supplementary
material.

2.3.3. Habitat filter

The next step was to combine the SDM ensemble models with the
corresponding habitat filters for each modelled bee species into a unique
predicted distribution (or environmental suitability) map for the CSA
(Fig. 2b). To do so, for each species and each grid cell of the CSA, we
multiplied the species distribution prediction and the binary habitat
filter values. The resulting maps represent the suitability of the area to
support the different bee species, according to its environmental con-
ditions and the presence of potential habitats for each species.

2.3.4. Foraging range

As bees are central place foragers, their foraging ranges determine
their capacity to pollinate and to potentially increase the yield of adja-
cent crop fields. The foraging ranges of the species were added to the
model to determine the final pollination potential map (Fig. 2c).
Foraging distances are species-specific and are a function of the inter-
tegular distance (i.e., the distance between the wing-attachment points
on either side of the thorax) (Greenleaf et al., 2007). Kendall et al.
(2019) implemented the “pollimetry v.1.0.1” library, which allows to
calculate foraging distances based on intertegular measurements of bees
and provide the resulting database intertegular measurements of 4035
bee specimens. We used this package in R to estimate the average
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foraging range of the twenty-five selected bee species. When no data
were found, we used the average of all foraging ranges over the Andrena
genus. Foraging range values are presented in Table 5 in the supple-
mentary material. Using the “raster v3.4-5" package (Hijmans et al.,
2013), we then implemented a circular moving window, with a focal
corresponding to the average foraging distance of each bee species. For
each grid cell of the CSA, the pollination potentials were computed
based on the foraging ranges and the suitability of the area to support
the different bee species.

2.3.5. Relative pollination potential

The total pollination potential of the CSA was calculated as the sum
of the pollination potential of each species, determined in the previous
step. We made the assumption that local species communities are made
of species with the same environmental requirements and we neglected
macroecological controls on community assembly such as competition
and synergies between species (Guisan and Rahbek 2011). We chose to
work with occurrence probability maps and not with binary pre-
sence/absence maps, as Calabrese et al. (2014) and D’Amen et al. (2015)
showed that the addition of predictions of occurrence probabilities from
individual SDMs is preferable to setting arbitrary thresholds to obtain
binary predictions and then combining those into a stacked-SDM, as this
tend to be biased and overpredict of species richness.

The resulting map represents the relative pollination potential of the
area, i.e. the potential of the area to sustain pollination from the selected
Andrena species.

2.3.6. Comparison with independent field data

In the CSA, flower visiting insects were collected using one yellow
pan trap in 12 rapeseed fields between May 4th to June 6th 2018. Traps
were set up at one border of each field, close to a near-natural habitat
(such as hedgerows or forests), with their tops approximately even with
the surrounding oilseed rape flowers. The traps were filled with diluted
detergent solution and emptied weekly. All bees were identified to
species level. The trap locations were selected to cover the landscape
diversity in the CSA: from locations surrounded by a landscape with a
high proportion of near-natural habitats to locations with a low pro-
portion of near-natural habitats.

We used linear regression to assess whether the pollination model
outputs reflect the pollinator community abundance and species rich-
ness collected in the field. We compared the abundance and richness of
oilseed rape pollinators from the Andrena genus from the collected data
with the predicted pollination potential. We also compared Andrena
species richness from the collected data with the predicted richness of
Andrena species obtained with the model (the sum of all the predicted
suitability using the SDMs and the habitat filters, Fig. 2b in the work-
flow). For this comparison, we calculated the mean predicted species
richness for all pixels within a radius of 200, 300 and 500 m radius of
trap locations.

3. Results
3.1. Model evaluation

The evaluation scores of all ensemble models were high to very high
(ROC between 0.892 and 0.978, TSS between 0.623 and 0.887 and CBI
between 0.965 and 1), which means that the predictive accuracies of the
models were good to very good. An overview of all these performances
measures can be found in Table 7 in the supplementary material.

The importance of each predictor for each species model varied with
the tested algorithms and modelled species. Bioclimatic variables indi-
cated a higher percentage of the data variances than LULC variables.
Bio_2 (Mean Diurnal Range), Bio_11 (Mean Temperature of Coldest
Quarter) and Bio_7 (Temperature Annual Range) appear to be generally
the most important variables, followed by Bio_19 (Precipitation of
Coldest Quarter) and Bio_14 (Precipitation of Driest Month). LULC

Ecological Modelling 444 (2021) 109484

variables have a more minor importance for the models and generally
only few categories are relevant for each species. Discontinuous urban
fabric is overall the most important LULC variable, followed by non-
irrigated arable land and sparsely vegetated areas (Table 6 in the sup-
plementary material).

3.2. Species distribution models

Figs. 3 and 4 illustrate the different results for two species (Andrena
barbilabris and Andrena carantonica). The predicted presence of each
species is determined through a SDM at the European scale (Figs. 3 and 4
(B)) based on occurrence data (Figs. 3 and 4(A)). Even at the local scale
of the CSA, we obtained different distribution predictions for each spe-
cies. For instance, the model predicted that overall, the area is slightly
more suitable for A. carantonica than for A. barbilabris (Figs. 3 and 4(C)).
Habitat filtering was done with a buffer of 2 km around the CSA to ac-
count for foraging distances and the possibility that bees can nest outside
and forage inside the CSA (Figs. 3 and 4(D)). The differences in the final
predicted presence of species were also due to habitat preferences of
each species: For instance, A. carantonica has a wider range of potential
habitats and a broader distribution over the CSA than A. barbilabris. A.
carantonica has a wider foraging range than A. barbilabris (700 m
compared to 200 m), which also explains the differences in species
respective pollination potential in the final maps (Figs. 3 and 4(E)).

3.3. Potential pollination map for the CSA

The model predicted the CSA as suitable for all the target species. The
predicted pollination service potential (sum of the pollination potential
of all target wild bee species) scores from 0 (none of the modelled spe-
cies is potentially present) to 15 (highest predicted scores when adding
the pollination service potential of the twenty-five wild bee species) for
each grid cell (see Fig. 2 in the supplementary material). Areas where
none of the species is potentially present have no potential pollination
ecosystem service performed by the selected and modelled species,
whereas a high predicted landscape suitability and wild bee species
richness increase the pollination service potential of the area.

Fig. 5 compares the predicted spatial patterns of oilseed rape polli-
nators and the potential pollination ecosystem service demand for
oilseed rape (the main pollination-dependant crop in the CSA), esti-
mated with the ATKIS/InVeKoS “arable land” LULC class. The location
of rapeseed fields generally changes annually, as a result of crop rota-
tion, changing market prices and changes in political schemes and
subsidies. The demand for pollination ecosystem services will therefore
change annually and can potentially occur on all arable fields. This is
why we did not directly map rapeseed fields and assumed that it could
potentially grow on every arable field. For this analysis, we restricted
the pool of modelled wild bee species to oilseed rape flowers visitors (as
documented in Table 1 in the supplementary material). Our model
predicted that most of the fields have a low pollination potential and the
mean pollination potential value on arable fields was 1.5. The model
predicted low mean pollination ecosystem service potentials particu-
larly the North-Eastern part of the CSA (e.g. in Fig. 5(C)). Fields with
relatively high mean pollination ecosystem service potentials are more
evenly distributed over the CSA.

3.4. Comparison with independent field data

Yellow pan traps captured 801 individual bees from 42 different
species. From the collected wild bees, 681 were from the genus Andrena,
from 19 different species. Form the genus Andrena, 576 individuals were
known oilseed rape flower visitors, from 9 different species. Abundance
and richness of oilseed rape visitors from the genus Andrena increased
with the predicted pollination service potential (r = 0.28, d.f. =10, p =
0.07) and (r = 0.29, d.f. = 10, p = 0.07), however not significantly
(Fig. 6(a) and (b)). Oilseed rape visitor richness increased with the mean
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Fig. 3. Examples of species distribution model outputs for A. carantonica. (A): Occurrence points, retrieved from the GBIF database and cleaned, (B): predicted
probability of presence at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the
CSA, (D): predicted probability of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): predicted pollination ecosystem

service potential by A. carantonica in the CSA.

predicted pollinator richness within a radius of 500 m (r = 0.28, d.f. =
10, p = 0.07, not shown here), 300 m (r = 0.38, d.f. = 10, p = 0.03) and
200 m (r = 0.48, d.f. =10, p = 0.01) (Fig. 6(c) and (d)).

4. Discussion

We have predicted the current potential occurrence of twenty-five
selected bee species at the local scale in order to estimate the poten-
tial pollination ecosystem service supply for pollination-dependant
crops and wild plants. The aim was to develop a model based on peer-
reviewed knowledge rather than on expert-judgement, adapted to the
region of interest and its bioclimatic conditions and with consideration
to the availability of foraging resources and nesting places, for which a
fine resolution is needed. One further novelty of the developed method
is that it combines environmental drivers at larger and local spatial
scales and thereby goes beyond existing pollination models, which
typically focus on one scale, despite the importance of integrating
environmental drivers at multiple geographical scales (Milbau et al.,
2009; Mateo et al., 2019b).

4.1. Modelling pollination service potential

SDMs results highlighted the role of bioclimatic factors in bee species
occurrence at continental to local scales, as previously illustrated by
Polce et al., (2013); Nogué et al., (2016); Polce et al., (2018) and
Bystriakova et al., (2018). This is indicated by the predicted suitability
maps (Figs. 3b & 4b): SDMs predicted that the suitability for
A. carantonica and A. barbilabris is highly variable across Europe coun-
tries and we also obtained different predictions at the local scale
(Figs. 3¢ & 4c). As the ESTIMAP and InVEST models only express the
relative suitability for pollinators in terms of availability of floral re-
sources and nesting sites (Lonsdorf et al., 2009; Zulian et al., 2013), they
neglect the variability of bee species distributions due to bioclimatic
factors. To our knowledge, no study has yet assessed these models in
regard to the use or non-use bioclimatic factors. Furthermore, SDMs
provide an effective alternative to local expert opinion on species po-
tential occurrence (Gaston et al., 2014) and can be used to discriminate
present from absent species in a given location. In addition, as the
modelling framework allows to assess the relative importance of envi-
ronmental variables on different species, it can be also used to analyse
the impact of climate and land cover changes on wild bee species and
future pollination service potential.
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Fig. 4. Species distribution model outputs for A. barbilabris. (A): Occurrence points, retrieved from the GBIF database and cleaned, (B): predicted probability of
presence at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the CSA, (D):
predicted probability of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): predicted pollination ecosystem service

potential by A. barbilabris in the CSA.

As they do not account for natural and semi-natural areas, previous
pollination (or wild bee species distribution) models based on SDMs also
probably overpredict the distribution of bee species at the local scale
(Polce et al., 2013; Nogué et al., 2016; Polce et al., 2018; Bystriakova
et al., 2018). These models may therefore significantly overpredict the
pollination potential and minimize areas where pollination demand
exceeds pollination service potential, as only specific areas in croplands
provide suitable habitats for wild bee species (mainly natural and
semi-natural habitats) (Westrich 2018). This is particularly problematic
when pollination-dependant crops are isolated from natural and
semi-natural habitats (Ricketts et al., 2008; Garibaldi et al., 2011). The
importance of the presence of natural and semi-natural areas at small
spatial scales within agricultural landscapes for wild pollinator species
has been described in many studies (Gathmann and Tscharntke 2002;
Zurbuchen et al., 2010; Ricketts et al., 2008; Kennedy et al., 2013) and is
also supported by our results. This is indicated by the differences be-
tween the predicted suitability and pollination potential maps (Figs. 3 &
4): our results of SDMs predict that the whole CSA is highly suitable for
A. carantonica and A. barbilabris, whereas their final suitable areas are
much more restricted when accounting for habitat availability. This is
consistent with Fournier et al., (2017) and Hattab et al., (2014), which
also found that adding species-specific habitat filters greatly refined

habitat suitability for terrestrial and marine species. As it integrates
information on drivers operating across different scales, our multi-scale
approach should provide more accurate predictions and a better un-
derstanding of processes underlying species distribution compared to
single-scale models (Pearson et al., 2004; Mateo et al., 2019b; Mateo
et al., 2019a; Bellamy et al., 2020; Fournier et al., 2017).

Despite the low number of sampling sites and the restricted sampling
period during the mass-flowering of oilseed rape, our model correlated
fairly well with the data observed in the field. The model was able to
predict a significant proportion of the variation in oilseed rape pollinator
richness from independent data. Oilseed rape pollinator richness and
abundance from the collected data were also correlated with the pre-
dicted pollination service potential, however with no significance. This
analysis can be considered as a first approach to evaluating the model
results, but not yet a validation of our model due to the small number of
sampling sites and the absence of replication.

4.2. Limitations and uncertainties of the study

The presented approach comes with several modelling limitations.
First, the performance of each SDM is constrained by the quantity and
quality of the GBIF occurrence data. In principle, the performance of



M. Perennes et al.

10“7"30"E 10°1|2'U"E

1(]°1GI'30"E

Ecological Modelling 444 (2021) 109484

1[]°2I1 '0"E

Fig. 5. Predicted mean pollination potential on

Mean pollination service potential

z High:7.3

Z\

o - Low:0.1

o

=T

o . .
Suitable habitats
Unsuitable habitats

54 °6|‘0"N

54°2'30"N

arable lands (A) and zoom over two contrasting
pollination service potential results (B and C).
N Brown areas represent potential suitable habi-
A tats for the different bee species. Light yellow
areas represent unsuitable habitats other than
arable lands. Arable lands are marked with a
- gradient from light to dark blue, depending on
the predicted mean pollination service poten-
tial for each parcel of the CSA (the mean is
calculated over each parcel). In (B), the land-
scape has a larger proportion of potential hab-
itats such as grasslands and forests, whereas in
(C), the landscape is largely dominated by
arable lands. In (C), the mean pollination po-
tentials tend to be lower than in (B) (values
between 0.9 and 6.2 in (B); 0.2 and 4.2 in (C)).
The circles represent the principal foraging
ranges of the selected bee species (100, 300 and
500 m radius), so the principal distances
around fields within which the presence of
habitats for pollinators can increase pollination
ecosystem service supply.

L

each SDM can be improved by including more species occurrence data.
For the selected bee species, GBIF occurrence data are particularly
biased towards higher occurrences in Northern European countries
including Great Britain, Sweden, Belgium and Germany, which may
make the outputs of the SDMs less reliable for regions with very different
bioclimatic conditions such as Southern European countries. This is
however less problematic in the studied CSA, located in Northern
Germany.

Second, our model might overpredict single species occurrences
because there is no limit on the number of species that can occupy a
given area, i.e. the carrying capacity of ecosystems is not considered in
SDM approaches (Graham and Hijmans 2006; Thuiller et al., 2015). This
is particularly the case when interactions between species (competitio