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We discuss when law-invariant convex functionals ‘‘collapse to the mean’’. More precisely, we show
that, in a large class of spaces of random variables and under mild semicontinuity assumptions, the
expectation functional is, up to an affine transformation, the only law-invariant convex functional
that is linear along the direction of a nonconstant random variable with nonzero expectation. This
extends results obtained in the literature in a bounded setting and under additional assumptions on
the functionals. We illustrate the implications of our general results for pricing rules and risk measures.
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1. Introduction

In a well-known paper Wang et al. (1997), the authors de-
cribe an axiomatic approach to insurance pricing and provide
representation of admissible pricing rules in terms of Choquet

ntegrals. One of the key axioms put forward is law invariance,
tipulating that prices depend on the contracts’ payoffs only
hrough their probability distribution with respect to the ‘‘phys-
cal’’ probability measure. At the end of that paper, it is pointed
ut that law-invariant pricing rules based on Choquet integrals
ould also be used to harmonize the pricing of insurance products
nd financial derivatives. It is, however, not difficult to see that
aw invariance of the pricing functional cannot be expected to
old in general. For instance, the Fundamental Theorem of Asset
ricing asserts that, under suitable conditions, in a financial mar-
et that is frictionless and free of arbitrage opportunities, prices
an be essentially expressed as expectations with respect to a
‘risk-neutral’’ probability measure. It is with respect to such a
robability measure that prices in this market are law invariant.
ence, for financial market prices to exhibit law invariance with
espect to the ‘‘physical’’ probability measure, the ‘‘physical’’ and
he ‘‘risk-neutral’’ measures would have to coincide. This is, how-
ver, never the case with the sole exception of a market in which
he expected returns under the ‘‘physical’’ measure is the same
or all assets.
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Prompted by the attempts in Wang (2000, 2002) to carry out
the harmonization suggested in Wang et al. (1997) by means
of law-invariant pricing rules, Castagnoli et al. (2004) show that
postulating the law invariance of pricing functionals is ques-
tionable also in a more general setting than that of frictionless
financial markets. This was accomplished by proving that the
expectation under the ‘‘physical’’ probability measure is the only
pricing functional defined on the space of bounded payoffs that is
law invariant, sublinear, increasing, and comonotonic (properties
satisfied by the pricing rules considered in Wang (2000, 2002)),
and under which every riskless payoff and at least one risky
payoff are priced in a frictionless way. This ‘‘collapse to the mean’’
was improved in Frittelli and Rosazza Gianin (2005) by replac-
ing sublinearity with convexity and by dropping comonotonicity.
We note though that, strictly speaking, these results cannot be
directly applied to the setting of Wang (2000, 2002) because the
payoffs considered there are not necessarily bounded. A detailed
discussion of the results in Castagnoli et al. (2004) and Frittelli
and Rosazza Gianin (2005) and how they relate to ours is given
at the beginning of Section 5.

The preceding discussion raises the question of whether the
‘‘collapse to the mean’’ remains valid for a wider range of spaces of
random variables and for a larger class of law-invariant functionals.
In this note, we allow the model space X to belong to a fairly
general class of locally-convex spaces consisting of integrable
random variables and containing all bounded random variables.
In Theorem 4.5 we prove that, under suitable lower semicon-
tinuity properties (which are always satisfied in the setting of
Castagnoli et al. (2004) and Frittelli and Rosazza Gianin (2005)),
the expectation functional is, up to an affine transformation, the

only law-invariant convex functional ϕ : X → (−∞, ∞] that

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s linear along a nonconstant random variable Z with nonzero
xpectation. The strategy we follow differs from the one used
n the referenced papers and relies on the identification of an
nherent tension between law invariance and linearity that sheds
ew light into why law invariance has such strong structural
mplications. The key observation, established in Lemma 4.4, is
hat the set of random variables that have the same distribution
s Z spans a dense subspace of X . As a result, linearity along

Z together with law invariance forces linearity on this dense
subspace. The lower semicontinuity assumption then implies that
ϕ is linear on the entire space. The result follows by noting
that the only continuous linear functionals that are law invariant
are multiples of the expectation functional. This new version of
the ‘‘collapse to the mean’’ has natural applications to insurance
pricing rules, which is our motivating problem, as well as to
risk measures. In particular, it provides a rigorous argument for
why, contrary to what was claimed in Wang (2000, 2002), law-
invariant insurance pricing rules cannot be expected to reproduce
prices in a frictionless and arbitrage-free financial market.

The note is organized as follows. In Section 2 we introduce the
setting together with the necessary notation and terminology. In
Section 3 we show that convex functionals that are lower semi-
continuous and linear along a given direction enjoy the stronger
property of being translation invariant along the same direction.
In Section 4 we establish our main result on the ‘‘collapse to the
mean’’. Some applications of our result are discussed in Section 5.

2. Setting, notation, terminology

Let (Ω,F,P) be a nonatomic probability space. We denote by
L0 the set of equivalence classes of random variables, i.e. Borel
measurable functions X : Ω → R, with respect to almost-
sure equality under P. In line with standard practice, we do not
distinguish explicitly between an element of L0 and any of its
representatives. In particular, the elements of R are naturally
identified with random variables that are almost-surely constant.
For two random variables X, Y ∈ L0 we write X ∼ Y whenever X
and Y have the same probability law under P. The expectation
under P is denoted by EP. The standard Lebesgue spaces are
denoted by Lp for p ∈ [1, ∞]. We say that a set X ⊂ L0 is law
invariant (under P) if X ∈ X for every X ∈ L0 such that X ∼ Y for
some Y ∈ X .

Assumption 2.1. We denote by (X ,X ∗) a pair of law-invariant
vector subspaces of L1 containing L∞. We assume that XY ∈ L1
for all X ∈ X and Y ∈ X ∗ and denote by σ (X ,X ∗) the weakest
linear topology on X with respect to which, for every Y ∈ X ∗, the
linear functional on X given by X ↦→ EP[XY ] is continuous.

Remark 2.2. (i) Note that, under our assumptions, σ (X ,X ∗) is not
metrizable.1 As a result, in general, one needs to work with nets
instead of sequences. Recall that a net (Xα) ⊂ X converges to an
element X ∈ X with respect to the topology σ (X ,X ∗) if and only
if EP[XαY ] → EP[XY ] for every Y ∈ X ∗.

(ii) Note that for every nonzero X ∈ X there exists Y ∈ X ∗,
namely either Y = 1{X>0} or Y = 1{X<0} (which belong to X ∗

because they are bounded), such that EP[XY ] ̸= 0. Similarly,
for every nonzero Y ∈ X ∗ there exists X ∈ X such that

1 In general, weak topologies can be metrizable, but not in our setting. Using
he argument in the proof of the implication ‘‘(4) H⇒ (1)’’ in Theorem
.26 in Aliprantis and Border (2006), one can show that metrizability of X
nder σ (X ,X ∗) would imply that X ∗ can be written as the countable union of
inite dimensional subspaces. Being a subspace of X ∗ , L∞ would also have this
roperty. Baire’s Lemma (Theorem 3.46 in Aliprantis and Border (2006)) would
hen imply that L∞ is finite dimensional, a contradiction. Hence, σ (X ,X ∗) is
not metrizable.
84
EP[XY ] ̸= 0. Hence, (X ,X ∗) is a dual pair. In particular, Theorem
5.93 in Aliprantis and Border (2006) implies that, endowed with
σ (X ,X ∗), the space X is a locally-convex Hausdorff topological
vector space whose topological dual can be identified with X ∗.

We next highlight that the class of spaces we consider is
sufficiently general to accommodate virtually all Banach spaces
encountered in applications as long as their dual can be identified
with a space of integrable random variables. As is usual in the
literature on law invariance, this rules out L∞ with its norm dual
which consists of signed finitely additive measures.

Example 2.3 (Orlicz Spaces). Let Φ : [0, ∞) → [0, ∞] be an Orlicz
function, i.e. a convex, left-continuous, increasing function which
is finite on a right neighborhood of zero and satisfies Φ(0) = 0.
The conjugate of Φ is the function Φ∗

: [0, ∞) → [0, ∞] defined
by

Φ∗(u) := sup
t∈[0,∞)

{tu − Φ(t)}.

Note that Φ∗ is also an Orlicz function. For every X ∈ L0 define
the Luxemburg norm by

∥X∥Φ := inf
{
λ ∈ (0, ∞) ; E

[
Φ

(
|X |

λ

)]
≤ 1

}
.

The corresponding Orlicz space is given by

LΦ
:= {X ∈ L0 ; ∥X∥Φ < ∞}.

he heart of LΦ is the space

Φ
:=

{
X ∈ LΦ

; ∀λ ∈ (0, ∞) : E
[
Φ

(
|X |

λ

)]
< ∞

}
.

The classical Lebesgue spaces are special examples of Orlicz
spaces. Indeed, if Φ(t) = tp for p ∈ [1, ∞) and t ∈ [0, ∞),
then LΦ

= HΦ
= Lp and the Luxemburg norm coincides with

the usual p norm. Moreover, if we set Φ(t) = 0 for t ∈ [0, 1] and
Φ(t) = ∞ otherwise, then we have LΦ

= L∞ and the Luxemburg
norm coincides with the usual L∞-norm. Note that, in this case,
HΦ

= {0}.
In our nonatomic setting, LΦ

= HΦ if and only if Φ satisfies
the ∆2 condition, i.e. there exist s ∈ (0, ∞) and k ∈ (0, ∞)
such that Φ(2t) < kΦ(t) for every t ∈ [s, ∞). A well-known
example of a nontrivial HΦ with HΦ

̸= Lφ is obtained by setting
Φ(t) = exp(t) − 1 for t ∈ [0, ∞).

In general, the norm dual of LΦ cannot be identified with a
subspace of L0. However, if Φ is finite valued (so that HΦ

̸=

{0}), the norm dual of HΦ can always be identified with LΦ∗

.
For the case Lp, for p ∈ [1, ∞), this is simply the well-known
identification of the norm dual of Lp with L

p
p−1 (with the usual

convention 1
0 := ∞). For more details on Orlicz spaces we refer

to Edgar and Sucheston (1992).
The pair (X ,X ∗) with X = LΦ and X ∗

∈ {LΦ∗

,HΦ∗

, L∞
}

satisfies Assumption 2.1.

In the following definition we introduce the necessary termi-
nology for functionals.

Definition 2.4. Let ϕ : X → (−∞, ∞] be a functional. The
domain of ϕ is the set

dom(ϕ) := {X ∈ X ; ϕ(X) < ∞}.

We say that the functional ϕ is:

(1) proper if dom(ϕ) is nonempty.
(2) convex if ϕ(λX + (1 − λ)Y ) ≤ λϕ(X) + (1 − λ)ϕ(Y ) for all

X, Y ∈ X and λ ∈ [0, 1].
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(3) positively homogeneous if ϕ(0) = 0 and ϕ(λX) = λϕ(X) for
all X ∈ X and λ ∈ (0, ∞).

(4) sublinear if it is both convex and positively homogeneous.
(5) increasing if ϕ(X) ≥ ϕ(Y ) for all X, Y ∈ X such that X ≥ Y .
(6) decreasing if ϕ(X) ≤ ϕ(Y ) for all X, Y ∈ X such that X ≥ Y .
(7) law invariant if ϕ(X) = ϕ(Y ) for all X, Y ∈ X such that

X ∼ Y .
(8) σ (X ,X ∗)-lower semicontinuous if for all nets (Xα) ⊂ X and

X ∈ X we have

Xα

σ (X ,X∗)
−−−−→ X H⇒ ϕ(X) ≤ lim inf

α
ϕ(Xα).

(9) norm-lower semicontinuous if for all sequences (Xn) ⊂ X
and X ∈ X we have

Xn
∥·∥

−→ X H⇒ ϕ(X) ≤ lim inf
n→∞

ϕ(Xn)

provided that X is equipped with a norm ∥ · ∥.

Finally, we say that the functional ϕ satisfies:

(10) the Fatou property if for all sequences (Xn) ⊂ X and X ∈ X
we have

Xn
a.s.
−→ X, sup

n∈N
|Xn| ∈ X H⇒ ϕ(X) ≤ lim inf

n→∞
ϕ(Xn).

To a proper functional ϕ : X → (−∞, ∞] we associate the
dual functional ϕ∗

: X ∗
→ (−∞, ∞] defined by

∗(Y ) := sup
X∈X

{EP[XY ] − ϕ(X)}.

ote that ϕ∗ is well defined and does not attain the value −∞

ecause ϕ is proper. The next proposition records the well-known
ual representation of convex and lower semicontinuous func-
ionals; see, e.g., Theorem 2.3.3 in Zălinescu (2002).

roposition 2.5. Let ϕ : X → (−∞, ∞] be proper, convex, and
(X ,X ∗)-lower semicontinuous. Then, for every X ∈ X we have

ϕ(X) = sup
Y∈X∗

{EP[XY ] − ϕ∗(Y )} = sup
Y∈dom(ϕ∗)

{EP[XY ] − ϕ∗(Y )}.

The next example serves to highlight that requiring σ (X ,X ∗)-
lower semicontinuity for convex and law-invariant functionals is
not as restrictive as it may seem at first sight since, on standard
spaces, σ (X ,X ∗)-lower semicontinuity for this type of functionals
is implied by fairly common continuity properties.

Example 2.6 (Orlicz Spaces). The following results can be found in
Proposition 2.5 in Bellini et al. (2021), which merely summarizes
results from the literature (Jouini et al. (2006), Svindland (2010),
and Gao et al. (2018). We also refer to Leung and Tantrawan
(2020) for abstract results beyond the Orlicz setting).

If X is a general Orlicz space LΦ and ϕ : X → (−∞, ∞] is a
proper, convex, and law invariant functional, then the following
statements are equivalent:

(a) ϕ is σ (X , L∞)-lower semicontinuous.
(b) ϕ satisfies the Fatou property.

If X is either L∞ or an Orlicz heart HΦ for a finite Orlicz function
Φ (in particular, any Lp with 1 ≤ p < ∞), then (a) is also
equivalent to:

(c) ϕ is norm lower semicontinuous.

The example given in Remark 5.6 in Gao et al. (2018) shows that,
for a general Orlicz space, norm lower semicontinuity does not
always imply σ (X , L∞) lower semicontinuity. If ϕ is additionally
increasing, then (a) is also equivalent to:
85
(d) ϕ is continuous from below, i.e. for every increasing se-
quence (Xn) ⊂ X and every X ∈ X we have

Xn
a.s.
−→ X H⇒ ϕ(Xn) → ϕ(X).

Clearly, in all these cases, ϕ is also σ (X ,X ∗)-lower semicontinu-
ous.

3. Affinity and translation invariance

The goal of this short section is to show the link between
two properties of functionals that will play a key role in our
main result in the next section, namely affinity and translation
invariance. The functionals considered in this section are not
required to be law invariant. Throughout we assume that (X ,X ∗)
is a pair satisfying Assumption 2.1. For a set S ⊂ X we denote by
span(S) the smallest linear subspace of X containing S. If S = {Z}

for some Z ∈ X , then we simply write span(Z).

Definition 3.1. Let M be a linear subspace of X . We say that a
functional ϕ : X → (−∞, ∞] is:

(1) affine along M if M ⊂ dom(ϕ) and the functional on M
given by Z ↦→ ϕ(Z) − ϕ(0) is linear. If M = span(Z) for
some Z ∈ X , then we simply say that ϕ is affine along Z . In
this case, there exists a ∈ R such that for every m ∈ R

ϕ(mZ) = am + ϕ(0).

(2) translation invariant along M if ϕ is affine along M and for
all X ∈ X and Z ∈ M

ϕ(X + Z) = ϕ(X) + ϕ(Z) − ϕ(0).

If M = span(Z) for some Z ∈ X , then we simply say that
ϕ is translation invariant along Z . In this case, there exists
a ∈ R such that for all X ∈ X and m ∈ R

ϕ(X + mZ) = ϕ(X) + am.

n both cases we have a = ϕ(Z) − ϕ(0).

emark 3.2. Let S ⊂ X and assume that ϕ : X → (−∞, ∞]

s translation invariant along every element of S. Then, ϕ is
ranslation invariant along span(S). In particular, ϕ is affine on
pan(S). However, note that ϕ need not be affine along span(S)
f it is affine along every element of S. Note also that the only
unctionals that are translation invariant along X are those that
re affine on X .

By definition, translation invariance implies affinity. As shown
y the next example, the converse implication does not hold in
eneral even if we assume that ϕ is convex.

xample 3.3. Assume W , Z ∈ L1 are linearly independent and
efine a functional ϕ : L1 → (−∞, ∞] by

(X) =

⎧⎨⎩
0 if X = αW + βZ for some α, β ∈ R with α < 1,
β2 if X = W + βZ for some β ∈ R,

∞ otherwise.

t is not difficult to verify that ϕ is convex and also affine along
. However, ϕ is not translation invariant along Z because there
xists no a ∈ R such that m2

= ϕ(W + mZ) = ϕ(W ) + am = am
or every m ∈ R.

There are two notable classes of functionals for which affin-
ty does imply translation invariance. The first is the class of
ublinear functionals.
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roposition 3.4. Let ϕ : X → (−∞, ∞] be sublinear and S ⊂ X .
If ϕ is affine along every element of S , then it is translation invariant
along span(S).

Proof. Recall that ϕ(0) = 0 by sublinearity and note that for
every fixed Z ∈ S the functional ϕ is linear on span(Z) by affinity.
Hence, for every X ∈ X we have

ϕ(X + Z) ≤ ϕ(X) + ϕ(Z)
= ϕ(X + Z − Z) + ϕ(Z)
≤ ϕ(X + Z) + ϕ(−Z) + ϕ(Z)
= ϕ(X + Z)

by sublinearity. This shows that ϕ is translation invariant along
every element of S. Remark 3.2 now implies that ϕ is translation
invariant along span(S). □

We saw in Example 3.3 that in the preceding result we cannot
replace sublinearity by convexity. However, we may replace sub-
linearity by σ (X ,X ∗)-lower semicontinuity and convexity. In this
case, lower semicontinuity forces translation invariance along the
σ (X ,X ∗)-closure of span(S) and delivers a dual representation
that will be exploited in the context of law-invariant functionals
in the next section.

Theorem 3.5. Let ϕ : X → (−∞, ∞] be proper, convex, and
σ (X ,X ∗)-lower semicontinuous and S ⊂ X . If ϕ is affine along
every element of S , then ϕ is translation invariant along M, where
M is the σ (X ,X ∗)-closure of span(S). Moreover, for all Z ∈ M and
Y ∈ dom(ϕ∗)

ϕ(Z) = EP[ZY ] + ϕ(0). (3.1)

Proof. Step 1. Take arbitrary Z ∈ S and Y ∈ dom(ϕ∗). Since
mZ ∈ dom(ϕ) for every m ∈ R by affinity, it follows from
Proposition 2.5 that for every m ∈ R we have

sup
m∈R

{m(EP[ZY ] − ϕ(Z) + ϕ(0))} − ϕ(0)

= sup
m∈R

{EP[mZY ] − ϕ(mZ)} ≤ sup
X∈X

{EP[XY ] − ϕ(X)} < ∞.

Clearly, this is only possible if ϕ(Z) = EP[ZY ] + ϕ(0). This
establishes (3.1) when Z ∈ S.

Step 2. Take now arbitrary Z ∈ S and Y ∈ dom(ϕ∗). It follows
from Step 1 that EP[ZY ] = ϕ(Z) − ϕ(0) = EP[ZY ′

] for every
Y ′

∈ dom(ϕ∗). Hence, we infer from Proposition 2.5 that for every
X ∈ X

ϕ(X + Z) = sup
Y ′∈dom(ϕ∗)

{EP[(X + Z)Y ′
] − ϕ∗(Y ′)}

= sup
Y ′∈dom(ϕ∗)

{EP[XY ′
] − ϕ∗(Y ′)} + EP[ZY ]

= ϕ(X) + EP[ZY ]

= ϕ(X) + ϕ(Z) − ϕ(0).

This shows that ϕ is translation invariant along every element of
S. By Remark 3.2, it follows that ϕ is translation invariant along
span(S). In particular, (3.1) holds also for every Z ∈ span(S).

Take now Z ∈ M and let (Zα) be a net in span(S) converging
to Z and Y ∈ dom(ϕ∗). Then,

ϕ(Z) ≤ lim inf
α

ϕ(Zα) = lim inf
α

EP[ZαY ] + ϕ(0) = EP[ZY ] + ϕ(0)

by lower semicontinuity at Z . Using translation invariance along
span(S) we have for every α

ϕ(Z) = ϕ(Z − Zα) + ϕ(Zα) − ϕ(0) = ϕ(Z − Zα) + EP[ZαY ].

Hence, by lower semicontinuity at 0, we easily obtain

ϕ(Z) = lim infEP[ZαY ] + lim infϕ(Z − Zα) ≥ EP[ZY ] + ϕ(0).

α α

86
It follows that ϕ(Z) = EP[ZY ] + ϕ(0) for every Z ∈ M. In
particular, ϕ is affine on M. To conclude the proof we may apply
what we have showed so far to M instead of S. □

A direct consequence of the preceding result is that when the
functional is affine on a set whose linear span is σ (X ,X ∗)-dense
in X , it must be affine on the entire space. Its linear part is thus
represented by a unique dual element in X ∗.

Corollary 3.6. Let ϕ : X → (−∞, ∞] be proper, convex, and
σ (X ,X ∗)-lower semicontinuous and S ⊂ X such that span(S) is
σ (X ,X ∗)-dense in X . If ϕ is affine along every element of S , then ϕ

is affine on X and there exists a unique Y ∈ X ∗ such that for every
X ∈ X

ϕ(X) = EP[XY ] + ϕ(0).

4. Collapse to the mean

Throughout this section, we assume that (X ,X ∗) is a pair sat-
isfying Assumption 2.1. We establish our main result on the ‘‘col-
lapse to the mean’’ of convex law-invariant functionals. We start
by recalling a well-known result about ‘‘law-invariance equiva-
lence classes’’. Here, for every random variable X ∈ L0 we denote
by qX a fixed quantile function of X , i.e. a function qX : (0, 1) → R
satisfying for every α ∈ (0, 1)

inf{m ∈ R ; P(X ≤ m) ≥ α}

≤ qX (α) ≤ inf{m ∈ R ; P(X ≤ m) > α}.

Lemma 4.1. For all X ∈ X and Y ∈ X ∗ the set E(X, Y ) =

{EP[X ′Y ] ; X ′
∈ X , X ′

∼ X} is a closed interval such that:

(i) inf E(X, Y ) =
∫ 1
0 qX (α)qY (1 − α)dα.

(ii) sup E(X, Y ) =
∫ 1
0 qX (α)qY (α)dα.

(iii) E(X, Y ) = {EP[XY ′
] ; Y ′

∈ X ∗, Y ′
∼ Y }.

Moreover, E(X, Y ) is reduced to a singleton if and only if either X or
Y is constant.

Proof. It can be proved along the lines of Theorem 9.1 in Luxem-
burg (1967) that E(X, Y ) is a closed interval satisfying assertions
(i) to (iii). We refer to Bellini et al. (2021) for a detailed proof. The
‘‘if’’ implication in the last assertion is clear. To establish the ‘‘only
if’’ implication, assume that E(X, Y ) is reduced to a singleton. In
this case, we must have

0 =

∫ 1

0
qX (α)qY (α)dα −

∫ 1

0
qX (α)qY (1 − α)dα

=

∫ 1/2

0
qX (α)[qY (α) − qY (1 − α)]dα

+

∫ 1

1/2
qX (α)[qY (α) − qY (1 − α)]dα

=

∫ 1/2

0
[qX (α) − qX (1 − α)][qY (α) − qY (1 − α)]dα.

Now, assume that either X or Y is not constant. Upon exchanging
their roles, we can assume without loss of generality that X is
ot constant. Then, we find β ∈ (0, 1/2) such that qX (α) −

X (1 − α) < 0 for almost every α ∈ (0, β]. Hence, the above
dentity can only hold if qY (α) = qY (1 − α) for almost every

∈ (0, β]. Being nondecreasing, qY must therefore be almost-
urely constant so that Y has to be constant. This delivers the
esired implication. □
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Recall that, by definition of the topology σ (X ,X ∗), every linear
and σ (X ,X ∗)-continuous functional ϕ : X → R can be repre-
sented by a suitable Y ∈ X ∗ through the identity ϕ(X) = EP[XY ]

for every X ∈ X . Hence, it is an immediate consequence of
the preceding lemma that any linear and σ (X ,X ∗)-continuous
functional that is law invariant must ‘‘collapse to the mean’’.

Proposition 4.2. Let M be a law-invariant linear subspace of X
containing a nonconstant random variable. Let Y ∈ X ∗ and consider
the linear functional ϕ : M → R given by ϕ(X) = EP[XY ]. The
following statements are equivalent:

(a) ϕ is law invariant.
(b) Y is constant.

Remark 4.3. Of course, the preceding proposition could be
proved directly. It is trivial that (b) implies (a). To see that (a)
implies (b), assume Y is not constant so that we find α ∈ R
satisfying P(Y < α) > 0 as well as P(Y > α) > 0. By
nonatomicity, there exist measurable sets E ⊂ {Y < α} and
F ⊂ {Y > α} such that P(E) = P(F ) > 0. Setting X1 = 1E and
X2 = 1F we see that X1 and X2 belong to X and satisfy X1 ∼ X2
and ϕ(X1) < αP(E) = αP(F ) < ϕ(X2). This shows that ϕ is not
law invariant.

We now use Lemma 4.1 to prove that the linear space gener-
ated by all the random variables having the same distribution as
a given nonconstant random variable with nonzero expectation is
σ (X ,X ∗)-dense in the space X . For any random variable X ∈ X
set

LX := {X ′
∈ X ; X ′

∼ X}.

Lemma 4.4. For every nonconstant Z ∈ X the following statements
hold:

(i) If EP[Z] ̸= 0, then span(LZ ) is σ (X ,X ∗)-dense in X .
(ii) If EP[Z] = 0, then the σ (X ,X ∗)-closure of span(LZ ) coincides

with the set {X ∈ X ; EP[X] = 0}.

Proof. Let M be the σ (X ,X ∗)-closure of span(LZ ). The annihila-
tor of the set M is defined by

M⊥
:= {Y ∈ X ∗

; ∀X ∈ M, EP[XY ] = 0}.

Similarly, the annihilator of the set M⊥ is given by

M⊥⊥
:= {X ∈ X ; ∀Y ∈ M⊥, EP[XY ] = 0}.

Take an arbitrary Y ∈ M⊥. Since Z is not constant and {EP[ZY ′
] ;

Y ′
∈ LY } = {EP[Z ′Y ] ; Z ′

∈ LZ } = {0} by Lemma 4.1, it follows
from the same result that Y must be constant. If EP[Z] ̸= 0,
then we must have Y = 0. In this case, M⊥

= {0} and it
follows from Corollary 5.108 in Aliprantis and Border (2006) that
(i) holds. If EP[Z] = 0, then we must have M⊥

= R. This implies
that M⊥⊥

= {X ∈ X ; EP[X] = 0}. Since M = M⊥⊥ by
Theorem 5.107 in Aliprantis and Border (2006), we infer that (ii)
holds. □

Affinity along a nonconstant random variable with nonzero expecta-
tion

By combining the previous results we can now easily establish
our main result.

Theorem 4.5. For a proper, convex, σ (X ,X ∗)-lower semicontin-
uous, law-invariant functional ϕ : X → (−∞, ∞] the following
statements are equivalent:

(a) The functional ϕ is affine along a nonconstant Z ∈ X with
E [Z] ̸= 0.
P
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(b) The functional ϕ is translation invariant along a nonconstant
Z ∈ X with EP[Z] ̸= 0.

(c) There exists a ∈ R such that ϕ(X) = aEP[X] + ϕ(0) for every
X ∈ X .

Proof. It follows from Theorem 3.5 that (a) and (b) are equiva-
lent. To conclude, we only have to show that (a) implies (c). To
this effect, assume that ϕ is affine along a nonconstant random
variable Z ∈ X with EP[Z] ̸= 0. Note that, by Lemma 4.4, the
σ (X ,X ∗)-closure of span(LZ ) is X . Noting that, by law invariance,
ϕ is affine along each element of LZ , we can apply Corollary 3.6
to obtain that

ϕ(X) = EP[XY ] + ϕ(0)

for all X ∈ X and Y ∈ dom(ϕ∗). It now suffices to apply
Proposition 4.2 to the functional ϕ − ϕ(0) to infer that Y must
be constant and conclude the proof. □

Remark 4.6. We show that lower semicontinuity is necessary
for the above ‘‘collapse to the mean’’ to hold. Let A ⊂ L1 be
the set of random variables with discrete distribution and define
ϕ : L1 → (−∞, ∞] by

ϕ(X) =

{
0 if X ∈ A,

∞ otherwise.

It is clear that ϕ is convex and law invariant. Moreover, for
every event E ∈ F with P(E) ∈ (0, 1) we have that ϕ is linear
(in fact, null) on the vector space spanned by the nonconstant
random variable Z = 1E . However, ϕ fails to be σ (L1, L∞)-lower
semicontinuous. To see this, take a positive random variable X ∈

X \A. Then, we can always find an increasing sequence (Xn) ⊂ A
such that Xn → X almost surely. It follows from the Dominated
Convergence Theorem that Xn → X with respect to σ (L1, L∞) but

ϕ(X) = ∞ > 0 = lim inf
n→∞

ϕ(Xn),

showing that ϕ is not σ (L1, L∞)-lower semicontinuous.

Affinity along a nonconstant random variable with zero expectation
If the random variable along which a functional is affine has

zero expectation, then the functional is simply the composition
of a convex real function and the expectation functional.

Theorem 4.7. For a proper, convex, σ (X ,X ∗)-lower semicontin-
uous, law-invariant functional ϕ : X → (−∞, ∞] the following
statements are equivalent:

(a) The functional ϕ is affine along a nonconstant Z ∈ X with
EP[Z] = 0.

(b) The functional ϕ is translation invariant along a nonconstant
Z ∈ X with EP[Z] = 0.

(c) ϕ(X) = ϕ(EP[X]) for every X ∈ X .

Proof. It follows from Theorem 3.5 that (a) and (b) are equivalent.
To conclude, we only have to show that (a) implies (c). Hence,
assume that ϕ is affine along a nonconstant Z ∈ X with EP[Z] =

0. Let M = {X ∈ X ; EP[X] = 0}, which by Lemma 4.4 is the
σ (X ,X ∗)-closure of span(LZ ). By Theorem 3.5,

ϕ(X) = EP[XY ] + ϕ(0)

for all X ∈ M and Y ∈ dom(ϕ∗). It follows from Proposition 4.2
that Y must be constant. Hence,

ϕ(X) = ϕ(EP[X]) + ϕ(X − EP[X]) − ϕ(0)
= ϕ(EP[X]) + ϕ(0) − ϕ(0) = ϕ(EP[X])

by translation invariance along M. This delivers the desired
implication. □
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Although, in general, there is no full ‘‘collapse to the mean’’ if
the functional is affine along a direction with zero expectation, we
do obtain a full ‘‘collapse to the mean’’ as soon as we additionally
have translation invariant along constant random variables. This
is a situation that is often encountered in applications.

Corollary 4.8. For a proper, convex, σ (X ,X ∗)-lower semicontinu-
ous, law-invariant functional ϕ : X → (−∞, ∞] that is translation
invariant along 1 the following statements are equivalent:

(a) The functional ϕ is affine along a nonconstant Z ∈ X .
(b) The functional ϕ is translation invariant along a nonconstant

Z ∈ X .
(c) There exists a ∈ R such that ϕ(X) = aEP[X] + ϕ(0) for every

X ∈ X .

Proof. If EP[Z] ̸= 0, then the equivalences follow from Theo-
rem 4.5. If EP[Z] = 0, it suffices to show that (a) implies (c)
due to Theorem 4.7. In this case, the same result implies that
ϕ(X) = ϕ(EP[X]) for every X ∈ X whenever (a) holds. Then,
by translation invariance along 1, there exists a ∈ R such that
ϕ(X) = ϕ(0) + aEP[X] for every X ∈ X . □

5. Applications

In this final section we point out connections to other works
in the literature in which a ‘‘collapse to the mean’’ was estab-
lished. We also highlight some applications of the ‘‘collapse to the
mean’’ to pricing functionals and risk measures. Throughout the
entire section we continue to denote by (X ,X ∗) a pair satisfying
Assumption 2.1.

Collapse to the mean in the literature
We now show how to derive the known ‘‘collapse to the

mean’’ results of the literature from our general results. We start
with the results in Castagnoli et al. (2004) who focus on law-
invariant Choquet integrals on L∞. Recall that a set function c :

F → [0, 1] is called a (regular) submodular capacity2 if it satisfies
the following conditions:

(1) c(Ω) = 1 and c(E) = 0 for every E ∈ F such that P(E) = 0.
(2) c(E) ≤ c(F ) for all E, F ∈ F such that E ⊂ F .
(3) c(En) → 0 for every decreasing sequence (En) ⊂ F such

that
⋂

n∈N En = ∅.
(4) c(E ∪ F ) ≤ c(E) + c(F ) − c(E ∩ F ) for all E, F ∈ F .

The Choquet integral associated to a submodular capacity c is the
functional Ec : L∞

→ R defined by

Ec[X] :=

∫ 0

−∞

(c(X > x) − 1)dx +

∫
∞

0
c(X > x)dx.

The ‘‘collapse to the mean’’ says that a Choquet integral associated
with a submodular capacity c reduces to the standard expectation
under P whenever it is law invariant under P and linear along a
nonconstant random variable.

Theorem 5.1 (Theorem 3.1 in Castagnoli et al. (2004)). Let c be a
submodular capacity. If Ec is law invariant under P and Ec[−Z] =

−Ec[Z] for a nonconstant Z ∈ L∞, then Ec[X] = EP[X] for every
X ∈ L∞ or equivalently c = P.

Proof. It is clear that Ec is proper. It follows from Schmeidler
(1986) that Ec is sublinear and translation invariant along 1. Then,
Ec is automatically (Lipschitz) continuous with respect to the L∞

2 We prefer this terminology to ‘‘submodular nonadditive probability’’, which
s used in Castagnoli et al. (2004).
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norm by Lemma 4.3 in Föllmer and Schied (2016). This implies
that, being law invariant, Ec is σ (L∞, L1)-lower semicontinuous
y Example 2.6. Since Ec is affine along Z by assumption, we infer

from Corollary 4.8 that there exists a ∈ R such that Ec[X] =

aEP[X] + Ec[0] for every X ∈ L∞. We conclude by observing that
Ec[0] = 0 by sublinearity and a = Ec[1] = 1. □

The preceding result can be recast as a ‘‘collapse to the mean’’
for comonotonic functionals on L∞. A functional ϕ : L∞

→ R is
comonotonic if ϕ(X+Y ) = ϕ(X)+ϕ(Y ) for all comonotone random
variables X, Y ∈ L∞.

Corollary 5.2. Let ϕ : L∞
→ R be a sublinear, increasing, and

comonotonic functional satisfying

ϕ(X + m) = ϕ(X) + m (5.1)

for all X ∈ L∞ and m ∈ R. If ϕ is law invariant and ϕ(−Z) = −ϕ(Z)
for a nonconstant Z ∈ L∞, then ϕ(X) = EP[X] for every X ∈ L∞

Proof. It follows from the classical results in Schmeidler (1986),
see also Wang et al. (1997), that a sublinear, increasing, and
comonotonic functional satisfying the translation invariance prop-
erty (5.1) can be represented as a Choquet integral with respect
to a submodular capacity. The claim is then a direct consequence
of Theorem 5.1. □

The focus of Frittelli and Rosazza Gianin (2005) is on law-
invariant convex risk measures on L∞. Their ‘‘collapse to the
mean’’ extends the previous results from the literature by show-
ing that a law-invariant convex risk measure on L∞ reduces
to (the negative of) a standard expectation under the reference
probability measure whenever the risk measure is linear along a
nonconstant random variable.

Theorem 5.3 (Proposition 9 in Frittelli and Rosazza Gianin (2005)).
Let ϕ : L∞

→ R be a convex decreasing functional satisfying

ϕ(X + m) = ϕ(X) − m

for all X ∈ L∞ and m ∈ R. If ϕ is law invariant and there exists a
nonconstant Z ∈ L∞ such that ϕ(mZ) = mϕ(Z) for every m ∈ R,
then ϕ(X) = −EP[X] for every X ∈ L∞.

Proof. By assumption, ϕ is translation invariant along 1 and
affine along Z . In particular, ϕ is automatically (Lipschitz) con-
tinuous with respect to the L∞ norm by Lemma 4.3 in Föllmer
and Schied (2016). This implies that, being law invariant, ϕ is
σ (L∞, L1)-lower semicontinuous by Example 2.6. As a result, we
infer from Corollary 4.8 that there exists a ∈ R such that ϕ(X) =

aEP[X] + ϕ(0) for every X ∈ L∞. We conclude by observing that
ϕ(0) = 0 and a = ϕ(1) = −1. □

We close this section by highlighting the three major differ-
ences between our results and those in Castagnoli et al. (2004)
and Frittelli and Rosazza Gianin (2005):

(1) Instead of working only with bounded random variables,
our model space is allowed to belong to a wide class of
spaces of integrable random variables containing the space
of bounded random variables. This covers all the standard
model spaces encountered in the literature and ensures the
broad applicability of our results.

(2) We establish that the ‘‘collapse to the mean’’ remains valid
for a larger class of law-invariant functionals by either
dropping or weakening the following assumptions required
in the literature: monotonicity, translation invariance along
constant random variables, (Lipschitz) continuity, positive
homogeneity, and comonotonicity.
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(3) The proof in Castagnoli et al. (2004) is based on probabilis-
tic arguments and tailored to Choquet integrals. The proof
in Frittelli and Rosazza Gianin (2005) is obtained through a
careful manipulation of the Kusuoka representation of con-
vex risk measures on L∞ so that extending their approach
to our setting would require to first establish a Kusuoka
representation on general spaces of random variables. The
strategy used in this paper relies solely on a direct analysis
of the link between the two key concepts under inves-
tigation – law invariance and linearity – and does not
require preliminary structural results about law-invariant
functionals. The key observation is that the vector space
generated by the random variables having the same distri-
bution as a nonconstant random variable Z (with nonzero
expectation) is dense in the underlying model space. As
a result, linearity along Z together with law invariance
forces linearity on a dense subspace. This, in turn, implies
linearity on the entire space by lower semicontinuity. We
believe that our strategy is rather intuitive and sheds new
light on the structure of law invariance and its relationship
with linear and topological structures.

aw-invariant pricing rules
The pricing of insurance contracts is one of the key topics

n actuarial science. The classical approach based on expected
tility theory is thoroughly presented in standard textbooks such
s Bühlmann (1970), Borch (1974) and Gerber (1979). Since the
ioneering contributions of these authors, it has become custom-
ry in the theoretical literature to address the pricing problem in
n ‘‘axiomatic’’ way by prescribing a set of economically plausible
equirements that a ‘‘good’’ pricing rule should satisfy. An early
urvey of the axiomatic approach to insurance pricing can be
ound in Goovaerts et al. (1984) and Deprez and Gerber (1985). An
pdated picture is presented in Laeven and Goovaerts (2014). In
pricing setting, the elements of X are interpreted as the payoffs
f financial contracts at a given future date. A payoff is called risk
ree whenever it is constant and risky otherwise. A pricing rule
ssigns to each payoff its (buying) price.

efinition 5.4. A pricing rule is a functional π : X → (−∞, ∞]

atisfying π (0) = 0. A payoff X ∈ X is frictionless (under π) if it
atisfies the following conditions:

(1) π (−X) = −π (X).
(2) π (λX) = λπ (X) for every λ ∈ (0, ∞).

For every X ∈ X the quantity π (X) − (−π (−X)) can be
nterpreted as the difference between the buying and the selling
rice of X , i.e. as the ‘‘bid–ask spread’’ of X; see e.g. Jouini (2000).
payoff is frictionless precisely when its bid–ask spread is zero

nd the price per unit does not depend on the transacted volume.
The ‘‘collapse to the mean’’ recorded in Theorem 5.1 was

riginally formulated in the context of Choquet pricing. In view
f Corollary 5.2, that result can be equivalently formulated as
ollows: The expectation under the reference probability measure P
s the only law-invariant, sublinear, increasing, comonotonic pricing
unctional on L∞ under which every risk-free payoff and some risky
ayoff are frictionless. As a direct consequence of Theorem 4.5 we
btain the following generalization of this result.

roposition 5.5. Let π be a proper, convex, σ (X ,X ∗)-lower
emicontinuous, law-invariant pricing rule. If some risky payoff Z ∈

X with EP[Z] ̸= 0 is frictionless under π , then there exists a ∈ R
uch that

(X) = aEP[X]

or every X ∈ X . In particular, every payoff is frictionless under π .
The condition EP[Z] ̸= 0 can be removed if the risk-free payoff 1 is
rictionless under π).
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Proof. Take any payoff Z ∈ X and note first that Z is frictionless
if π is linear along it. The converse also holds. Indeed, if Z is
frictionless, then for every m ∈ R we have π (mZ) = mπ (Z)
whenever m ≥ 0 (recall that π (0) = 0 by our initial assumption
n π ) and

(mZ) = π (−(−m)Z) = −mπ (−Z) = mπ (Z)

henever m < 0. The desired statements now follow directly
rom Theorem 4.5 and Corollary 4.8. □

The preceding result extends the message of Castagnoli et al.
2004) beyond their bounded-payoff setting and beyond law-
nvariant Choquet integrals: In a market where there exists at
east one frictionless risky payoff, no reasonable convex and lower
emicontinuous pricing rule can be law invariant. In particular,
his shows that the law-invariant pricing rules put forward in
ang (2000, 2002), which involve unbounded payoffs, cannot
e expected to harmonize insurance and derivatives pricing. We
ote that the more recent literature on market-consistent valua-
ion (see e.g. Malamud et al. (2008), Pelsser and Stadje (2014) and
haene et al. (2017)) seems to be, at least implicitly, aware of this
imitation and requires only partial law invariance, e.g. for payoffs
hat depend on pure insurance risk only. We also refer to the
conomic premium principles in Bühlmann (1980) and Bühlmann
1984) for early examples of premium principles that are not law
nvariant on the entire reference payoff space and to Deprez and
erber (1985) for a first systematic treatment of premium prin-
iples beyond law invariance. From this perspective, our result
rovides a rigorous justification of why law invariance cannot be
tipulated when pricing the entire universe of financial contracts.

aw-invariant risk measures based on general eligible assets
The paper by Artzner et al. (1999) has been a landmark con-

ribution in the theory of risk measures. In a regulatory context,
isk measures assign the minimal amount of capital that has to
e raised and invested in a fixed financial asset, called the eligible
sset, to ensure an acceptable profit-and-loss profile. The accept-
bility criterion is pre-specified by the regulator. In the literature,
t is standard to assume that the eligible asset is frictionless in the
ense that it is available in arbitrary quantities and its price per
nit does not depend on the transacted volume. In this case, the
orresponding risk measures are naturally translation invariant as
ecalled below. In the context of risk measures, the elements of
are interpreted as (net) capital positions of financial firms at a

ixed future date.

efinition 5.6. A (frictionless) eligible asset is a couple S = (S0, S1)
ith strictly-positive price S0 ∈ R and nonzero positive payoff

1 ∈ X . We say that S is risk free if S1 is constant and risky
therwise. We say that S is cash if S = (1, 1). A functional
: X → (−∞, ∞] is said to be an S-additive risk measure if

t satisfies the following properties:

(1) ρ(X + mS1) = ρ(X) − mS0 for all X ∈ X and m ∈ R.
(2) ρ is decreasing.

hen S is cash, we speak of cash-additivity instead of
-additivity.

It is well known that, for every X ∈ X , an S-additive risk
easure can always be expressed as

(X) = inf
{
m ∈ R ; X +

m
S0

S1 ∈ Aρ

}
,

where Aρ = {X ∈ X ; ρ(X) ≤ 0}. The set Aρ consists of all the
apital positions that are deemed acceptable from a regulatory
erspective. Hence, for every position X ∈ X , the quantity ρ(X)
an be interpreted as the minimum amount of capital that has to
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e raised and invested in the eligible asset to ensure acceptability.
his type of risk measures has been thoroughly investigated in the
ase of a cash eligible asset; see e.g. Föllmer and Schied (2016).
he case of a general eligible asset has been studied, e.g., in
rtzner et al. (2009) and Farkas et al. (2014b,a).
There are many examples of law-invariant risk measures when

he eligible asset is risk free. One question is whether law in-
ariance can hold when the eligible asset is risky. This question
as taken up in a bounded setting in Frittelli and Rosazza Gianin
2005). A slight reformulation of Theorem 5.3 reads as follows:
he expectation under the reference probability measure P is, up to
sign, the only law-invariant, convex, cash-additive risk measure on

∞ that is S-additive for a risky eligible asset S and assigns the value
to the zero position. As an application of our general ‘‘collapse to
he mean’’ we obtain the following generalization of this result.

roposition 5.7. Let ρ be a proper, convex, σ (X ,X ∗)-lower
semicontinuous, law-invariant, S-additive risk measure such that
ρ(0) < ∞. If the eligible asset S is risky, then for every X ∈ X

ρ(X) =
S0

EP[S1]
EP[−X] + ρ(0).

If ρ is cash-additive, then EP[S1] = S0).

roof. Since ρ(0) ∈ R and ρ is an S-additive risk measure,
e have that ρ is translation invariant and, hence, affine along
he payoff S1. As S1 is nonconstant and satisfies EP[S1] > 0, it
ollows from Theorem 4.5 that there exist a, b ∈ R such that
(X) = aEP[X] + b for every X ∈ X . We infer that b = ρ(0)
nd

=
ρ(S1) − ρ(0)

EP[S1]
= −

S0
EP[S1]

.

f ρ is also cash-additive, then a + b = ρ(1) = ρ(0) − 1 = b − 1,
howing that EP[S1] = S0. □

elevant cash-based risk measures
We conclude the section on applications by showing that

ur general ‘‘collapse to the mean’’ does not only deliver ‘‘non-
xistence’’ statements but can also be exploited to derive ‘‘posi-
ive’’ results. We focus on cash-additive risk measures satisfying
uitable relevance properties.

efinition 5.8. We say that ρ : X → (−∞, ∞] is relevant if for
very X ∈ X we have

≥ 0, P(X > 0) > 0 H⇒ ρ(−X) > 0

nd strongly relevant if for every X ∈ X we have

̸= 0, ρ(X) ≤ 0 H⇒ ρ(−X) > 0.

Note that a strongly-relevant functional that is decreasing and
atisfies ρ(0) ≤ 0 is also relevant. The property of relevance,
hich is sometimes known under the name of sensitivity, has
een studied, e.g., in Stoica (2006) and Föllmer and Schied (2016)
n connection with generalized no-arbitrage conditions.

Our ‘‘collapse to the mean’’ can be used to show that, with
he exception of the negative of the expectation, every cash-
dditive risk measure that is sublinear, lower semicontinuous,
nd law invariant is automatically strongly relevant. In particular,
his implies that every risk measure of the above type is always
elevant.

roposition 5.9. Let ρ be a sublinear, σ (X ,X ∗)-lower semicon-
inuous, law-invariant, cash-additive risk measure. Then, one of the
ollowing two alternatives holds:
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(i) ρ(X) = EP[−X] for every X ∈ X .
(ii) ρ is strongly relevant.

In particular, ρ is always relevant.

Proof. Assume that ρ is not strongly relevant. Then, we must find
a nonzero Z ∈ X such that ρ(Z) ≤ 0 as well as ρ(−Z) ≤ 0. As ρ

is sublinear, we also have

0 = ρ(0) = ρ(Z − Z) ≤ ρ(Z) + ρ(−Z).

This implies that ρ(−Z) = −ρ(Z). But then ρ(mZ) = mρ(Z) for
every m ∈ R again by sublinearity, showing that ρ is linear along
Z . Note that Z cannot be constant for otherwise

0 ≤ −ρ(Z) = Z = ρ(−Z) ≤ 0

would imply that Z = 0. As a result of Corollary 4.8, there must
exist a, b ∈ R such that ρ(X) = aEP[X] + b for every X ∈ X . To
conclude, it suffices to note that b = ρ(0) = 0 and a = ρ(1) =

1. □

emark 5.10. The preceding result does not generally hold if ρ is
nly assumed to be convex. To see this, define ρ : L1 → (−∞, ∞]

y setting

(X) = inf{m ∈ R ; EP[min(X + m, 0)] ≥ −1}.

It is immediate to verify that ρ is a convex, σ (L1, L∞)-lower semi-
ontinuous, law-invariant, cash-additive risk measure. However,
e have ρ(−1) = 0, showing that ρ is neither relevant nor
trongly relevant.
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