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Abstract: Microalgae are promising sources of fuels and other chemicals. To operate microalgal
cultivations efficiently, process control based on monitoring of process variables is needed. On-line
sensing has important advantages over off-line and other analytical and sensing methods in mini-
mizing the measurement delay. Consequently, on-line, in-situ sensors are preferred. In this respect,
optical sensors occupy a central position since they are versatile and readily implemented in an
on-line format. In biotechnological processes, measurements are performed in three phases (gaseous,
liquid and solid (biomass)), and monitored process variables can be classified as physical, chemical
and biological. On-line sensing technologies that rely on standard industrial sensors employed in
chemical processes are already well-established for monitoring the physical and chemical environ-
ment of an algal cultivation. In contrast, on-line sensors for the process variables of the biological
phase, whether biomass, intracellular or extracellular products, or the physiological state of living
cells, are at an earlier developmental stage and are the focus of this review. On-line monitoring
of biological process variables is much more difficult and sometimes impossible and must rely on
indirect measurement and extensive data processing. In contrast to other recent reviews, this review
concentrates on current methods and technologies for monitoring of biological parameters in mi-
croalgal cultivations that are suitable for the on-line and in-situ implementation. These parameters
include cell concentration, chlorophyll content, irradiance, and lipid and pigment concentration and
are measured using NMR, IR spectrophotometry, dielectric scattering, and multispectral methods.
An important part of the review is the computer-aided monitoring of microalgal cultivations in the
form of software sensors, the use of multi-parameter measurements in mathematical process models,
fuzzy logic and artificial neural networks. In the future, software sensors will play an increasing role
in the real-time estimation of biological variables because of their flexibility and extendibility.

Keywords: microalgal cultivations; on-line monitoring; optical sensors; biological variables; software
sensors

1. Introduction

Microalgal biomass contains significant amounts of valuable components including
lipids, proteins, carbohydrates, pigments and vitamins that can be separated and up-
graded to various products in the biofuel, food, fodder, cosmetic and pharmaceutical
industries [1,2]. Long chain polyunsaturated fatty acids produced by microalgae play a
significant role as health food supplements [3].

Efficient medium- and large-scale microalgal cultivations require on-line monitoring
methods as the bases for process control, not only of standard process variables such as
temperature and pH but of products in the biological phase as well. On-line sensing has
important advantages over classical off-line analytical methods: no sampling and sample
processing is necessary and measurement results can be transmitted to controllers in real
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time or with only a slight delay. Minimizing the measurement delay is of high importance
for process control, and thus, on-line and in-situ sensors are preferred that employ, in closed
photobioreactor cultivations, non-invasive measurement principles to avoid contamination.
Optical sensors thus occupy a central position as they can be constructed to be non-invasive.

The terms on-line, in-line, at-line, off-line and in situ define the manner of measure-
ment and sensor placement in the process. Definitions of the terms on-line, in-line, at-line,
off-line and in situ differ slightly between different industrial branches [4–7]. In an on-line
measurement setup, either the sample is drawn from the process and not returned to the
process stream [6] or the sensor is placed in a continuous bypass [7]; in an in-line setup
the sample is analyzed within the continuous stream flow and not removed from it; in an
at-line setup the sample is removed from the process, isolated from and analyzed in close
spatial proximity to it; in an off-line setup measurements are carried out in a separate lab,
utilizing a discrete sample; and in an in-situ setup the sensor is placed in the reactor vessel
itself and is continuously in contact with the content [6]. Generally, on-line and in-line
methods differ from the off-line and at-line methods in the time in which information about
process or material properties is obtained compared with the time in which these properties
change [5]. With on-line and in-line methods, the measurement process is faster than the
change in the system properties, while with at-line and off-line methods, the measurement
process can be slower than those changes. It is also easier to automate on- and in-line
methods, so these analyses permit continuous process control. At-line and off-line analyses
are characterized by manual or automated sampling followed by discontinuous sample
processing, measurement and evaluation. In general, continuous process control with
at-line or off-line sensing is not possible.

Process variables requiring monitoring in microalgal cultivations can be divided into
three groups [8]:

• Physical: light energy supply, temperature, mixing intensity, light frequency within
the culture;

• Chemical: pH, pO2, pCO2, N, P, other nutrients, extracellular products, chemical
contaminants;

• Biological: biomass concentration and composition (presence of intracellular products,
mostly lipids and pigments), presence of other biological species, physiological state,
photosynthetic efficiency (PE) (from which biomass yield on light energy can be
derived), cell morphology.

Certain monitoring requirements in microalgal cultivations are distinct from those in
most biotechnological processes:

• Monitoring of light in phototrophic microalgal cultivations; and
• Biological variables in microalgal cultivations are almost always intracellular products

(lipids, carbohydrates, proteins) that are produced mostly in the stationary phase
of the cultivation. Furthermore, there is a need to monitor harmful or competing
biological contaminants (algae, pathogens, herbivores) in outdoor cultivations in open
photobioreactors.

On-line monitoring of physicochemical variables in microalgal cultivations (tempera-
ture, pH, pO2, pCO2, inorganic nutrients, light intensity) is already available using standard
sensors employed in the chemical and bioprocess industry: thermoelements, electrodes
(pH, dissolved O2 and CO2, inorganic nutrients), gas analyzers (gaseous O2, CO2) and,
specifically for phototrophic microalgal cultivations, measurement of light intensity with
quantum sensors or dosimeters [9,10]. What remains is the monitoring of biological pa-
rameters/the biological phase, which is much more difficult because almost all the desired
products in microalgal cultivations are intracellular [11]. In contrast to sensors measuring
physicochemical variables, on-line sensors measuring biological variables as concentrations
of lipids, carbohydrates and proteins or physiological variables as photosynthetic efficiency
are in an earlier developmental stage.
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In the last decade, evolution in the implementation of existing and established meth-
ods (e.g., optical spectroscopy) to the monitoring of the biological phase in microalgal
cultivations has occurred and some new approaches (implementation in microfluidic de-
vices, laser reflectance, hyperspectral imaging) have been developed and examined. The
support in signal processing using chemometric models and machine learning has also
grown. In this review, these developments are summarized with focus on monitoring the
biological phase (biomass concentration and composition, physiological state, morphology,
biological contaminants) using non-destructive, real-time, on-line, or in-line methods that
avoid contamination of the running cultivation in closed photobioreactor systems, mini-
mize measurement delays and thus supply the information required for successful process
control without physically affecting the cultivation. Optical methods, including microscopy,
spectroscopy of absorption, reflectance and scattering, and multispectral/hyperspectral
imaging form the core of available methods. Non-optical methods, including nuclear
magnetic resonance spectroscopy (NMR) and measurement of capacitance, impedance,
or dielectric effects, have been also used for on-line monitoring of biomass components.
Physical sensors built on these physical principles supply measurement signals that are fur-
ther processed by software sensors, i.e., chemometric methods, image processing, various
mathematical models, and artificial neural networks, or a combination of those, to yield
meaningful process values enabling to estimate concentrations of desired cultivation prod-
ucts. The massive low-cost computing power available today provides fast data acquisition
even when the raw hardware sensor data must be extensively processed.

Reviews focusing specifically on possibilities of monitoring biological variables in
microalgal cultivations are already numerous, but they primarily present off-line methods,
sometimes including automated methods implemented at-line [12–14]. In contrast, this re-
view focuses both on optical hardware sensors of biological variables that can be employed
in the on-line or in-line mode and on software sensors using signals from hardware sensors
of all suitable types. Most sensors of biological variables mentioned in the review are in the
research and laboratory stage, while some have been used in a pilot-scale cultivation.

This review is divided into several sections. First, measurement methods used for on-
line monitoring of biological variables are reviewed in Section 2, arranged according to the
measured variable and the employed method: biomass concentration measured by optical
density, fluorescence, color and reflectance; mixed culture discrimination, cell number
concentration, cell morphology, culture health monitoring, microalgal species identification,
photosynthetic efficiency and quantum yield, and finally, biomass composition in terms
of lipid, carbohydrate, pigment and protein concentration. In Section 3, high-throughput
methods are briefly mentioned because of the possibility of converting them into true
on-line methods. Section 4 deals with computer-aided on-line monitoring in the form
of software sensors, reviewing approaches based on observers, Kalman filters, machine
learning, artificial neural networks and chemometric models. Perspectives of the on-line
sensing in microalgal cultivations are discussed in Section 5 and conclusions are drawn in
Section 6.

There are quite a few publications especially in the field of software sensors where
several biological variables are estimated simultaneously from the same set of measure-
ment data. Such publications are then cited several times in the respective section. The
same principle applies to publications cited more than once, both in sections covering the
measurement method and in sections covering the data processing approach.

2. Measurement Methods Used for On-Line Monitoring of Biological Variables

In this section, on-line measurement methods are listed, with several exceptions where
an off-line measurement method is mentioned, mostly because of the possible future on-line
implementation. Monitoring methods, the corresponding monitored variable(s), and the
sensor type are summarized in Table 1. The reported accuracy of these methods, together
with the biological variable measured, measurement method and measurement conditions
and limitations, is shown and compared in Table 2. Biomass concentration and cell count
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can be monitored using optical density, color analysis, fluorometry, spectral methods or
permittivity with accuracy from about R2 = 0.90 to R2 = 0.99. Biomass components as
lipids, pigments and proteins can be monitored using NMR, PAM (quantum yield), spectral
methods, fluorometry and ISM with comparable accuracy with that of biomass and cell
count but with more complex and more expensive instrumentation, especially lipids with
NMR and PAM and fatty acids with ISM.

The most often encountered process variable estimated in microalgal cultivations is the
biomass concentration, determined using several physical measurement signals: turbidity,
absorbance (optical density) at a predefined wavelength or as a spectrum, reflectance, color
analysis (red–green–blue; RGB), IR spectroscopy and fluorescence, sometimes combined
with a software sensor (observer). Other estimated variables are the pigment and lipid
content, and for their estimation, physical measurements of cell count, nitrate and glu-
cose concentration are employed, complemented by process signals obtained by various
methods as measurement of turbidity, IR spectrum and fluorescence, RGB imaging and
transmission spectra, NMR spectroscopy, fluorescence, hyperspectral or RGB imaging, and
dielectrophoresis.
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Table 1. Monitoring method of biological variables in microalgal cultivations implemented on-line or with on-line potential. (PAM: pulse amplitude modulation, a
fluorescence technique; ANN: artificial neural networks; ISM: In-Situ Microscopy).

Monitoring Method Monitored Variable
(Concentration) On-Line/Off-Line Sensor Type Comment References

OD, turbidity (single wavelength) Biomass On
Self-constructed 560 nm

Amphenol TSD-10 730 nm
Commercial 880 nm

Flow-through cell (1) [15–18]

OD (multiple wavelength)
Biomass

Growth phase
Chlorophyll

On
Off

(1) OD self-constructed
LED 400, 750, 850 nm
Laser 650, 685, 780 nm

(2) 550, 665, 750 nm

(1) Flow-through cell (1) [19,20]
(2) [21]

Reflectance
Contamination

Biomass
Cell count

On
Off

(1) Spectrometer
(2) (a) Reflectance probe
(2) (b) Spectroradiometer

Contamination on-line
(1) [22]

(2) (a) [23,24]
(2) (b) [25]

Color analysis (RGB) Biomass On
Off

(1) Commercial color sensor
(2) CCD camera, Webcam (1) Flow-through cell (1) [26]

(2) [15,27–29]

Hyperspectral (Absorbance/transmittance
spectrum)

Biomass
Cell count

Lipids
Carotenoids

Off
(2) (a, c) Spectral camera
(2) (b) Spectroradiometer

(2) (d) Spectrometer

(2) (a) [30]
(2) (b) [25]
(2) (c) [31]
(2) (d)[32]

ISM Cell morphology
Lipids

On
Off

(1) In-Situ Microscope
(2) In-Situ Microscope,

holographic microscope

(1) [33]
(2) [34]

Chlorophyll fluorometry
Protein
Biomass

Contamination

On
Off

(1) LEDs/Photodiode
(2) (a) Fluorometer

(2) (b) 2D-Fluorometer

Single/multiple excitation
ANN

Chemometric model

(1) [35] (2) [36–38]
(2) (a) [39]

(2) (b) [40,41]

PAM fluorometry
Quantum yield

(Photosynthetic efficiency)
Contamination

On
Off PAM fluorometer

Stress detection
(1) Light adapted except [42]

(2) Dark adapted

(1) [42–46]
(2) [47]



Energies 2022, 15, 875 6 of 27

Table 1. Cont.

Monitoring Method Monitored Variable
(Concentration) On-Line/Off-Line Sensor Type Comment References

2D-fluorometry

Biomass
Nitrate

Cell count
Cell viability
Fatty acids

Lipids
Pigments

Off 2D fluorometer with a cuvette or
with a fiber optics probe Chemometric models (2) [40,41,48–50]

NMR Lipids On Benchtop NMR in a bypass Expensive instruments (1) [51–55]

Dielectric spectroscopy, dielectrophoresis,
capacitance, impedance, permittivity

Viable cell concentration
Lipids On (1) Commercial probe

(2) Microfluidic device
(1) [15,56]

(2) [57]

Microfluidic implementation Lipids On
Off

(2) (a) PAM fluorometer
(2) (b) Permittivity

(2) (a) [58]
(2) (b) [57]

Mass spectrometry Contamination On TOF mass spectrometer Grazer detection
Expensive instruments (1) [59]

(1) On-line implementation. (2) On-line implementation possible.

Table 2. Accuracy of the reviewed methods where available in the original article. Included are only methods not using software sensors; these are shown in
Section 4. (DWC: dry weight concentration (of biomass); OD: optical density; Vout: sensor output voltage; NTU: nephelometric turbidity unit; r, g, b: intensities of
the red, green and blue components; T751, T676: transmittance at 751 and 676 nm; Chl a: chlorophyll a; CC: cell count; HR: hyperspectral reflectance; EC: extinction
coefficient; OD560: optical density at 560 nm; ∆ε: change in permittivity; QY: quantum yield; ISM: In-Situ Microscope; DHA: docosahexaenoic acid; R2: coefficient of
determination; r: Pearson correlation coefficient).

Biological Variable Measurement Method Method Accuracy Limitations/Conditions Reference

Biomass OD, turbidity

OD/DWC: R2 = 0.81–0.96 [19]

PBR bypass

[19]
[16]
[18]
[20]

Vout/OD: R2 = 0.95 [16]
NTU/DWC: R2 = 0.88–0.93 [18]
OD/DWC: R2 = 0.88–0.92 [18]

OD/DWC: R2 = 0.99 [20]

Biomass Color analysis (RGB)
OD/DWC: R2 = 0.998 [26] PBR bypass [26] [26]

[28]
[29]

(r,g,b)/DWC: R2 = 0.97–0.99 [28] Open container/biofilm, suspension [28]
(r,b)/DWC: R2 = 0.90–0.96 [29] Open container/suspension [29]

Biomass Transmittance spectrum DWC/T751/T676: r = 0.51–0.93 [30] Microwells [30]

Biomass Chlorophyll fluorometry DWC/Chl a fluorescence: r = 0.95 [35] Fiber probe in PBR bypass [35]
[39]
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Table 2. Cont.

Biological Variable Measurement Method Method Accuracy Limitations/Conditions Reference

Cell count

Transmittance spectrum
Hyperspectral reflectance, EC

Permittivity
Chlorophyll fluorometry

CC/T751/T676: r = 0.85–0.96 [30] Microwells [30] [30]
[25]
[56]
[35]

CC/HR,EC: R2 = 0.99 [25] Open container [25]
CC/OD560: R2 = 0.992–0.999 [56] Flask bypass [56]

CC/Chl a fluorescence: r = 0.92 [35] Fiber probe in PBR bypass [35]

Viable cell count Permittivity (ε) OD560/∆ε: R2 = 0.99 (calibration) Commercial probe [56]
OD560/∆ε: R2 = 0.77 (cultivation)

Lipids
NMR

Quantum yield (∆F′/Fm
′)

NIR spectrum

Algal lipids/NMR signal: R2 > 0.99 [55] PBR bypass [55] [55]
[52]
[46]
[31]

Algal lipids/NMR signal: R2 = 0.99 [52] Bleed [52]
Lipids as %DW/QY(∆F′/Fm′): r = −0.96 [46] In-situ fiber [46]

Lipids predicted/observed: R2 = 0.94 [31] Sampling [31]

Fatty acids ISM/Image recognition DHA/cell diameter: R2 = 0.98 (calibration) PBR in-situ probe [34]

Protein Chlorophyll fluorometry Protein/Chl a fluorescence: r = 0.92 Fiber probe in PBR bypass [35]

Carotenoids (C) VIS/NIR spectrum Predicted/observed C: r = 0.96 Fiber in sample [32]
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2.1. Biomass Concentration

Biomass concentration (BC, mostly expressed as dry weight concentration, DWC) is
the basic biological variable in any microbial cultivation. Measurement of optical density
(OD) is the most widely employed proxy for the BC. By far the most implementations of
on-line sensors other than standard turbidity sensors measure (or estimate) the BC. To
use optical density as a proxy for BC reliably and accurately, a choice must to be made
concerning the suitable wavelength and the proper conditions for the OD/DWC calibration,
and some assumptions have to be—at least approximately—fulfilled in order for this proxy
to work: biomass composition should not change significantly during measurement or
within the measurement range; for calibration, cells from different growth phases should be
preferably used; ideally, calibration should change along the cultivation path reflecting thus
changes in the optical properties of the biomass due to the changing cell size (scattering
method) or changing composition.

Griffiths et al. [60] recommend selection of a wavelength with minimal pigment
absorption, e.g., 750 nm, and calibration in the middle of or across the entire growth cycle.
For routine measurements, optical density at 750 nm (OD750) is widely used to monitor
algal growth [61] as it avoids the absorption of light by cellular pigments (chlorophyll and
carotenoids) and is treated as a pure light scattering measurement. The major drawback is
that light scattering is an aggregate variable of cell size, density, opacity and granularity
which is difficult to take apart and may also be influenced by the presence of bacteria and
inorganic solids.

Nielsen and Hansen [21] argue that OD measured within the absorption range of
chlorophyll provides more specificity for measuring microalgal biomass when other parti-
cles are present but, on the other hand, measurements would be sensitive to changes in
the chlorophyll content of the microalgal biomass and, thus, measuring OD within the
absorption range of chlorophyll has both advantages and disadvantages compared to using
the 750 nm wavelength. Any of the investigated wavelengths of 550, 665 and 750 nm could
serve as a robust proxy for the biomass concentration. In another study [62], the authors
conclude that correlation between measurements at 480, 510, 630, 647, 650, 664, and 750 nm
is rather high, with Pearson coefficients ρ = 0.92–0.97, so the wavelength choice between
those investigated does not seem to be very important.

2.2. Monitoring BC Using Direct Sensors without Complex Signal Evaluation

Barbosa et al. [19] designed a low-cost multi-wavelength (400, 850, 940 nm) absorbance
sensor for real-time monitoring of the OD in microalgal cultures in both closed and open
systems. Light from three LEDs was transmitted through a glass tube placed in a PBR
bypass, and linear correlations between ODs measured at individual wavelengths and
biomass DWC measured by gravimetry were found in the range 40–800 mg·L−1 DWC. The
same procedure was used for correlating DWC with OD measured at five wavelengths
(400, 680, 750, 850, and 940 nm) in a spectrophotometer. Correlation coefficients (R2) for
individual correlations were in the range 0.81 to 0.96. No OD combination at different
wavelengths for a multi-wavelength correlation was attempted.

Nguyen and Rittmann [16] suggested measuring BC by the far red TSD-10 turbidity
sensor employed commercially in washing machines, OD730 was linear from 0.5 to 4.5 rel.
AU in a Synechocystis culture. The sensor was calibrated using a spectrophotometer at
730 nm and tested as a BC sensor installed in a bypass in a 2.5-L working volume flat panel
PBR operated as a turbidostat. With automatic harvesting, the turbidostat could maintain
stable BCs in step-down and step-up experiments.

Sarrafzadeh et al. [15] compared nine techniques for measuring the cell concentration
using four different microalgae cultivated in a closed PBR, using DWC as the reference.
The investigated methods comprise the manual cell count, microscopic automated cell
count (benchtop Countess, Invitrogen), OD680 measured in a spectrophotometer, dielectric
permittivity (Evo 200, Fogale Nanotech, Nimes, France), NIR OD (nephelometry 90◦ scatter,
NIR-980 probe, Evo 200), oxygen production rate (OPR), RGB analysis of images captured
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off-line [27], flow cytometry with fluorescence and forward and side scatter. All methods
apart from DWC, manual cell count and OPR require only several minutes to produce
results. RGB, OD (NIR) and the dielectric permittivity method show potential for on-line
application, the latter two being carried out with commercial sensors Evo 200. No details
concerning the measurement setup with Evo 200 (NIR-OD, permittivity) are described.

Thoré et al. [18] monitored BC of three species (Chloromonas typhlos, Microchloropsis
gaditana and Porphyridium purpureum) in closed, pilot-scale PBRs on-line and in real time
using a flow-through nephelometer and related nephelometric turbidity (in NTU) to DWC
and optical density at four wavelengths ranging from 435 to 720 nm. The resulting relation-
ships between turbidity (NTU) and DWC and between DWC and OD720 were nonlinear,
with R2 = 0.88–0.93 and R2 = 0.88–0.92, respectively, differing between species.

Jia et al. [20] used a multi-wavelength OD sensor measuring OD at 650, 680 and
780 nm in an on-line, real-time mode, with light generated by laser diodes placed in a
flow cell in a bypass, both in a closed PBR and in an open raceway. Measurements at
650 and 680 nm correlated with the chlorophyll content, while measurement at 780 nm
estimated the suspension turbidity. For BC estimation, only OD780 was used, and the other
wavelengths were used only for monitoring the change in growth phases by computing
ratios OD650/OD780 and OD685/OD780.

Salmi et al. [30] estimated BC in an off-line mode by a commercial hyperspectral
camera for imaging suspension samples (24- or 96-well plates) of five microalgal strains in
the exponential growth phase. From the transmittance spectra, ratios of transmittance at
751/676 nm wavelengths (width 7 nm) were successfully correlated with the BC expressed
as DWC or cell count (measured by an electronic cell counter or single-channel fluorometry)
in a BC range differing by the strain.

2.3. Monitoring Biomass Concentration Using Complex Evaluation

Most monitoring methods in this section use fluorescence as the measured process
signal. Other signals include optical density, reflectance, RGB and a combination of pO2,
pH, gas flow (air, CO2) and solar radiation. “Complex evaluation” means that signals of
hardware sensors are processed by software sensors in the form of observers, chemometric
models, or artificial neural networks (ANN), all described in Section 4.

2.3.1. Methods Based on Optical Density Measurement

Flores et al. [17] use a sensor like that of Nguyen and Rittmann [16] which is employed
for measuring the OD560 of a suspension of mixotrophically cultivated Spirulina flowing
inside a borosilicate tube, calibrated with biomass DWC. A flat-panel closed PBR was used
for cultivation. The turbidity signal was processed by a robust nonlinear observer to deliver
an estimate of the microalgal biomass concentration and of the substrate (glucose).

2.3.2. Methods Based on Fluorescence Measurement

Chemometric models for fucoxanthin content and biomass concentration of T. lutea
and P. tricornutum were developed by Gao et al. [63], using 2D fluorescence excitation-
emission matrices (EEM) obtained by off-line measurements in a cuvette as the only inputs.
Biomass models predicted the BC with R2 between 0.93 and 0.96.

In another study, reflection spectra (not used) and fluorescence were acquired simulta-
neously by a “Y” optical fiber reflecting probe with seven fibers (6× excitation light + 1×
fluorescence readout) immersed in the sample [39]. Acquired fluorescence signals were
correlated using ANN or Genetic-Algorithm-ANN with a hemocytometer count. In more
detail, the study is described in Section 4.3.

Sa et al. [48] acquired fluorescence spectra of a N. oceanica suspension in an off-line
setup (spectrophotometer cuvette), and the resulting EEMs were correlated using a chemo-
metric model (N-partial least squares (PLS), multiway PLS, in MATLAB) with the cell
concentration, chlorophyll a, and total, saturated, and unsaturated fatty acids. Inner
filter effects were compensated for. Cell concentration was estimated from EEMs with
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R2 = 0.66–0.97. This method could be potentially converted to an on-line implementation
using a submerged fiber fluorescence probe.

Fluorescence EEMs were measured in samples drawn from a cultivation of Dunaliella
salina by Sa et al. [41]. Samples were measured by an immersed optical fiber probe without
any sample treatment, excitation 250–690 nm, emission 260–700 nm. Principal component
analysis (PCA)/PLS was used to design a chemometric model using fluorescence PCs as
inputs and cell concentration, cell viability and nitrate concentration as outputs. Converting
to an on-line application is suggested (but not performed) by coupling the fiber probe to
the PBR which would provide the biomass estimation with about a 5 min delay.

Shin et al. [38] designed a hand-held fluorometer using three different wavelengths of
LEDs (385, 448, 590 nm) to stimulate fluorescence emission at 645 and 680 nm. The resulting
fluorescence pattern is processed using a chemometric model built using PLS regression
for selective BC estimation of C. vulgaris and Spirulina in a mixed sample. Measurements
were carried out in a micro-vial and required sampling, but the principle could be easily
adapted to an on-line implementation. Devices estimating microalgal and cyanobacterial
BCs based on this approach were designed by this author group previously, using a PDMS
microfluidic chip and the three LEDs with wavelengths 385, 448 and 590 nm but without
the chemometric model [37]. The initial version used excitation at only one wavelength
(448 nm) [36] and the authors showed that the non-microalgal turbidity of the medium did
not influence the measurement.

Sa et al. [40] use an optical fiber bundle probe in a stirred beaker containing sample
from a D. salina cultivation measuring 2D fluorescence spectra (EEMs), with excitation
at 250–690 nm and emission at 260–700 nm. PCA and PLS chemometric models were
designed to estimate cell count and cell viability (percentage of cell disruption) using as
inputs the emission intensity in three fluorescence regions identified in the 2D fluorescence
spectra matrices.

Perin et al. [58] estimated biomass by measuring chlorophyll fluorescence of microal-
gae grown in a microfluidic device with microwells with a FluorCam FC 800, a system for
combined multispectral and kinetic fluorescence imaging consisting of LED panels and a
CCD camera where the measured object is placed inside the measurement box. This setup
is suitable only for microwells or a similar setup, not for a standard photobioreactor.

On-line fluorescence measurements were performed by Karakach et al. [35] in a
Scenedesmus cultivation using a submersible probe equipped with a USB4000 spectrometer
(Ocean Optics, Dunedin, FL, USA) placed in an external recirculation loop of a closed PBR.
In parallel, culture turbidity was measured with a commercial turbidity sensor. Acquired
fluorescence spectra were analyzed using linear regression for DWC and cell count and
using principal component regression (PCR) for the protein concentration. Chemometric
models for estimations of the BC (as DWC and cell number concentration) and of the
protein concentration based on chlorophyll-related culture fluorescence were thus designed.
When used in real-time environment, the DWC and cell number concentration estimations
had an acceptable accuracy (r = 0.95 and 0.92, respectively) using the linear regression,
estimation of protein concentration required the more complex PCR model which attained
r = 0.8.

2.3.3. Methods Based on Color Measurement

Benavides et al. [26] developed a low-cost RGB turbidity sensor based on the com-
mercial ColorPAL module that measures the intensity of light generated by three LEDs
(580, 540 and 450 nm) and absorbed in a polystyrene flow-through cuvette. The measured
red, green, and blue signals were converted to luminance and absorbance in an Arduino
microcomputer and employed to compute the BC using a calibration based on absorbance
measured off-line at 680 nm in a spectrophotometer which in turn was calibrated using
gravimetry. Results obtained with the RGB sensor placed in a bypass of a closed flat panel
PBR in a culture of D. tertiolecta were compared both to the off-line determination with a
spectrophotometer as well as to turbidity measured by the commercial Optek ASD19-N
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probe. The accuracy and precision of the RGB sensor, spectrophotometer and the Optek
probe were comparable, with R2 = 0.998 for the correlation DWC vs. the absorbance mea-
sured by the RGB sensor. For control purposes, BC estimated by the RGB sensor were
employed in a Droop model-based extended Luenberger observer to estimate the nitrate
concentration and the intracellular quota in a continuous cultivation of D. tertiolecta.

Murphy et al. [28] quantified BC in biofilms and in suspended microalgal cultures
using wideband multispectral imaging of reflected and backscattered light. Culture images
were taken with a simple RGB camera, and the resulting images analyzed for the RGB
components. The measurement both in biofilms and in the suspended culture was carried
out in off-line mode but the suspended culture measurement could be adapted for an
on-line implementation. In both biofilms and suspended cultures, correlations between
the areal BC and separate intensities of the R, G and B components were found, with
R2 = 0.97–0.99. This method was further developed for use in suspended cultures [29]
where the backscattered light is measured and its RGB intensities analyzed to correlate
with the BC, invasion of the microalgal culture by cyanobacteria and with the decrease in
the photosynthetic yield. The average error between the actual and predicted BC based on
measured RGB values was 14 to 22% depending on the microalgal strain.

2.3.4. Methods Based on Reflectance Measurement

Lopez-Exposito et al. [23] used a focused beam reflectance probe (FBRM) [64] which
measures the chord length distribution (CLD), to represent the particle length distribution
and to estimate the particle size. Data were acquired in samples drawn from a PBR and were
processed by a perceptron (ANN) that correlated the measured CLD with the BC obtained
by gravimetry, attaining a correlation coefficient of R2 = 0.92. In a further development of
this method [24], reflectance data obtained by the same rotating laser probe and BC data of
C. sorokiniana in samples drawn from a PBR were processed with a support vector regression
and a random forest regression model, both methods of machine learning, attaining the
respective accuracy of R2 = 0.87 and 0.81 in the biomass dry weight estimation. As in [23],
flocculant was used in parallel to check the influence of the aggregation state and turbidity
on the biomass estimation result.

2.4. Mixed Culture Discrimination

Franco et al. [65] identified contamination of single-strain microalgal cultivations
by other microalgal species using measurements of light absorption in each separate
microalgal culture at 31 points between 400 and 700 nm in bandwidths of 10 nm on five
consecutive days. Four microalgal strains were used: Nostoc, Scenedesmus, Spirulina and
Chlorella. Spectral signatures obtained in this way were used to train an ANN that could
then identify pure individual species with an accuracy >98.7%. The trained ANN could
differentiate between monoalgal and mixed algal cultures and of identifying contamination
of a single-strain culture by another species if the addition was higher than 10%. When
used as a preliminary test to a microscopic examination, this method would speed up the
identification of a culture contamination.

2.5. Cell Count (Cell Number Concentration)

To determine the cell number concentration, Kiss and Nemeth measured permittivity
on-line [56] using a commercial capacitance-based viable cell count sensor (Incyte, Hamilton
Comp., Reno, NV, USA) equipped with the corresponding signal transmitter and controller
(Fogale Nanotech, France). The signal correlated well (R2 = 0.999 for Nannochloropsis sp.,
R2 = 0.992 for C. vulgaris) with the OD560 measured in a spectrophotometer during cali-
bration. In a cultivation in a closed PBR, however, the biomass concentration data scatter
computed from the permittivity data was significantly higher than that computed from
the off-line OD560, for unknown reasons. The drawback of the permittivity sensor is the
relatively low signal-to-noise ratio.
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Zhou et al. [25] correlated cell counts of three microalgal species (two eukaryotes and
one cyanobacteria strain) with the hyperspectral reflectance (HR) and with the hyperspec-
tral extinction coefficient (EC) in the NIR region (695–750 nm). Cell counts were in the
range of 2.5 × 105 to 1.8 × 108 cells·mL−1, and the R2 of the linear dependence cell count
vs. HR or EC in this range was over 0.99. Measurements were performed in a 1200 mL
open, flat, glass container. Method development was aimed at its use in remote sensing,
but the method could also be used as a rapid in-situ measurement.

A chemometric model for monitoring cell count and viability in a D. salina cultivation
was developed by Sa et al. [40] based on a 2D fluorescence measurement. Fluorescence was
measured in a drawn sample using an immersed fiber probe. The setup could be adapted
for an on-line measurement.

2.6. Cell Morphology

The single-cell size distribution of the heterotrophically cultivated microalga Crypthe-
codinium cohnii was monitored in a closed bioreactor using an in-situ microscope (SOPAT
GmbH) coupled with an automated image analysis system based on an ANN trained with
user-annotated images [33]. The cell size distribution was found to correlate with the cell
content of docosahexaenoic acid (DHA), which can be thus indirectly monitored without
sampling and cell disruption. In a similar fashion, DHA was monitored in a heterotrophic
culture of C. cohnii in a closed bioreactor using the ISM directly in the culture broth and the
3D digital holographic microscopy on a microscope slide, based on the cell size and width
of the size distribution [34].

2.7. Culture Health Monitoring, Contamination

Reflectivity spectral data were collected on-line by Reichardt et al. [22] in four open
raceway ponds cultivating N. oceanica and C. vulgaris using multi-channel spectrometers,
equipped with downward-looking fibers angled at 30◦ from normal, one at each pond, for
monitoring the reflected light, and one upward-looking fiber equipped with a diffusing
optics (180◦) for monitoring the downwelling light. Reflectance spectra were analyzed by a
model described in [66]. Natural diatom invasion of N. oceanica and grazing of Chlorella
were investigated. Further invasion detection in other microalgal cultures was investigated
under laboratory conditions. Both grazers and competitors could be successfully detected.

A grazer (Oxyrrhis marina) was detected in open pond Dunaliella cultures using FTIR-
based off-line spectra acquisition in combination with a PLS regression chemometric
model [67]. The 1363 cm−1 wavenumber could be used as a potential marker for the
grazer as early as 72 h prior to the culture crash. Although carried out in the off-line mode,
this method has a potential for an on-line implementation.

In another study, early detection of the predation by O. marina or Euplotes sp. in a shake
flask culture of D. tertiolecta was achieved by monitoring non-photochemical quenching
(NPQ) by means of PAM fluorometry [47]. NPQ levels were found to decrease significantly
24 to 48 h prior to the culture crash.

Sauer et al. [59] exploited the production of volatile gases by a microalgae culture at-
tacked by grazers to continuously monitor the culture for signs of contamination. Nitrogen-
containing gases including ammonia and pyrroline were found to be reliable indicators of
grazing. Real-time measurements were performed using time-of-flight chemical ionization
mass spectrometry on cyanobacterial monocultures of S. elongatus before and after the
addition of the grazer Tetrahymena. Presence of the grazer could be detected as early as
18 h after grazer addition, with the range of 18–67 h depending on the detected gas (NH3,
monoterpenes, pyrroline), on average twice as fast as by microscopy and three times as fast
as by continuous fluorescence measurement.

2.8. Species Identification and Classification

Only off-line methods for species identification can be found. Xu et al. [68] used
hyperspectral microscopic imaging with machine learning. Deglint et al. [69] processed
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multispectral microscopic images acquired off-line, using absorption at 465–660 nm (seven
wavelengths) and fluorescence with excitation at 385 and 405 nm, with signals processed
by an ANN.

2.9. Photosynthetic Efficiency, Quantum Yield

During cultivation, the photosynthetic activity of microalgae changes and is a suitable
indicator of growth [45]. Most measurements of the photosynthetic efficiency or quantum
yield (PQY) by PAM have been carried out in dark-adapted samples after incubating a
drawn culture sample in dark for about 5–10 min [70]. The dark adaption can also be
carried out in an on-line setup [42]. On-line measurements in light-adapted samples are
rather infrequent (see Section 3.3 in [10]). Recent examples are the identification of failures
of CO2 supply by the in-situ, on-line monitoring of the PQY by a PAM fluorometer together
with monitoring differences in dissolved oxygen concentration in two locations along an
open outdoor TLC photobioreactor [45]; further estimation of biomass productivity in
Chlorella cultivated in a TLC open outdoor PBR by simultaneous on-line measurement of
irradiance and quantum yield by a PAR sensor and a PAM fluorometer with fiber optics
both submerged in the culture [44]; and identification of the lipid accumulation onset in
Nannochloropsis oceanica cultured in closed Roux bottles by measuring in situ the effective
PSII quantum yield (∆F′/Fm

′) and finding also a pronounced correlation between the
effective quantum yield and the lipid content [46].

2.10. Biomass Composition
2.10.1. Lipids

Bouillaud et al. [55] performed on-line, non-invasive total lipid measurements in a
closed PBR circulation loop using a compact benchtop NMR spectrometer. The NMR
signal correlated well (R2 > 0.99) with the FAME total lipid analysis by GC-FID. The water
signal could be selectively removed using a WATERGATE pulse sequence. Spectra were
acquired for 1 h. Lipid concentrations in the culture as measured by NMR were in the
range 25–480 mg·L−1. A proof-of-concept for this method was carried out previously
by the same group [53] with a desktop benchtop NMR for on-line, non-invasive lipid
detection in microalgae in a PBR bypass, with preliminary work to optimize the water peak
suppression. NMR spectra of three cultures of N. gaditana with different lipid content were
acquired showing distinct lipid concentration dependent peaks. The employed instrument
and method were shown to be reasonably sensitive to measure the evolution of lipid
concentration.

A low field NMR device was used by Wang et al. [52] to acquire signals from a cultiva-
tion of C. protothecoides in an on-line setup, where samples from a PBR were automatically
drawn with a pump, mixed with MnCl2 to suppress the water signal and pumped into the
measuring chamber of the NMR. Method feasibility was tested by using glyceryl trioleate
as standard. Calibration for the quantitative lipid monitoring was carried out using the
extraction and GC-MS methods for lipids.

Various nonlinear estimators (Extended Kalman Filter, EKF; Unscented Kalman Filter,
UKF; Particle Filter, PF) used for on-line estimation of the lipid concentration in mixotrophic
cultivations of C. protothecoides are compared by Yoo et al. [71]. As estimator inputs, on-line
turbidity calibrated with the biomass DWC data and off-line glucose measurements were
employed and light intensity and flow rates of glucose and nitrogen containing feed were
varied to test the estimator ability to track the lipid concentration determined by Nile Red
fluorospectrometry. The UKF lipid estimator developed here was further used in [72] for
the model-based real-time optimization of a C. protothecoides cultivation using the model
predictive control (MPC) method, with on-line turbidity data calibrated with biomass
DWC and off-line glucose data used as process inputs for the UKF estimating the lipid
concentrations and the MPC calculating process control inputs (light intensity, glucose and
glycine feed rate) for the optimal cultivation course.
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Carneiro et al. [46] could identify the onset of lipid accumulation in N. oceanica cultured
in closed Roux bottles by in-situ monitoring of chlorophyll a fluorescence using a PAM
fluorometer. The effective quantum yield of PSII (∆F′/Fm

′) could be successfully correlated
with the cell lipid content as %DWC.

There are reports of several methods for lipid estimation carried out in an off-line mode
that could be adapted for on-line monitoring. Among them is the work of Sa et al. [48,49],
who developed chemometric models for indirect measurement of cell count, chlorophyll
and fatty acids based on fluorescence measured off-line in a cuvette. An on-line adap-
tation would be possible if a fiber probe were used, as in other publications from this
group [40,41,50].

An adaptation for on-line should be possible for the monitoring described in [48], in
which a chemometric model was developed using as inputs the fluorescence EEM with
fluorescence acquired from samples placed in a cuvette of an external spectrophotometer,
in excitation ranges 250 to 790 nm for excitation and 260 to 800 nm for emission. The model
predicts five cultivation parameters: cell count, chlorophyll, and fatty acids as total, satu-
rated and unsaturated. Total fatty acids were estimated with R2 = 0.78. The concentration
of eicosapentaenoic acid was monitored with a similar approach (a chemometric model
using EEM as the sole inputs) and measurement setup in [49].

The method applied by Li et al. in [31] required sampling and acquiring transmissivity
images in the NIR region (1000–1350 nm) using a platform with a hyperspectral imaging
camera. Five different chemometric models were tested and the CARS-MLR model using
spectra smoothed by a Savitzky–Golay filter was selected for the estimation, with prediction
performance of R2 = 0.94 against the gravimetric lipid analysis.

A label-free dielectrophoresis-based microfluidic sorting platform that can separate
microalgal cells into six outlets based on their intracellular lipid content was designed
by Han et al. [57]. This effect could be used to monitor and quantify the distribution of
intracellular lipid level of a given microalgal cell population as a high throughput or an
on-line method.

The neutral lipid [73] and lipid and carbohydrate [74] contents in microalgal cells
of I. galbana under nitrogen stress in a continuous culture were estimated by adaptive
interval observers based on simple process models with Monod and Droop kinetics. As
observer inputs, measurements of biomass by an optical particle counter in 1 h intervals
and measurements of residual nitrate by an auto-analyzer every 2 h were used.

2.10.2. Carbohydrates

In a further development of the lipid estimator in [73], neutral lipid and carbohydrate
contents in microalgal cells of I. galbana under nitrogen stress in a continuous culture were
estimated by adaptive interval observers based on simple process models with Monod and
Droop kinetics with measurements of biomass by an optical particle counter and residual
nitrate as observer inputs [74].

2.10.3. Pigments

Predictive chemometric models were developed for chlorophyll content (a, b and total)
and carotenoid content (total carotenoids and four specific carotenoids) in D. salina culti-
vated in closed outdoor and indoor photobioreactors [50]. As input data, the models used
2D fluorescence (EEM) measured with a fiber probe in samples and, for carotenoids, climatic
data (temperature, precipitation, sunlight, PAR radiation, cloud fraction, irradiance).

A chemometric model was developed using as inputs the fluorescence EEM in a
N. oceanica cultivation [48]. Fluorescence EEMs were acquired from samples placed in a
cuvette of an external spectrophotometer. The model predicts chlorophyll concentration
with R2 = 0.75–0.85.

Another chemometric model, mentioned already in Section 2.3.2, was developed for
estimation of fucoxanthin content and biomass concentration [63]. Fucoxanthin models
predicted its contents with R2 between 0.63 and 0.77.
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Shao et al. [32] estimated carotenoid concentration in Spirulina by using VIS/NIR
transmission spectra 346–1038 nm by 0.3 nm acquired with a USB4000 (Ocean Optics,
Dunedin, FL, USA) fiber optic probe immersed in a test tube and a halogen light source.
A chemometric model was developed using the LW-PLS, UVE-PLS and SPA-PLS method,
with the latter giving the best results.

All four of these methods of pigment estimation could probably be adapted for on-
line measurement by a suitable installation of a fiber fluorescence probe in some type of
PBR bypass.

2.10.4. Proteins

On-line fluorescence measurements were performed in a Scenedesmus cultivation using
a submersible probe equipped with a USB4000 spectrometer (Ocean Insights, Tokyo, Japan)
placed in an external recirculation loop of a closed PBR [35]. In parallel, culture turbidity
was measured with a commercial turbidity sensor. Acquired fluorescence spectra were
analyzed using linear regression for DWC and cell number concentration and using PCR
(principal components regression) for the protein concentration. Chemometric models
for estimations of the cell density (DWC, cell number concentration) and of the protein
concentration based on chlorophyll-related culture fluorescence were thus designed. When
used in real-time environment, the DWC and cell count estimations have shown an accept-
able accuracy (r = 0.95 and 0.92, resp.) using the linear regression, estimation of protein
concentration required the more complex PCR model which attained r = 0.8.

3. High-Throughput Methods for Monitoring of Biological Variables

Although this review is focused on on-line sensors, monitoring of biological variables
in microalgal cultivations by using off-line methods capable of mass processing of drawn
samples in a fast and reliable manner (hence the name “high-throughput methods”) de-
serves a short mention here because some of these methods, mostly those using some type
of optical sensing, could be adapted for on-line, in-situ use.

High-throughput methods present a special category of rapid analytical methods
used for mass analyses not only in microalgal cultivations but in microbial cultivations in
general. They are optimized mostly for parallel analysis of many cultivation samples or
small volume cultivations performed in well plates. With microalgae, a typical application
is screening for neutral lipids using fluorescent stains, mostly Nile Red or BODIPY [75–77].
The fluorescence-based staining methods fight a problem of the uniform dye penetration
into cells which must be facilitated by different solvents [76–78]. A fast method toolbox
has been presented by Palmer et al. [79] for screening for phycobiliproteins, chlorophylls,
carotenoids, proteins, carbohydrates, and lipids using simple colorimetric methods with
the purpose of strain selection and optimization. An estimation of carotenoid concentration
in Spirulina using VIS/NIR transmission spectra was investigated in [32] with spectra
obtained by an Ocean Insights (USA) fiber optic probe immersed in a test tube. This
method could be also adapted for on-line use.

4. Computer-Aided Monitoring and Software Sensors

In all biotechnological processes, one can find variables that cannot be measured
directly in real time without substantial effort, human or instrumental, because of a lack
of suitable sensors. Available sensors are too inaccurate, unstable, expensive, or there
are no sensors available for the variable at all. Then, process control theory allows us
to use so-called state observers that use signals of available sensors and convert them,
through help of a mathematical model of the process, into indirect measurement of the
desired variable. Pattern recognition in the form of ANNs or sophisticated multiple
regression methods as used in chemometric models is another way to the same end,
obtaining values of process variables that cannot be measured directly. These estimators
are usually called “software sensors” to stress that they provide values of process variables
as if they were provided by physical sensors, to be used for monitoring and control
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purposes. The first estimator type, the model-driven estimator, uses mostly mass and
energy balance process models and kinetic models, implemented in observers (Luenberger
observer), adaptive observers, interval observers or statistical filters of the Kalman–Bucy
type [80]. In model-driven estimators, quality of the software sensor depends decisively
on the quality of the underlying mathematical model of the process. The second estimator
type, the data-driven estimator, is represented by some type of multivariable correlations
between measured and target variables, as in chemometric models [4,81,82], or ANNs [83]
performing pattern recognition between measured and target variables. Combinations of
all these approaches are widely used in hybrid models [80]. In a certain sense, practically
all modern sensors implementing complex sensing methods are software sensors because
the primary signals must be less or more processed by some software to provide the
value of the desired process variable, either in real time or with some delay. A good
example is NMR spectroscopy, which requires formidable computing power implemented
in the hardware instrument to perform multistep data processing and deliver a single
current value of lipid concentration [55]. Sometimes it is rather difficult to decide if the
indirect measurement should be classified as a software sensor, e.g., a nonlinear regression
model—as in chemometrics—using as input absorption measured at multiple wavelengths.
However, this question is much more academic than practical.

Various process variables are estimated in the following overview of software sensors
used in microalgal cultivations: biomass, cell count, cell viability, concentration of lipids,
carbohydrates, glucose, sulfur, nitrate, chlorophylls a and b, carotenoids, total fatty acids
and EPA, and contamination of a single-strain cultivation by other microalgal strains.
Process variables measured with a hardware sensor or method either on-line or off-line
employed as estimator inputs are cell count by a particle counter, concentration of nitrate
and glucose, temperature, OD, output flow O2, output flow CO2, turbidity, air injection
flow, CO2 injection flow, irradiance, fluorescence spectra, hyperspectral OD, reflectance
and 2D fluorescence in the form of EEMs.

Most model-based estimators belong to one of two categories. In the first category
there are observers that correct the values generated by the process model using some
readily measurable process value with a constant gain selected during the observer design.
The constant gain can also be continuously adapted by some available technique [84], and
interval observers can limit the state trajectory based on the known intervals of uncertain
model parameters [73]. The second category are variants of the Kalman filter which
alters the correction gain in each iteration recursively using the comparison between noisy
state estimations and noisy measurements, using covariance matrices of the system and
measurement noises whose selection is critical for the proper functioning of the filter [85].

The most often encountered process variable estimated by software sensors in mi-
croalgal cultivations is the biomass concentration using several physical measurement
signals: turbidity, outlet gas composition, pO2, pH, irradiation intensity, fluorescence and
reflectance. It is followed by the lipid content based on cell count, nitrate, turbidity, glucose
(off-line), IR spectra (off-line with ATR-FTIR) and 2D fluorometry spectra (off-line, but
adaptable to on-line). Further process variables estimated by means of software sensors
include carbohydrates and proteins, intracellular nitrate quota, substrate (glucose), sulfur,
cell count, cell viability, concentration of chlorophyll a and b, carotenoids, total fatty acids
and EPA. Software sensors measuring biological parameters in microalgal cultivations
reported in recent years are summarized in Table 3.

The accuracy of the individual software sensors reviewed here and listed in Table 3,
together with the estimated biological variable, software sensor type and measurement
conditions and limitations is shown and compared in Table 4. Numerically expressed
accuracy is reported only with chemometric models. Results produced by observers,
Kalman filters and ANNs are, as a rule, reported in original publications only in graphical
form depicting the comparison of measured and estimated data during the cultivation. That
reflects the fact that these estimators work dynamically, providing step-by-step estimation
of process state variables based on measured process outputs. Several software sensors
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listed in Table 4 are implemented on-line, some work with experimental data supplied
off-line but could be adapted to a true on-line implementation, and some are implemented
in an off-line mode.

4.1. Observers

Adaptive interval observers based on simple process models with Monod and Droop
kinetics were developed that can estimate the neutral lipid [73] and lipid and carbohy-
drate [74] contents in microalgal cells of I. galbana under nitrogen stress in a continuous
culture based on measurements of biomass by an optical particle counter and residual
nitrate.

Two software sensors are proposed in the form of extended Luenberger observers,
based on the Droop model [84]. Parameters of the Droop model were identified using
on-line measurements of temperature, optical density and extracellular nitrate concentra-
tion. The first observer estimates the substrate (nitrogen) concentration in medium and
the internal nitrogen quota from the measurement of biomass through optical density,
the second observer estimates the intracellular nitrogen quota from the measurement of
biomass and the extracellular nitrogen concentration.

As described in Section 2.3.1 in more detail, a robust nonlinear observer processing a
turbidity signal was used to estimate the microalgal biomass and glucose concentration [17].
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Table 3. Software sensors monitoring biologically important variables in microalgal cultivations.

Variables Monitored by the Software Sensor Input Variables (On-Line When Not Otherwise Stated) Software Sensor Type References

Lipids
Carbohydrates

Particle counter
Nitrate (assumed measured on-line) Adaptive interval observer [73,74]

1. Extracellular nitrate, intracellular nitrate quota
2. Intracellular nitrate quota

1. OD (biomass)
2. OD (biomass), extracellular nitrate Luenberger observer [84]

Biomass
Glucose Turbidity Robust nonlinear observer [17]

Biomass
Sulfur Outlet gas (O2, CO2) by MS EKF [86]

Lipids Turbidity
Glucose (off-line) EKF, UKF, PF [71,72]

Biomass

pO2
pH,

air flow
CO2 flow

solar radiation

EKF [85]

Cell count Fluorescence spectrum (off-line) ANN [39]

Contamination Multispectral absorption (off-line) ANN [65]

Biomass Reflectance (off-line) ANN [23]

Biomass Reflectance (off-line) SVR, RF regression [24]

Protein, lipids, carbohydrates IR spectrum (ATR-FTIR) off-line Chemometrics [87]

Cell count
Cell viability

Nitrate concentration
Chlorophyll a, b concentration

Carotenoids
Total fatty acids

EPA

2D fluorometry (EEM)
(off-line, adaptable to on-line) Chemometrics [40,41,48–50]

Biomass (X)
Fucoxanthin (Fx) 2D fluorometry (EEM) Chemometrics [63]

Carotenoids Transmission spectrum Chemometrics [32]
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Table 4. Accuracy of software sensor methods where numerically available. In most cases, only graphs comparing the time course of variables’ estimation vs. their
measurement are shown in the original article (denoted here as “graphic comparison”).

Biological Variable SW Sensor Type Method Accuracy Limitations/Conditions Reference

Lipids
Carbohydrates Adaptive interval observer Graphic comparison 35 days

Graphic comparison 35 days
Tested with experimental data,

adaptable to on-line
[74]
[73]

Extracellular nitrate, intracellular
nitrate quota

Intracellular nitrate quota
Luenberger observer Graphic comparison 4–6 days Tested with experimental data,

adaptable to on-line [84]

Biomass Glucose Robust nonlinear observer Graphic comparison 18 days On-line implementation [17]
Biomass Sulfur EKF Graphic comparison 8–10 days On-line implementation [86]

Lipids EKF, UKF, PF Graphic comparison 300 h
Graphic comparison 300 h On-line implementation [72]

[71]
Biomass EKF Graphic comparison within 1 day On-line implementation [85]

Cell count ANN Graphic comparison 10 days Adaptable to on-line [39]

Contamination ANN Identification of 4 pure species
Accuracy > 98.7% Measured in samples [65]

Biomass (X) ANN Predicted/observed X: R2 = 0.92 Measured in samples [23]

Biomass (X) SV regression
RF regression

Predicted/observed X: R2 = 0.87
Predicted/observed X: R2 = 0.81

Measured in samples [24]

Protein (P)
Lipids (L)

Carbohydrates(C)
Ratio carbohydrates/proteins

Chemometric models

Predicted/observed P: R2 = 0.88/0.92/0.85
Predicted/observed L: R2 = 0.82/0.90/0.77
Predicted/observed C: R2 = 0.65/0.77/0.63

Predicted/observed C/P: R2 = 0.84

Freeze-dried samples [87]

Cell count (CC)
Cell viability (CV)

Nitrate concentration (N)
Chlorophyll a, b concn. (Chl)

Carotenoids (C)
Total fatty acids (TFA)
EPA fraction in TAG

Chemometric models

Predicted/observed CC: R2 = 0.66–0.97
Predicted/observed CV: R2 = 0.69
Predicted/observed N: R2 = 0.80

Predicted/observed Chl: R2 = 0.75–0.85
Predicted/observed C: R2 = 0.72–0.89

Predicted/observed TFA: R2 = 0.78
Predicted/observed EPA: R2 = 0.87

Adaptable to on-line

CC, CV: [40]
CC, CV, N: [41]

CC, Chl, TFA: [48]
EPA: [49]

Chl, C: [50]

Biomass (X)
Fucoxanthin (Fx) Chemometric model Validation X: R2 = 0.93–0.96

Validation Fx: R2 = 0.63–0.77
Measured in samples [63]

Carotenoids (C) Chemometric model Predicted/observed C: r = 0.96 Measured in samples [32]
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4.2. Kalman Filters

An extended Kalman filter estimates the biomass concentration and the extracellular
and intracellular sulfur concentration in a closed C. reinhardtii cultivation producing hydro-
gen [86]. A Droop model with the internal sulfur quota is used as a basis, describing the
microalga growth under light attenuation and sulfur-deprived conditions. The observer
uses on-line measurements of the outlet gas composition, oxygen and carbon dioxide, by a
mass spectrometer.

The applicability of various nonlinear estimators for on-line estimation of the lipid
concentration in a closed microalgal cultivation system (C. protothecoides, mixotrophic)
was examined and compared in [71]. All estimators were based on the cultivation model
described in [88] from which the lipid consumption rate term was omitted. On-line turbidity
(calibrated with the DWC data) and off-line glucose measurements were employed as
estimator inputs and light intensity and flow rates of glucose and nitrogen containing feed
were varied to test the estimator ability to track the lipid concentration determined by Nile
Red fluorescence. Results show that the EKF is not suitable in this case, but the UKF and PF
displayed satisfactory performances. The UKF lipid estimator developed here was further
used in [72] for the model-based real-time optimization of a C. protothecoides cultivation in
a closed bioreactor using the model predictive control (MPC) method. As in the previous
case, on-line turbidity data calibrated with DWC with a 5 s sampling rate and off-line
glucose data in 1 h intervals were used as process inputs for the UKF estimating the lipid
concentrations, and all three variables were fed into the MPC to calculate process control
inputs (light intensity, glucose and glycine feed rate) for the optimal cultivation course.

A state estimator with the EKF was developed to estimate biomass concentration
in an outdoor raceway cultivating Scenedesmus [85], based on a dynamic model of the
process [89]. As inputs for the EKF, on-line measured values of dissolved oxygen, pH,
injected flows of air and CO2 and solar radiation were used. The crucial point is the
appropriate determination of covariance matrices for the EKF for which complete data of
the entire cultivation season are necessary.

4.3. Machine Learning, Artificial Neural Networks

An ANN or Genetic-Algorithm-ANN was trained to correlate cell count in a C. rein-
hardtii cultivation measured with a hemocytometer with the fluorescence emission intensity
of suspension samples at 101 wavelengths acquired in the range 660–760 nm with 1 nm
steps, excited with a 470 nm LED [39]. In total, 1568 fluorescence spectra at changing cell
concentrations were acquired. Intensity of the fluorescence peak was used as input data.
With increasing cell concentration, the peak moved to a slightly longer wavelength. The
cell concentration range was 2 × 105–6.4 × 106 cells·mL−1. Comparison of the measured
and predicted cell count values in three validation sets showed an acceptable result only in
one set, with errors in the range −8 to 34% of the true (hemocytometer measured) value,
where the other two sets had prediction errors in the range 5 to 110% and −95 to 25% of
the true value.

An ANN trained with light absorption data could differentiate between monoalgal
and mixed algal cultures and identify contamination of a single strain culture by another
species [65] (for more detail, see Section 2.4).

Lopez-Exposito et al. [23] measured reflectance and processed data by a perceptron
(ANN) estimating the biomass concentration with a correlation coefficient of R2 = 0.92.
In [24], reflectance data processed by two chemometric models estimated the biomass
concentration with accuracy of R2 = 0.81–0.87 (for more detail, see Section 2.3.4).

4.4. Chemometric Models

Changes of protein, lipid and carbohydrate content were monitored in freeze-dried
biomass samples of seven green algae strains grown under nitrogen starvation using ATR-
FTIR spectroscopy [87]. Spectral intensities in the preselected diagnostic bands, determined
as the area under the peak, were processed by three statistical methods (ULRA, OPLS, MCR-
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ALS) to obtain correlations between component fraction in biomass, measured by standard
analytic methods, and the corresponding spectral intensity, with the resulting R2 between
the estimated and measured values 0.65/0.77/0.63 (carbohydrates, ULRA/OPLS/MCR-
ALS), 0.82/0.90/0.77 (lipids, ULRA/OPLS/MCR-ALS), 0.88/0.92/0.85 (proteins, ULRA/OP
LS/MCR-ALS) and 0.84 (ratio carbohydrates/proteins, only ULRA).

In a series of publications, Sa and various co-authors [40,41,48–50] and other authors [32,63]
developed data-driven chemometric models based on 2D fluorometry (EEMs) as inputs for
estimation of several biological variables in microalgal cultivations, including cell count,
cell viability and concentrations of nitrate, chlorophylls a and b, carotenoids, fatty acids as
total, saturated and unsaturated, and eicosapentaenoic acid fraction in the TAG content.
Such models could potentially be used for real time on-line estimation of various process
variables by acquiring the real time data used as input for models automatically on-line
through suitably designed and placed fiber probes measuring fluorescence just as they are
used in the series for measuring samples drawn from the PBR.

5. Perspectives and Outlook for On-Line Sensing in Microalgal Cultivations

When comparing the current state of instrumentation suitable for on-line measure-
ments to the situation several years ago [10], the availability of miniaturized and rugged
spectrometers in all wavelength ranges, from UV over VIS to NIR, equipped also for Raman
and fluorescence measurements, has substantially increased, together with miniaturized
fiber optics. This opens the path for relatively easy construction of spectroscopic optical sen-
sors enabling fast on-line multispectral measurements providing signals for processing in
real-time applications and should support the use of optical sensing when possible: optical
sensors are non-invasive, fast, robust with no moving parts, and rather low-priced com-
pared with non-optical methods. The miniaturized fiber optics allows flexible placement
of sensing spots. On-line monitoring of biological variables as lipids, pigments and other
biomass components, contamination and pathogens and physiological state of microor-
ganisms in microalgal cultivations could thus rely on a plethora of signals from physical
sensors as inputs for combinations of chemometric models, mathematical process models
and pattern and image recognition tools integrated into software sensors providing data
about the current concentrations of biomass, biomass components, culture fitness and con-
tamination and pathogen dangers. Recent developments in microalgal technology, leading
to the complete use of all microalgal biomass components in a biorefinery, calls also for sen-
sors, software or physical, suitable for monitoring various microalgal biomass components.
Recently, the focus in microalgal cultivations has shifted from the production of single
components to maximizing the biomass production and productivity with subsequent
complete processing of the produced biomass in a biorefinery so that real-time monitoring
of culture fitness and the culture’s physiological state and quantum yield [42,44,45] are
very important. Most microalgal biomass is produced in open photobioreactors where
contamination by various pathogens, e.g., grazers, poses a grave danger. Here, an early
detection of contaminating organisms is very important and the in-situ microscopy with
automatic image evaluation, reflectance, multispectral absorbance, color measurement or
FTIR spectroscopy could be employed [22,33,67,90]. Microfluidics is another technology
finding its place in microalgal research and industrial applications in monitoring and op-
timizing both upstream and downstream processes, performing functions in cell sorting,
screening and characterization, cultivation and lipid and pigment identification using
measurement methods as intrinsic fluorescence and fluorescence after staining, Raman
spectroscopy, dielectrophoresis or magnetophoresis [91]. It has already been implemented
in on-line monitoring of biomass by fluorescence [37,58] or for sorting cells based on their
lipid content [57].

6. Conclusions

The most widely used proxy for biomass concentration, measurement of optical
density or turbidity by light absorption or scattering, works reliably with standardized
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industrial sensors. Some of the current off-line monitoring methods for process products
and biological characteristics could be adapted for on-line and at-line application, preferably
those based on optical measurement principles as fluorescence, spectroscopy in visible
and infrared ranges and multispectral reflectance. Using fiber optic cables enables the
non-invasive application of various spectroscopic sensors in situ when necessary. Software
sensors using signals of physical sensors as inputs and processing and combining the
signals of physical sensors employing chemometric models, mathematical process models
and powerful pattern recognition tools as artificial neural networks can provide real-time
estimates of biological process variables with accuracy comparable to a direct off-line
measurement. Software sensors can also be easily adjusted to include new signal sources,
i.e., new hardware sensors available and applied to the process, in the estimation of
biological process variables. This would mean lowering the price for development of
new sensors—in this case software sensors—for biological process variables in industrial
applications, where costs are always a matter of concern.
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Abbreviations

ANN artificial neural networks
ATR attenuated total reflection (infrared spectroscopy)
BC biomass concentration
BODIPY boron-dipyrromethene, a fluorescent dye
CARS-MLR competitive adaptive reweighted sampling MLR
CC cell count
CCD charge coupled device
CLD chord length description
DWC dry weight concentration (of biomass)
EC extinction coefficient
EEM excitation-emission matrix
EKF extended Kalman filter
EX extinction coefficient
FAME fatty acid methylester
FBRM focused beam reflectance measurement probe
FID flame ionization detector
FTIR Fourier transform infrared-spectroscopy
GA-ANN genetic algorithm - artificial neural networks
GC gas chromatography
HR hyperspectral reflectance
IR infrared
ISM In-Situ Microscope
LED light emitting diode
LW-PLS locally weighted PLS
MCR-ALS multivariate curve resolution - alternating least squares
MLR multiple linear regression
MPC model predictive control
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MS mass spectrometry
NIR near infrared radiation
NIRS NIR spectroscopy
NMR nuclear magnetic resonance
N-PLS multilinear PLS
NPQ non-photochemical quenching
NTU nephelometric turbidity unit
OD optical density
OPLS orthogonal partial least squares
PAH polycyclic aromatic hydrocarbons
PAM pulse amplitude modulation, a fluorescence technique
PAR photosynthetically active radiation
PBR photobioreactor
PCA principal component analysis
PCR principal components regression
PDMS polydimethylsiloxane
PE photosynthetic efficiency
PF particle filter
PLS partial least squares (regression)
PQY photosynthetic quantum yield
r Pearson correlation coefficient
R2 coefficient of determination in a regression
RF random forest (regression)
RGB red-green-blue (color description model)
SPA-PLS successive projections algorithm PLS
SVR support vector regression
T transmittance
TAG triacylglycerides
TLC thin layer cultivation
UKF unscented Kalman filter
ULRA univariate linear regression analysis
UV ultraviolet
UVE-PLS uninformative variable elimination PLS
VIS visual (range of radiation)
WATERGATE WATER suppression by GrAdient Tailored Excitation, an NMR technique
∆F′/Fm

′ effective quantum yield (in PAM fluorometry)
ε permittivity
ρ Pearson correlation coefficient
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