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Abstract 

To utilize the potential of machine and deep learning, enormous amounts of data are required. A common 
and beneficial approach is to share datasets between the parties involved for training purposes or even to 
release datasets to the public. However, several incidents have shown that despite anonymizing the data, 
attackers are still capable of identifying individuals in the data and extracting their sensitive information. 
The methods of differential privacy address this problem by adding a statistical noise to data points in the 
shared dataset. Since manufacturing data not only contains information about individual persons but also 
about the companies, their process knowledge, products, and orders add more complexity to the application 
of differential privacy compared to other domains. In this paper, we highlight why conventional methods of 
anonymization are not sufficient to guarantee data protection and thus present the necessity of using 
differential privacy. To illustrate its usefulness for manufacturing we present a specifc application scenario 
and examine potential threats when sharing manufacturing data. We identify mechanisms to perturbate data 
and map these to variable types in the manufacturing context. To guide practical application and research 
we finally outline existing differntial privacy libraries, and highlight current limitations. 

Keywords 

Local differential privacy; smart manufacturing, industrial Internet of Things, privacy preservation, LDP; 

1. Introduction

Driven by the digital transformation, traditional manufacturing is currently undergoing a change towards 
smart manufacturing. The digital transformation is especially initiated by key technologies such as the 
Internet of Things, 5G, CPSs, BigData, and Artificial Intelligence (AI) [1,2]. Due to the application of sensor 
technology and IT infrastructure, the amount of data generated during manufacturing processes are 
constantly increasing [3]. However, the amounts of data are often not sufficient to train generalizable 
machine learning or AI models. To address this issue, approaches such as the establishment of common data 
spaces and federated learning for collaborative training of algorithms are emerging [4]. Numerous real-world 
examples [5±7] have shown that sharing data with third parties is critical in terms of privacy violations. 
Typically, privacy is violated when attackers identify individuals in the published dataset and thus have 
access to sensitive information [8]. In the context of manufacturing, privacy threats are much more complex 
and increase since additional sensitive company-relevant data can be identified. For this reason, we 
contribute by mapping the concepts of differential privacy to the manufacturing context and presenting a 
real-world application scenario including perturbation mechanisms. At the beginning of the paper, we give 
an overview of the general motivations of differential privacy by comparing conventional methods and 
mentioning well-known privacy leaks. We then map the concept of differential privacy to manufacturing 
and specify the problem to machine manufacturers and their customers who operate the machines in their 
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factories. We then identify relevant parameters that occur in manufacturing, categorize them by variable 
type, and present examples of suitable differentially private mechanisms. Finally, we provide an overview 
of libraries and toolboxes for guiding the practical application of differential privacy, outline topics for 
further research and conclude the paper by highlighting the key points. 

1.1 Privacy concerns and the need for differential privacy 

Typical techniques to ensure the privacy of user data are masking, generalization, and k-anonymization. For 
additional security, these techniques can be complemented by encryption mechanisms such as 
homormorphic encryption [9]. However, the use of these techniques is vulnerable to a variety of attacks 
(e.g., linkage, reconstruction, and differentiation attacks). Linkage attacks for example use similar publicly 
available datasets to find similarities within the data. It has been proven that even a few data points are 
sufficient to uniquely identify individual persons [10,7]. The encryption of individual sensitive data points 
in a data series also involves vulnerabilities. If the attacker succeeds in gaining knowledge of the function 
used for encryption, the data can be decrypted again by systematically testing possible input values [11,12]. 

To overcome these problems, the research field differential privacy emerged. Differential privacy can be 
seen as a process ܣ, applied to some data ܦ. The process might be the estimation of the mean over the 
distribution of a dataset or a machine learning process to predict values. To achieve the formal definition of 
differential privacy the process ܣ has to be modified. This is usually done by adding noise at a certain point 
in the process. Adding the right amount of noise strongly depends on the use case and threat model.  

Considering two neighboring datasets ܦଵand ܦଶ, where dataset ܦଶ differs from dataset ܦଵ by just a record 
of a person, the process ܣ is considered ɂ-differentially private if the output ܱ �of the process is approximately 
the same when being applied to both datasets. This leads to approximately identical probabilities Զ. The 
relationship between the two probabilities is described by the following definition [13]. 

Զሾܣሺܦଵሻ ൌ ܱሿ � � ݁ఌ  �Զሾܣሺܦଶሻ ൌ ܱሿ   (1) 

The mechanism used to add noise is dependent on the data type. Typically, the Randomized Response, 
Laplace, Gaussian, and Exponential mechanisms are used. The parameterization must be adapted in each 
case to the variable to be determined. Several real-world applications demonstrate the potential, but also the 
complexity, of differential privacy. Apple uses differential privacy to collect data from end-users of iOS or 
macOS [14,15]. For example, words that are typed by a sufficient number of users but are not yet in the 
dictionary are collected differentially private. Facebook created and released a dataset that provides 
information about user interactions with websites that have been shared on their platform [16]. 

2. Scenario of differential privacy in manufacturing 

While the purpose of Differential privacy is easily accessible when exposing data to the general public to 
protect the privacy of individuals, the transfer of use cases to manufacturing is not immediately apparent. 
Considering the paradigm shift from traditional production to autonomous manufacturing, the relevance of 
data-driven approaches to make manufacturing processes more efficient is constantly increasing. The 
importance of data for the optimization of processes, plants, and machines is accordingly high. Sharing 
company-related or process data in manufacturing is therefore unavoidable for companies. [17] 

During our research, we identified a common scenario that represents the current issues and concerns of 
manufacturing companies in merging and sharing data for training machine learning algorithms. There is a 
trend to improve the customer's process by offering value-added services additional to the machine itself, 
thus opening up new business areas [18]. The machine manufacturer (curator), wants to collect data from 
the machines in the customer's productive operation in order to subsequently optimize the machine. The 
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motivations can be constructive improvements of the machine through insights into the daily production 
operation, quality checks or improved control loops of the machine. [19] 

Regardless of whether the machine manufacturer wants to process the aggregated data of the customer with 
statistical methods, machine learning, or artificial intelligence, there are two possible ways (Figure 1) for the 
customer to share his data. The differential private mechanism ܯis either held by the curator (GDP-Model) 
or by the customer (LDP).[20]  

In the global differential privacy (GDP) model, the customer can share his raw data with the curator. In this 
case, the customer has to fully trust the curator. It is not necessarily defined how and whether the curator 
provides the data to third parties or other customers. The curator can aggregate the datasets of individual 
customers and thus host a dataset in total. Other customers or external parties can make requests to learn 
distributions of certain quantities in the dataset. The privacy of the customer data can be protected if the 
output of the query is appropriately noisy. 

In the local differential privacy (LDP) model, noise is added to raw data before sending it to the curator. This 
model has the advantage that the curator does not have to be trusted. It should be noted that data can be of 
any variable type. The concept of federated learning enables distributed learning of a shared neural network 
[4]. In this case, the curator only aggregates the weights of the model. Prior to this, the client trains the model 
on a local instance (e.g. edge-device). Privacy is achieved by adding noise to the gradients, objective, or 
output during the training of the model. The biggest advantage of federated learning is that the mechanism 
works reliably regardless of the data type. However, there are several disadvantages. The customer must 
have the computing resources to perform the training of the neural network on the edge. In addition, qualified 
specialists are needed to implement the necessary IT infrastructure and pipelines [21]. In consequence this 
leads to high costs related to setup and operation. If the purpose and benefits are not immediately apparent 
to the customer, skepticism arises and they are not willing to make investments. For this reason, we refer to 
a scenario in which the customer has no computing resources locally available. 

A more effective solution in terms of cost and effort is offered by adding noise directly to the raw data. Due 
to many different types of parameters and attributes occurring on the shopfloor in manufacturing, adding 
noise to raw data is more complex and must be adapted to the individual case. To select suitable mechanisms 
and therefore ensure privacy protection it is necessary to identify type of the variable first. 

 
Figure 1: Comparison between global and local differential privacy 
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3. Parameters in manufacturing and corresponding threats 

In order to apply differential privacy to use cases in the manufacturing context, we first determine parameters 
that occur in the manufacturing environment. The parameters can be divided into different categories and 
specified (see Table 1). Each parameter category represents different types of information. Consequently, 
there are different risks in the case of a violation of privacy. While the manufacturing process parameters 
describe the manufacturing process itself, the process parameters further specify the process with its 
attributes. These parameters contain the manufacturer's main process knowledge for creating the product. 
The environment condition parameters have an indirect influence on the process. The ambient temperature 
can influence the thermal expansion of components within the machine and the workpiece itself, which in 
turn affects the quality of the workpiece. The attributes listed below can be of different variable types. For 
the application of mechanisms to satisfy differential privacy, the variable type plays a decisive role. 

Table 1: Different kinds of sensitive parameters occurring in the manufacturing context according to [22] 

Parameter Category Attribute 

Manufacturing Process Parameters milling, turning, laser cutting, welding, casting, extrusion, stamping, assembling, etc. 

Process Parameters spindle speed, cutting speed, pressure, coolant, voltage, feed, current, force, torque, etc. 

Environment Condition Parameters humidity, temperature, date, time, rainfall, etc. 

Working Condition Parameters duration, shift, worker id, machine id, etc. 

Target Parameters quality, yield, productivity, OEE, KPIs, etc. 

Other Parameters manufacturing order, material, production numbers, geometric data, position, etc. 

 

If we assume a company shares a large dataset containing the variables listed above multiple threats about 
the FRPSDQ\¶V process knowledge as well as sensitive business information can arise which are not 
immediately apparent. A potential attacker can analyze environment condition parameters in the dataset and 
combine them with publicly available weather data. If there are sufficient matches over time it is possible to 
identify the company itself at its location. Together with other parameters such as manufacturing orders, 
date, material, supply chains, or even suppliers thus the order situation might be revealed. If the data is then 
complemented with target parameters, attackers can reveal the company's productivity and efficiency in 
production. Therefore, it would be possible to estimate the turnover or profit of a company.  

Corporate-related threats link to the process knowledge, which is required to produce workpieces efficiently 
while ensuring quality. Potential attackers can use the type of the manufacturing process, machine ID, and 
the associated process parameters to gain sensitive process knowledge about the setup of the machine during 
the ramp-up process. Another threat can occur if the position data of AGVs is regarded in conjunction with 
the time stamp. This allows attackers to determine the factory layout and retrace the production routes within 
the factory. The previously mentioned threats should not be regarded as comprehensive. These are only a 
few examples for illustrating the problems that can arise from exposing the mentioned variables. 

4. Data perturbation mechanisms 

Different mechanisms can be used to prevent the exposure of the previously listed threats by adding noise 
to data before sharing. However, the mechanism used is directly dependent on the variable type and its 
parameterization is not trivial. In the following, the most common variable types are explained and their 
context for manufacturing is presented. In addition, the mechanism by which differential privacy can be 
satisfied and the analogies to related areas are described. 
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Essentially, the Randomized Response, Laplace Mechanism, Gaussian Mechanism, or Exponential 
Mechanism are used to add noise [23,24]. Depending on the application case the functions are parameterized 
by the so-called sensitivity. Hereby the privacy budget from low to high can be adjusted. 

Most publications and thus algorithms refer to the assumption that a user owns a data set and a potential 
attacker issues a query (e.g. mean value of a numeric variable) to the user's database. The query can be 
connected by AND, OR conditions [25]. In this case, the noise will be applied to the true value and then sent 
to the potential attacker. Depending on the sensitivity, the database size, and the number of variables, the 
number of possible queries of a user has to be limited. In addition, the number of combinations of AND, OR 
conditions also has to be limited. Since the determination of the noise, as well as the boundary conditions to 
the queries, must be individually adjusted for each problem, the implementation is very extensive. 

Our desired approach is an algorithm that allows publishing the dataset under conditions of differential 
privacy instead of hosting a dataset and answering the queries of clients. The goal is to apply noise to a 
dataset so that it can be passed on to third parties without being concerned about query limitations. Sensitive 
information or process variables can not be identified in this case. But the data should still contain enough 
information to learn the statistical distribution of the variable. For example, it would still be possible to learn 
something about the wear of the machine and upcoming maintenance but it is not possible to determine the 
exact process parameters used for manufacturing the workpieces. In reality, many different and complex 
data structures exist. In the following, we present suitable mechanisms for each variable type and highlight 
the relation to manufacturing. 

4.1 Binary data 

The most straightforward approach to publishing a variable differentially private is for binary variables. A 
very effective approach is the so-called Randomized Response.[26] As an example, the question is asked 
whether the machine owner (user) has used coolant in a certain process section. The possible answers in this 
scenario are just yes=1 or no=0. Before answering the question, an imaginary coin is tossed. If the coin 
lands on heads, the user must answer truthfully. If the coin lands on tails, a second coin is tossed. If the 
second coin lands on heads the user answer with yes, otherwise with no. This algorithm is differentially 
private by definition. Therefore, the user can safely reveal the truth. Though noise is also being added to the 
data by the mechanism. However, if a large set of responses from different companies is received, the noise 
can be canceled out and the statistical distribution of the use of coolant in the process can be determined. 
However, it cannot be determined whether a specific company used coolant in its process or not. The most 
known application of this algorithm is called RAPPOR (extended with additional operations). It was 
developed and used by Google to determine the default search engines of Google Chrome users [27]. 

4.2 Numerical data 

Applying noise to numerical data can be achieved by using the Laplace or Gaussian mechanism [28]. These 
mechanisms represent a distribution with probability values and a scaling factor. If we ask a machine user 
how often the fixture did break during the last year, we expect a numerical value as a response. Before 
publishing the true value, the dataset holder selects a random value from the Laplace distribution, adds it to 
the true value, and then writes the perturbed value to the dataset. Instead of the correct number of fixture 
breakages, a noisy value is given. If multiple machine users report their insert breakage data, the machine 
manufacturer will be able to determine the average without revealing how often the insert really broke at 
each user. Other numerical queries could be the calculation of the mean over several data rows or the query 
about the numerical distribution of a parameter. For example, a querier (machine manufacturer) may ask the 
question, how often machine failures in the range of [0-9;10-19;20-���«@ occurred. The output would thus 
be a histogram, which can also be released under the satisfaction of differential privacy. It is possible to 
apply an individual noise to each count by applying the distribution function to each single count.  
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4.3 Categorical data 

Publishing categorical variables taking into account differential privacy can be seen as an extended version 
of Randomized Response. But instead of two categories (0 and 1), finite categories are possible. An 
implementation is the Google algorithm RAPPOR [29]. Other algorithms are the Local Hash method [30] 
and the Unary Encoding Method [31] which is the basic concept of RAPPOR. The Unary Encoding method 
(Figure 2) is very intuitive and is presented using an example in the manufacturing context. A querier 
(machine manufacturer) wants to know which clamping tools his customers use in their production. All 
parties agree that there are four different possibilities in total. These four possibilities are each represented 
by a position within a bit string. Position 1 in the bit string stands for the three-jaw chuck, position 2 for the 
four-jaw chuck, position 3 for the collet chuck, and position 4 for the centering tip. The customer now 
encodes his clamping tool used in production into the bit string. Then each bit is perturbed according to the 
Randomized Response method. The perturbed bit strings will then be sent to the querier. The querier adds 
up the individual positions in the bit string and can thus calculate a distribution of the clamping tools used. 
However, the querier does not know which exact clamping tool is used by which customer. It should be 
noted that the accuracy increases significantly with a higher number of contributions. 

 
Figure 2: Example of Unary Encoding according to [31] 

4.4 Time series data 

Time series are becoming increasingly important due to smart sensor technology and advances in data 
transmission rates. It is possible to reliably record data at high sampling rates, to process and store it outside 
the PLC. In the context of data analysis for monitoring machines or predicting the occurrence of events, the 
analysis of time series is of great relevance. In addition to sensor data, time series can also be 
multidimensional position data from IoT devices on the shopfloor. There is no generally valid way to obtain 
information from time series. For example, a time series (e.g. sensor signal) can be sampled with sliding 
windows. A querier might be interested in the average value of each sliding window. Then response would 
just be a noisy numeric value, as seen above. The analogy to the histogram mentioned before would be if the 
querier asks for the frequency spectrum of a periodic signal. However, it is also possible to publish several 
time series under the condition of differential privacy. For example, this can be achieved by a re-quantization 
mapping [32]. Another reference introduces a perturbation mechanism consisting of several single steps to 
satisfy differential privacy [33]. 

Coordinate, position, or trajectory data often differ from one-dimensional time series by the property of 
multidimensionality. Publishing coordinate data is rarely addressed in the literature. However, some papers 
show possible ways how this can be achieved. [34±36]  
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5. Available libraries and tools for implementing differential privacy 

In order to apply differential privacy efficiently in manufacturing scenarios, it is necessary to keep the 
implementation as simple as possible. It should be avoided to implement the algorithms from scratch since 
it is too error-prone. Libraries with single building blocks and ready-to-use mechanisms are the preferred 
alternative. There are several libraries available that provide the basic mechanisms for different 
programming languages (e.g. Python, Java, C, GO, C++). We give a brief overview about some of them. 

A library that enables the application of basic mechanisms is the Google Differential Privacy library [37]. 
With this library at the same time, the mechanisms can be built on existing frameworks such as Apache 
Beam. The Google RAPPOR library [29] enables the application of the RAPPOR algorithm which was 
previously presented in the context of the Randomized Response Method. The OpenDP project [38] also 
provides easy access to the mechanisms to apply them to individual data with the smartnoise library. IBM 
offers a library to use the discrete Gaussian mechanism [39]. Ektelo is also a framework for implementing 
privacy algorithms [40]. 

Furthermore, libraries exist that allow the training of neural networks under conditions of differential 
privacy. The Opacus [41] framework allows differentially private training of PyTorch models. Opacus is 
open source and offers a modular API. TensorFlow [42] also offers a library that enables the differential 
private training of neural networks. The OpenMined Project [43], with its Syft and Grid modules, applies 
differential privacy in the context of federated learning. The project is compatible with PyTorch and 
TensorFlow. The diffprivlib [44] by IBM offers basic mechanisms, which can be applied individually by the 
user. However, simple machine learning algorithms such as a random forest or a logistic regression can also 
be trained under differential privacy with the diffprivlib. 

Since it is not trivial to determine how the algorithms are implemented in detail in each library, a comparison 
was conducted by Garrdio et.al [45]. The libraries were compared qualitatively, and quantitatively with four 
different types of queries using synthetic and real-world datasets. All libraries were suitable for productional 
use, however, they differ strongly in the function range. However, no library satisfies a universal utility for 
all applications. [45] 

6. Directions for future research 

The practical examples in section 5 show that specific mechanisms are needed considering different variable 
types. Extending the mechanisms to publishing multidimensional data, i.e. mixed data containing numeric 
and categorical data types, is not trivial. Research shows that applying the mechanisms to the individual 
attributes yields poor results. Therefore, solutions must be developed that can perturb multidimensional 
datasets in total containing numeric and categorical variables with the optimal worst-case error. [46±48]. 

The given examples also show that different queriers who act independently externally but combine their 
knowledge gained later, must be taken into account during the design of a LDP system. This comes into 
effect if other third parties can have access to the data instead of just the machine manufacturer. In case of 
doubt, the number of requests from each querier and the number of same requests must be limited [49]. If 
each analyst receives a slightly different answer, analysts could collaborate and calculate the mean of their 
answers. In a worst-case scenario, they are able to determine the true value. In this case, it makes sense to 
limit the number of queries and send the same answer to each analyst [28]. After defining the collaborators 
and the variable types to be published have been determined, the mechanisms for adding the noise must be 
suitably parameterized. Since the parameter epsilon ߝ is a measure of privacy and is also needed for the 
parameterization of the mechanisms, the choice of this value is very crucial. Currently there is no best 
practice for setting ߝ for a desired privacy utility tradeoff. Thus it would be helpful if early adopters of 
differential privacy could share their ߝ values from real-world applications [50]. 
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In the long term, it would be desirable to be able to publish entire differentially private datasets [49]. In the 
context of Open Science, the release of whole datasets would also be advantageous. Companies could share 
their data with the machine learning community without having any privacy concerns. The use of machine 
learning and artificial intelligence would become more quickly applicable through the collaborative work of 
the community and thus take a further step toward autonomous production. 

7. Conclusion

By identifying and defining an application scenario, mapping the concepts of LDP to the manufacturing 
context, we have shown that the demands and potential threats to privacy leaks when publishing or sharing 
data with third parties are of a different kind compared to the threats when considering public datasets for 
the protection of individual personal data. It must be understood that the company's process knowledge can 
be leaked by sharing production data with third parties. Beyond important process information, which is 
necessary to produce cost-effective products, sensitive business data as well as strategic data can be revealed. 
To apply LDP in the manufacturing context, it is mandatory to analyze the use case in advance. It should be 
asked who will have access to what kind of data and which potential threats can arise by sharing the data. 
From the point of view of the curator (machine manufacturer), it must be taken into account that the data 
amounts must be correspondingly large in order to learn valid insights. In general, when publishing 
differentially private data, it must be taken into account that there is a tradeoff between accuracy and privacy. 
There is no generic approach for determining the ideal value of the parameter yet.  
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