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Abstract 

The use of machine learning promises great potential along the entire value chain of manufacturing 
companies. Many companies have already recognized the resulting opportunities for increasing enterprise 
value and are developing their machine learning applications for the production environment. However, 
despite these efforts, many of the solutions developed fail in the market. Especially small- and medium-sized 
enterprises have difficulties developing suitable business models for their technical applications. These 
difficulties arise because companies do not evaluate their business projects sufficiently during the 
development phases. As a result, unpromising projects are not recognized until late in the development 
process and thus cause high sunk costs. 

This paper presents an approach for integrating assessment methods into developing machine learning-
driven business models for production. Due to the diametric evolution of information availability and 
uncertainty during the business model development process, various methods and tools can be used for the 
assessment depending on the current phase. For this purpose, existing assessment methods are evaluated and 
contrasted regarding their suitability concerning machine learning-based business models for production. 
Afterwards, three approaches for the different planning phases of business model development (strategic, 
tactical, operational) are presented in this paper. 
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1. Introduction

Recent studies reveal various potentials of Machine Learning (ML) for companies along the entire value 
chain. As a result, global GDP is expected to increase by up to 14 % or $15,7 trillion by 2030 [1]. Today, 
ML systems are applied across various industries.  These help, for instance, to make quality management 
more efficient or to enable predictive maintenance of machines. Although the feasibility of these applications 
has already been proven many times at the research level and first marketable products are available, the 
actual implementation of corresponding applications and offerings lags behind the high expectations [2,3]. 
One of the main reasons for this discrepancy is that companies are not able to develop economically viable 
scenarios for their technical solutions [4]. It becomes apparent that especially those companies are successful 
with ML offerings that emphasize the generation of business value during development. Thus, building a 
business understanding and evaluating business cases as part of business model (BM) development is a key 
success factor for implementing competitive ML applications in manufacturing companies [5].  

Research on ML-based BMs for manufacturing and the accompanying empowerment of companies is still 
in its infancy. The following work aims to identify appropriate evaluation methods for the different phases 
of maturity in the development of ML-based BMs for manufacturing. Using the tools presented, companies 
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can evaluate the current development status of their BM and be supported in their decision-making. The 
underlying research hypothesis states that an appropriate methodology can be developed by analyzing 
existing concepts and approaches in the respective technical literature. This work considers ML as a system 
WKDW�³XVHV�GDWD��DQDO\VLV and observations to perform certain tasks without needing to be programmed to do 
VR´�[6]. A BM is ML-driven if at least one relevant dimension is characterized by the use of ML methods 
[7]. 

The procedure outlined in the paper is as follows: Section 2 first provides an overview of the development 
process of ML-based BMs and its three-phase structure. To this end, different process models are discussed 
and the process is explained using a selected model. Subsequently, phase-specific requirements for the 
selection of evaluation methods are derived from literature. The resulting evaluation criteria are then used to 
evaluate existing evaluation methods which were identified in the course of a structured literature analysis. 
Based on this overview, section 3 proceeds with the presentation of a developed methodology, thereby 
choosing the most appropriate methods and tools for each planning horizon and adapting these to the area of 
manufacturing. For validation purposes, the introduced methodology is then applied to an actual use case 
from the manufacturing industry in section 4. Finally, section 5 ends with the conclusion and potential 
impulses for further research. 

2. Research results

2.1 Development process of ML-based BMs 

A successful implementation of ML-based BMs for manufacturing requires a systematic and structured 
process. This is of particular importance for companies that have only limited experience in the context of 
developing ML-based applications [3]. To address this problem, numerous process models exist in literature. 
Many of these approaches originate from the field of data mining, which is the extraction of structures and 
patterns from large amounts of data using specific analysis techniques [8]. Well-known approaches in this 
field include the Cross Industry Standard Process for Data Mining (CRISP-DM), the Sample, Explore, 
Modify, Model, Assess (SEMMA) and the Knowledge Discovery in Databases (KDD) [9]. A deeper analysis 
of the models in terms of their suitability for the manufacturing industry reveals numerous shortcomings that 
prevent their practical and holistic application in such a domain. Among the main criticisms is that existing 
models do not cover the process of selecting a problem and deciding whether to use ML to solve it and do 
not take into account the specific requirements of production environments [10].  

Figure 1: Development Process of ML-based BM according to Biegel et al. 
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In order to address these shortcomings Biegel et al. [10] introduced their AI Management Model for the 
Manufacturing Industry (AIMM) (see Figure 1). It is further utilized as a framework for the integration of 
assessment methods and to emphasize the characteristics of each phase. The process is funneled and starts 
with potential problems, which are subsequently transformed into an ML application using three phases: 
problem selection (strategic phase), solution design (tactical phase) and solution development (operational 
phase). A significant difference between the process phases results from the availability of relevant 
information and the degree of uncertainty regarding the economic viability. Relevant information includes 
not only forecasts on technical prospects of success, but also market scenarios and possible legal restrictions. 
Only a little, primarily qualitative information with a low resolution, is available at the beginning of the 
process, leading to a high degree of uncertainty. This uncertainty is reduced throughout the process by 
acquiring new and higher-quality information, gradually enabling a quantitative evaluation of projects [11]. 

The AIMM is designed to fail quickly in the case of an unpromising endeavor. The model takes into account 
that, particularly at the beginning of an application development process, the costs incurred are still low. At 
the same time a strong influence can be exerted on the future cost-benefit ratio in later phases of development 
and utilization [12]. This effect is especially relevant for the domain of production, as physical products - 
e.g., in the form of machine tools - are frequently linked with digital services in so-called product service
systems [13]. In the case of a mere development of digital services, the share of cost emergence in early
phases is proportionally higher. In contrast preventing sunk costs in later phases nevertheless has a
significant impact [14,15]. Therefore, at the transitions of the phases, the AIMM process enforces to evaluate
whether a problem can potentially be solved using AI technology and whether a resulting business case is
financially feasible. If an idea is dropped out, the process can be revisited with a different problem, or the
solution design can be adjusted accordingly. In this way, the waste of entrepreneurial resources is prevented
at an early stage of the use case development [10].

A shortcoming in the AIMM is that the authors only provide a few concrete hints to the phase-specific use 
of assessment methods. In their approach to technology assessment from 2011, Haag et al. [16] become more 
specific and propose different assessment methods for the distinct process phases of technology 
development. However, the approach is highly technology-unspecific and does not incorporate the special 
requirements that arise when considering ML-based technologies, which will be highlighted throughout this 
paper. Due to the age of the explanations, many context-specific assessment methods (e.g., from the field of 
digitalization and Industry 4.0) developed in the meantime are also not included in the approach. In this 
regard, the method presented in this paper picks up and presents ML-suitable assessment methods in each of 
the three process phases. 

2.2 Phase-specific requirements and evaluation of existing assessment methods 

Suitable evaluation criteria must be defined for a comparable and objective evaluation of existing 
approaches. These result from the requirements of the different process phases and were identified as part of 
a structured literature review. Next is examined which activities are carried out in each phase and which 
input and output states are present. In addition, it is included which incoming information is available and 
which outgoing information must be provided for decision-making (see Figure 2).  

In the strategic phase of problem selection, the project team first identifies and evaluates relevant problems 
from the production environment. As incoming information, a selection of possible problem definitions is 
available, whose potentials and challenges are assessed concerning a possible solution development. The 
underlying problem set can originate from the documentation of a continuous improvement process or from 
a dialogue with customers [17]. Since there can be larger problem sets, it is necessary to identify and 
prioritize the most promising ones. In their model, Biegel et al. propose a qualitative evaluation of problems 
in the two overarching dimensions of relevance and complexity using a portfolio matrix. While the number 
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of actors and objects involved and their relationships to each other and the required interdisciplinarity is a 
major influencing factor for complexity, the influence on a company's key performance indicators (e.g., 
Overall Equipment Effectiveness) is decisive for relevance. After prioritizing the alternatives, the selected 
problems cross the first gate where the ML fit is examined. In this process, it is checked whether the problem 
under consideration meets the basic requirements for being solved with ML methods [18]. After passing 
through the strategic phase, quantitatively evaluated, prioritized, and ML-suitable problems remain for 
further pursuit in the tactical phase.  

Following the results of a structured literature review, the first requirement is that suitable methods for the 
strategical phase are capable of enabling a comprehensible and systematic ranking of alternatives [19]. 
Furthermore, especially in this initial phase, it is necessary that the alternatives to be evaluated allow a 
holistic assessment, despite the low level of information [20]. In this context, it should also be possible to 
conduct risk assessments and to make prognoses by considering volatilities in technical, financial and 
organizational conditions [21]. Finally, regarding the usability in the strategic phase, it should be ensured 
that the models are generalizable to enable the evaluation of a wide range of possible problems. In addition, 
they should be able to determine reproducible results that are comprehensible in terms of transparency, even 
in spite of fluctuating information quality [22]. 

Figure 2: Overview of incoming and outgoing information in the process phases [10] 

In the tactical phase, a selected problem is examined in more detail and developed into a draft solution in 
the form of a possible BM. In addition to the qualitative information already available, initial quantitative 
information is also available as input variables. In-depth examination of the selected problems allows 
estimations for possible expenses and income streams connected to implementing the respective BM. Among 
other things, this data can be retrieved from historical data, e.g., from service or sales or from past projects 
[17]. In their approach, Biegel et al. propose a financial evaluation of the project as a final gate before the 
solution development phase. However, in view of the extensive planning activities and the increasing 
availability of information, it is reasonable to further include qualitative aspects. The tactical phase thus 
represents a transition between the strategic phase, which is driven by qualitative information, and the 
numbers-driven operational phase. Therefore, suitable models for this phase must be able to merge 
qualitative and quantitative aspects and combine them in a reproducible result. However, in contrast to the 
previous phase, the tactical phase does not evaluate a broad problem set but various options for the BM 
design. This includes decisions regarding the scope of the BM (e.g., detection of errors vs. prediction of 
failures) or the acquisition of competencies (e.g., build up in-house vs. buy in externally) [23]. In order to 
weigh between these design options, the possibility of ranking of alternatives remains relevant in this phase. 
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Table 1: Evaluation of existing methods 
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The previously designed BM is developed and implemented as an iterative development project in the final 
operational phase. The input information in this phase consists of target values selected in the planning 
process, their degree of fulfilment and ML-specific performance data. The latter result from prototypical 
setups and testing within the development process. Thus, the use of quantitative evaluation methods is 
particularly indicated in the context of solution development. In their model, Biegel et al. do not specify an 
approach for the evaluation of the project in this phase. Nevertheless, a continuous evaluation of the project 
is of particular importance, especially in this resource-intensive phase [14,15]. Due to the highly dynamic 
nature of the iterative development process, special usability requirements arise in this phase. Therefore, 
suitable methods must enable the integration of knowledge gained from the development process in the short 
term. Furthermore, the results of the applied evaluation methods must be comprehensible for all stakeholders 
involved in the project in terms of transparency. Finally, especially in the solution development phase, there 
is a high demand for the evaluation methods regarding their compatibility with digital business models. ML-
specific figures must be considered to a greater extent, especially regarding possible optimizations by the 
underlying application. For example, the expected prediction accuracy of the model is decisive for the 
profitability of an ML use case.  

Table 1 shows the results of an assessment of existing evaluation methods using the derived evaluation 
criteria. The evaluation methods were identified through systematic literature analysis. The methods are 
divided according to the three process phases: strategic, tactical, and operational. The evaluation criteria are 
divided into three areas: data, methodology and practical application. The data area includes the criteria 
holistic assessment, inclusion of qualitative and quantitative aspects as well as realistic depiction. The 
criterion "realistic depiction", which has not been mentioned so far, refers to the fact that the recording and 
preparation of all necessary technical and business contexts is necessary for a well-founded evaluation. It is 
thus relevant for all process phases [42]. 

3. Description of the assessment methodology 

In the following, the developed methodology is introduced. The selection and combination of methods is 
based on the evaluation of existing approaches which was presented in chapter 2. An overview of the 
methodology is shown in Figure 3.  

 
Figure 3: Three-levelled assessment methodology 
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For the strategic phase, the analytic hierarchy process provides the main structure and is supplemented by 
aspects from the assessment model according to Pokorni et al. In this phase, it is important that a holistic 
evaluation of the problem set can take place and subsequently a ranking of alternatives is made possible. 
Among the approaches examined, the utility analysis, the analytic hierarchy process (AHP) and the 
assessment model by Pokorni et al. fulfil these requirements at the best. Comparing the utility analysis and 
the AHP, there is a decisive difference: the AHP has an iterative structure and provides a consistency check 
to avoid logic errors. On the one hand, this makes the AHP more transparent than the utility analysis due to 
the systematic assurance of consistency. On the other hand, the usability deteriorates due to the increased 
effort required to perform the analysis. However, this additional effort in the AHP is reduced by a computer-
aided execution of the procedure [38]. Nevertheless, due to the high degree of generalizability of the AHP, 
it makes sense to enrich the procedure with elements from the industry- and context-specific approach of 
Pokorni et al. In this model, positive effects of the use of ML are interpreted as potentials (e.g., increase in 
efficiency, increase in productivity) and negative effects as challenges (e.g., implementation costs, 
compliance challenges).  

Due to its holistic approach and good performance overall, the assessment model according to Schuh et al. 
[37] is selected and adapted for the tactical phase. The hybrid model focuses on an assessment of effort and
benefit, considering challenges and fields of action of ML-driven BMs. As the digitization scorecard and the
potential analysis, this method is suitable for the required use of qualitative and quantitative data. Compared
to other approaches, the method of Schuh et al. stands out due to its possibility of ranking alternatives. Within
the model, the evaluation of qualitative input information merges with the results of quantitative evaluations
in a portfolio matrix. By using and adapting an indifference curve within the model, it is also possible to
include user-specific preferences. The position to the indifference curve is used to decide whether a solution
design is perceived as an investment decision and transferred to the effort-intensive operational phase.
Accordingly, adjustments can be made or an use case is discarded completely [37].

Finally, for the operational phase, an indicator system is introduced. It combines domain-specific key 
figures from the field of manufacturing with ML-based key figures. Thereby, it aims at enabling a sustainable 
assessment and control of the BM during operation. Compared to methods of investment calculation 
(static/dynamic payback method; net present value method), an indicator system is more suitable for a 
holistic assessment. Thus, in addition to purely financial key figures, ML-specific (e.g., precision, accuracy) 
and production-specific key figures (e.g., utilization rate, productivity) can be included. Compared to the 
value driver tree, the indicator system distinguishes itself by better usability. Accordingly, it is possible to 
draw on metrics already known and used by the various stakeholders in the interdisciplinary development 
project. Finally, the effort of the project team to create the system consists of identifying dependencies 
between individual key figures and linking them. The remaining Industry 4.0 maturity index is also partially 
based on a system of key performance indicators. Therefore, the evaluation method of the operational phase 
also takes up aspects from the model¶V�NH\�ILJXUH�V\VWHP. 

4. Application and validation

To validate the presented approach, the procedure introduced in this paper was applied to an exemplary use 
case. It originates from the industry-centric research SURMHFW� ³Sensorische Schutzabdeckung´�ZKLFK was 
funded by the LOEWE ± State offensive in Hessen, Germany. The basic idea of this project was to develop 
a predictive maintenance application for protective covers in machine tools which was realized by applying 
ML to gathered retro-fit sensor data [43]. In the following, the application of the approach presented in 
chapter 4 is applied to the use case.  

Compared to an application in a real industrial environment, there is a significant difference when applied 
to a research project: Whereas in industry one often must choose between working on different problems 
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arising from one's own company or from customer requirements, the problem in a research project is usually 
already defined in advance. For this reason, it was decided not to apply the assessment method from the 
strategic phase and to start with the application of the methodology from the tactical phase. It was possible 
to consider both the potentials of an ML-based use case compared to the previous status quo in the 
maintenance of protective covers and the challenges that exist along the way. The challenges were 
incorporated into the evaluation process as qualitative aspects. The biggest challenge identified was that the 
company itself had little experience in the field of data analysis and that the sensor technology required for 
data acquisition in the ML application had not existed as a ready-made solution. In this way, important key 
partners for future development activities could be identified and acquired. At the same time, it was possible 
to use extensive quantitative input. Thus, a potential cost saving for the avoidance of too early or too late 
repair measures as well as a customer's willingness to pay and possible unit number ranges for a marketable 
solution could be determined and included in the evaluation. In doing so, the application of the evaluation 
method resulted in a positive prognosis for a decision to invest in the development of the ML-based product-
service system.  

Figure 4: Indicator system for operational phase in the project ³6HQVRULVFKH�6FKXW]DEGHFNXQJ´ 
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In the subsequent phases, the evaluation method for the operational phase was applied (see Figure 4). Within 
the resulting indicator system, various context-related key figures are related to each other via mathematical 
and logical connections. The key figures are taken from both the business management and ML area. In 
addition, specific key figures from the field of maintenance are included, such as the mean time to repair or 
the failure probability factor. During the development of the indicator system, the stakeholders involved - 
namely the management, WKH� FRPSDQ\¶V� domain experts, sensor and electronics developers and data 
scientists - were thus able to incorporate their relevant indicators. This confirmed a good usability of the 
approach within the framework of an interdisciplinary project team. By establishing and tracking the 
indicators, important levers for achieving an economically viable scenario were identified during the course 
of the project. As a result, it was possible, among other things, to substitute electronic components with less 
expensive variants and to reduce the amount of data processed.  

Within the model shown in Figure 4, mathematical relationships are highlighted by operators, whereas 
logical relationships are indicated by connecting lines. The data used in the project originated from different 
sources. Business- and maintenance-specific data was already available through previous research from the 
company's sales and service departments. ML-specific data was collected as part of the development project 
and the tracked metrics in the model were subject to significant changes. During development, various sensor 
and ML concepts were designed and investigated, prototypes were built and experiments were conducted. 
This enabled more precise figures to be derived for possible model qualities and estimates to be made of the 
hardware required for implementation. Here, the indicator system confirmed its advantage of incorporating 
new findings within a short-cycle development process. Since the research project did not comprise a 
complete product development but ended as an extended feasibility study, reliable figures were not yet 
available for all aspects at this time. Nevertheless, offers from external contractors and a more in-market 
analysis were acquired at the end of the project. Thus, it was possible to use the assessment methodology to 
draw up possible scenarios a continuation of development efforts within the company. 

5. Conclusion and future research

Given the increasing availability of data, WKH�LPSRUWDQFH�RI�0/�DQG�LWV�LQWHJUDWLRQ�LQWR�FRPSDQLHV¶�XVH�FDVHV�
and BMs is higher than ever before. Assessment methods are meant to evaluate the profitability and viability 
of BMs during their development, therefore intending to reduce sunk costs by prioritizing promising 
alternatives in the early stages of development. However, due to the variety of methods and novel potentials 
as well as challenges coming with ML-based BMs, companies still struggle to find appropriate ways of 
assessing their BMs. In this paper, a three-levelled methodology for assessing ML-based BMs has been 
introduced. Considering the strategic, tactical, and operational planning horizons, various assessment 
methods have been assigned, rated, combined and adapted into a holistic assessment methodology for ML-
based BMs. Following the depicted gates within the AIMM from Biegel et al., the developed methodology 
allows less promising alternatives to drop out and thus to reduce sunk costs. Furthermore, the indicator 
system, containing of business-, application- and ML-related indicators, enables continuous tracking of BMs 
after being implemented in practice. 

The introduced methodology has been validated using an actual use case from the manufacturing industry. 
However, given the novelty of the approach, further validations, especially within the strategical phase of 
the methodology, are necessary ± some have already been initiated. Furthermore, in the context of this paper, 
a broad overview of the selected methods was provided based on their theoretical evaluation. In the future, 
it is necessary to describe the developed methodology and especially its associated methods in more detail 
and give further instructions for the practical implementation and application. 
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