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KURZZUSAMMENFASSUNG

Wenn wir die Geometrie der Raumzeit und Materie gemeinsam in einem kanonischen Formalismus
beschreiben wollen, bleiben uns nur wenige Möglichkeiten den gravitativen Freiheitsgraden Diffeomor-
phismen-invariante Dynamik zu verleihen. Konkret ist es möglich, wie wir im Rahmen der Arbeit zeigen
werden, die gravitative Dynamik anhand jeder Materietheorie herzuleiten, welche drei physikalisch unab-
dingbare Bedingungen erfüllt und auf einer tensoriellen Geometrie formuliert ist. Hierfür löst man ein
abzählbares System aus linearen partiellen Differentialgleichungen, den gravitativen Abschlussgleichun-
gen, und erhält das gravitative Wirkungsfunktional auf konstruktive Art und Weise. Wie in dieser Arbeit
demonstriert, ist es möglich die allgemeine Relativitätstheorie, ausgehend von den Materiefeldern des
Standardmodels der Teilchenphysik, durch Lösen dieses Systems von partiellen Differentialgleichungen
herzuleiten. In Anwendungsfällen in denen das Verhalten von schwachen Feldern von Interesse ist ver-
einfacht sich dieses System weiter zu linearen algebraischen Gleichungen für die Expansionskoeffizienten
des Wirkungsfunktionals. Dies wurde in dieser Arbeit genutzt um die linearen Bewegungsgleichungen
einer Gravitationstheorie herzuleiten welches die Doppelbrechung vom Licht im Vakuum erlaubt.

S CHLAGWÖRTER
Modifizierte Gravitationstheorie, Klassische Materiefelder, Perturbationstheorie
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ABSTRACT

If we require that both the geometry of spacetime and matter canonically evolve together, we are left
with only few options to provide diffeomorphism-invariant dynamics to the gravitational degrees of free-
dom. Concretely, as we will show in this thesis, it is possible to derive the gravitational dynamics from any
matter theory, which fulfils three physically essential conditions and is formulated on a tensorial geom-
etry. For this, one solves a countable set of linear partial differential equations, the gravitational closure
equations, and obtains the gravitational action functional in a constructive fashion. As demonstrated in
this thesis, one can obtain general relativity starting from the matter fields of the standard model of par-
ticle physics by solving this system of partial differential equations. In applications where the behaviour
of weak fields is of interest, this system further simplifies to linear algebraic equations for the expansion
coefficients of the action functional. This was used in this thesis to derive the linear equations of motion
of a gravitational theory that allows for birefringence of light in vacuo.

KEYWORDS
Modified Gravitational Theory, Classical Matter Fields, Perturbation Theory
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“Gravity is working against me,
Gravity is trying to bring me down

Oh, twice as much ain’t twice as good
And can’t sustain like one half could

It’s wanting more that’s gonna send me to my knees”
— John Mayer



CHAPTER 1

I NTRODUCT ION

After centuries of progress in understanding the nature of the universe, the benevolent estimate is that
we can successfully describe around 5% of its content. The standard model of particle physics, which
allows for extremely high precision predictions such as the gyromagnetic factor of the electron, seems to
describe all but the gravitational interaction. The latter is then presumably described by Einstein’s theory
of general relativity, with similar success as certified by indirect measurements of binary pulsars and direct
measurements of gravitational waves of black holemergers. Combined to the cosmological ΛCDMmodel,
one can then describe the evolution of the entire universe since its inception.

Assuming all of these theories, both the standard model and general relativity, are the correct descrip-
tions, one surprisingly finds that the ordinary matter can only account for 5 percent of all the matter
content; 25 percent must be attributed to what is called dark matter, that is matter that does not interact
via electromagnetic interaction. The remaining enormous amount of 70 percent is due to what is called
dark energy (compare figure 1.1 for an illustration). As of today, we have no proper candidates for both
dark matter and energy, such that for decades we have tried to gain more insight into their exact nature.

While the standardmodel and ΛCDMare quite successful in their classical scopes of application, there
is a steadily growing stack of effects that it fails to explain. For instance, there is the satellite plane problem:
for satellite galaxies of the Milky Way and the Andromeda, galaxy one finds that they align in flattened
planes (Pawlowski, 2018). This is unexpected since from simulations based on the ΛCDM paradigm, one
finds that the experimentally found distributions are extremely unlikely to occur.

Historically, one of the main reasons dark matter was introduced was to explain the rotation curves
in galaxies. Recent studies such as Piña et al. (2019) and the analysis in Piña et al. (2021) of the galaxy
AGC114905 indicate that the galaxies identified by the authors contain close to no dark matter. Also, in
this case, simulations show that the probability for such galaxies is rather unlikely.

Another observation, while typically stated as evidence for darkmatter, provides a scenario that is diffi-
cult to explain: in the so-called bullet cluster (1E 0657-56) that consists of two colliding clusters of galaxies
(compare figure 1.2), one finds from separate experiments that the observed gravitational pull from space-
time curvature is stronger than expected from the visible matter. However, from X-ray observations, one
infers that the necessary collision speed in the Bullet cluster must have been around 3000km s−1 to be
compatible with the ΛCDM model. Such an enormous velocity is again extremely unlikely: one recent
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dark energy
70%

dark matter
25%

ordinary matter
5%

Figure 1.1 Energy content of the universe according to the standard model of particle physics and
general relativity
Sources: Max-Planck-Institute for Astrophysics Garching and Pixabay

simulation estimated the probability for this to be around 6.4× 10−6 (Bouillot et al., 2015).
One alternative to the introduction of additional particles in the standard model in the form of dark

matter is provided bymodifiedNewtonian dynamics (MOND) (Milgrom, 1994) that, as the name indicates,
supplies amodification toNewton’s law of gravity at low accelerations. One of its predictions is the external
field effect that, due to the non-linearity in the acceleration in a modified Newton’s law, states that an
external acceleration influences the internal dynamics of a system. This effect is not compatible with the
strong equivalence principle. Recent studies such as Chae et al. (2020) and Chae et al. (2021) provide
observational evidence in favour of the external field effect in a MOND theory.

While some of the results are dependent on the particular MOND model, there seems to be an in-
creasing amount of evidence against dark matter and the ΛCDM model. This points in the direction that
we may need another explanation on how to fill in the mysterious gaps in figure 1.1. See for example
the references Perivolaropoulos and Skara (2021), Kroupa (2015), Bullock and Boylan-Kolchin (2017) or
McGaugh et al. (2016) for further details on problems of the standard model of cosmology.

But if dark matter may, in fact, not be the correct approach to fix the problems such as the rotational
curves, what alternative ways exist? One possibility that has attracted a lot of research interest in recent
years is modified gravity that modifies the theory for the interactions themself instead of introducing
additional particles to accommodate for the observational mismatches for the gravitational interaction.
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Figure 1.2 The Matter of the Bullet Cluster. The red colored regions show the distribution of hot gas
(as inferred via X-ray measurements). The blue-colored regions indicate the space-time
curvature (measured by gravitational lensing)
Source: NASA APOD August 24 2006

GRAVITATIONAL BIREFRINGENCE

One physically interesting effect we can introduce to modify the nature of gravitational interaction is the
so-called gravitational birefringence, which occurs once we allow for inhomogeneous geometries. This
effectwas, for example, analysed in the effective setup of standardmodel extension (Kostelecký andMewes,
2002, 2006) that allows obtaining a global bound on birefringence to a sensitivity of 10−38. Note, however,
that this reduces to a search for global deviations from Lorentz symmetry, which is not a necessity since
these deviations very well may be local. In order to correctly derive constraints on these effects – and if
it may be for trying to rule out its existence – it is necessary first to set up a consistent description that
also takes gravitational interaction into account, since the effect itself may only occur in the presence of
non-negligible gravitational fields.

But how do we get the dynamics of a theory allowing for gravitational birefringence? The first step
is to analyse the light propagation with gravitational birefringence. It turns out, as shown in Hehl et al.
(1999); Hehl and Obukhov (2003), that one theory that still obeys a superposition principle of solutions
is given in the form of a Yang-Mills type theory called general linear electrodynamics. Its action functional
reads

SGLED[G, A] = −1
4

∫
dx ψ(G)GabcdFab[A]Fcd[A] , (1.1)

where F denotes the typical curvature 2-form, i.e. containing both the electric fields Eα = F0α as well as
the magnetic field density Bα = ϵαβγFβγ. What is new in this theory is that, instead of the usual metric
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term
√−gga[cgd]b of Maxwellian electrodynamics, there appears a more general term Gabcd and a de-

densitization ψ(G) that is built with the help of G. This object G, that we will refer to as area metric in the
following, provides the most general linear constitution relation between excitations H = (D,H), that
are measurable via charges, and the fields strengths F. The gravitational interaction we must then obtain,
by some means, is an additional action functional for the area metric.

One might expect that birefringence in vacuo, if possible, would appear on cosmological scales. How-
ever, it turns out (Düll et al., 2020) that, due to the homogeneity, a cosmological areametric almost entirely
reduces to the expressions one finds in general relativity: one obtains the scale factor a(t) known from
a Friedman-Robertson-Walker spacetime, but also an additional scalar c(t) that measures the deviation
from metric geometry. As a result, vacuum birefringence on the cosmological scales is suppressed and
only arises for local anisotropies: These, however, can only be adequately judged once the dynamical
equations for an area metric are known.

While seemingly controversial, such a geometry is not entirely new: as was shown in Drummond
and Hathrell (1980) one encounters an area metric in the effective action of photons once the one-loop
vacuum polarizations are taken into account on a general curved background. The effective action takes
the form

Sphoton[A] ∝
∫

d4x
√
−g
(

ga[cgd]b + λCabcd
)

FabFcd +O(λ2) . (1.2)

As stated before, the dynamical equations of such an area metric are not known. The pedestrian ap-
proach would be to write down the most general linear combination of all possible terms one could come
up with and then rule out the separate terms by experiments. This will be cumbersome since, depending
on the number of constants of nature that we end upwith, we need to perform at least asmany experiments
until we end up with a predictive theory.

Pre-Metric 2-form gravity

We will now try to follow this pedestrian approach for the area metric. One “natural” framework to write
down all possible terms one could end upwith is the language of differential forms. For a four-dimensional
spacetime, a Lagrangian is a 4-form that we need to construct with the help of the area metric. In order to
obtain differential equations rather than algebraic equations for the gravitational field, we need to come up
with a way to differentiate. For differential forms, this is performed with the help of the exterior derivative
that takes a n-forms into n + 1 forms. Furthermore, we can combine forms with the help of the wedge
product. The general Lagrangian is then a linear combination of all the 4-forms we can construct using
those operations, i.e. differentiating the configuration variables and combining the differential forms into
4-forms via the wedge product. Since there is only so much we can write down using these operations,
this seems like the perfect setup for approaching the search for gravitational field equations for the area
metric.

This, of course, requires our configuration variables to be some n-form on spacetime, which is a pri-
ori not the case for the area metric. Due to its symmetries, it induces a metric on the six-dimensional
space of 2-forms that can be used to classify the different area metrics. As was shown in Schuller et al.
(2010), the subspace of area metrics that includes the ones induced by Lorentzian metrics g of signature



| 5

(1,−1,−1,−1), is the one with signatures (−1,−1,−1, 1, 1, 1).
We can thenbring any of the areametrics of this class into a normal form N = diag(−1,−1,−1, 1, 1, 1)

at each spacetime point with the help of frames and their duals. This procedure is similar to the vielbeins
one introduces in the Palatini formulation of general relativity. We write

Gabcd = NABeab
A ecd

B and Gabcd = NABϵA
abϵB

cd , (1.3)

with the duality relation ϵA
abeab

B = δA
B and the indices a, b, c, d = 1, . . . , 4 and A, B = 1, . . . , 6.

These frames are determined up to SO(3, 3) transformations, which we can treat as gauge freedom
of our configuration variables. In particular this means that the Lagrangian 4-form we construct must be
equivariant under SO(3, 3). Note that this is a quite similar construction to the one made in the tetrad
formulation of general relativity. In fact, given vielbeins ea

(i) and their inverses ϵ
(i)
a the 2-forms can be

induced in the following fashion by

ϵ1 = ϵ(1) ∧ ϵ(2)

ϵ4 = ϵ(2) ∧ ϵ(3)

ϵ2 = ϵ(1) ∧ ϵ(3)

ϵ5 = ϵ(2) ∧ ϵ(4)

ϵ3 = ϵ(1) ∧ ϵ(4)

ϵ6 = ϵ(3) ∧ ϵ(4)
(1.4)

and their respective duals constructed analogously by antisymmetrizations of the ea
(i). Note that this, how-

ever, only exists if we are equipped with the vielbeins in the first place.
Using the frames, as well as the de-densitization ψ(G), we can also define a family of metrics εψ and

its inverses on our space of frames via

εAB
ψ =ψ(G) · ϵA

abϵB
cdεabcd , (1.5a)

ε
ψ
AB =ψ(G)−1 · eab

A ecd
B εabcd , (1.5b)

where we used the totally antisymmetric density εabcd and its inverse. If we could only employ these
objects, the only viable candidates for a 4-form are given by

NAB ϵA ∧ ϵB , ε
ψ
AB ϵA ∧ ϵB . (1.6)

The first one, in the metric limit where the frames ϵA are induced by existing vielbeins as in (1.4), corre-
sponds to a cosmological constant term. The second one essentially provides us with a term proportional
to the de-densitization in the Lagrangian. Clearly, from the lack of any derivatives in the expressions,
none of those terms by themselves describe a particularly exciting universe.

Differentiation

We will now rectify this by introducing derivatives of the frames. Since each ϵA is a 2-form, the natural
derivatives are the 3-forms obtained by exterior differentiation (dϵA). It suffices to consider first deriva-
tives since, due to Schwarz’s theorem, we have that d2 ≡ 0. This provides us with finitely many terms we
could write down.

However, it is easy to see that under a SO(3, 3) gauge transformation UA
B the 3-form we obtained

via exterior differentiation transforms non-trivially, i.e.

d
(

UA
BϵB
)
=UA

B

(
dϵB

)
+
(

dUA
B

)
ϵB . (1.7)
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The solution to this is well-known: we need to introduce the covariant derivative D for a connection 1-
form ωA

B, where the connection transforms under a gauge transformation such that the covariant deriva-
tive transforms like a SO(3, 3) tensor, i.e. for the covariant derivative defined by

(Dϵ)A := dϵA + ωA
B ∧ ϵB , (1.8)

we have under a transformation

ωA
B −→UA

M ωM
N

(
U−1

)
N

B −
(

U−1
)

M
B dUA

M , (1.9)

(Dϵ)A −→UA
B (Dϵ)B . (1.10)

This, however, comes with the price that we need to introduce another object – the connection ωA
B, in the

action that we, as a consequence, need to consider in the Euler-Lagrange equations as well. Furthermore,
for the covariant derivative, we have D2 6= 0 in general. This means that we can obtain further “building
blocks” for our Lagrangian by repeated application of the covariant derivative. Since it produces a n + 1-
form from a n-form, we luckily know that there will be finitely many candidates.

For the covariant derivative we find the new object

(Dω)A
B = dωA

B + ωA
M ∧ωM

B =: ΩA
B , (1.11)

which one easily recognizes as the standard curvature 2-form to the connection ωA
B. For the second

derivative of the frame 2-form we find that it is given in terms of the curvature 2-form and the frame, i.e.

(D2ϵ)A = ΩA
B ∧ ϵB . (1.12)

As a result, this does not give any new information, and we do not need to add it to our list of possible
building blocks. Moreover, one also finds that the second derivative of the connection vanishes:

(D2ω)A
B = (D Ω)A

B ≡ 0 . (1.13)

As a result, the second derivatives do not give any new information, and it suffices to build our Lagrangian
form from the 2-frame, the connection 1-form and the curvature 2-form. This gives us three terms in total

ε
ψ
ABϵA ∧ ϵB , NAB ϵA ∧ ϵB , ΩA

B ∧ΩB
A . (1.14)

All three do not lead to particularly interesting dynamics: the first and second terms do not contain any
derivatives, i.e. leads to an algebraic equation of motion that eliminates the frames. The curvature terms
do lead to a differential equation; however, the equations are independent of the frame ϵA and are, as a
result, also not of any use. As long as we cannot find another operation to produce additional building
blocks for the Lagrangian, we cannot produce any meaningful Lagrangian for the area metric degrees of
freedom.

Hodge operator

In the vielbein formulation of general relativity, given in terms of the Palatini-Holst action (Palatini, 1919;
Holst, 1996), one employs the Hodge duality for the Lagrangian form. For the area metric, we can try
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to define a similar operation to obtain further differential forms on spacetime build by our configuration
variables. Indeed, it is possiblewith the help of the twoobjects N·· and ε·· to define the following operations

⋆A
B :=

1
2

ε
ψ
NMNMA , (1.15a)

⋆̃A
B :=

1
2

εAM
ψ NMB . (1.15b)

It is easy to verify that ⋆̃ is the inverse of ⋆ and that ⋆ reduces to the usual definition of theHodge operation
for a metric induced area metric. However, while in metric geometry, one finds that ⋆2 = −id this is not
true for the operators defined above in our area metric spacetime. As a result, it does not suffice to apply
our operations once on the building blocks we constructed so far via differentiation, but in fact, we also
need to consider higher powers.

Luckily, due to the Cayley-Hamilton theorem, it is possible to write ⋆6 in terms of ⋆i for i < 6, and
by extension, all higher powers. This (apparently) guarantees that we only need to consider finitely many
terms. Furthermore, it suffices to concentrate on ⋆ since, also by application of Cayley-Hamilton, it is clear
that ⋆̃ can be expressed as a polynomial in ⋆. This leaves us, in total, with finitely many building blocks
that can be obtained by applying our Hodge operation.

Collecting the results we find that we can write the Lagrangian in the form

L =
5

∑
k=0

k

∑
l=0

[
akl

(
⋆lΩA

B

)
∧
(
⋆kΩB

A

)
+ bkl NAB

(
⋆kϵA

)
∧
(
⋆lϵB

)
+ cklεAB

(
⋆kϵA

)
∧
(
⋆lϵB

)]
,

(1.16)

with the coefficients akl , bkl and ckl . In total this gives 63 coefficients that we need to derive by experiments,
as stated above.

Scalar functions

There is, however, an unfortunate complication in case of an area metric: with the definition of ⋆A
B we

can calculate the trace to obtain a scalar function from the area metric, i.e.

⋆A
A = εABNAB = ψ(G)ϵabcdGabcd . (1.17)

As a result, we can write any function f (⋆A
A) in front of each of the building blocks and obtain a valid

Lagrangian form, which a priori turns the coefficients above into arbitrary functions of the possible scalar
terms. Effectively, this leaves us with infinitely many possibilities or undetermined contributions in the
equations of motion.

Even if we choose ψ(G) :=
(

ϵabcdGabcd
)−1

as our de-densitization we can construct scalar functions
since the de-densitization is not unique: for an area metric we can construct

ψ̃(G) =
∣∣det

(
Petrov(G)

)∣∣ 1
6 , (1.18)
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which is a scalar density of weight 1 (Witte, 2009; Schuller et al., 2010). The tensor Petrov(G), being
6× 6 dimensional matrix of the independent components of the area metric, reads

Petrov(G) =



G0101 G0102 G0103 G0112 G0131 G0123

G0202 G0203 G0212 G0231 G0223
. . . G0303 G0312 G0331 G0323

. . . G1212 G1231 G1223
. . . G3131 G3123

. . . G2323


. (1.19)

As a result, the expression ∣∣det
(
Petrov(G)

)∣∣ 1
6 ϵabcdGabcd =: λ(G) (1.20)

is a scalar function of the geometry and so an arbitrary function f (λ) may appear in front of the La-
grangian, or in other words, the objects akl , bkl and ckl in the Lagrangian are dependent on λ. A priori
no choice of de-densitization is favoured over the other and thus we must draw the conclusion that we
cannot determine a finite expression for the area metric Lagrangian since we are left with the residual
arbitrariness of scalars that can be built from the geometry. This type of argument is not limited to an
area metric: If one considers a bi-metric theory, i.e. two Lorentzian metrics g and h, we can construct the
scalar f (g, h) :=

√
gh−1 which can occur with unlimited complexity in an action functional.

In summary, we can conclude that spelling out independent contributions to the Lagrangian and
fixing the constants from experiments will not pay off for the area metric. Ultimately, infinitely many
experiments would be necessary to rule out one action over the other. Already from a practical point of
view, it should be clear that this will not be an option.

Gravitational Closure

There is, however, an alternative way of finding an appropriate action functional for the gravitational
sector that we will derive throughout this thesis. This approach can be used to derive the gravitational
Lagrangian for any geometry: requiring that a prescribed matter field dynamics – given by an action func-
tional – is predictive and canonically quantisable, as well as demanding that the gravitational dynamics
is diffeomorphism invariant in a canonical description, a system of partial differential equations called
the gravitational closure equations for the coefficients appearing in the gravitational Lagrangian can be
derived. The remarkable result is that this boils down a physical problem, the search for gravitational dy-
namics for the desired geometry, to a purely mathematical problem where one solves a system of partial
differential equations. For an illustration of the idea, compare figure 1.3.

In practice, finding a solution to this system may become arbitrarily complex. However, even in these
cases, the gravitational closure equations can still be employed to derive the Lagrangian in specific situa-
tions: for example, using some symmetry assumption such as cosmological symmetries, it is possible to
derive the symmetry reduced Lagrangian (Düll et al., 2020). Similarly, as we will see in this thesis, one
can consider the gravitational closure equations in a perturbative regime and derive the field equations



| 9

Gravitational Closure

Smatter

Sgravity[G]

propagates

on
Geometry G

Gravitational Closure
Equations

gravitational field
equations

solution gives

sets up

variation

Figure 1.3 Gravitational closure of prescribed matter field equations. The geometry is extracted from
the matter field equations. Once the geometry is known it is possible to setup the gravi-
tational closure equations, a system of partial differential equations whose solution gives
the gravitational Lagrangian. Once solved, the “closed” system can be used to analyze the
common field equations.

for weak perturbations around a Minkowskian background. This equips us with a powerful tool that can
be used to study modified gravity theories beyond general relativity.

STRUCTURE OF THIS THESIS

This thesis is structured in the following fashion: we start with a purely kinematical analysis of matter
theories. One can impose three conditions on classical field theories that are, from a physical perspective,
non-negotiable and ensure that the theory under investigation is both predictive and canonically quan-
tisable. Once imposed, these conditions allow us to obtain a notion of observers and massless as well as
massive dispersion relations.

In chapter 3 we will lay out the details of the gravitational closure mechanism. We first review a 3+1
decomposition of spacetime in section 3.1 and present how the action of hypersurface deformations on
functionals the foliations reflect the time evolution of the geometry. Afterwards, we canmimic these defor-
mations on a canonical phase space in section 3.2 and show that their behaviour can be cast into a system
of linear partial differential equations, whose solutions give the gravitational Lagrangian. Once derived,
we continue with discussing some properties of their general solution space and possible simplifications
that can be made when solving the system.

In chapter 4 we will then employ the system of partial differential equations to show that the gravi-
tational closure of the geometry of Maxwellian electrodynamics – in fact of the whole standard model of
particle physics – yields general relativity with only two constants of integration that need to be fixed by
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experiments: the gravitational constant G and the cosmological constant Λ. Afterwards, we also set up
all the required input coefficients appearing in the gravitational closure equations for the area metric and
work towards the solution of the system of differential equations.

We then dedicate chapter 5 to the presentation of an alternative road towards a solution for settings
with weak gravitational interactions. In these cases, we can use a perturbative treatment that turns the sys-
tem of linear partial differential equations into a system of linear algebraic equations for the Taylor series
expansion coefficients of the gravitational Lagrangian. Additional simplifications can be made by employ-
ing the available background geometry to construct the independent tensorial ansätze we can construct.
This leaves us with linear equations for scalar coefficients that we can solve to derive the perturbative La-
grangian. We can then apply this to derive the linear field equations for general linear electrodynamics,
which physically corresponds to a setting of weakly birefringent electrodynamics.

The thesis then concludes with a brief summary and discussion of the topics of this thesis and open
questions and directions worth investigating in the future.

Notation and conventions

Some conventions and notations may need some explanation, and we will quickly take the time to explain
themost important of them. Whenwe encounter a hyperbolicmetric tensor, wewill always assume it to be
of (+,−,−,−) signature, i.e. West Coast signature. We will always work in four-dimensional spacetime:
there will be multiple ways that we try to modify gravity; however, moving to extra dimensions will be
none of them.

Moreover, there will be different types of indices appearing in equations:

α, β, . . . spatial indices
a, b, . . . spacetime indices
A,B, . . . spatial multi-indices
A, B, . . . indices for the (gravitational) degrees of freedom

On top, some symbols serve multiple purposes. In particular in the discussion of the formal analysis
of involutive system partial differential equation, we adopt the notation used in Seiler (2009), that uses
several greek indices to denote different notions:

α indices labeling the dependent variables
µ multi-indices in the independent variables
τ indices labeling the different equations appearing in the system

Wherever there is cause for confusion due to ambiguous notation, we try to explain them in context further.
Ultimately, the intended meaning should be clear from the equations.



CHAPTER 2

SPACET IME K INEMAT ICS

We begin our discussion by considering the kinematics of any suitable matter field theory. It turns out that
the equations of motion of a matter field already contain all information about the background geometry
the matter field propagates on. Even further, if we require that the dynamics is predictive – in the sense
that the system of differential equations is hyperbolic – we obtain conditions the geometry must satisfy.
As an example, it is well-known that the hyperbolic spacetime geometry, given by a Lorentzian metric
with signature (3, 1, 0) – or (1, 3, 0) depending on favoured sign convention – is essential to rendering
Maxwell’s equations of electrodynamics predictive.

In the very same fashion, one can identify two additional physically quite reasonable – and for a canon-
ical quantisation even necessary – conditions: the first condition essentially describes a duality between
the velocities and momenta of massless modes, and the second condition the existence of a split into pos-
itive and negative energy modes. The advantage is that, once these three conditions on the geometry are
imposed, we have a well-defined notion of observers, light-, space- and time-like vectors and covectors,
and even amap between light-like vectors and covectors. While commonwisdom tells us that this requires
a metric, one can construct such a duality for any geometry that satisfies the three stated conditions. How-
ever, in contrast to the metric, this is generally not a linear operation.

Our discussion of the kinematical aspects is structured in the following way: we will first expand upon
the notion of matter field equations that we will use in this thesis and then move on to the derivation
of an object called the principal polynomial. Although these constructions are already in use essentially
since Hörmander’s analysis of linear partial differential equations (Hörmander, 1955), we will see that
certain subtleties exist that must be carefully dealt with. Afterwards, we make the mentioned three matter
conditions precise before we finally take a closer look at how to construct the object of interest for the
gravitation closure mechanism – the Legendre maps between velocities and momenta of massive particle
modes.

The results presented in this chapter, in particular the derivation of the principal polynomial in the
presence gauge symmetries in section 2.2.1, have already been published as

M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz
Gravitational Closure of Matter Field Equations

Phys. Rev. D97 (2018), 084036
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and the description of the Cartan-Kuranishi algorithm and its relation to the principal polynomial, as well
as the example presented in 2.2.2 is set to appear in

F. Wolz
Causal Structure of Matter Field Equations

Proceedings of the 15th Marcel Grossmann Meeting on General Relativity

but have been expanded on several occasions for a self-complete discussion.

2.1 MATTER FIELD EQUATIONS

Before we start, it is important to note that we will restrict ourselves to a specific class of matter theo-
ries throughout this thesis. Although the assumptions we impose for these matter theories may certainly
be considered weak, it is still possible to construct theories where they are not valid anymore. The five
assumptions we make are the following:

Field theories All degrees of freedom are encoded in tensor fields (or densities of a certain weight) on a
spacetime manifoldM, with the dynamics given by a coupled system of differential equations for
those field degrees of freedom.

Local action functionals All the equations of motion, as well as the coupling to other fields, can be ob-
tained from a local action functional.

Local dependence The Lagrangian of the field equations, whose existence is guaranteed by the fact that
we have a local action functional, depends only on finitely many derivatives of the fields, all evalu-
ated at the same spacetime point.

Quasi-linear The highest derivative order of the matter field appears linearly in the equations of motion.

Ultra-local coupling to geometry The degrees of freedom couple to a background geometry in an ultra-
local fashion, i.e. without dependencies on the derivatives of the geometry.

The first condition is the most conservative of them since most modern physical theories are formu-
lated in terms of field theories. The second condition is more restrictive and excludes some theories since
there are matter theories that can not be derived from an action functional, at least without introduc-
ing Lagrange multipliers as additional degrees of freedom. Luckily, given some equations of motion, it
can be decided by the Helmholtz conditions if a Lagrangian, and by this a local action functional, can be
constructed (Douglas, 1939).

The third condition is required to decide on the highest derivative order coefficient in the equation.
The fourth is a quite weak assumption in the setup of gravitational closure: we want to examine the dy-
namics of a geometry, and for this, it suffices to consider the dynamics of test matter that allows us to
probe the background geometry while keeping the backreaction on the geometry arbitrarily small. Such
test matter can always be obtained by taking a suitable linearisation of the dynamics.
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Last of all, as stated in the fifth condition, it is clearly necessary for the degrees of freedom to couple to
the geometry if we want to probe the geometry with the help of test matter. While this may seem trivial,
examples of theories such as the Chern-Simons theory exist that can be formulated without any use of a
background geometry. For this apparent reason, we exclude such theories. Furthermore, we require that
the action functional of the matter field does not depend on the derivatives but only the components of
the geometry at each spacetime point.

Now, starting with our action functional for a whole theory describing the dynamics of all available
degrees of freedom, we split the action into two distinct sectors of interest

Suniverse[A1, . . . , AN , G] = Sgeometry[G] + Smatter[A1, . . . , AN ; G) , (2.1)

where the split encodes our requirement that all matter is coupled to the geometric degrees of freedom,
while the geometry itself includes an action for self-coupling, describing the non-linear nature of gravity.
Moreover, by the third and fifth assumption, this coupling occurs in an ultra-local fashion, i.e. for a par-
ticular matter field A (restricting to N = 1 for now), the functional dependencies of the Lagrangian can
be spelled out as

Smatter[A; G) =
∫
M

d4xLmatter

(
A(x), ∂A(x), . . . , ∂F A(x); G(x)

)
, (2.2)

for some finite F. For the geometry, we only assume that the Lagrangian depends locally on the field, i.e.
considers the same spacetime point x inM.

The equations of motion can be obtained from the action by variation and yield two sets of partial
differential equations that need to be solved simultaneously. Abstractly, they read

0 =
δSmatter

δAA(x)
, (2.3)

0 =
δSgeometry

δGB(x)
+

δSmatter

δGB(x)
, (2.4)

where themulti-indicesA andB depends on the specificmatter field and geometric field under considera-
tion, respectively. More generally, we will assumeA = 1, . . . , R andB = 1, . . . , R withA andB labeling
a basis of a R-dimensional / R-dimensional representation of GL(4) under which the components of the
matter field or the geometry, respectively, transform.

Due to the quasi-linearity – see assumption 4 – we can always bring the equations of motion into the
following form

Qi1...iF
AB

(
G(x), A(x), ∂A(x), . . . , ∂F−1A(x)

) (
∂i1 · · · ∂iF AB

)
(x)

+ terms of lower derivative order in A = 0 , (2.5)

where the symbol Qi1 ...iF
AB

(
G(x), A(x), ∂A(x), . . . , ∂F−1A(x)

)
is guaranteed to be a tensor density of

weight 1 since the equations of motion are derived from an action functional. Note that, even though
these equations are not formulated in terms of a covariant but by partial derivatives the equation as whole
is diffeomorphism invariant if it stems from a diffeomorphism invariant action. Any terms that arise from
∂ under a coordinate transformation are compensated by the lower order coefficients Qi1...ip

AB for p < F
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that do not transform as tensors (or densities). However, we will ultimately only need the highest order
coefficient and, thus, the construction transforms properly.

In the case of quasi-linear equations, as shown above, the underlying causal structure of the equations
is not purely given by the geometric background but also the matter field itself. As a result, the field
impacts its own causal structure, or in other words, the traditional separation of matter and geometry
breaks down. As a result, we will restrict ourselves to linear test matter for which the field A does not
appear in the highest order coefficient. In this case, we have that for a solution A(x) of the field equations,
we can obtain another valid solution by scaling down A by some 0 < ε � 1. Physically this encodes
that we can make the backreaction to the spacetime geometry G arbitrarily small and use the test matter
to probe the properties of the geometry. Note, however, that the construction can also be applied for the
quasi-linear case, as we will see in an explicit example in section 2.2.2. Before we continue with the general
discussion, we will spell out some of the examples we consider throughout this thesis.

Example 1: Maxwellian electrodynamics

The first well-known example is Maxwell’s theory of electrodynamics in its modern covariant formulation
that describes the linear propagation of light in a Lorentzian spacetime, also known as Yang-Mills theory
with U(1) gauge symmetry for a covector field A.

DEFINITION MAXWELLIAN ELECTRODYNAMICS
The action functionals of Maxwellian electrodynamics and the Einstein-Hilbert action for the geometry
g are given by

SMaxwell[A, g) = −1
4

∫
d4x

√
−g gabgcdFac[A]Fbd[A] ,

SEH[g] =
1

2κ

∫
d4x

√
−g
(

R[g]− 2Λ
)

,

with the curvature 2-form F = dA, i.e. Fab = ∂a Ab − ∂b Aa, and g and R being a metric and Ricci
curvature scalar, respectively. Λ is the cosmological constant.

Calculating the equations of motion by variation of the action yields the two familiar sets of partial
differential equations

∂b

(√
−gFba

)
= 0 , (2.6a)

Rab −
1
2

gabR + Λgab = κ

(
gmnFamFbn −

1
4

gabFmnFmn

)
, (2.6b)

where the first equation encodes the two inhomogeneous Maxwell equations and the second one being
Einstein’s field equation with a cosmological constant coupled to the stress-energy-momentum tensor of
the electromagnetic field. The homogeneous Maxwell equations are implemented trivially since dF =

d2 A ≡ 0.
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Reading off the highest order coefficient of the matter field equation, one obtains

Qabij(g) = 2
√
−gga[bgi]j . (2.7)

In this example, we, of course, already know that the action functional of the geometrical degrees of
freedom is given by the Einstein-Hilbert action. However, it was shown in Kuchar (1974) and Hojman
et al. (1976), as well as Schuller andWitte (2014), that we can also arrive at this action by construction from
the Maxwell action. We will recover this in chapter 4.1 by performing gravitational closure of the matter
theory SMaxwell. In some sense, this is precisely what Einstein did: giving the background coefficients of
Maxwell’s equations consistent dynamics that allow common canonical evolution.

Example 2: General linear electrodynamics

Our second example again considers the more refined theory1 of light propagation on an area metric
spacetime. It was derived based on the following five axioms and describes the most general linear elec-
trodynamics (Hehl et al., 1999; Hehl and Obukhov, 2003):

• Conservation of electric charge

• Existence of the Lorentz force

• Conservation of magnetic flux

• Local energy-momentum distribution

• Existence of an electromagnetic spacetime relation

Similar to Maxwellian electrodynamics, as presented in the previous section, the degrees of freedom of
the electromagnetic field are given by the covector A. However, the notable difference is that one obtains
a more general constitutive relation between the field strength two-form F = dA and the excitation
two-form H, i.e.

Hab =
1
4

ϵabmn χmnpq Fpq , (2.8)

with the constitutive tensor density χ. By choosing a suitable de-densitization ω(G), we can turn this
tensor density into the rank four tensor field G called the area metric we discussed in the introduction. It
is equipped with the algebraic symmetries of a Riemann tensor, i.e.

Gabcd = −Gbacd ,

Gabcd = Gcdab .

This leaves 21 independent degrees of freedom in an area metric. Phenomenologically, an area metric
allows for several interesting effects that are not possible in a “traditional” Lorentzian spacetime, most
importantly the effect of birefringence in vacuo. If one excludes vacuum birefringence, it turns out that
the areametric is induced by ametric (Lämmerzahl andHehl, 2004). The corresponding action functional
of general linear electrodynamics is described in the following box:

1As a matter of fact, we deal with a class of theories since an expression for the de-densitization ω(G) has to be provided. In
the end, however, the results should be independent of the chosen de-densitization.
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DEFINITION GENERAL LINEAR ELECTRODYNAMICS
The action functional for general linear electrodynamics is given by

SGLED[A, G) = −1
4

∫
d4x ω(G)GabcdFab[A]Fcd[A]

Sarea metric[G] = ?

with the curvature 2-form F = dA, i.e. Fab = ∂a Ab − ∂b Aa. ω(G) denotes a choice of de-densitization.
An action for the area-metric, however, is unknown.

Since, as of now, to our best knowledge, no exact theory for the gravitational dynamics of an area
metric is known, and the initial attempt in the previous chapter left us with a large undetermined part of
the Lagrangian. This makes it the perfect testing ground to perform gravitational closure, as laid out in
the following chapters, to derive the action of the area metric from the action of general linear electrody-
namics.

Keep inmind that, unlike in general relativity, there is certain freedom in the choice of a de-densitization.
One popular choice for the de-densitization that we will use in the following is given by

ω(G) :=
(

1
24

ϵabcdGabcd
)−1

, (2.9)

with ϵ···· being the Levi-Civita tensor density.
Spelling out the equations of motion for general linear electrodynamics gives a similar expression

compared to Maxwell’s field equations in their covariant formulation

0 = ∂n

(
ω(G)GabmnFab

)
. (2.10)

The highest order derivative coefficient reads

Qabij(G) = 2 ω(G)Gaijb . (2.11)

Example 3: Klein-Gordon fields coupled to separate metrics

Another interesting example to consider is the dynamics of two Klein-Gordon fields ϕ and ψ that are
coupled to two separate metrics g and h, respectively, without having any interaction terms. The naïve
assumption would be that the two sectors are entirely independent of each other. It turns out that this
assumption is wrong.

If observers shall be able to describe a common evolution of the fields ϕ and ψ, the background geom-
etry is composed of both metrics g and h. The dynamics of this “super”-geometry must occur in such a
fashion that the initial data surfaces the observer sees are compatible for all of the fields involved. As a re-
sult, it is quite clear from the beginning that the gravitational dynamics cannot be given by simply adding
together the Einstein-Hilbert actions of both respective metrics, since in this case, there will be solutions
of the equations of motion that do not share common initial data surfaces. How its precise Lagrangian
has to look like can be derived by performing gravitational closure.
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DEFINITION BI-KLEIN-GORDON THEORY

Sbi-KG[g, h, ϕ, ψ] =
1
2

∫
d4x

[√
−g
(

gab ∂a ϕ∂bϕ + m2
ϕ ϕ2

)
+
√
−h
(

hab ∂aψ ∂bψ + m2
ψ ψ2

)]
Sbi-metric[g, h] = ?

For future reference, we also write down the equations of motion, which read√
−g
(
□g ϕ−m2

ϕϕ
)
= 0 , (2.12a)

√
−h
(
□h ψ−m2

ψψ
)
= 0 , (2.12b)

with the D’Alembert operator of the metric g defined via □g := 1√−g ∂a

(√−g gab ∂b

)
and in the same

fashion for the metric h2. The highest order coefficients reads

Qab =

√−g gab 0

0
√
−h hab

 . (2.13)

2.2 THE PRINCIPAL POLYNOMIAL

We will now show how to extract the causal structure underlying given matter field equations of motion
from their highest-order coefficient Q. For this, we make a Wentzel-Kramers-Brillouin (WKB) expan-
sion to see that we can obtain a dispersion relation for modes with practically infinite frequency, which
are physically indistinguishable from massless modes. This approximation, sometimes also called the
geometrical optical limit, is obtained by inserting the following expansion

AA(x) = Re

exp

(
iS(x)

λ

)(
aA +O(λ)

) (2.14)

into the equations of motion for the matter field A. We then obtain, to lowest order λ−F that

Qi1 ...iF
AB

(
G(x)

)
ki1 · · · kiF aB = 0 , (2.15)

with the covector ka = −(∂aS)(x) being the gradient of the eikonal function S. For finite frequency
information we would need to consider higher-order terms in λ.

This linear system needs to be solved for the amplitudes aB . Naturally, all the amplitudes lying in the
kernel of the operator Q · k · · · k give rise to the rather uninteresting solutions aB ≡ 0. As a result, we
look for all non-trivial modes for the amplitudes aB . Basic linear algebra tells us that this is the case, given
that the R× R dimensional matrix

TAB(G, k) := Qi1...iF
AB (G)ki1 · · · kiF (2.16)

2Typically one would divide by the density term in each equation to turn the equation into a scalar equation instead of a scalar
density. In order to keep in line with the general procedure presented in the following we will refrain from doing so and simply
note that this step is possible and does not impact the results.
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is not invertible. In other words, this is the case if the determinant of the quadratic matrix T is vanishing,
which gives conditions on the possible spacetime covector directions k in which physical massless modes
can propagate. This polynomial density, defined by

PG(k) := det
AB

(
TAB(G, k)

)
, (2.17)

gives a dispersion relation formassless particles, i.e. modes in the infinite-frequency limit of our expansion,
propagating on the geometry G, since only particles with covectors k being a solution of PG(k) = 0 can
propagate.

Example: Klein-Gordon field in Lorentzian spacetime

A quite simple example that illustrates this procedure, is a massless Klein-Gordon field in a Lorentzian
spacetime. The action is given by

SKG[ϕ; g) =
1
2

∫
d4x

(√
−ggab(∂aϕ)(∂bϕ)

)
(x) , (2.18)

and the equations of motion are the well-known massless Klein-Gordon equation√
−g□gϕ(x) = 0 . (2.19)

with the D’Alembert operator defined as in the previous section. It is easy to see that the highest order
coefficient is given by

Qij =
√
−ggij , (2.20)

and the polynomial density in this case becomes the well-known

Pg(k) =
√
−ggabkakb , (2.21)

which gives the dispersion relation of massless particles. This tells us that they are propagating on the
light-cone of the metric gab, i.e. propagating with a light-like covector k, as encouraged by terminology.

Historically, this polynomial density was taken to define the principal polynomial we will be chas-
ing after in this section to analyse the causal structure of the matter field equations. Later it was used
because this object provided the capability to generalise the geometrodynamics approach to any geome-
try. Although this definition suffices for many examples, three complications can arise in calculating the
principal polynomial that we need to deal with.

The first one is that the matter field equations may contain gauge symmetries. In this case, it does
not suffice to identify covectors k that seemingly have non-vanishing amplitudes aB as they may lie in the
gauge orbit of a zero solution. This would imply that we can find a gauge transformation to eliminate this
solution. Instead, we need to refine the definition to only find covectors k that are true physical solutions.
Mathematically, we need to carefully separate the kernel of the matrix T[k] into the gauge contribution
and the physical covectors.

The second complication is related to the notion of involutivity. Given that the equations of motion
are in non-involutive form, whose precise definition will be given in section 2.2.2, one can find hidden
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integrability conditions in the system of differential equations that can impact the causal structure – and
in some cases, even the differential order of the differential equation. Only once all hidden information
is explicitly added to the system we can correctly derive the dispersion relations and all the constructions
the gravitational closure mechanism will depend upon. However, given that the system is involutive, all
the information is contained in the highest order coefficient. We will make this more precise in section
2.2.2.

The third and final complication arises if the highest order coefficient of the system of differential
equations – our equations of motion – is not square. While this cannot occur if we obtain the equations
of motion by variation of an action functional, making hidden information explicit requires us to add
additional equations to the system, making the symbol T[k] non-square. We will deal with this in section
2.2.3.

2.2.1 Gauge symmetries

As a matter of fact, in almost all field theories we currently use in the standard model of particle physics,
some gauge symmetry is present. In the case of the standard model, this is the local SU(3)× SU(2)×
U(1) symmetry, while general relativity has the more complex group DiffM of spacetime diffeomor-
phisms.

In all cases, employing a gauge transformation for a field theory possessing a s-dimensional gauge
symmetry in the WKB ansatz used above we find that the amplitude transforms as

aA −→ aA +
s

∑
σ=1

kaχaA
(σ) , (2.22)

with χaA
(σ) being s linearly independent coefficient fields that span the s-dimensional linear subspace of the

solutions of equation (2.15) that is pure gauge. As a result the solution of the matrix equation T[k] · a = 0

will always be at least s dimensional. In order to find at least one non-vanishing solution that is not purely
gauge, wemust require that the kernel of T[k] is at least s+ 1-dimensional – or equivalently that rankT[k]
is R− s-dimensional. A necessary and sufficient condition is that the adjunct, which collects all minors
of order R− s vanishes, i.e.

T[A1···As][B1···Bs]
adj (x, k) :=

∂s (det T)
∂TA1B1 · · · ∂TAsBs

(x, k) = 0 , (2.23)

for all (R
s ) independent coefficients of the bilinear map defined by Tadj on the space of s-forms over the

R dimensional representation space in which the gauge field takes its value. By generalization of the
argument applied by Itin (2009), one can show that the adjunct matrix Tadj can be expressed in terms
of the independent coefficient fields from the gauge symmetry and a common homogeneous polynomial
density P̃(k) of order F · R− (F + 2) · s:

T[A1···As][B1···Bs]
adj (x, k) = ϵσ1···σs ϵτ1···τs χa1A1

(σ1)
χb1B1
(τ1)
· · · χasAs

(σs)
χbsBs
(τs)

ka1 · · · kas · kb1 · · · kbs × P̃(k) . (2.24)

The condition for finding a non-vanishing solution that is not gauge reduces to covectors that lie in the
null space of the polynomial density

P̃(x, k) = 0 . (2.25)
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Being a homogeneous polynomial in k, we can express the polynomial density it in terms of totally sym-
metric components

P̃(x, k) = P̃a1...adegP̃(x)ka1(x) · · · kadegP̃
(x) , (2.26)

where deg P̃ is the degree of the polynomial. Since the polynomial is, moreover, only defined up to a
spacetime function in the first place, we can choose a suitable non-vanishing scalar density ρ(x) of oppo-
site weight to turn the polynomial into a scalar function of same degree, i.e.

P(x, k) := ρ(x) · P̃(x, k) . (2.27)

Example 1: Maxwellian electrodynamics

In the Maxwellian electrodynamics case, we have the U(1) gauge symmetry for transformations of the
form

Aa −→ Aa + (∂aΛ) , (2.28)

for some arbitrary spacetime function Λ. Moving to the WKB ansatz, this becomes

Aa −→ Aa + kbδb
a · λ , (2.29)

for some real number λ. As expected for the one-dimensional gauge symmetry, we find one linear inde-
pendent coefficient

χb
a (1) = δb

a , (2.30)

which spans the pure gauge subspace of the kernel of T[k]. Calculating the adjoint matrix of T[k] that can
be read of equation (2.7) we explicitely find that the covector k factors out twice

Tadj
ab [k] =

√
−g kakb

(
gmnkmkn

)2

=
√
−g kik j δi

aδ
j
b ·
(

gmnkmkn
)2 . (2.31)

Indeed the coefficient for the gauge symmetry appears in the expression as expected from equation (2.23).
This tells us that the covectors of the physical massless modes are given by the solution of the polynomial
equation

P̃(k) =
√
−g

(
gabkakb

)2
= 0 , (2.32)

and by multiplying by the scalar density ρ(x) =
√−g−1

P(k) =
(

gabkakb

)2
= 0 , (2.33)

which is a homogeneous polynomial in k of degree 4 as expected and, of course, recovers the well-known
result. Wewill, oncewe arrived at our final definition of the principal polynomial, alwaysmake the conven-
tion that the polynomial is de-densitized and repeated factors are removed from the polynomial. In this
example, the principal polynomial that we would obtain after de-densitization and removal of repeated
factors is the polynomial of degree 2, namely P(k) = gabkakb.
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Example 2: General linear electrodynamics

In the case of general linear electrodynamics, the calculation becomes a bit more tedious. The gauge
symmetry remains unchanged since we still deal with the U(1) gauge group. As shown in Itin (2009) one
again finds that the adjunct matrix splits into

Tadj
ab [k] ∝ kakbP(k) , (2.34)

where the polynomial P(k) (already de-densitized here) reads

P(k) = − 1
24

ω(G)2 ϵmnpqϵrstuGmnriGjpskGlqtu kik jkkkl , (2.35)

which was first obtained by Rubilar (Rubilar, 2002; Rubilar et al., 2002). Due to the de-densitization ω(G)

we deal with a non-polynomial dependence on the geometry, which provides a rather complicated kine-
matical structure, compared to the well-known Lorentzian one.

To summarise, equation (2.24) equips us with a way to correctly calculate the dispersion relation of
massless particles in the presence of gauge symmetries. However, we still need to ensure that all required
information is present in the highest order symbol, which requires that the differential equation is in
involutive form. We will dedicate the following section to a more precise explanation of this.

2.2.2 Involutivity

The statement often made that all the causal structure is contained in the highest order coefficient of the
equations of motion technically only holds for a specific class of differential equations. In all other cases,
there may be information in the lower order coefficients that may also contribute to the causal structure
of the equations in a subtle fashion. Luckily, an algorithm exists that allows us to bring any system of
differential equations into this particular form so that we can indeed derive our principal polynomial
again from the highest order coefficient with the techniques described in the previous sections.

This is because there may be hidden integrability conditions in a differential equation of order q, that
is, further equations of order q that can be obtained by linear superposition of derivatives of the original.
This information is already implicitly present, and any solution of our original differential equation already
solves these integrability conditions. However, such an equation does contribute to the causal structure
and must be considered in calculating the principal polynomial, for otherwise, wrong conclusions are
drawn.

Example for integrability conditions

We start by considering a simple two-dimensional example where the equations of motion are given by
two second-order partial differential equations

0 = f̈ + ∂x f , (2.36a)

0 = ∂x ḟ + ḟ . (2.36b)
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By differentiating the first equation in x-direction and the second one in t-direction and subtracting
both equations we, however, find another differential equation of second-order the solution f must solve,
namely the two-dimensional wave equation

0 = f̈ − ∂xx f . (2.37)

No new information was revealed, that is, any solution f (x, t) of the equations (2.36a) and (2.36b) is
already a solution of the wave equation. However, if we were to calculate the principal polynomial to
derive the equation’s causal structure, we need to add this equation to our system tomake this information
explicit.

Example 2: Modified electrodynamics by Velo-Zwanziger

Another example was given – although for other reasons – in Velo and Zwanzinger (1969). They con-
structed a Lagrangian in a fully Lorentz-invariant fashion. Still, they showed that, contrary to the common
view that Lorentz-invariance in the Lagrangian already guarantees to give the Lorentzian causal structure
of special relativity, the causal structure is not Lorentzian anymore. The analysed Lagrangian is a modifi-
cation of covariant Maxwellian electrodynamics by a Proca mass term and a quartic term in the covector
field A, i.e.

LVZ[A] = −1
4

ηacηbdFab[A]Fcd[A] +
1
2

m2 ηab Aa Ab +
1
2

λ
(

ηab Aa Ab

)2
. (2.38)

Since the additional terms do not contain any derivatives of A, the highest order coefficient coincides with
the one from standard Maxwellian electrodynamics and the expectation is that the causal structure, as a
result, also coincides. However, one can derive the lower order constraint equation from the equations of
motion,

0 = ∂a

((
1 + λm−2(ηij Ai Aj)

)
ηab Ab

)
, (2.39)

that leads to another second-order equation by differentiation. They found that this term contributes to
the principal polynomial in the following fashion

P(k) = (ηabkakb)
3 ·
[

ηijkik j + λ m−2
(
(ηijkik j)(η

mn Am An) + 2(ηijki Aj)
2
)]

. (2.40)

This is a product of the standard term ηabkakb and a modification term, resulting in massless modes
propagating with another speed of light that depends on the particular solution Aa to the equations of
motion.

Differential equations and their geometric and principal symbol

In order to systematically deal with this issue of revealing hidden integrability conditions, we take a closer
look at the theory of involutive differential equations and the Cartan-Kuranishi algorithm. This requires
some initial definitions to be able to formulate the algorithm correctly. The following discussion closely
follows the terminology presented in Seiler (2009). We start with the definition of a differential equation
(or rather a system of differential equations):



2.2 The Principal Polynomial | 23

DEFINITION DIFFERENTIAL EQUATION

A (system of) differential equationsRq is a collection of implicit functions

Φτ(xi, uα, pα
µ) = 0 τ = 1, . . . , l ,

that depend on n independent variables x1, . . . , xn and m dependent variables u1, . . . , um, i.e. functions of
the independent variables. pα

µ = ∂|µ|uα

∂xµ are the corresponding derivatives in the direction of the indepen-
dent variables, and µ denotes a multi-index. The order of the differential equations, given by the largest
number of elements in the multi-indices µ, will be denoted by q. τ labels the 1, . . . , l different equations
in the system of differential equations.

Geometrically, we considerRq to be a fibered submanifold of the jet bundle JqE where the dependent
variables take their values in.

For point particle equations of motions, the only independent variable is the time coordinate t and the
generalised coordinates qi are the dependent variables. For field theories, like the ones we treated in the
previous sections, the independent variables are the spacetime point coordinates (in some chosen coor-
dinate system), and the field values constitute the dependent variables. Another example that we will see
in chapter 3 are the gravitational closure equations: Here, the independent variables correspond to the
local degrees of freedom of the gravitational field and their derivatives, and the dependent variables are
the expansion coefficients appearing in the gravitational Lagrangian.

One object of great importance is the geometric symbol of a differential equation, since it contains much
information about the solution space of the differential equation3:

DEFINITION GEOMETRIC SYMBOL
The geometric symbol of a differential equation is defined by the linear equation

Mq : ∑
|µ|=q

∂Φτ

∂pα
µ

vα
µ = 0 ,

which is the kernel of the coefficient Qτµ
α := ∂Φτ

∂pα
µ
, with |µ| = q.

We can bring this matrix Q into row echelon form by Gaussian elimination to read off for which
coefficients pα

µ we can solve for in the differential equation. The remaining derivatives have to be provided
by initial values.

The second important object for the differential equation is a familiar object called the principal symbol.
While it generally contains the same information as the geometric symbol, it presents it in a different
fashion and is favourable in some situations.

3Revealing this information, however, may become tedious in practice
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DEFINITION PRINCIPAL SYMBOL
The principal symbol of an equation is obtained by contraction with covectors k

Tτ
α [k] := ∑

|µ|=q

∂Φτ

∂pα
µ1...µq

kµ1 · · · kµq .

As the name already indicates, this is of course intimately connected to the principal polynomial we
defined before. In fact, both the geometric symbol as the highest order coefficient of the differential equa-
tion, as well as the principal symbol itself, already appeared in the previous sections, although they now
appear in a more general setting.

Beta-coefficients

From the geometric symbol of the equation, we can read off some coefficients that are essential for the
notion of involutivity and the Cartan-Kuranishi algorithm. In simple terms, we count which Taylor coef-
ficients we can solve for in the differential equation at order q. For involutive equations, it will turn out
that we can derive the number for higher orders already in terms of the coefficients of the lower orders.
This means we can completely predict the behaviour at higher orders. As a result, one could, in principle,
even count the number of functions appearing in the solution (Seiler, 1995).

To be able to define those coefficients, we need to introduce some fixed order of the columns of the
geometric symbol (labelling the different Taylor coefficients at the highest order q). For this, we associate
to each multi-index a class via

DEFINITION CLASS OF A MULTI-INDEX

For a multi-index µ = [i1, . . . , in] we define its class as the index k of the first non-vanishing ik.

Using this, we can sort the columns of Q in a class respecting order – from highest to lowest – and after
bringing the matrix into row echelon form by Gaussian elimination search for the first non-vanishing
entry in each row. The corresponding pα

µ of this entry is called the leader of the row of class k. We can

now count the leaders of each row of class k and denote this β
(k)
q . With these coefficients, we can define

the notion of an involutive symbol:
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DEFINITION INVOLUTIVE SYMBOL
The geometric symbol of a differential equation at order q is called involutive given that the rank of the
geometric symbolMq+1, obtained by differentiating the differential equation in the direction of each
independent coordinate, satisfies the relation

rankMq+1 =
n

∑
k=1

k · β(k)
q .

Given that the symbol at order q is involutive one can derive a recurrence relation to calculate the coeffi-
cients β

(k)
q+1 directly from the coefficients β

(k)
q (Seiler, 1994). This means that we can completely predict

what coefficients we can solve for in the prolongations of the differential equation, i.e. the derivatives in
the direction of the independent coordinates. One finds (Seiler, 1995) that, given that the symbol of order
q is involutive, that at order q + r the beta coefficients read

β
(k)
q+r =

n

∑
i=k

(
r + i− k− 1

r− 1

)
β
(i)
q . (2.41)

Even further, once the symbolMq is involutive, it turns out that the same will be true for all further
prolongationsMq+r, for any r ≥ 0. The rank of the geometric symbol at order q + r can be obtained
inductively and one finds that

rankMq+r =
n

∑
k=1

(
r + k− 1

r

)
β
(k)
q . (2.42)

Moreover, it can also be shown that even if at order q the symbol was not involutive yet, there always exist
an integer r such that the symbolMq+r will be involutive, and thus so will be all further prolongations.
Note that this, however, does increase the differential order of the equation since we will add all the pro-
longations explicitly to the system until the symbol is involutive. In practice, this can lead to the scenario
where a seemingly second-order field equation is in fact of higher order and is then possibly plagued with
Ostrogradsky ghosts (Ostrogradsky, 1850; Woodard, 2015).

For a thorough treatment of involutive differential equations and the formal study of differential equa-
tions, we refer the interested reader to Seiler (2009) and the references therein.
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REMARK

With the help of the β
(k)
q -coefficients one can define the so-called Cartan characters

α
(k)
q := m ·

(
n + q− k− 1

q− 1

)
− β

(k)
q k = 1, . . . , n ,

where m is the number of dependent variables in the system. Those symbols encode much of the informa-
tion about the solution space. Given that α

(n)
q is non-vanishing we immediately know that there has to be

at least one undetermined function in the solution space. In order to have only finitely many constants,
we need to find that α

(k)
q = 0 for all k.

Example Let us quickly apply this on the example for equations (2.36a) – ((2.36b)). In this case, the
geometric symbol of the equations is easily found to be

M2 :

f̈ ∂x ḟ ∂xx f( )
1 0 0

0 1 0
, (2.43)

where we chose our order for the independent variables such that f̈ (which corresponds to themulti-index
[2, 0]) is of class 2, while ∂x ḟ (corresponding to [1, 1]) is of class 1. As a result, we have that

β
(1)
2 = 1 , β

(2)
2 = 1 . (2.44)

In order for the geometric symbolM2 to be involutive, we must confirm that the rank of the geometric
symbol of the prolongations – that is taking all derivatives in the direction of all independent variables –
is equal to 1 · β(1)

2 + 2 · β(2)
2 = 3. If we calculate this, one indeed finds that

rank

...
f ∂x f̈ ∂xx ḟ ∂xxx f


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

= 3 . (2.45)

The symbol is, as a result, involutive. However, we have already seen before that there exists a hidden
integrability condition, namely equation (2.37), that we need to consider.

Hidden integrability conditions

As found in the example, “hidden information” may still be contained in the differential equations. If we
can algebraicallymanipulate the prolongation of the differential equations – equations of order q+ 1, such
that we obtain an equation of order q, then this is considered to be an integrability condition and needs to
be added to the system (Seiler, 2009). Of course, no new information is added; it is simply made explicit
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and can then properly be considered in all further calculations – as in the analysis of the causal structure
encoded in the principal polynomial.

In the geometric formulation we can tackle this by obtaining the differential equation R(1)
q ⊆ JqE

that is obtained by first taking the derivative in the direction of each independent variable and then, after
bringing the equations into row echelon form, projecting back to order q by keeping only equations that
contain coefficients up to order q. Using the geometric symbolMq+1 one can show that in general

dimR(1)
q = dim Rq+1 − rankMq+1 , (2.46)

where it holds that the dimension of the projection fulfills

dimR(1)
q ≤ dimRq . (2.47)

This allows one, even for a rather complicated system of differential equations, to systematically check for
the presence of integrability conditions in practice.

Given that integrability conditions were identified and added to the system, it turns out that an invo-
lutive symbol can suddenly fail to be involutive. In this case, it is necessary to increase the differential
order of the equation until the symbol becomes involutive again, after which it is required to again check
for any further integrability conditions. Performing all those steps is the content of the Cartan-Kuranishi
algorithm, which we will describe in the subsequent section.

The Cartan-Kuranishi algorithm

As stated above, identifying hidden integrability conditions may cause the geometric symbol of the equa-
tion to becoming non-involutive. As a result, we need to differentiate to make the symbol involutive again
at some higher differential order before looking for further integrability conditions again. This raises the
question of whether the seemingly Sisyphean task of making the symbol involutive again, as well as pro-
jecting back to reveal hidden integrability, may actually stop at some point.

Luckily, a reassuring answerwas given by theCartan-Kuranishi theorem that states that, in any case, we
end upwith a differential equationwhere the symbol is involutive, as well as all the integrability conditions
were added to the system, in finitely many steps.4 Once the sequence stops, we say that the system is
involutive (Seiler, 2009). Once made involutive, all hidden information is made explicit.

The algorithm to bring the differential equation into involutive form is the so-called Cartan-Kuranishi
algorithm and can be performed for any differential equations (Kuranishi, 1957). Once this step has been
performed, all information that can contribute to the characteristic surfaces, and by this to the causal
structure of the differential equation, is now explicitly present. We summarise the steps of the algorithm
in the following box.

4Arriving there in practice may still feel rather Sisyphean than finite.
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CARTAN-KURANISHI ALGORITHM

Input: Differential equationRq ⊆ JqE
Output: Equivalent involutive differential equationR(s)

q+r ⊆ Jq+rE
r ← 0, s← 0;
repeat

whileM(s)
q+r not involutive do

r ←− r + 1

end
integabilityConditions←− R(s+1)

q+r ⊂ R
(s)
q+r ;

if integrabilityConditions then
s←− s + 1

end
until ¬ integrabilityConditions;
returnR(s)

q+r

As a result, we can then correctly calculate the principal polynomial of the differential equation and
obtain its correct principal polynomial and its underlying causal structure. Suppose one applies all the
steps of the Cartan-Kuranishi algorithm for the Euler-Lagrange equations of the Lagrangian considered by
Velo-Zwanziger. In that case, it turns out that there are indeed hidden integrability conditions. Calculation
of the principal polynomial then recovers their result. Note, however, that the result was obtained in a
completely algorithmic fashion.

One notable fact is that physicists are quite familiar with the algorithm by itself, as it is identical to the
Dirac-Bergmann algorithm for constrained systems (Dirac, 1950, 1958, 1964) in the case of point particles.
For field theories, it presents a more general algorithm that considers not only the derivatives in temporal
direction and looks for additional constraints but also in the spatial direction (Seiler and Tucker, 1999).
What the Dirac-Bergmann procedure offers on top is the classification scheme of integrability conditions
into first and second classes. From the geometrical perspective, the second class constraints restrict to a
symplectic submanifold of the phase space, while first class constraints will act as the generators of gauge
transformations.

Example: Generalizations of Maxwellian electrodynamics

We now want to put the algorithm presented above to good use by analyzing a specific example that is
still interesting enough from a physical perspective (Wolz, 2021). The setup we consider is the following
Lagrangian:

L[A; η) = −1
4

ηacηbdFab[A]Fcd[A] + V(A) , (2.48)

i.e. we take the Lagrangian of Maxwellian electrodynamics on a flat Minkowskian background η and add
a not further specified function V(a) of the covector field Am.

The equations of motions are calculated by variation of the action with respect to A, which yields a
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differential equation of 2nd order

0 = 2 ηm[nηp]a∂mn Ap +
∂V
∂Aa

(A) . (2.49)

In this case, because our function V does not depend on derivatives of the convector field, we see that the
geometric symbol coincides with the term obtained for standard electrodynamics.

To obtain the four β
(i)
2 coefficients, we first pick an order for our independent variables. In general it

proves useful to solve for asmany Äm terms as possible as it allows us to distinguish between evolutionary-
and constraint equations. Thus, we make the choice (xα, t) for our classes, i.e. time comes after the spatial
components and has the highest class. As the next step, we need to write down the geometric symbol and
sort the columns in our chosen order. As the expression is rather tedious we will not state it here explicitly
and directly present the beta coefficients

β
(1)
2 = 0 , β

(2)
2 = 0 , β

(3)
2 = 1 , β

(4)
2 = 3 , (2.50)

which reflects the well-known fact that in Maxwell’s equations we have three evolutionary equations and
one constraint. In order to check if the geometric symbol is involutive, we need to calculate the rank at
the next order and see if it is given by

rankM3 =
4

∑
k=1

k · β(k)
2 = 15 . (2.51)

Although tedious, the calculation can easily be performed by computer algebra software, with the result
that the symbol is indeed involutive.

The next step is to check for hidden integrability conditions. By considering the divergence of the
equations of motion (2.49) we find, due to the anti-symmetrization in the first term in (2.49) the integra-
bility condition

0 =
∂2V

∂Am∂An
(A)(∂n Am) =: Hmn(A)(∂n Am) , (2.52)

which is of 1st order. This means we have to add it to the system to make the information explicit.
For our new system, we repeat the steps from above, i.e. check if the symbol is involutive. Since the

new equation (2.52) is of 1st order, the symbol remains unchanged and so it is still involutive. But clearly,
if we prolong the integrability condition (2.52) we find another 2nd order equation that also has to be
added to the system. The geometric symbol of the system has then changed, so we need to read off the
β
(k)
2 coefficients again. We find that

β
(1)
2 = 1 , β

(2)
2 = 1 , β

(3)
2 = 2 , β

(4)
2 = 4 , (2.53)

and that the geometric symbol is still involutive. If we now check for integrability conditions we find that
there are no further conditions. As a result our final system

0 = 2ηm[nηp]a(∂mn Ap) +
∂V
∂Aa

(A) ,

0 = Hmn(A)(∂n Am) , (2.54)

0 = Hmn(A)(∂np Am) + (∂pHmn(A))(∂n Am)
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is involutive and thus, all hidden information is made explicit.
We can now analyse the causal structure of this system. By making a Wentzel-Kramers-Brillouin

approximation to lowest order again (compare equation (2.14)), and calculating the principal polynomial5

we find the admittedly non-Lorentzian polynomial

P(k) =
(
ηmnkmkn

)3 ·
(

Hpq(A)kpkq

)
. (2.55)

If we eliminate repeated factors, this gives a principal polynomial of degree 4. In general, we see that this
is not the standard Lorentzian causal structure but resembles the causality of a bi-metric theory, with the
second metric being constructed by the four-potential A itself. This particularly indicates that in this case,
the dichotomy of matter fields and a geometric field η breaks down since A acts in both sectors.

Only for two special cases do we recover the principal polynomial of the standard model: Since only
the 2nd derivative of V appears in the principal polynomial, any term linear in the gauge field leaves the
causal structure unchanged. This is not surprising since this just contributes a coupling of the covector
field Am to a current j, i.e.

V(A) = jm Am . (2.56)

The other case occurs in case the second derivative of V with respect to the covector field A is proportional
to the flat metric η, i.e.

∂2V
∂Ap∂Aq

∝ ηpq . (2.57)

In this case V only contributes as a repeated factor to the principal polynomial. This corresponds to a
Proca mass term

V(A) = m2 ηab Aa Ab . (2.58)

While this does break the U(1) gauge invariance – which could be seen in the according to involutive
system from the β

(4)
2 coefficient since we now have four evolution equations and no constraint – the causal

structure is not altered.

2.2.3 Non-square systems

A third complication may arise once the equations of motion were put into involutive form by performing
the Cartan-Kuranishi algorithm: by explicitly adding new equations, the hidden integrability conditions,
to the system, the principal symbol T[k] is generally not a squarematrix anymore. As a result, the covectors
k of propagating massless modes cannot be obtained by taking the principal symbol’s determinant.

This can, luckily, be rectified rather easily: remember that we were identifying those covectors, whose
zero-set give non-vanishing amplitudes in a WKB approximation, and thus the geometrical optical limit
of the matter theory. Even in involutive form, the equations of motion still read to the lowest order in the
expansion

TτB [k]aB = 0 for τ = 1, . . . , number of equations , (2.59)

5We have to be careful since we deal with a so-called non-square system, as will be elaborated in more detail the following
subsection.
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with the subtle, but most important, difference that the rows of the principal symbol are no longer labelled
by the indexA arising from varying the action with respect to the matter field. But also, in this case, com-
mon linear algebra knowledge tells us that we can again derive a polynomial equation in order to identify
non-trivial amplitudes: this is the case given that the determinant of the matrix Tt[k] · T[k] vanishes. This
finally motivates the following definition of the principal polynomial that can be applied for non-square
systems:

DEFINITION PRINCIPAL POLYNOMIAL (WITHOUT ANY GAUGE FREEDOM)

The principal polynomial of a non-square system of differential equations is given by

P(x, k) = ρ(x)det
(

Tt[k] · T[k]
)

,

where T[k] denotes the principal symbol of the equations of motion.

Note that for a square system this definition reduces to the square of the original definition of the
polynomial, that we hinted at in equation (2.17), since

P(x, k) ∝ det
(

Tt[k] · T[k]
)
= det

(
Tt[k]

)
· det

(
T[k]

)
=
(

det
(
T[k]

))2
, (2.60)

which describes precisely the same zero-set and thus, massless covectors. Since we will settle on the con-
vention to remove repeated factors from the polynomials in the next section, it is clear that both definitions
will in this case yield the same result for square systems.

Furthermore, it should be noted again that this definition is only valid, given that no gauge symmetries
are present: this can be either achieved by a suitable gauge fixing or by performing the steps described in
section 2.2.1 with the adjunct matrix of Tt[k]T[k] instead of T[k]. This will, again, yield a homogeneous
polynomial density that gives the dispersion relation of physical massless modes.

Examples Although not really motivated by a proper physical theory, we go back to the example from
equations (2.36a) – (2.36b) after addition of the integrability condition. One can easily verify that, once
the condition is added, this system is involutive. The principal symbol T[k] is then given by the vector

T[k] =


k2

t

kx kt

k2
t − k2

x

 . (2.61)

Inserting this into definition, we find that the principal polynomial P is then given by

P(k) = 2 k4
t − k2

xk2
t + k4

x . (2.62)

A more interesting example is the generalization of Maxwellian electrodynamics that we completed
to involution in the previous section. The principal symbol, removing trivial rows, becomes

T[k] =

k2 · η − η(k, ·)⊗ η(k, ·)
H(k, ·)⊗ k

 , (2.63)
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from which we can calculate the determinant of Tt[k] · T[k] with the help of computer algebra and verify
that, indeed, we obtain the expression (2.55) stated in the previous section.

Lagrange multipliers

Another way to derive the principal polynomial for systems that are non-square after Cartan-Kuranishi
completion is to add the integrability conditions that were discovered by the algorithm to our initial La-
grangian with Lagrange multipliers (Wierzba, 2018).

Let us write our original system of differential equation, obtained from a Lagrangian functional L[A]

by variation, as

D[∂]A = 0 , (2.64)

with the operator valued symbol D[∂]. After bringing it into involutive form we add the conditions in the
form C[∂]A = 0 to the initial system. The principal symbol of the involutive differential equation then
takes the form

T[k] =

TD[k]
TC[k]

 , (2.65)

with TD[k] being the principal symbol of the original equation and TC[k] the principal symbol of the
integrability conditions. Then we can define a modified Lagrangian of the form L[A] + λC[∂]A that, by
variation of both A and λ, leads to the equation of motion

D[∂]A + C[−∂]tλ = 0 , (2.66)

C[∂]A = 0 . (2.67)

From this we get, again, the quadratic geometric symbol of the modified Lagrangian

T̃[k] =

TD[k] TC[−k]t

TC[k] 0

 . (2.68)

For this principal symbol, we can calculate the principal polynomial by “simply” taking the determinant
or decomposing the adjunct matrix in the presence of a gauge symmetry by the prescription given in sec-
tion 2.2.1. In the end, the result is independent of the chosen method.

Let us quickly summarise the results of the previous sections: given some matter field equations of
motion, it is first essential to bring the system of differential equations into involutive form to guarantee
that all the information that contributes to the causal structure is present in the highest order coefficient of
the differential equation. Afterwards, in the absence of gauge symmetries, the principal polynomial can
be calculated in the WKB approximation from the highest order coefficient. In case gauge symmetries
are present, it can be calculated with the steps laid out in 2.2.1. In any case, we end up with a polynomial
homogeneous in the covectors k, the principal polynomial, that contains the information about the char-
acteristic surfaces of the differential equations. By this, the causal structure is dictated by the background
geometry.
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2.3 THE MATTER CONDITIONS

As will be presented in detail in the next chapter, the gravitational closure framework allows deriving the
dynamics of the gravitational fields. The required input is a generalised way of turning the conormal to
a hypersurface into a “time-like” vector with any geometry. As it turns out, this information is encoded
in the principal polynomial already – given that some specific conditions are imposed on the principal
polynomial. However, as mentioned before, these conditions are quite reasonable for a physical theory, in
fact even necessary for any canonical quantisation of the classical dynamics of a given matter theory.

The first condition ensures that the equations of motion describe an initial value problem; in other
words, the matter field dynamics is predictive. This translates into a specific condition on the principal
polynomial of the equations of motion. The second condition is required in order to be able to move
between a Lagrangian and Hamiltonian description of massless modes propagating with the dispersion
relation defined by the principal polynomial of the given matter field. The third and last condition on the
polynomial requires the spacetime to be energy-distinguishing, meaning that we can distinguish positive
energy modes from negative energy modes – and there are no other modes.

All those rather physical conditions – in the following referred to asmatter conditions – translate into
requirements on the principal polynomial, and by this, into requirements on the background geometry
that is contained in the matter field equations themselves. We will now lay out these conditions in more
detail.

2.3.1 Condition 1: Predictivity

As stated above, the first matter condition requires that the matter dynamics be formulated as a proper
initial value formation. The mathematical version of this statement is that the equations of motion need
to be hyperbolic differential equations for only then they are solved by prescription of initial values that
will then evolve along with some evolution parameter t. It can then be shown that this is precisely the case,
given that the principal polynomial is hyperbolic:

DEFINITION HYPERBOLIC POLYNOMIAL
The polynomial P(x, k) is called hyperbolic if there exists a covector h ∈ T∗xM such that

• P(x, h) 6= 0

• P(x, q + λ · h) = 0 has deg P-many real solutions λ, for all covectors q ∈ T∗xM

In case such a hyperbolic covector h exists, there always exists an open and convex cone Cx(P, h) called
the hyperbolicity cone that contains all hyperbolic covectors that lie together with h in one connected set.

For an illustration of this idea, see figure 2.1 where we present the null cone of a 2nd degree principal
polynomial together with a hyperbolic covector h.

Given a hyperbolic covector h, one easily sees that −h is also a hyperbolic covector. However, one
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finds that it does not belong to the same connected component and Cx(P, h) ∩ Cx(P,−h) = ∅. As a
result, there is always an even number of hyperbolicity cones at each spacetime point.

It turns out (Raetzel et al., 2011) that in case the principal polynomial is reducible, i.e. it can be written
in terms of factors

P(x) = P1(x) · · · Pf (x) . (2.69)

Now, P is hyperbolic if and only if all of its lower-degree factors Pi are hyperbolic on their own. The
hyperbolicity cones are then given by the intersection of the hyperbolicity cones of each factor, i.e.

C(P, h) = C(P1, h) ∩ · · · ∩ C(Pf , h) . (2.70)

Clearly, C(P, h) = ∅ unless h is a hyperbolic covector for each factor.
We can furthermore make the choice of a time orientation of spacetime by prescription of a smooth

and everywhere hyperbolic vector field n. This singles out a hyperbolicity cone Cx at each space time point
via

Cx = Cx (Px, nx) . (2.71)

Since the boundary of the hyperbolicity cones is merely defined by the roots of P, while its interior has a
constant sign, we are free to pick a sign convention. In this thesis we will always choose a positive sign for
the hyperbolicity cone selected by a time orientation, i.e. P(Cx) > 0.

Given a polynomial where repeated factors occur – as they, for example, did in the case of Maxwellian
electrodynamics – we see that those factors provide no new information: the hyperbolicity cones identi-
cally match each other. As a result, we can remove those repeated factors from the polynomial without
any loss of generality. This will be important for the formulation of the second matter condition.

Example: Maxwellian electrodynamics

We saw in the previous sections that the principal polynomial of Maxwellian electrodynamics – once de-
densitized, dealt with all gauge ambiguities and eliminated all repeated factors – is given by

P(x, k) = gab(x) ka(x) kb(x) . (2.72)

For the polynomial to be hyperbolic, we search for the roots of the equation

P(k + λ · n) = gab (ka + λna) (kb + λnb)

= gabnanb λ2 + 2 gabkanb λ + gabkakb = 0 . (2.73)

This has deg P = 2 real solutions given that the discriminant is larger than zero,(
gabkanb

)2
−
(

gabkakb

) (
gcdncnd

)
> 0 .

Now choosing, without loss of generality, a coordinate system such that n = (1, 0, 0, 0) and g0α = 0 we
can simplify this to

g00 · gαβkαkβ < 0 .
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h

q + λ · h

q

P(x, k) = 0

Figure 2.1 Hyperbolic covector h ∈ T∗xM with respect to a hyperbolic polynomial P(x, k) of degree
2. The line q + λ · h intersects the null cone exactly twice.

In case g00 > 0 we find that gαβkαkβ < 0 and for g00 < 0 we find that gαβkαkβ > 0, which has to hold
for all covectors k. But this then implies that g has to be of Lorentzian signature, which is the well-known
result that only a Lorentzian geometry renders Maxwell’s equation predictive. With our convention that
P(n) > 0 we find that g00 > 0, i.e. the metric has (+,−,−,−) signature.

2.3.2 Condition 2: Momentum-velocity duality of massless modes

Thesecondmatter condition establishes a duality between themomentumand velocity ofmassless particle
modes that satisfies the dispersion relation defined by the principal polynomial. For this we first write
down the totally constrained Helmholtz action for the massless modes as

Smassless[x, k, ρ] :=
∫

dλ
(

ka(λ)ẋa(λ)− ρ(λ) P
(
x(λ), k(λ)

))
, (2.74)

with ρ being a Lagrange multiplier that enforces the dispersion relation P for the massless particle. We
can then calculate the equations of motion of the massless mode by variation of the action by x, k and ρ
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Figure 2.2 Gauss map sending P-null covectors to P♯-null vectors. (a) Null-surface of a hyperbolic
reducible principle polynomial P in cotangent space; with typical gradient (co-co-)vectors,
and (b) null-surface of the dual polynomial P♯ in tangent space; containing, by definition,
the gradient vectors to the P-null surface.

and obtain the following system

ẋa(λ) = ρ(λ) · ∂P
∂ka

(
x(λ), k(λ)

)
, (2.75a)

k̇a(λ) = −ρ(λ)
∂P
∂x
(

x(λ), k(λ)
)

, (2.75b)

0 = P
(

x(λ), k(λ)
)

. (2.75c)

In order to express the momenta k in terms of the particle velocity ẋ, we need the inverse of the derivative
of the principal polynomial with respect to its fibre argument. It can then be shown (Raetzel et al., 2011;
Rivera, 2012) that such an inverse (up to a projective factor) exists in case P is hyperbolic and is given by
the gradient of a dual polynomial in tangent space for which

P♯

(
x,

∂P
∂k

(x, k)
)
= 0 for all k ∈ Nsmooth(x) , (2.76)

with the cone Nsmooth being defined as

Nsmooth(x) :=
{

k ∈ T∗x | P(x, k) = 0 and
∂P
∂k

(x, k) 6= 0
}

. (2.77)

While the dual polynomial P♯ is just defined up to a real factor function, its roots are unaffected by this
ambiguity and well-defined.

The dual polynomial of a factor polynomial P(x, h) = P1(x, h) · · · Pf (x, h) is then also defined as

P♯(x, v) := P♯
1(x, v) · · · P♯

f (x, v) , (2.78)
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where each factor of the dual polynomial P♯
i is defined according equation (2.76) for each factor Pi.

The mathematical content of our second matter condition is that we also require the dual polynomial
to be hyperbolic. The physical consequence of this is then that the following projective relation holds[

DP♯
(
DP(k)

)]
= [k] , (2.79)

where DP and DP♯ denote the derivative of the polynomial with respect to their fibre argument and [·]
denotes projective equivalence. This establishes a duality between the P♯-null ray directions, which we
obtain by taking the geometrical-optical (infinite frequency) limit of a theory, and the P-null covectors
(compare figure 2.2).

Using this, one can finally show that the corresponding Lagrange action functional for the massless
particle is given by

Smassless[x, µ] :=
∫

dλ µ(λ) P♯
(
x(λ), ẋ(λ)

)
, (2.80)

with the Lagrange multiplier µ(λ). Furthermore, the condition that P♯ also be hyperbolic can also be
understood as a sufficient condition that P(x) may be recoverable from P♯ as the double dual, such that
for each spacetime point x ∈ M we have that

P(x) ∼ P♯♯(x) .

Example: Maxwellian electrodynamics

For the principal polynomial of Maxwellian electrodynamics, P(x, k) = gab(x)ka(x)kb(x), with the
Lorentzian signature of g being enforced by the hyperbolicity condition from the first matter condition,
one finds that the dual polynomial is given by

P♯(x, v) = gab(x) va(x) vb(x) . (2.81)

As g·· is already of Lorentzian signature – since we required it for its inverse g·· – the second matter
condition, the hyperbolicity of P♯ is already implemented.

2.3.3 Condition 3: Energy distinction

Now, having established the physical meaning of the first and second matter condition as the predictiv-
ity of the matter field equation and the duality between momenta and velocities of massless modes, we
can ask for an observer-independent way to split the energies of those modes into either positive or neg-
ative energies. Mathematically, we look for an open set Ox in each tangent space TxM of the spacetime
manifold that contains all tangent vectors U to observer worldlines such that for all massless modes k

either k ∈ O+
x or k ∈ −O+

x . (2.82)

The closed dual coneO+
x is obtained via

O+
x :=

{
k ∈ T∗xM| P(k) = 0 and U(k) > 0 for all U ∈ Ox

}
. (2.83)
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O+
x

(a)

Ox

(b)

Figure 2.3 Positive energy cone O+
x as the dual of the observer cone Ox. (a) Cone covering all mo-

menta of positive energy as unanimously judged by all observers, and (b) cone containing
all tangent vectors to observer worldlines through one point.

This implements the idea that all observers – represented by their worldline tangent U – agree on the sign
of the energy (see figure 2.3a for an illustration of this).

Our 3rd matter condition now is that the cone of massless momenta Nx decomposes into disjoint
pieces

Nx \ {0} = N+
x ∪̇N−x (2.84)

at each spacetime point x, where N±x = Nx ∩
(
±O+

x
)
.

The only remaining question is what the largest setOx would be that one can choose – if it exists – that
fulfills the energy condition (2.84). It turns out that this is given by any of the hyperbolicity cones of P♯

(see figure 2.3b), so by choosing a smooth vector field T (a time orientation) that is everywhere hyperbolic
we can define the observer cones as

future-directed observer cones Ox = Cx(P♯, T) . (2.85)

However, we then obtain a subtle condition on the principal polynomial that has to be implemented in
practice for it to exist. Physically, this condition is more than reasonable: ultimately, observers need to be
able to decide whether a decay involving a massless particle is kinematically possibly or not.

Note that, so far, all three matter conditions only use the roots of the principal polynomial P and the
dual P♯. While it is not directly evident from the definition of the observer cones, even here, its structure
is completely given in terms of the roots of P♯, even though the tangent vectors in Ox are non-roots.

2.4 LEGENDRE MAPS

Having implemented all three matter conditions, we can finally define a map between the cotangent and
tangent spaces in this section. As it turns out, this map, which we will in the following refer to as Legen-
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(a) (b)

Figure 2.4 Examples for positive mass shells. (a) Quadric mass shell of 2nd degree principal poly-
nomial Px satisfying the three matter conditions, and (b) quartic mass shell of 4th degree
principal polynomial Px satisfying the three matter conditions.

dre map, can be defined in two fashions: for the first map, we introduce a dispersion relation for massive
particles with the help of the principal polynomial. Once defined we can always derive an invertible du-
ality between massive momenta and velocities. For the second, alternative, map we implement that the
spatial directions seen by an observer at each point of the wordline are compatible with the initial data
hypersurfaces of the matter field dynamics.

2.4.1 Legendre maps frommassive point particle modes

Due to the positive sign convention we chose, we know that the principal polynomial has a constant, that
is positive, sign for the interior of the hyperbolicity Cx ⊆ O⊥x . As a result, we can employ that P is a
homogeneous polynomial of degree deg P to assign a real number m to each covector inside the observer
cone. This represents the mass of a particle and allows us to make the following definition that gives us a
general prescription to obtain the mass shells (compare figure 2.4)

DEFINITION MASSIVE DISPERSION RELATION
The dispersion relation of any massive modes k ∈ Cx is given as

P(x, k) = mdeg P ,

for a real number m that we will refer to as mass in the following.
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At this point, it is crucial that we de-densitized the principal polynomial. Before, we only looked at
the roots, which are insensitive to the particular choice of scalar density ρ(x). However, here the choice
does impact the definition of the mass but does so in a global fashion such that, once a choice was made,
masses are expressed in a coordinate independent manner.

The totally constrained Hamilton action of a particle with such a dispersion relation can easily be
formulated as

Smassive[x, k, µ] :=
∫

dλ

ka(λ)ẋa(λ)− µ(λ) ln

P

(
x(λ),

k(λ)
m

)
 . (2.86)

We then find the following equations of motion

ẋa(λ) = µ(λ)
∂ ln P

∂k

(
x(λ),

k(λ)
m

)
, (2.87a)

k̇a(λ) = −µ(λ)
∂ ln P

∂x

(
x(λ),

k(λ)
m

)
, (2.87b)

P
(
x(λ), k(λ)

)
= mdeg P . (2.87c)

As in the case of the massless modes, we want to solve for the momentum k in terms of the velocity to
guarantee duality between a Lagrangian and Hamiltonian formulation. Luckily, having implemented all
three matter conditions, one can show that a Legendre map ℓx between k and a corresponding tangent
vector exists, is invertible and given by the following definition:

DEFINITION LEGENDRE MAP FROM MASSIVE POINT PARTICLE MODES
Given that all three matter conditions are implemented, the following injective Legendre map

ℓx : Cx −→ TxM

k 7−→ 1
deg P

∂ ln P
∂k

(x, k)

and its inverse ℓ−1
x : ℓx(Cx) −→ Cx exist.

Using this, it turns out that the corresponding Lagrange action is given by

Smassive[x] :=
∫

dλ m deg P
√

P⋆
(
x(λ), ẋ(λ)

)
, (2.88)

where we introduced the decidedly non-polynomial object P⋆ as

P⋆
x : ℓx(Cx) −→ R

v 7−→
(

P
(

x, ℓ−1
x (v)

))−1

. (2.89)
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Note that this action is invariant under strictly monotonously increasing reparametrizations. Using this,
we can always reparametrize such that the polynomial P⋆ gives

P⋆
(
x(λ), ẋ(λ)

)
= 1 , (2.90)

in which case the momenta k take the particularly simple form

k(λ) = m ℓ−1
x(λ)

(
ẋ(λ)

)
. (2.91)

Such paramatrizations for which these two conditions, i.e.

ẋ ∈ Ox(λ) and P⋆
(
x(λ), ẋ(λ)

)
= 1 (2.92)

are true for the observer wordline x(λ) physically correspond to the trajectories of freely falling, non-
rotating observers. We will refer to a frame where both conditions are implemented as local observer
frame in the following.

By variation of the action with respect to the world-line, and using the chosen parametrization we find
that the massive particles obey the geodesics equation

0 =m
[

ẍmgam(x, ẋ) + ẋm ẋn∂ngam(x, ẋ)− 1
2

ẋm ẋn∂agmn(x, ẋ)
]

, (2.93)

for the Finsler metric gab obtained from the polynomial P⋆ via

gmn(x, v) umwn :=
1
2

∂2

∂s∂t
(

P⋆(x, v + s · u + t · w
)2/deg P

∣∣∣
s=0,t=0

. (2.94)

Remarkably, it can be shown (Rivera, 2012) that thismetric is of Lorentzian signature, given that thematter
conditions are implemented. Furthermore, since P⋆ is a homogenous function of degree deg P, we find
that the metric is homogenous of degree zero in its directional argument v and that

gmn(x, v)vmvn =
1
2

∂2

∂s∂t
(

P⋆(x, (1 + s + t) · v
)2/deg P

∣∣∣
s=0,t=0

=
1
2
(

P⋆(x, v)
)2/deg P · ∂2

∂s∂t
(1 + s + t)2

∣∣∣
s=0,t=0

= P⋆(x, v)2/deg P . (2.95)

This allows us to write the Lagrange action of the massive point particle in terms of the Finsler metric as

Smassive[x] =
∫

dλ m
√

gmn
(
x(λ), ẋ(λ)

)
ẋm(λ)ẋn(λ) , (2.96)

which looks remarkably similar to the well-known expression from general relativity with the notable
difference that themetric itself is dependent on the direction ẋ(λ). Note that in general the Finsler metric
is non-polynomial in its directional argument and is built from the geometry G.

The above construction of an observer frame moreover defines the purely spatial directions S(λ) ⊂
Tx(λ)M seen by the observer at x(λ) via

ℓ−1
x (ẋ

(
λ)
) (

S(λ)
)
= 0 . (2.97)

Note that the threematter conditions are sufficient for this formulation of observer frames that are compat-
ible with the causality of the original matter field equations. Moreover, they are necessary for the matter
field dynamics to be canonically quantisable. See for example Rivera and Schuller (2011) for the canonical
quantisation of general linear electrodynamics using all of those ideas.
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2.4.2 Legendre map from initial data surface compatibility

However, there is another definition of a Legendremap using the dual polynomial P♯ instead of the princi-
pal polynomial. In this case, it is not necessary to assume that massive modes have the dispersion relation
described above. Instead, we require that the spatial directions that an observer sees at x(λ), defined
via analogous constructions employing an alternative Legendre map, are compatible with the initial data
surfaces of the matter field dynamics.

To make this precise, we first observe that we can make an analogous definition of a Legendre map ℓ̃x

for a hyperbolicity cone C♯
x of the dual polynomial by choice of a time orientation. This map exists and is

invertible for elements in the hyperbolicity cone:

DEFINITION LEGENDRE MAP FROM INITIAL DATA SURFACE COMPATIBILITY
Given that all three matter conditions are implemented, the following injective Legendre map

ℓ̃x(v) : C♯
x −→ T∗xM

v 7−→ 1
deg P♯

∂ ln P♯

∂v
(x, v)

and its inverse ℓ̃−1
x : ℓx(C

♯
x)→ C♯

x exist.

Afterwardswe canmake another choice for the largest set for the observer coneOx using this Legendre
map. We first observe that the hyperbolicity cone Cx of P, i.e. the set of conormals n to the possible
hypersurfaces is always contained in the image of our new Legendre map, i.e.

Cx ⊆ ℓ̃x

(
C♯

x

)
. (2.98)

Wenow require that the Legendremap, applied to a tangent to an observerworldline, also gives a conormal
that lies in the hyperbolicity cone Cx to be suitable as an initial value surface of the matter field dynamics.
This then leads to the result that the largest possible observer cone compatible with this requirement is
given by

Õx = ℓ̃−1
x (Cx) . (2.99)

Both approaches to the Legendre map have proper physical motivation and are equally suitable for use in
the derivation of the gravitational closure program. We will, as a result, use both of them. Luckily, it turns
out that the calculations are mostly independent of our particular choice of Legendre map.

This concludes our treatment of the kinematical aspect, and we are finally equipped to start our ap-
proach to derive the dynamics of the geometry as seen by a particular matter field theory.



CHAPTER 3

GRAV I TAT IONAL CLOSURE

Having analysed the kinematical aspects of spacetime as seen by matter field theory, it is time to move
to the dynamical aspects. In this chapter, we will see how the dynamics of the geometrical degrees of
freedom can be derived once a particular matter theory was chosen and the principal polynomial and its
dual implement the three matter conditions we laid out in the previous chapter. This extends the well-
known result from Hojman et al. (1976), where it was shown that general relativity could, in fact, be
derived by representing the algebra of hypersurface deformations on a phase space1.

The discussion of this generalisation will consist of three parts: We will start in section 3.1 with a
description of how to perform a 3+1 split of spacetime into hypersurfaces, even when no metric is at
hand, and how to pull back spacetime tensor fields to tensor fields on the three-dimensional slices of our
spacetime split. Here we can observe how the fields change under infinitesimal deformation of these
hypersurfaces. Dynamics, in the sense of how the values of these fields change infinitesimally between
hypersurfaces, can be understood precisely in terms of hypersurface deformations.

Afterwards, we will show in section 3.2 how this allows us to mimic these deformations in a canonical
Hamiltonian formulation which will give us compatibility conditions that need to be fulfilled in order for
both formulations, the hypersurface deformation picture, as well as the canonical phase space formulation,
to agree on their description of dynamics of geometry.

The last step, presented in section 3.3.1 and the succeeding sections, consists of finally distilling these
into a general system of linear homogeneous partial differential equations, called the gravitational closure
equations, that allows to calculate the gravitational action. We conclude the chapter with a discussion of
the general properties of the solution space and possible simplifications that can be made.
kappa
The results presented in this chapter have already been published as

M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz
Gravitational Closure of Matter Field Equations

Phys. Rev. D97 (2018), 084036

but are expanded on several occasions to allow for a self-complete description.
1Ignoring about minor topological subtleties on superspace (Giulini, 2009).
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3.1 HYPERSURFACE DEFORMATIONS

We first approach dynamics from a spacetime perspective, where we split our four-dimensional spacetime
manifold into a collection of three-dimensional hypersurfaces that are suitable as initial data hypersurfaces.
In this picture, dynamics appears by observing how the fields change along the hypersurfaces. Since we,
however, pull the spacetime geometry back to the hypersurfaces – where the precise technical notion of
pulling back the degrees of freedom will be defined in the following – no new information is revealed:
Instead, the existing information is simply presented in a different fashion. Yet this reformulation is in-
credibly helpful, as it reveals that the notion of diffeomorphism invariance is – for any geometry – encoded
in an algebra.

3.1.1 3+1 decomposition and observer frames

Mathematically, the idea of a 3+1 decomposition of spacetime is to find a one-parameter family of smooth
embeddings, i.e.

Xt : Σ −→ Xt(Σ) ⊂M , (3.1)

where Σ is a three-dimensional manifold. Over the course of this thesis, we will assume Σ to be orientable,
i.e. it is equipped with a volume form.

The space of embeddings from the three-dimensional manifold Σ toM is an infinite dimensional
manifold we will denote as Emb(Σ,M). For each embedding to be suitable as initial data hypersurfaces
compatible with the surfaces from given matter dynamics, its co-normal needs to be hyperbolic, i.e. it
must lie in the hyperbolicity cone of the principal polynomial P at each point in Xt(Σ).

Given such an embedding, as well as coordinates xa onM and coordinates yα on Σ, we can try to
obtain an orthonormal basis of the tangent and cotangent space at each spacetime point. For this, we
first observe that for a specific t ∈ R the push-forward of the coordinate-induced vector field ∂α on Σ

along the embedding map Xt naturally provides linearly independent tangential vectors to the embedded
hypersurface Xt(Σ), i.e.

eα|Xt(x) := Xt∗
(

∂α|x
)

for α = 1 . . . 3, x ∈ Σ . (3.2)

Then, we also naturally obtain the co-normal vector field ϵ0 to the hypersurface as the annihilator of
the tangential vectors, i.e.

ϵ0(eα) = 0 for α = 1 . . . 3 . (3.3)

This is, however, not unique since we can still scale ϵ0 by a scalar function f on the hypersurface Xt(Σ).
To make this unique, we need to provide a normalisation condition to select a specific co-normal field.
Since we are equipped with the principal polynomial P, we can use it to enforce the condition

P(ϵ0) = 1 , (3.4)

which is physically equivalent to restricting to the local observer frames in the sense laid out in equation
(2.90) and (2.91) in section 2.4.
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In order to obtain a complete frame, we also need the normal vector field dual to ϵ0, or informally
speaking, we need to raise the index. In the absence of a metric, no a priori method exists to obtain this
object. However, with the requirement that the hypersurface be hyperbolic, we can do so by the use of the
Legendre map ℓXt(x). This shows the power of the kinematic constructions made in the previous chapter
since otherwise, no natural map between the conormal and the normal exists in the absence of a metric
tensor. The only requirements that must be imposed are the three matter conditions, which are extremely
mild. Moreover, it is also important to emphasise that the Legendre map can only be applied to covectors
in the hyperbolicity cone; that is what we usually refer to as time-like covectors. Only in the metric case,
due to linearity, this can also be extended to space-like covectors.

Finally raising the index of the co-normal ϵ0 using the Legendre map we get the following expression
for the normal vector e0

e0 := ℓx(ϵ
0
x) . (3.5)

In our chosen coordinate system onM this reads

(e0)
a (x) = Pam2 ...mdegP(x) ϵ0

m2
(x) · · · ϵ0

mdegP
(x) , (3.6)

where we used the normalisation condition P(ϵ0) = 1.
This can then finally be completed into a complete orthonormal basis by introduction of dual tangen-

tial frames ϵα by the conditions

ϵα(e0) = 0 for α = 1 . . . 3 , (3.7)

ϵα(eβ) = δα
β for α, β = 1 . . . 3 . (3.8)

The annihilation condition (3.7) translates into a condition on three components of the principal polyno-
mial

P
(

ϵα, ϵ0, . . . , ϵ0
)
= 0 , (3.9)

where we contract each slot of the coefficient of the principal polynomial by the corresponding covector,
respectively.

Once this is implemented, one can check that the completeness relation

δa
b = ea

0 ϵ0
b + ea

α ϵα
b (3.10)

holds by contracting both the left and right hand side with all the individual frame fields. Before we
proceed we quickly summarize the construction in the following definition:
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DEFINITION OBSERVER FRAME
The orthonormal observer frame is obtained via

eα := Xt∗ (∂α) and e0 = ℓ(ϵ0) , (3.11)

and the dual basis defined via the conditions

ϵ0(eα) = 0 and ϵα(eβ) = δα
β , (3.12)

which is unique once the normalisation and annihilation conditions on the principal polynomial are im-
plemented as

P(ϵ0, . . . , ϵ0) = 1 , (3.13)

P(ϵα, ϵ0, . . . , ϵ0) = 0 . (3.14)

With the help of the orthonormal frame, we can decompose the spacetime tangent vector field Ẋt

along the foliation uniquely into its purely normal and tangential components, i.e.

Ẋt = N e0 + Nα eα , (3.15)

with the lapse N being the normal projection of the vector and shift N⃗ being the tangential projections
defined in terms of our basis covectors via

N := ϵ0(Ẋt) and Nα := ϵα(Ẋt) . (3.16)

The idea of the embeddings and the decomposition into lapse and shift is visualised in figure 3.1. Up to this
point, we chose a foliation Xt of spacetime and can, using the orthonormal frame constructed from it with
the help of our Legendre transform, derive lapse and shift from the foliation tangential vectors. Since the
foliation is arbitrary – which encodes the diffeomorphism invariance of our theory since given a specific
foliation Xt and a spacetime diffeomorphism φ we get another foliation via φ ◦ Xt – we will, however,
later adapt the viewpoint that for a given initial data hypersurface Xt0(Σ) we can choose arbitrary lapse
functions and shift vectors to construct a foliation for t 6= t0.
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Σ

x

Xt2(x)

Xt1(x)

Xt(x)

N⃗(t1)

N(t1) Ẋt1

M

Figure 3.1 A foliation of spacetime into three-dimensional hypersurfaces.

REMARK
One may think that the normality and orthogonality conditions on the principal polynomial give restric-
tions on the choices of co-normal ϵ0 and co-tangentials ϵα. However, it turns out that in a canonical
description, one must restrict the geometric degrees of freedom such that the conditions are fulfilled in
the coordinates adapted to the constructed observer frame. This seemingly eliminates four degrees of free-
dom from the geometry. However, since we add lapse and shift to the system and treat them as arbitrary
objects, we actually reinstate those four degrees of freedom – just in a different form.

Observer Frame using the alternative Legendre map

The construction of the observer frame requires the Legendremap constructed from the principal polyno-
mial. As we saw in the previous chapter, it is possible to also define another Legendre map ℓ̃ with the help
of the dual polynomial P♯ that makes sure that observer worldlines are mapped to hyperbolic covectors.
Using this Legendre map, we can, again, define an orthonormal frame by similar constructions as above.
As the required steps to obtain the basis are almost identical, we directly summarise the definition.
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DEFINITION ALTERNATIVE OBSERVER FRAME
The orthonormal observer frame is obtained via

eα := Xt∗ (∂α) and e0 = ℓ̃−1(ϵ0) , (3.17)

and the dual basis defined via the conditions

ϵ0(eα) = 0 and ϵα(eβ) = δα
β , (3.18)

which is unique once the normalisation and annihilation conditions on the principal polynomial are im-
plemented as

P♯(e0, . . . , e0) = 1 , (3.19)

P♯(eα, e0, . . . , e0) = 0 . (3.20)

Using any of these two definitions of the observer frames allows us to project any tensor field to the
three-dimensional manifold Σ. Depending on the parameter t ∈ R of our foliation, we obtain different
tensor fields on Σ. In a sense, Σ becomes a cinema screen on which the evolution of the four-dimensional
spacetime geometry is shown as a movie in the foliation parameter t. In this spirit, we will, from now on,
refer to Σ as the screen manifold.

Conceptually, these constructions are quite standard in general relativity, with the notable difference
that the Legendre map – whichever definition is chosen – becomes highly non-trivial for geometries be-
yond a Lorentzian metric.

Frame adapted to the foliation

We can also construct another frame that will be useful in some situations: Since we are equipped, given
the foliation Xt, with the vector Ẋt = N · e0 + Nαeα, as well as the tangential vectors eα we can determine
the dual vectors (dt), ϵα by the usual conditions

(dt)a Ẋa
t = 1 , (3.21a)

(dt)a ea
α = 0 , (3.21b)

ea
α ϵ̃

β
a = δα

β , (3.21c)

Ẋa
t ϵ̃α

a = 0 . (3.21d)

Solving this, it is easy to see that the duals are given by

(dt)a =
1
N

ϵ0
a , (3.22a)

ϵ̃α
a = ϵα

a −
1
N

Nαϵ0
a . (3.22b)

This frame can be used to express the components of the geometry in a coordinate system where time
evolution is described along the foliation parameter t. The components then turn out to be given in terms



3.1 Hypersurface Deformations | 49

of the Lagrange multipliers N and N⃗ and multiple projected geometric fields on the hypersurface – which
we will take a closer look at in the next section.

Let us demonstrate this for the example of Maxwellian electrodynamics, i.e. a principal polynomial
of degree 2 given by a Lorentzian metric. Expressing the components of the metric in the frame adapted
to the foliation by contraction with the covectors, we obtain

gab =

 1
N2 − 1

N Nβ

− 1
N Nα γαβ + 1

N2 NαNβ

ab

, (3.23)

where we made use of the normalisation condition P(ϵ0) = gabϵ0
aϵ0

b = 1 and the annihilation condition
P(ϵα, ϵ0) = gabϵα

a ϵ0
b = 0 and introduced the Riemannian metric on the 3-manifold defined by the pull-

back, i.e. γαβ = gabϵα
a ϵ

β
b . Unsurprisingly, this coincides with the ADM decomposition of the inverse

metric (Arnowitt et al., 1959).

With this frame, we can further express the following two components of the principal polynomial
and find that in general

P(dt, . . . , dt) =
1

Ndeg P , (3.24a)

P(ϵα, dt, . . . , dt) = − 1
Ndeg P Nα . (3.24b)

This allows us in general to derive the relation between the tensor components of the spacetime geometry
and lapse and shift. For the principal polynomial of a metric spacetime one finds that N = 1/

√
g00 and

Nα = −g0α/g00. For a bi-metric theory as in our example of two coupled Klein-Gordon fields from the
previous chapter we find the relations

N =
1

4
√

g00h00
, (3.25a)

Nα =− 1
2

(
g0α

g00 +
h0α

h00

)
, (3.25b)

with the tensor components in an arbitrarily chosen frame. While it is easy to recognize the structural
similarity to the definition of lapse and shift in the metric case it is, however, important to realize that
lapse and shift are given in terms of both fields, rather than there being two separate sets of lapses and
shifts (as proposed for instance in Hassan and Rosen (2012) and Klusoň (2014)).

3.1.2 Hypersurface projections

Equipped with an orthonormal frame constructed from the principal polynomial (or dual polynomial),
we can now use them to project any spacetime tensor (density) to tensor fields (or densities) on the screen
manifold. We will quickly present the procedure for some common fields.
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Scalar field

In the case of a scalar field ϕ the projection is performed in a straight-forward fashion by directly employ-
ing the foliation to define the screen manifold scalar ψ, namely

ψ(x) := ϕ
(
Xt(x)

)
. (3.26)

Rank one tensors

For a vector field V or a covector field A, projection gives one scalar and vector or covector field each, i.e.

V⊥ := ϵ0(V) , Vα
‖ := ϵα(V) , (3.27a)

A⊥ := A(e0) , A‖α := A(eα) . (3.27b)

The spacetime fields can be reconstructed as

V = V⊥ e0 + Vα
‖ eα , (3.28a)

A = A⊥ ϵ0 + A‖α ϵα . (3.28b)

An example for this are Yang-Mills theories where the covector is given by a Lie-algebra valued covector
field A, that is projected to a Lie-algebra valued scalar and a Lie-algebra valued vector on the hypersurface.

Rank two tensors

For a tensor of rank two T.., we have in total sixteen degrees of freedom that can be projected to the
hypersurface. Here we can make use of the fact that we have a volume form on the hypersurface and, as a
result, can project any two-form into a vector on the screenmanifold. The resulting screenmanifold fields
are

(T(scalar)) := Tab ϵ0
aϵ0

b , (3.29a)

(T(vector,1))
α := T(ab) ϵ0

aϵα
b , (3.29b)

(T(vector,2))
α := T[ab] ϵ0

aϵα
b , (3.29c)

(T(covector))α :=
1
2
(ωG)αβγT[ab] ϵ

β
a ϵ

γ
b , (3.29d)

(T(tensor))
αβ := T(ab) ϵα

a ϵ
β
b , (3.29e)

with the volume form ωG obtained from the density ϵ... by de-densitization with the geometry G. This
factor is in a sense arbitrary and simply has to be fixed once and for all. Note that the same construction
can be repeated for a tensor Tab.

Here the reconstruction reads

Tab = (T(scalar)) ea
0eb

0 + (T(vector,1) + T(vector,2))
α ea

0eb
α + (T(vector,1) − T(vector,2))

α eb
0ea

α

+ (ωG)
αβγ(T(covector))αea

βeb
γ + (T(tensor))

αβea
αeb

β . (3.30)
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In case we are given a metric g.., the projection simplifies to one scalar, one vector and one tensor. If the
principal polynomial is the one dictated by Maxwellian electrodynamics we find that the normalisation
and annihilation conditions determine the values of the scalar and vector projections during the construc-
tion of the observer frame, such that only the tensor projection on the manifold Σ remains.

However, it should be noted that it is not true in general that the annihilation and normalisation con-
ditions fix certain components. This is only the case for linear annihilation and normalisation conditions.
This is, of course, the case for Maxwellian electrodynamics (and more generally for any degree 2 principal
polynomial). However, already for general linear electrodynamics, as we will see in the following section,
this fails to be true and leads tomany complications that need to be dealt with. One of these complications
is that it is impossible to implement the annihilation and normalisation conditions by omitting certain
hypersurface projections.

For an endomorphism T.
. and a covariant tensor T.. one proceeds similarly by employing the frames

to either directly obtain a scalar, vector or ametric. Furthermore, we could use the spatial metric obtained
from the principal polynomial pαβ to raise and lower indices. This metric is invertible for a bi-hyperbolic
polynomial, and two-forms can be dualized with the help of the volume form.

An example for the covariant tensor is the curvature tensor of electrodynamics Fab. Since it is anti-
symmetric only two vector modes F(vector,2) and F(vector,3) survive. Those vectors are the electric field Eα

and (de-densitized) magnetic field Bα.

General linear electrodynamics

The last example we will present is for an area metric, that is, the geometry of general linear electrodynam-
ics (see section 2.1). Remember that, due to the symmetry of the Faraday tensor F = dA in the action,
we see that G possesses the algebraic symmetries of a Riemann tensor, i.e.

Gabcd = G[cd][ab] . (3.31)

With the help of the three matter conditions, one finds that the area metric must lie in one of seven
(out of total 23) algebraic classes (Raetzel et al., 2011). In principle we could simply write down all non-
vanishing components that we obtain by plugging the different covectors of our basis into the slots of the
area metric. However, in practice it has proven itself to be useful to employ the volume form on Σ to
dualize all tensor fields with rank larger than two. The three resulting fields are

gαβ := −G(ϵ0, ϵα, ϵ0, ϵβ) , (3.32a)

gαβ :=
1
4

1
det g.. εαµνεβλκG(ϵµ, ϵν, ϵλ, ϵκ) , (3.32b)

gα
β :=

1
2

1√
det g.. εβµνG(ϵ0, ϵα, ϵµ, ϵν)− δα

β , (3.32c)

where we used ω(G)αβγ =
(
det g··

)− 1
2 ϵαβγ. Note that the normalisation and annihilation conditions

lead to

gα
α = 0 and gµ[αgβ]

µ = 0 . (3.33)
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This removes 4 out of the 21 independent components of the area metric in four dimensions. However,
due to the non-linearity of the second condition, it becomes inherently complicated to implement this
condition such that it remains valid under time evolution. In particular, these conditions cannot be im-
plemented by a simple omission of degrees of freedom since the annihilation condition is quadratic in the
fields.

De-densitizations

For any theory, it is, in fact, possible to de-densitize the projections to the hypersurface. Since we are
equipped with the principal polynomial the following de-densitization factor can always be defined:

χP =
1√

−det P(ϵα, ϵβ, ϵ0, . . . , ϵ0)
(3.34)

With the principal polynomial being hyperbolic, this ensures that the projection of the principal polyno-
mial is an inverse metric with det P(ϵα, ϵβ, ϵ0, . . . , ϵ0) < 0. This allows us to de-densitize any projection
of the geometric fields to the hypersurface.

3.1.3 Hypersurface deformations

Up to now, we considered a single hypersurface of the embedding for some fixed t ∈ R. In order to
obtain a notion of dynamics in this setup, we can compare the projected values after an infinitesimal
increase t + dt and observe how the fields changed. Mathematically, this corresponds to the derivative in
the foliation parameter t of the projected fields, being functionals of the embedding Xt via the observer
frames that are used in the projections, as well as the considered point on the hypersurface Xt(x):

d
dt

F[Xt] =
∫

Σ
d3x Ẋt(x)

δF
δXa

t (x)

=
∫

Σ
d3x (Nea

0 + Nαea
α) (x)

δF
δXa

t (x)
,

where we first used the functional chain rule and then plugged in the decomposition of the foliation vector
field into the orthonormal basis. Geometrically, this is a vector field on Emb(Σ,M) that acts on the
functionals of a chosen embedding that is lifted from the vector field Ẋa

t . In fact, any vector field V onM
defines such a vector field X(V) on the space of embeddings in the following fashion:

X(V) :=
∫

Σ
d3x Va (Xt(x)

) δ

δXa
t (x)

(3.35)

With the help of the observer frame we can decompose this into the tangential and normal direction and
define the functional differential operators

H(N) :=
∫

Σ
d3x N(x)ea

0(x)
δ

δXa
t (x)

, (3.36a)

D(N⃗) :=
∫

Σ
d3x Nα(x)ea

α(x)
δ

δXa
t (x)

. (3.36b)

Note that here we assume N and N⃗ to be some functions that parametrize the arbitrary spacetime vector
field V and are unrelated to a chosen foliation.
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Using these definitions, we can elegantly rewrite the time evolution as the action of the tangential and
normal deformation functional differential operators on our functional F, i.e.

d
dt

F[Xt] = H
(

N(Xt)
)

F[Xt] +D
(

N⃗(Xt)
)

F[Xt] .

Note that for the projected fields, the functional dependency on the embedding is solely due to the observer
frame and spacetime point on the hypersurface, i.e. the fields are functions of the form

F
(

Xt(x), e0[Xt(x)], eα[Xt(x)], ϵ0[Xt(x)], ϵα[Xt(x)]
)

. (3.37)

This allows us to further analyze the action of the functional differential operators defined above by first
analyzing the functional derivative of the frame and afterwards taking a closer look for the tangential and
normal directions separately.

Functional derivatives of the observer frame

In order to calculate how the frames change with the foliation we start with the functional derivative of
the tangential frames. Here it follows by straight-forward calculation from the definition that

δea
α(x)

δXb
t (y)

= δa
b(∂αδy)(x) . (3.38)

For the remaining vectors and covectors, the situation is more complicated, as the objects are defined
implicitly in relation to the tangential vectors and by the annihilation and normalisation conditions. Still,
we can use the equations defining the frames (3.9) and the completeness relation (3.10) to derive the
tangential and normal components of the functional derivatives separately.

Starting with the co-normal ϵ0, we use the fact that ϵ0(eα) = 0 to derive that

0 =
δϵ0

a(x)
δXb

t (y)
ea

α(x) + ϵ0
b(x)(∂αδy)(x) . (3.39)

This allows us to express the tangential projection of the functional derivative. Similarly, we can obtain
the normal projection with the help of the normalisation condition, which yields

ea
0(x)

δϵ0
a(x)

δXb
t (y)

= − 1
degP

(∂bPa1...adegP)(Xt(x)) ϵ0
a1
(x) . . . ϵ0

adegP
(x) δy(x) . (3.40)

Combined, this gives for the functional derivative of the co-normal

δϵ0
a(x)

δXb
t (y)

= − 1
degP

(∂bPa1...adegP)(Xt(x)) ϵ0
a(x)ϵ0

a1
(x) . . . ϵ0

adegP
(x) δy(x)

− ϵ0
b(x)ϵα

a (x) (∂αδy)(x) . (3.41)

In a similar fashion one can derive, with the definitions of the normal vector and the tangential covectors,
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their functional derivative with respect to the embedding:

δea
0(x)

δXb
t (y)

= −(degP− 1)pαβ(x)ea
α(x)ϵ0

b(x) (∂βδy)(x)

+ (∂bPam2 ...mdegP)(Xt(x))ϵ0
m2
(x) . . . ϵ0

mdegP
(x) δy(x)

− degP− 1
degP

(∂bPm1 ...mdegP)(Xt(x))ea
0(x)ϵ0

m1
(x) . . . ϵ0

mdegP
(x) δy(x) , (3.42a)

δϵα
a (x)

δXb
t (y)

= −ϵα
b (x)ϵβ

a (x) (∂βδy)(x)

+ (degP− 1)ϵ0
a(x)ϵ0

b(x)pαβ(x) (∂βδy)(x)

− (∂bPm1...mdegP)(Xt(x))ϵ0
a(x)ϵα

m1
(x)ϵ0

m2
(x) . . . ϵ0

mdegP
(x) δy(x) . (3.42b)

Using these functional derivatives we can move on to inspect the action of the functional differential
operatorsD(N⃗) andH(N) in further detail.

Action of tangential deformations

For an arbitrary functional of the embedding, we can expand the functional derivative in terms of the
derivatives of the lapse and some characteristic coefficients for the field, i.e.

D(N⃗)F[Xt](y) :=
∫

Σ
d3x Nµ(x)ea

µ(x)
∞

∑
k=0

(−1)k ∂F
∂∂γ1 ...γk Xa

t
(y)(∂γ1 ...γk δy)(x)

=
∞

∑
k=0

k

∑
l=0

(
k
l

)
(∂γ1...γl N

µ)(y)(∂γl+1...γk ea
µ)(y)

∂F
∂∂γ1...γk Xa

t
(y)

=:
∞

∑
k=0

(−1)k(∂γ1...γk Nµ)(y)Fγ1 ...γk
µ (y) , (3.43)

with the coefficients reading

Fγ1...γk
µ (x) :=

∞

∑
l=0

(−1)k
(

k + l
l

)(
∂α1 ...αl e

a
µ

)
(x)

∂F
∂∂α1 ...αlγ1 ...γk Xa

t
(x) . (3.44)

The archaic (−1)k terms both in all summands and the coefficients are introduced for historical reasons.
The first coefficient turns out to be the chain rule in disguise

Fµ =
∞

∑
l=0

(
∂α1...αl e

a
µ

) ∂F
∂∂α1 ...αl X

a
t

=
∞

∑
l=0

(
∂µα1 ...αl X

a
t

) ∂F
∂∂α1...αl X

a
t

= ∂µF . (3.45)

The remaining coefficient have to be calculated, case by case, for any of our functionals of interest. For the
projected fields we deal with functionals of the form (3.37), such that only the derivatives in Xa

t and ∂Xa
t

contribute and the action of the tangential deformation operator simplifies to

D(N⃗)F[Xt] = Nµ(∂µF)− (∂γNµ)Fγ
µ . (3.46)
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Due to the functional derivatives of the frames, as presented in the previous section, we can furthermore
derive that the second coefficient takes a rather simple form since only the derivatives in the slots belonging
to the tangential directions contribute:

Fγ
µ = ϵ

γ
m

∂F
∂ϵ

µ
m
− em

µ

∂F
∂em

γ

(3.47)

From this we can read off that the action of the tangential deformation operator in fact gives the Lie
derivative along the lapse N⃗, i.e.

D(N⃗)F = Nµ∂µF + (∂γNµ)

(
em

µ

∂F
∂em

γ

− ϵ
γ
m

∂F
∂ϵ

µ
m

)
≡ (LN⃗ F) . (3.48)

In other words we see thatD acts as the generator of spatial diffeomorphisms.

We can also obtain this result with an abstract argument for a specific class of functionals, that is, all
functionals where a diffeomorphism φ on Σ acts via the pull-back, i.e.

F[Xt ◦ φ] = φ∗F[Xt] . (3.49)

We pick an one-parameter diffeomorphism φϵ and calculate the derivative of the functional F evaluated
at the embedding Xt ◦ φϵ. Then on the one hand, straight forward evaluation yields

d
dϵ

∣∣∣∣
ϵ=0

F[Xt ◦ φϵ] =
∫

Σ
d3x

δF
δXa

t (x)
ea

α(x)Mα(x) = D(M⃗) F[Xt] , (3.50)

where M⃗ is the vector field generating the diffeomorphism. On the other hand, if we spell out the derivative
on the left hand side we have

d
dϵ

∣∣∣∣
ϵ=0

F[Xt ◦ φϵ] = lim
ϵ→0

(
F[Xt ◦ φϵ]− F[Xt]

ϵ

)

= lim
ϵ→0

(
φ∗ϵ F[Xt]− F[Xt]

ϵ

)
=
(
LM⃗F

)
. (3.51)

This is typically the case. However, when we later reintroduce the tangential deformation coefficient in
the derivation and discussion of gravitational closure, note that none of the arguments is crucially depen-
dent on the deformation operator acting as Lie derivative. This, for example, would allow us also to treat
spinorial fields by straight-forward calculation of the coefficient.
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DEFINITION ACTION OF TANGENTIAL DEFORMATIONS

The tangential deformation operator acts on functionals of the embedding by a Lie derivative along N⃗

D(N⃗)F[Xt] = Nµ∂µF−
(
∂γNµ

)
Fγ

µ =
(
LN⃗ F

)
,

with the tangential deformation coefficient defined as

Fγ
µ =ea

µ

∂F
∂∂γXa

=ϵ
γ
a

∂F
∂ϵ

µ
a
− ea

µ

∂F
∂ea

γ

.

Action of normal deformations

In a similar fashion, we can analyse the action of the normal deformation operator H(N). We start by,
again, expanding the functional into partial derivatives:

H(N)F[Xt](y) :=
∫

Σ
d3x N(x)ea

0(x)
∞

∑
k=0

(−1)k ∂F
∂∂α1...αk Xa

t
(y)(∂α1 ...αk δy)(x)

=
∞

∑
k=0

k

∑
l=0

(
k
l

)
(∂α1...αl N)(y)(∂αl+1 ...αk ea

0)(y)
∂F

∂∂α1...αk Xa
t
(y)

=: N(y)k(y) +
∞

∑
k=1

(∂γ1...γk N)(y)Mγ1 ...γk(y) , (3.52)

where k captures the local behavior of the deformation and will be identified with the notion of the fields’
velocity. The coefficients Mγ1 ...γk capture the non-local response of the functional to the normal deforma-
tion, and are defined in the following fashion

Mγ1 ...γk(x) :=
∞

∑
l=0

(
k + l

l

)
(∂α1...αl e

a
0)(x)

∂F
∂∂α1...αlγ1 ...γk Xa

t
(x) . (3.53)

Given that the functional is obtained by the projection (3.37), the situation again simplifies significantly
and the only non-vanishing non-local coefficient is Mγ, for which the expression then reads

Mγ(x) := ea
0(x)

∂F
∂∂γXa

t
(x) . (3.54)

Note that this coefficient is kinematical due to the fact that no derivative of the normal vector appears in
its definition. Explicitely spelling it out will then always yield a projection of the geometric fields to the
hypersurface and requires no dynamical data.

For our projected fields we can further expand this expression by calculating the derivative in each
slot of the frame vectors and covectors and plugging in their respective functional derivatives

Mγ =
(
deg P− 1

)
pαγ

(
ϵ0

a
∂F
∂ϵα

a
− ea

α

∂F
∂ea

0

)
+ ea

0
∂F
∂ea

γ

− ϵ
γ
a

∂F
ϵ0

a
. (3.55)
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Furthermore, in case the projected field F is dualized into another hypersurface field F̃, then due to the
chain rule we see that the non-local deformation coefficient transforms as follows:

M̃γ =
∂F̃
∂F

Mγ (3.56)

This proves to be quite useful in practice when moving back and forth between different screen manifold
projections of the gravitational field in calculations. The action of the normal hypersurface deformations
is again summarised in the following definition:

DEFINITION ACTION OF NORMAL HYPERSURFACE DEFORMATIONS
For fields where the components are projected with the help of the orthogonal frames , the action of the
normal deformation operator reads

H(N)F[Xt](y) := N(y)k(y) + (∂γN)(y)Mγ(y) ,

with the non-local normal deformation coefficient defined as

Mγ = ea
0

∂F
∂∂γXa

t

=
(
deg P− 1

)
pαγ

(
ϵ0

a
∂F
∂ϵα

a
− ea

α

∂F
∂ea

0

)
+ ea

0
∂F
∂ea

γ

− ϵ
γ
a

∂F
ϵ0

a
.

Commutator algebra

The functional differential operators turn out to also possess a group structure that encodes the action of
space diffeomorphisms. This can be seen by analysing the commutator algebra of the operators.

As seen in equation (3.35), any spacetime vector field induces a functional differential operator (Giulini,
2009), that is a vector field on the space of embeddings Emb(Σ,M). As such, it is straight-forward to
obtain that the commutator is given by[

X(V), X(W)
]
= X([V, W]) .

This tells us that the operator is a Lie homomorphism and X(V) indeed corresponds to a left action of
Diff(M) on Emb(Σ,M). Similarly, the tangential and normal deformation operators can be found to
fulfill a commutator algebra:
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N1

N2

N2

N1

M⃗

Figure 3.2 Illustration of the hypersurface deformation algebra. Two different hypersurfaces are ob-
tained from the initial hypersurface by deforming with lapses N1(x) and N2(x) along the
normal of the hypersurface. These hypersurfaces are then deformed with the other lapse,
that is N2(x) and N1(x) along the new hypersurface normals. The resulting hypersurface
points differ by a shift M⃗ in the final hypersurface

DEFINITION COMMUTATOR ALGEBRA OF HYPERSURFACE DEFORMATIONS

[
H(N),H(M)

]
= −D

(
(degP− 1)pαβ(M∂αN − N∂α M)∂β

)
[
D(N⃗),H(M)

]
= −H

(
LN⃗ M

)
[
D(N⃗),D(M⃗)

]
= −D

(
LN⃗ M⃗

)

This has a simple geometric interpretation that is depicted in figure 3.2. Using the two functional
operators, we first deform an initial hypersurface Xti(Σ) along a lapse N and shift N⃗ into the hypersur-
face Xti+δt(Σ). Afterwards we deform this hypersurface along yet another lapse M and shift M⃗ and end
up with another hypersurface Xte(Σ). If we, on the other hand, would have applied the operators in the
opposite order, i.e. first evolve using M and M⃗ and then by N and N⃗, we would have ended up with a hy-
persurface that differs from Xte(Σ). By how much the hypersurfaces differ is encoded in the commutator
algebra, i.e. although being separate hypersurfaces they lack the application of a lapse (LM⃗N − LN⃗ M),
as well as an additional shift vector

(
[N⃗, M⃗] + (deg P− 1) pαβ(N∂α M−M∂αN)∂β

)
.

The idea behind gravitational closure is that we can obtain the gravitational Lagrangian by construct-
ing a representation of this algebra on a canonical phase space that mimics time evolution as described by
hypersurface deformation. Any such representation is a solution of a system of linear partial differential
equations and can be constructively obtained by solving these equations. This is a generalisation of results
in the geometrodynamics community for a Lorentzian metric g·· (Hojman et al., 1976).
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Note that in the previous sections, we carried out all calculations for the observer frame constructed
with the help of the principal polynomial. In the very same fashion we could redo the calculations for
our alternative frame that is based on the dual polynomial P♯ . Interestingly, one finds almost entirely the
same algebra, with the exception that we need to substitute

deg P −→ 1
deg P♯

, (3.57a)

pαβ −→
(

p♯−1
··

)
αβ , (3.57b)

with the inverse of p♯αβ := P♯(eα, eβ, e0, . . . , e0). Due to hyperbolicity of the dual polynomial – enforced

by the second matter condition – it can be shown that p♯αβ is always invertible. The same transformations
appear in the expression for the non-local normal deformation coefficient Mγ. Ultimately, we expect that
the result will be independent of the choice of observer frame we started with.

3.2 CANONICAL FORMULATION

The following section is dedicated to finally explaining the idea – and the technical realisation – of grav-
itational closure in more detail. Intuitively, we will see in the following section how one can construct a
consistent Hamiltonian formulation that mimics the hypersurface deformation algebra presented in the
previous section.

This is necessary for the following reason: The description presented above is dependent on the values
of the field at any spacetime point; the fields are merely described in a different way with the help of the
foliation. This means that the formulation only reveals information about the dynamics of the field in all
of spacetime. We dub this view the divine view 2. In contrast, the more practical and realistic view, let us
call it the human view, is much more limited: the information available to us is limited in both temporal
and spatial directions (see figure 3.3).

In order to move to a formulation that is tailored to our practically available tools and data, we will
carry over the information that we have gathered in the analysis of the hypersurface deformation func-
tional operators into a canonical phase space formulation. This means that we construct a representation
of the hypersurface deformation algebra such that the equations of motion are compatiblewith the dynam-
ics as seen in the divine view. This will amount to solving a system of countably many partial differential
equations to obtain the gravitational Lagrangian.

3.2.1 Canonical phase space

We start the definition of our canonical phase space for the gravitational degrees of freedom by looking at
the configurational variables. Naïvely, we would use the projected geometry fields, following our descrip-
tion from the previous sections, directly. However, this fails in general for multiple reasons.

Given that the tensor fields underly any symmetries, one immediately recognises that not all tensor
components can be independent of each other. For example, a metric that is projected to the screen man-
ifold Σ has nine components. However, only six of them are independent since the metric is symmetric

2“Only God has the luxury of knowing the values of the fields at all spacetime points”.
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G

gA(t2)

gA(t1)

gA(t0) Xt0 (Σ)

Xt1 (Σ)

Xt2 (Σ)

(a) “Divine view”

Xt0 (Σ)

(b) “Human view”

(φA, kA)

Xt0 (Σ)

Xt1 (Σ)

Xt2 (Σ)

(c) “Physicist’s view”

Figure 3.3 Illustration of the three different views. a) The “divine” view on the geometry G. The in-
duced geometry on each hypersurface can be directly calulcated from the spacetime object
everywhere; b) The “human” view on the spacetime geometry that includes our restricted
view, both spatially and temporally, to a confined region of spacetime; c) The “physicist’s”
view, where we translated our restricted knowledge from the human view into a set of ini-
tial data (φA, kA) on an initial hypersurface and are able to recover all further information
on other hypersurfaces Xt(Σ) with the help of equations of motion of the geometry.

in its indices. One may work around this complication by a careful setup of the phase space with the
tensor components as configuration variables, as these symmetry conditions are linear conditions on the
components which means that we can deal with them by omission of some components.

The second complication arises from the normalisation and annihilation conditions on the principal
polynomial that must be required in order for the observer frame to be unique. Recall that they generally
lead to non-linear conditions, as became evident for the conditions on the principal polynomial of de-
gree 4 of an area-metric, i.e. birefringent electrodynamics. Any endeavour to carefully work around this
complication with tensor components as configuration variables is doomed to fail from the beginning.

One possible route to solve this is to add the annihilation and normalisation to the equations of mo-
tions as constraints, such that on-shell, the phase space reduces to the subspace for which the frame con-
ditions are implemented. In the Hamiltonian formulation, this means that we add the constraints with
Lagrange multipliers to the Hamiltonian and perform the Dirac-Bergmann algorithm (or equivalently
the Cartan-Kuranishi algorithm) to extract all the secondary constraints that may appear. The constraint
surface is also a symplectic manifold, which would allow us to formulate the algebra with the help of the
Dirac bracket. However, the corresponding partial differential equations would be rather complicated to
solve.

Instead, we try to parametrize the constraints on our degrees of freedom imposed by symmetry con-
ditions and the two frame conditions directly, in the same fashion as one would use one-dimensional
generalised coordinates for a particle in Euclidian space that is confined to motions on a circle of fixed
radius in classical mechanics.
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Parametrizations

We start by giving a definition for a parametrization. The basic idea is that it expresses the independent
tensor components of our geometric field – or multiple fields – such that the annihilation and normalisa-
tion conditions are fulfilled trivially. The degrees of freedom can then also be understood as generalised
tensor components.

DEFINITION PARAMETRIZATION
A parametrization of the F geometric degrees of freedom on a F-dimensional manifold Φ is given by

• a map ĝA : Φ −→ R such that ĝA(φ1, . . . , φF) has all the symmetries of the projected tensor field
and fulfills the two frame conditions for any φ ∈ Φ.

• an inverse map φ̂A : Tp
q Σ −→ R, that allows to extract the F degrees of freedom from the compo-

nents of a (p, q) tensor field (even though the tensor field may fail to fufill the symmetry and frame
conditions), with (

φ̂A ◦ ĝA
)
(φ1, . . . , φF) = φA , for A = 1, . . . , F . (3.58)

Calculating the derivative of equation (3.58) with respect to φB we find

∂φ̂A

∂gA
(

ĝA(φ)
) ∂ĝA

∂φB

(
φ
)
= δA

B , (3.59)

for the two maps that will frequently show up in all of the following calculations

∂φ̂A

∂gA
(

ĝA(φ)
)

and
∂ĝA

∂φA

(
φ
)

. (3.60)

We will refer to them as intertwiners in the following. Moreover, it can easily be shown that the object

T AB(φ) :=
∂ĝA

∂φA

(
φ
) ∂φ̂A

∂gB
(

ĝM(φ)
)

(3.61)

is a projector due to equation (3.59).

Example: Lorentzianmetric For our typical example ofMaxwellian electrodynamics, we canparametrize
the Lorentzian metric in the following fashion:

ĝ00(φ) = 1 ĝ0α(φ) = 0 ĝαβ(φ) =


φ1 φ2

√
2

φ3
√

2
φ2
√

2
φ4 φ5

√
2

φ3
√

2
φ5
√

2
φ6


αβ

(3.62a)

φ̂A(g00, g0α, gαβ) =

(
g11,

1√
2
(g12 + g21),

1√
2
(g13 + g31), g22,

1√
2
(g23 + g32), g33

)A

(3.62b)
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and one can easily convince oneself that this fulfils all the properties of a parametrization. In particular,
we implemented the annihilation and normalisation condition by setting the corresponding components
of the metric to a constant.

This parametrizationmay seem rather unnatural, since we very well could also have chosen the simple
parametrization

ĝ00(φ) = 1 ĝ0α(φ) = 0 ĝαβ(φ) =


φ1 φ2 φ3

φ2 φ4 φ5

φ3 φ5 φ6


αβ

(3.63a)

φ̂A(g00, g0α, gαβ) =
(

g11, g12, g13, g22, g23, g33
)A

(3.63b)

which also does fulfill all required properties of a parametrization. The reason we will chose the first
parametrization over the second in this thesis is that, besides historic reasons, in this case the intertwiners
and its inverse, respectively, are matrix transposes of each other. This idea traces back to the construction
of intertwiners from projection operators, see Reiß (2014) for further details.

Example 2: Bi-metric theory If we deal with a bi-metric theory, the principal polynomial reads Pabcd =

g(abhcd). The annihilation and normalisation conditions can easily be read off from this as

g00h00 = 1 , (3.64a)

g00h0α + h00g0α = 0 . (3.64b)

As a result, a parametrization can be constructed by

ĝ00(φ) = φ1 , ĝ0α(φ) =


φ2

φ3

φ4


α

, ĝαβ(φ) =


φ5 φ6 φ7

φ6 φ8 φ9

φ7 φ9 φ10


αβ

(3.65a)

ĥ00(φ) =
1
φ1 , ĥ0α(φ) = − 1

(φ1)2


φ2

φ3

φ4


α

, ĥαβ(φ) =


φ11 φ12 φ13

φ12 φ14 φ15

φ13 φ15 φ16


αβ

, (3.65b)

as well as the inverse

φ̂A(g00, g0α, gαβ, h00, h0α, hαβ) =
(

g00, g01, g02, g03, g11, g12, g13, g22, g23, g33,

h11, h12, h13, h22, h23, h33
)A

.
(3.66)

Symplectic structure and canonically conjugate momenta

Having defined the configuration variables that we are going to use for our canonical description of grav-
itational dynamics, we can associate canonically conjugate momenta πA(x) to these degrees of freedom.
The phase space is, as usual, equipped with a field-theoretic Poisson bracket defined by

{F, G} :=
∫

Σ
d3x

(
δF

δφA(x)
δG

δπA(x)
− δF

δπA(x)
δG

δφA(x)

)
, (3.67)
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for arbitrary functionals F[φ, π] and G[φ, π] on phase space. This has an ambiguity in the definition
of the momentum: given that πA is a valid choice, then so is πA + ΛA[φ] for any closed covector field
ΛAδφA, i.e. for ΛA being a solution of

δΛA(x)
δφB(y)

− δΛB(y)
δφA(x)

= 0 . (3.68)

In order tomake this definitionwell-definedwe need tomake sure that the constructions are well-behaved
under coordinate changes on the screen manifold Σ. For this, we first observe that a coordinate change
∂z̃/∂z induces the following action on the degrees of freedom

ρA
(

∂z̃
∂z

, φ

)
:= φ̂A

(
RAB

(
∂z̃
∂z

)
ĝB(φ)

)
, (3.69)

with RAB(∂z̃/∂z) being the standard tensorial action of the GL(3)-transformation on the various ten-
sors we projected to Σ, which we collectively labeled by the multi-index B. This allows us to read off the
GL(3) group action on the canonical conjugate momenta πA, being sections over the associated Π-fiber
bundle over the manifold Σ. In order for the Poisson bracket above to be well-defined, we need to impose
the group action ρ∗ : GL(3)×Π −→ Π in the following fashion

ρ∗A

(
∂z̃
∂z

, π

)
:= det

(
∂z̃
∂z

)
· ∂φ̂B

∂gA
(

ĝα(φ)
)
·
(
R−1

)
A
B

(
∂z̃
∂z

)
· ∂ĝB

∂φA (φ) · πB . (3.70)

It is simple to check that this makes the Poisson bracket, as stated in equation (3.67), well-defined: the
functional derivative δF/δφA(z) has density weight one – since φA(z) has density weight zero – while
the fact that πA already has density weight one cancels the density weight from the functional differenti-
ation in δG/δπ(z). This renders the latter of weight zero. Thus the integrand of the Poisson bracket can
be shown to be a scalar density of weight one and as a result, the integral to be indeed well-defined.

As we have already seen in the example for the parametrization of the Lorentzian metric, there is ambigu-
ity in the definition of the configuration variables. In the end, the results must not depend on a particular
parametrization. To make this more precise, we see that for a given parametrization (ĝ, φ̂) and a diffeo-
morphism f on Φ we can lift this into a new parametrization (g̃, ψ̃) by setting

g̃A(ψ) :=
(

ĝA ◦ f−1
)
(ψ) , (3.71a)

ψ̃A(gA) :=
(

f ◦ φ̂A
)
(gA) . (3.71b)

By calculating the derivative, we find that the intertwiners transform as

∂g̃A

∂ψA =
∂ĝA

∂φB
∂φB

∂ψA and
∂ψ̃A

∂gA
=

∂ψA

∂φB
∂φ̂B

∂gA
. (3.72)

We furthermore see that such a reparametrization constitutes a canonical transformation on our phase
space given that the canonical conjugate momenta transform as

πA −→
∂φB

∂ψA πB . (3.73)

This makes the symplectic structure of our phase space invariant under reparametrizations, and, as a
result, we can adequately formulate the algebra relations and compatibility conditions in the following.
This guarantees equivalent results for all parametrizations related by a diffeomorphism ψ(φ).



3.2 Canonical Formulation | 64

Algebra relations

Having established a phase space for our configuration variables, we introduce the two phase space func-
tionals

Ĥ(N) =
∫

Σ
d3x Ĥ(x)N(x) ,

D̂(N⃗) =
∫

Σ
d3x D̂α(x)Nα(x) ,

that shall mimic the hypersurface deformation operators we employed in the hypersurface picture. We
will refer to Ĥ as superhamiltonian and D̂ as supermomentum. In order for the functionals to be a proper
representation of the deformation operators, they must fulfill the hypersurface deformation algebra as a
Poisson algebra, i.e. we must have that{

Ĥ(N), Ĥ(M)
}
= D̂

(
(degP− 1)pαβ(M∂αN − N∂α M)∂β

)
, (3.74a){

D̂(N⃗), Ĥ(M)
}
= Ĥ

(
LN⃗ M

)
, (3.74b){

D̂(N⃗), D̂(M⃗)
}
= D̂

(
LN⃗ M⃗

)
. (3.74c)

However, to accurately and consistently represent the algebra on our phase space, we need to consider a
subtlety that arises due to the fact that this algebra has structure functions instead of constants since pαβ

appears in the argument of the supermomentum in equation (3.74a). This makes the algebra structure if
implemented naïvely, dependent on the considered phase space point. We will deal with this subtlety in
the following section.

Totally constrained action for the gravitational degrees of freedom

In order to accurately represent the hypersurface deformation algebra on our phase space, at least on-shell,
it is necessary for the supermomentum and superhamiltonian to be constraints that vanish on solutions
of the equations of motion. We can see this by the following argument (Teitelboim, 1973):

We can write the action of the supermomentum and superhamiltonian functionals as covectors on
phase space in the following fashion

αĤ(N) :=
∫

Σ
d3x

{
−, Ĥ(x)

}
N(x) , (3.75a)

αD̂(N⃗) :=
∫

Σ
d3x

{
−, D̂α(x)

}
Nα(x) , (3.75b)

with the yet-to-be-determined localized functional objects Ĥ(x) = Ĥ(δx) and D̂µ = D̂(δx∂µ) and
Ĥ(N) and D̂(N⃗) are our phase space functional versions of the deformation operators. Lapse and shift
appear as external objects that need to be provided and parametrize the dynamics of the gravitational
degrees of freedom.

Using the Jacobi identity, one finds for a Hamiltonian vector field XF associated to the phase space
functional F {

F,
{
Ĥ(N), Ĥ(M)

}}
=
[
αĤ(N) , αĤ(M)

]
(XF) . (3.76)
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Since we required the functionals to fulfill the algebra relations – up to a minus sign due to our choice in
αĤ and αD̂ to let the superhamiltonian and supermomentum functionals act from the right in the Poisson
bracket – this means that the equation reads[

αĤ(N) , αĤ(M)
]
(XF) =

{
F, D̂

((
deg P− 1

)
pαβ(φ) (M∂αN − N∂α M)

)}
= αD̂

((
deg P− 1

)
pαβ(φ) (M∂αN − N∂α M)

)
(XF)

+ D̂
({

F,
(
deg P− 1

)
pαβ(φ) (M∂αN − N∂α M)

})
, (3.77)

where the last term appears since the coefficient pαβ, as a function of the gravitational degrees of free-
dom, is dependent on the considered phase space point. This prevents our functionals to be homomor-
phisms from the hypersurface deformation operators to the derivations of phase space functionals unless
the functional D̂ vanishes on solutions of the equations of motion. In other words, we need to satisfy the
constraint

D̂µ

[
φ(x), π(x)

]
= 0 . (3.78)

But for this to be stable under time evolution, we furthermore find from the hypersurface deformation
algebra that we have an additional constraint for Ĥ

Ĥ
[
φ(x), π(x)

]
= 0 . (3.79)

If the constraints were not implemented on the solutions of the equations of motion, the last term in (3.77)
would prevent us from interpreting the supermomentum and superhamiltonian functionals as generators
of spacetime evolution via the chosen lapse and shift functions. Note that the constraint nature of the
functionals also makes sure that the principle of path independence is realised (compare Hojman et al.
(1976)): the evolution of observables with the help of the equations of motion from an initial time ti, as
they would appear in the hypersurface picture on the hypersurface Xti(Σ), to the values at final time t f

(that is on Xt f (Σ)) will be independent of the intermediate leaves of the foliation.
As a result, just as is the case for general relativity, the Hamilton-Jacobi equations in our canonical

description need to be supplied by four constraint equations, i.e.

φ̇A(t, x) =
∫

Σ
d3y

({
φA(t, x), Ĥ(t, y)

}
N(t, y) +

{
φA(x), D̂α(t, y)

}
Nα(t, y)

)
, (3.80a)

π̇A(t, x) =
∫

Σ
d3y

({
πA(t, x), Ĥ(t, y)

}
N(t, y) +

{
πA(t, x), D̂α(t, y)

}
Nα(t, y)

)
, (3.80b)

0 = D̂µ

[
φ(t, x), π(t, x)

]
, (3.80c)

0 = Ĥ
[
φ(t, x), π(t, x)

]
. (3.80d)

This set of equations of motion can always be obtained by variation of the totally constrained action func-
tional

Sgrav

[
φ, π, N, N⃗

]
=
∫

dt
∫

Σ
d3x

(
φ̇A(t, x)πA(t, x)

− N Ĥ
[
φ(x), π(x)

]
− Nµ D̂µ

[
φ(x), π(x)

] )
, (3.81)
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where lapse and shift appear as Lagrange multipliers.
At first sight, it is rather difficult to see how these complicated constructions of our phase space and

the functionals Ĥ and D̂ represent spacetime diffeomorphisms. Historically, already for general relativity,
this has been up to some heated debate. It turns out, however, that one can establish a correspondence
between path independence and diffeomorphism invariance by the constructions presented in Isham and
Kuchar (1985a,b) for parametrized theories, where one extends the phase space to include the coordinate
fields Xa of the foliation map and associated canonically conjugate momenta and adds these new vari-
ables to the Hamiltonian such that lapse and shift are correctly related on-shell to the frame expressions
we presented in the construction of our orthonormal frame. In this setup, it is indeed possible to find that
we obtain a true representation of infinitesimal space diffeomorphisms.

Having established how the action of the geometric degrees of freedom arises from the phase space
functionals, we can finally start by implementing conditions that fix the information we obtained about
dynamics in the hypersurface deformation picture. Note that, although we already required that the alge-
bra relations have to be fulfilled, we can extract further information – in fact, it will turn out to be one of
the most crucial points of the whole construction – by turning them into a system of partial differential
equations.

3.2.2 Towards the hypersurface deformation functionals

In order to obtain the complete set of Hamilton-Jacobi equations, we need the functional form of the su-
permomentum and superhamiltonian. A large portion of these can be obtained by enforcing compatibility
of the first equation of motion (as presented in (3.80a)) with the action of the hypersurface deformation
operators on the projected fields to the screen manifold we described in sections 3.1.3 and 3.1.3.

This compatibility requirement is formulated in the sense that

H(N)gA[Xt] '
{

ĝA(φ), Ĥ(N)
}

, (3.82a)

D(N⃗)gA[Xt] '
{

ĝA(φ), D̂(N⃗)
}

. (3.82b)

At this point, the two equations have to be understood in a figurative sense3, as the objects on the left-hand
side are objects living on entirely different spaces than the objects on the right-hand side of the equations.
We can make this more precise by decomposing the velocity of the degrees of freedom into the differ-
ent parts that mimic the various contributions we found for the actions of the hypersurface deformation
operators:

φ̇A = N kA(φ, π) + (∂γN)MAγ(φ) +
∂φ̂A

∂gA
(ĝ(φ))

(
LN⃗ ĝ

)A
(φ)

= N kA(φ, π) + (∂γN)MAγ(φ) + Nµ φA
,µ − (∂γNµ)FA

µ
γ(φ) . (3.83)

The only dynamic contribution on the right hand side is given by the – so far undetermined – velocities
kA. The kinematical coefficients MAγ and FA

µ
γ are the equivalents of the coefficients we obtained by

3This compatibility can be seen as the point of contact between the human view and the divine view, just as depicted in the
famous fresco Creation of Adam (Italian: Creazione di Adamo) by Michelangelo in the Sistine chapel (compare figure 3.4). For
that reason, the two compatibility equations are also sometimes referred to as the Michelangelo equations.
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Figure 3.4 The Creation of Adam (Italian: Creazione di Adamo) by Michelangelo.

application of the hypersurface deformation operators on the screen manifold fields, i.e.

MAγ(φ) =
∂φ̂A

∂gA
(ĝ(φ))MAγ(ĝ(φ)) , (3.84a)

FA
µ

γ(φ) =
∂φ̂A

∂gA
(ĝ(φ))FAµ

γ(ĝ(φ)) , (3.84b)

where we calculate the coefficients first in the deformation picture, replace the projected fields by the
objects constructed with our parametrization and use the inverse intertwiner to pull the expression to
TΦ. These coefficients and the screen manifold projection pαβ contain all the input of the theory under
consideration and will be, in the following, referred to as input coefficients.

Note that the Lie derivative term in (3.83) can also be understood as the lifted action of the Lie deriva-
tive on the screen manifold to TΦ. By using that idΦ = φ̂ ◦ ĝ we get that(

LN⃗ φ
)A

=
∂φ̂A

∂gA
(

ĝ(φ)
) (
LN⃗ ĝ(φ)

)A
. (3.85)

We can now use the two compatibility conditions (3.82a) and (3.82b) to obtain (at least parts of) the
functional form of the supermomentum D̂ and the superhamiltonian Ĥ. It turns out that this, in fact,
already completely fixes the former and the non-local part of the latter. The remaining, local, part can
then be further restricted with the help of the algebra relations (3.74a) and (3.74b).

Supermomentum regained

Making the compatibility condition (3.82b) precise, we require that the supermomentum acts on any
functionals of the geometric degrees of freedom via Lie derivative on the screen manifold, i.e.{

F(φ), D̂(N⃗)
}
=
(
LN⃗ F

)
(φ) , (3.86)

with the Lie derivative understood as in equation (3.85), where we use the parametrization to lift the Lie
derivative to screen manifold tensors and then projecting back with the help of the inverse intertwiner.
All information involved is kinematical.
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By specializing to F(φ) = φ, we obtain a functional differential equation for the supermomentum
D(N⃗)

δD̂(N⃗)

δπA(x)
=

∂φ̂A

∂gA
(

ĝ(φ)
) (
LN⃗ ĝ(φ)

)A
. (3.87)

Since the right hand side is independent of the canonically conjugate momenta πA we can directly in-
tegrate the equation. This fixes the supermomentum up to a functional F[φ] obtained as constant of
integration. However, this functional can be eliminated with the help of the algebra relation (3.74c). The
resulting expression for the supermomentum reads

D̂(N⃗) =
∫

Σ
d3x πA(x)

(
∂φ̂A

∂gA
(

ĝ(φ)
) (
LN⃗ ĝ(φ)

)A)
(x) . (3.88)

This term then indeed fulfils the algebra relation (3.74c), as can be easily checked by direct calculation.

Non-local superhamiltonian regained

We can follow the same approach to evaluate the compatibility equation (3.82a). Spelling out the separate
contributions explicitly we find that the action of the superhamiltonian on the degrees of freedom φA

reads {
φA(x), Ĥ(N)

}
= N(x) kA(φ(x), π(x))︸ ︷︷ ︸

local

+
(
∂γN

)
(x)MAγ

(
φ(x)

)︸ ︷︷ ︸
non-local

. (3.89)

This equation can again be turned into a functional differential equation that fixes (parts of) the super-
hamiltonian. The first step is to split the superhamiltonian into two parts that are responsible for the local
and non-local part, respectively:

Ĥ(N) =
∫

Σ
d3x N(x)

(
Ĥlocal

[
φ(x); π(x)

)
+ Ĥnon-local

[
φ(x), π(x)

])
. (3.90)

This split is well-defined since the local part is defined to be ultralocal with respect to π, while all remaining
functional dependencies on spatial derivatives of the momenta are then contained in the non-local part.
Using this split, we see that the last element in the compatibility equation (3.89) is generated entirely by
the non-local superhamiltonian, i.e.

δĤnon-local(N)

δπA(x)
=
(
∂γN

)
(x)MAγ(φ(x)) . (3.91)

Since the right hand side is again independent of the canonical conjugate momenta, we can integrate the
functional differential equation and obtain an expression for the non-local superhamiltonian4

Ĥnon-local

[
φ(x), π(x)

]
= −∂γ

(
πA MAγ

)
(x) . (3.92)

4The constant of integration can be absorbed into the local superhamiltonian and will be further restricted in the upcoming
sections.
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The remaining part of the the compatibility condition (3.89) gives as an expression for the velocity func-
tionals kA in terms of the local part of the superhamiltonian

kA[φ; π) =
∂Ĥlocal[φ; π)

∂πA
. (3.93)

At this point, we have used all the information we can extract from the two compatibility conditions be-
tween the hypersurface deformation picture and our phase space formulation. The remaining information
that we can use to further determine the possible expressions for the superhamiltonian is the two algebra
relations (3.74a) and (3.74b). We will see in the following that this, indeed, gives further restrictions on
the functional Ĥlocal.

One may be tempted from (3.93) to expand the local superhamiltonian in terms of the momenta and
enter the two algebra relations. However, this proves to be not particularly promising as the superhamil-
tonian enters the functional differential equations quadratically. Instead, it proves useful to go the same
road as presented in Kuchar (1974) and convert the problem into a linear problem by taking the Legendre
transform of the local superhamiltonian via

L[φ; k) := πA[φ; k) kA − Ĥlocal

[
φ; π[φ; k)

)
. (3.94)

The functional dependency on φ is inherited from the local superhamiltonian, i.e.

δĤlocal

[
φ(x); π[φ(x); k(x))

)
δφA(y)

= −
δL
[

φ(x); k(x)
)

δφA(y)
. (3.95)

Since k and π are Legendre duals one also finds that the momenta, in terms of the velocities, are given by
the derivative of the Lagrangian function as

∂L
∂kA = πA[φ; k) . (3.96)

Using this we can enter the two algebra relations (3.74a) and (3.74b) to further determine the functional
L. The resulting (functional) differential equations are the gravitational closure equations, with the former
equation being referred to as the selective part and the latter as the covariance part of the closure equations5.
Before we (finally) move to the algebra relations, we will show that the Lagrangian L allows us to write
down a spacetime action functional for the geometric degrees of freedom.

3.2.3 Lagrangian spacetime action

Remember that the action of the degrees of freedom has to be totally constrained to implement the princi-
ple of path independence. We can now use the functional expressions we obtained for the supermomen-
tum and the non-local part of the superhamiltonian to explicitely write down the contributions in the

5This is mainly for historical reasons. The
{
D̂, Ĥ

}
bracket encodes that the Lagrangian function L properly transforms as

a scalar density of weight 1, which guarantees the covariance of the Hamiltonian. The
{
Ĥ, Ĥ

}
bracket, on the other hand, can

be seen as the biggest physical input of the gravitational closure program that determines the Lagrangian since it relates the local
geometry that is seen to the spatial metric on the screen manifold obtained from the principal polynomial P / dual polynomial
P♯.
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action:

Sgrav[φ, π, N, N⃗] =
∫

dt
∫

Σ
d3x

(
φ̇A(t, x)πA(t, x)− N(t, x)Ĥlocal

[
φ(t, x); π(t, x)

)
+N(t, x) ∂γ

(
πA(t, ·)MAγ(φ(t, ·))

)
(x)

−πA(t, x)
(
LN⃗ φ̂

)
A(φ(t, x))

)
(3.97)

If we then use the expression for φ̇ from equation (3.83) we see that almost all but the terms containing k
and the local part of the superhamiltonian drop out, i.e. we obtain

Sgrav[φ, π, N, N⃗] =
∫

dt
∫

d3x N(t, x)
(

πA(t, x) kA(t, x)− Ĥlocal

[
φ(t, x); k[φ(t, x); π(t, x)

))
.

Moreover, we see that the term in brackets is the same as the local Lagrangian we defined in the previous
section. This means, that the Lagrangian spacetime action that describes the evolution of the geometric
degrees of freedom is given by

Sgrav[φ, N, N⃗] =
∫

dt
∫

Σ
d3x N(t, x)L

[
φA(t, x);

1
N(t, x)

(
φ̇A(t, x)

−(∂γN)(t, x)MAγ
(

φ(t, x)
)

−
(
LN⃗ φ̂

)A
(φ(t, x))

))
. (3.98)

One can then show by variation of the action that we obtain the same set of equations of motion for both
the Lagrangian action (3.98) and the totally constrained spacetime action functional (3.81). Note that this,
still, is a canonical formulation with t being an external parameter that labels the evolution of the degrees
of freedom on the screen manifold Σ. Diffeomorphism invariance is implemented once the Lagrangian
L is determined such that all hypersurface deformation algebra relations are fulfilled.

3.2.4 Time-reversibility

Before we continue with the derivation of the gravitational closure equations, we will take a close look at
how the gravitational theories in our framework transform under time reversal and show the following:

THEOREM TIME-REVERSABLE GRAVITATIONAL THEORY
The gravitationally closed theory is time reversable if, and only if

• the local-superhamiltonian is even in the momenta πA.

• the MAγ is vanishing.

To make this precise, we introduce time reversal as the operation defined by

T : t −→ −t . (3.99)
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In the hypersurface picture, this operation acts on our foliation, i.e. Xt := XT(t) = X−t. It is easy to see
that the tangents to the curves along t flip the directions, i.e.

Ẋt
a = −Nea

0 − Nαea
α

=: Nea
0 + Nαea

α . (3.100)

It should be clear that such a split is ill-defined without further specifying what wemean by a time reversal.
We will make this more precise now. First, we observe that at t = 0 the hypersurfaces described by our
two foliations Xt and Xt match. By the definition of the tangential basis vectors, we thus find that eα = eα.
As a result, the shift vector flips its sign under time reversal.

In order to make the definition well-defined for the normal component, we remember that the princi-
pal polynomial is defined in such a fashion that P(ϵ0) > 0 means that ϵ0 lies in the future-directed cone.
We now make the natural choice that the future-directed and past-directed cones are swapped under the
time-reversal operation, i.e. the principal polynomial obtains a minus sign under a time reversal. But
then, we find that ea

0 = −ea
0 and as a result, the lapse needs to remain invariant under the time-reversal.

In summary, under time-reversal lapse and shift transform via

N = N and Nα = −Nα . (3.101)

Using this, we can move back to our canonical description and analyze how time-reversal acts on the
phase space variables. Since we have for the velocities of the degrees of freedom that

φ̇
A
= −φ̇A ,

Nk
A
+ (∂γN)M

Aγ
+ (L

N⃗
φ)A = −NkA − (∂γN)MAγ − (LN⃗ φ)A , (3.102)

we can read off that our phase space variables must transform in the following fashion

φA = φA , πA = −πA . (3.103)

If we want a time reversible system, this means that our transformed phase space variables are solutions
of the equations of motion with time evolution in t, i.e. for a the solution

d
dt

φA(x) =
{

φA(x),H(N) +D(N⃗)
}

φ,π
, (3.104a)

d
dt

πA(x) =
{

πA(x),H(N) +D(N⃗)
}

φ,π
, (3.104b)

the time-reversed initial data are a solution of the time reversed Hamilton equations

d
dt

φA(x) =
{

φA(x),H(N) +D(−N⃗)
}

φ,π
, (3.105a)

d
dt

πA(x) =
{

πA(x),H(N) +D(−N⃗)
}

φ,π
, (3.105b)

with the time-reversal of the superhamiltonian and supermomentum defined appropriately. We call our
gravitational theory reversible if the superhamiltonian and supermomentum match functionally, i.e. if

H(N)[φ, π] =H(N)[φ,−π] , (3.106a)

D(−N⃗)[φ, π] =D(N⃗)[φ,−π] . (3.106b)
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Spelling out the Poisson-brackets above, and inserting the transformation of the phase space variables, it
is easy to verify that

δH(N)

δφA(x)
=

δH(N)

δφA(x)
,

δH(N)

δπA(x)
=

δH(N)

δπA(x)
, (3.107a)

δD(N⃗)

δφA(x)
= − δD(N⃗)

δφA(x)
,

δD(N⃗)

δπA(x)
= − δD(N⃗)

δπA(x)
. (3.107b)

Integrating the functional derivatives by π again, we immediately find the non-local part of the reversed
superhamiltonian and the reversed supermomentum, i.e.

Hnon-local(N)[φ, π] =−
∫

Σ
d3x N(x)∂γ

(
πAMAγ(φ)

)
(x) , (3.108a)

D(N⃗)[φ, π] =
∫

Σ
d3x πA(x)

(
∂φ̂A

∂gA
(

ĝ(φ)
) (
LN⃗ ĝ(φ)

)A)
(x) . (3.108b)

While the reversed supermomentum fulfills the condition (3.106b), for the non-local superhamiltonian
we obtain

Hnon-local(N)[φ, π] = −Hnon-local(N)[φ,−π] . (3.109)

The reason for this is obvious: Both the supermomentum and the non-local superhamiltonian are linear
in the momentum. As a result, they obtain a minus sign under time reversal. In the case of the super-
momentum, this is “compensated” because the shift vector also flips its sign under time reversal. As the
lapse is invariant under the transformation, the only way the gravitational theory has a chance of being
time-reversible is if the non-local superhamiltonian vanishes. This is the case only if the MAγ vanishes.

Similarly, we see that if we expand the local part of the superhamiltonian in the momenta, all odd
coefficients must vanish in order to fulfil the condition (3.106a). Note that this does not tell us that time-
reversal is not a symmetry of the equations; it tells us that the functional form of the Hamiltonian (and
equivalently the Lagrangian) is dependent on the chosen time direction. As long as the functionals change
such that (3.107) are fulfilled, solutions get mapped into solutions of the time-reversed theory. □

By extension, this also tells us that for any theory with non-vanishing MAγ coefficient, even with-
out having an expression for the local superhamiltonian, we already know that the gravitationally closed
theory cannot be time-reversible. A typical example for reversible theory is, of course, Einstein’s general
relativity, for which both conditions are indeed met.

However, for our example of the gravitational closure of general linear electrodynamics, we see that the
MAγ of the area metric degrees of freedom is non-vanishing. This particularly means that it is impossible
to solve the local superhamiltonian only for the even coefficients and restrict ourselves on time-reversible
solutions.
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3.3 THE GRAVITATIONAL CLOSURE EQUATIONS

In this section, we will finally obtain two functional differential equations for the gravitational Lagrangian
from the hypersurface deformation algebra relations. This is a remarkable result, as it tells us that the
requirement of diffeomorphism invariance, combined with the matter conditions from the kinematical
considerations in chapter 2, translates the search for gravitational Lagragians into a purely mathematical
question: solving a differential equation produces the gravitational Lagrangian, or at least a family of
Lagrangians.

Practically, solving functional differential equations is, however, a rather complicated endeavour. Al-
ready in the case of general relativity, this is highly non-trivial due to the non-linearity introduced by the
density factor

√
−det g··, as well as the fact that both the metric and its inverse appear in the solution.

As a result, it is rather the expectation than the exception that the solution of the functional differential
equations will be highly non-linear and cannot be easily derived on the level of functional differential
equations.

However, the problem can be simplified by performing two additional steps: the first one employs
the fact that the gravitational Lagrangian is an ultra-local function in the velocities k. Therefore, we as-
sume that the Lagrangian can be expanded into a polynomial of the velocities and write the Lagrangian
in terms of several coefficients. In the second step, we turn the functional derivatives with respect to the
degrees of freedom into partial derivatives of the φA

,µ1 ...µN . The price we pay is that the two functional
differential equations translate into a system of countably infinite partial differential equations that must
be solved. While this initially does not sound like a real improvement over the two compact, functional
differential equations, much stronger statements about the systems of partial differential equations can be
made. For instance, in section 3.5.1 we can apply the Cartan-Kuranishi algorithm, as presented in 2.2.2,
to the subsystem posed by the

{
D̂, Ĥ

}
relation to analyze the solution space of the gravitational closure

equations and derive the number of functionally independent curvature invariants from combinatorial
considerations.

3.3.1 Functional differential closure equations

We start the derivation of the gravitational closure equations by spelling out the two algebra relations
(3.74b) and (3.74a) in terms of the gravitational Lagrangian. In the two Poisson bracket relations, vari-
ous functional derivatives of the supermomentum and superhamiltonian will appear. We will thus briefly
present them here for future reference. For this, we first split the Lie derivative term in the supermomen-
tum into its two separate contributions

∂φ̂A

∂gA
(

ĝ(φ)
) (
LN⃗ ĝ

)A
= Nµ φA

,µ − (∂γNµ) FA
µ

γ , (3.110)

with the kinematical coefficient FA
µ

γ parametrizing the behavior of the geometric degrees of freedom
under spatial diffeomorphisms. Note that the coefficient is a local function of the degrees of freedom
φ for any gravitational theory under consideration. Using this, one can easily verify that the functional
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derivatives of the supermomentum are given by

δD̂(N⃗)

δφA(x)
= −

(
∂γNµ

)
(x)πB(x) FB

µ
γ

:A(x)− ∂µ (Nµ πA) (x) , (3.111)

δD̂(N⃗)

δπA(x)
= Nµ(x) φA

,µ(x)−
(
∂γNµ

)
(x) FA

µ
γ(x) , (3.112)

where we introduced the short-hand symbol FA
µ

γ
:B := ∂FA

µ
γ/∂φB for the partial derivative of the input

coefficient with respect to the degrees of freedom.
Similarly, we can derive the functional derivatives of the non-local part of the superhamiltonian

δĤnon-local(N)

δφA(x)
= (∂γN)(x)πB(x)MBγ

:A(x) , (3.113)

δĤnon-local(N)

δπA(x)
=

(
∂γN

)
(x)MAγ(x) . (3.114)

Using equations (3.93) and (3.95) we see that the functional derivatives of the local part of the superhamil-
tonian turn into

δĤlocal(N)

δφA(x)
= −

∫
Σ

d3y N(y)
δL(y)

δφA(x)
, (3.115)

δĤlocal(N)

δπA(x)
= N(x) kA(x) . (3.116)

The algebra relations have to be valid for any lapse N and shift N⃗. In other words, they act as test func-
tions that can be used to extract partial differential equations from the functional differential equations
that correspond to the different derivative orders of lapse and shift. As a result, we can eliminate them
from the equations by replacing the lapses with N → δx and the shifts with M⃗ → δy ∂µ. This turns
the relation into a distributional equation. From these, we can then recover several partial differential
equations. x We first observe that we expect the bracket (3.74b) to be trivially solved for the non-local
part of the superhamiltonian Ĥnon-local since we required in the compatibility condition (3.82b) that the
supermomentum acts on all functionals of φ by a spatial diffeomorphism. With (3.86) imposed, we can
check that the contributions of the non-local superhamiltonian cancel from the algebra relation. As a
result, the only remaining condition that we need to impose is that the local part of the superhamiltonian
has to fulfill the functional differential equation{

D̂(δx∂µ), Ĥlocal(δy)
}
= Ĥlocal

(
δx(∂µδy)

)
. (3.117)

Inserting all the functional derivatives we spelt out in the previous section, we find the first functional
differential equation for the Lagrangian L. Since the physical content of the bracket (3.74b) is to enforce
that Ĥmust transform as scalar density of weight 1, we will refer to them as covariance part of the closure
equation in the following.
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DEFINITION COVARIANCE PART OF THE FUNCTIONAL CLOSURE EQUATIONS

The gravitational Lagrangian L is a solution of the functional differential equation

0 =

(
∂L
∂kB

)
(y) kA(y)

(
δB

Aδ
γ
µ + FB

µ
γ

:A

)
(y)

(
∂γδy

)
(x) + ∂µ

(
kA ∂L

∂kA −L
)
(y) δy(x)

−kA(y) ∂γ

(
∂L
∂kB

)
(y) FB

µ
γ

:A(y) δy(x)−
(

kA ∂L
∂kA −L

)
(y)
(

∂µδy

)
(x)

+
(

φA
,µ + FA

µ
γ

,γ

)
(x)

δL(y)
δφA(x)

+ FA
µ

γ(x) ∂γ

(
δL(y)
δφA(·)

)
(x) .

This guarantees that the gravitational Lagrangian transforms as scalar density of weight 1.

Similarly, we can localize the algebra relation (3.74a) by setting N = δx and M = δy and extract an-
other functional differential equation. Inserting these functional derivatives of the superhamiltonian and
the supermomentum into the algebra relation (3.74a), we find the second functional differential equation
for the gravitational Lagrangian. As expected, this equation is linear in the Lagrangian. In contrast to the
first closure equation that merely ensures that the constructed Lagrangian transforms properly as scalar
density of weight 1, the second functional differential equation will select the physically viable gravita-
tional Lagrangians. We will refer to them as selective part of the closure equations in the following.

DEFINITION SELECTIVE PART OF THE FUNCTIONAL CLOSURE EQUATIONS

The gravitational Lagrangian L is a solution of the functional differential equation

0 = −kB(y)
δL(x)
δφB(y)

+
(
∂γδx

)
(y) kB(y)MAγ

:B(x)
∂L
∂kA (x) + ∂µ

(
δL(x)
δφB(·) MBµ

)
(y)

+∂µ

(
∂L
∂kA

)
(x)
[
(deg P− 1)pρµ FA

ρ
ν −MB[µ|MA|ν]

:B

]
(x) (∂νδx) (y)

− ∂L
∂kA (x)

[
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

)]
(x) (∂νδx)(y)

−
(
x ↔ y

)

Observe that in both cases we deal with a linear problem. In principle, we could obtain the gravi-
tational dynamics now by solving the two functional differential equations. However, it turns out to be
almost impossible practically. Instead, we turn the equations into an equivalent system of linear partial
differential equations.

3.3.2 Input coefficient identities

Note that the contributions of the non-local superhamiltonian in (3.74b) still give useful information in an
abstract treatment of gravitational theories since we can derive an identity for the kinematical coefficients.
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That is, in any theory under consideration, the coefficients must fulfil this identity trivially. However,
when dealing with the general solution space of the gravitational closure equations, such identities can
prove helpful. Even further, another identity can be obtained from the algebra relation (3.74c) that needs
to hold in practice and encodes the Lie algebra structure of the group of spatial diffeomorphisms.

We will now derive the first of these two input coefficient identities6 from the
{
D̂, D̂

}
bracket: by

simply spelling out the bracket and integration by partswe can bring all terms in the form that noderivative
acts on the momenta πA. From this we can then read off that

FB
µ

γ
:AFA

ν
ϵ − FB

ν
ϵ

:AFA
µ

γ = FB
µ

ϵδ
γ
ν − FB

ν
γδϵ

µ . (3.118)

One can indeed verify by brute-force computation for the setup and input coefficients of Maxwellian elec-
trodynamics; see chapter 4.1 for further details.

In the same fashion we can spell out the
{
Ĥnon-local, D̂

}
bracket to obtain the second identity for the

two input coefficients. Careful calculation yields

FA
µ

γ MBν
:A − FB

µ
γ

:AMAν = MBγδν
µ . (3.119)

DEFINITION INPUT COEFFICIENT IDENTITIES
The input coefficients fulfill the following two identities

FB
µ

γ
:AFA

ν
ϵ − FB

ν
ϵ

:AFA
µ

γ = FB
µ

ϵδ
γ
ν − FB

ν
γδϵ

µ , (3.120a)

FA
µ

γ MBν
:A − FB

µ
γ

:AMAν = MBγδν
µ . (3.120b)

3.3.3 Covariance part of the closure equations

Let us now further work on the covariance part of the functional closure equations. For this we use that
the Lagrangian is ultra-local in the velocities and series expand it in k:

L
[
φ; k
)
=

∞

∑
N=0

CA1 ...AN

[
φ
]

kA1 · · · kAN , (3.121)

where we introduced the countably infinitelymany output coefficient functionals CA1 ...AN [φ]. By plugging
them into the covariance part of the functional closure equations, we obtain a polynomial expression in

6These two identities are sometimes also referred to as the mad flow identities, after collaborator Maximilian Düll and the
author, who derived them.
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the velocities

0 =
∞

∑
N=0

(N + 1)CBA1...AN

[
φ(y)

]
kA(y)kA1(y) · · · kAN (y)

(
δB

Aδ
γ
µ + FB

µ
γ

:A

)
(y)
(

∂γδy

)
(x)

+
∞

∑
N=0

(N − 1) ∂µ

(
CA1 ...AN

[
φ(·)

]
kA1 · · · kAN

)
(y) δy(x)

−
∞

∑
N=0

(N + 1)∂γ

(
CBA1...AN

[
φ(·)

]
kA1 · · · kAN

)
(y)kA(y) FB

µ
γ

:A(y) δy(x)

−
∞

∑
N=0

(N − 1)CA1 ...AN

[
φ(y)

]
kA1(y) · · · kAN (y)

(
∂µδy

)
(x)

+
∞

∑
N=0

δCA1 ...AN

[
φ(y)

]
δφA(x)

kA1(y) · · · kAN (y)
(

φA
,µ + FA

µ
γ

,γ

)
(x)

+
∞

∑
N=0

∂γ

(
δCA1 ...AN

[
φ(x)

]
δφA(·)

)
(x) FA

µ
γ(x) kA1(y) · · · kAN (y) . (3.122)

Since this equation has to be valid for any velocity k all orders must vanish independently. We can extract
the separate orders of the equations by application of the following functional derivative operators and
evaluating the result at k = 0

δM

δkB1(x1) · · · δkBM(xM)

∣∣∣∣∣
k=0

, for M ≥ 0 . (3.123)

Extracting the terms for k = 0 first, we obtain the functional differential equation

0 =− ∂µ

(
C
[
φ(·)

])
(y) δy(x) + C

[
φ(y)

] (
∂µδy

)
(x)

+
δC
[
φ(y)

]
δφA(x)

(
φA

,µ + FA
µ

γ
,γ

)
(x) + ∂γ

(
δC
[
φ(y)

]
δφA(·)

)
(x) FA

µ
γ(x) . (3.124)

Similarly, we extract the equations for the higher-order terms in the velocities. The functional differential
equations for the velocities of power N read

0 =N · N! CA(B1 ...BN−1|
[
φ(y)

] (
δA
|BN)

δ
γ
µ + FB

µ
γ

:A

)
(y)

(
∂γδy

)
(x) δy(x1) · · · δy(xN)

+ (N − 1)N! ∂µ

(
CB1 ...BN

[
φ(·)

])
(y)δy(x)δy(x1) · · · δy(xN)

+ (N − 1)N! CB1 ...BN

[
φ(y)

]
δy(x)

N

∑
J=1

δy(x1) · · · δ̃y(xJ) · · · δy(xN)
(

∂µδy

)
(xJ)

− (N + 1)! ∂γ

(
CA(B1...BN−1|

[
φ(·)

])
(y) FA

µ
γ

:|BN)(y) δy(x)δy(x1) · · · δy(xN)

− (N − 1)N!
N

∑
J=1

CABJ(B1 ...B̃J ...BN−1| F
A

µ
γ

:|BN)(y) δy(x)δy(x1) · · · δ̃y(xJ) · · · δy(xN)
(

∂µδy

)
(xJ)

− (N − 1) N! CB1 ...BN

[
φ(y)

] (
∂µδy

)
(x)δy(x1) · · · δy(xN)

+ N!
δCA1 ...AN

[
φ(y)

]
δφA(x)

(
φA

,µ + FA
µ

γ
,γ

)
(x) δy(x1) · · · δy(xN)

+ N! ∂γ

(
δCA1...AN

[
φ(x)

]
δφA(·)

)
(x) FA

µ
γ(x) δy(x1) · · · δy(xN) . (3.125)



3.3 The Gravitational Closure Equations | 78

where the∼ symbol over terms instructs us to omit the corresponding term.
Furthermore, making the weak assumption that the coefficients CA1 ...AN are determined uniquely at

every hypersurface point by the geometric degrees of freedom and their partial derivatives, we can express
the functional derivatives in terms of partial derivatives as

δCA1...AN

[
φ(x)

]
δφB(y)

=
∞

∑
j=0

CA1...AN :B
α1 ...αj

[
φ(x)

] (
∂α1...αj δy

)
(x) , (3.126)

where we introduced the following notation for the partial derivatives to simplify the expressions

CA1 ...AN :B
µ1...µK :=

∂CA1 ...AN

∂φB,µ1...µK

. (3.127)

In order to extract information from the distribution expressions above, we integrate against test functions
f (x, y, x1, . . . , xN) of N + 2 variables. This allows us to strip the equations from their distributional char-
acter since we can integrate all δ-distributions. Afterwards, we read of the independent partial differential
equations since the test functions – and almost all their partial derivatives – are independent and can be
chosen arbitrarily. The only subtle problem that occurs, but can be dealt with simply, is that after the in-
tegration, all derivatives are evaluated at the same screen manifold point x. As a result, not all derivatives
are independent.

This can be seen from the total derivative on the function f (x, x)

∂µ f (x, x) =
(

∂1µ f
)
(x, x) +

(
∂2µ f

)
(x, x) , (3.128)

where
(

∂1µ

)
indicates that the derivative acts on the first slot of the function f , and

(
∂2µ

)
on the second.

But by solving this for
(

∂2µ f
)
, inserting into the smeared equation again and integrating the total deriva-

tive by parts, we can separate the equation into its independent parts. Afterwards wex can read off all the
separate contributions. For higher-order derivatives we find that we can express all derivatives that act on
the second slot of the test function as(

∂N
2α1...αN

f
)
(x, x) =

N

∑
K=0

(−1)K
(

N
K

)(
∂N−K
(α1 ...αN−K |∂

K
1|αN−K+1 ...αK)

f
)
(x, x) . (3.129)

Generalisations for test functions with more than two slots exist (compare Witte (2014)).
Wewill now present the results that can be obtained by carefully reading of the terms for the equations

at each power of k directly. Starting with the functional differential equation (3.124), we integrate against
a test function f (x, y) and apply equation (3.129) to extract the different independent contributions from
the functional differential equation. While no term appears for f (x, x), we find the following partial
differential equation from terms that belong to

(
∂1γ f

)
(x, x):

0 =−C δ
γ
µ +

∞

∑
K=0

[
(K + 1)C:A

γα1...αK φA
,µα1...αK −C:A

α1 ...αK FA
µ

γ
,α1...αK

]
. (3.130)

For the higher-order derivatives
(

∂1β1...βN f
)
(x, x), with N ≥ 2, we find

0 =
∞

∑
K=0

[(
K + N

K

)
C:A

β1 ...βNα1 ...αK φA
,µα1...αK −

(
K + N − 1

K

)
C:A

α1 ...αK(β1 ...βN−1| FA
µ
|βN),α1 ...αK

]
.

(3.131)
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We repeat the same procedure for the functional differential equation (3.125). After integrating against the
test function and eliminating the dependent slot derivatives we can again read off the different relations,
depending on the derivative orders of f . One finds that f (x, x, x, . . . , x) does not appear in the result.
For the coefficients of f with one free spatial index γ, we find the following equation

0 =−CA(B1...BN−1|

(
δA
|BN)

δ
γ
µ + N · FA

µ
γ

:|BN)

)
+

∞

∑
K=0

[
(K + 1)CB1 ...BN :A

γα1...αK φA
,µα1...αK −CB1...BN :A

α1 ...αK FA
µ

γ
,α1...αK

]
. (3.132)

For the remaining relations that we all obtain from
(

∂1β1 ...βN f
)

for N ≥ 2 we find the analogous result
as for the coefficients C in equation (3.131), that is

0 =
∞

∑
K=0

[(
K + N

K

)
CB1 ...BN :A

β1 ...βNα1 ...αK φA
,µα1 ...αK

−
(

K + N − 1
K

)
CB1...BN :A

α1 ...αK(β1 ...βN−1| FA
µ
|βN),α1...αK

]
. (3.133)

This is not surprising: remember that the physical content of the covariance part of the closure equations
was to make sure that the local superhamiltonian transforms as scalar density of weight 1. As such, all
output coefficients must also properly transform under spatial diffeomorphism. If we take a closer look,
we in fact see that the equations encode precisely that the output coefficients transform as{

CA1...AK , D̂(N⃗)
}

= (LN⃗C)A1 ...AN

= Nµ∂µCA1 ...AK + K · (∂γNµ)FB
µ

γ
:(A1|C|A2 ...AK)B + (∂µNµ)CA1...AK ,

where we can expand the left hand side and compare the different derivative orders of the lapse.
This is the farthest we get with simplifications of the covariance part of the closure equations. We

will repeat the same derivation for the second functional differential equation and derive another set of
partial differential equations before collecting all equations in the common system. These will be finally
portrayed on page 84.

3.3.4 Selective part of the closure equations

In the very same fashion, we can now extract the second set of partial differential equations from the
selective part of the closure equations in their functional form. The required steps are almost identical
to the derivation of the selective part of the closure equations in the previous section, so we keep the
treatment brief and only present the most important intermediate steps.

After insertion of the series expansion of the gravitational Lagrangian the selective part of the closure
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equations read

0 =−
∞

∑
N=0

δCA1 ...AN

[
φ(x)

]
δφB(y)

kB(y)kA1(x) · · · kAN (x)

+
∞

∑
N=0

(N + 1)CAA1...AN

[
φ(x)

]
MAγ

:B(x)
(
∂γδx

)
(y) kB(y)kA1(x) · · · kAN (x)

+
∞

∑
N=0

∂µ

(
δCA1 ...AN

[
φ(x)

]
δφB(·) MBµ

)
(y) kA1(x) · · · kAN (x)

+
∞

∑
N=0

(N + 1) ∂µ

(
CAA1...AN

[
φ(·)

]
kA1 · · · kAN

)
(x)
[
(deg P− 1)pρµ FA

ρ
ν

−MB[µ|MA|ν]
:B

]
(x) (∂νδx) (y)

−
∞

∑
N=0

(N + 1)CAA1...AN

[
φ(x)

]
kA1(x) · · · kAN (x)

[
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

) ]
(x) (∂νδx)(y)

−
(

x ↔ y
)

. (3.134)

Extracting all terms that contain no velocities, we find

0 = ∂µ

(
δC
[
φ(x)

]
δφB(·) MBµ

)
(y) + ∂µ

(
CA
[
φ(·)

])
(x)
[
(deg P− 1)pρµ FA

ρ
ν −MB[µ|MA|ν]

:B

]
(x)

× (∂νδx) (y)−CA
[
φ(x)

] [
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

) ]
(x) (∂νδx)(y)

−
(

x ↔ y
)

. (3.135)

In a similiar fashion, we can extract the Nth order contribution for N ≥ 1 by application of the functional
derivative (3.123) and find

0 = −
N

∑
K=1

δCB1 ...B̃K ...BN

[
φ(x)

]
δφBK(y)

δy(xk)δx(x1) · · · δ̃x(xk) · · · δx(xN)

+
N

∑
K=1

N · N! CA(B1 ...BN−1|
[
φ(x)

]
MAγ

:|BN))(x) δy(xK) δx(x1) · · · δ̃x(xK) · · · δx(xN)
(
∂γδx

)
(y)

+ N! ∂µ

(
δCB1...BN

[
φ(x)

]
δφB(·) MBµ

)
(y) δx(x1) · · · δx(xN)

+ (N + 1)!

[
∂µ

(
CAB1...BN

[
φ(·)

])
(x) δx(x1) · δx(xN)

−
N

∑
K=1

CAB1...BN

[
φ(x)

]
δx(x1) · · · δ̃x(xK) · · · δx(xN)

(
∂µδx

)
(xK)

]

×
[
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

) ]
(x) (∂νδx)(y)

− N! CAB1 ...BN

[
φ(x)

] [
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

) ]
(x) (∂νδx)(y)

× δx(x1) · · · δx(xN)−
(
x ↔ y

)
. (3.136)
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Compared to the covariance part of the closure equations, the derivation will be more involved for the
selective part. We will thus present the results that can be obtained by carefully reading of the terms for
the equations at each power of k in further detail.

Equations obtained from N=0

For the contributions in the selective part of the closure equations without a local velocity k, we need to
distinguish between four cases. From all terms that appear in front of the underived test function f (x, x)
we get the following partial differential equation

0 =− ∂ν

[ (
∂µCA

) (
(deg P− 1)pρµFA

ρ
ν −MB[µ|MA|ν]

:B

)
−CA

(
(deg P− 1)pρν

(
φA

,ρ + FA
ρ

γ
,γ

)
+ ∂µ

(
MB[µ|MA|ν]

:B

)) ]

+
∞

∑
K=0

K

∑
J=0

(−1)J
(

K
J

)
∂γα1...αJ

(
C:A

β1 ...βK−J(α1 ...αJ |MA|γ)
,β1...βK−J

)
, (3.137)

whereas all terms in front of the
(
∂1γ f

)
(x, x) give the equation

0 = ∂µ

(
CA MA[µ|

:B MB|γ]
)
− 2(degP− 1)pργ

[
CA φA

,ρ + ∂µ

(
CA FA

ρ
µ
)]

+
∞

∑
K=0

K

∑
J=0

(−1)J
(

K
J

)
(J + 1) ∂α1...αJ

(
C:A

β1...βK−J(α1 ...αJ |MA|γ)
,β1...βK−J

)
+

∞

∑
K=0

C:A
α1...αK MAγ

,α1 ...αK . (3.138)

For the higher-order derivatives of the test function, i.e.
(

∂1µ1 ...µw f
)
(x, x) we get two different partial

differential equation, depending on whether w is even

0 =
∞

∑
K=w

K+1

∑
J=w+1

(−1)J
(

K
J − 1

)(
J
w

)
∂α1...αJ−w

(
C:A

β J ...βK(α1...αJ−wµ1...µw−1 MA|µw)
,β J ...βK

)
, (3.139)

or w is odd

0 = 2
∞

∑
K=w−1

(
K

w− 1

)
C:A

βw ...βK(µ1 ...µw−1|MA|µw)
,βN ...βK

−
∞

∑
K=w

K+1

∑
J=w+1

(−1)J
(

K
J − 1

)(
J
w

)
∂α1 ...αJ−w

(
C:A

β J ...βK(α1 ...αJ−wµ1 ...µw−1 MA|µw)
,β J ...βK

)
. (3.140)

Combining this, for w = 3, with equations (3.137) and taking the gradient of (3.138) we find that we can
further simplify equation (3.137) into

0 =
∞

∑
K=2

K

∑
J=2

(−1)J
(

K
J

)
(J − 1) ∂γα1...αJ

(
C:A

β1 ...βK−J(α1 ...αJ |MA|γ)
,β1...βK−J

)
. (3.141)

This is the farthest we get in simplifying the partial differential equations obtained from the selective part
of the closure equations for N = 0.
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Remaining equations for N > 0

With the help of the usual procedure we can again extract the partial differential equations from equation
(3.136). As before, f (x, x, x, . . . , x) does not yield any information. For the first derivative acting on the
first slot

(
∂1µ f

)
(x, x, x, . . . , x) we find the following equation

0 = (N + 1)!
(
deg P− 1

)
CAB1...BN

(
pµν φA

,ν − pµν
,γFA

ν
γ
)

− N · N! CA(B1...BN−1|M
Aµ

:|BN) − N!
∞

∑
K=0

CB1...BN :A
α1 ...αK MAµ

,α1 ...αK

− (N − 1)!
N−1

∑
J=1

CB1...B̃J ...BN :BJ

µ − (N − 1)!
∞

∑
K=0

(−1)K(K + 1)∂α1 ...αK

(
CB1...BN−1:BN

α1 ...αKµ
)

,

(3.142)

where N ≥ 1. Similarly, for two spatial derivatives µ and ν we obtain the expression

0 = (N + 1)! (deg P− 1)CAB1 ...BN pρ(µ|FA
ρ
|ν) + N!

∞

∑
K=0

(K + 1)CB1...BN :A
α1 ...αK(µ|MA|ν)

,α1 ...αK

+ (N − 1)!
N−1

∑
J=1

CB1...B̃J ...BN :BJ

µν − (N − 1)!
∞

∑
K=0

(−1)K
(

K + 2
2

)
∂α1...αK

(
CB1 ...BN−1:BN

α1...αKµν
)

.

(3.143)

Another equation is obtained by collecting the remaining terms where s derivatives appear on the second
slot and no derivatives on any of the other slots. In this case we find for N ≥ 1, s ≥ 3 that

0 = N ·
∞

∑
K=0

(
K + s− 1

s− 1

)
CB1...BN :A

α1 ...αK(µ1 ...µs−1|MA|µs)
,α1 ...αK +

N−1

∑
J=1

CB1 ...B̃J ...BN :BJ

µ1...µs

−
∞

∑
K=0

(−1)K+s
(

K + s
s

)
∂α1...αK

(
CB1...BN−1:BN

α1 ...αKµ1...µs
)

. (3.144)

Extracting the coefficient for
(

∂1µ∂2ν f
)

we get

0 = CAB1...BN

(
MB[µ|MA|ν]

:B + (degP− 1)pρ[µ| FA
ρ
|ν]
)

. (3.145)

Fortunately, only two types of equations are left. The first one is obtained by collecting all equations where
at least one derivative appears on the second slot of f and all the other derivatives on one other slot J =

1 . . . N − 1. In this case we find for N ≥ 2 and T ≥ 2 that

CB1...B̃J ...BN :BJ

µ1...µT =
∞

∑
K=0

(−1)K+T
(

K + T
T

)
∂α1...αK

(
CB1...BN−1:BN

α1...αKµ1 ...µT
)

. (3.146)

All remaining derivatives must be of the following form, with N ≥ 3, T ≥ 3

0 =
∞

∑
K=0

(−1)K+T
(

K + T
T

)
∂α1 ...αK

(
CB1...BN−1 :BN

α1 ...αKµ1...µT
)

. (3.147)

Obviously, we can combine the last two equations for N ≥ 3, which then yields the remarkable result that
all coefficients CA1 ...AN do only depend up to the second derivatives of the degrees of freedom, i.e.

CA1...AN :B
µ1...µM = 0 for N ≥ 2, M ≥ 3 . (3.148)
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For the coefficients C and CA, however, no such statement can be made a priori. The equivalent
relation, stemming from the same terms in the functional differential equation, is equation (3.144) for
N = 1. In this case we see that C appears together with the coefficient CA. Only in case the input
coefficient MAγ is vanishing, as we will discuss in more detail in section 3.5.3, we would indeed obtain
(3.147) for N = 1 and, by assuming that there is some maximal derivative order, one ultimately recovers
that C(φ, ∂φ, ∂∂φ). However, in general this fails to be the case. Instead, the number of derivatives
appearing in C is dependent on the number of derivatives appearing in CA: if we, for example, would
assume that CA(φ, ∂φ, ∂∂φ), equation (3.144) gives that C(φ, ∂φ, ∂∂φ, ∂∂∂φ). Generally, by assuming
that CA depends up to order q on derivatives of the degrees of freedom, one recovers that C depends up
to order q + 1.

Such an assumption, however, is not justified a priori for the following reason: Already in the case
of general relativity, it turns out that CA can depend to arbitrary order on the spatial derivatives of the
degrees of freedom. Evaluation of the closure equations then gives that

CA(x) =
δΛ

δφA(x)
, (3.149)

and that CA is divergence-free. Such a coefficient decouples in the equations of motion, rendering them
effectively second-order. However, no a priori reason exists why the scalar density Λ can only be con-
structed from φ, ∂φ and ∂∂φ.

Having finally extracted all partial differential equations from the functional form of the gravitational
closure equations, we present the summary of the whole system of linear partial differential equations
on the following two pages, where we in total obtained seven individual linear equations and fourteen
sequences of equations that hold for N ≥ 2, respectively. The gravitational Lagrangian, being determined
solely by the output coefficients CA1...AN , is the solution of this system.

One particularly remarkable fact is that this is an entirely local system in the sense that it has to be
fulfilled at each screen manifold x separately. On the other hand, the functional form of the equations
considers two separate points x and y, reflecting that the hypersurface deformation algebra implements
the action of two separate sets of lapses and shifts, i.e. considers two separate infinitesimal paths along
whom we can evolve the initial data.
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TH E GRA V I T A T I ONA L C LOSUR E
EQUA T I ONS

The seven individual equations

(C1) 0 = −C δ
γ
µ +

max

∑
K=0

[
(K + 1)C:A

γα1 ...αK φA
,µα1 ...αK −C:A

α1 ...αK FA
µ

γ
,α1 ...αK

]
(C2) 0 = −CA

(
δA

B δ
γ
µ + FA

µ
γ

:B

)
+

max

∑
K=0

[
(K + 1)CB:A

γα1 ...αK φA
,µα1 ...αK −CB:A

α1...αK FA
µ

γ
,α1...αK

]
(C3) 0 = 2

(
degP− 1

)
p(µ|ρ CAB FA

ρ
|ν) +

max

∑
K=0

(K + 1)CB:A
α1 ...αK(µ|MA|ν)

,α1 ...αK

−
max

∑
K=0

(−1)K
(

K + 2
K

) (
∂α1...αK C:B

α1 ...αKµν
)

(C4) 0 = 2
(
degP− 1

)
CAB

(
pµν φA

,ν − pµν
,γ FA

ν
γ
)
−CA MAµ

:B −
max

∑
K=0

CB:A
α1 ...αK MAµ

,α1 ...αK

−
max

∑
K=0

(−1)K (K + 1)
(
∂α1...αK C:B

α1...αKµ
)

(C5) 0 = 2 ∂µ

(
CA MA[µ|

:B MB|γ]
)
− 2(degP− 1)pργ

[
CA φA

,ρ + ∂µ

(
CA FA

ρ
µ
)]

+
max

∑
K=0

K

∑
J=0

(−1)J
(

K
J

)
(J + 1) ∂α1...αJ

(
C:A

β1...βK−J(α1 ...αJ |MA|γ)
,β1 ...βK−J

)
+

max

∑
K=0

C:A
α1...αK MAγ

,α1 ...αK

(C6) 0 = 6
(
degP− 1

)
CAB1B2

(
pµν φA

,ν − pµν
,γ FA

ν
γ
)
− 4 CA(B1

MAµ
:B2) − 2 CB1B2:A MAµ

− 2 CB1B2 :A
α MAµ

,α − 2 CB1B2:A
αβ MAµ

,αβ −CB2 :B1
µ

−
max

∑
K=0

(−1)K (K + 1)
(
∂α1...αK CB1 :B2

µα1 ...αK
)

(C7) 0 =
max

∑
K=2

K

∑
J=2

(−1)J
(

K
J

)
(J − 1) ∂γα1 ...αJ

(
C:A

β1...βK−J(α1...αJ |MA|γ)
,β1 ...βK−J

)

The fourteen sequences of equations for N ≥ 2

(C8N) 0 =
max

∑
K=0

[(
K + N

K

)
C:A

β1...βNα1...αK φA
,µα1 ...αK −

(
K + N − 1

K

)
C:A

α1...αK(β1...βN−1| FA
µ
|βN),α1 ...αK

]

(C9N) 0 =
max

∑
K=0

[(
K + N

K

)
CB:A

β1...βNα1 ...αK φA
,µα1...αK −

(
K + N − 1

K

)
CB:A

α1...αK(β1 ...βN−1| FA
µ
|βN),α1...αK

]
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The fourteen sequences of equations for N ≥ 2 (continued)

(C10N) 0 = −CB1 ...BN δ
γ
µ − N CA(B1...BN−1| F

A
µ

γ
:|BN) −CB1...BN :A FA

µ
γ + CB1...BN :A

γ φA
,µ

−CB1...BN :A
α FA

µ
γ

,α + 2 CB1 ...BN :A
γα φA

,µα −CB1...BN :A
αβ FA

µ
γ

,αβ

(C11N) 0 = CB1 ...BN :A
β1β2 φA

,µ −CB1 ...BN :A
(β1| FA

µ
|β2) − 2 CB1 ...BN :A

α(β1| FA
µ
|β2),α

(C12N) 0 = CB1 ...BN :A
(αβ| FA

µ
|γ)

(C13N) 0 = CB1 ...BN :A
(αβ|MA|γ)

(C14N) 0 = CAB1 ...BN−1

(
MB[µ|MA|ν]

:B + (degP− 1)pρ[µ| FA
ρ
|ν]
)

(C15N) 0 = CB1 ...B̂J ...BN+1:BJ

µν −CB1 ...BN :BN+1

µν for J = 1 . . . N + 1

(C16N) 0 = N · (N + 1)(degP− 1)CAB1 ...BN pρ(µ| FA
ρ
|ν) + N CB1 ...BN :A

(µ|MA|ν)

+ 2N CB1...BN :A
α(µ|MA|ν)

,α + (N − 2)CB1 ...BN−1 :BN
µν

(C17N) 0 = (N + 2)(N + 1)(degP− 1)CAB1 ...BN+1

(
pµν φA

,ν − pµν
,γ FA

ν
γ
)

− (N + 1)2 CA(B1 ...BN |M
Aµ

:|BN+1) − (N + 1)CB1...BN+1:A MAµ

− (N + 1)CB1...BN+1 :A
α MAµ

,α − (N + 1)CB1...BN+1:A
αβ MAµ

,αβ

−
N+1

∑
K=1

CB1 ...B̂K ...BN+1:BK

µ + 2
(
∂γCB1...BN :BN+1

γµ
)

(C18N) 0 = CA:B
µ1 ...µN −

max

∑
K=0

(−1)K+N
(

K + N
K

) (
∂α1...αK CB:A

α1 ...αKµ1...µN
)

(C19N) 0 =
max

∑
K=0

(
K + N

K

)
CB:A

α1...αK(µ1...µN |MA|µN+1),α1...αK

+
max

∑
K=0

(−1)K+N
(

K + N + 1
K

) (
∂α1 ...αK C:B

α1...αKµ1 ...µN+1
)

(C20N even) 0 =
max

∑
K=N

K+1

∑
J=N+1

(−1)J
(

K
J − 1

)(
J
N

)
∂α1 ...αJ−N

(
C:A

β J ...βK(α1 ...αJ−Nµ1...µN−1 MA|µN)
,β J ...βK

)
(C21N odd) 0 = 2

max

∑
K=N−1

(
K

N − 1

)
C:A

βN ...βK(µ1 ...µN−1|MA|µN)
,βN ...βK

−
max

∑
K=N

K+1

∑
J=N+1

(−1)J
(

K
J − 1

)(
J
N

)
∂α1 ...αJ−N

(
C:A

β J ...βK(α1 ...αJ−Nµ1 ...µN−1 MA|µN)
,β J ...βK

)

with the coefficients defined by

Lgeometry =
∞

∑
N=0

CA1...AN [φ] kA1 · · · kAN

(
Lξ G

)A
=

∂ĝA

∂φA

(
φ
) (

φA
,µξµ − FA

µ
γξµ

,γ

)
MAγ =

∂φ̂A

∂gA
(

gB(φ)
)

ea
0

∂gA

∂∂γXa
t

pµν = Pa1...adegP ϵ
µ
a1 ϵν

a2
ϵ0

a3
· · · ϵ0

adegP
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3.4 GRAVITATIONAL FIELD EQUATIONS

Suppose we have solved the gravitational closure equations presented on the previous pages and obtained
all the output coefficients appearing in the gravitational Lagrangian for a gravitational theory of interest.
Then, the obvious next question is what form the equations of motion take and what their underlying
principal polynomial is.

3.4.1 Equations of motion

For the former question, we can employ the action functional of both the matter and gravitational sectors

Stotal[ψ, φ, N, N⃗] = Smatter[ψ; φ, N, N⃗)

+
∫

dt
∫

d3x N(t, x)L
[

φ;
1
N

(
φ̇A − (∂γN)MAγ − Nµ φA

,µ + (∂γNµ)FA
µ

γ
))

,

(3.150)

and calculate the variation by lapse, shift and the F-many degrees of freedom φ. One then finds the four
constraint equations

δSmatter

δN(x, t)
=

∂L
∂kA kA −L− ∂γ

(
∂L
∂kA MAγ

)
, (3.151a)

δSmatter

δNα(x, t)
=

∂L
∂kA φA

,µ + ∂γ

(
∂L
∂kA FA

µ
γ

)
, (3.151b)

and F evolutionary equations, namely

δSmatter

δφA(x, t)
=
(

∂t − Nµ∂µ

) ∂L
∂kA

+
∂L
∂kB

(
(∂γN)MBγ

:A −
(
∂γNµ

) (
δB

Aδ
γ
µ + FB

µ
γ

:A

))
−

∞

∑
n=0

∫
d3y N(t, y)

δCB1...Bn [φ(t, y)]
δφA(t, x)

kB1(t, y) . . . kBn(t, y) . (3.151c)

We can further flesh this out by inserting the series expansion of the Lagrangian into the equations. For
example, in case of the scalar constraint one finds

δSmatter

δN(x)
=

∞

∑
n=0

(n− 1)CB1 ...Bn kB1 · · · kBn −
∞

∑
n=0

(n + 1)CAB1 ...Bn MAγ
,γ kB1 · · · kBn

−
∞

∑
k=0

CA:B
(α1...αk |MA|γ) φB

,γα1 ...αk

−
∞

∑
n=0

2

∑
k=0

(n + 2)CAMB1 ...Bn :N
(α1 ...αk |MA|γ) φN

,γα1 ...αk kMkB1 · · · kBn+

−
∞

∑
n=0

(n + 2)(n + 1)CAMB1 ...Bn MAγ
(

∂γkM
)

kB1 · · · kBn . (3.152)

Observe that no acceleration term φ̈ appears in the equation, as expected for a constraint equation.
Even without having solved the closure equations explicitly, we can make an interesting observation

immediately: the fourth term in the equation is of third derivative order for k = 2, meaning that the
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differential order would be higher than two (ignoring C and CA for now). However, due to (C15N) and
(C13N) , we have

0 = CB1...BN :A
(αβMB1|γ) (3.153)

and thus see that the summand at k = 2 disappears for any gravitational Lagrangian that is a solution
of the gravitational closure relations. This eliminates the third spatial derivative contributions that stem
from CB1 ...BN for N ≥ 2.

The same observation can be made for the vector constraint as well. Here, the differential equation
reads

δSmatter

δNµ(x)
=

∞

∑
n=0

(n + 1)CAB1...Bn

(
δA

B δ
γ
µ + FA

µ
γ

:B

)
φB

,γ kB1 · · · kBn

+
∞

∑
k=0

CA:B
(α1...αk |FA

µ
|γ)φB

,γα1 ...αk

+
∞

∑
n=0

2

∑
k=0

(n + 2)CAMB1 ...Bn :N
(α1 ...αk |FA

µ
|γ)φN

,γα1 ...αk kMkB1 · · · kBn

+
∞

∑
n=0

(n + 2)(n + 1)CAMB1 ...Bn FA
µ

γ
(

∂γkM
)

kB1 · · · kBn . (3.154)

If we now apply the closure equation (C12N) to the fourth term in (3.154), we find that all higher-order
spatial derivatives to the partial differential equation enter only due to the output coefficients C and CA.
Last but not least, we can insert the expansion in the evolutionary equations

δSmatter

δφA(x, t)
=

∞

∑
n=0

(n + 1)

[
(n + 2)CABM1...Mn

(
k̇B − NµkB

,µ

)
+

∞

∑
m=0

CAM1 ...Mn :B
α1 ...αm

(
φ̇B

,α1 ...αm
− Nµ φB

,µα1...αm

)
+ CBM1 ...Mn

(
(∂γN)MBγ

:A − (∂γNµ)
(

δB
Aδ

γ
µ + FB

µ
γ

:A

)) ]
kM1 · · · kMn

−
∞

∑
n=0

∞

∑
m=0

(−1)m∂α1 ...αm

(
N CM1...Mn :A

α1...αm kM1 · · · kMn
)

. (3.155)

Due to the k̇B term, we finally obtain 2nd order time derivatives of the gravitational degrees of freedom –
as is expected for evolutionary equations.

In principle, it is possible to use the gravitational closure equations to further simplify the evolution-
ary equations – even at this abstract level. However, there is no clear benefit as the coefficient functions
appearing in the differential equations will still be largely undetermined and need to be derived then, case
by case, with the help of the closure equations. We will thus leave the result (3.155) as is and yet again
summarise the equations of motion again in the following box on the next page:
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DEFINITION GRAVITATIONAL EQUATIONS OF MOTION

The gravitational equations of motion, coupled to a matter action Smatter are given by the system of partial
differential equations posed by four contraint equations

δSmatter

δN(x, t)
=

∂L
∂kA kA −L− ∂γ

(
∂L
∂kA MAγ

)
,

δSmatter

δNα(x, t)
=

∂L
∂kA φA

,µ + ∂γ

(
∂L
∂kA FA

µ
γ

)
,

and F evolutionary equations

δSmatter

δφA(x, t)
=
(

∂t − Nµ∂µ

) ∂L
∂kA

+
∂L
∂kB

(
(∂γN)MBγ

:A −
(
∂γNµ

) (
δB

Aδ
γ
µ + FB

µ
γ

:A

))
−

∞

∑
n=0

∫
d3y N(t, y)

δCB1...Bn [φ(t, y)]
δφA(t, x)

kB1(t, y) . . . kBn(t, y) .

3.4.2 Causal compatibility requirement

Once the equations of motion are derived, the obvious next step is to derive the principal polynomial of
the gravitational sector. While the idea that gravity shall possess the same principal polynomial as the
matter sector has very well flown into the derivation of the gravitational closure equations, it is a priori
not clear whether this is generally ensured by them.

Clearly, for there to be a chance that the principal polynomial of the gravitational field equation is fixed
by the gravitational closure equations, all components of the matter polynomial need to be contained in
some form in the differential equations. We will thus analyze in detail what information of the principal
polynomial enters the gravitational closure equations. Obviously, the three projections three projections
P(ϵ0, ·, ϵ0) = 1 and P(ϵα, ϵ0, . . . , ϵ0) = 0 (implicitly) and pαβ = P(ϵα, ϵβ) (explicitly) appeared as we
used them in our derivation in the previous sections. For the higher-order components it turns out that
we can employ the normal deformation coefficient to relate them to the lower-order components. For the
component with N spatial indices, i.e. defined via

pα1 ...αN (x) := Pm1 ...mdeg P
(
Xt(x)

)
ϵα1

m1
(x) · · · ϵαN

mN
(x) ϵ0

αN+1
(x) · · · ϵ0

αdeg P
(x) , (3.156)

straight-forward calculation using equation (3.55) yields that the normal deformation coefficient reads

Mα1 ...αNγ = N
(
deg P− 1

)
pγ(α1pα2 ...αN) −

(
deg P− N

)
pγα1 ...αN (3.157)

On the other hand, we know that once we spell out the components of the principal polynomial, we find
that these are functions of our geometric fields on the screen manifold, i.e.

pα1 ...αN
(

gA
)

. (3.158)
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As a result, we know from the chain rule of the normal deformation coefficient Mγ, compare equation
(3.56), that this can be written as

Mα1 ...αNγ =
∂pα1...αN

∂gA
MAγ . (3.159)

This can be carried over to our canonical phase space formulation such that we obtain the quite interesting
differential equation between the components of the principal polynomial:

∂pα1 ...αN

∂φA (φ)MAγ(φ) = N
(
deg P− 1

)
pγ(α1|(φ)p|α2...αN)(φ)−

(
deg P− N

)
pγα1 ...αN (φ) . (3.160)

For N = 0 and N = 1 all terms vanish due to the normalization and annihilation condition, such
that no information appears. For N > 2, equation (3.160) can then be employed to express the higher-
order components in terms of the lower order ones and by the normal deformation coefficient MAγ. For
instance, we find that

pαβγ(φ) = − 1
deg P− 2

∂p(αβ|

∂φA (φ)MA|γ)(φ) . (3.161)

Similarly, this procedure can be repeated for the remaining components such that we can recontruct the
entire principal polynomial. In particular, this calculation indicates that indeed all components of the
principal polynomial are present in the gravitational closure equations, at least implicitely, due to our two
input coefficients pµν and MAγ.

Let us still suppose now for a moment that the gravitational closure equations do not fix the principal
polynomial PG of the gravitational field equations to the expression PM obtained from the matter fields:
This would imply, from a causal perspective, that if we prescribe our matter fields and our geometry on a
common initial data surface, they could or would evolve to separate surfaces –making a common descrip-
tion of dynamics impossible, unless the cone Cgrav,x of our gravitational theory contains at each spacetime
point the whole cone of the matter sector Cmatter,x. We thus suspect that if we further impose that the two
principal polynomials agree, a condition that can be at least symbolically summarised as

PG
!
= PM , (3.162)

we end up with further restrictions on the gravitational Lagrangian. The favourable situation would be to
turn this condition, again, into a set of partial differential equations for the output coefficients.

However, this is a rather non-trivial condition for three reasons: the first one is that the gravitational
equations of motion are non-linear and generally not even quasi-linear, i.e. linear in the highest derivative
order of the degrees of freedom. This complicates the derivation of the principal polynomial, already in
the case of general relativity. The second reason is that we deal with a gauge symmetry and, as a result, need
to repeat the steps from 2.2.1 for spacetime diffeomorphisms. The third and last reason is that, in order to
accurately judge the principal polynomial, we must apply the Cartan-Kuranishi to bring the gravitational
equations of motion to involutive form. We leave this up for future research.
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3.5 GENERAL PROPERTIES OF SOLUTIONS

We will now dedicate the last part of this chapter to a general discussion of the gravitational closure equa-
tions and their solution space before moving on to exact solutions in chapter 4 and a perturbative treat-
ment in chapter 5. While this system of countably infinite linear partial differential equations is a quite
challenging system to solve in practice, still, some statements can be made already at an abstract level.

We will proceed in the following fashion: first, we will discuss the covariance part of the closure equa-
tions in more detail and see that they constrain the solution space to finitely many curvature invariants,
that is, differential invariants that can be constructed from the geometry and its derivatives.

Second, we can enter a general discussion of the selective part of the closure equations. One then finds
that the system posed by the {H,H} bracket has amore involved structure than the covariance part of the
closure equations that stem from the {D,H} bracket. Since they establish a link between the different
output coefficient orders, they prove to be the essential component to further restrict the gravitational
Lagrangian. Equipped with everything learned from the covariance part, as well as the selective part of
the closure equations, we can then set up a general solution strategy for how to approach the system of
partial differential equations.

Lastly, we will make use of the arbitrariness of the parametrization. We will discuss cases where a
reparametrization of the gravitational fields on the screen manifold to a normal form can be performed,
formulated in terms of a metric, a vector and multiple scalar fields. Although it is not possible to provide
the general solution to the gravitational closure equations for this normal form parametrization, we will
present some helpful insights that can be put to good use when solving the closure equations.

3.5.1 Analysis of the covariance part of the closure equations

The covariance part of the closure equations – that is the subsystem of the closure equations (C1), (C2),
(C8N), (C9N), (C10N), (C11N) and (C12N) – pose an interesting subsystem that is worth analyzing
on its own7. These are linear, first-order differential equations, for which it is a much simpler task to
analyze the solution space. In particular, it will allow us to show that this subsystem is, in the formulation
presented on page 84, already an involutive system. The involutivity will enable us then to derive the
number of functionally independent curvature invariants from combinatorial considerations.

For this analysis, we will first see that the equations can be simplified by introducing a de-densitization
and rewriting the output coefficient. Wewill, in particular, analyze the space of all scalar densities ofweight
w in more detail. Afterwards, we can tackle the problem of showing that the covariance part of the closure
equations are involutive – which ultimately stems from the {D(N⃗),D(M⃗)} relation.

De-densitization of all output coefficients

In general relativity, the fact that the density factor 1/
√
−det g·· is non-polynomial in the degrees of

freedom is responsible for much of the complexity in the solution of the gravitational closure equations,
and we expect very much the same for any gravitational theory. We can, of course, take much out of this

7Its four-dimensional analogue for the Lagrangian of first-order field theories was for instance already discussed in Gotay
and Marsden (2001).
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complexity by constructing a de-densitization for our geometry under investigation and de-densitize our
output coefficients first and solve the closure equations than for the obtained objects.

In order to construct a de-densitization for any geometry, wewill look at the transformational behavior
of a density χ of weight w. From the definition of the Lie derivative, as well as equation (3.86), it is clear
that we get {

χ(φ), D̂(N⃗)
}
=
(
LN⃗χ

)
Nµχ:A φA

,µ + χ:AFA
µ

γ = Nµ χ:A φA
,µ − w ·

(
∂µNµ

)
χ . (3.163)

The respective first terms on both sides of the equation obviously cancel each other. What remains is a
linear partial differential equation for the function χ that all scalar densities of weight w need to solve8.
The solution will not be unique since we, for instance, can multiply the solution by any scalar function
and obtain another solution. This is precisely the same issue as in our 2-form treatment of the area metric
in chapter 1 in a different disguise.

This linear first-order partial differential equation can be solved with the typical solution methods for
a given input coefficient FA

µ
γ. Of course, this analysis of densities as solutions of a differential equation

is rather of theoretical interest for the general study of the gravitational closure equations. Typically, it is
usually rather well-understood what is meant by scalar densities.

We will now investigate this system, and its solution space, in more detail before we generalise the
steps to the covariance part of the closure equations. For this, we again rest our discussion on the formal
analysis of involutive systems and the Cartan-Kuranishi algorithm as described in section 2.2.2.

DEFINITION SCALAR DENSITIES
We say a function χ of the gravitational degrees of freedom is a scalar density of weight w if it is a solution
of the partial differential equations

χ:AFA
µ

γ = −w · χδ
γ
µ .

A scalar is a density of weight 0.

Suppose we want to understand the solution space from a formal perspective and without having a
concrete expression for the input coefficient FA

µ
γ. In that case, it is essential for the analysis that the

differential equation is involutive. We will thus perform the Cartan-Kuranishi algorithm explicitly. Re-
member that this corresponds to successive steps of prolonging the differential equation to higher orders
and checking if any integrability conditions can be formed.

Step 1: The rank condition of the geometric symbol For the first step in the algorithm, we have to read
off the number β

(k)
1 of principal coefficients of class k, i.e. the number of formal expansion coefficients

χ:A of a solution that one can solve for in the equation.
8Clearly, these are simply the covariance part of the closure equations for a functional that only depends on the degrees of

freedoms and none of their spatial derivatives.
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In our case, as we deal with a first-order system, there are F classes in total and one class per degree
of freedom. As a result, one finds that the coefficient β

(k)
1 for a principal coefficient of class k can either

be zero or one. Which coefficients we can solve for in the differential equation is governed by the input
coefficient FA

µ
γ. From linear algebra it is clear that the rank r := rank(FA

µ
γ) of the coefficient can be

at most nine, such that we can solve for at most r of the Taylor coefficients at order 1. Since we are free
to label the classes, we will now assume that, without loss of generality, we have ordered them such that
we can solve for the r coefficients of highest classes. The sum of the coefficients that appears in the rank
condition for integrability thus reads

F

∑
k=1

k · β(k)
1 =

F

∑
k=F−r

k

=
F(F + 1)

2
− (F− r)(F− r + 1)

2
. (3.164)

If we want to check whether the geometric symbol, i.e. our input coefficient FA
µ

γ, is involutive, we need
to calculate the rank of the geometric symbol of the prolongation. The prolonged differential equation
reads

χ:ABFA
µ

γ +
(

FA
µ

γ
:B + w · δA

B δ
γ
µ

)
χ:A = 0 . (3.165)

from which one finds the highest order coefficient

δ
(M
B FN)

µ
γ . (3.166)

The condition for the symbol to be involutive is that the rank of the geometric symbol of the prolongation
equals (compare section 2.2.2)

rank
(

δ
(M
B FN)

µ
γ
)

!
=

F(F + 1)
2

− (F− r)(F− r + 1)
2

. (3.167)

In principle, we can then check this condition for each case by explicit straight-forward calculation. At
this abstract level, without knowing the components of the input coefficients, this is, however, non-trivial.
Luckily, we do not need to calculate the rank explicitly: it turns out that one can come up with an abstract
argument for any first-order system of differential equations for a single dependent variable (compare
remark 7.1.29 in Seiler (2009)). Since both conditions are fulfilled for our scalar density, we can conclude
that the symbol is involutive.

Step 2: Integrability conditions The second step in the Cartan-Kuranishi algorithm is to show that no
integrability condition exists, that is, a first-order equation that can be obtained by a linear combination
of the prolongation. This is clearly a more complex task since we must rule out that we cannot manipulate
the second-order prolongations into an additional first-order equation.

For first-order equations, this can be elegantly checked geometrically: the left-hand side of (3.163) cor-
responds to the vector field FA

µ
γ ∂A that is applied to the function χ. An integrability condition appears

if the commutator cannot be written as a linear combination of the vector fields of our system. Given that
such a condition appears, we can add it to our system and repeat the procedure. Since there are at most F
many linearly independent vector fields, it is clear that the procedure will terminate after some iterations.
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If we now spell out the commutator explicitly, we obtain the following expression[
FA

µ
γ ∂A, FB

ν
ϵ ∂B

]
=

(
FA

µ
γ FB

ν
ϵ

:A − FA
ν

ϵ FB
µ

γ
:A

)
∂B . (3.168)

Comparing the right hand side with the input coefficient identity (3.120a), we see that the commutator
reads [

FA
µ

γ ∂A, FB
ν

ϵ ∂B

]
=

(
FA

ν
γδϵ

µ − FA
µ

ϵδ
γ
ν

)
∂A , (3.169)

which is indeed a linear combination of our original equations. If we take into account the inhomogeneous
part of the equation −w · χ δ

γ
µ both terms cancel each other. As a result, no integrability conditions are

obtained, the Cartan-Kuranishi algorithm terminates after a single iteration and the differential equation
is already involutive.

Next, we can analyse the size of the formal solution space, i.e. the space of formal power series solutions
of the differential equations for scalar densities. For this, one basically counts the number of parametric
coefficients – coefficients we cannot solve for at the considered differential orders – and combinatorially
relates this to the Taylor expansion of smooth functions of one or more variables.

In our case, following chapter 8 of Seiler (2009) (and in particular corollary 8.2.12), one calculates that
the number fk of smooth functions of k variables is given by

fF = 1− β
(F)
1 , (3.170a)

fk = β
(k+1)
1 − β

(k)
1 for 1 ≤ k < F . (3.170b)

Since we have defined our classes such that we can solve for the r coefficients of highest class, that is in
the terminology of Seiler (2009) a δ-regular coordinate system, we know that

β
(k)
1 =

 1 for F− r ≤ k ≤ F ,

0 else ,
(3.171)

and we can directly calculate the number of arbitrary functions. Then plugging the β
(k)
1 coefficients into

equation (3.170) gives that the general solution is a single undetermined function of F − r slots. This
can also be understood from a geometric perspective: the differential equation (3.163) restricts r of the F
first-order components. The remaining F − r ones must be provided as boundary data. As a result, we
find that we can construct F − r functionally independent solutions to the differential equation and the
general solution will be an undetermined function f of these F− r densities χI (I = 1, . . . , F− r) with

∂ f
∂χI χI = f . (3.172)

An interesting situation occurs for theories where the kernel of FA
µ

γ is trivial, i.e. we have at most 9

degrees of freedom. In this case, the formal solution space is finite in the sense that the solution contains
no undetermined functions. For general relativity, this is exactly the case: it can be checked by straight-
forward calculation that the rank of the input coefficient is equal to 6, i.e. the kernel is indeed trivial. As
a result, one finds that all scalar densities will be proportional to

(
−det g··

)− w
2 . In general, this is not
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true and – just as for the pre-metric 2-form treatment in the introduction – different density terms can be
formed.

Note that we can trace this arbitrariness, again, to the occurrence of scalars built from the geometry.
Clearly, if we scale a density χ of weight w by a scalar function σ we obtain another density of weight w,
since

∂A(σ · χ)FA
µ

γ = χ · σ:AFA
µ

γ + σχ:AFA
µ

γ = −w (σ · χ) δ
γ
µ . (3.173)

Conversely, given two scalar densities χ, ξ of weight w they yield a scalar via σ := χ/ξ. We will look at
these scalar functions now in some more detail.

From the definition, we see that a function σ is a scalar given that the gradient σ:A is an element from
the kernel of FA

µ
γ. As stated before, in the case of general relativity, we find that the kernel is trivial,

which is the well-known fact that we cannot construct any scalar from the metric degrees of freedom9.
For an area metric, the input coefficient FA

µ
γ is a 17 × 9 matrix of rank 9, such that we deal with an

eight-dimensional kernel. Indeed, we can construct eight distinct scalars from the three projections of
the area metric to the screen manifold by their traces and determinants (this will be described in further
detail in chapter 4.2).

Conversely, one may ask whether it is possible to construct a scalar from a given element nA(φ) from
the kernel of FA

µ
γ. A necessary compatibility condition for the existence of such a solution is that

nA:B − nB:A = 0 . (3.174)

Since it is rather involved to find a basis for the kernel of the input coefficient for a gravitational setup and
typically more straightforward to derive an expression for the different scalars we can construct from the
geometric fields, we will leave this open for further research. It is nonetheless remarkable how the input
coefficient allows us to approach the definition of scalar densities constructively.

We can now move back to our output coefficients and use everything we learnt above. Clearly, with
the help of the input coefficient p··(φ) we can construct the following scalar density of weight 1 for any
physically viable gravitational theory:

χ(φ) =
1√

−det p··(φ)
. (3.175)

Any other density ξ of weight 1 then differs by an arbitrary R := max(0, F − r) dimensional scalar
function Ψ of the functionally independent screen manifold scalars σ(i), with i = 1, . . . , R.

All this means that we can ultimately write the output coefficients as

CA1 ...AN [φ] =
Ψ(N)

(
σ(1)(φ), . . . , σ(R)(φ)

)
√
−det p··(φ)

C̃A1 ...AN [φ] , (3.176)

with each containing an, so far, undetermined function of the R := max(0, F− r) scalars.
9One may, of course, take the trace of the metric. However, this gives the dimension of the screen manifold and is, thus,

independent of the degrees of freedom.
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We can then transform the covariance part of the closure equations into differential equations for
C̃A1...AN . The covariance part of the closure equations (C8N), (C9N), (C11N), (C12N)will be unaffected
by this transformation. However, we can eliminate the CB1...BN δ

γ
µ terms from the equations (C1), (C2)

and (C10N) by using equation (3.163). This will, in particular, turn the system for the scalar output
coefficient into a homogeneous one.

Before we move on to the involutivity analysis of the covariance part of the closure equations, let us
quickly consider a term of the form

Λ(φ) :=
Ψ(0)

(
σ(1)(φ), . . . , σ(R)(φ)

)
√
−det p··(φ)

, (3.177)

that represents a generalization of the cosmological constant term of general relativity to a cosmological
function and depends on the geometric degrees of freedom. One immediately finds that this does trivially
solve all gravitational closure equations but (C5). This equation seems to relate the term to the output
coefficient CA and the input coefficient MAγ via

0 = 2 ∂µ

(
CAMA[µ|

:BMB|γ]
)
− 2(deg P− 1)pργ

[
CA φA

,ρ + ∂µ

(
CAFA

ρ
γ
)]

+
∂Λ
∂φA (φ)MAγ(φ) .

(3.178)

However, by inspecting the equation closely, one finds that the terms with CA all contain at least one φA
,σ

term, such that we, in fact, can conclude that the cosmological function term must vanish separately, i.e.

0 =
∂Λ
∂φA MAγ . (3.179)

This further constrains the gradient of the function Λ to the kernel of the input coefficient MAγ. This
again shows the power of the gravitational closure equations compared to a naïve construction of terms
that merely transform properly as tensorial expressions.

Involutivity of the covariance part of the closure equations

We will now generalise the arguments made in the previous section, which allowed us to show that the dif-
ferential equation (3.163) for scalar densities is involutive and apply it to the covariance part of the closure
equations. It is not so surprising that this is possible since the covariance part of the closure equations are,
in fact, simply the generalisation to tensorial objects constructed from the degrees of freedom and their
spatial derivatives.

Before we perform the Cartan-Kuranishi algorithm, we will first rewrite the covariance part of the
closure equations for the de-densitized output coefficients introduced in the previous section. By insertion
of the definition (3.176), we can eliminate the density term in the covariance part of the closure equations
and drop the contributions by the scalar term Ψ(N). Collecting all terms, we find the following system of
partial differential equations for all of the output coefficients:

0 =− N C̃A(B1 ...BN−1
FA

µ
γ

:|BN) +
∞

∑
K=0

[
(K + 1) C̃B1...BN :A

γα1 ...αK φA
,µα1...αK − C̃B1...BN :A

α1 ...αK FA
µ

γ
,α1 ...αK

]
,

(3.180a)
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and for L ≥ 2

0 =
∞

∑
K=0

[(
K + L

K

)
C̃B1...BN :A

β1...βLα1 ...αK φA
,µα1 ...αK −

(
K + L− 1

K

)
C̃B1...BN :A

α1 ...αK(β1 ...βL−1| FA
µ
|βL),α1...αK

]
,

(3.180b)

for N ≥ 0 – that is for any of the output coefficients. Here we ignored for a moment that for the output
coefficients C̃AB, C̃ABC, . . . we already know that they depend up to 2nd derivatives of φA in order to treat
all coefficients in the same fashion.

Suppose we introduce the differential operators, for L ≥ 1, as

Xγ1...γL
µ =

∞

∑
K=0

[(
K + L

K

)
φA

,µα1 ...αK ∂A
γ1 ...γLα1 ...αK −

(
K + L− 1

K

)
FA

µ
(γ1| ,α1 ...αK ∂A

|γ2 ...γL)α1 ...αK

]
,

(3.181)

with the derivative in directions of the jet coordinates being defined as ∂A
α1 ...αK := ∂/∂φA

,α1 ...αK . Thenwe
can compactly write the covariance part of the closure equations for the de-densitized output coefficients
as

0 = Xγ
µ C̃B1 ...BN − N C̃A(B1...BN−1

FA
µ

γ
:|BN) , (3.182a)

0 = Xγ1...γL
µ C̃B1...BN , for L ≥ 2 . (3.182b)

The inhomogeneous part in (3.182a), for N ≥ 1, is needed to guarantee that each slot of the output
coefficient transforms according to the lifted action of spatial diffeomorphisms to T∗Φ. We can now per-
formCartan-Kuranishi completion as presented in the previous section. This is particularly simple for the
scalar output coefficient since we deal with a linear first-order differential equation in a single dependent
variable. Additionally, the inhomogeneous part vanishes, which further simplifies the derivations.

Step 1: Involutivity of the geometric symbol Thefirst step is, again, to analyze the geometric symbol of
the first-order equation and check the rank condition of the prolongation. The geometric symbol, in the
following denoted by η

γ1 ...γL
µ

A
λ1...λK , is the matrix with 3L(L+1)

2 rows from the indices µ and the totally
symmetric multi-index (γ1 . . . γL) and columns of the first-order jet variables φA

,λ1 ...λM with M ≥ 0. Its
components are given by

η
γ1 ...γL
µ

A
λ1...λM =


−FA

µ
(γ1 δ

γ2
(λ1
· · · δγL)

λL−1)
for M = L− 1 ,

( M
M−L) φA

,µ(λ1 ...λM−L
δ
(γ1
λM−L+1

· · · δγL)
λM)

for M ≥ L ,

0 else .

(3.183)

We now need to calculate the number of principal coefficients of the different classes. Since we also need
to account for the spatial derivatives of the degrees of freedom (in principle in the limit to infinitely many
derivatives) here, we deal with more classes than in the previous section. If we count the number of
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independent variables, restricting to q many spatial derivatives at most, we find

#(independent variables)q = #(φA) + #(φA
,µ) + #(φA

,µν) + . . .

= F + 3 · F + 6 · F + . . .

= F ·
q

∑
k=0

(
k + 2

k

)
=

F
6
(q + 1)(q + 2)(q + 3) , (3.184)

which equals the number of classes we deal with. What simplifies the discussion is the realisation that
the analysis is independent of the output coefficient that is considered: since the geometric symbol is the
same for all of the coefficients, we can restrict ourselves, without loss of generality, to the scalar output
coefficient C̃ since all the linear algebraic steps necessary in the Gauss Jordon algorithm to bring the
geometric symbol to reduced row echelon form are independent of the considered output coefficient.

Now the arguments are exactly the same as in the previous section: we have one formal series expan-
sion coefficient of the solution for each class and, thus, have that β

(k)
1 is either zero or one. Even further,

since we have a first-order differential equation with a single dependent variable – our scalar functional
C̃[φ] – the geometric symbol is automatically involutive (again by the argument by Seiler (2009)).

From the perspective of the first differential order terms in each covariance part of the closure equation,
the components of the output coefficients are treated independently from each other. As a result, this
means that the rank condition is fulfilled for all equations in the covariance part.

Step2: Integrability conditions Showing that no integrability conditions occur in theCartan-Kuranishi
completion of the covariance part of the closure equations requires two steps: we again show that the first-
order term in the differential equation, given by the operator Xγ1...γL

µ possesses a group structure that
allows us to express the commutator by a linear combination of the first-order equations. The second step
then requires us to show that the application of the differential operator on the inhomogeneous part in
the L = 1 equation does not yield additional first-order equations. We will see in the following that both
statements are, indeed, fulfilled for the covariance part of the closure equations.

For the first part, we can derive the commutator with the help of the
{
D(N⃗),D(M⃗)

}
algebra relation.

THEOREM

The commutator of the first-order differential operator Xγ1 ...γN
µ , for N ≥ 1, is given by

[Xα1 ...αN
µ , Xβ1 ...βM

ν ] =

(
N + M− 1

M

)
δ
(α1
ν Xα2 ...αN)β1...βM

µ

−
(

N + M− 1
N

)
δ
(β1
µ Xβ2 ...βM)α1 ...αN

ν . (3.185)

In order to prove that the expression is correct, we move back to the action of the supermomentum
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D̂(N⃗) on functionals of the gravitational degrees of freedom. If we spell out the action on a functional,
we see that the differential operator Xγ1 ...γL

µ naturally appears as the derivative operator in front of the
derivatives of the shift, since

{
f [φ(·)], D̂(N⃗)

}
=
∫

Σ
d3y

δ f [φ(·)]
δφA(y)

(
Nµ φA

,µ − (∂γNµ)FA
µ

γ
)
(y)

=
∞

∑
K=0

∞

∑
L=0

(
K + L

K

)
f:A

α1 ...αK β1...βL
(
(∂α1...αK Nµ)φA

,µβ1 ...βL − (∂γα1 ...αK Nµ)FA
µ

γ
,β1...βL

)
=

∞

∑
L=0

Nµ f:A
β1...βL φA

,µβ1 ...βL+

+
∞

∑
L=1

(∂α1 ...αL Nµ)

[
∞

∑
K=0

((
K + L

K

)
f:A

α1...αL β1 ...βK φA
,µβ1...βK

−
(

K + L− 1
K

)
f:A

β1 ...βK(α1 ...αL−1|FA
µ
|αL)

,β1...βK

)]

=
∞

∑
L=0

Nµ f:A
β1...βL φA

,µβ1 ...βL︸ ︷︷ ︸
=:Nµ∂

(φ)
µ f

+
∞

∑
L=1

(∂γ1 ...γL Nµ)Xγ1...γL
µ f︸ ︷︷ ︸

:=X(N⃗) f

. (3.186)

This shows that the differential operator X(N⃗) is linked to the supermomentum and, as a result, we
expect that the algebra relation of the supermomentum, given in form of the Poisson algebra relation{
D⃗(N⃗), D⃗(M⃗)

}
= D̂(LN⃗ M⃗), to translate into some commutator relation for the differential operator

X(N⃗).
We can use the Jacobi identity to obtain the repeated application of the supermomentum, i.e.{{

f [φ(·)], D̂(N⃗)
}

, D̂(M⃗)

}
−
{{

f [φ(·)], D̂(M⃗)
}

, D̂(N⃗)

}
=
{

f [φ(·)], D̂(LN⃗ M⃗)
}

. (3.187)

Then spelling out the Poisson bracket and repeating the steps from (3.186) we find that it can be written
as commutators of the two differential operators Nµ∂

(φ)
µ and X(N⃗). The Jacobi identity then gives that[

X(N⃗), X(M⃗)
]

f [φ(x)] =
(
LN⃗ M⃗

)
µ∂

(φ)
µ f [φ(x)] + X(LN⃗ M⃗) f [φ(x)] +

[
Nµ∂

(φ)
µ , Mν∂

(φ)
ν

]
f [φ(x)]

+

([
Nµ∂

(φ)
µ , X(M⃗)

]
+
[

Mµ∂
(φ)
µ , X(N⃗)

])
f [φ(x)] . (3.188)

The Nµ∂
(φ)
µ Mν∂

(φ)
ν terms are symmetric in N and M and thus cancel each other due to the anti-symmetry

of the commutator. The other two terms are more complicated to calculate explicitly, however, it turns out
that they do not contribute anyways. In order to see this, observe that in these terms, one of the shift
vector fields appears without a spatial derivative, the other one with a single derivative, i.e.(

LN⃗ M⃗
)

µ∂
(φ)
µ f ∝ N∂M−M∂N , (3.189a)([

Nµ∂
(φ)
µ , X(M⃗)

]
−
[

Mµ∂
(φ)
µ , X(N⃗)

])
f [φ(x)] ∝ N∂M−M∂N . (3.189b)

On the left-hand side, that is in the commutator of X(N⃗), the terms have at least one derivative acting
on each of the shift vector fields. As a result, once we single out the different derivative orders of the shift
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on the left-hand side, we find out that on the right-hand side, all contributions come from the X(LN⃗ M⃗)

term. This leaves us with

[Xα1 ...αN
µ , Xβ1...βM

ν ] f [φ(x)] =
(

N + M− 1
M

)
δ
(α1
ν Xα2...αN)β1...βM

µ f [φ(x)]

−
(

N + M− 1
N

)
δ
(β1
µ Xβ2 ...βM)α1 ...αN

ν f [φ(x)] , (3.190)

which indeed proves the claim. □

Thus, we can directly conclude that no integrability condition arises for the scalar output coefficients.
However, for the other output coefficients, the situation is more involved since we also need to account for
the inhomogeneous part in the L = 1 equation. In principle, it would be possible for this part to produce a
lower order equation oncewe eliminate the first-order derivatives with the help of the commutator relation
above.

Our last step now is to show that this is, in fact, not the case. We start by mixing equation (3.182b),
for L ≥ 2, with equation (3.182a) for a single index β. In this case we easily find that no additional
information appears since

0 =
[
Xα1 ...αL

µ , Xβ
ν

]
C̃B1 ...BN − N ·

(
Xα1 ...αL

µ C̃A(B1...BN−1

)
FA

ν
β

:|BN) − N · C̃A(B1 ...BN−1

(
Xα1...αL

µ FA
ν

β
:|BN)

)
︸ ︷︷ ︸

vanishes

= L · δ(α1
ν

(
Xα2 ...αL)β

µ C̃B1...BN

)
− δ

β
µ

(
Xα1 ...αL

ν C̃B1 ...BN

)
− N ·

(
Xα1...αL

µ C̃A(B1...BN−1

)
FA

ν
β

:|BN)

≡ 0 ,

where we used the commutator relation we derived (3.190), that the input coefficient does not contain any
spatial derivatives of the degrees of freedom and, in the last line, that all terms are a linear combination of
the Lth equation. What remains to be checked is the case L = 1, that is, the commutator of (3.182a) for
two spatial indices α, β. Here, we obtain the following expression

0 =
[
Xα

µ, Xβ
ν

]
C̃B1 ...BN − N

(
Xα

µC̃A(B1 ...BN−1|

)
FA

ν
β

:|BN) − N C̃A(B1 ...BN−1|

(
Xα

µFA
ν

β
:|BN)

)
+N

(
Xβ

νC̃A(B1 ...BN−1|

)
FA

µ
α

:|BN) + N C̃A(B1...BN−1|

(
Xβ

νFA
µ

α
:|BN)

)
= δα

ν

(
Xβ

µC̃B1...BN

)
− N

(
Xα

µC̃A(B1 ...BN−1|

)
FA

ν
β

:|BN) − N C̃A(B1 ...BN−1|

(
Xα

µFA
ν

β
:|BN)

)
− µα νβ←−−−→

= δα
ν

(
Xβ

µC̃B1...BN

)
− N

(
Xα

µC̃A(B1 ...BN−1|

)
FA

ν
β

:|BN) + N C̃A(B1 ...BN−1|F
A

ν
β

:|BN)MFM
µ

α− µα νβ←−−−→ .

(3.191)

Due to the inhomogeneity in the differential equation the terms in the brackets do not directly vanish.
However, we can employ the first input coefficient identity (3.120a) again to simplify the expression. By
calculating the derivative of the identity, we obtain

FA
ν

β
:BN MFM

µ
α− µα νβ←−−−→ = −FA

µ
β

:BN δα
ν − FA

ν
β

:BFB
µ

α
:BN−

µα νβ←−−−→ . (3.192)
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Inserting this into the equation we obtain additional contributions for the first and second term in (3.191)

0 = δα
ν

(
Xβ

µC̃B1...BN − N · C̃A(B1 ...BN−1|F
A

µ
β

:|BN)

)
−N

((
Xα

µC̃A(B1 ...BN−1|

)
− C̃B(B1 ...BN−1|F

B
µ

α
:A − (N − 1)C̃AB(B1...BN−2|F

B
µ

α
:|BN−1|

)
FA

ν
β

:|BN)

− µα νβ←−−−→

≡ 0 ,

which is, again, a linear combination of the existing covariance part of the closure equations. Note that we
introduced the term (N − 1)C̃AB(B1 ...BN−2|F

B
µ

α
:|BN−1|F

A
ν

β
:|BN) that is symmetric under the exchange of

the index pairs µ, α and ν, β and is, thus, eliminated by the antisymmetry of the equation. As a result, no
new first (or lower) order equation can be obtained from the equations, and we can finally conclude that
the covariance part of the closure equations is indeed involutive:

THEOREM
The covariance part of the closure equations is an involutive system of first-order linear partial differential
equations.

Curvature invariants

Now, since we know that we deal with an involutive system, we can again play some combinatorial games
and consider the formal solutions of the differential equations. Let us start with the analysis of the scalar
output coefficient.

As we have seen before in the discussion of scalar densities, for the first-order equations, the number
of functionally independent solutions will be given by the number of independent variables minus the
number of equations we have in the covariance part of the closure equations. The number of independent
variables reads if we assume that we have at most q spatial derivatives of the degrees of freedom:

#(independent variables)q =
F
6
(q + 1)(q + 2)(q + 3) . (3.193)

For the number of independent equations we need to make sure that we can solve in each equation form
the covariance part for a series expansion coefficient of a separate class. If we inspect the geometric symbol
we find that we can always solve for

φA
,µδ

(γ1
(λ1
· · · δγL)

λL)
, (3.194)

that is, for the coefficient of class A
(λ1 ...λL). As a result, we can count the number of coefficients that are
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eliminated from the covariance part of the closure equations. Taking the sum from L = 1 to q + 1 we get

#(equations from the covariance part)q = #(Xβ1
µ ) + #(Xβ1β2

µ ) + #(Xβ1β2β3
µ )) + . . .

= 3 · 3 + 3 · 6 + 3 · 10 + . . .

= 3 ·
q+1

∑
k=1

(
k + 2

k

)
=

1
2
(q + 2)(q + 3)(q + 4)− 3 , (3.195)

principal coefficients. The remaining coefficients are free in the sense that they need to be supplied as ini-
tial data to the differential equations. Combining this, that is subtracting equation (3.195) from equation
(3.193), leads to the total number of curvature invariants, i.e functionally independent solutions to the
covariance part of the closure equations

Nq := #(curvature invariants)q =
1
6
(q + 2)(q + 3)

(
(F− 3)q + F− 12

)
+ 3 . (3.196)

In particular this tells us that every additional gravitational degree of freedom adds

1
6
(q + 1)(q + 2)(q + 3) (3.197)

many new curvature invariants to the system. The general solution of the covariance part of the closure
equations for the scalar output coefficient is then an arbitrary function of the curvature invariants we
obtained. This means that the scalar output coefficient is of the form

C[φ] :=
Ψ(0)

(
σ(1)(φ), . . . , σ(R)(φ)

)
√
−det p··(φ)

C̃
(

Γ1[φ], . . . , ΓNq [φ]
)

. (3.198)

We can now repeat the same calculation for the other output coefficients. The number of curvature invari-
ants is then simply multiplied by the number of components in each output coefficient, i.e. for the output
coefficient CA1 ...AN [φ] by (

F + N − 1
N

)
. (3.199)

In particular, for CAB, CABC, . . . we know that q = 2 from the derivation of the closure equations. This
means that for N ≥ 2 we have

#(curvature invariants)CA1...AN ,q=2 =

(
F + N − 1

N

)
(10 F− 57) for N ≥ 2 . (3.200)

How does any of this help for the gravitational closure equations? It turns out that when solving the equa-
tions it is often simpler to write down the functionally independent solutions than to obtain an expression
by integrating the partial differential equations.

Take for example general relativity: Here, from these combinatorial considerations we immediately
find for q = 2 and the six degrees of freedom of the metric that the scalar output coefficient must be con-
structed from three functionally independent curvature invariants. These invariants are then identified
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to be the three traces of the Ricci curvature tensor one can construct

Γ1[φ] := R[φ] , (3.201a)

Γ2[φ] := Rµν[φ]Rµν[φ] , (3.201b)

Γ3[φ] := Rµ
ν[φ]Rν

λ[φ]Rλ
µ[φ] . (3.201c)

Although higher-order traces can be defined in the same fashion, they can all be written as functionals of
the three invariants described above due to the Cayley-Hamilton theorem.

Thus, the output coefficient must be of the form

C[φ] =
1√

−det p··(φ)
C̃(Γ1[φ], Γ2[φ], Γ3[φ]) . (3.202)

Once we insert this into the selective part of the closure equations, this will simplify the partial differen-
tial equations. We will see this in more detail in chapter 4.1 in the gravitational closure of Maxwellian
electrodynamics. In general, the situation can be seen as follows: the covariance part of the closure equa-
tions identifies the covariant building blocks we can construct, whereas the selective part of the closure
equations will then relate to these building blocks.

3.5.2 Analysis of the selective part of the closure equations

Now that we analysed the covariance part of the closure equations inmore detail, we will take a closer look
at the remaining gravitational closure equations, that is, the collection that make up the selective part. In
contrast to the equations in the covariance part which are differential equations for each output coefficient
on their own, the selective part of the closure equations connects the separate output coefficients. This is
schematically illustrated in figure 3.5.

Being able to express the higher-order output coefficients in terms of the lower-order ones is, of course,
essential if we want to obtain a solution of the closure equations parametrized in terms of finitely many
constants of integration. If each order would be independent of the others – as in the covariance part of the
closure equations – this would mean that we get undetermined constants (or in the worst case functions)
at each order. Since we have a series expansion in terms of infinitely many output coefficients, this would,
in any case, lead to an infinite number of parameters that need to be determined by experiments.

To prevent the “combinatorial explosion” of the output coefficients, it turns out that we have two types
of equations in the selective part of the closure equations that do determine many of the components.
These are the equations (C16N) (and its analogues (C3) and (C6)), as well as the equations (C17N) (and
(C4)). The remaining equations either relate the scalar output coefficients C and CA, or are equations
that only concern a single output coefficient.

Again, one further complication is that we do not have a collapse to finitely many spatial derivatives
for the first two output coefficients. This has the effect that the selective part of the closure equations is
of higher differential order, in contrast to the first-order covariance part of the closure equations. These
higher orders can all be traced back to spatial derivatives acting on the output coefficients.

Take for example the following term in the closure equation (C4), where we need to expand all the



3.5 General Properties of Solutions | 103

CABC

CAB

CA

C
1 2 3 4 5 6 7 8 9 18 19 20 21

N ≥ 2

10 11 12 13 14 15 16 17

N ≥ 3N ≥ 2

CA … A1 N-1

CA … A1 N

CA … A1 N+1

Figure 3.5 The structure of the gravitational closure equations and how the output coefficients are
related by the equations. Equations from the covariance part of the closure equations are
drawn in orange, the selective part of the closure equations in green. Only equations from
the selective part couple separate output coefficients to each other.

spatial derivatives
∞

∑
K=0

(−1)K(K + 1)
(
∂α1...αK C:B

α1 ...αKµ
)
= C:B

µ − 2
∞

∑
L=0

C:B
µ(α

C
β1 ...βL)φC

,,αβ1...βL + . . . . (3.203)

The terms become increasingly complicated sincewe need to distribute the spatial derivatives onmore and
more terms that arise from the chain rule. This makes an analysis of the involutivity almost impossible,
as we presented for the covariance part of the closure equations. For practical purposes, one needs to cut
off artificially at some spatial derivative order if we want to end up with finitely many constants in the
solution.

Solution strategy

Tackling such an enormous and complicated system in practice, thus, requires a clear strategy for how
to, and for which objects to solve for, in the differential equations in order to keep track of the extracted
information. Motivated by the lessons from the formal study of involutive differential equations, we decide
on the following guideline: We always
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• solve for as many of the higher-order output coefficients in terms of coefficients of lower order as
possible.

• solve for dependencies of higher spatial derivatives of the degrees of freedom in terms of dependen-
cies with less or no spatial derivatives of the degrees of freedom.

With this, we can describe a general solution strategy that is advisable to comply with when solving for a
specific gravitational theory.

Step 1 As the first step, we solve the covariance part of the closure equations for the scalar output coeffi-
cient C. For this, we construct the functionally independent curvature invariants up to a chosenmaximal
derivative order q0 of spatial derivatives of the gravitational degrees of freedom.

Step 2 We insert the scalar coefficient C we obtained in the previous step into all equations from the
selective part of the equations that only depend on C. These are the equations (C7), (C20N even) and
(C21N odd) that will further restrict the dependencies of the general solution of the covariance part of the
closure equations with the help of the normal deformation input coefficient MAγ.

Additionally, since we assumed C to depend at most to order q0 on the derivatives of φ, we also get
further information from the prolongations of equation (C3) and (C4) since the output coefficient CA

depends at most to order q0 on our jet variables, however, due to the spatial derivatives acting on the
scalar output coefficients we obtain higher-order derivatives of the φ. These prolongations must all vanish
separately.

Step 3 With all the equations that only concern C, solved, we continue by constructing the curvature
invariants for the output coefficient CA by solving the covariance part of the closure equations. Again, we
need to choose a maximal derivative order q1 for the output coefficient. Note that due to (C19N) we have
that q0 ≤ q1 + 1.

Step 4 Use the curl equation (C18N) to eliminate the dependencies of some of these curvature invari-
ants.

Step 5 Use (C5) and (C19N) to relate components of the output coefficient CA to the scalar output
coefficient

Step 6 Use the prolongations obtained from equations (C3) and (C4) from φA
,,µνλα4...αq to further

express components from CA in terms of C.

Step 7N Implement the covariance part of the closure equations for the higher-order output coefficients.
Luckily, we now know that the coefficients depend at most on φA

,,µν such that the complexity is limited
to some degree. Still, we get increasingly more complicated curvature invariants with each order.
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Step 8N Due to (C17N) we find the condition

0 = CB1...Bn M
α(β

N
γδ) for n ≥ 2 , (3.204)

thatwill restrict the dependencies on our curvature invariants. Wewill see in the following section that this
forces the output coefficients to be polynomials of (at most) degree three in the second spatial derivatives
of the degrees of freedom (for a three-dimensional screen manifold).

Step 9N Use (C16N) and (C17N), and similarly (C3) and (C4) for the output coefficient CAB and (C6)
for CABC, to express as many components of the current output coefficient in terms of the lower-order
ones. For all the components we can solve for, one recursively finds that they can be expressed in terms
of C and CA.

Step10N Use (C14N) to express someof the undetermined components of the current output coefficient
in terms of the determined components from the previous step.

Step 11N Use (C12N) and the curl condition (C15N) to further eliminate some of the φA
,µν terms.

Step 12N In principle, this means that we now have employed all of the equations from the covariance
part. Since it is unclear if the selective part of the closure equations is involutive, it is, in principle, possible
to combine some of the prolongations of the selective part of the closure equations such that the highest
derivative term disappears. This may yield further restrictions.

From there, we have to repeat the steps 7N to 12N for the output coefficient until, in the best case,
one of the output coefficients vanishes at some order N. By the recurrence equations, this will further
restrict the subsequent output coefficient until the series expansion terminates. This is precisely what we
will observe for the derivation of general relativity in chapter 4.1.

What can also happen is that we, at least, recover a recurrence relation on how to express the output
coefficients at higher-order by the lower order ones. While this produces a Lagrangian of infinitely many
velocity terms, the solution still consists of at least finitely many constants of integration or finitely many
undetermined functions.

The worst-case scenario occurs if we have residual undetermined parts at each order. These enter as
undetermined functions at each order. The resulting theory is experimentally clearly of limited use since
we would have infinitely many parameters that need to be fixed by measurements.

We will, in the following, present a dimensionally dependent argument to derive that the output coef-
ficients are polynomials in the second derivative terms – a fact that becomes especially useful when one
wants to construct the curvature invariants from the covariance part of the closure equations. Afterwards,
we present some additional points that can be derived for theories with vanishing normal input coefficient
MAγ.
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Cubic polynomial in second-order derivative terms

Let us now further investigate the equation we encountered in step 8 of the algorithm laid out in the
previous section. As stated before, we consider the closure equation (C17N). Since the last term in the
equation contains a spatial derivative acting on the output coefficient, we get

2 CB1...BN :BN+1
γµ

:M φM
,γ + 2 CB1...BN :BN+1

γµ
:M

α φM
,αγ + 2 CB1 ...BN :BN+1

γµ
:M

αβ φM
,αβγ . (3.205)

The output coefficients that appear in this equation do not depend on third derivatives of the degrees of
freedom. This means that the last term must vanish separately, which yields the equation

0 = CB1 ...BN :BN+1
µ(α

:M
βγ) . (3.206)

Using this equation, we can show the following:

THEOREM

In three dimensions, all output coefficients CB1 ...BN for N ≥ 2 are polynomials of degree 3 in φA
,µν, i.e.

CB1...BN :A1
αβ

:A2
γδ

:A3
µν

:A4
λκ = 0 .

In order to show this we first introduce the following symbol

Λαβγδµνλκ := CB1 ...BN :A1
αβ

:A2
γδ

:A3
µν

:A4
λκ , (3.207)

where we omit the Φ indices in Λ to simplify notation, since they are irrelevant for the argument. The
tensor Λ has the following properties:

• It is symmetric in each block of two indices.

• It is also symmetric under the exchange of blocks.

• The tensor vanishes if we symmetrize over three subsequent indices, i.e. Λ(αβγ)δµνλκ = 0.

By spelling out the symmetrization over the first three indices, we observe that we can swap an index from
one index to the other since

0 =3Λ(αβγ)δµνλκ = Λαβγδµνλκ + 2Λγ(αβ)δµνλκ . (3.208)

This allows us to generalise an argument made by Lovelock (see Lovelock (1972) for further details). This
will tell us that the tensor Λ is vanishing in three dimensions since at least three of our eight indices have
to be the same.

For these, two different situations can now occur. First, two of these three equal indices can appear
at a common block. In this case, the symmetries of Λ directly imply that the component is zero. Second,
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the three indices can appear on three separate blocks. But also in this case, it follows that it is zero. For
example, for the following component, we find due to equation (3.208) that

Λ13121223 = −1
2

Λ11231223 = −1
2

Λ(11|23|1)223 = 0 . (3.209)

As a result, this tensor is identically zero in three dimensions and we find

CB1 ...BN :A1
αβ

:A2
γδ

:A3
µν

:A4
λκ = 0 for N ≥ 2 , (3.210)

or, in other words, the output coefficients CA1 ...AN are at most cubic in the second derivatives of the de-
grees of freedom10. □

This result is especially helpful when coming up with the curvature invariants to the covariance part of
the closure equations, since we can start by constructing the separate orders in φA

,µν independently from
each other. We will see this in further detail in our discussion of Maxwellian electrodynamics in chapter
4.1.

For C and CA the situation is, as before, more involved since we do not know the maximal order of
spatial derivatives they contain. Assuming that there is some highest derivative q for the output coefficients
we can use (C17N) to derive an equation similar to (3.206) for those higher derivatives since the equation
contains up to φA

,α1...α2q−1 terms that all need to vanish separately. Similarly, as described in Edgar and
Höglund (2002) (and in chapter 5.2.2), such dimensionally dependent identities can be obtained by non-
trivial over-antisymmetrizations. These are, in d dimensions, antisymmetrization over d + 1 indices and
can be used to derive helpful identities. We expect that for q ≥ 2, we can eliminate many components for
the first two output coefficients due to such identities. We leave this for future research.

At this abstract level, with the input coefficients unspecified, the rest of the gravitational closure equa-
tions is shrouded in mystery. Some further simplifications can be made given that the input coefficient
MAγ is vanishing. We will dedicate the following section to a presentation of these.

3.5.3 Vanishing normal input coefficient

In case the normal input coefficient MAγ vanishes – as it does in the gravitational closure of Maxwellian
electrodynamics that we will discuss in chapter 4.1 – the gravitational closure equations simplify signif-
icantly. Four out of the 21 equations are solved trivially, which concretely are equations (C7), (C13N),
(C20N even) und (C21N odd). And also for the remaining equations, multiple simplifications can be made
that allow us to restrict the solution space further. We will present these results in the following.

The even and odd output coefficients decouple

Aminor, but nonetheless quite valuable, fact is that in the selective part of the closure equations, all output
coefficients CA1...AN for N even decouple from the odd ones. This is due to the fact that the odd or even
terms, respectively, in the closure equations comewith the non-local normal deformation coefficient MAγ.
This allows discussing the two sectors on their own.

10In general the argument can be repeated to show that actually the coefficients are a polynomial of degree dim Σ in φA
,µν.
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Dependency of C on up to 2nd derivatives of the degrees of freedom

Given that MAγ vanishes it is possible to show that C depends on up to the 2nd derivatives of the geometric
degrees of freedom φ, exactly as is the case for the coefficients CA1...AN for N ≥ 2. The weak assumption
that we must make is that it does depend on finitely many derivatives q, i.e.

C:A
α1...αK = 0 for K > q . (3.211)

But once this assumption is made, we can consider the closure equation
(
C19q−1

)
to find that

C:A
α1...αq = 0 . (3.212)

We can then use (C19N) recursively until we reach N = 2 to find that

C:A
αβγ = 0 , (3.213)

which proves the claim. As a result all output coefficients but CA depend on φ, ∂φ and ∂∂φ.

CA is a functional gradient

While we still have no collapse to finitely many derivatives of the degrees of freedom for CA, we can use
the gravitational closure equation to show that

CA[φ(x)] =
δΛ[φ]

δφA(x)
, (3.214)

for some functional of the degrees of freedom. In order to see this, we first remark that the condition for
CA to be of this form is that the following functional curl condition is fulfilled:

δCA[φ(x)]
δφB(y)

− δCB[φ(y)]
δφA(x)

= 0 (3.215)

This condition can be turned into an equivalent system of partial differential equation by the same tech-
niques that led to the gravitational closure equations. We then find that (3.215) can be written as

0 = CA:B
µ1 ...µN −

∞

∑
K=0

(−1)K+N
(

K + N
K

) (
∂α1...αK CB:A

α1 ...αKµ1...µN
)

for N ≥ 0 . (3.216)

Careful inspection of the closure equations for a similar equation yields that, for N ≥ 1 we find these
in the closure equations (C18N) and (C6). However, the N = 0 equation is entirely absent from our
system.

It turns out, however, that we can generalize an elegant argument due to Hojman (Kuchar, 1974) to
show that the functional curl (3.215) does indeed vanish. For this we consider the integral

I :=
∫

d3y

(
δCA[φ(x)]

δφB(y)
− δCB[φ(y)]

δφA(x)

)(
LN⃗ φ

)
B(y) , (3.217)

and show that this, given that CA solves (C5), vanishes for any vector N⃗.
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We first observe that the first term in equation (3.217) corresponds precisely to the action of the su-
permomentum on the scalar density CA of weight 1. Then we use the functional product rule to rewrite
the second part, i.e.

I =
{

CA, D̂(N⃗)
}
+
∫

d3y CB[φ(y)]
δ
(
LN⃗ φ

)
B(y)

δφA(x)

− δ

δφA(x)

[∫
d3y CB

(
LN⃗ φ

)
B
]

. (3.218)

Using the definition of the kinematic coefficient FA
µ

γ, we get

δ
(
LN⃗ φ

)
B(y)

δφA(x)
= Nµ(y) δB

A

(
∂µδx

)
(y)−

(
∂γNµ

)
(y) FB

µ
γ

:A(y) δx(y) . (3.219)

Inserting this into the integral and integrating out the distributions, we find that this equals the Lie deriva-
tive of the density CA.

I =
{

CA, D̂(N⃗)
}
− Nµ

(
∂µCA

)
−
(

∂µNµ
)

CA −
(
∂γNµ

)
CBFB

µ
γ

:A

− δ

δφA(x)

[∫
d3y CB

(
LN⃗ φ

)
B
]

. (3.220)

By expanding the Poisson bracket of the first term and separating by orders of derivatives on the shift, we
observe that (C9) eliminates all terms with more than two derivatives on the shift. Furthermore, (C2)
can be used to obtain the term containing FA

µ
γ

:B and the density term in the Lie derivative. Finally, one
easily sees that the term containing no derivative terms on the shift is just a spelled out spatial derivative
acting on CA by the chain rule. Collecting all terms we find{

CA, D̂(N⃗)
}
= Nµ

(
∂µCA

)
+
(
∂γNµ

)
CBFB

µ
γ

:A +
(

∂µNµ
)

CA , (3.221)

which tells us that the terms in the first line of (3.220) cancel each other. The only remaining part is to
show that the functional derivative of the integral vanishes.

But for this, we can contract (C5), using that MAγ vanishes, with a shift N⃗ to show that the integrand
is actually a divergence term

CB

(
LN⃗ φ

)
B = −∂γ

(
NµCAFA

µ
γ
)

. (3.222)

As a result, the remaining term vanishes, and we find I = 0. But, by expanding the functional derivatives
in the definition of I and by the fact that the integral vanishes for any N⃗ we can conclude from this that
the remaining equations from (3.216) are also fulfilled, and we find that CA is a functional gradient.

Using the exact form of the equations of motion (3.151) we furthermore see that CA solves the evo-
lutionary equation identically and, thus, does not contribute to the dynamics of the gravitational degrees
of freedom. Even further, due to (3.222) we can show that CA is a boundary term in the Lagrangian that
will disappear from the equations of motion, since

∫
dt
∫

d3x
δΛ

δφA(t, x)

(
φ̇A(t, x)−

(
LN⃗ φ

)A
(t, x)

)
=
∫

dt

Λ̇ +
∫

d3x ∂γ

(
Nµ δΛ

δφA FA
µ

γ

)
(t, x)


=boundary term . (3.223)
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Consequently, we can ignore CA in our discussions and leave it undetermined when solving the closure
equations for MAγ = 0. We will use this when we perform the gravitational closure of Maxwellian
electrodynamics.

Note that for MAγ 6= 0, even if CA is a functional gradient and disappears from the evolutionary equa-
tions, equation (3.222) is not valid anymore and we cannot conclude directly whether CA is a boundary
term that can be ignored in the constraints.

(Partial) linear dependency on the 2nd derivatives of the degrees of freedom

For some theories, we can generalise the dimensionally dependent argument that allowed us to derive that
the output coefficients CA1 ...AN are polynomials of degree 3 in φA

,µν and now show that they are, in fact,
linear. To end up at this conclusion, we observe that we can again construct a tensor of rank 9 with the
help of the input coefficient

U Aµν := pµσFA
σ

ν , (3.224)

by defining

Λαβγδµνλκ := CB1...BN :A
αβ

B
γδ U Aµν U Bλκ , (3.225)

for N 6= 1. Due to (C17N) (as well as (C4)) we again have that the following symmetrizations vanish

Λ(αβγ)δµνλκ = Λα(βγδ)µνλκ . (3.226)

Similarly, we have from the covariance part of the closure equations (C12N≥2) and (C83) that

0 = CB1...BN :A
(αβ|U Aµ|γ) , (3.227)

which tells us that also the symmetrizations over two indices at the first two blocks and one index at one
of the last two blocks vanishes.

A priori, we do not know if the coefficient U Aµν is symmetric in its indices µν. Luckily, since MAγ is
vanishing, we can employ the closure equation (C14N) to get

Λαβγδ[µν]λκ = Λαβγδµν[λκ] = 0 . (3.228)

We can then repeat the argument made in equation (3.208) and show that we can exchange an index from
one of the blocks that belongs to the derivative of the output coefficient, and one index from the input
coefficient, i.e.

Λαβγδµνλκ = −2Λαβµ(γδ)νλκ . (3.229)

Since three of the eight indicesmust be the same, we can again check all the possibilities of how todistribute
the indices to the four blocks, as in (3.209), and ultimately find that.

CB1 ...BN :A
αβ

B
βγ U Aµν U Bγδ = 0 for N 6= 1 . (3.230)
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If we have a right inverse U−1 to U , in the sense that(
U−1

)
Bµν U Aµν = δA

B , (3.231)

we can conclude that the output coefficient depends linearly on the second derivatives of the degrees of
freedom. In general, as we have seen in our discussion of the covariance part of the closure equations, the
rank will be less than 9 such that we can draw that conclusion only for some of the components. Since
we can always reparametrize our degrees of freedom, it is possible to separate the kernel of FA

µ
γ from

the image to obtain these linear components. We will take a closer look at such reparametrizations in the
following section of this chapter.

Note that this result is not crucially dependent on MAγ = 0: the only requirement one needs is that
the coefficient is symmetric in the two index blocks belonging to the pρ(µ|FA

ρ
|ν) terms.

3.5.4 Field reparametrization

Before concluding this general chapter about gravitational closure, let us consider one last point. In general
relativity, it is often favourable to pick a system of coordinates adapted to the particular problem at hand.
The same applies when considering the gravitational closure equations, where we can make use of the fact
that many different parametrizations of our gravitational degrees of freedom exist, and none is favoured
over the others. We can use this freedom to try to simplify our setup.

Under a reparametrization, that is a coordinate change on the space Φ, one finds that the input co-
efficients transform as Φ tensors. In particular, this means that the tangential deformation coefficient
fulfills

FA
µ

γ(φ) −→ ∂ψA

∂φB FB
µ

γ
(
ψ(φ)

)
, (3.232)

as can easily be verified by inserting the reparametrization into equation (3.86).
Writing the coefficient down as a matrix, with rows arranged by the nine components for µ and γ

and the columns by the F components for A, it is obvious that the coefficient has at most a rank of 9, as
we saw before in the discussion of the covariance part of the closure equations. We can use this to our
advantage to construct a reparametrization such that the kinematical coefficient is brought into a form
that simplifies the gravitational closure equations. We can, in particular, reparametrize such that we can
separate the kernel of FA

µ
γ from its image.

For example, we could aim to construct a parametrization (ψa, να, σ(i)), with the indices a = 1, . . . , 6,
α = 1, . . . , 3 and (i) = 1, . . . , F− 9. For these functions we write down the system of linear first-order
partial differential equations

∂ψa

∂φA FA
µ

γ = 2 I a
µσIσγ

bψb(φ) , (3.233a)

∂να

∂φA FA
µ

γ = δα
µνγ(φ) , (3.233b)

∂σ(i)

∂φA FA
µ

γ = 0 , (3.233c)



3.5 General Properties of Solutions | 112

where the right hand side terms correspond to FA
µ

γ in our newparametrization of the degrees of freedom.
The symbol I a

µν is defined as

Iαβ
a =

1√
2



√
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
√

2



αβ

A

, (3.234)

and has the inverse

I a
αβ =

1√
2



√
2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0
√

2



a

αβ

. (3.235)

The expressions in equations (3.233) are, of course, far from random but chosen such that the transformed
input coefficients FA

µ
γ have the interpretation of six metric-, three vector- and F − 9 scalar degrees of

freedom. Given that such a reparametrization exists and is a diffeomorphism, i.e. that the determinant of
the Jacobian matrix is non-vanishing

det

(
∂ψa

∂φA ,
∂να

∂φA ,
∂σ(i)

∂φA

)
6= 0 , (3.236)

we can, at least locally, express our original degrees of freedom by the new coordinates φA(ψa, να, σ(i)).
The obvious question is now if such – or rather under which conditions – a solution exists and if it is
unique.

The latter part can be answered rather quickly: one immediately finds that the solutions of this system
(3.233) are clearly not unique, since any scalar, vector or inverse metric constructed from the geometry
solve the equation. In particular, we find for any scalar function f (σ(i)) that

∂ f
∂φA FA

µ
γ =

∂ f
∂σ(i)

∂σ(i)

∂φA FA
µ

γ = 0 , (3.237)

which tells us that f is also a solution of the differential equation.
The existence of a solution is more subtle. Clearly, we can use the screen manifold metric obtained

from the principal polynomial as the metric degrees of freedom. From this object, we can then always
project the six independent components with the help of the constant intertwiner Iαβ

a, as described in
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section 3.2.1 and in the following in 4.1, and write

ψa(φ) := I a
µνpµν(φ) .

It is then easy to verify that this is a solution of the differential equation (3.233a).
For the scalar degrees of freedom, we can inspect equation (3.233c) more closely: it clearly states that

the gradient ∂σ(i)

∂ϕA lies in the kernel of the coefficient FA
µ

γ which must be at least of dimension F− 9, as
we have already seen in the discussion of the covariance part of the closure equations. We can construct
a basis n(i)

A with the typical algorithms from linear algebra, the result being dependent on the jet space
point11.

We can write these basis objects as derivative of a scalar function if the condition

n(i)
A:B − n(i)

B:A = 0

is fulfilled. Conversely, as long as the basis vectors are sufficiently differentiable, we can at least in a formal
series expansion solve the expansion coefficients in terms of derivatives of our basis vectors. Typically,
however, it is easier to directly construct the scalar functions from the geometric fields, as we will see
in the discussion of birefringent electrodynamics in chapter 4.2. We expect this to be the case in any
physically suitable theory.

Themost interesting equation thus is (3.233b) that introduces an additional hypersurface vector12. Let
us raise the index µ with p·· and anti-symmetrize in both spatial indices. Given that the anti-symmetric
part vanishes, i.e.

pσ[µ|FA
σ
|ν] = 0 , (3.238)

we see directly from equation (3.233b) that this implies that the vector has to vanish. This instructs us that,
while the symmetric part of the coefficient contributes six degrees of freedom in the form of a metric, the
antisymmetric part of FA

µ
γ is linked to three degrees of freedom that can be put into the form of a vector

on the screen manifold.
We will assume now that for a theory, we can make such a reparametrization and consider some of

the implications. Before we can enter the gravitational closure equation for this parametrization, we need
to calculate the three input coefficients. The inverse metric p·· becomes, by construction, the neat linear
expression

pαβ −→ Iαβ
mψm . (3.239)

Similarly, the coefficient FA
µ

γ can be read off directly from the construction of our reparametrization

FA
µ

γ −→


2 I a

µσIσγ
bψb A = a

δα
µ νγ for A = α

0 A = (i)

. (3.240)

11The rank of the input coefficient may even differ at points. For example, at φ = 0, one usually finds that the rank is zero.
However, apart from a perturbative parametrization, this typically means that the geometric fields are trivial themselves, which
are of limited use. It thus makes sense to restrict ourselves to only the relevant subspace, and we will, therefore, not consider
such rank defects.

12Equivalently, it would be possible to use a covector να by lowering the index with (p··−1).
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For the non-local normal deformation coefficient MAγ, no a priori statement can be made about the form
the coefficient will take once we perform the reparametrization. Given that we have an explicit expression
for the reparametrization, as well as its inverse, we can calculate it directly via

MAγ −→



∂ψa

∂φA

(
φ(ψ, ν, σ(i))

)
MAγ

(
φ(ψ, ν, σ(i))

)
A = a ,

∂να

∂φA

(
φ(ψ, ν, σ(i))

)
MAγ

(
φ(ψ, ν, σ(i))

)
for A = α ,

∂σ(i)

∂φA

(
φ(ψ, ν, σ(i))

)
MAγ

(
φ(ψ, ν, σ(i))

)
A = (i) .

(3.241a)

Further simplification can be made with the help of the chain rule (3.56) for the coefficient to derive the
explicit expression once the vector and scalar functions are set up. However, no normal form that makes
its interpretation conceptually clear can be read off.

This is not surprising, since the MAγ contains information about the spacetime geometry, whereas
FA

µ
γ only depends on the projected fields on the hypersurface and how they transform under spatial

diffeomorphisms. Only for the metric sector, we can verify that the coefficient reads

Maγ(ψa, να, σ(i)) = −(deg P− 2) I a
αβ pαβγ(ψa, να, σ(i)) , (3.242)

which tells us that the non-local contribution in the equations of motion of the metric degrees of freedom
is related to the degree of the polynomial and the projection pαβγ – for any theory with degree 4 or higher.
Note that we can only arrive at this result because we know how the projection of the principal polynomial
is defined, such that it is straightforward to derive the coefficient. For the scalars and the vector, this is not
the case, so that, a priori, we need to leave the coefficient a remaining input coefficient to the gravitational
closure equations.

This is interesting for the following reason: let us forget for a moment about the spacetime theory we
started with and take the (limited) perspective of the human view (compare figure 3.3) with fields that are
prescribed on the three-dimensional screen manifold. There, we start with initial data values for the prin-
cipal polynomial pαβ, the vector field and some number of scalars. Then two gravitational theories, with
the same number of degrees of freedom, will only differ in their coefficients MAγ. Moreover, their coef-
ficients in the equations of motion, as a solution of the gravitational closure equations, are parametrized
by the kinematical coefficient. As a result, once all the lengthy and highly non-trivial calculations are
carried through, and one ends up with the interaction of matter with these gravitational theories, their
difference in predictions are parametrized by the input coefficient MAγ. This means that doing gravita-
tional experiments to probe the nature of spacetime geometry is equivalent to probing the kinematical
MAγ coefficient.

Before we conclude this chapter, we will now further explore how one can work towards a solution of
the gravitational closure equations for such a setup and what constructions we can make.

Dual variables

When constructing expressions for the output coefficients, it is clear that some inverse objects need to
show up that allow us to contract the vector field and the principal polynomial. In general relativity, the
situation is obvious as we formulate the coefficients in terms of the metric and its inverse.
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Similarly we can also define dual objects in our setting for the principal polynomial p·· and our vector
components ν· by the following constructions

ωa(ψ) =
1

det p··(ψ)
Iαβ

a adj
(
p··(ψ)

)
αβ

= Iαβ
a

(
p··−1

)
αβ(ψ) , (3.243a)

µα(ν, ψ) =
(p··−1)αβ(ψ)ν

β

(p··−1)σρ(ψ)νσνρ
, (3.243b)

where ω are the six components of a metric – the inverse of p·· – and the covector µα. By contracting the
objects with our degrees of freedom we find that

I a
µσIσν

b ωa(ψ)ψb = δν
µ , (3.244a)

µα(ψ, ν) να = 1 . (3.244b)

Both these objects will, in some form, show up in any solution of the covariance part of the closure
equations. For simplicity we will denote p··−1 simply as p·· in the following.

The derivatives of our dual objects are straight forward to calculate and one finds that

∂ωa

∂ψb = −Iαβ
aIγδ

bpαγpβδ , (3.245a)

∂µα

∂νβ
=

pαβ

pσρνσνρ
− 2 µαµβ , (3.245b)

∂µα

∂ψa =
Iγδ

aµαµγµδ

pσρµσµρ
− Iγδ

aµγpαδ . (3.245c)

One input coefficient that is essential to determine the form of the output coefficient in terms of the lower
order coefficients is the tangential deformation coefficient FA

µ
γ with the index raised by p··. Take for

example (C3) that relates CAB to C and CA via

0 = 2
(
deg P− 1

)
CAB pσ(µ|FA

σ
|ν) +

∞

∑
K=0

(K + 1)CB:A
α1...αK(µ|MA|ν)

,α1...αK

−
∞

∑
K=0

(−1)K
(

K + 2
K

) (
∂α1...αK C:B

α1...αKµν
)

. (3.246)

In our normal form parametrization this coefficient takes the form

U Aµν := pµσFA
σ

ν =


2 I a

σρIσ(µ
mIν)ρ

nψmψn for A = a
Iµα

mψmνν A = α

0 A = (i)

. (3.247)

In order to solve the equation (C3) for CAB – at least for as many components as possible – we need to
be able to invert U from the equation. Clearly, it is impossible for more than nine degrees of freedom to
construct a matrix inverse. However, if we make the educated guess

(U−1)Aµν :=


1
2 Iσρ

aIm
σ(µIn

ν)ρωmωn A = a
Im

µαωmµν for A = α

0 A = (i)

, (3.248)
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it is then easy to check that contraction over µ and ν gives

U Aµν(U−1)Bµν =


δa

b 2
(

pσρµσµρ

)
I a

αβνα 0
1

2(pσρµσµρ)
Iαβ

bµβ δα
β 0

0 0 0


A

B

. (3.249)

Thiswill allow us to simplify the selective part of the closure equations significantly in the following. While
a complete evaluation will be out of reach, alone due to the fact that we do not have an explicit expression
for the input coefficient MAγ, some results can be obtained that will simplify the evaluation in the future.

Application to the covariance part of the closure equations

Due to the involutivity of the covariance part of the closure equations, we already know that we can con-
struct finitely many curvature invariants from the degrees of freedom that will parametrize the solution
space of the gravitational closure equations. Depending on the maximal number of spatial derivatives of
the degrees of freedom, we can even calculate the number of these invariants. For example, for at most
second derivatives, we have that the scalar output coefficient can be written in terms of

10 · F− 57 (3.250)

invariants (see equation (3.200)). For general relativity, as we will see in the next chapter 4.1, one ends up
with three curvature invariants built from the Ricci curvature tensor. Clearly, if we construct these scalars
from p··(ψ), we obtain a solution to the covariance part of the closure equations such that three of the
curvature invariants can be attributed to the metric sector of the degrees of freedom.

Using the principal polynomial we can simplify the derivation of the curvature invariants: we can
construct the Christoffel symbols

Γα
βγ =

1
2

pαλ
(

2 pλ(β ,γ) − pβγ ,λ

)
(3.251)

for the degrees of freedom to define a covariant derivative and to change coordinates on our jet space. The
first derivatives ψa

,µ can then be replaced with

Γa
µ :=

(
1
2

δa
bδν

µ − I a
µσIσν

b

)
ψb

,ν . (3.252)

Similarly we can then replace some of the 2nd derivatives by the Riemann tensor constructed from p·· in
three dimension. In three dimensions we find that its components are given by

Ra[ψ] = 2 I a
αβϵαµλϵβνκpλσpρκIσρ

bψb
,µν

+ I a
αβϵαλ1λ2 ϵβκ1κ2

[
δ

µ
σ1pσ2λ1pλ2ρ1pρ2κ2 δν

κ1
+ δ

µ
σ1pσ2κ1pκ2ρ1pρ2λ2 δν

λ1
+ δ

µ
λ1

pλ2σ1pσ2ρ1pρ2κ2 δν
κ1

+ 2 δ
µ
λ1

pλ2ρ1pρ2σ1pσ2κ2 δν
κ1
+

1
2

pσ1λ1pλ2ρ1pρ2σ2 δ
µ
κ2 δν

κ1

+
1
2

pσ1κ1pκ2ρ1pρ2σ2 δ
µ
λ2

δν
λ1
+

1
2

pµνpσ1λ1pλ2ρ1pρ2κ1pκ2σ2

]
Iσ1σ2 mIρ1ρ2 nψm

,µψn
,ν ,

(3.253)
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where we dualized with the help of ϵ··· and the constant intertwiner. This, however, only gives six of the 36

second-order jet variables. For the remaining variables we introduce the object Sλ(αβγ) in the following
fashion

Sλ(αβγ)[ψ] =

[
1
2

δ
(µ
λ δ

ν)
(α|p|β|(σpρ)|γ) − δ

(µ
(α

δ
ν)
β pγ)(σpρ)λ

]
Iσρ

aψa
,µν

+
[
2 δ

µ

(α
δν

βpγ)(σ1
pρ1)λ − δ

µ
λδν

(αpβ|(σ1
pρ1)|γ)

]
× pσ2ρ2Iσ1σ2 aIρ1ρ2

bψa
,µψb

,ν . (3.254)

It is then possible to express all ψa
,µν terms by the Riemann tensor and the object Sµ(αβγ). Note that the

latter does not transform as a tensor under coordinate changes.
Once we have three vector degrees of freedom, the number of curvature invariants increases to 33, i.e.

we get additional thirty expressions that can be formed. For these we can also change the coordinates to
the covariant derivatives

να
;µ = να

,µ + Γα
µλνλ , (3.255a)

να
;(µν) = να

,µν + Γα
(µ|λ,|ν)ν

λ + 2 Γα
(µ|λνλ

,|ν) − Γλ
µννα

,λ(
Γα

(µ|λΓλ
|ν)κ − Γλ

µνΓα
λκ

)
νκ , (3.255b)

where it suffices to take the the symmetric part of the second order covariant derivatives since the anti-
symmetric part can be expressed in terms of the Riemann tensor. With these we can then try to come up
with the thirty functionally independent invariants such as

να
;α , pµνpαβ να

;µνβ
;ν , pµνµαµβ να

;µνβ
;ν , . . . ,

where one can verify that each of these is a solution of the covariance part of the closure equations (C1)
and (C8N) for the scalar coefficient.

Last but not least, each additional scalar degree of freedom introduces further ten curvature invariants.
We can again construct the covariant derivatives

σ
(i)
;µ = σ

(i)
,µ , (3.256)

σ(i)
;(µν) = σ(i)

,µν − Γλ
(µν)σ

(i)
,λ , (3.257)

and, in principle, come up with the functionally independent terms. Since the exact number of invariants
depends on the chosen number of spatial derivatives and the output coefficient one considers, we will
not further pursue this here and simply note that ultimately one ends up with finitely many terms. The
obtained expressions can then be used in the next step, the evaluation of the selective part of the closure
equations, to determine the dependency of the output coefficient on the constructed curvature invariants,
as explained before.

Application to the selective part of the closure equations

Similarly, we will sketch now how the selective part of the closure equations can be used to reducemany of
the output coefficients and express them by C and CA. For the output coefficients CABC, CABCD, . . . , we
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have essentially five equations from the selective part of the same form, of which only two relate equations
of different orders.

If we consider the closure equation (C16N), we find the relation between the output coefficientCB1...BN+1

and the lower order coefficients CB1...BN and CB1...BN−1 for N ≥ 2

0 = N(N + 1)(deg P− 1)CAB1 ...BNU A(µν) + N CB1 ...BN :A
(µ|MA|ν)

+ 2N CB1...BN :A
α(µ|MA|ν)

,α + (N − 2)CB1 ...BN−1 :BN
µν . (3.258)

We can contract this withU−1
Aµν that we introduced in equation (3.248) to solve for the highest order output

coefficient in the equation. For simplicity, we introduce the symbol

Xµν
B1 ...BN

[φ] =
1

(N + 1)(deg P− 1)

[
∞

∑
K=0

(K + 1)CB1 ...BN :A
α1...αK(µ|MA|ν)

,α1 ...αK

+
N − 2

2

∞

∑
K=0

(−1)K
(

K + 2
K

) (
∂α1...αK CB1 ...BN−1:BN

α1...αKµν
) ]

. (3.259)

Combined, we thus find for N ≥ 1 due to (C3) that we can solve for the components

CaB1 ...BN = −1
2
Iαβ

aµαµβ νλCλB1...BN −
1
2
Iαβ

apαµpβνXµν
B1...BN

[ψ] , (3.260a)

0 =
(

δα
β − µβνα

)
CαB1...BN . (3.260b)

Similarly, the equation from the selective part (C14N) can be brought into the form such that we can
solve for three of the output coefficients by solving

0 =

(
µαYα

β(φ)− 1
2

pσρνσνρ Iγδ
aµγµδYa

β(φ)

)
νλCλB1 ...BN + C(i)B1 ...BN

Y(i)
β , (3.261)

for β = 1, . . . , 3, N ≥ 1, where the symbol

YA
β = U−1

βµν MB[µ|MA|ν]
:B(φ) (3.262)

is obtained by the input coefficient MAγ. Last but not least, we can bring the closure equations (C4), (C6)
and (C17N) in the form that further components of the coefficient can be solved for

0 =
(

µανα
;µ

)
νλCλB1...BN + σ(i)

;µC(i)B1 ...BN
+ ZµB1 ...BN [φ] , (3.263)

with the covariant derivative of the vector and scalar constructed with p··, as well as the coefficient

ZµB1...BN [φ] = −
pµν

(N + 1)N(deg P− 1)

[
N2 CA(B1 ...BN−1|M

Aν
:|BN) + N

∞

∑
K=0

CB1...BN :A
α1...αK MAν

,α1 ...αK

+
N

∑
K=1

CB1 ...B̃K ...BN :BK

ν +
∞

∑
K=1

(−1)K(K + 1)
(
∂α1 ...αK CB1 ...BN−1 :BN

α1 ...αKµ
) ]

−U−1
aσρ Xσρ

B1...BN
[φ](ψa

,µ − pµνpλν
,γFa

λ
γ) . (3.264)

Since the output coefficients are totally symmetric in its indices, and due to the equations (3.260) to (3.263),
we can express any of the components that contain at least one metric index or vector index in terms of
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the lower order output coefficient and the output coefficient with only scalar indices. As a result, if we
would further insert the expressions for the coefficients iteratively into the coefficients X and Z, we would
ultimately find that the coefficients can be expressed solely by the scalar output coefficient C, CA and the
remaining scalar coefficients C(i1)...(iN) and the input coefficients, i.e.

CB1...BN = f
(

C, CA, C(i)(j), . . . , C(i1)...(iN)

)
for N ≥ 2 . (3.265)

The remaining questions that then need to be solved for the remaining coefficients are equations (C5),
(C7), (C13N), (C15N) and (C18N) to (C21N odd), as well as the covariance part of the closure equations,
as described in the previous section.

We will not pursue this any further by deriving an explicit recursion relation for the output coefficient
and, instead, leave this up for future research. The special case for a single scalar and Lagrangians limited
such that CµB1...BN = 0 was derived in Witte (2014). This assumption simplifies the relations (3.261),
(3.260) and (3.263) such that the recurrence relation between the output coefficients and, ultimately, the
Lagrangian can indeed be given for all orders. With the results we sketched here in this section, we are
confident that it is possible to generalise this result in the future.



CHAPTER 4

EXACT SOLUT IONS

Now thatwe derived the gravitational closure equations in the previous chapter anddiscussed parts of their
general properties, it is about time to put everything we learned to good use for some specific gravitational
theories. Although we already presented some aspects of the setups as examples during the derivations in
the previous chapter, we will repeat them in the following for an as self-complete discussion as possible.

The chapter is structured in the following fashion: we will start with the most well-known and well-
studied examples and perform gravitational closure for Maxwellian electrodynamics which results in Ein-
stein’s theory of general relativity. Afterwards, we present the setup for general linear electrodynamics,
which aims for the dynamics of the area metric.

The kinematic setup and parametrization of the gravitational degrees of freedom for both theories
discussed in this chapter have already been published as

M. Düll, F. P. Schuller, N. Stritzelberger and F. Wolz
Gravitational Closure of Matter Field Equations

Phys. Rev. D97 (2018), 084036

The solution of the gravitational closure equations for the Lorentzian metric in the following section
expands upon joint work with Maximilian Düll that was presented in

M. Düll
Gravitational Closure of Matter Field Equations: General Theory and Symmetrization

PhD thesis, Universität Heidelberg (2020)

4.1 MAXWELLIAN ELECTRODYNAMICS: GENERAL RELATIVITY
REGAINED

It is long known that if one wants to give dynamics to the causal coefficients appearing in Maxwell’s equa-
tions there are almost no options besides Einstein’s theory of relativity, formulated in the Einstein-Hilbert
action

SEH[g] =
1
κ

∫
M

d4x
√
−g
(

R[g]− 2Λ
)

. (4.1)
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However, as we will discuss now, we can also arrive at this result constructively by solving the gravitational
closure equations forMaxwellian electrodynamics – or, by extension, the whole standardmodel of particle
physics that is in fact tailored to be causally compatible and consistent with electrodynamics.

4.1.1 Kinematic setup

The first step in performing gravitational closure of a matter field is to calculate the principal polynomial
of the matter field equations. As electrodynamics is equipped with an U(1) gauge symmetry, we need to
put some additional effort in to extract the polynomial, as laid out in 2.2.1, but one ultimately finds that
the principal polynomial of Maxwellian electrodynamics, and the whole standard model, is given by

P(x, k) = gab(x) ka(x)kb(x) , (4.2)

for the inverse metric g··. The next step is then to impose the three matter conditions. The first matter
condition reveals that g·· must have Lorentzian signature. We further make the assumption, without loss
of generality, that for a future-directed covector n we have P(n) > 0, i.e. we agree on positive signature
convention.

For the second matter conditions we need to derive the dual polynomial. As was shown in Rivera
(2012), this polynomial is given by the metric g··

P♯(x, v) = gab(x)va(x)vb(x) . (4.3)

As a result, one finds that the massless point particle action takes the familiar form

Smassless[x, λ] =
∫

dτ λgab ẋa ẋb . (4.4)

In this case, the second matter condition, which demands the hyperbolicity of the dual polynomial, gives
no further restrictions since g··, being the inverse of g··, is already of Lorentzian signature. Also, the last
matter condition, being energy-distinguishing, can be shown to give no further restrictions (Raetzel et al.,
2011).

Using the principal polynomial and its dual, we can write down our two possible definitions for a
Legendre map

ℓ(k)a :=
gabkb

gmnkmkn
, (4.5a)

ℓ̃(v)a :=
gabvb

gmnvmvn , (4.5b)

where it is easy to verify that ℓ̃ = ℓ−1. The action of a massive point particle with the dispersion relation
gabkakb = m2 is then given by the well known expression

Smassive[x] = m
∫

dτ
√

gab ẋa ẋb , (4.6)

and the Finsler metric constructed from the polynomial P⋆ coincides with the inverse metric. With all
matter conditions implemented, and equipped with the Legendre map, we can move on to construct the
observer frame and project the spacetime geometry to the screen manifold Σ.
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Recall that for the observer frame, constructed with the help of the Legendre map ℓ, to be unique we
make the choice that in this frame

1 = P(ϵ0, ϵ0) = gabϵ0
aϵ0

b , (4.7a)

0 = P(ϵα, ϵ0) = gabϵ0
aϵα

b . (4.7b)

As a result, the only projection of the inverse metric to the screen manifold that is not fixed by the an-
nihilation and normalisation condition in the construction of the observer frame is the pull-back given
by

gαβ = gab ϵα
a ϵ

β
b . (4.8)

The annihilation and normalisation conditions will then be trivially conserved under time evolution in
our canonical formulation, as the four components eliminated by the conditions are not carried over in the
phase space construction in the first place. However, as explained in the previous chapter, implementing
the conditions by simply omitting the two projections is only possible due to the linearity of the conditions
of the metric setup. Inmore complex geometries, for instance, an area metric that is seen by general linear
electrodynamics, this is not possible anymore.

4.1.2 Parametrization

Since the annihilation and normalisation conditions have no impact on the symmetric inverse metric g··

on the screen manifold, we can parametrize the six degrees of freedom linearly as

ĝαβ(φ1, . . . , φ6) = Iαβ
A φA , (4.9a)

φ̂A(gαβ) = IA
αβgαβ , (4.9b)

with the constant intertwiner

Iαβ
A =

1√
2



√
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
√

2



αβ

A

, (4.10)
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and its inverse

IA
αβ =

1√
2



√
2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0
√

2



A

αβ

. (4.11)

It is easily verified that the construction above provides a suitable parametrization. Note that this lin-
ear parametrization is chosen so that the inverse of the constant intertwiners is obtained by taking the
transpose.

Before we can enter the gravitational closure equations, we still need to calculate the three input coef-
ficients. With the principal polynomial being the geometry itself, one immediately finds that

pµν = Iµν
A φA . (4.12)

By decomposing the Lie derivative of g·· into its two parts we can furthermore read off that

FA
µ

γ = 2 IA
µρ Iργ

B φB . (4.13)

For the last input coefficient, the non-local normal deformation coefficient, we find

MAγ =
∂φ̂A

∂gαβ

(
ĝ··
)

ea
0

∂gαβ

∂(∂γXa)

= 0 . (4.14)

As we have seen in the previous chapter, this simplifies the gravitational closure equations significantly,
and we can use many of the results derived in section 3.5.3. With all input coefficients calculated, this
means we can move on to the next step and solve the gravitational closure equations.

4.1.3 Solving the gravitational closure equations

Since MAγ = 0, we can immediately state the following facts about the system and its solution:

• CA is a functional gradient that appears as a boundary term in the gravitational action. We can
therefore ignore it in our derivation.

• C also depends on finitely many derivatives of the geometrical degrees of freedom. In fact C =

C(φ, ∂φ, ∂∂φ).

• CB1...BN only depends linearly on ∂∂φ for N ≥ 2.

• The equations for odd and even coefficients decouple.

We now continue to evaluate the remaining equations along the lines of our solution algorithm presented
in section 3.5.2. This means that we start with the derivation of the scalar output coefficient C[φ].
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Curvature invariants of C

As described in the previous chapter, we start by constructing the curvature invariants for the scalar output
coefficient with the help of the covariance part before moving to the selective part of the gravitational
closure equations. With the components input coefficient FA

µ
γ we identified above, we find that

rank FA
µ

γ = 6 . (4.15)

In particular this means, since the kernel of FA
µ

γ is trivial, that we cannot construct any scalar fields from
the degrees of freedom. As a result, the unique density term of weight 1, up tomultiplication by a constant,
is given by

χ(φ) =
1√

−det ĝ··(φ)
. (4.16)

For this density we find by straight forward calculation that its derivative reads

χ:A = −1
2

χ(φ)ĝαβ(φ)Iαβ
A , (4.17)

where gαβ(φ) is the inverse of gαβ(φ) that can be obtained in terms of the adjoint and determinant, i.e.

ĝαβ(φ) = χ(φ)2 ·


(φ5)2

2 − φ4φ6 φ2 φ6
√

2
− φ3 φ5

2
φ3 φ4
√

2
− φ2 φ5

2
φ2 φ6
√

2
− φ3 φ5

2
(φ3)2

2 − φ1φ6 φ1 φ5
√

2
− φ2 φ3

2
φ3 φ4
√

2
− φ2 φ5

2
φ1 φ5
√

2
− φ2 φ3

2
(φ2)2

2 − φ1φ4


αβ

. (4.18)

Observe that, due to the determinant factor in front, the expression becomes non-polynomial in the de-
grees of freedom. From this we can then verify that

χ:AFA
µ

γ + χδ
γ
µ = 0 . (4.19)

Since we know that C depends at most on the 2nd derivatives of the degrees of freedom, we can repeat
the Lovelock-type argument from section 3.5.3 to conclude that the scalar output coefficient is at most a
polynomial of degree 3 in ∂∂φ. Furthermore, from the combinatorial considerations of the covariance
part of the closure equations, we know that

# (curvature invariants)C = 10 · 6− 57 = 3 , (4.20)

which indicates that we can create the relevant curvature invariants by considering the different orders in
∂∂φ separately.

We start with the ansatz for the linear term, i.e. an ansatz of the form

Γ1[φ] = λA
µν(φ, ∂φ)φA

,µν + µ(φ, ∂φ) . (4.21)

From (C83) we then get the restriction

0 = λA
(αβ|FA

µ
|γ) , (4.22)
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and from (C82) we find the two equations

0 = λA
β1β2 φA

,µ −
∂µ

∂φA
,(β1|

FA
µ
|β2) − −2 λA

α(β1|FA
µ
|β2),α , (4.23a)

0 =
∂λB

µν

∂φA
,(β1|

FA
µ
|β2) , (4.23b)

where we separated the equations by orders of ∂∂φ. In the second equation we can invert the input coef-
ficient FA

µ
γ and obtain that the coefficient λ does not depend on the first derivatives of the field and is,

thus, built only by the metric and inverse metric. Using this, we can only construct the coefficient λ in
terms of the available structure as

λA
µν(φ) = c1 · χ(φ) Iµν

A + c2 · χ(φ) Iαβ
A ĝµν(φ)ĝαβ(φ) . (4.24)

Once we insert this into equation (4.22) this tells us that

λA
µν(φ) = c1 · χ(φ)

(
Iµν

A − Iαβ
A ĝµν(φ)ĝαβ(φ)

)
. (4.25)

Inserting this into (4.23a) we furthermore find that the function µ reads

µ(φ, ∂φ) = µA
µ

B
ν(φ) φA

,µ φB
,ν + µ̃(φ) , (4.26)

with

µA
µ

B
ν(φ) =

c1

4
χ(φ)

(
5 Iαβ

AIγδ
B ĝαγ(φ)ĝβδ(φ)ĝµν(φ) + Iαβ

AIγδ
B ĝαβ(φ)ĝγδ(φ)ĝµν(φ)

− 2 Iαν
AIβµ

A ĝαβ(φ)− 4 Iµν
AIαβ

A ĝαβ(φ)

)
. (4.27)

From the remaining eqation from covariance part of the closure equations for the scalar output coefficient
(C1) we then obtain that the function µ̃(φ) is zero. Inspecting the resulting expression closely we can in
fact identify it with the Ricci scalar in three dimensions, namely

Γ1[φ] = c1R[φ] . (4.28)

This tells us that all curvature invariants that are linear in the 2nd derivatives are proportional to the Ricci
scalar and we can set c1 = 1 in the following.

One then proceeds in the same fashion for the ansatz that is quadratic in the 2nd derivatives. We first
make the ansatz

Γ2
[
φ
]
= σA

µν
B

λκ
(

φ, ∂φ
)

φA
,µν φB

,λκ + ρ
(

φ, ∂φ
)

, (4.29)

where we then again find, thanks to the closure equation (C82), that the coefficient σ does not depend on
∂φ. Since we are only interested in functionally independent curvature invariants we then need to exclude
all the ansätze for which

σA
µν

B
λκ
(

φ
)

∝ λA
µν
(

φ
)

λA
λκ
(

φ
)

. (4.30)
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While (C83) will then fix the coefficient up to a single constant, the equations (C82) and (C1) will then
again fix the ∂φ dependencies. Once we have finished the straightforward but tedious calculations, one
ultimately finds that the three curvature invariants are given by

Γ1
[
φ
]
= R

[
φ
]

, (4.31a)

Γ2
[
φ
]
= Rm

n
[
φ
]
Rn

m
[
φ
]

, (4.31b)

Γ3
[
φ
]
= Rm

n
[
φ
]
Rn

p
[
φ
]
Rp

m
[
φ
]

. (4.31c)

Note that if we would have started with an ansatz that does not contain any 2nd derivatives at all the equa-
tions would have eliminated the ansätze altogether. As a result one can convince themselves that these
are, indeed the only possible terms. This means that after having solved the covariance part of the closure
equations, the general solution for C is

C(φ, ∂φ, ∂∂φ) =
1√

−det ĝ··(φ)
C̃
(
Γ1[φ], Γ1[φ], Γ1[φ]

)
, (4.32)

for the, as of now, undetermined function C̃ of the three curvature invariants.

C depends linearly on 2nd derivatives of the degrees of freedom

It turns out that also the coefficient C only depends linearly on the highest derivative order of the degrees
of freedom. To see this, we look at the coefficient U , as defined in the previous chapter, in more detail

U Aµν = pρµ FA
ρ

ν

= 2 IA
σρ ĝρµ(φ) ĝσν(φ)

= 2 Iρµ
MIA

ρσIσν
N φM φN , (4.33)

which is easily seen to be symmetric in µν. As a result, we can repeat the derivation from section 3.5.3
again and obtain that C is linear in ∂∂φ.

We also observe that U is invertible and that its inverse is given by the analogous expression of section
3.5.4 (

U−1
)

Aµν
=

1
2
IA

σρ ĝσµ(φ) ĝρν(φ) , (4.34)

where ĝ·· is the metric in terms of the degrees of freedom φ. It can be explicitly obtained in terms of the
adjugate matrix of g··, but we will not need its explicit definition in the following.

Since we know that the scalar output coefficient is written in terms of the three curvature invariants
we find from this that

∂C
∂R∂R = 0 , (4.35a)

∂C
∂Γ2

= 0 , (4.35b)

∂C
∂Γ3

= 0 . (4.35c)
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This already fixes the scalar output coefficient completely to

C(φ, ∂φ, ∂∂φ) =
1√

−det ĝ··(φ)

(
a1R[φ] + a2

)
, (4.36)

with the two constants a1 and a2. The remaining equations for C, that is (C7), (C20N even) and (C21N odd)

do not give any further restrictions since MAγ is vanishing.
Since we already know that CA can be written as a functional gradient and solves the equations of motion
exactly, we will continue with the output coefficient CAB and deal with CA later.

CAB regained

In principle, we would now start by again setting up the covariance part of the closure equations to deter-
mine the curvature invariants for the output coefficients. As indicated by equation (3.200), this becomes
an increasingly complex endeavor. Luckily, we here find that the coefficient CAB can be obtained directly
from the derivatives of C. In order to see this, let us consider (C3) which directly gives

2 CAB U Aµν = C:B
µν , (4.37)

and by application of the inverse U−1
Aµν that

CAB(φ, ∂φ, ∂∂φ) =
1
2

(
U−1

)
Aµν

C:B
µν

=
a0

2

(
U−1

)
Aµν

∂R
∂φA,µν

. (4.38)

If we moreover calculate the derivative of the Ricci scalar we find that the output coefficient reads

CAB(φ, ∂φ, ∂∂φ) =
a1

4
√
−det ĝ··(φ)

Iαβ
AIγδ

B

(
ĝαγ(φ)ĝδβ(φ)− ĝαβ(φ)ĝγδ(φ)

)
. (4.39)

We can then verify by plugging this into the remaining equations that no further restrictions appear. This
is, of course, essential since any remaining restriction would set CAB to zero and C would only contain
the cosmological constant term.

Since the coefficient does not depend on derivatives of the degrees of freedom the covariance part of
the closure equations (C112) and (C122) can be seen to vanish directly. For (C102) we have

0 = CB1B2 :AFA
µ

γ + CB1B2 δ
γ
µ + 2 CA(B1

FA
µ

γ
:B2) . (4.40)

With the output coefficient CAB containing the metric g··(φ), it proves useful to calculate its derivative by
the degrees of freedom. This can be easily obtained by taking the derivative of ĝαµ ĝµβ = δα

µ from which
we end up with

∂ĝαβ

∂φA = −Iµν
A ĝαµ(φ)ĝβν(φ) . (4.41)

Together with the derivative of the density term we then indeed find that the equation (4.40) is fulfilled by
(4.39). The last non-trivial equation we need to check is (C4)

0 = 2 CAB

(
pµν φA

,ν − pµν
,γFA

ν
γ
)
−C:B

µ + 2 (∂αC:B
αµ) . (4.42)

Inserting both our expressions for the output coefficients and the Ricci scalar one finds that this is fulfilled.
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CA1...AN vanishes for N > 3

Just as before, we can use the equation of the type (C16N) to express the output coefficients in terms of
the lower order ones. In fact, already for the case N = 2 we find

0 = CABC U Aµν . (4.43)

But since U is invertible, we immediately see that CABC vanishes. We can then use (C16N), for N even,
and see that all odd coefficients are zero, except CA.

Similarly, we can look at the same closure equation for the even output coefficients. So far, we evaluated
the even N of (C16N) to see that the odd coefficients vanish. Looking into (C163) we find

0 = 12 CAMNP U Aµν + CMN:P
µν . (4.44)

But since we have that CAB does not depend on the 2nd derivatives of the degrees of freedom, this means
that CABCD must be zero. Then by again repeating this argument for the odd (C16N) iteratively, we find
that all CA1 ...AN vanish for N ≥ 3. As a result, our gravitational Lagrangian is quadratic in the velocities,
and the only remaining undetermined output coefficient is CA.

Towards CA

In principle, it is also possible to solve the equations for the coefficient CA with the same techniques. Next
to the covariance part of the closure equations (C2) and (C9), we have to evaluate (C5) and the curl
condition (C18N), for N ≥ 1 (here due to (C6)). From the curl condition (and by the argument from
section 3.5.3), we know that we can write the coefficient as the functional derivative of a scalar density,
i.e.

CA[φ(x)] =
δΛ

δφA(x)
. (4.45)

As a result, the covariance part of the closure equations turns into the condition that Λ is a scalar density
of weight 1 which has the same differential equations we found for the scalar output coefficients, i.e. the
closure equations (C1) and (C8N).

From the remaining closure equation (C5) we obtain

0 = CA φA
,µ + ∂γ

(
CAFA

µ
γ
)

, (4.46)

which, once we insert the definition of the input coefficient, can be recognized as the condition that CA

be divergence free, i.e.

0 = IA
µν (∇νCA) , (4.47)

with the metric compatible covariant derivative∇µ.
If we now restrict to solutions that only contain second derivatives of the degrees of freedom one finds,

again by the Lovelock-like argument, that CA must be linear in ∂∂φ. By everything we learned for the
scalar output coefficient, this immediately tells us that such a scalar density must be of the form

Λ[φ] =
1√

−det ĝ··(φ)

(
b1R[φ] + b2

)
. (4.48)
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From this we obtain that the output coefficient is given in terms of the metric and the three-dimensional
Einstein tensor Gαβ[φ]

CA =
1√

−det ĝ··(φ)
Iαβ

A

(
b1 · Gαβ[φ] + b2 · ĝαβ(φ)

)
. (4.49)

Note, however, that this result is crucially dependent on the assumption that we have no higher deriva-
tives of the degrees of freedom. Although tedious, this could be extended to higher derivatives. We then
need to construct new curvature invariants and ensure that the result is divergence-free. As the output
coefficient is a boundary term, it will not contribute to the equations of motion in any case.

This means that we have now solved all of the gravitational closure equations and determined all the
required output coefficients. In particular we found that the two coefficients that appear in the equations
of motion remarkably only contain two single parameters a0 and a1 that can be, of course, identified with
the gravitational constant and the cosmological constant by setting

a1 := − 1
2κ

, (4.50)

a2 :=
Λ
κ

. (4.51)

Suppose we perform the Legendre transformation of the Lagrangian back to our original Hamiltonian
formulation. In that case, we see that the Hamiltonian is equivalent to the superhamiltonian found in the
ADM formulation of general relativity, as expected (Witte, 2014). As a result, we, as promised, were able
to derive general relativity entirely with the help of the gravitational closure equations. The most general
gravitational action for the ten degrees of freedom of a metric is thus indeed given by the expression in
the following box:

THEOREM GRAVITATIONAL CLOSURE OF MAXWELLIAN ELECTRODYNAMICS
Performing gravitational closure of Maxwellian electrodynamics for the inverse metric gives the action

Sgravity[φ] =
∫

dt
∫

d3x N(t, x)

(
C[φ] +

1
N2 CAB(φ)

(
φ̇A − Nµ φA

,µ + (∂γNµ)FA
µ

γ
)

×
(

φ̇B − Nν φB
,ν + (∂δNν)FB

ν
δ
))

,

with the coefficients

C = − 1
2κ

1√
−det ĝ··(φ)

(
R
[
φ
]
− 2 Λ

)
,

CAB =
1

8κ

1√
−det ĝ··(φ)

Iαβ
AIµν

B

(
ĝαµ(φ) ĝβν(φ)− ĝαβ(φ) ĝµν(φ)

)
.



4.2 General Linear Electrodynamics | 130

4.2 GENERAL LINEAR ELECTRODYNAMICS

As our next example, we will again pick up our theory of interest we introduced in chapter 1 and discuss
the gravitational closure of general linear electrodynamics. The underlying geometry is the area metric,
i.e. the rank 4 tensor field Gabcd.

Of course, we already extensively discussed aspects of such a theory in the previous chapters in the
presentation of the kinematical aspects of matter theories and the derivation of the gravitational closure
equations. For an (almost) self-complete treatment, we will nonetheless follow the necessary steps in the
algorithm and present the constructions in the setup of birefringent electrodynamics.

4.2.1 Kinematic setup

We start by considering the kinematic setup of the geometry of general linear electrodynamics. From the
equations of motion

0 = ∂n

(
ω(G)GabmnFab

)
, (4.52)

we can derive the principal polynomial by fixing the U(1) gauge freedom or treating it as described in
section 2.2.1. The symbol ω(G) denotes the de-densitization factor that we will fix in the following. Once
the gauge freedom is carefully dealt with, one obtains the polynomial of degree four

P(k) = − 1
24

ω(G)2ϵmnpqϵrstuGmnriGjpskGlqtukik jkkkl . (4.53)

Given that the cyclic part of the area metric is non-zero, i.e. ϵmnpqGmnpq 6= 0, we can use it to construct a
de-densitization from it. While the possible density factors are far from unique (as we have seen before),
they all differ by a scalar function built from the gravitational degrees of freedom. For the following
discussion we will make the choice ω(G) = ( 1

24 ϵmnpqGmnpq)−1 to de-densitize our polynomial.
With the principal polynomial obtained, one can then move on to derive the dual polynomial P♯,

which is given by the degree 4 polynomial

P♯(v) = − 1
24

1
ω(G)2 ϵmnpqϵrstuGmnriGjpskGlqtuvivjvkvl , (4.54)

in terms of the inverse object Gabcd of the same symmetries as the area metric, for which we have that

GabmnGmncd = 4 δ
[a
c δ

b]
d . (4.55)

This then immediately gives the Lagrange action for a massless particle, in the geometrical optical limit,
coupled to the area metric

Smassless[x, µ] = − 1
24

∫
dτ λ

1
ω(G)2 ϵmnpqϵrstuGmnriGjpskGlqtu ẋi ẋj ẋk ẋl . (4.56)

We now need to make sure that the three mater conditions are implemented, i.e. that both polynomials
are hyperbolic and the setup is energy-distinguishing, in order to be able to construct the Legendre map
that allows us to construct the observer frame for gravitational closure. Requiring these three conditions
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restricts the area metric to one of seven algebraic classes (of possible 23 classes in total) (Witte, 2009;
Schuller et al., 2010). Once the conditions are implemented we can construct the Legendre map via

ℓ(k)a = −1
6

1
P(k)

ω(G)2ϵmnpqϵrstuGmnr(a|Gj|ps|kGl)qtuk jkkkl . (4.57)

For the inverse Legendre map there is no known closed form expression. In fact, it can be shown that
the map is non-polynomial (Rivera and Schuller, 2011). Luckily, we do not need the map explicitly for
performing gravitational closure and it suffices to know that themap does exist. Its existence is guaranteed
due to the three matter conditions.

Next, we project the components of the spacetime area metric to fields on the screen manifold using
the orthonormal frame. We construct the following three fields

gαβ = −G(ϵ0, ϵα, ϵ0, ϵβ) , (4.58a)

gαβ =
1
4

1
det g··

ϵαµνϵβλκG(ϵµ, ϵν, ϵλ, ϵκ) , (4.58b)

gαβ =
1
2

1√
det g··

(g−1)αµϵβλκG(ϵ0, ϵµ, ϵλ, ϵκ)− (g−1)αβ . (4.58c)

Note that we slightly changed the third field in comparison to the one we presented in section 3.1.2. This
is due to the parametrization we will present in the following. Ultimately, the choice is arbitrary, as long
as we can reconstruct the whole spacetime area metric.

With the chosen hypersurface fields, we can, once a foliation and the corresponding observer frame
(e, ϵ) are given, indeed reconstruct the area metric via

Gabcd (Xt(x)
)
= 4 gαβ e[a0 eb]

α e[c0 ed]
β + (det g··) · gµνϵµαβϵνγδ ea

αeb
βec

γed
δ

+ 2
√

det g··
(

gανgµν + δα
µ

)
ϵµβγ e[a0 eb]

α ec
βed

γ . (4.59)

When we implement the four frame conditions we find for the normalisation condition that

1 = P(ϵ0, ϵ0, ϵ0, ϵ0)

= ω(G)2 det g·· , (4.60)

which relates the de-densitization of the polynomial – in our case the cyclic part of the area metric – to
the determinant of the first screen manifold tensor field. But from this, we can calculate the trace of the
third hypersurface field and find

gαβgαβ =
1
2

1√
det g··

ϵαβγG(ϵ0, ϵα, ϵβ, ϵγ)︸ ︷︷ ︸
1
4 ϵmnpqGmnpq= 6

ω(G)

−3 = 0 . (4.61)

Clearly, this imposes a quadratic condition on the degrees of freedom of the area metric that we need to
take care of in the next section. From the annihilation condition we find that the anti-symmetric part of
the third screen manifold projection vanishes, i.e.

g[αβ] = 0 . (4.62)
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This antisymmetry condition eliminates three of the nine components in the field, and another component
is eliminated by the trace condition (4.61). Together with the unconstrained six degrees of the first two
hypersurface fields, respectively, we thus obtain the 17 degrees of freedom of the area metric we need to
parametrize.

4.2.2 Parametrization

Constructing a parametrization for the two frame conditions is a non-trivial endeavour. One possible
solution can be obtained by introducing a vector ta such that Iαβ

ata is a positive definitive matrix, where
the index a runs from 1 to 6 and with the constant intertwiner Iαβ

a we already used for general relativity.
We can then complete this into a complete basis ofR6 by the introduction of five orthogonal elements e(m)a

and their dual objects na and ϵ(m)a, respectively. The objects are orthogonal with respect to a standard
inner product ∆ab and the index m runs from m = 1, . . . , 5.

For example, one such choice can be made with the vector

ta =

(
1√
3

, 0, 0,
1√
3

, 0,
1√
3

)t

. (4.63)

Contracting with the intertwiner we obtain the positive definitive matrix

Iαβ
ata =

1√
3


1 0 0

0 1 0

0 0 1


αβ

. (4.64)

Nextwe can complete this, by performingGram-Schmidt orthonormalisation on the collection (1, 0, 0, 0, 0, 0)t,
(1, 1, 0, 0, 0, 0)t ... (1, 1, 1, 1, 1, 1)t and ta, into an orthonormal basis. The ϵ(m)a we find are given by

ϵ(1)a =

(√
2
3

, 0, 0,− 1√
6

, 0,− 1√
6

)t

,

ϵ(2)a = (0, 1, 0, 0, 0, 0)t ,

ϵ(3)a =

(
0, 0,

√
2
3

,
1√
6

, 0,− 1√
6

)t

, (4.65)

ϵ(4)a = (0, 0, 0, 0, 1, 0)t ,

ϵ(5)a =

(
0, 0,

1√
3

,− 1√
3

, 0,
1√
3

)t

.

The dual basis is numerically equivalent to the components of the vectors presented above, where the
a and m indices are raised / lowered with the standard inner product ∆ab = diag(1, 1, 1, 1, 1, 1) and
∆mn = diag(1, 1, 1, 1, 1), respectively:

na = ∆abtb and ϵ(m)a = ∆ab∆mne(n)b . (4.66)
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Once this choice is fixed, we can employ them to construct the following parametrization via

ĝαβ(φ) = Iαβ
a φa , (4.67a)

ĝαβ(φ) = I a
αβ∆ab φ

b , (4.67b)

ĝαβ(φ) = I a
αβ

(
δb

a −
na φb

nc φc

)
ϵ(m)b φm , (4.67c)

and the inverse map of the parametrization given by

φ̂a(g) = I a
αβgαβ , (4.68a)

φ̂a(g) = Iαβ
b∆abgαβ , (4.68b)

φ̂m(g) = Iαβ
ae(m)agαβ . (4.68c)

All three fields are clearly symmetric matrices, as all their free indices are located at the standard constant
intertwiner Iαβ

a and its inverse. In order for this construction to be a proper parametrization it is, of
course, necessary that the frame condition (4.61) is implemented. Indeed, one finds by direct calculation
that

ĝαβ(φ)ĝαβ(φ) = φa

(
δb

a −
na φb

nc φc

)
ϵ(m)b φm = ϵ(m)a φa φm − ϵ(m)a φa φm ≡ 0 . (4.69)

We can then move on to calculate the intertwiners by taking the derivative with respect to the degrees of
freedom. This gives the following expressions, where we omit all vanishing components

∂ĝαβ

∂φa = Iαβ
a ,

∂ĝαβ

∂φ
a = Ib

αβ∆ab ,
∂ĝαβ

∂φ
m = I a

αβ

(
δb

a −
na φb

nc φc

)
ϵ(m)b ,

∂ĝαβ

∂φm = Ib
αβnb

na φcϵ(m)c φm

(nd φd)2 −
ϵ(m)a φm

nd φd

 . (4.70)

For the inverse maps we obtain the constant expressions

∂φ̂a

∂gαβ
= I a

αβ ,
∂φ̂a

∂gαβ

= Iαβ
b∆ab ,

∂φ̂m

∂gαβ

= Iαβ
ae(m)a , (4.71)

where, again, the derivatives that are not displayed above are vanishing.

Input coefficients

The next step is to calculate the three input coefficients with our chosen parametrization. We start with
the tangential deformation coefficient FA

µ
γ. By decomposing the Lie derivative of the hyperfields, one

finds the three functions, one for each of the three sectors

Fa
µ

γ(φ) = 2 I a
µσIσγ

b φb , (4.72a)

Fa
µ

γ(φ) = −2 ∆am∆bnIb
µσIσγ

m φ
n , (4.72b)

Fm
µ

γ(φ) = −2
∂φ̂m

∂gσγ

∂ĝµσ

∂φn
φn . (4.72c)
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Note that the coefficient here has, in contrast to general relativity, a rank of 9 and is thus not of full rank.
This means that no inverse coefficient exists. Furthermore, it already hints that it is possible to construct
scalar fields out of the three screen manifold fields.

For the input coefficient pαβ we calculate the screen-manifold projection P(ϵα, ϵβ, ϵ0, ϵ0) and insert
the parametrization. We find that the coefficient reads

pαβ(φ) =
1
6

(
ĝαγ ĝβδ ĝγδ − ĝαβ ĝγδ ĝγδ − 2 ĝαβ ĝδµ ĝγν ĝµγ ĝνδ + 3 ĝγδ ĝαµ ĝβν ĝµγ ĝνδ

)
(φ) . (4.73)

Last but not least, the third input coefficient can be calculated with the usual procedure. One finds the
following objects in terms of our screen manifold projections:

Mαβγ = 2
(
det g··)

) 1
2 ϵµγ(αgβ)νgµν , (4.74a)

Mαβ
γ = 6

(
det g··)

)− 1
2 ϵµν(αgλνgβ)λpµγ , (4.74b)

Mαβ
γ = −

(
det g··)

) 1
2 ϵµνγ

(
ĝ−1
)

µ(α|

(
gλκ g|β)λgκν + g|β)ν

)
. (4.74c)

Once we insert the parametrization, we find the coefficient as it needs to be plugged into the gravitational
closure equations

Maγ(φ) = 2
(

det ĝ··(φ)
) 1

2 I a
αβIµα

bϵβνγ ∂ĝµν

∂φm
(φ)φb φm , (4.75a)

Maγ(φ) = 6
(

det ĝ··(φ))
)− 1

2
ϵαµν∆abIαβ

bIλν
cpµγ(φ)

∂ĝβλ

∂φm
(φ)φc φm , (4.75b)

Mmγ(φ) = −
(

det ĝ··(φ)
) 1

2
ϵµνγ

(
ĝ−1
)

µα(φ)
∂φ̂m

∂gαβ

(φ)

Iκλ
b

∂ĝβλ

∂φn
(φ)

∂ĝκν

∂φl
(φ)φb φn φl + Ib

βν∆bc φc

 .

(4.75c)

This is clearly more complicated than the vanishing coefficient of general relativity that we treated in the
previous section.

4.2.3 Gravitational closure equations

With the setup finished, we are in principle suitably equipped to derive the Lagrangian for the 17 degrees
of freedom of the area metric. As we will see, constructing an exact solution is, however, complicated for
two reasons.

First, as shown above, the input coefficient MAγ does not vanish, which leads to multiple complica-
tions. For one, this means that the odd and even output coefficients do not decouple anymore. Moreover,
we cannot conclude anymore that the scalar output coefficient depends at most on the second derivatives
of the degrees of freedom. Practically, this is a problem since we deal with both infinitely many equations
for an infinite number of dependent functions of infinitely many independent variables.

Second, we found that the input coefficient FA
µ

γ is of rank 9 and is thus not invertible. Thismeans that
we cannot establish a recursion relation via the selective part of the closure equations (C3), (C4), (C6),
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(C16N) and (C17N) between all higher-order output coefficients in terms of the lower order coefficients.
Such a sequence is, however, essential to obtain an expression in terms of finitely many constants of inte-
gration. So if it becomes increasingly complicated to derive the output coefficients for a given geometry,
what can we do?

Onepossible simplification for an exact solution of the areametricmay be to employ the reparametriza-
tion we described in section 3.5.4. For this, we observe that we can indeed define (at least) eight scalar
functions σ(i) such that they locally constitute a basis of the kernel of FA

µ
γ, i.e.

σ
(i)
:A FA

µ
γ = 0 . (4.76)

These scalars occur since we can build non-trivial endomorphisms out of our gravitational fields by raising
and lowering indices with g·· and its inverse. For example, we can construct the endomorphisms

hα
β := ĝασ ĝσβ , (4.77a)

hα
β := ĝασ ĝσβ , (4.77b)

whose eigenvalues can then be expressed in terms of the three scalars

tr
(

h
)

, tr
(

h2
)

, det h , (4.78)

and in the same fashion for h. Due to the Cayley-Hamilton theorem we can express the traces of the third
power and all higher powers in terms of these three scalars, since

h3 = tr(h) · h2 +
1
2

(
tr
(

h2
)
−
(

tr(h)
)

2
)
· h + det h · id . (4.79)

Taking into account that h is traceless, we can define the following eight scalars by taking traces or deter-
minants of the endomorphisms

σ(1)(φ) := hα
α(φ) , (4.80a)

σ(2)(φ) := hα
β(φ)hβ

α(φ) , (4.80b)

σ(3)(φ) := hα
β(φ)hβ

α(φ) , (4.80c)

σ(4)(φ) := hα
β(φ)hβ

α(φ) , (4.80d)

σ(5)(φ) := hα
β(φ)hβ

γ(φ)hγ
α(φ) , (4.80e)

σ(6)(φ) := hα
β(φ)hβ

γ(φ)hγ
α(φ) , (4.80f)

σ(7)(φ) := det g··(φ) · det g··(φ) , (4.80g)

σ(8)(φ) := det ĝ··(φ) · det ĝ··(φ) , (4.80h)

which are functionally independent and whose derivatives with respect to the degrees of freedom are
linearly independent. Furthermore, it is possible to define the vector field

να(φ) :=
√

det g··(φ)ϵαµν ĝλκ(φ)ĝµλ(φ)ĝκν(φ) . (4.81)
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Together with the six components of the input coefficient ψa(φ) := I a
αβpαβ(φ) we have then 17 func-

tions of the degrees of freedom that fulfill the partial differential equations

∂ψa

∂φA FA
µ

γ(φ) = 2 I a
µσIσγ

bψb(φ) , (4.82a)

∂να

∂φA FA
µ

γ(φ) = δα
µνγ(φ) , (4.82b)

∂σ(i)

∂φA FA
µ

γ(φ) = 0 . (4.82c)

The reparametrization of the area metric degrees of freedom to the normal form has the advantage that
it turns the rather involved structure of the gravitational closure equations into a form where the sectors
are disentangled, such that we can easily identify the output coefficients we can solve for.

However, for the area metric, this reparametrization is non-linear and employs higher orders of the
degrees of freedom such that an analytical expression for φA(ψa, να, σ(i)) is unfortunately out of reach – if
it does exist at all globally. Locally, however, the maps exist if the Jacobian matrix has full rank. Although
singular points exist, such as the obvious choice φ ≡ 0, one can check that we can find this reparametriza-
tion for most points. This hints that the presented reparametrization may be a suitable road to pursue in
the future in order to derive an exact solution for the area metric.

Instead, we will dedicate the remainder of this thesis to an alternative path to extract physically mean-
ingful statements from the gravitational closure equations: Instead of solving the involved structure of the
system of partial differential equations, we transform them into a collection of linear algebraic equations
that give the Lagrangian of the gravitational degrees of freedom in a perturbative system with respect to
a given background solution.



CHAPTER 5

PERTURBAT I VE CLOSURE

The practical use of the gravitational closure equations was, so far, rather limited due to their vast com-
plexity. The situation is comparable to Einstein’s equations: Due to their non-linearity, the equations of
motion required techniques that were way beyond the familiar terrain of linear equations. Nonetheless, al-
most directly after publication of the field equations (Einstein, 1915b), they could be employed to explain
the perihelion precession of Mercury by considering a situation where the gravitational fields have small
deviations from the solution in vacuo (Einstein, 1915a). In this case, we find ourselves in a perturbative
regime that allows us to derive the dynamics for these small deviations in an iterative fashion, increasing
the precision with each order.

In the last decades of dealing with the general theory of relativity, this idea was extended and put on
a more rigorous level to consider gravitational interactions perturbatively. One famous example is the
binary pulsar, where two orbiting sources have an increasing orbital frequency due to the energy loss
created by gravitational radiation. Since this increase in frequency can be experimentally measured, it
serves as an indirect high precision test of general relativity.

There is also another option to solve Einstein’s equations that was employed shortly after the introduc-
tion of general relativity to derive exact solutions. The clever trick is to consider situations with a certain
symmetry, thereby drastically reducing the solution space’s complexity. This led, for example, to the dis-
covery of the Schwarzschild solution, which describes the physical situation of an uncharged, non-rotating
black hole (Schwarzschild, 1916).

The same methods can be employed for the gravitational closure equations. The latter, i.e. the con-
sideration under symmetry conditions, for example can be used to derive gravitational Lagrangians for
cosmological scales (see Düll et al. (2020) and Düll (2020) for further details).

This chapter is dedicated to the first of the describedmethods. Wewill present a perturbative treatment
of the gravitational closure equations that allows us to derive the Lagrangians for small gravitational fields
and propagation of gravitational waves. Note that an early treatment of perturbative gravitational closure
was published in the pre-print

J. Schneider, F. P. Schuller, N. Stritzelberger and F. Wolz
Gravitational Closure of Weakly Birefringent Electrodynamics

arXiv: 1708.03870 (2017)
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in which the linear field equations were first derived for general linear electrodynamics. Themethodology,
however, was extended throughout this thesis to allow for a proper framework that can be employed to
(at least in theory) arbitrary order.

5.1 PERTURBATIVE GRAVITATIONAL DYNAMICS

Westart our discussion of a perturbative treatment of the gravitational closure equations by revisiting some
of the constructions that we made in the previous chapters. Once we explore those from a perturbative
perspective, it turns out that some simplifications can be made.

The starting point is, as in every perturbative setting, that we are equipped with some known back-
ground solution to the equations of motion. Such a background solution can be given in the form of a
collection of screen manifold tensor fields gbackground. In the very same fashion, we can also provide a
section φbackground on our space Φ, since we can always employ the parametrization to map one onto the
other. In the following, we will directly use the latter approach and, for simplicity, denote the background
solution by nA(x, t). Note that we, at least for now, make no assumption on this background solution to
be constant everywhere or static. In addition, the background solution needs to contain an expression for
both lapse and shift. Typically, this corresponds to a constant lapse Nbackground = 1 and vanishing shift
N⃗background = 01.

Employed with the background solution, we aim to reformulate the generally non-linear equations
of motion by introducing an embedding parameter ε ∈ [0, 1] that allows us to continuously deform
our background solution into a full solution. For this, we can introduce the homotopy φ(x, t; ε), with
φA(x, t, 0) = nA(x, t), and analogously for the other fields in our setup, namely the lapse N(x, t; ε) and
shift N⃗(x, t; ε). The parameter ε will also play an additional role as the coupling between thematter action
Smatter, formulated for the matter field ψ, and the gravitational action, i.e.

Stotal

[
φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε), ψ

]
= Sgravity

[
φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε)

]
+ ε · Smatter

[
φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε), ψ(x, t)

]
,

(5.1)

which, as a theoretical tool, ensures that both actions have the same units and, phenomenologically, im-
plements that the deviations from the background solution will be sourced from the matter sector.

We now assume that this homotopy is a solution to the exact gravitational equations of motion ob-
tained from the action by variation with respect to the degrees of freedom φ, i.e.

δSgravity

δφA [φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε)] = −ε
δSmatter

δφA [φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε), ψ(x, t; ε)] ,

1Since for a globally hyperbolic spacetime we have thatM is diffeomorphic to R × Σ (Bernal and Sánchez, 2003) we can
always find a gauge that effectively removes the shift vector field. However, it is not necessarily true that the lapse is constant
everywhere.
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as well as the four constraints obtained by varying with respect to both lapse and shift
δSgravity

δN
[φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε)] = −ε

δSmatter

δN
[φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε), ψ(x, t; ε)] ,

δSgravity

δNα
[φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε)] = −ε

δSmatter

δNα
[φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε), ψ(x, t; ε)] ,

and the matter field equations of motion

0 =
δSmatter

δψa(x, t)

[
ψ(x, t), φ(x, t; ε), N(x, t; ε), N⃗(x, t; ε)

]
.

By solving the latter equation, we couple the matter field to the geometric fields, which makes them, indi-
rectly, dependent on the embedding parameter ε.

At this point, it still seems that no progress was made since we have neither a solution to the equations
of motion nor the coefficients appearing in the equations of motion. However, since our homotopies
depend smoothly on the embedding parameter ε, we can calculate the homotopy-Maclaurin expansion of
all fields and obtain

φA(x, t; ε) = nA(x, t) +
∞

∑
k=1

1
k!

hA
(k) εk , (5.2a)

N(x, t; ε) = Nbackground(x, t) +
∞

∑
k=1

1
k!

A(k) εk , (5.2b)

Nµ(x, t; ε) = Nµbackground(x, t) +
∞

∑
k=1

1
k!

Bµ

(k) εk , (5.2c)

in terms of the perturbations h(k), A(k) and B⃗(k) of order k. Inserting this expansion into the equation
of motion displayed above, we obtain a polynomial in the embedding parameter. In order to be able
to continuously deform the known solution into the real solution, we find that each order must vanish
separately. This allows us to generate a perturbative solution to the equations of motion to, at least in
principle, arbitrary precision.

The 0th order contribution does not reveal any new information but enforces that the background
objects nA, Nbackground and N⃗background be solutions of the equations of motion:

δSgravity

δφA

[
n, Nbackground, N⃗background

]
= 0 , (5.3)

δSgravity

δN

[
n, Nbackground, N⃗background

]
= 0 , (5.4)

δSgravity

δNα

[
n, Nbackground, N⃗background

]
= 0 . (5.5)

Since the embedding parameter appears in front of the matter action, we obtain no contribution from the
matter sector. This is, of course, not surprising but merely motivates the name background solution.

From the 1st order terms we find linear partial differential equations for the linear perturbations, i.e.

δSgravity

δφA

∣∣∣∣∣
(1)

[
h(1), A(1), B(1)

]
= −δSmatter

δφA

[
ψ
∣∣
(0)

]
, (5.6a)

δSgravity

δN

∣∣∣∣
(1)

[
h(1), A(1), B(1)

]
= −δSmatter

δN

[
ψ
∣∣
(0)

]
, (5.6b)

δSgravity

δNα

∣∣∣∣
(1)

[
h(1), A(1), B(1)

]
= −δSmatter

δNα

[
ψ
∣∣
(0)

]
, (5.6c)
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where the subscript (1) on the functional derivatives on the left hand side indicates that we collect all
the linear terms from the equations. On the right hand side we see that, since the matter action itself is
multiplied by ε, we take from the source term that is evaluated on the solution of thematter equations only
the terms containing the background geometry. This will source the linear deviations from the dynamics
of a matter theory that lives on the background geometry. This interplay is, of course, exactly what John A.
Wheelers famously summarized for general relativity as “matter tells spacetime how to curve, spacetime
tells matter how to move”.

Moving to the next iteration, we again decompose the equations of motion into the separate orders of
ε. Doing so one obtains equations in the form

δSgravity

δφA

∣∣∣∣∣
(1)

[
h(2), A(2), B⃗(2)

]
= −

δSgravity

δφA

∣∣∣∣∣
(2)

[
h(1), A(1), B⃗(1)

]
−δSmatter

δφA

[
ψ
∣∣
(1)

]
, (5.7)

and in the same fashion for the constraint equations. From the matter action we need to extract all terms
that are quadratic in ε, which are obtained from the background geometry and the linear perturbations.
In addition we obtain another source term by the linear perturbations.

For the 2nd order perturbations, we find that they appear with the same differential operator as for the
linear perturbations, which means that we need to solve linear partial differential equations. This can be
done with the usual methods and the same Green’s functions as for the linear perturbations. This makes
this iterative method an incredibly helpful tool to generate a solution to the equations of motion.

We can repeat this step iteratively to somemaximal perturbation order kmax. At each order k, one finds
linear partial differential equations for the kth perturbations that are sourced in an increasingly complex
manner by the lower order perturbations aswell as thematter fields. We then obtain our final, approximate,
solution to the equations of motion by truncating the homotopies at order kmax and evaluating at ε = 1,
i.e.

φA(x, t) ≈ nA(x, t) +
kmax

∑
k=1

1
k!

hA
(k)(x, t) , (5.8a)

N(x, t) ≈ Nbackground(x, t) +
kmax

∑
k=1

1
k!

A(k)(x, t) , (5.8b)

Nα(x, t) ≈ Nα
background(x, t) +

kmax

∑
k=1

1
k!

Bα
(k) . (5.8c)

This, at least in principle, allows us to generate arbitrarily precise solutions.

This discussion was, so far, at a quite abstract level where none of the coefficients in the equations of
motion are explicitly obtained. Moreover, they still require the knowledge of the exact output coefficients
C, CA, CAB, . . . to obtain the exact expressions of these coefficients in the equations of motion.

In order to obtain these, one expands the exact equations of motion (see equation (3.151)) in the
different orders in the embedding parameter ε. This means that we expand the output coefficients as
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Figure 5.1 Perturbative gravitational closure can be performed by a series expansion of the output
coefficients around some background solution and carefully evaluating the linear algebraic
equations for the constant coefficients from the series expansion.

follows

CA1 ...AN

[
φ(x, t; ε)

]
=

∞

∑
k=0

1
k!

dkCA1 ...AN

[
φ(x, t; ε)

]
dεk

∣∣∣∣∣
ε=0

εk

= CA1...AN [n] ε0 +
∫

Σ
d3y

δCA1...AN (x)
δφM(y)

∣∣∣∣∣
φ=n

hM
(1)(y) ε1 +

+
1
2

( ∫
Σ

d3y
δCA1 ...AN (x)

δφM(y)

∣∣∣∣∣
φ=n

hM
(2)(y) +

+
1
2

∫
Σ

d3y1

∫
Σ

d3y2
δ2CA1 ...AN (x)

δφM1(y1)δφM2(y2)

∣∣∣∣∣
φ=n

hM1
(1) (y1)h

M2
(1) (y2)

)
ε2

+ . . . , (5.9)

and similar for the functional derivatives of the output coefficients appearing in the equations of motion.
Afterwards, we can then collect the separate orders in ε as described above. The important realization
is that we can obtain these Taylor expansion coefficients – all evaluated on the background solution n –
from the gravitational closure equations: we first perform a linear reparametrization, such that all output
coefficients are evaluated at the jet space point

CB1 ...BN

[
n + εφ

]
, (5.10)

and afterwards we expand the closure equations again in ε. In the equations we obtain, just as before for
the equations of motion, a polynomial in ε for which each order must vanish separately. The expansion
coefficients appearing are simply the Taylor coefficients that appeared on the right hand side in (5.9) –
exactly the coefficients we need for our equations of motion. We will refer to these Taylor expansion
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coefficients as constant output coefficients in the following2. As a result, we obtain linear algebraic equations
for these constant output coefficients that we need solve, once we have expanded the gravitational closure
equations.

This opens up an alternative, but much more approachable, path to deriving the gravitational field
equations. The idea is illustrated in the diagram in figure 5.1. The important point is that, in general, the
resulting predictions are independent of the concrete path taken.

Special case: linear dynamics for flat backgrounds

Although the whole procedure we will discuss can be conducted to any order, let us illustrate the steps laid
out in the previous section in more detail for linear dynamics around flat backgrounds. A prototypical ex-
ample for such a scenario is the perturbation around a background geometry induced by a flat Minkowski
metric, as we will consider in section 5.4 for a weakly birefringent geometry obtained from an area metric.

In this setting, we have that the background fulfills the following equations

ṅA(x, t) = 0 ,
(

∂µnA
)
(x, t) = 0 ,

Ȧ(0)(x, t) = 0 ,
(

∂µ A(0)

)
(x, t) = 0 ,

Ḃα
(0)(x, t) = 0 ,

(
∂µBα

(0)

)
(x, t) = 0 ,

kA
(0) = 0 , MAγ|φ=n = 0

everywere. Let us start with the 0th order contribution of the equations of motion. Using the expansion
of the scalar constraint (see equation (3.152)) we find that only a single term survives on the right hand
side

0 = − C|φ=n . (5.11)

This tells us that the constant C|φ=n needs to vanish. Similarly, we can analyze the remaining equations.
While the vector constraint is fulfilled trivially one finds from the evolution equations that

0 = C:A |φ=n . (5.12)

As for the scalar constraint, we conclude that C:A |φ=n needs to vanish if we want the background to be a
solution of the gravitational equations of motion.

Next, we can derive the equations of motion of the linear modes. For this, we collect all terms linear
2This is for historic reasons. Clearly, they are only constant for a constant background solution.
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in ε on both sides. Careful calculation gives

− δSmatter

δN(x)

∣∣∣∣
(1)

[
ψ
∣∣
(0)

]
= C:A

A
∣∣∣

φ=n
hA
(1),A + CA|φ=n MAγ

:B

∣∣∣
φ=n

hB
(1),γ , (5.13a)

− δSmatter

δNµ(x)

∣∣∣∣
(1)

[
ψ
∣∣
(0)

]
= + CA|φ=n

(
δA

B δ
γ
µ + FA

µ
γ

:B

∣∣∣
φ=n

)
hB
(1),γ + CA:B

A
∣∣∣

φ=n
FA

µ
γ
∣∣∣

φ=n
hB
(1),γA

+
2

A(0)
CAB|φ=n FA

µ
γ
∣∣∣

φ=n

(
ḣB
(1),γ − Bν

(0)h
B
(1),νγ + Bν

(1),ϵγ FB
ν

ϵ
∣∣∣

φ=n

)
,

(5.13b)

δSmatter

δφA(x)

∣∣∣∣∣
(1)

[
ψ
∣∣
(0)

]
=

2
A(0)

CAB|φ=n

(
ḧB
(1) − Bµ

(0)ḣ
B
(1),µ + Ḃν

(1),ϵ FB
ν

ϵ
∣∣∣

φ=n
+

− Bµ

(0)ḣ
B
(1),µ + Bµ

(0)B
ν
(0)h

B
(1),µν − Bµ

(0)Ḃ
ν
(1),µϵ FB

ν
ϵ
∣∣∣

φ=n

)

+

(
CA:B

A
∣∣∣

φ=n
− (−1)|A|

1
A(0)

CB:A
A
∣∣∣

φ=n

)(
ḣB
(1),A − Bµ

(0)h
B
(1),µA

)
− (−1)|A|

1
A(0)

CB:A
A
∣∣∣

φ=n
Bµ

(1),γA FB
µ

γ
∣∣∣

φ=n

+ CB|φ=n

(
A(1),γ MBγ

:A

∣∣∣
φ=n
− Bµ

(1),γ

(
δB

Aδ
γ
µ + FB

µ
γ

:A

∣∣∣
φ=n

))
− (−1)|A| C:A

A
∣∣∣

φ=n
A(1),A − (−1)|A|A(0) C:A

A
B
B
∣∣∣

φ=n
hB
(1),AB ,

(5.13c)

where the left hand side denotes all contributions of the source part that are linear in ε.
From these three equations, we can now read off two things: First, it immediately shows us that the

only output coefficients that contribute for linear dynamics are C, CA and CAB. This is, of course, not
so surprising since one typically needs a quadratic Lagrangian to obtain linear equations of motion. Sec-
ond, it tells us precisely which contributions from those three output coefficients, evaluated on our flat
background, we need to obtain from the gravitational closure equations:

C −→ C:A
A
∣∣∣

φ=n
, C:A

A
B
B
∣∣∣

φ=n
, (5.14a)

CA −→ CA|φ=n , CA:B
A
∣∣∣

φ=n
, (5.14b)

CAB −→ CAB|φ=n . (5.14c)

All other coefficients will not appear in the equations of motion anyway. We will see in the following
section how these coefficients can be obtained from the gravitational closure equations.

One may imagine the procedure by this analogy: By calculating the perturbative equations of motion
of the abstract Lagrangian to 1st order, we only see a vague shadow cast by the exact theory. We can reduce
the vast complexity in the gravitational closure equations by looking at all the terms that cast precisely
those shadows – and ignoring the rest.

If one considers perturbations around a different background, for instance, one that is not flat or has a
contribution of the MAγ coefficient evaluated at the background, one proceeds similarly by collecting the
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terms in ε. However, the resulting expressions typically becomemore involved as additional contributions
appear.

5.2 PERTURBATIVE SOLUTIONS TO THE GRAVITATIONAL CLO-
SURE EQUATIONS

We will dedicate this section to a presentation of the required technical steps for the perturbative eval-
uation of the gravitational closure equations. This will include a quick review of parametrizations, the
inverse intertwiners, as well as the three input coefficients. Afterwards, we expand on the series expan-
sion of the output coefficients and how the system of linear partial differential equations will be translated
into a linear algebraic system for finitely many parameters. From a physical point of view, these parame-
ters constitute the constants of nature that we need to fix by experiments. Once all technical aspects have
been laid out in detail, we will apply these techniques to the concrete example of the area metric geometry
obtained from birefringent electrodynamics.

5.2.1 Perturbative parametrizations

Just as in the case of exact solutions, we will again need a parametrization of the frame conditions for
our gravitational fields on the screen manifold Σ, in terms of the geometric degrees of freedom. While, in
principle, we could simply use an existing parametrization, it has proven beneficial to first perform a linear
parametrization around the background nA. Afterwards, we series expand in the degrees of freedom.

The reason for this is the following: We ultimately want to read off the output coefficients – and their
derivatives – evaluated on the background geometry, as they appear in the perturbative equations of mo-
tion. With an exact parametrization, as they have been presented before, this will require us to evaluate the
closure equations at the jet space point φ = n. Once the linear reparametrization has been performed, we
can simply evaluate at 0. This will simplify the calculations in practice. Since such a linear reparametriza-
tion constitutes a canonical transformation (compare section 3.2.1), the results are independent of the
particular parametrization chosen.

Let us make this more precise for the two examples we considered throughout this thesis: In the case
of Maxwellian electrodynamics, we parametrized the pull-back of the metric to the screen manifold in
terms of six geometric degrees of freedom via

ĝαβ(φ) = Iαβ
A φA . (5.15)

If we want to perform a perturbative expansion around the Minkowski solution, we identify the back-
ground point n via

nA = −IA
αβγαβ , (5.16)

in terms of the constant inverse intertwiner and the flat Riemannian metric γ·· on the screen manifold Σ.
By performing a linear reparametrization we obtain

ĝαβ
perturbative(φ) := ĝαβ(n + φ) = −γαβ + Iαβ

A φA . (5.17)
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This is, of course, equivalent to the typical decomposition of the inverse metric gαβ = −γαβ + hαβ, where
hαβ captures the first-order perturbation.

In the case of general linear electrodynamics, we start with the parametrization we constructed in
section 4.2: The background solution, again given by a Minkowskian background, reads

Gabcd = ηa[cηd]b − ϵabcd . (5.18)

From this, we can identify the background point nA = (Na, Na, Nm) from

ĝαβ(N) = γαβ =: Iαβ
aNa , (5.19)

ĝαβ(N) = γαβ =: I a
αβ∆abNb , (5.20)

ĝαβ(N) = 0 =: I a
αβ

(
δb

a −
naNb

ncNc

)
ϵ(m)bNm . (5.21)

In the perturbative setting we can always choose the basis vector ta (compare equation 5.81) to be Na

since γαβ is a symmetric positive definite matrix. As a result we find that naNa = 1, Naϵ(m)a = 0 and

that I a
αβϵ(m)aNm = 0. We moreover expand the denominator in the field ĝαβ and find the perturbative

parametrization

ĝαβ
perturbative(φ) = γαβ + Iαβ

a φa , (5.22a)

ĝαβ,perturbative(φ) = γαβ + I a
αβ∆ab φb , (5.22b)

ĝαβ,perturbative(φ) = I a
αβ

(
δb

a −
∞

∑
k=0

(−1)k (nc φc)k na φb

)
ϵ(m)b φm

= 0 + I a
αβϵ(m)a φm − 1

3
γαβϵ(m)a φa φm +O(3) . (5.22c)

Sincewe expressed all fields as polynomials in φ, it will be a simple task to separate the different polynomial
orders of the jet variables when evaluating the gravitational closure equations.

Inverse intertwiner

Due to the non-linearity of the frame conditions, in general, it may become practically hard to explicitly
spell out the inverse map φ̂ in terms of the fields. This is especially true for all theories where we construct
the parametrization of the fields directly by a perturbative ansatz: Here, we cannot perform a well-defined
series expansion of the map φ̂ in terms of the field components. Any expansion order will contribute to
the calculations once the background fields are part of the game.

Luckily, it turns out that the explicit knowledge of the inverse map will not be required. The only
appearance of the map occurs in the form of the inverse intertwiner ∂φ̂A

∂gA (ĝ(φ)), which is, after all, a map
in terms of the degrees of freedom φ. This intertwiner can then, in practice, be obtained iteratively from
the completeness relation

∂φ̂A

∂gA
(ĝ(φ))

∂ĝA

∂φB (φ) = δA
B , (5.23)
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given that the 0th order of the intertwiner ∂ĝA

∂φB (φ) is non-zero. For this, we first expand both intertwiners
in φ, i.e.

∂ĝA

∂φA (φ) = I|0
A

A + I|1
A

AB φB + I|2
A

AB1B2 φB1 φB2 + . . . , (5.24a)

∂φ̂A

∂gA
(ĝ(φ)) = J |0

A
A + J |1

A
AB φB + J |2

A
AB1B2 φB1 φB2 + . . . , (5.24b)

where in the first line, all expansions coefficients are known from our chosen parametrization of the grav-
itational screen manifold tensor fields. In the second line, all coefficients are unknown and have to be
determined.

We can then evaluate the completeness relation for the different orders in φ: At 0th order we find the
requirement that

J |A0 A I|
A
0 B = δA

B . (5.25)

This tells us that the Moore-Penrose pseudoinverse of the matrix I|A0 B gives the 0th order coefficient
J |A0 A of the inverse intertwiner, in case the former has full rank F. Physically, this requirement cor-
responds to the statement that we need to be able to determine all F coordinates φ for the background
solution nA from the background tensor components and vice-versa.

When moving to higher-order contributions, we then find that the remaining terms that contain the
degrees of freedom φ must cancel, as the completeness relation has to be valid for any jet space point. As
a result, to first order in φ, we find the relation

0 = J |A0 A I|
A
1 BM + J |A1 AM I|A0 B , (5.26)

where we can use the pseudoinverse again to find the 1st order contribution, i.e.

J |A1 AM =− J |A0 B I|
B
1 BM J |B0 A . (5.27)

The same can be repeated iteratively for the higher orders, so we will not spell the results out explicitly.
If an exact parametrization is known, we can, of course, directly obtain the expansion coefficients. This
procedure, however, becomes particularly useful when turning the perturbative closure programme into
a computer algebra problem that can be solved algorithmically for any theory with the parametrization of
the fields and the input coefficient as its sole input.

Input coefficients

Once equipped with a perturbative parametrization, one proceeds as usual by calculating the three input
coefficients pαβ, MAγ and FA

µ
γ with the chosen parametrization. Afterwards, we can expand the expres-

sions again in terms of φ since we need to separate the different orders in the closure equations by orders
in φ later. To which order one must expand the input coefficients is crucially dependent on the order one
wants to calculate in the equations of motion. For instance, given that we want to calculate the equations
of motion to linear order, one typically finds from the gravitational closure equations that we need to
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calculate the input coefficients to the following orders

pµν order 2 ,

MAγ order 2 , (5.28)

FA
µ

γ order 1 .

In section 5.2.3, once we finally consider the evaluation of the gravitational closure equations in this per-
turbative treatment, we will make more precise to which order we need to calculate the input coefficients
and how to derive which orders are necessary.

5.2.2 Output coefficients

As in the previous section, we can now consider the output coefficients in our perturbative setting. For
this, we use our linear reparametrization and functionally Taylor expand the output coefficients around
the background solution in the following fashion:

CA1 ...AN [n + φ] =
∞

∑
k=0

1
k!

∫
Σ

d3y1 · · ·
∫

Σ
d3yk

δkCA1 ...AN

δφB1(y1) · · · δφBk(yk)

∣∣∣∣∣
φ=n

φB1(y1) · · · φBk(yk)

=:ΛA1...AN +
max

∑
m=0

ΛA1...AN |B
α1 ...αm φB

,α1...αm+

+
1
2

max

∑
p=0

max

∑
q=0

ΛA1 ...AN |B1
α1...αp

B2
β1...βq φB1 ,α1...αp φB2

,β1...βq

. . . (5.29)

where the notation ΛA1...AN |B
α1...αM :=

(
CA1...AN :B

α1...αM
)
(0) is introduced for the expansion coeffi-

cients. This provides the missing link to our discussion of the equations of motion: The coefficients Λ

that appear in the expansion of the output coefficient are required, for a consistent theory, to have the
same expression as the coefficients that appear in the equations of motion. By making a list of all the co-
efficients we need in the equations of motion (up to the required order), we find to which order we must
expand the output coefficients and evaluate the closure equations.

In the linear case, we have found that we only see the constant parts in CAB, up to linear parts in
CA and up to quadratic terms in C. For 2nd order equations of motion, as is required for the analysis
of gravitational waves that are generated by matter that is subject to linear gravitational interaction3, we
would need the constant part from CABC and for the lower N coefficients everything to one order higher
than in the linear case.

Given the decomposition of the output coefficient, it turns out that we can go even further to limit
our solution space. As the Λ are all evaluated on n, we know that they can only be given in terms of the
available background structure that we have on the screen manifold Σ, that is

• the identity δα
β.

• the totally antisymmetric tensor ϵαβγ and its inverse ϵαβγ.

3A prominemt example for this would be the generation of gravitational waves by a gravitationaly bound binary pulsar.
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• the background inverse metric pαβ(n) := γαβ and the metric we obtain by matrix inversion, as
well as its spatial derivatives.

• the background fields ĝA(n) and their spatial derivatives.

The totally antisymmetric tensor ϵαβγ is available in case Σ is orientable, whichwe assume since otherwise,
we would not have been able to derive the gravitational closure equations in the first place. Constructing
the constant output coefficients from the available structure is, of course, precisely what we described for
the curvature invariants in our analysis of the covariance part of the closure equations.

Since we are equipped with the constant intertwiners, we can isomorphically transform the tensors
with Φ indices into objects with only spatial indices. But equipped with these three tensors, we know that
the resulting object must be generated by all the possible background tensor combinations one can write
down.

For example, let us assume that we want to generate the coefficient ΛA|B
αβ in terms of the background

structure, in this case given by a Minkowskian background. Then, by introduction of the intertwiner, and
pulling all indices up with γ··, we find that any such coefficient can be written as

ΛA|B
αβ = I|ρσ

0 A I|λκ
0 B γργγσδγλµγκνΛαβγδµν , (5.30)

that is, in terms of the rank 6 tensor on Σ with symmetries in (αβ)(γδ)(µν). One finds that the most
general ansatz for tensors with these symmetries, built only with the available background structure, takes
the form

Λ(αβ)(γδ)(µν) = e1 · γαβγγδγµν + e2 · γα(γγδ)βγµν + e3 · γαβγγ(µγν)δ

+ e4 · γα(µγν)βγγδ +
1
2
· e5

(
γα(γγδ)(µγν)β + γβ(γγδ)(µγν)α

)
. (5.31)

Note that no terms containing ϵ··· need to be considered: The only possible combination that has six
indices one could come up with are terms in the form ϵ···ϵ···. However, this is equivalent to a linear
combination of γ··γ··γ·· terms and is thus already contained in all the terms written down above. Solving
the gravitational closure equations perturbatively for the coefficient ΛA|B

αβ, as a result, means that we
need to determine the five scalar coefficients e1, . . . , e5.

Since we always have the inverse background metric γ·· = p··(n) available, we can always use it to
pull the indices up. It thus suffices to generate contravariant tensorial ansätze. This means that the only
building blocks we need to consider reduce to γ·· and ϵ···.

The same procedure can be applied for any background we perturb around: For example, the pertur-
bation around a known cosmological solution of the equations of motion can, in the very same fashion,
be calculated, with the only difference that we may need to consider the available screen manifold fields
as the building blocks for the constant output coefficients (ΛA|B

αβ in the example above).

Tensor canonicalization

Let us illuminate the methods to obtain the ansätze in general in some more detail. It turns out to be, in
most parts, a group theory problem, with the surprising exception that after one has obtained an ansatz
where symmetries are implemented, one still needs to check if all basis terms are linearly independent.
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This is due to the fact that there may still be some dimensional dependent identities present. Afterwards,
we will show how to use these ansätze to efficiently solve the gravitational closure equations for the finitely
many scalar coefficients e1, . . . , efinite obtained from the construction.

The first step towards obtaining such a list of all tensorial ansätze is to read off the rank of the screen
manifold tensors and their symmetries. Since we can always pull all spatial indices down in the constant
intertwiner, we will assume that all indices are already pulled down, i.e.

I|0 AA = I|0 Aα1...αm , (5.32)

where m is the rank of the geometric field gA that belongs to the multi-index A. Note that in case we
have more than one field, we need to use all the constant intertwiners separately to generate the ansätze.
For instance, for an area metric that has three screen manifold tensors, we need to use all three constant
intertwiners in the construction and then sum up the separate ansätze in the end.

Using these constant intertwiners we can, in general, move to the following screen manifold ansätze

ΛA1 ...AN |B1
M1 ...BM

MM = I|0 A1A1 · · · I|0 ANAN · I|0 B1B1 · · · I|0 BNBN

×ΛA1 ...ANB1M1 ...BMMM . (5.33)

We can immediately read off some symmetries of these constant coefficients. First of all, since the output
coefficient is totally symmetric in its indices A1, . . . , AN , we have an exchange symmetry between the
differentAi blocks. Moreover, due to the symmetries of the derivative, it follows that we have an exchange
symmetry of the BiMi blocks. Since theMi multi-indices stem from spatial derivatives, these blocks are
totally symmetric in their spatial indices.

Further symmetry conditions are then imposed by the screen manifold fields: Since all algebraic sym-
metries of the field gA are inherited by the intertwiner, i.e.

SAB I|0 AA = I|0 AB , (5.34)

the corresponding symmetrizer is applied to themulti-indices on our constant output coefficient and, thus,
introduces additional symmetry conditions on the coefficients.

Acting with the symmetries on the indices of the tensorial ansätze is, as claimed above, a group-
theoretic problem. These (mono-term) symmetries of the output expression can be represented as a sub-
group L of the signed symmetric group, defined as {−1, 1} × SN with SN being the symmetric group
since for a tensor T of rank N we have the following symmetry

Tα1 ...αN = εTπ(α1 ...αN) . (5.35)

For example, if a constant coefficient Λαβγδ is symmetric in the indices α, β and γ, δ then its symmetries
are represented by the three elements

L =

(1,

1 2 3 4

1 2 3 4

), (1,

1 2 3 4

2 1 3 4

), (1,

1 2 3 4

1 2 4 3

)

 . (5.36)

In the very same fashion, one finds that each possible assignment of indices α1, . . . , αN to the tensor slots
of our γ·· · · · γ·· terms for N even, and ϵ···γ·· · · · γ·· for N odd (and additional tensors, depending on
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the available structure from the background geometry) is represented by a permutation. For example, in
case of the constant coefficient Λαβγδ we have two γ·· to generate the coefficient. All the possible index
assignments, ignoring the symmetries of γ·· itself for now, are the 4! = 24 permutations

C =



γαβγγδ︷ ︸︸ ︷1 2 3 4

1 2 3 4

 ,

γβαγγδ︷ ︸︸ ︷1 2 3 4

2 1 3 4

 ,

γγβγαδ︷ ︸︸ ︷1 2 3 4

3 2 1 4

 , . . .


. (5.37)

However, we dohave internal symmetries of our two building blocks themselves. Due to those symmetries,
it is clear that not all of the permutations are linearly independent and we must take care of these as well.
At this point it is no surprise that, also here, we deal with another subgroup of the signed symmetric group
of slots N: In our example from above this subgroup is given by the eight element group

S =
{
(1,

1 2 3 4

1 2 3 4

), (1,

1 2 3 4

2 1 3 4

), (1,

1 2 3 4

1 2 4 3

), (1,

1 2 3 4

2 1 4 3

),

(1,

1 2 3 4

3 4 1 2

), (1,

1 2 3 4

4 3 1 2

), (1,

1 2 3 4

3 4 2 1

), (1,

1 2 3 4

4 3 2 1

)
}

, (5.38)

and similarly for terms containing an ε, where the use of the signed symmetric group finally becomes
important.

Both symmetries of the output slots and the internal symmetries of the building blocks must be ulti-
mately considered to identify all linearly independent index assignments, i.e. all assignments that cannot
be obtained by employing any of the stated symmetry operations. As a result, it turns out that those
assignments of interest lie in the double coset

L \ C/S . (5.39)

Finding a basis is then a mere problem of finding a representative for each orbit, and luckily algorithms
exist from computational group theory that allow us to obtain such a traversal of the double coset in
practice, given a subgroup L and S .



5.2 Perturbative Solutions to the Gravitational Closure Equations | 151

DEFINITION TENSORIAL ANSÄTZE
The tensorial ansätze for a constant coefficient of rank N are double-coset representatives of the double
coset L \ C/S , with

• L being the subgroup of the signed symmetric groupwith N symbols that describes the symmetries
of the output coefficient,

• C being the symmetric group with N elements and represents the space of all possible assignments
of the N index labels to the N slots of the building blocks,

• S being the subset of the signed symmetric group that describes the internal symmetries of the
building blocks themselves.

The canonical form can be obtained by traversal algorithms that select one representative per orbit.

The original, rather naïve implementation by the author (seeWolz (2018)) that generates such a traver-
sal of the double-coset forMinkowskian backgrounds starts by spelling out all the possible terms and then
iteratively applying the symmetries. Afterwards, it brings the indices into lexicographic order and uses
Gaussian elimination to eliminate all remaining linearly dependent objects from the same orbit. Luckily,
more elegant solutions exist that can be used to obtain the representatives in practice.

One particularly efficient algorithm that gives a canonical representative per orbit was given by Butler
(1982) (and further expanded since then, see for example Slattery (2001)) for generic groups L and S .
Many different publicly available implementations of the algorithm exist that can be used to obtain the
tensorial ansätze4.

Dimensionally dependent identities

Given the double coset representative for our constant output coefficient, our job of reducing terms is,
however, not over. It turns out that we still find linear dependencies between the expressions. Take for
example a constant output coefficient of rank 7, where we find the following nine canonical representatives
of the double coset constructed with ϵ··· and γ··:

ϵµ(α|(γγδ)|β)γλκ , ϵµ(α|(λγκ)|β)γγδ , ϵµ(λ|(γγδ)|κ)γαβ ,

ϵµ(γ|(αγβ)(λγκ)|δ) , ϵµ(λ|(αγβ)(γγδ)|κ) , ϵµ(α|(γγδ)(λγκ)|β) , (5.40)

ϵ(α|(λ|(γγδ)|κ)γ|β)µ , ϵ(γ|(λ|(αγβ)|κ)γ|δ)µ , ϵ(λ|(α|(γγδ)|β)γ|κ)µ .

4One notable example is the open-source Python package sympy.
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However, if we assign to each of the nine tensor monomials from above a vector of its components, i.e.

ϵµ(α|(γγδ)|β)γλκ 7−→



ϵ1(0|(1γ1)|1)γ11

ϵ1(0|(1γ1)|1)γ12

ϵ1(0|(1γ1)|1)γ13

ϵ1(0|(1γ1)|1)γ21

ϵ1(0|(1γ1)|1)γ22

. . .


, (5.41)

and perform Gaussian elimination, we find that only six of these monomials are indeed linearly inde-
pendent. As a result, we need to eliminate the linearly dependent ones from our list of ansätze. Similar
observations can be made for constant coefficients of rank larger than 7.

It turns out that these identities are dependent on the dimension of the screen manifold Σ, and we
would find other linear dependencies if we would consider the ansätze in different dimensions. This is not
the first time that we have encountered such identities that are dependent on the dimension of the screen
manifold: We have observed such dimensionally dependent identities before in the previous chapters by
repeating arguments similar to the ones made by Lovelock to derive useful identities (Lovelock, 1970).
Such identities can, in practice, also be obtained by considering an over-antisymmetrization (Edgar and
Höglund, 2002). These over-antisymmetrizations in d dimensions vanish identically, i.e.

(d + 1)! δb1
[a1
· · · δbd+1

ad+1]
= 0 . (5.42)

By contraction of this with tensors of interest it is possible to derive non-trivial identities for tensors that
are, however, dependent on the dimension. For instance, following a discussion of Edgar and Höglund
(2002), we canuse this over-antisymmetrization to show that theWeyl tensor vanishes in three dimensions:
First one contracts two of its four indices with the over-antisymmetrized δ · · · δ tensor defined above,
naturally yielding zero

δ
ρ

[α
δσ

βδ
µ
γδν

δ]Wµν
λκ = δ

ρ

[α
δσ

βWγδ]
λκ = 0 . (5.43)

Contracting κ with δ we find

δ
[ρ
[α

Wβγ]
σ]λ = 0 , (5.44)

and by further contracting λ and γ we finally find that, indeed, the Weyl tensor vanishes in three dimen-
sions.

Another interesting example can be derived for an endomorphism Ma
b in dimension N. Here, the

over-antisymmetrization

Mc1
[c1

Mc2 c2 . . . McN cN δa
b] = 0 , (5.45)

gives the Cayley-Hamilton theorem (Edgar and Höglund, 2002). This can further be generalized to derive
syzygies between different endomorphisms (see for example Ouchterlony (1997); Sneddon (1996) and
Sneddon (1998)).
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However, using this method to derive identities is highly dependent on the tensor one considers. It
requires that there are non-trivial contractions between the δ · · · δ operator and the tensor under consid-
eration. One can generate all these non-trivial contractions by taking into account the standard Young
tableaux of the δ · · · δ operator and its property that it is traceless, and then eliminate all linear dependent
terms.

To illustrate this, we again consider the example above: Due to the symmetrization in the (αβ), (γδ)

and (λκ) blocks, any non-trivial over-antisymmetrization must be performed over two indices on the ϵ···

block and over one index at each of the γ blocks. One example is the expression

0 = ϵ[µα|γγδ|βγ|λ]κ

=
1
4

(
ϵµ[α|γγ|δ|βγ|λ]κ − ϵα[µ|γγ|δ|βγ|λ]κ + ϵδ[µ|γγ|α|βγ|λ]κ − ϵλ[µ|γγ|α|βγ|δ]κ

)
= . . . ,

where we took the representative of the first term in (5.40) and ignored the symmetrizations in the three
index blocks on purpose. We can then read off the linear dependencies between our basis terms above, by
reinstating the symmetries in the (αβ), (γδ) and (λκ) blocks again. Three such over-antisymmetrizations
exist which confirms the brute-force result we obtained by Gaussian elimination.

When performing perturbative gravitational closure to obtain the coefficients appearing in the linear
perturbations, it suffices to simply eliminate the linearly dependent terms by performing Gaussian elim-
ination. The matrices one obtains are often small enough not to be a calculational bottleneck. However,
moving to higher-order perturbations, one usually deals with constant output coefficients of ranks higher
than twelve5. In those cases, the matrices become large enough (with thousands of rows and hundreds of
columns) such that having an alternative option to discover the linear dependencies becomes increasingly
valuable.

Since we are finally equipped with a method to generate all the constant output coefficients that can
appear in the gravitational closure equations, we can start to analyse how the equations have to be evalu-
ated and how this presents us with a significant linear algebraic problem for the scalar coefficients ei that
appear from the tensorial ansätze we generated.

5.2.3 Solution algorithm

In order to solve the gravitational closure equations perturbatively, that is, to determine the scalar coeffi-
cients ei in the output coefficients, we again reparametrize by transforming to the jet space point n + φ,
such that the degrees of freedom parametrize the deviation from the background solution. Suppose we
now insert all the expressions we obtained in the previous sections, both the input coefficients and the
series expansion of the output coefficients. In that case, we obtain a polynomial in the jet space variables.
Since the gravitational closure equations are linear homogeneous partial differential equations and must
be fulfilled at each jet space point, i.e. for all values for the degrees of freedom and their derivatives, we

5The tensor of rank 12 have 312 = 531441 components, which corresponds to the columns of the matrix we need to diag-
onalise. In the same fashion, the number of double coset representatives grows with the rank of the tensor, which makes the
brute-force Gaussian elimination impractical at some point.
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find that all coefficients appearing in front of the jet variables need to vanish separately. This gives us lin-
ear algebraic equations for the constant output coefficients that appear from the expansion of the output
coefficients.

Let usmake thatmore clear by considering a specific closure equation. If we expand all the expressions
in (C3) around n, we obtain the following polynomial in the perturbative degrees of freedom φ, i.e.

0 =

[
2(deg P− 1)ΛAB p(µ|ρ

∣∣∣
0

FA
ρ
|ν)
∣∣∣
0
+ ΛB|A

(µ| MA|ν)
∣∣∣
0
−Λ|B

µν

]
+

+

2(deg P− 1)

(
ΛAB|M p(µ|ρ

∣∣∣
0

FA
ρ
|ν)
∣∣∣
0
+ ΛAB

(
p(µ|ρ

:M

∣∣∣
0

FA
ρ
|ν)
∣∣∣
0
+ p(µ|ρ

∣∣∣
0

FA
ρ
|ν)

:M

∣∣∣
0

))

+ ΛB|MA
(µ| MA|ν)

∣∣∣
0
+ ΛB|A

(µ| MA|ν)
M

∣∣∣
0
−Λ|MB

µν

φM

+

2(deg P− 1)ΛAB|M
α p(µ|ρ

∣∣∣
0

FA
ρ
|ν)
∣∣∣
0
+ ΛB|A

(µ|
M

α MA|ν)
∣∣∣
0
+ 2 ΛB|A

α(µ| MA|ν)
:M

∣∣∣
0

−Λ|B
µν

M
α + 3Λ|MB

αµν

φM
,α

+ . . . , (5.46)

where we naturally omitted the remaining (infinitely many) terms that arise from the expansion. Since
these equation must be fulfilled for all values of φ and its derivatives, as described above, we can read off
several independent relations for the constant output coefficients. But, at this point, we still have infinitely
many constant coefficients.

However, it turns out we do not need all the coefficients but only the ones that appear in the pertur-
bative equations of motion to the desired order since we will discard the remaining coefficients anyway.
From the equations of motion of the linear perturbations, we know that we need

C −→ Λ , Λ|A
A , Λ|A

A
B
B , (5.47a)

CA −→ ΛA , ΛA|B
B , (5.47b)

CAB −→ ΛAB . (5.47c)

All the other coefficients do not contribute to the equations of motion of the linear perturbation modes.
In the same fashion, we can associate to each of the constant output coefficients the corresponding lowest
perturbation order where they appear in the equations of motion. Let us now look at each of the relations
in equation (5.46) separately. We see that the 0th order contribution gives us a relation between three
of the constant output coefficients ΛAB, ΛA|B

α and Λ|Bµν, all of which do make their appearance in the
linear equations of motion. As a result, this is a relation we want to evaluate.

In the case of the next coefficient, the one in front of the φM term, the situation is already different.
Here, we see that the coefficient ΛAB|M, ΛA|M

α and Λ|MN
αβ occur, all three of which do not appear in

the equations of motion of the linear perturbations but the ones of the 2nd order perturbations. As a result,
ideally, wewould use this relation to express the scalar coefficients from the tensorial ansätze of the highest
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perturbation order constant output coefficients in the equation in terms of the lower perturbation order
coefficients. But then, no restriction on the coefficients appearing in the linear equations of motion arises,
and we do not need to consider the equation when deriving linear field equations.

One complication could arise in the relations that needs to be treated with great care: It may be pos-
sible to combine relations that seemingly determine higher perturbation order coefficients algebraically
such that we eliminate the highest perturbation order coefficients. In this case, we would have drawn the
wrong conclusion because the relations do contribute to the solution. This is analogous to how hidden
integrability conditions may arise in the Cartan-Kuranishi algorithm and must be considered to properly
analyse the solution space of a system of partial differential equations.

In the example of (C3), this means that if we are interested in linear dynamics, one can check that
no such combination can be found and, thus, we only need to evaluate the 0th order term in the series
expanded equation. In the same fashion, we then analyse all closure equations and find the relations that
contribute to the relations.

Once all the relations are identified, we can also read off which orders of the input coefficients are
required. Solving a relation is then just an exercise of generating the tensorial ansätze, as described in
the previous section, inserting the definition of the 0th order of the intertwiners and all input coefficients
and their derivates, and afterwards solving the resulting linear equations for the scalar coefficients – either
with the help of computer algebra or by hand.

DEFINITION PERTURBATIVELY SOLVING THE GRAVITATIONAL CLOSURE
EQUATIONS

A perturbative solution of order k to the gravitational closure equations, giving the equations of motion
to perturbations of orders up to k, is obtained by performing the following algorithm:

1. Formally transform each closure equation from φ to n + φ and expand around n.

2. To each constant output coefficient appearing in the series expansion, associate the lowest pertur-
bation order for which the coefficient appears in the equations of motion.

3. To each coefficient appearing in front of the φ (and derivatives) polynomials (called a relation),
associate the highest perturbation order of a constant output coefficient appearing in this relation.

4. Check for all relations of perturbation order k + 1 if one can obtain a relation of perturbation order
k by algebraical means.

5. Solve all relations of order 0, . . . , k.

“The formal theory of system of partial differential equations” perspective

The fact that we need to check if higher perturbation order relations can be manipulated such that they
give restrictions on the constant output coefficients of interest bears a striking resemblance to the hidden
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integrability conditions that may appear in the Cartan-Kuranishi algorithm. This similarity is, in fact, not
by accident:

Remember that in the framework of the formal theory of differential equations, one makes a formal
series expansion of the dependent variables uα(x) of the differential equations. Each of the expansion
coefficients uα

µ is then coordinates in a jet bundle and is of some order given |µ|. The aim in this theory
is to ultimately be able to construct a solution to the partial differential equation order by order, i.e. such
that the coefficient uα

µ1...µk
is either

• given as functions of the lower order coefficients uα
µ1 ...µl

for l < k, or

• has to be provided as initial data .

In order to judge this correctly, it is clear that we need to make sure that all the integrability conditions
are present. This is decided upon the highest derivative coefficient in each equation. One looks at the geo-
metric symbol, where the coefficients in front of the highest order uα

µ are ordered by some class respecting
order.

Our aim is, of course, almost entirely the same: We formally expand the gravitational closure equa-
tions first – not around zero but around the background solution – and then want to be able to iteratively
construct a solution to the system, order by order, in the sense that we try to express as many of the higher
perturbation order coefficients in terms of the lower perturbation order ones. Since φ is arbitrary, we find
the equivalent collection of algebraic relations that must be fulfilled. Where our algorithm now does de-
viate is that, instead of classifying the expansion coefficients Λ in the relations by their differential order,
we classify them by their perturbation order. This order is determined by the equations of motion of the
perturbations. The remaining constructions stay the same: At each perturbation order, we can build a
symbol that collects all the coefficients appearing in front of the highest perturbative order coefficient to
check for hidden integrability conditions – that is, hidden lower perturbation order relations.

Note that in our setting, we cannot obtain any new information by considering prolongations of our
series expanded system, i.e. derivatives of the equations by φA

,A. If one were to calculate this, one would
obtain a polynomial φ, where we still get all of the relations we found in the original equation, except the
0th order. As a result, all the information we need is already present in our formal expansion. Integrability
conditions, in this case, do arise with respect to perturbation order, not differential order. Still, the pro-
cedure remains the same: Take all of the next-order relations and check if we can generate a lower-order
relation from it.

We are now perfectly equipped to perturbatively solve the gravitational closure equations from a the-
oretical point. In practice, however, it is far from trivial to actually follow all of the steps required towards
obtaining the solution. It is the 4th step of the algorithm, in particular, the identification of hidden rela-
tions, that proves to be incredibly complicated6.

But also from a computational perspective, one quickly finds in practice that thematrices and tensorial
ansätze involved drastically increase in complexity with each perturbation order. In some cases already the

6The cheap trick is to solve the relations up to one order higher than we would like to and getting rid of all the coefficients of
higher perturbation order in the end. Here we are guaranteed that we indeed implemented all the hidden relations – given that
they exist.
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linear dynamics presents challenges. For instance, if one solves the equations for the linear dynamics of a
general principal polynomial of degree 4, the tensorial ansätze involved are of ranks up to 12 (Schneider,
2017).

REMARK
All of the steps in our algorithm may sound like a somewhat bloated approach, and one may argue that
much simpler steps may suffice to arrive at the same conclusions: For example, for linear field equations,
one may argue that, since we need the Lagrangian to 2nd order, it suffices to require the hypersurface
deformation algebra to 2nd order and solve this directly. However, it was shown (Schneider, 2017) that
this does not give all the relations necessary to determine the constant output coefficients.

One may also argue that we can expand C to 2nd order, CA to 1st order and CAB to 0th order directly
and, in each closure equation, trace the occurrences of O(φn) terms to decide if a relation needs to be
evaluated or not. If done carefully, the conclusions would be the same in almost all of the steps of our
algorithm, but the fourth: Since the only information we are left with about the higher orders are the
O(φn) expressions, it is impossible to decide if we can algebraically combine higher perturbation order
relations into relevant relations. As a result, the obtained gravitational dynamics may still contain hidden
relations between its gravitational constants.

Required evaluation order (up to hidden relations)

Of course, in practicewewill not burden ourselveswith calculating arbitrarilymany expansion coefficients
to read off relations that we will ultimately not need. Luckily, we can analyze each of the gravitational
closure equations separately and analyze to which perturbation order they can contribute – up to hidden
relations that can appear in the next perturbation order relations. Assuming we want the equations of
motion of the perturbation up to order k, then we found that in general we need the output coefficients
up to order k + 1. Even further, one finds that

C −→ Λ , Λ|A
A , , . . . , Λ|A1

A1 ···Ak+1
Ak+1 , (5.48a)

CA −→ ΛA , ΛA|A1
A1 , . . . , ΛA|A1

A1 ···Ak
Ak , (5.48b)

· · · ,

CA1...Ak+1 −→ ΛA1...Ak+1 . (5.48c)

If we enter this into the gravitational closure equations, we can read off for each equation to which order
we need the relations. The results are summarized in table 5.1.

One notable closure equation, where one easily can miss a relation is (C5): Here, due to the deriva-
tive acting on the first term and the spatial derivatives in the second term, a relation contributing to our
constant output coefficient follows from the relation belonging to φA1 · · · φAk+1 , although all other k + 1

perturbation order relations do not need to be evaluated anymore (up to hidden relations, of course).
We still have not specified to which order we need the input coefficients. In general, it is dictated by

all the relevant relations one identified – including the hidden relations. Typically, we find that the orders,
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Closure Equation Minimal Evaluation Orders

MAγ
∣∣∣
0
= 0 MAγ

∣∣∣
0
6= 0

(C1) 0, . . . , k 0, . . . , k

(C2) 0, . . . , k− 1 0, . . . , k− 1

(C3) 0, . . . , k− 1 0, . . . , k− 1

(C4) 0, . . . , k 0, . . . , k− 1

(C5) 0, . . . , k,
(

φ
)k+1 0, . . . , k,

(
φ
)k+1

(C6) 0, . . . , k− 1 0, . . . , k− 2

(C7) 0, . . . , k− 2 0, . . . , k− 3

(C8N) 0, . . . , k 0, . . . , k

(C9N) 0, . . . , k− 1 0, . . . , k− 1

(C10N=2...k) 0, . . . , k− N 0, . . . , k− N

(C11N=2...k) 0, . . . , k− N 0, . . . , k− N

(C12N=2...k) 0, . . . , k− N 0, . . . , k− N

(C13N=2...k) 0, . . . , k− N + 1 0, . . . , k− N

(C14N=2...k+1) 0, . . . , k− N + 1 0, . . . , k− N + 1

(C15N=2...k) 0, . . . , k− N 0, . . . , k− N

(C16N=2...k) 0, . . . , k− N 0, . . . , k− N − 1

(C17N=2...k) 0, . . . , k− N 0, . . . , k− N − 1

(C18N) 0, . . . , k− 1 0, . . . , k− 1

(C19N) 0, . . . , k 0, . . . , k− 1

(C20N even) 0, . . . , k + 1 0, . . . , k

(C21N odd) 0, . . . , k + 1 0, . . . , k

Table 5.1 Theminimal required evaluation order of each closure equations. Due to hidden relations it
is possible that we need one more perturbation order for each closure equation.

as presented in table 5.2, give a good indication to which order the intertwiners and input coefficients
have to be calculated. Note that, luckily, the highest perturbation order in each relation will always cou-
ple to the 0th orders of the input coefficient. As a result, it can be decided if hidden relations exist even
without having the higher orders of the input coefficients. Even if it turns out that we need to calculate a
higher-order term in an input coefficient, once all hidden relations are revealed and added to our system,
no further hidden relations can arise.

This concludes the abstract discussion of solving the gravitational closure equations perturbatively.
This algorithm can, in principle, be performed completely by hand (and impressively, has been in the
past, see Stritzelberger (2016)), or aided by computer algebra system, see for example (Schneider, 2017;
Wierzba, 2018; Beier, 2018; Mansuroglu, 2018) where some of the tedious steps have already been auto-
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Coefficient Minimal required perturbation orders

∂ĝA

∂φA (φ) k
∂φ̂A

∂gA (ĝ(φ)) k

FA
µ

γ)(φ) k
pµν(φ) k + 1

MAγ(φ) k + 1

Table 5.2 The typical minimal required evaluation order of the intertwiners and input coefficients.
Hidden relations can, again, increase the required order. In some cases properties of the
fields, of a particular theory under investigation, can also introduce some simplifications
but the table still provides an useful indicator.

mated to some degrees. Initial efforts were already made7 to create a completely automated system that
can perform perturbative closure to arbitrary order8, depending on the available computational resources.
The parametrization ĝ and the input coefficients MAγ and pµν are its sole input. Its output is all the con-
stant output coefficients that can then be inserted into the perturbative equations of motion.

5.3 THE SPACETIME PICTURE AND GAUGE INVARIANTS

Once we have solved all the gravitational closure equations perturbatively, with the procedures described
in the previous section, we have all the constant coefficients appearing in the perturbative equations of
motion. These are expressed with some, finitely many, gravitational constants g1, . . . , gfinite that need to
be obtained by experiments.

Still, there is the subtlety that not all gravitational degrees of freedom are physical but still contain
gauge degrees of freedom. In order to obtain physical predictions, one first needs to identify the gauge-
invariant quantities and formulate the predictions in terms of these.

In the following section, we will describe how the identification of gauge invariants can be dealt with.
It will, however, turn out to be a rather open question for the second-order perturbation theory (and
higher).

5.3.1 Point identification maps

If we want to understand how gauge transformations will act on our geometric degrees of freedom, we
need to move back to the spacetime picture, where our geometry is a tensor field (density) onM. This
stems from the fact that for gravity, the underlying symmetry group is given by the diffeomorphism group
ofM.

Obtaining the spacetime geometry is, of course, a simple task with all the constructions we have at
hand in the constructive gravity framework: Using the degrees of freedom φ, we can create the hyper-

7The source code is publicly available at https://github.com/florianwolz/prime.
8Performance-wise it is roundabout the level of a well-educated master student.

https://github.com/florianwolz/prime
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surface fields with the help of the parametrization ĝ(φ). These fields can then be lifted to the spacetime
tensor field G with the help of the observer frame.

The important realization is that, since we have the (arbitrarily precise) approximate solutions to the
equations of motion labelled by the homotopy parameter ε, i.e.

φ(t, x; ε) = nA(t, x) + ε hA
(1)(t, x) +

ε2

2
hA
(2)(t, x) +

ε3

6
hA
(3)(t, x) + . . . , (5.49)

we obtain an ε-family of spacetime geometries that each live on their own spacetimeMε. Each of these
are, however, related by diffeomorphisms. This allows one to introduce a family of diffeomorphisms ϕε

called a point identification map fromM0, that is the spacetime of the background solution, andMε. We
can compare all the different geometries to each other by pulling them back toM0, i.e.

ϕ∗ε (Gϵ) =
∞

∑
n=0

εn

n!
∂n(ϕ∗ε (Gε))

∂εn

∣∣∣∣∣
ε=0

=: N +
∞

∑
n=1

εn

n!

(
δH(n)

)
, (5.50)

where N is the background geometry, and we have the different perturbations
(

δH(n)

)
, which are all

tensor fields onM0. Pulling back the geometry to a common manifold is, in fact, a necessity: Only this
makes it possible to compare the separate perturbations and legitimately state that they are small deviations.
Note that the perturbations are dependent on the particular choice of point identification map. See figure
5.2 for an illustration of the ideas of point identification maps (Bruni et al., 1997).

However, which point identification map is chosen is completely arbitrary. But having two different
point identification maps φε and ψε, this induces a one-parameter diffeomorphism onM0 via

Φε := φ−ε ◦ ψε , (5.51)

which is notably not a one-parameter group diffeomorphism. Still, it turns out that these diffeomorphisms
are exactly where gauge transformation in our perturbative setup come in again.

5.3.2 Gauge transformations

The diffeomorphism constructed in the previous section is easily seen to fail to be a one-parameter group
diffeomorphism. Since we have

Φε ◦Φδ 6= Φε+δ and Φ−ε 6= Φ−1
ε ,

it can not be formulated in terms of the flows of a vector field ξ. However, it turns out that one can create
arbitrarily complex diffeomorphisms by combining the flows of the different vector fields.

For example, for two vector fields ξ(1) and ξ(2) we can displace a point p in a manifoldM first for a
parameter interval of ϵ along the integral curves of ξ(1), and afterwards by an interval of ϵ2/2 along the
integral curves ξ(2). Diffeomorphisms constructed in that fashion are termed knight diffeomorphisms9.

9The name is inspired from the moves of a knight in chess, where one first makes a large step, followed by a smaller step in
another direction.
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ε

Mε

M0 :=Mvacuum

p q

“p” Gε

N δGε

Xε Yε

Φϵ = X−1
ε ◦ Yε

Figure 5.2 Point identification maps identify points of the vacuum spacetime (Mvacuum, N) with
points in the spacetime (Mε, Gε). While the geometry Gε is a tensor field (density) on
the spacetimeMε, the vacuum geometry and the perturbation δGε are objects in vacuum
spacetime. Two different choices of point identification maps induce a gauge transforma-
tion Φϵ in the vacuum spacetime.

DEFINITION KNIGHT DIFFEOMORPHISMS
A knight diffeomorphism of rank n is a one-parameter diffeomorphism R×M −→M that is defined in
terms of n flows ϕ(1), . . . , ϕ(n), generated by vector fields ξ(1), . . . , ξ(n) (called the generators of Φ) via

Φε := ϕ
(n)
εn/n! ◦ · · · ◦ ϕ

(2)
ϵ2/2 ◦ ϕ

(1)
ε .

This arcane construction turns out to be incredibly useful, as one can show that a one-parameter family
of diffeomorphisms – which includes the ones obtained from moving from one point identification map
to another one – can be approximated to order εn by a knight diffeomorphism of rank n (Bruni et al.,
1997). This makes them a helpful tool for analysing the action of gauge transformation in perturbation
theory.

One can, moreover, expand the pull-back of the a field by the gauge transformation Φε in terms of ε,
and find (see Bruni et al. (1997)) that it is given by applications of Lie derivatives in the direction of its
generators via

(Φ∗ε G) =
∞

∑
l1=0

∞

∑
l2=0
· · ·

∞

∑
lk=0
· · · εl1+2l2+···+klk+···

2l2 · · · (k!)lk · · · l1!l2! · · · lk! · · ·L
l1
ξ(1)
· · · Llk

ξ(k)
· · ·G . (5.52)
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If we spell out the expression by orders in ε, this gives us

(Φ∗ε G) =G + ε
(
Lξ(1)G

)
+

ε2

2

(
L2

ξ(1)
+ Lξ(2)

)
G

+
ε3

6

(
L3

ξ(1)
+ 3Lξ(1)Lξ(2) + Lξ(3)

)
G + . . . . (5.53)

We can now combine these results to analyze how the different perturbation modes onM0 transform
under a gauge transformation. For two gauge choices ψ and φ we find that the perturbations are related
via (

δH(1)

)ψ
−
(

δH(1)

)φ
=
(
Lξ(1) N

)
, (5.54a)(

δH(2)

)ψ
−
(

δH(2)

)φ
=
(
Lξ(2) + L

2
ξ(1)

)
N + 2Lξ(1)

(
δH(1)

)φ
, (5.54b)(

δH(3)

)ψ
−
(

δH(3)

)φ
=
(
L3

ξ(1)
+ 3Lξ(1)Lξ(2) + Lξ(3)

)
N+ ,

+ 3
(
Lξ(2) + L

2
ξ(1)

) (
δH(1)

)φ
+ 3Lξ(1)

(
δH(2)

)φ
, (5.54c)

. . . .

One then typically proceeds by writing down the spacetime geometry Gε in coordinates adapted to the
foliation, generated by the solutions φε, Nε and N⃗ε, and in terms of a Helmholtz-Hodge decomposition10.
Using the different transformation rules of the perturbation orders, see equation (5.54), we obtain partial
differential equations. One then needs to, at each perturbation order k, choose the vector field ξ(k) in such
a fashion that we eliminate four degrees of freedom from the different modes of the Helmholtz-Hodge de-
composition in such a fashion that the equations of motion are formulated in terms of gauge-invariant
quantities. This becomes a “computational tour de force” (Bruni et al., 1997) already at the second order
and, unfortunately, remains practically a rather open problem in general11.

Once we succeeded with the Herculean task of deriving the gauge-invariant quantities at each of our
required perturbation orders, we can, however, finally move to consider various physically relevant setups.
For instance, it would be possible to couple to two orbiting point sources and derive, with the help of the
second-order perturbations, how their orbital frequency changes due to the energy emitted as gravitational
waves. This setup provides a high precision test of gravitational theories and can, even without the direct
measurements of any gravitational waves, reveal much about a gravitational model (Taylor and Weisberg,
1982, 1989; Weisberg and Taylor, 2005).

Gauge fixing by harmonic coordinates

Before wemove on and apply everything presented so far in this chapter to a concrete example, the pertur-
bative gravitational closure of general linear electrodynamics, we will quickly comment on an alternative
possibility to fix the gauge within the constructive gravity programme.

10The precise method is highly dependent on the actual geometry under consideration. The procedure is standard for vector
and tensor modes of rank 2. For fields of higher rank, more work is required for the decomposition but can be done. See for
example Schneider (2017) for the decomposition in the setting of perturbative gravitational closure of a generic rank 4 principal
polynomial.

11See for example Nakamura (2007) and Nakamura (2012) for further details for a higher-order treatment of gauge invariants.
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In general relativity, a popular choice of gauge is the De-Donder gauge defined by the four equations

0 = ∂a

(√
−det ggab

)
. (5.55)

This choice, equivalently, corresponds to the particular coordinate choice of harmonic coordinates xa

defined via

∆gxa = 0 , (5.56)

with the Laplace-Beltrami operator ∆g. It turns out that we can always perform a gauge transformation
into such a coordinate system and, thus, can use this equation to fix four of the degrees of freedom.

In general, as laid out in great detail in the previous chapters, we do not have ametric. We can, however,
always obtain the Finsler metric g··(x, Ẋt) from the homogeneous function P⋆, constructed from the
principal polynomial and the inverse Legendre map, namely

gmn(x, Ẋt)vmwn :=
1
2

∂2

∂s∂t

(
P⋆(Ẋt + s · u + t · w

)2/deg P
∣∣∣∣
s=0,t=0

. (5.57)

With this object, we can then write down the analogue of the De-Donder gauge condition, i.e.

0 = ∂a

(√
−det g··(Ẋt)gab(∂t)

)
. (5.58)

This condition, regarding whether exact or perturbative, can then fix four degrees of freedom.
What must be checked, of course, is if such a coordinate system exists and if we always can find a

gauge transformation to move into this system. It turns out that both are true (Caponio and Masiello,
2019). This yields another method to fix the gauge freedom in the equations of motion that may be useful
in practice.

This concludes our theoretical discussion of perturbative closure. In the following section, we will
look at the dynamics of an area metric again and derive its linear dynamics with all of the techniques
laid out in this chapter. This would allow us, for instance, to study the propagation of gravitational waves
in such a theory and draw some conclusions compared to the “standard” theory of a Lorentzian metric
obeying the dynamics dictated by the Einstein-Hilbert action.

5.4 WEAKLY BIREFRINGENT ELECTRODYNAMICS

We have seen in chapter 4.2 that obtaining an exact solution to the gravitational closure equations for
general linear electrodynamics is somewhat involved. Still, areametric geometry and its ability to describe
the effect of gravitational birefringence is intriguing and provides a perfect testing ground for perturbative
gravitational closure (and has played an incredibly important rôle in its derivation and development of all
the techniques required for it). If followed carefully, one obtains its diffeomorphism invariant dynamics
and can study its interaction with (classical) matter fields12.

We will now present the results we obtain by performing the steps from the abstract discussion in the
previous section to obtain the dynamics of linear perturbations when expanded around a Minkowskian
area metric background. Physically, this corresponds to a setting of weakly birefringent electrodynamics.

12Quantum matter is another story, since it turns out the notion of the Dirac algebra must change radically.
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5.4.1 Minkowskian background solution

The discussion of weakly birefringent electrodynamics starts with choosing a suitable background solu-
tion. Physically, this corresponds to a setting where the gravitational effects are switched off and the
electrodynamical interaction, thus, reduces to Maxwellian electrodynamics. As a result, we find that our
background area metric N···· is induced by the Minkowski metric η such that

Nabcd = 2 ηa[cηd]b − ϵabcd . (5.59)

When projecting the flat areametric to the screenmanifold, as described in our exact discussion of general
linear electrodynamics in section 4.2, we find that

gαβ(N) = γαβ , (5.60a)

gαβ(N) = γαβ , (5.60b)

gα
β(N) = 0 , (5.60c)

with the flat Riemannian metric γαβ on the screen manifold. Additionally, in this setting we have the
following background values for lapse and shift

A(0) = 1 , (5.61)

Bµ

(0) = 0 . (5.62)

Note that this background solution is not derived, i.e. shown to be a solution of the equations of motion,
but the other way around: We impose that the background fields, described above, pose a solution to the
equations of motion and derive the coefficients in the equations of motion for an area metric. In this case,
to 0th order in the equations of motion, we find that, in order for the Minkowskian background to be a
solution in vacuo, the following output coefficients need to vanish

C|φ=n , C:A |φ=n . (5.63)

With this set-up, we are equipped to read off which output coefficients we need to calculate with the help
of the gravitational closure equations.

5.4.2 Required constant output coefficients

Thenext step involves identifying all the constant output coefficients fromour series expansion that appear
in the perturbative equations of motion to 1st order. For linear dynamics, we already spelled this out in
section 5.1, so we directly summarize the result that of all the constant output coefficients we need

C −→ λ|A
A , λ|A

A
B
B , (5.64a)

CA −→ ξA , ξA|B
B , (5.64b)

CAB −→ θAB . (5.64c)

Note that we introduced different greek symbols for each output coefficient evaluated at the background.
All remaining coefficients do not appear in the equations of motion. Thus, we will only look for relations
from the gravitational closure equations that relate these coefficients with each other.
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Observe that for the output coefficients C and CA we have a priori infinitely many constant output
coefficients since they can depend on infinitely many spatial derivatives of the degrees of freedom. We
will assume that we have at most second-order derivatives and leave the higher-order derivative theories
up for future research. As none of the presented techniques depends on the truncation, one can proceed
in the same fashion as we do in the following.

5.4.3 Parametrization

The next step is to set up the parametrization of the three projected fields from an area metric around
the background geometry. In section 5.2.1 we already presented a perturbative expansion of our exact
parametrization of the area metric. For historic reasons, we will use the endomorphism g· · instead of the
metric g··. Both are related via

gα
β = gασ gσβ . (5.65)

We can then, in our perturbative setting, parametrize the three screen manifold fields by the following
constructions

ĝαβ(n + φ) = γαβ + Iαβ
A φA , (5.66a)

ĝαβ(n + φ) = γαβ + Iαβ A
φA , (5.66b)

ĝα
β(n + φ) = Iα

β A
φA + f α

β(φ) , (5.66c)

with the γ antisymmetric and traceless endomorphism f defined by

f α
β(φ) =

∞

∑
n=1

(−1)n−1 1
2n

{
φ,
{

φ,
{

. . . ,
{

︸ ︷︷ ︸
n−1 curly brackets

φ,
[

φ, φ
]}}}}α

β
. (5.67)

In the commutator [·, ·] and anti-commutators {·, ·} brackets we use the endomorphisms created from
the degrees of freedom and the constant intertwiners via

φα
β := γβµ Iαµ

A φA , (5.68a)

φα
β := Iα

β A
φA . (5.68b)

For the sake of completeness we also spell out the three constant intertwiners. These are given by

Iαβ
A =

1√
2



√
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
√

2



αβ

A

, Iαβ
A

=
1√
2



√
2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
√

2



αβ

A

,

(5.69)
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and13

Iα
β A

=
1√
2



1 1√
3

0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

−1 1√
3

0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 − 2√
3

0 0 0



αβ

A

. (5.70)

The barred index labels A, A, A run from A = 1, . . . , 6, A = 7, . . . , 12 and A = 13, . . . , 17, respectively.
The inverses of the constant intertwiners are given by their transpose. One can check that the projectors
one obtains by contraction read

Iαβ
A I

A
µν = δ

(α
µ δ

β)
ν , (5.71a)

Iµν A
IAαβ = δα

(µδ
β

ν)
, (5.71b)

Iα
β A
IA

ν
µ =

1
2

(
δα

ν δ
µ
β + γαµγβν

)
− 1

3
δα

βδ
µ
ν , (5.71c)

and that the completeness relation

IA
A IAB = δA

B (5.72)

is indeed fulfilled.
For this perturbative parametrization, we have no inverse map φ̂ at hand. As described in section

5.2.1, however, we only need the inverse intertwiners. For the first and second subranges, labelled by the
degrees of freedom A = 1, . . . , 6 and A = 7, . . . , 12 they are given by

∂φ̂A

∂gαβ
= IA

αβ ,
∂φ̂A

∂gαβ
= 0 ,

∂φ̂A

∂gα
β
= 0 , (5.73a)

∂φ̂A

∂gαβ
= 0 ,

∂φ̂A

∂gαβ
= IAαβ ,

∂φ̂A

∂gα
β
= 0 . (5.73b)

For the 3rd subrange, A = 13, . . . , 17, we also obtain higher orders due to the non-linear terms in the

map ĝα
β. Using the iterative procedure we can obtain the inverse intertwiners for our parametrization

and find that they read

∂φ̂A

∂gαβ
= 0 +O(2) , (5.74a)

∂φ̂A

∂gαβ
= 0 , (5.74b)

∂φ̂A

∂gα
β
= IA

α
β +

1
2

(
γσρIA

α
σIρβ

M − γασIA
ρ

βIσρ
M

)
φM +O(2) . (5.74c)

13Note that this corresponds to the intertwiner γασI a
σβϵ(m)a in the parametrization we setup in 5.2.1.
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Here we already truncated the series after the 1st order since an inspection of the gravitational closure
equations, as well as the relations one reads off by virtue of the presented solution algorithm, tells us that
we only need the linear part.

This provides a viable parametrization of the areametric degrees of freedom to any perturbation order,
as one can check (Stritzelberger, 2016; Schneider et al., 2017; Mansuroglu, 2018). Using this, we can now
calculate the series expansion of the three input coefficients.

5.4.4 Input coefficients

Now the input coefficients can be calculated by simply inserting the parametrization obtained in the pre-
vious section into the expressions given in section 4.2. Wewill thus keep the discussion as brief as possible
and mainly state the results directly.

Non-local normal deformation coefficient

The exact non-local normal deformation coefficients for the three hypersurface fields read

Mαβγ =2
√

det g··ϵσγ(αgβ)
σ , (5.75a)

Mαβ
γ =

6√
det g··

ϵστ(αgτ
β)pσγ , (5.75b)

Mα
β

γ =−
√

det g··ϵγασgσβ +
3√

det g··
ϵβστ gασ pτγ . (5.75c)

In the last expression we used the fact that the coefficient MAγ obeys the chain rule (3.56) that allows to
calculate the expression for the third screen manifold field from the one we used in section 4.2 via

Mα
β

γ = gασ Mσβ
γ + gσβMασγ . (5.76)

Inserting the parametrization from equation (5.66), expanding the de-densitization and contracting with
the inverse intertwiner, we find the following expressions for the non-local normal deformation input
coefficient

MAγ = 2 ϵµγα IA
αβ Iβ

µ M
φM

+ ϵµγαIA
αβ

(
γσµIβτ

MI
σ

τ N
− γσµIστ

MI
β

σ N
+ γστIστ

MI
β

µN

)
φM φN +O(φ3) ,

(5.77a)

MAγ = 2 ϵµνα γνγ IAαβ Iµ
β M

φM

+ ϵµναIAαβ
(
− Iµγ

MIν
βN

+ γµσγγτIστ MIν
βN
− γµγγστIστ MIν

βN

− γµγγτβIνσ
MIτ

σ N
+ γµγγτβIστ

NIν
σ N

)
φM φN +O(φ3) , (5.77b)

MAγ = − ϵµνβγνγIA
α

βIαµ
M φM − ϵµγαIA

α
βIµβ M φM

+
1
2
IA

σ
ρ

(
ϵγ

αβγρµIαµ
MI

σβ
N − ϵγ

αργβµIαµ
MI

σβ
N + ϵγ

µργαβIαβ
MI

σµ
N

)
φM φN
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+
1
2
IA

σ
ρ

(
ϵγα

ρIσβ
MIαβN + ϵγ

α
βIσα

MIρβN + ϵγασγµνIµν
MIραN

)
φM φN +O(φ3) ,

(5.77c)

where we displayed the three subranges A = 1, . . . , 6, A = 7, . . . , 12 and A = 13, . . . , 17 separately.
Also, observe that the MAγ coefficient has no 0th order. This is not surprising, as this corresponds

to the metric induced sector for the flat Minkowski metric. As a result, we reproduce the fact that the
metric, for a 2nd degree principal polynomial, has a vanishing non-local normal deformation coefficient.
The same observation was made in all of the perturbative gravitational closure calculations so far around
a Minkowskian background (Wierzba, 2018; Beier, 2018).

Tangential deformation coefficient

Expanding the Lie derivative of each field separately, inserting the parametrization and contracting with
the inverse intertwiner, gives the tangential deformation input coefficients. We again display it for the
different barred subranges

FA
µ

γ = 2 IA
µσ γσγ + 2 IA

µσIσγ
M φM , (5.78a)

FA
µ

γ = −2 IAγσ γσµ − 2 IAγσIσµ M φM , (5.78b)

FA
µ

γ =

(
IA

µ
σ Iγ

σ M
− IA

σ
γ Iσ

µ M

)
φM +O(φ3) . (5.78c)

Note that the first two coefficients here are exact for any perturbation order considered. Only in the third
one a series truncation was made to the required order.

Metric from the principal polynomial

The last input coefficient is obtained by inserting the parametrization into the exact expression for the
coefficient pαβ one obtains from the principal polynomial

pαβ =
1
6

(
gαµgβνgµν − gαβgµνgµν − 2 gαβgµ

νgν
µ + 3 gµνgα

µgβ
ν

)
. (5.79)

By inserting all expressions we find, to 2nd order in the degrees of freedom, that

pαβ =− 1
3

γαβ+

+
(

γαγγβδIγδ M − Iαβ
M − γαβγγδIγδ

M − γαβγγδIγδ M

)
φM

+
(

γγδIαγ
MIδβ

N + γαδIβγ
MIγδN + γβδIαγ

MIγδN + 3 γγδIα
γ MIβ

δN

− γγδIαβ
MIγδN − γγδIαβ

MIγδ
N − γαβIγδ

MIγδN − 2 γαβIγ
δ M Iδ

γN

)
φM φN

+O(φ3) . (5.80)

As we now have all of the input coefficients, we could move on to deriving the relations from the gravita-
tional closure equations.
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5.4.5 Perturbative gravitational closure

In order to derive the relations for the constant output coefficients of our weakly birefringent theory, one
proceeds as described in the previous section: We first expand all the equations around n and separate
the polynomials in φ. Some simplifications can be made in this case since the input coefficient MAγ has
no 0th order term. Doing so carefully reveals – as an intermediate result, where we naïvely forgot about
the hidden relations for a moment – that indeed we need to evaluate each of the closure equations to the
orders presented in table 5.1.

We also find that (C14N) becomes irrelevant: by calculation of the coefficient appearing in the equa-
tion we find that it is (at least) of second order, i.e.

MB[µ|MA|ν]
:B +

(
deg P− 1

)
pρ[µ|FA

ρ
|ν] = 0 +O(2) . (5.81)

Since we can only evaluate the equation to 0th order, no information can be extracted from this.
The intermediate state, after collecting the relations from the closure equations, is summarised in table

5.3. Before we can proceed, we, however, must return to the issue of identifying potential hidden relations.
Doing so requires us to look at each closure equation to one perturbation order higher and check if we
can eliminate the highest perturbation order coefficients by algebraically combining the relations.

Hidden relations

As we have seen in (5.81) above, there is indeed a combination of input coefficients that we can employ to
potentially eliminate the highest order constant output coefficient of the equation: All we need to do is to
make a list of the relations from the closure equations that appear with the output coefficient contracted
with FA

µ
γ – which is most likely one from the covariance part of the closure equations – and one with the

same coefficient appearing with MAγ. Contracting the latter with the derivative MAµ
:B and subtracting

both equations and anti-symmetrizing in the free spatial indices µ and γ we may end up with a hidden
integrability condition if the constant output coefficient of perturbation order 2 remains in the equation.

Evaluating this careful for the constant output coefficient λB1
B1 B2

B2 B3
B3 , ξAB1

B1 B2
B2 , θA1 A2B1

B1 and
χA1 A2 A3 (describing the output coefficientCA1 A2 A3), we find that no such combination can be constructed,
because either second perturbation order coefficients remain in the resulting equation or the equation
vanishes identically. As a result, we can conclude that no hidden relations need to be considered for the
area metric.

5.4.6 Gravitational Lagrangian leading to linear dynamics

With all the relations at hand that need to be solved to determine all the coefficients in the equation of
motion (and equivalently in the gravitational Lagrangian), the remaining task is now simply a matter of
linear algebra.

The resulting expression, as we will quickly see, is rather complicated. For the sake of simplicity we
will introduce the following projected screen-manifold fields for the degrees of freedom and their local
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Closure Equation Allowed Orders Partial Differential Equation

(C1) 0, 1 0 = C δ
γ
µ −C:A

γ φA
,µ − 2 C:A

αγ φA
,αµ + C:AFA

µ
γ

+ C:A
αFA

µ
γ

,α + C:A
αβFA

µ
γ

,αβ

(C2) 0 0 = CA

(
δA

B δ
γ
µ + FA

µ
γ

:B

)
+ CB:AFA

µ
γ

(C3) 0 0 = 6 CAB pρ(µ|FB
ρ
|ν) −C:A

µν

(C4) 0, 1 0 = 6 CAB

(
pµν φA

,ν − pµν
,γFA

ν
γ
)
−C:AMAµ

:B

−CB:AMAµ −CB:A
αMAµ

,α −C:B
µ + 2 (∂αC:B

αµ)

(C5) 0, 1, φφ 0 = −6 pργ
(

∂µCA

)
FA

ρ
µ + 2 C:AMAγ + C:A

αβMAγ
,αβ

(C6) 0 0 = 4 CA(B1|M
Aγ

:B2) + 2 C(B1 :B2)
γ

(C82) 0, 1 0 = C:A
αβ φA

,µ −C:A
(α|FA

µ
|β) − 2 C:A

γ(α|FA
µ
|β)

,γ

(C83) 0, 1 0 = C:A
(αβ|FA

µ
|γ)

(C92) 0 0 = CA:B
(α|FB

µ
|β)

(C213) 1, 2 0 = C:A
(αβ|MA|γ)

Table 5.3 Closure equations to derive the coefficients in the equations of motion of the geometry of
weakly birenfringent electrodynamics.

velocities

φαβ := Iαβ
A φA , φαβ := Iαβ A

φA , φα
β := Iα

β A
φA , (5.82a)

kαβ := Iαβ
AkA , kαβ := Iαβ A

kA , kα
β := Iα

β A
kA . (5.82b)

Putting everything carefully together, we obtain the following expression for the gravitational Lagrangian:

Lbirefringent,linear(φ, ∂φ, ∂∂φ) = 4
(

g18 − 2 g19 + g20
)

+ 2
(

g19 − g18
)

γαβ · φαβ + 2
(

g20 − g19
)

γαβ · φαβ

+

[
1
3
(

g4 − 4 g2 − g3 + g6 − 2 g7
)

γαβγµν +
(

g3 + g6 − 6 g7 − 2 g9
)

δ
µ
α δν

β

]
· φαβ

,µν

+

[
1
3
(
8 g3 − 4 g2 + g4 + 4 g6 − 44 g7 + 12 g8 − 12 g9

)
γαβγµν

+ 2
(
4 g7 − g3 − 2 g8 + g9

)
γµαγβν

]
· φαβ ,µν

+

[
g18γαβγµν +

(
2 g18 − 4 g19 + 2 g20 + g21

)
γαµγβν

]
· φαβ φµν

+

[
g20γαβγµν + g21γαµγνβ

]
· φαβ φµν +

[
g19γαβγµν +

(
2 g20 − g19 + g21

)
δ

µ
α δν

β

]
· φαβ φµν

+ g22γµαδν
β · φαβ φµ

ν + g22γναδ
β
µ · φαβ φµ

ν + 4
(

g19 − g20 − g21
)
· φα

β φµ
ν

+ g17 ϵαµ
λγβν · φαβ φµν

,λ + g17 ϵα
µλδν

β · φαβ φµν ,λ + g17 ϵα
µ

λδ
β
ν · φαβ φµν

,λ
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+ g17 ϵαµλγβν · φαβ φµν ,λ + 4 g17 ϵαµ
λγβν · φα

β φµ
ν,λ

+

[
1
6
(
6 g1 + 4 g2 + g3 − g4 − g6 + 2 g7

)
γαβγµνγλκ

+
1
3
(
4 g2 + g3 − g4 − g6 + 2 g7 + 3 g10

)
γαµγνβγλκ

+
1
4
(

g4 + 2 g6 − 8 g7 − 2 g9
)

γαβδλ
µ δκ

ν + g3γαµδλ
ν δκ

β +
1
3
(

g4 − g2 − g3 + g6 − 2 g7
)

γµνδλ
α δκ

β

]

· φαβ φµν
,λκ +

[
1
2
(
2 g1 + g3 + g6 − 6 g7 − 2 g9

)
γαβγµνγλκ

+
1
12
(
8 g2 − 4 g3 + g4 − 2 g6 + 16 g7 + 6 g9

)
γαβγµλγκν

+
1
2
(

g3 − g6 − 2 g7 + 4 g8 + 2 g10
)

δ
µ
α δν

βγλκ

+
1
6
(
7 g3 − 2 g2 + 2 g4 + 5 g6 − 46 g7 + 12 g8 − 12 g9

)
γµνδλ

α δκ
β

+
(

g6 + 2 g7 − 4 g8
)

δ
µ
α γνλδκ

β

]
· φαβ φµν ,λκ +

[
1
2

g14γαβγνλδκ
µ +

1
2
(
2 g12 + g13

)
γαµγλκδν

β

+ g15γαµγνλδκ
β

]
· φαβ φµ

ν ,λκ +

[
g1γαβγµνγλκ +

1
4
(
2 g3 + g4 + 4 g6 − 20 g7 − 6 g9

)
γαβδλ

µ δκ
ν

+ g10δα
µδ

β
ν γλκ + g3γαλδκ

µδ
β
ν + g2γαλγµνγκβ

]
· φαβ φµν

,λκ

+

[
1
6
(
6 g1 − 4 g2 + 11 g3 + g4 + 7 g6 − 62 g7 + 12 g8 − 18 g9

)
γαβγµνγλκ

+
1
12
(
8 g2 − 16 g3 + g4 − 2 g6 + 64 g7 − 24 g8 + 18 g9

)
γαβγµλγκν

+
1
6
(
8 g2 − 13 g3 − 2 g4 − 11 g6 + 82 g7 − 12 g8 + 24 g9 + 6 g10

)
γλκγαµγνβ

+
(
4 g3 + g6 − 14 g7 + 4 g8 − 4 g9

)
γλαγβµγνκ

+
1
2
(
2 g2 − 3 g3 − g6 + 14 g7 − 4 g8 + 4 g9

)
γµνγαλγκβ

]
· φαβ φµν ,λκ +

[
1
2

g14γαβγνλδκ
µ

+
1
2
(
2 g12 + g13

)
γλκγναδ

β
µ + g15γαλγκνδ

β
µ

]
· φαβ φµ

ν ,λκ +

[
1
2
(
2 g12 + g13

)
γαµγλκδ

β
ν

+ g15γαµγβλδκ
ν +

1
2

g14γµνγβλδκ
α

]
· φα

β φµν
,λκ +

[
1
2
(
2 g12 + g13

)
γβµγλκδν

α + g15γβλγκµδν
α

+
1
2

g14γµνγβλδκ
α

]
· φα

β φµν ,λκ

+

[
1
3
(
13 g3 − 8 g2 + 2 g4 + 11 g6 − 82 g7 + 12 g8 − 24 g9 − 12 g10

)
γαµγβνγλκ

− 2
(
3 g3 + g6 − 6 g7 − 2 g9

)
γαµγβλγκν

]
· φα

β φµ
ν,λκ +

[
1
2

g4

(
γαβδλ

µ δκ
ν + γµνδλ

α δκ
β

)



5.4 Weakly Birefringent Electrodynamics | 172

+ g5γαβγµνγλκ + g6γαµδλ
β δκ

ν + g11γαµγβνγλκ + g9γαµδλ
ν δκ

β

]
· φαβ

,λ φµν
,κ

+

[
1
6
(

g4 − 4 g2 − g3 + 6 g5 + g6 − 2 g7
)

γαβγµνγλκ

+
1
6
(
8 g2 + 2 g3 + g4 − 2 g6 + 4 g7

)
γαβγµλγκν +

1
2
(
2 g3 + g4 + 2 g6 − 12 g7 − 4 g9

)
γµνδλ

α δκ
β

+
(

g3 + g6 − 6 g7 − g9
)

γµλδκ
αδν

β

+
1
6
(
4 g4 − 16 g2 − 7 g3 + g6 + 10 g7 + 6 g9 + 6 g11

)
γλκδ

µ
α δν

β + g6γµκδλ
α δν

β

]
· φαβ

,λ φµν ,κ

+

[
g14γαβγνλδκ

µ + g15γαµ

(
γνλδκ

β + γνκδλ
β

)
+ g13γαµγλκδν

β

]
· φαβ

,λ φµ
ν,κ

+

[
1
6
(
8 g2 − 10 g3 + g4 − 2 g6 + 52 g7 − 24 g8 + 12 g9

) (
γαβγλµγνκ + γµνγλαγβκ

)
+

1
6
(
7 g3 − 8 g2 + 2 g4 + 6 g5 + 5 g6 − 46 g7 + 12 g8 − 12 g9

)
γαβγµνγλκ

+
(
4 g3 + g6 − 16 g7 + 8 g8 − 4 g9

)
γλαγβµγνκ

+
1
2
(
54 g711 g3 − 5 g6 − 12 g8 + 16 g9 + 2 g11

)
γαµγνβγκλ

+
(
3 g3 + g6 − 14 g7 + 4 g8 − 3 g9

)
γλµγναγβκ

]
· φαβ ,λ φµν ,κ +

[
1
2

g14γαβ
(

γνκδλ
µ + γνλδκ

µ

)
+ g15

(
γακγλν + γαλγκν

)
δ

β
µ + g13γλκγανδ

β
µ

]
· φαβ ,λ φµ

ν ,κ

+

[ (
4 g8 − 7 g3 − g6 − 2 g7 + 4 g9

)
γνκδλ

α δ
β
µ

+
2
3
(
8 g2 + 26 g3 − 2 g4 + g6 − 56 g7 − 27 g9 − 6 g11

)
γαµγβνγλκ

+ 4
(
2 g7 − 2 g3 + 2 g8 + g9

)
γαµγβκγλν

]
· φα

β,λ φµ
ν ,κ + g16γαµδν

β · kαβ φµ
ν

+ g16γανδ
β
µ · kαβ φµ

ν +
(

g16 + g17
)

γµαδ
β
ν · kα

β φµν +
(

g16 + g17
)

γµβδν
α · kα

β φµν

+
(

g6 − g3 + 2 g7
)

ϵαµ
λδν

β · kαβ φµ
ν ,λ + 4 g8ϵα

µ
λγβν · kαβ φµ

ν ,λ + 4 g7ϵαµ
λδ

β
ν · kα

β φµν
,λ

+ 4 g7ϵα
µλγβν · kα

β φµν ,λ + g12γαµδν
β · kαβkµ

ν + g12γανδ
β
µ · kαβkµ

ν

+

[
1
4
(
4 g1 + 4 g2 − g4 − 2 g5

)
γαβγµν

+
1
6
(
8 g2 + 5 g3 − 2 g4 − 5 g6 + 10 g7 + 6 g10 − 3 g11

)
γαµγνβ

]
· kαβkµν

+

[
1
12
(
12 g1 + 8 g2 − g3 − 2 g4 − 6 g5 + g6 − 2 g7

)
γαβγµν
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+
1
12
(
16 g2 + 13 g3 − 4 g4 − 7 g6 + 2 g7 − 6 g9 + 12 g10 − 6 g11

)
δ

µ
α δν

β

]
· kαβkµν

+
1
3
(
4 g4 − 16 g2 − 10 g3 + 7 g6 − 8 g7 + 3 g9 − 12 g10 + 6 g11

)
· kα

βkβ
α

+

[
1
12
(
12 g1 + 4 g2 + 7 g3 − g4 − 6 g5 + 5 g6 − 46 g7 + 12 g8 − 12 g9

)
γαβγµν

+
1
12
(
16 g2 + 7 g3 − 4 g4 − 7 g6 + 26 g7 − 12 g8 + 12 g10 − 6 g11

)
γαµγνβ

]
· kαβkµν +O(3) .

The complexity of this result again shows the power and usefulness of the gravitational closure mech-
anism: If we would have “simply” written down a linear combination of all possible contractions between
the projected hypersurface fields – employing the available background geometry on the hypersurface
and the volume form – the obtained expression would contain over 100 parameters, that is gravitational
constants that need to be fixed by experiments. By solving the gravitational closure equations, we found
out that these constants are not constant at all: Instead, they are functions that are parametrized by 22

parameters g1, . . . , g22 that remain after solving the closure equations.
The total number of independent factors further reduces once we calculate the equations of motion.

When evaluating howmany independent linear combinations appear in front of the terms in the equations
of motion, one finds that we can reduce the number to eleven constants κ1, . . . , κ11, given in terms of the
gi (compare table 5.4).

This indicates that eleven of the constants gi are related to the boundary terms in the gravitational
action14 and worthwhile to further investigate in the future.

We could, in principle, now derive the equations of motion for the degrees of freedom by variation
of the action. We will refrain from this for the following two reasons: First, as the Lagrangian already
suggests, the corresponding expressions are quite lengthy. The second (far better) reason is that one usu-
ally considers the propagation of the separate modes in the degrees of freedom by a Helmholtz-Hodge
decomposition. Also, the interesting physical degrees of freedom are only obtained once we identified the
gauge-invariants and fixed a gauge. For that reason, we will directly discuss these first and then present
the equations of motion directly for the obtained scalar, vector and tensor modes of the area metric.

Helmholtz-Hodge decomposition

Since the areametric is projected into three hypersurface tensors of rank 2, it is straightforward to perform
a Helmholtz-Hodge decomposition of the three fields into their scalar, solenoidal vector, and transverse
and γ traceless tensor modes. With the help of our constant intertwiner, we can pull this decomposition
on Φ and obtain the following expressions:

φA =IA
αβ

(
F̃γαβ + ∆αβF + 2 ∂(αFβ) + Fαβ

)
, (5.83a)

φA =IAαβ
(

Ẽγαβ + ∆αβE + 2 ∂(αEβ) + Eαβ

)
, (5.83b)

φA =IA
α

β
(

∆α
βC + ∂βCα + ∂αCβ + Cα

β

)
+O(2) , (5.83c)

14To be more precise: One decomposes the linear space of the coefficients gi into the subspace spanned by the gravitational
constants κi and the eleven-dimensional orthogonal subspace.
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Gravitational Constant Combination of Coefficients in the Lagrangian

κ1 − 8
3 g2 +

2
3 g4 +

7
6 g6 + g9 − 2 g10 + g11 − 1

3 g7 − 13
6 g3

κ2
8
3 g2 +

5
3 g3 +

8
3 g7 + 2 g10 − g11 − 2

3 g4 − 4
3 g6 − 2

3 g8 − 1
3 g9

κ3 −2 g12

κ4 g17

κ5 g21

κ6 g22

κ7 −g2 + g3 +
1
4 g4 +

3
2 g6 − 8 g7 − 5

2 g9

κ8 −g2 + 2 g3 +
1
4 g4 +

3
2 g6 − 12 g7 + 2 g8 − 7

2 g9

κ9
32
3 g2 +

20
3 g3 +

16
3 g7 − 2 g9 + 8 g10 − 4 g11 − 8

3 g4 − 14
3 g6

κ10 −6 g1 +
13
6 g4 + 3 g5 +

5
3 g6 − 2 g10 + g11 − 26

3 g2 − 5
3 g3 − 10

3 g7

κ11 3 g18 + g21

Table 5.4 The definition of the 11 gravitational constants that appear in the gravitational equations of
motion of the linear perturbations, in terms of the 22 constants appearing in the Lagrangian.

with the five scalar modes F̃, F, Ẽ, E and C, the three solenoidal vectors Fα, Eα and Cα, and the three
transverse, γ-traceless tensor modes Fαβ, Eαβ and Cαβ. We used the trace-removed Hesse operator
∆αβ := ∂α∂β − 1

3 γαβ∆ and indices are pulled and raised with the flat metric γ. In the same fashion, we
can decompose the shift Nα = ∂αB + Bα, while the lapse naturally is simply a scalar mode N = 1 + A.

Since our equations of motion are linear, the equations can be decomposed in the same fashion, and
the different sectors – scalars, solenoidal vector and transverse-traceless vectors – can be studied inde-
pendently from each other. Note that this is only the case for linear perturbations: While we can also
decompose the degrees of freedom just as displayed in (5.83) for higher-order perturbations, the different
modes will interact due to the non-linearity in the source terms.

We can then insert this into the first order perturbations (compare section 5.3.1) and find that(
δH(1)

)
0α0β =(2 A− F̃)γαβ − ∆αβF− 2 ∂(αFβ) − Fαβ , (5.84a)(

δH(1)

)
0αβγ =ϵβγ

µ

(
(F̃− A)γαµ + ϵαµν(∂νB + Bν) + ∆αµC + 2 ∂(αCµ) + Cαµ

)
, (5.84b)(

δH(1)

)
αβγδ =ϵαβµϵγδν

(
(3 F̃ + Ẽ)γµν + ∆µνE + 2 ∂(µEν) + Eµν

)
. (5.84c)

The next step is to identify the gauge-invariant quantities by calculating the action of a gauge transforma-
tion on the perturbations.

Gauge invariants

As laid out in section 5.3.1, a gauge transformation, generated by a spacetime vector field ξ, induces a
change in the perturbations to first order via(

∆ξ H(1)

)
abcd =

(
Lξ N

) abcd . (5.85)
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Using that Nabcd = 2 ηa[cηd]b − ϵabcd, and by decomposing the generator ξ into ξ0 =: T and ξα :=

∂αL + Lα, with Lα being a solenoidal vector, we can express this change in terms of the scalar, vector and
tensor modes:(

∆ξ H(1)

)
0α0β = 2 ∂α∂βL + 2 ∂(αLβ) + 2 Ṫγαβ , (5.86a)(

∆ξ H(1)

)
0αβγ = ϵβγ

µ

((
−Ṫ − ∆L

)
γαµ +

(
L̇ν + ∂ν L̇− ∂νT

)
ϵαµν

)
, (5.86b)(

∆ξ H(1)

)
αβγδ = ϵαβµϵγδν

(
2 ∂µ∂νL + 2 ∂(µLν) − 2 γµν∆L

)
. (5.86c)

By comparing with the decomposition (5.84), we see that we obtain the following induced changes for
the different modes. For all the scalar modes we find

∆ξ F̃ = −2
3

∆L , ∆ξ A = Ṫ , ∆ξ Ẽ =
2
3

∆L , ∆ξ B = L̇− T

∆ξ F = −2 L , ∆ξ E = 2 L , ∆ξC = 0 ,

and for the solenoidal vector modes

∆ξ Bα = L̇α , ∆ξ Fα = −Lα , ∆ξ Eα = Lα , ∆ξCα = 0 .

In case of the transverse-traceless tensor modes, we find that they do not change under a gauge transfor-
mation, i.e.

∆ξ Fαβ = 0 , ∆ξ Eαβ = 0 , ∆ξCα
β = 0 .

Using all of this information, we can search for combinations of those modes that will not change under
a gauge transformation, that is they are gauge invariant. For example, we see that since the two scalar
modes E and F transform with ±2L under a gauge transformation that their sum will remain invariant
under the transformation. In the same fashion, we can identify in total eleven gauge invariants that are
displayed in the following box:

DEFINITION GAUGE INVARIANTS FOR LINEAR PERTURBATION
In the equations of motion of linear perturbations of an area metric, the following eleven quantities are
invariant under gauge transformations:

J1 = E + F , J2 = Ẽ + F̃ , J3 = C , J4 = A + B̃ +
1
2

F̈ , J5 = Ẽ− F̃ +
2
3

∆F ,

J α
6 = Fα + Eα , J α

7 = Bα − Ėα , J α
8 = Cα ,

J αβ
9 = Fαβ , J αβ

10 = Eαβ , J αβ
11 = Cαβ ,

for scalar, solenoidal vector and transverse-traceless tensor perturbations, respectively. They contain 17

degrees of freedom in total.
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Using only those gauge invariant quantities ensures that we obtain physical relevant statements from
the equations of motion. Using a gauge transformation, we can effectively set four of our components to
0. For example, by the choice

T := B +
1
2

Ḟ , L :=
1
2

F , Lα := −Eα , (5.87)

we remove the four modes Eα, F, and B. The particular choice of a gauge is, however, completely arbitrary
and up to the user to choose since, if done right, the results will not depend on the choice made.

REMARK
If we inspect the gauge invariants more closely, we see that in almost all of the invariants we obtain a
linear combination of the modes from φA and φA. In fact, if we would have chosen the rather arcane
decomposition of the degrees of freedom into

φA =IA
αβ

((
Ũ + Ṽ

)
γαβ + ∆αβ (U + V) + 2 ∂(α|

(
U |β) + V |β)

)
+ U αβ + Vαβ

)
,

φA =IAαβ

((
Ũ − Ṽ

)
γαβ + ∆αβ (U − V) + 2 ∂(α|

(
U|β) − V|β)

)
+ Uαβ − Vαβ

)
,

φA =IA
α

β
(

∆α
βC + ∂βCα + ∂αCβ + Cα

β

)
+O(2) ,

the gauge invariants would simplify drastically since almost all of the invariants are directly given by com-
ponents of either U or V terms.

Furthermore, this is conceptually incredibly useful since, as we will show in the following, the tensor
mode Vαβ correspond to themassless spin-2metric degrees of freedom from general relativity. In the end,
the results do not depend on how we chose to perform the decomposition.

Equations of motion

Now, with the Helmholtz-Hodge decomposition performed and a gauge chosen, we can finally spell out
the equations of motion. Deriving these, while tedious, is a straightforward task: We vary the total action,
i.e. the sum of the gravitational and the matter actions, with respect to lapse, shift and the degrees of
freedom. For the contributions from the matter sector, we Helmholtz-Hodge decompose the functional
derivatives, i.e.

IA
αβ

δHmatter

δφA
=:

[
δHmatter

δφ

](TT)

αβ

+ 2 ∂(α

[
δHmatter

δφ

](V)

β)

+ γαβ

[
δHmatter

δφ

](Str)

+ ∆αβ

[
δHmatter

δφ

](Str-free)

,

(5.88a)

IA
αβ

δHmatter

δφA
=:

[
δHmatter

δφ

](TT)

αβ

+ 2 ∂(α

[
δHmatter

δφ

](V)

β)

+ γαβ

[
δHmatter

δφ

](Str)

+ ∆αβ

[
δHmatter

δφ

](Str-free)

,

(5.88b)
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IA
αβ

δHmatter

δφA
=:

δHmatter

δφ

(TT)

αβ

+ 2 ∂(α

δHmatter

δφ

(V)

β)

+ ∆αβ

δHmatter

δφ

(Str-free)

, (5.88c)

δHmatter

δNα
=:
[

δHmatter

δN⃗

](V)

α

+ ∂α

[
δHmatter

δN⃗

](S)
, (5.88d)

δHmatter

δN
=:
[

δHmatter

δN

](S)
, (5.88e)

where we conveniently lowered all indices with γ. Observe that the transverse-traceless tensor modes are
only seen by the three evolution equations and are not constrained. We can now separately discuss the
different modes.

Transverse-traceless tensor modes We start the discussion with the transverse-traceless tensor modes.
As stated above, one only finds three evolution equations for the three tensors Eαβ, Fαβ, Cαβ, with the
separate terms parametrized by the gravitational constants κ that need to be fixed by experiments:[

δHmatter

δφ

](TT)

αβ

= − (2 κ1 + 3 κ2 − κ7 + κ8) F̈αβ − (3 κ2 − κ7 + κ8 − κ9)∆Fαβ + 2 κ4 ϵ(α
γµ Fβ)γ,µ

+ κ5 Fαβ + κ1 Ëαβ + (κ9 − 3 κ2)∆Eαβ + 2 κ4 ϵ(α
γµEβ)γ,µ + κ5 Eαβ

+ (2 κ1 + 6 κ2 − 2 κ7 + 2 κ8 − κ9) ϵ(α
γµĊβ)γ,µ

+ κ3C̈αβ − κ3 ∆Cαβ + κ4 Ċαβ + κ6Cαβ , (5.89a)[
δHmatter

δφ

](TT)

αβ

= κ1 F̈αβ + (κ9 − 3 κ2)∆Fαβ + 2 κ4 ϵ(α
γµFβ)γ,µ + κ5 Fαβ + (κ1 − κ7 + κ8) Ëαβ

+ (3 κ1 − κ7 + κ8 + κ9)∆Eαβ + 2 κ4 ϵ(α
γµ Eβ)γ,µ + κ5 Eαβ + κ3 C̈αβ − κ3∆Cαβ

− (4 κ1 − 2 κ7 + 2 κ8 + κ9) ϵ(α
γµ Ċβ)γ,µ + κ4 Ċαβ + κ6 Cαβ , (5.89b)δHmatter

δφ

(TT)

αβ

= κ3 F̈αβ − κ3 ∆Fαβ − (2 κ1 + 6 κ2 − 2 κ7 + 2 κ8 − κ9) ϵ(α
γµ Ḟβ)γ,µ − κ4 Ḟαβ + κ6 Fαβ

+ κ3 Ëαβ − κ3 ∆Eαβ + (4 κ1 − 2 κ7 + 2 κ8 + κ9) ϵ(α
γµ Ėβ)γ,µ − κ4 Ėαβ + κ6 Eαβ

+ κ9 C̈αβ + (4 κ1 − 2 κ7 + 2 κ8 + κ9) ϵ(α
γµ Ėβ)γ,µ − κ4 Ėαβ + κ6 Eαβ + κ9 C̈αβ

+ (4 κ1 − 12 κ2 + 3 κ9)∆Cαβ + 8 κ4 ϵ(α
γµ Cβ)γ,µ − 4 κ5 Cαβ . (5.89c)

Solenoidal vectormodes We continue with the equations ofmotion of the three solenoidal vectors (two
degrees of freedom each). Similar to the transverse-traceless modes above, we get

2 ∂(α

[
∂Hmatter

δφ

](V)

β)

= (−4 κ1 − 6 κ2 + 2 κ7 − 2 κ8) ∂(α F̈β) +
κ9

2
∆∂(αFβ) + 2 κ4 ϵ(α

γµ ∂β)Fγ,µ

+ 2 κ5 ∂(αFβ) + 2 κ3 ∂(αC̈β) − 2 κ3 ∆∂(αCβ)

+ (2 κ1 + 6 κ2 − 2 κ7 + 2 κ8 − κ9) ϵ(α
γµ∂β)Ċγ,µ + 2 κ4 ∂(αĊβ) + 2 κ6 ∂(αCβ)

+ (−6 κ1 − 6 κ2 + 2 κ7 − 2 κ8) ∂(αḂβ) , (5.90a)
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2 ∂(α

[
∂Hmatter

δφ

](V)

β)

= 2 κ1 ∂(α F̈β) +
κ9

2
∆∂(αFβ) + 2 κ4 ϵ(α

γµ ∂β)Fγ,µ + 2 κ5 ∂(αFβ) + 2 κ3 ∂(αC̈β)

− 2 κ3 ∆∂(αCβ) + (−4 κ1 + 2 κ7 − 2 κ8 − κ9) ϵ(α
γµ∂β)Ċγ,µ + 2 κ4 ∂(αĊβ)

+ 2 κ6 ∂(αCβ) + (2κ7 − 2κ8) ∂(αḂβ) , (5.90b)

2 ∂(α

∂Hmatter

δφ

(V)

β)

= 2 κ3 ∂(α F̈β) − 2 κ3∆∂(αFβ) + (−2 κ1 − 6 κ2 + 2 κ7 − 2 κ8 + κ9) ϵ(α
γµ ∂β) Ḟγ,µ

− 2 κ4 ∂(α Ḟβ) + 2 κ6 ∂(αFβ) + 2 κ9 ∂(αC̈β) + (2 κ1 − 6 κ2)∆∂(αCβ)

+ 8 κ4 ϵ(α
γµ∂β)Cγ,µ − 8 κ5 ∂(αCβ) − (6κ1 + 6κ2 − 4κ7 + 4κ8) ϵ(α

γµ∂β)Bγ,µ .

(5.90c)

Additionally we get contributions from the constraint equations in this case. From the vector constraint
we obtain the equation[

∂Hmatter

δN⃗

](V)

α

= −2 (3 κ1 + 3 κ2 − κ7 + κ8)∆Ḟα − 6 (κ1 + κ2)∆Bα

+ 2 (3 κ1 + 3 κ2 − 2 κ7 + 2 κ8) ϵα
γµ∆Cγ,µ . (5.91)

Scalar modes Last but not least, we present the equations of motion for the scalar modes. This corre-
sponds to five separate evolution equations from the trace and trace-free part of each of our three hyper-
surface fields. In addition, we get further restrictions from both constraint equations.

[
δHmatter

δφ

](Str-free)

= κ1 Ë + κ2 ∆E + κ3 C̈− κ3 ∆C + κ4 Ċ + κ5 E + κ6 C + κ7 F̃ + κ8 Ẽ

+ 2 (κ7 − 3 κ1 − 3 κ2 − κ8) A , (5.92a)[
δHmatter

δφ

](Str)

= κ10
¨̃F +

(
16 κ1 + 16 κ2 −

8
3

κ7 +
16
3

κ8 − κ10

)
∆F̃ + κ11F̃

+ (2 κ7 − 12 κ1 − 12 κ2 − 4 κ8 + κ10)
¨̃E

+ (20 κ1 + 20 κ2 − 4 κ7 + 8 κ8 − κ10)∆Ẽ + κ11Ẽ

+

(
8 κ1 + 8 κ2 −

4
3

κ7 +
8
3

κ8

)
∆A− 2

3

(
2 κ1 + 2 κ2 − κ7 +

4
3

κ8

)
∆∆E ,

(5.92b)[
δHmatter

δφ

](Str-free)

= (κ1 − κ7 + κ8) Ë +
1
3
(κ7 − 3 κ1 − κ8)∆E + κ5 E + κ3 C̈− κ3 ∆C + κ4 Ċ

+ κ6 C + (3 κ7 − 6 κ1 − 6 κ2 − 4 κ8) F̃ + (2 κ7 − 3 κ1 − 3 κ2 − 3 κ8) Ẽ

+ 2 (κ7 − κ8) A , (5.92c)[
δHmatter

δφ

](Str)

= (2 κ7 − 12 κ1 − 12 κ2 − 4 κ8 + κ10)
¨̃F + (20 κ1 + 20 κ2 − 4 κ7 + 8 κ8 − κ10)∆F̃
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+ (4 κ7 − 18 κ1 − 18 κ2 − 8 κ8 + κ10)
¨̃E− 2

3

(
κ1 + κ2 −

2
3

κ7 + κ8

)
∆∆E

+

(
22 κ1 + 22 κ2 −

16
3

κ7 +
32
3

κ8 − κ10

)
∆Ẽ

+ 4
(

κ1 + κ2 −
1
3

κ7 +
2
3

κ8

)
∆A + κ11F̃ + κ11Ẽ , (5.92d)δHmatter

δφ

(Str-free)

= κ3 Ë− κ3 ∆E− κ4 Ė + κ6 E + κ9 C̈− κ9 ∆C− 4 κ5 C . (5.92e)

From the vector constraint we obtain the equation[
δHmatter

δN⃗

](S)
= 4 (6 κ1 + 6 κ2 − κ7 + 2 κ8)

˙̃F + 4 (3 κ1 + 3 κ2 − κ7 + 2 κ8)
˙̃E +

4
3
(κ7 − κ8)∆Ė ,

(5.93)

and, last but not least, from the scalar constraint[
δHmatter

δN

](S)
= 4 (6 κ1 + 6 κ2 − κ7 + 2 κ8)∆F̃ + 4 (3 κ1 + 3 κ2 − κ7 + 2 κ8)∆Ẽ

+
4
3
(κ7 − κ8)∆∆E . (5.94)

Metric induced modes

Since an area metric can be induced by a Lorentzian metric, it is interesting to identify the corresponding
modes in our decomposition above. For this we observe that to first order, i.e. for gab = ηab + hab +O(2)
an induced area metric takes the form

Gabcd(g) =gacgbd − gadgbc −
√
−det g··ϵabcd (5.95)

=2 ηa[cηd]b + 2
(

ηa[chd]b − ηb[chd]a
)
+

(
1− 1

2
ηmnhmn

)
ϵabcd +O(2) . (5.96)

Projecting these fields to the screen manifold we find that

gαβ = γαβ + hαβ +O(2) , (5.97a)

gαβ = γαβ − hαβ +O(2) , (5.97b)

gα
β = 0 +O(2) . (5.97c)

This tells us that the metric sub-sector of weakly birefringent electrodynamics correspond to the case

Eαβ = −Fαβ , Eα = −Fα , F = −E , F̃ = −Ẽ , (5.98a)

Cα
β = 0 , Cβ = 0 , C = 0 . (5.98b)

This can be used to further massage the Lagrangian and equations of motion into a form that separates
themetric from the non-metric modes. Wewill refer the interested reader to Alex (2020, 2021) for further
details on the propagation of the gravitational modes in vacuo and sourced by a point particle.
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The equations of motion obtained for an area metric with the help of gravitational closure – at least
to linear order – can, and already have been, put to good use to analyse interesting phenomenological
effects. Grosse-Holz et al. (2017) calculated effects that appear in birefringent quantum electrodynamics.
For instance, Licklederer (2017) considered planetary motions in the weakly birefringent spacetime. In
Schuller andWerner (2017) a derivation of the Etherington distance duality relation that connects redshift,
luminosity distance and angular diameter distance was performed. One finds a Yukawa-type correction to
the relation. Rieser (2020) discusses stellarmodels, galaxy rotation curves and structure formations in area
metric spacetimes. With this, we conclude our discussion of a perturbative treatment of the gravitational
closure equations.



CHAPTER 6

CONCLUS ION

We started this thesis with a very specific task: obtain the dynamics of a more refined geometry than the
spacetime metric. However, it quickly turned out that this is far from trivial since the naïve approach,
as presented in chapter 1, to simply spell out all possible terms that may appear in the gravitational La-
grangian leads to infinitely many viable options. This makes such a theory unfeasible in practice: it is
impossible to make any prediction if we need infinitely many experiments to obtain values for the param-
eters (constants of nature) in the Lagrangian. We thus concluded that we need a more fundamental set-up
to derive gravitational dynamcis for refined spacetime geometries, which goes beyond simply constructing
and adding building blocks that transform in a covariant way.

Thus, the necessity to construct gravitational theories in a more systematic way lead to the central
result we were then able to derive in the following chapters 2 and 3: Suppose we restrict ourselves to a
well-behaved class of matter field theories that satisfy three mild conditions that ensure that the matter
fields are predictive and canonically quantisable. Then the prescribed matter dynamics already contains
all the necessary information to derive the action functional of the gravitational degrees of freedom. This
is due to the fact that we can always set up a canonical phase space for the tensorial geometric degrees of
freedom andmimic an algebra that describes deformations of initial data hypersurfaces. Even further, one
then finds that the expansion coefficients of the gravitational Lagrangian fulfil a system of linear partial
differential equations called the gravitational closure equations. This is an extension of results by Kuchar
(1974) and Hojman et al. (1976).

Arriving at this result required a careful analysis of the kinematical concepts involved. We analysed
the causal structure of test matter coupled to a geometry we are interested in. Requiring that the equations
of motion are predictive restricts the central object of these considerations, the principal polynomial, to
be hyperbolic. In the derivation of this polynomial we could furthermore show in chapter 2 how to deal
gauge symmetries, namely how to separate any arbitrariness arising from gauge orbits from physical null
vectors. We also discussed how to detect hidden integrability condition in the equations of motion under
consideration and what these mean for the according principal polynomial.

Once one has derived the polynomial that fulfils the three matter conditions, we are rewarded with all
objects required to perform gravitational closure to derive the Lagrangian of a geometry. The necessary
steps can be described as follows: Firstly, one needs to calculate the three input coefficients pαβ, MAγ
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and FA
µ

γ for the geometric fields on a three-dimensional space called the screen manifold Σ. Afterwards,
one solves all the gravitational closure equations for the series expansion coefficients, which constitute the
gravitational Lagrangian. One can then finally construct the gravitational action, derive the equations of
motion and consider its interaction with matter sectors.

Suppose we, for example, start with the principal polynomial of the standardmodel of particle physics,
i.e. a Lorentzian spacetime metric, and follow the steps laid out in this thesis. In that case, one indeed
obtains general relativity, as demonstrated in chapter 4.1. Once we consider theories beyond general rel-
ativity, as was presented for the area metric of general linear electrodynamics, the complexity increases
drastically. This is not only due to the non-linearity of the frame conditions – that can and were dealt with
by the introduction of a parametrization of the gravitational degrees of freedom –, but mainly because of
the complexity in the input coefficients one encounters. This prevents us, practically, as of now and to the
best of our knowledge, from deriving an exact solution.

This is no reason to despair, though, since alternative routes are available: In particular, if we are in-
terested in perturbative solutions around a Minkowskian background, it is possible to derive the output
coefficients, now as Taylor expansion coefficients around the background solution, by solving linear al-
gebraic equations. Besides developing the general theory on how to conduct such a calculation and how
to obtain the general ansätze for this theory, we developed a computer program to “crunch the numbers”
and successfully carried out the gravitational closure of weakly birefringent electrodynamics. The result-
ing linear equations of motion contain eleven gravitational constants that must be fixed by experiments.

FURTHER RESEARCH

The pool of topics from the constructive gravity programme is, of course, far from exhausted, and there
is much left and worthwhile to explore. Although it will certainly not be a complete list, let us consider
some of these topics that may be helpful in the future.

Collapse via causal compatibility

One of the most significant complications one deals with when solving the gravitational closure equations
is themissing collapse to a finite derivative order of the degrees of freedom for the two output coefficients C

and CA (at least for theories where the input coefficient MAγ is non-vanishing). This means that a priori
we expect the solution of these two output coefficients to contain infinitely many curvature invariants.
Even further, the equations of motion then contain infinitely many spatial derivatives of our degrees of
freedom.

But possibly the situation is not as bad as it seems at first sight. As described in our short discussion of
the equations ofmotion in section 3.4.1, we saw that the principal polynomial of the gravitational sector, as
obtained by gravitational closure, is not necessarily equal to the principal polynomial of the matter sector.
In order to make this right, we need to impose additional conditions on the output coefficients to allow
for a common canonical description of both matter and gravitational fields.

If we look at the equations of motion, we realise that due to our phase space formulation, we deal
with at most second time derivatives but generally higher orders in spatial directions. This tells us that the
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covector dt is a characteristic covector of our equations of motion. This is not what matter fields see: In
the chosen frame, the principal polynomial has the value

P (dt) =
1

Ndeg P ≥ 0 , (6.1)

and is thus, as expected, an element from the cone Cx. This indicates that we need to decrease the maxi-
mum allowed derivative order by adding the condition that the geometric symbol of the highest derivative
order vanishes to the closure equations until

PG(dt) 6= 0 . (6.2)

This certainly makes the causal analysis of the equations of motion obtained from gravitational closure
worthwhile to analyse in further detail in the future.

Normal form parametrization

Wehave already touched upon using the parametrization invariance to bring any input setup into a normal
form. Theadvantage is obvious: If we can, indeed, bring any theory into a form such that it is described by a
metric pαβ, a vector να andmultiple scalar fields σ(i) on the screenmanifold then solving the gravitational
closure equations will consist of the very same steps for any case; all of the complexity we once had to deal
with is absorbed into the diffeomorphism that maps the components of our normal form fields into the
geometric fields we originally started with, as well as the single remaining input coefficient MAγ that
distinguishes separate spacetime phenomenologies.

Moreover, we have a great understanding of the geometrical properties of the three types of objects that
appear in such a parametrization: from the projection of the principal polynomial p·· we can always set
up a metric compatible connection Γ· ·· and a covariant derivative∇·. Furthermore, we naturally expect
its Riemann tensor to always show up in the curvature invariants we construct and the final solution. This
will significantly simplify the analysis of the gravitational closure equations.

Thus, further investigating these parametrizations, their perturbative dynamics, the refined Fried-
mann equations obtained by symmetry reduction (as laid out in Düll (2020)), as well as their possible
exact solutions seems quite appealing.

Construction of curvature invariants

As we have seen in our derivation of general relativity in chapter 4.1 and the analysis of the covariance
part, the solution of the selective part of the closure equations is given in terms of the curvature invariants,
i.e. particular functionally independent solutions that span the space of initial data.

The advantage of this, over simply solving all of the 21 closure equations simultaneously until we end
up with a solution, is that it is simpler to come up with particular solutions than integrating the vast set of
differential equations. As we saw in chapter 4.1 this was in particular entirely algorithmic, which begs the
question if one can, similar to the constructions from the tensorial ansätze in chapter 5, find a solution
algorithm that is guaranteed to construct all of the curvature invariants.
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This can be investigated quite naturally for the normal form parametrization: Restricting to second
derivative order, we can count the number of curvature invariants that the separate sectors add, for in-
stance, to the scalar output coefficient. From the metric and vector sector, we obtain three and thirty
invariants, respectively. Each additional scalar degree of freedom then constitutes ten further invariants.
It should be possible to construct these once and for all, which reduces the gravitational closure equations
to their remaining selective part.

Gravitational radiation from a binary pulsar for area metric gravity

One of the high precision tests of general relativity is the orbital frequency shift obtained in binary pulsars
such as the Hulse-Taylor PSR B1913+16. Just as in Einstein’s theory, one can generally derive this effect
in any theories obtained by gravitational closure. The perturbative treatment we presented in chapter 5
provides the perfect framework to, at least in principle, tackle this topic.

However, one quickly finds that we need to evaluate the closure equations up to 2nd perturbation order
if we want to derive the shift in orbital frequency. Practically, this proves rather difficult as the complexity
increases tremendously compared to the linear casewe presented in the last chapter. Finding an expression
for the orbital frequency shift in an areametric spacetime will, nonetheless, be quite rewarding and should
be pursued in the future.

Parametrized post-Newtonian parameters

Last but not least, one powerful tool is the parametrized post-Newtonian (PPN) formalism that allows
to capture and compare a large class of relativistic gravitational theories. It uses multiple experimental
observations to constrain theories with the help of a general test metric of the form

g00 = −1 + 2 U − 2β U2 − 2 ξ ΦW + (2 + 2 γ + α3 + ζ1 − 2 ξ)Φ1

+ 2
(
1 + 3 γ− 2 β + ζ2 + ξ

)
Φ2 + 2 (1 + ζ3)Φ3 + 2 (3 γ + 3 ζ4 − 2 ξ)Φ4

− (ζ1 − 2 ξ) A− (α1 − α2 − α3)w2U − α2 wαwβUαβ + (2 α3 − α1)wαVα +O(ε3) , (6.3a)

g0α = −1
2
(3 + 4 γ + α1 − α2 + ζ1 − 2 ξ)Vα −

1
2
(1 + α2 − ζ1 + 2 ξ)Wα

− 1
2
(α1 − 2 α2)wαU + α2 wβUαβ +O(ε

5
2 ) , (6.3b)

gαβ = (1 + 2 γ U) δαβ +O(ε2) , (6.3c)

with the ten metric potentials U, Uαβ, ΦW , Φ1, Φ2, Φ3, Φ4, Vα, Wα and A, the velocity vector wα of
the PPN coordinate system, relative to the mean rest-frame of the universe, and the ten PPN parameters
γ, β, α1, . . . , α3, ζ1, . . . , ζ4 and ξ. General relativity is, of course, also contained in this formalism for
β = γ = 1 and the remaining parameters being zero. For further details, see for example Will (1993).

In chapter 2 we saw that the equations of motion of a massive particle in the geometrical optical limit
is a geodesics equation for the Finsler metric constructed as

gmn(x, v)umwn :=
1
2

∂2

∂s∂t
(

P⋆(x, v + s · u + t · w)
)2/deg P

∣∣∣
s=0,t=0

. (6.4)
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Parameter Bound Effects Experiment

γ− 1 2.3× 10−5 Time delay, light deflection Cassini tracking
β− 1 8× 10−5 Perihelion shift Perihelion shift

2.3× 10−4 Nordtvedt effect with assumption ηN = 4β−
γ− 3

Nordtvedt effect

ξ 4× 10−9 Spin precession Millisecond pulsars
α1 1× 10−4 Orbital polarization Lunar laser ranging

4× 10−5 Orbital polarization PSR J1738+0333
α2 2× 10−9 Spin precession Millisecond pulsars
α3 4× 10−20 Self-acceleration Pulsar spin-down statis-

tics
ηN 9× 10−4 Nordtvedt effect Lunar laser ranging
ζ1 0.02 Combined PPN bounds –
ζ2 4× 10−5 Binary-pulsar acceleration PSR 1913+16
ζ3 1× 10−8 Newton’s 3rd law Lunar acceleration
ζ4 0.006 – Kreuzer experiment

Table 6.1 Experimental bounds on parametrized post-Newtonian parameters

Similarly, we expect that it is possible to extend the pressureless dust that was presented for any principal
polynomial of even degree in Witte (2014) and derive the canonical Gotay-Marsden energy-momentum
tensor of a perfect fluid. Also, efforts have already been made to derive cosmological equations of motion
with the help of gravitational closure that, once combined, should allow one to calculate the parametrized
post-Newtonian parameters in the constructive gravity framework.

This is intriguing as it would allow us to immediately relate theories obtained by gravitational closure,
such as the area metric, to observational bounds obtained for the ten PPN parameters, such as the ones
presented in table 6.1).
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