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SOME NEW RESULTS ON NONLINEAR FRACTIONAL ITERATIVE

VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS

A. A. HAMOUD1∗, K. P. GHADLE2, §

Abstract. In this paper, we establish some new results concerning the existence and
uniqueness of the solutions of iterative nonlinear Volterra-Fredholm integro differential
equations subject to the initial conditions. The fractional derivatives are considered
in the Caputo sense. Also these new results are obtained by applying the Gronwall-
Bellman’s inequality and the Banach contraction fixed point theorem. Moreover, the
results of references [16, 17, 27] appear as a special case of our results.
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1. Introduction

In recent years, there has been a growing interest in the linear and nonlinear integro-
differential equations which are a combination of differential and integral equations [4,
6, 17, 19]. The nonlinear integro-differential equations play an important role in many
branches of nonlinear functional analysis and their applications in the theory of engineer-
ing, mechanics, physics, electrostatics, biology, chemistry and economics [8] and signal
processing [25].

The challenging work is to find the solution while dealing with Volterra-Fredholm frac-
tional integro-differential equations. Therefore, many researchers have tried their best to
use different techniques to find the analytical and numerical solutions of these problems
[1, 2, 3, 5, 9, 10, 11, 15, 22, 23, 28].

The study of iterative differential and integro-differential equations is linked to the
wide applications of calculus in mathematical sciences. These equations are vital in the
study of infection models. Many papers have dealt with the existence, uniqueness and
other properties of solutions of special forms of the iterative differential equations and
integro-differential equations [16, 17, 20, 21].
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Recently, Cheng et al. (2009), in [7, 21] investigated analytic and exact solutions of an
iterative functional differential equation

u′(x) = f(x, u(h(x) + g(u(x)))),

u(x0) = x0

Lauran (2011) [20], investigated the existence and uniqueness results for first order
differential and iterative differential equations with deviating argument of the type

u′(t) = f(t, u(t), u(u(t)), u(λu(t))),

u(t0) = x0

In [16], Ibrahim (2013) investigated the existence and uniqueness of solution for iterative
differential equations of the type

Dαu(t) = f(t, u(u(t))),

u(0) = u0.

Kendre et al. (2015), [17] investigated the existence of solution for iterative integro-
differential equations of the type

u′(t) = f(t, u(u(t)),

∫ t

t0

k(t, s)u(u(s))ds),

u(t0) = x0

Unhale and Kendre (2019), in [27] established the existence and uniqueness of solution for
iterative integro-differential equations of the type

Dαu(t) = f(t) +

∫ t

0
h(t, s)u(λu(s))ds,

u(0) = u0,

Motivated by the above work, in this paper we discuss new existence and uniqueness
results for nonlinear fractional Volterra-Fredholm integro-differential equation with devi-
ating argument of the type

Dαu(t) = f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds, t, s ∈ J := [0, T ], (1)

with the initial condition

u(0) = u0, (2)

where Dα(.), 0 < α < 1, is the Caputo fractional derivative, f(t), h(t, s) and k(t, s) are
given continuous functions, u(x) is the unknown function to be determined, u0 ∈ J and
λ ∈ (0, 1).

The main objective of the present paper is to study the new existence and uniqueness
results for iterative nonlinear fractional Volterra-Fredholm integro-differential equation
with deviating argument.

The rest of the paper is organized as follows: In Section 2, some essential notations,
definitions and Lemmas related to fractional calculus are recalled. In Section 3, the new
existence and uniqueness results of the solution for nonlinear fractional Volterra-Fredholm
integro-differential equation have been proved. In Section 4, focuses on an example to
illustrate the theory. Finally, we will give a report on our paper and a brief conclusion is
given in Section 5.
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2. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are the
subject of several different approaches. The most frequently used definitions of the frac-
tional calculus involves the Riemann-Liouville fractional derivative, Caputo derivative
[9, 11, 12, 13, 18, 19, 24, 26, 28].

Definition 2.1. [17] The Riemann-Liouville fractional integral of order α > 0 of a func-
tion f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (3)

where R+ is the set of positive real numbers.

Definition 2.2. [17] The Riemann-Liouville derivative of order α with the lower limit
zero for a function f : [0, 1) −→ R can be written as

LDαf(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(t)

(x− t)α
dt, x > 0, 0 < α < 1. (4)

Definition 2.3. [14] The Caputo derivative of order α for a function f : [0, 1) −→ R can
be written as

Dαf(x) =
1

Γ(1− α)

∫ x

0

f ′(t)

(x− t)α
dt, x > 0, 0 < α < 1.

Definition 2.4. [14] The fractional derivative of f(x) in the Caputo sense is defined by
cDαf(x) = Jn−αDnf(x)

=


1

Γ(n−α)

∫ x
0 (x− t)n−α−1 d

nf(t)
dtn dt, n− 1 < α < n,

dnf(x)
dxn , α = n,

(5)

where the parameter α is the order of the derivative, in general it is real or even complex.

Definition 2.5. [14] The Riemann-Liouville fractional derivative of order α > 0 is nor-
mally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m. (6)

Lemma 2.1. [14] (Gronwall-Bellman’s Inequality). Let u(x) and f(x) be nonnegative
continuous functions defined on J = [α, α+ h] and c be a nonnegative constant. If

u(x) ≤ c+

∫ x

α
f(s)u(s)ds, x ∈ J,

then

u(x) ≤ c exp
(∫ x

α
f(s)ds

)
, x ∈ J,

Theorem 2.1. [26] (Banach contraction principle). Let (X, d) be a complete metric space,
then each contraction mapping T : X −→ X has a unique fixed point x of T in X i.e.
T x = x.

Theorem 2.2. [26] (Schauder’s fixed point theorem). Let X be a Banach space and let A
a convex, closed subset of X. If T : A −→ A be the map such that the set {Tu : u ∈ A} is
relatively compact in X (or T is continuous and completely continouous). Then T has at
least one fixed point u∗ ∈ A : Tu∗ = u∗.



1286 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

3. Main Results

In this section, we shall give an existence and uniqueness results of Eq.(1), with the
initial condition (2). Let B = C(J, J) be the Banach space equipped with the norm
‖u‖ = maxx∈[0,T ] |u(x)|. For convenience, we are listing the following hypotheses used in
our further discussion:
(A1) There exists constants βh and βk such that

βh = sup{|h(t, s)| : 0 ≤ s ≤ t ≤ T}.

βk = sup{|k(t, s)| : 0 ≤ s ≤ t ≤ T}.

(A2) There exists a constant M > 0 such that

|u(x1)− u(x2)| ≤M |x1 − x2|α, for u ∈ B, x1, x2 ∈ J, x1 ≤ x2.

(A3) There exists a constant L > 0 such that L = sup{|f(t)| : 0 ≤ t ≤ T}.
(A4) Let ρ := u0 + Tα(L+T 3(βh+βk))

Γ(α+1) ≤ T ≤M.

Lemma 3.1. If a function u ∈ C[0, T ] satisfies (1)-(2) in the closed interval [0, T ], then
the problems (1)-(2) are equivalent to the problem of finding a continuous solution of the
integral equation

u(t) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt.

Proof. Applying Iα on both sides of equation (1) and using initial condition, we get

u(t)− u0 = Iα
(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
u(t) = u0 + Iα

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
u(t) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt.

�

Theorem 3.1. Suppose that the hypotheses (A1)–(A4) are satisfied and

Tα+1λ((βh + βk)(M + 1)

Γ(α+ 1)
< 1.

Then there is a unique solution to the problems (1)-(2).

Proof. Let S(ρ) = {u ∈ B : 0 ≤ u ≤ ρ, |u(x1)− u(x2)| ≤M |x1 − x2|α}.
To apply Banach contraction principle, we define an operator Ψ : S(ρ) −→ S(ρ) by

(Ψu)(t) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt.
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So, we have

0 ≤ (Ψu) =
∣∣∣u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt
∣∣∣

≤ u0 +

∫ x

0

(x− t)α−1

Γ(α)

(∣∣∣f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

∣∣∣)dt
≤ u0 +

∫ x

0

(x− t)α−1

Γ(α)

(∣∣∣f(t)
∣∣∣+

∫ t

0

∣∣∣h(t, s)
∣∣∣∣∣∣u(λu(s))

∣∣∣ds+

∫ T

0

∣∣∣k(t, s)
∣∣∣∣∣∣u(λu(s))

∣∣∣ds)dt
≤ u0 + L

Tα

Γ(α+ 1)
+ βh

TαT 3

Γ(α+ 1)
+ βk

TαT 3

Γ(α+ 1)

≤ u0 +
Tα(L+ (βh + βk)T

3)

Γ(α+ 1)
= ρ.

Also, for each 0 ≤ x1 ≤ x2 ≤ T , we have

Ψu(x2)−Ψu(x1)

=

∫ x1

0

(x2 − t)α−1 − (x1 − t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt

+

∫ x2

x1

(x2 − t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt

=
−1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
f(t) +

∫ t

0
h(t, s)u(λu(s))ds

+

∫ T

0
k(t, s)u(λu(s))ds

)
dt+

1

Γ(α)

∫ x2

x1

(x2 − t)α−1
(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds

+

∫ T

0
k(t, s)u(λu(s))ds

)
dt.

Hence,∣∣∣Ψu(x2)−Ψu(x1)
∣∣∣

≤
∣∣∣ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
f(t)

+

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt
∣∣∣+
∣∣∣ 1

Γ(α)

∫ x2

x1

(x2 − t)α−1

×
(
f(t) +

∫ t

0
h(t, s)u(λu(s))ds+

∫ T

0
k(t, s)u(λu(s))ds

)
dt
∣∣∣

≤ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](∣∣∣f(t)
∣∣∣+

∫ t

0

∣∣∣h(t, s)
∣∣∣∣∣∣u(λu(s))

∣∣∣ds
+

∫ T

0

∣∣∣k(t, s)
∣∣∣∣∣∣u(λu(s))

∣∣∣ds)dt+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1
(∣∣∣f(t)

∣∣∣+

∫ t

0

∣∣∣h(t, s)
∣∣∣∣∣∣u(λu(s))

∣∣∣ds
+

∫ T

0

∣∣∣k(t, s)
∣∣∣∣∣∣u(λu(s))ds

∣∣∣)dt
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≤ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
L+ (βh + βk)T

3
)
dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1
(
L+ (βh + βk)T

3
)
dt

≤

(
L+ (βh + βk)T

3
)

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

]
dt

+

(
L+ (βh + βk)T

3
)

Γ(α)

∫ x2

x1

(x2 − t)α−1dt

≤

(
L+ (βh + βk)T

3
)

Γ(α+ 1)

[
xα1 − xα2 + 2(x2 − x1)α

]
≤

2
(
L+ (βh + βk)T

3
)

Γ(α+ 1)
|x2 − x1|α.

This shows that Ψ maps from S(ρ) −→ S(ρ), Now, for all u, v ∈ S(ρ) we have∣∣∣Ψu(x)−Ψv(x)
∣∣∣

≤ 1

Γ(α)

∫ x

0
(x− t)α−1

(∫ t

0

∣∣∣h(t, s)
∣∣∣∣∣∣u(λu(s))− v(λv(s))

∣∣∣ds
+

∫ T

0

∣∣∣k(t, s)
∣∣∣∣∣∣u(λu(s))− v(λv(s))

∣∣∣ds)dt
≤ (βh + βk)

Γ(α)

∫ x

0
(x− t)α−1

(∫ t

0

∣∣∣u(λu(s))− u(λv(s))
∣∣∣+
∣∣∣u(λv(s))− v(λv(s))

∣∣∣ds
+

∫ T

0

∣∣∣u(λu(s))− u(λv(s))
∣∣∣+
∣∣∣u(λv(s))− v(λv(s))

∣∣∣ds)dt
≤ λ(βh + βk)

Γ(α)

∫ x

0
(x− t)α−1

(∫ t

0
(M
∣∣∣u(s)− v(s)

∣∣∣+
∣∣∣u(s)− v(s)

∣∣∣)ds
+

∫ T

0
(M
∣∣∣u(s)− v(s)

∣∣∣+
∣∣∣u(s)− v(s)

∣∣∣)ds)dt
≤ λ(βh + βk)

Γ(α)

∫ x

0
(x− t)α−1

(∫ t

0
(M + 1)

∣∣∣u(s)− v(s)
∣∣∣ds+

∫ T

0
(M + 1)

∣∣∣u(s)− v(s)
∣∣∣ds)dt

≤ Tα+1λ(βh + βk)(M + 1)

Γ(α+ 1)

∣∣∣∣∣∣u− v∣∣∣∣∣∣.
Since

Tα+1λ(βh + βk)(M + 1)

Γ(α+ 1)
< 1,

by the Banach contraction principle, Ψ has a unique fixed point. This means that the
problems (1)-(2) has unique solution.

�

The above theorem shows that there exists a unique solution to the problems (1)-(2).
However, it does not tell us how to find this solution. To find the solution of the problems
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(1)-(2), we will define the following sequence

un+1(t) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)un(λun(s))ds

+

∫ T

0
k(t, s)un(λun(s))ds

)
dt. (7)

where n = 0, 1, 2, ... and u0(x) is fixed functions of the class C1 mapping [0, T ] −→ [0, T ]
such that |u0(x)| ≤ T . For this, we have the following theorem.

Theorem 3.2. If the assumptions of the Theorem 3.1 are satisfied then the sequences
defined in (7) converges uniformly to the unique solution of the problems (1)-(2).

Proof. Let Uk = maxx∈J |uk(x)− uk−1(x)|. Then

U1 = max
x∈J
|u1(x)− u0(x)|

= max
x∈J

∣∣∣u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u0(λu0(s))ds

+

∫ T

0
k(t, s)u0(λu0(s))ds

)
dt− u0(x)

∣∣∣
≤ Tα(L+ T 3(βh + βk))

Γ(α+ 1)

≤ T.

Since u0 : [0, T ] −→ [0, T ], we have U1 ≤ T.

U2 = max
x∈J
|u2(x)− u1(x)|

= max
x∈J

∣∣∣ ∫ x

0

(x− t)α−1

Γ(α)

(∫ t

0
h(t, s)

(
u1(λu1(s))− u0(λu0(s))

)
ds

+

∫ T

0
k(t, s)

(
u1(λu1(s))− u0(λu0(s))

)
ds
)
dt
∣∣∣

≤ max
x∈J

∫ x

0

(x− t)α−1

Γ(α)

(∫ t

0

∣∣∣h(t, s)
(
u1(λu1(s))− u0(λu0(s))

)
ds
∣∣∣

+

∫ T

0

∣∣∣k(t, s)
(
u1(λu1(s))− u0(λu0(s))

)
ds
∣∣∣)dt

≤ TU1 ≤ T 2.
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Assume that result is true for n i.e. Un ≤ TUn−1 ≤ Tn. Now, we show that result holds
for n+ 1

Un+1 = max
x∈J
|un+1(x)− un(x)|

= max
x∈J

∣∣∣ ∫ x

0

(x− t)α−1

Γ(α)

(∫ t

0
h(t, s)

(
un(λun(s))− un−1(λun−1(s))

)
ds

+

∫ T

0
k(t, s)

(
un(λun(s))− un−1(λun−1(s))

)
ds
)
dt
∣∣∣

≤ max
x∈J

∫ x

0

(x− t)α−1

Γ(α)

(∫ t

0

∣∣∣h(t, s)
(
un(λun(s))− un−1(λun−1(s))

)
ds
∣∣∣

+

∫ T

0

∣∣∣k(t, s)
(
un(λun(s))− un−1(λun−1(s))

)
ds
∣∣∣)dt

≤ TUn ≤ Tn+1.

Thus by induction, we have Uk ≤ T k. Since

u0 +
Tα(L+ T 3(βh + βk))

Γ(α+ 1)
≤ T < 1, when u0 ≥ 0.

Hence Uk tends to zero as k tends to infinity. Since the family {Uk} is the Arzelà-Ascoli
family thus for every subsequence {ukj} of {Uk} there exists a subsequence {ukj} uniformly
convergent and the limit needs to be a solution of the problem (1)-(2). Thus, the sequence
{uk} tends uniformly to the unique solution of the problem (1)-(2). �

Theorem 3.3. Suppose that the hypotheses of the Theorem 3.1 hold. Let u1 and u2 satisfy
the equation (1) for 0 ≤ x ≤ T, M > 0 with u1(0) = u∗0 and u2(0) = u∗∗0 respectively then

‖u1(x)− u2(x)‖ ≤ exp
λ(βh + βk)(M + 1)Tα+1

Γ(α+ 1)
‖u∗0 − u∗∗0 ‖.

Proof. From Theorem 3.1, we have

u1(t) = u∗0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u1(λu1(s))ds+

∫ T

0
k(t, s)u1(λu1(s))ds

)
dt.

and

u2(t) = u∗∗0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0
h(t, s)u2(λu2(s))ds+

∫ T

0
k(t, s)u2(λu2(s))ds

)
dt.
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Then,∣∣∣u1(t)− u2(t)
∣∣∣

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣+

∣∣∣ ∫ x

0

(x− t)α−1

Γ(α)

(∫ t

0
h(t, s)

(
u1(λu1(s))− u2(λu2(s))

)
ds

+

∫ T

0
k(t, s)

(
u1(λu1(s))− u2(λu2(s))

)
ds
)
dt
∣∣∣

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣+

∫ x

0

(x− t)α−1

Γ(α)

(
βh

∫ t

0

∣∣∣u1(λu1(s))− u2(λu2(s))
∣∣∣ds

+βk

∫ T

0

∣∣∣u1(λu1(s))− u2(λu2(s))
∣∣∣ds)dt

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣+

∫ x

0

(x− t)α−1

Γ(α)

(
βh

∫ t

0

[∣∣∣u1(λu1(s))− u1(λu2(s))
∣∣∣+
∣∣∣u1(λu2(s))− u2(λu2(s))

∣∣∣]ds
+βk

∫ T

0

[∣∣∣u1(λu1(s))− u1(λu2(s))
∣∣∣+
∣∣∣u1(λu2(s))− u2(λu2(s))

∣∣∣]ds)dt
≤

∣∣∣u∗0 − u∗∗0 ∣∣∣+

∫ x

0

(x− t)α−1

Γ(α)

(
λβh

∫ t

0
(M + 1)

∣∣∣u1(s)− u2(s)
∣∣∣ds

+λβk

∫ T

0
(M + 1)

∣∣∣u1(s)− u2(s)
∣∣∣ds)dt

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣+

∫ x

0

(x− t)α−1

Γ(α)

(
λβh

∫ x

s
(M + 1)

∣∣∣u1(s)− u2(s)
∣∣∣dt

+λβk

∫ T

0
(M + 1)

∣∣∣u1(s)− u2(s)
∣∣∣dt)ds

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣+

λ(M + 1)(βh + βk)T
α

Γ(α+ 1)

∫ x

0

∣∣∣u1(s)− u2(s)
∣∣∣ds

Using Gronwall-Bellman’s inequality, we get∣∣∣u1(s)− u2(s)
∣∣∣ ≤ ∣∣∣u∗0 − u∗∗0 ∣∣∣ exp

(∫ x

0

λ(M + 1)(βh + βk)T
α

Γ(α+ 1)
ds
)

≤
∣∣∣u∗0 − u∗∗0 ∣∣∣ exp

(λ(M + 1)(βh + βk)T
α+1

Γ(α+ 1)

)
Hence, we have∣∣∣∣∣∣u1(s)− u2(s)

∣∣∣∣∣∣ ≤ exp
(λ(M + 1)(βh + βk)T

α+1

Γ(α+ 1)

)∣∣∣∣∣∣u∗0 − u∗∗0 ∣∣∣∣∣∣.
This completes the proof.

�

4. An Example

We consider the nonlinear iterative fractional integro-differential equation (1) with

u(0) = 0.25, T = 0.5, L = 0.2,M = 1, βh = βk = 0.4, λ =
2

3
, and α = 0.5.
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New, we have

u0 +
Tα(L+ T 3(βh + βk))

Γ(α+ 1)
= 0.25 +

0.50.5(0.2 + 0.53(0.4 + 0.4))

Γ(0.5 + 1)

= 0.25 +
0.71(0.2 + 0.125(0.8))

Γ(1.5)

= 0.25 +
0.71(0.3)

0.88

= 0.25 +
0.71(0.3)

0.88
= 0.492045

< 0.5 = T.

Also,

Tα+1(M + 1)λ(βh + βk)

Γ(α+ 1)
=

0.50.5+1(1 + 1)2
3(0.4 + 0.4)

Γ(0.5 + 1)

=
0.355(2)2

3(0.8)

0.88
= 0.4303

< 1.

Since all the hypotheses of Theorem 3.1 are fulfilled, then there exists a unique solution
of the given equation.

5. Conclusion

The main purpose of this paper is to present new existence and uniqueness results of
the solution for Caputo fractional iterative Volterra-Fredholm integro-differential. The
techniques used to prove our results are a variety of tools such as the the Gronwall-
Bellman’s inequality, some properties of fractional calculus and the Banach contraction
fixed point theorem. Moreover, the results of references [16, 17, 27] appear as a special
case of our results.

Acknowledgement. The authors acknowledge the valuable comments and suggestions
from the editors and referees for their valuable suggestions and comments that improved
this paper.
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