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SOME MEAN SQUARE INTEGRAL INEQUALITES INVOLVING THE

BETA FUNCTION AND GENERALIZED CONVEX STOCHATIC

PROCESSES

J. E. H. HERNÁNDEZ1, J. F. GÓMEZ2, §

Abstract. In the present work some integral inequalities which involve the Beta func-
tion for stochastic processes whose absolute values posses the property of convexity, or
P−convexity or s−convexity in the second sense are established. In the same way some
others integral inequalities for stochastic processes whose k−th powers of its absolute va-
lues posses these kind of generalized convexity are established making use of the Hölder’s
inequality and power mean inequality.
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1. Introduction

The study of convex functions has been of interest for mathematical analysis because
of the properties that are deduced from this concept.

Due to generalization requirements of the convexity concept in order to obtain new
applications, in the last years great efforts have been made in the study and investigation
of this topic.

A function f : I → R is said to be convex if for all x, y ∈ I and t ∈ [0, 1] the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds.
Numerous research works extending results on inequalities for convex functions to-

wards others much more generalized have been realized, using new concepts such as quasi-
convexity [17], s−convexity [3], logarithmically convexity [1], η−convexity [26], m−convexity
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[15], (s, η)−convexity [24], (s,m)−convexity in the second sense [25], convexity in coordi-
nates [11], p−harmonic log-convexity [27], h−convexity [28], etc.

The study on convex stochastic processes began in 1974 when B. Nagy applied a char-
acterization of measurable stochastic processes to solving a generalization of the (additive)
Cauchy functional equation [13]. In 1980 Nikodem considered convex stochastic processes
[14]. In 1995 A. Skowronski obtained some further results on convex stochastic processes,
which generalize some known properties of convex functions [21]. From that moment
many researchers began to merge the properties of generalized convexity with the stochas-
tic processes. By example, in the year 2014, E. Set et. al. investigated Hermite-Hadamard
type inequalities for stochastic processes in the second sense [16], in 2015 M. Tomar et.
al. worked on log-convex stochastic processes [23], recently, in 2018, the authors intro-
duced the concept of (m,h1, h2)−convex stochastic processes and they related it to some
inequalities for fractional integrals [8]. For other results related to stochastic processes see
[4],[6],[7],[12],[18] and [19], where further references are given.

Following this line of research, in the present work we propose to find some integral
inequalities that involve the Beta function and the stochastic processes which absolute
value are covex, P−convex or s−convex in the second sense.

2. Preliminaries

Definition 2.1. Let (Ω,A, P ) be an arbitrary probability space. A function X : Ω→ R is
called a random variable if it is A-measurable. Let I ⊂ R be time. A collection of random
variable X(t, w), t ∈ I with values in R is called a stochastic processes.

(1) If X(t, w) takes values in S = Rd, it is called vector-valued stochastic process.
(2) If the time I is a discrete subset of R, then X(t, w) is called a discrete time sto-

chastic process.
(3) If the time I is an interval in R, it is called a stochastic process with continuous

time.

Definition 2.2. Let (Ω, A, P ) be a probability space and I ⊂ R be an interval. We say
that the stochastic process X : I × Ω→ R is called

(1) Continuous in probability in interval I if for all t0 ∈ I we have

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability.
(2) Mean-square continuous in the interval I if for all t0 ∈ I

P − lim
t→t0

E(X(t, ·)−X(t0, ·)) = 0,

where E(X(t, ·)) denotes the expectation value of the random variable X(t, ·).
(3) Increasing (decreasing) if for all u, v ∈ I such that t < s,

X(u, ·) ≤ X(v, ·), (X(u, ·) ≥ X(v, ·)).
(4) Monotonic if it’s increasing or decreasing.
(5) Differentiable at a point t ∈ I if there exists a random variable X ′(t, ·) : I×Ω→ R,

such that

X ′(t, ·) = P − lim
t→t0

X(t, ·)−X(t0, ·)
t− t0

.

We say that a stochastic process X : I × Ω → R is continuous (differentiable) if it is
continuous (differentiable) at every point of the interval I (See [9], [12],[21]).
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Definition 2.3. Let (Ω, A, P ) be a probability space I ⊂ R be an interval with E(X(t)2) <
∞ for all t ∈ I. Let [a, b] ⊂ I, a = t0 < t1 < ... < tn = b be a partition of [a, b] and
θk ∈ [tk−1, tk] for k = 1, 2, ..., n. A random variable Y : Ω → R is called mean-square
integral of the process X(t, ·) on [a, b] if the following identity holds:

lim
n→∞

E

[ ∞∑
k=1

X(θk, ·)(tk − tk−1)− Y (·)

]2

= 0,

then we can write ∫ b

a
X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,∫ b

a
X(t, ·)dt ≤

∫ b

a
Z(t, ·)dt (a.e.)

where X(t, ·) ≤ Z(t, ·) in [a, b].
For further reading on stochastic calculus, reader may refer to [19] and [22].
The following definition can be found in the works of D. Kotrys [10], E. Set [16] and A.

Skowronski [20].

Definition 2.4. Set (Ω,A, P ) be a probability space and I ⊂ R be an interval. We say
that a stochastic process X : I × Ω→ R is

(1) Convex if the inequality

X(λu+ (1− λ)v, ·) ≤ λX(u, ·) + (1− λ)X(v, ·) (1)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1].
(2) P−convex if the inequality

X(λu+ (1− λ)v, ·) ≤ X(u, ·) +X(v, ·) (2)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1].
(3) s−convex in the second sense if the inequality

X(λu+ (1− λ)v, ·) ≤ λsX(u, ·) + (1− λ)sX(v, ·) (3)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

Also, in the development of this work we use the Beta function wich is defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dy, Re(x) > 0, Re(y) > 0.

3. Main Results

Lemma 3.1. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Then the equality∫ b

a
(u− a)p (b− u)qX(u, ·)du = (b− a)p+q+1

∫ 1

0
(1− t)p tqX (ta+ (1− t)b, ·) dt

holds for some fixed p, q > 0.
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Proof. Let u = ta + (1 − t)b. Then t = (b− u) / (b− a) , 1 − t = (u− a) /(b − a) and
dt = −du/(b− a), so∫ 1

0
(1− t)p tqX (ta+ (1− t)b, ·) dt =

1

(b− a)p+q+1

∫ b

a
(u− a)p (b− u)qX (u, ·) du.

The proof is complete. �

The following results are established for convex stochastic processes.

Theorem 3.1. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X| is convex on [a, b], where a, b ∈ I and a < b, then
the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (4)

≤ (b− a)p+q+1 (B(p+ 1, q + 2) |X (a, ·)|+B(p+ 2, q + 1) |X (b, ·)|) .

Proof. Using Lemma 3.1, the definition of the Beta function and the convexity of |X|, we
have ∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq (t |X (a, ·)|+ (1− t) |X (b, ·)|) dt

≤ (b− a)p+q+1 (B(p+ 1, q + 2) |X (a, ·)|+B(p+ 2, q + 1) |X (b, ·)|) .

The proof is complete �

Theorem 3.2. Let X : I×Ω→ R be a mean square continuous and mean square integrable

stochastic process. Let p, q > 0, if |X|l is convex on [a, b] for l > 1, where a, b ∈ I and
a < b, then the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (5)

≤ (2)−1/l (b− a)p+q+1 [B(kp+ 1, kq + 1)]1/k
(
|X(a, ·)|l + |X (b, ·)|l

)1/l
,

where (1/k) + (1/l) = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u− a)p (b− u)qX(u, ·)du (6)

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)kp tkqdt

)1/k (∫ 1

0
|X (ta+ (1− t)b, ·)|l dt

)1/l

.

Since |X|l is a convex stochastic process then∫ 1

0
|X (ta+ (1− t)b, ·)|l dt ≤

∫ 1

0
t |X(a, ·)|l + (1− t) |X (b, ·)|l dt (7)
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=
|X(a, ·)|l + |X(b, ·)|l

2
,

and using the definition of the Beta function we get∫ 1

0
(1− t)kp tkqdt = B(kp+ 1, kq + 1).

So replacing (7) and (8) in (6) it is attained the required inequality (5).
The proof is complete. �

Theorem 3.3. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X|r is convex on [a, b] for r > 1, where a, b ∈ I and
a < b, then the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (8)

≤ (b− a)p+q+1 [B(p+ 1, q + 1)]1−1/r ×

(B(p+ 1, q + 2) |X(a, ·)|r +B(p+ 2, q + 1) |X (b, ·)|r)1/r .

Proof. From Lemma 3.1 and using the power mean inequality for r ≥ 1 we have∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)p tqdt

)1−1/r

×(∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)|r dt

)1/r

.

Making use of the convexity of the stochastic process |X|r and the definition the Beta
function, we get∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)|r dt (9)

≤
∫ 1

0
(1− t)p tq (t |X (a, ·)|r + (1− t) |X (b, ·)|r) dt

= B(p+ 1, q + 2) |X(a, ·)|r +B(p+ 2, q + 1) |X (b, ·)|r .

Replacing (9) in the previous inequality it is attained the desired inequality (8).
The proof is complete. �

The following results are established for P−convex stochastic processes.

Theorem 3.4. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X| is P−convex on [a, b] where a, b ∈ I and a < b, then
the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (10)

≤ (b− a)p+q+1B(p+ 1, q + 1) (|X(a, ·)|+ |X (b, ·)|) .
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Proof. Using Lemma 3.1 , the definition of the Beta function and the P−convexity of |X| ,
we have ∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq (|X (a, ·)|+ |X (b, ·)|) dt

= (|X (a, ·)|+ |X (b, ·)|) (b− a)p+q+1
∫ 1

0
(1− t)p tqdt

= (b− a)p+q+1B(p+ 1, q + 1) (|X(a, ·)|+ |X (b, ·)|) .

The proof is complete �

Theorem 3.5. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X|r is P−convex on [a, b] for r > 1, where a, b ∈ I and
a < b, then the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (11)

≤ (b− a)p+q+1 [B(lp+ 1, lq + 1)]1/l (|X(a, ·)|r + |X (b, ·)|r)1/r ,

where (1/r) + (1/l) = 1.

Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u− a)p (b− u)qX(u, ·)du (12)

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)lp tlqdt

)1/l (∫ 1

0
|X (ta+ (1− t)b, ·)|r dt

)1/r

.

Since |X|r is P−convex Stochastic process then∫ 1

0
|X (ta+ (1− t)b, ·)|r dt ≤ |X(a, ·)|r + |X (b, ·)|r , (13)

and using the definition of the Beta function we get∫ 1

0
(1− t)lp tlqdt = B(lp+ 1, lq + 1). (14)

So replacing (13) and (14) in (12) it is attained the required inequality (11).
The proof is complete. �

Theorem 3.6. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X|r is P−convex on [a, b] for r > 1, where a, b ∈ I and
a < b, then the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (15)

≤ (b− a)p+q+1B(sp+ 1, sq + 1) (|X(a, ·)|r + |X (b, ·)|r)1/r .
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Proof. From Lemma 3.1 and using the power mean inequality for r ≥ 1 and the P−convexity
of |X|r we have∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)p tq

)1−1/r (∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)|r dt

)1/r

≤ (b− a)p+q+1

(∫ 1

0
(1− t)p tq

)1−1/r

×

(|X(a, ·)|r + |X (b, ·)|r)1/r

(∫ 1

0
(1− t)p tqdt

)1/r

= (b− a)p+q+1B(sp+ 1, sq + 1) (|X(a, ·)|r + |X (b, ·)|r)1/r .

The proof is complete. �

The following results are established for s−convex stochastic processes.

Theorem 3.7. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X| is s−convex in the second sense on [a, b] for some
s ∈ (0, 1], where a, b ∈ I and a < b, then the following inequality holds almost everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du (16)

≤ (b− a)p+q+1 (|X (a, ·)|B (p+ 1, q + s+ 1) + |X (b, ·)|B (p+ s+ 1, q + 1)) .

Proof. Using Lemma 3.1, the definition of the Beta function and the s−convexity of |X| ,
we have∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq (ts |X (a, ·)|+ (1− t)s |X (b, ·)|) dt

≤ (b− a)p+q+1

(
|X (a, ·)|

∫ 1

0
(1− t)p tq+sdt+ |X (b, ·)|

∫ 1

0
(1− t)p+s tqdt

)
≤ (b− a)p+q+1 (|X (a, ·)|B (p+ 1, q + s+ 1) + |X (b, ·)|B (p+ s+ 1, q + 1)) .

The proof is complete �

Theorem 3.8. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X|r is s−convex in the second sense on [a, b] for r > 1
and s ∈ (0, 1], where a, b ∈ I and a < b, then the following inequality holds almost every
where ∫ b

a
(u− a)p (b− u)qX(u, ·)du (17)

≤ (b− a)p+q+1 (s+ 1)−1/r [B(lp+ 1, lq + 1)]1/l (|X(a, ·)|r + |X (b, ·)|r)1/r

where (1/r) + (1/l) = 1.
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Proof. From Lemma 3.1 and using the Hölder inequality we have∫ b

a
(u− a)p (b− u)qX(u, ·)du (18)

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)lp tlqdt

)1/l (∫ 1

0
|X (ta+ (1− t)b, ·)|r dt

)1/r

.

Since |X|r is s−convex stochastic process in the second sense then∫ 1

0
|X (ta+ (1− t)b, ·)|r dt (19)

≤ |X(a, ·)|r
∫ 1

0
tsdt+ |X (b, ·)|r

∫ 1

0
(1− t)sdt

=
|X(a, ·)|r + |X (b, ·)|r

s+ 1
,

and using the definition of the Beta function we get∫ 1

0
(1− t)lp tlqdt = B(lp+ 1, lq + 1). (20)

So, replacing (19) and (20) in (18) it is attained the desired inequality (17).
The proof is complete. �

Theorem 3.9. Let X : I×Ω→ R be a mean square continuous and mean square integrable
stochastic process. Let p, q > 0, if |X|r is s−convex in the second sense on [a, b] for r > 1
and s ∈ (0, 1], where a, b ∈ I with a < b, then the following inequality holds almost
everywhere∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1 (B(p+ 1, q + 1))1−1/r ×

(|X(a, ·)|r B(p+ 1, q + s+ 1) + |X(b, ·)|r B(p+ s+ 1, q + 1))1/r

Proof. From Lemma 3.1 and using the power mean inequality for k ≥ 1 we have∫ b

a
(u− a)p (b− u)qX(u, ·)du (21)

≤ (b− a)p+q+1
∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)| dt

≤ (b− a)p+q+1

(∫ 1

0
(1− t)p tqdt

)1−1/r

×(∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)|r dt

)1/r

.

Since |X|r is s−convex in the second sense and using the definition of the Beta function
we get ∫ 1

0
(1− t)p tq |X (ta+ (1− t)b, ·)|r dt

≤
∫ 1

0
(1− t)p tq (ts |X(a, ·)|r + (1− t)s |X(b, ·)|r) dt

= |X(a, ·)|r B(p+ 1, q + s+ 1) + |X(b, ·)|r B(p+ s+ 1, q + 1).
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With this last result and again using the definition of the Beta function in the inequality
(21) we obtain∫ b

a
(u− a)p (b− u)qX(u, ·)du

≤ (b− a)p+q+1 (B(p+ 1, q + 1))1−1/r ×

(|X(a, ·)|r B(p+ 1, q + s+ 1) + |X(b, ·)|r B(p+ s+ 1, q + 1))1/r

The proof is complete. �

4. Conclusion

In the development of this work were found some integral inequalities that involve
the Beta function and stochastic processes, in particular those whose absolute values are
convex, P−convex or s−convex in the second sense. Similar inequalities were also found
for k−th powers of the same type of processes stochastic using the Hölder’s inequality
and power mean inequality. We hope that the results shown in this paper will serve as a
basis for the study of integral inequalities involving stochastic processes with other types
of generalized convexity.
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