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UNIQUENESS AND STABILITY OF SOLUTIONS FOR A COUPLED

SYSTEM OF NABLA FRACTIONAL DIFFERENCE BOUNDARY

VALUE PROBLEMS

JAGAN MOHAN JONNALAGADDA1, §

Abstract. In this article, we obtain sufficient conditions on existence, uniqueness and
Ulam–Hyers stability of solutions for a coupled system of two-point nabla fractional dif-
ference boundary value problems, using Banach, Brouwer fixed point theorems and Urs’s
approach. Further, we illustrate the applicability of established results through an ex-
ample.
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1. Introduction

In this article, we consider the following coupled system of nabla fractional difference
equations with conjugate boundary conditions

(
∇α1−1
ρ(a)

(
∇u1

))
(t) + f1(t, u1(t), u2(t)) = 0, t ∈ Nba+2,(

∇α2−1
ρ(a)

(
∇u2

))
(t) + f2(t, u1(t), u2(t)) = 0, t ∈ Nba+2,

u1(a) = 0, u1(b) = 0,

u2(a) = 0, u2(b) = 0,

(1)

where a, b ∈ R with b − a ∈ N2; 1 < α1, α2 < 2; f1, f2 : Nba+1 × R2 → R and ∇νρ(a)
denotes the νth-th order Riemann–Liouville backward (nabla) difference operator with
ν ∈ {α1 − 1, α2 − 1}.

In 1940, Ulam [41] posed a problem on the stability of functional equations and Hyers
[19] solved it in the next year for additive functions defined on Banach spaces. In 1978,
Rassias [38] provided a generalization of the Hyers theorem for linear mappings. Since
then, several mathematicians investigated Ulam’s problem in different directions for vari-
ous classes of functional equations [23, 30], differential equations [24, 25, 26, 33, 34, 39, 40],
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difference equations [27, 28, 29, 35], fractional differential equations [4, 6, 11, 12, 13, 14,
15, 43], and fractional difference equations [9, 10, 21].

In particular, Urs [42] presented some Ulam–Hyers stability results for the coupled fixed
point of a pair of contractive type operators on complete metric spaces. Motivated by this
work, in this article, we study the Ulam–Hyers stability of (1).

The present paper is organized as follows: Section 2 contains preliminaries on nabla
fractional calculus. In sections 3 and 4, we establish sufficient conditions on existence,
uniqueness and Ulam–Hyers stability of solutions for the discrete fractional boundary
value problem (1), respectively. We present an example in section 4.

2. Preliminaries

2.1. Nabla Fractional Calculus. We use the following notations, definitions and known
results of nabla fractional calculus throughout the article. Denote by Na = {a, a+ 1, a+
2, . . .} and Nba = {a, a+ 1, a+ 2, . . . , b} for any a, b ∈ R such that b− a ∈ N1.

Definition 2.1 (See [7]). The backward jump operator ρ : Na → Na is defined by

ρ(t) =

{
a, t = a,

t− 1, t ∈ Na+1.

Definition 2.2 (See [32, 36]). The Euler gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-
plane <(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}.

Definition 2.3 (See [17]). For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈
R \ {. . . ,−2,−1, 0}, the generalized rising function is defined by

tr =
Γ(t+ r)

Γ(t)
.

Also, if t ∈ {. . . ,−2,−1, 0} and r ∈ R such that (t+ r) ∈ R \ {. . . ,−2,−1, 0}, then we use
the convention that tr = 0.

Definition 2.4 (See [17]). Let µ ∈ R\{. . . ,−2,−1}. Define the µth-order nabla fractional
Taylor monomial by

Hµ(t, a) =
(t− a)µ

Γ(µ+ 1)
,

provided the right-hand side exists. Observe that Hµ(a, a) = 0 and Hµ(t, a) = 0 for all
µ ∈ {. . . ,−2,−1} and t ∈ Na.

Definition 2.5 (See [7]). Let u : Na → R and N ∈ N1. The first order backward (nabla)
difference of u is defined by(

∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .
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Definition 2.6 (See [17]). Let u : Na+1 → R and N ∈ N1. The N th-order nabla sum of u
based at a is given by(

∇−Na u
)
(t) =

t∑
s=a+1

HN−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−Na u

)
(a) = 0. We define

(
∇−0a u

)
(t) = u(t) for all t ∈ Na+1.

Definition 2.7 (See [17]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u
based at a is given by(

∇−νa u
)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−νa u

)
(a) = 0.

Definition 2.8 (See [17]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that
N − 1 < ν ≤ N . The νth-order Riemann–Liouville nabla difference of u is given by(

∇νau
)
(t) =

(
∇N
(
∇−(N−ν)a u

))
(t), t ∈ Na+N .

2.2. Boundary Value Problem. Let a, b ∈ R with b− a ∈ N2. Assume 1 < α < 2 and
h : Nba+1 → R. Consider the boundary value problem{(

∇αρ(a)u
)
(t) + h(t) = 0, t ∈ Nba+2,

u(a) = 0, u(b) = 0.
(2)

Brackins [8], Gholami et al. [16] and the author [22] have obtained the following ex-
pression for the unique solution of (2), independently.

Theorem 2.1. [8, 16, 22] The nabla fractional boundary value problem (2) has the unique
solution

u(t) =
b∑

s=a+1

G(t, s)h(s), t ∈ Nba, (3)

where

G(t, s) =
1

Γ(α)


(b−s+1)α−1

(b−a)α−1
(t− a)α−1, t ∈ Nρ(s)a ,

(b−s+1)α−1

(b−a)α−1
(t− a)α−1 − (t− s+ 1)α−1, t ∈ Nbs.

(4)

Theorem 2.2. [8] The Green’s function G(t, s) defined in (4) satisfies the following prop-
erties:

(1) G(a, s) = G(b, s) = 0 for all s ∈ Nba+1;

(2) G(t, a+ 1) = 0 for all t ∈ Nba;

(3) G(t, s) > 0 for all (t, s) ∈ Nb−1a+1 × Nba+2;

(4) max
t∈Nb−1

a+1

G(t, s) = G(s− 1, s) for all s ∈ Nba+2;

(5)
b∑

s=a+1

G(t, s) ≤ λ for all (t, s) ∈ Nba × Nba+1, where

λ =

(
b− a− 1

αΓ(α+ 1)

)(
(α− 1)(b− a) + 1

α

)α−1
.
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3. Existence & Uniqueness of Solutions of (1)

Let X = Rb−a+1 be the Banach space of all real (b − a + 1)-tuples equipped with the
maximum norm

‖u‖X = max
t∈Nba
|u(t)|.

Obviously, the product space
(
X ×X, ‖ · ‖X×X

)
is also a Banach space with the norm

‖(u1, u2)‖X×X = ‖u1‖X + ‖u2‖X .

A closed ball with radius R centred on the zero function in X ×X is defined by

BR = {(u1, u2) ∈ X ×X : ‖(u1, u2)‖X×X ≤ R}.

Define the operator T : X ×X → X ×X by

T (u1, u2)(t) =

(
T1(u1, u2)(t)
T2(u1, u2)(t)

)
, t ∈ Nba, (5)

where

T1(u1, u2)(t) =
b∑

s=a+1

G1(t, s)f1(s, u1(s), u2(s)), t ∈ Nba, (6)

and

T2(u1, u2)(t) =

b∑
s=a+1

G2(t, s)f2(s, u1(s), u2(s)), t ∈ Nba. (7)

The Green’s functions G1(t, s) and G2(t, s) are given by

G1(t, s) =
1

Γ(α1)


(b−s+1)α1−1

(b−a)α1−1
(t− a)α1−1, t ∈ Nρ(s)a ,

(b−s+1)α1−1

(b−a)α1−1
(t− a)α1−1 − (t− s+ 1)α1−1, t ∈ Nbs,

(8)

and

G2(t, s) =
1

Γ(α2)


(b−s+1)α2−1

(b−a)α2−1
(t− a)α2−1, t ∈ Nρ(s)a ,

(b−s+1)α2−1

(b−a)α2−1
(t− a)α2−1 − (t− s+ 1)α2−1, t ∈ Nbs.

(9)

From Theorem 2.2, we have

b∑
s=a+1

G1(t, s) ≤ λ1 for all (t, s) ∈ Nba × Nba+1, where

λ1 =

(
b− a− 1

α1Γ(α1 + 1)

)(
(α1 − 1)(b− a) + 1

α1

)α1−1
, (10)

and

b∑
s=a+1

G2(t, s) ≤ λ2 for all (t, s) ∈ Nba × Nba+1, where

λ2 =

(
b− a− 1

α2Γ(α2 + 1)

)(
(α2 − 1)(b− a) + 1

α2

)α2−1
. (11)

Clearly, (u1, u2) is a fixed point of T if and only if (u1, u2) is a solution of (1). Assume

(H1) f1, f2 : Nba+1 × R2 → R are continuous.



64 TWMS J. APP. AND ENG. MATH. V.12, N.1, 2022

(H2) There exist nonnegative constants L1, L2, L3 and L4 such that

|f1(t, u1, u2)− f2(t, v1, v2)| ≤ L1|u1 − v1|+ L2|u2 − v2|,

and

|f2(t, u1, u2)− f2(t, v1, v2)| ≤ L3|u1 − v1|+ L4|u2 − v2|,

for all (t, u1, u2), (t, v1, v2) ∈ Nba+1 × R2.
(H3) Take

max
t∈Nba+1

|f1(t, 0, 0)| = M1, max
t∈Nba+1

|f2(t, 0, 0)| = M2.

(H4) There exist nonnegative constants N1, N2, N3, N4, N5, and N6 such that

|f1(t, u1, u2)| ≤ N1|u1|+N2|u2|+N3,

and

|f2(t, u1, u2)| ≤ N4|u1|+N5|u2|+N6,

for all (t, u1, u2) ∈ Nba+1 × R2.
(H5) L = λ1(L1 + L2) + λ2(L3 + L4) ∈ (0, 1).
(H6) N = λ1(N1 +N2) + λ2(N4 +N5) ∈ (0, 1).

We apply Banach fixed point theorem to establish existence and uniqueness of solutions
of (1).

Theorem 3.1. [37] Let Br be the closed ball of radius r > 0, centred at zero, in a Banach
space X with Υ : Br → X a contraction and Υ(∂Br) ⊆ Br. Then, Υ has a unique fixed
point in Br.

Theorem 3.2. Assume (H1), (H2), (H3) and (H5) hold. If we choose

R ≥ (λ1M1 + λ2M2)

1− [λ1(L1 + L2) + λ2(L3 + L4)]
,

then the system (1) has a unique solution (u1, u2) ∈ BR. Here λ1 and λ2 are given by (10)
and (11), respectively.

Proof. Clearly, T : BR → X ×X. First, we show that T is a contraction mapping. To see
this, let (u1, u2), (v1, v2) ∈ BR, t ∈ Nba, and consider

∣∣T1(u1, u2)(t)− T1(v1, v2)(t)∣∣ ≤ b∑
s=a+1

G1(t, s)
∣∣f1(s, u1(s), u2(s))− f2(s, v1(s), v2(s))∣∣

≤
b∑

s=a+1

G1(t, s)
[
L1|u1(s)− v1(s)|+ L2|u2(s)− v2(s)|

]
≤ λ1

[
L1‖u1 − v1‖X + L2‖u2 − v2‖X

]
,

implying that∥∥T1(u1, u2)− T1(v1, v2)∥∥X ≤ λ1[L1‖u1 − v1‖X + L2‖u2 − v2‖X
]
. (12)

Similarly, we obtain∥∥T2(u1, u2)− T2(v1, v2)∥∥X ≤ λ2[L3‖u1 − v1‖X + L4‖u2 − v2‖X
]
. (13)
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Thus, from (12) and (13), we have

‖T (u1, u2)− T (v1, v2)‖X×X =
∥∥T1(u1, u2)− T1(v1, v2)∥∥X +

∥∥T2(u1, u2)− T2(v1, v2)∥∥X
≤
[
(λ1L1 + λ2L3)‖u1 − v1‖X + (λ1L2 + λ2L4)‖u2 − v2‖X

]
< L

[
(‖u1 − v1‖X + ‖u2 − v2‖X

]
= L‖(u1, u2)− (v1, v2)‖X×X .

Since L < 1, T is a contraction mapping with contraction constant L. Next, we show that

T (∂BR) ⊆ BR. (14)

To see this, let (u1, u2) ∈ ∂BR, t ∈ Nba, and consider

∣∣T1(u1, u2)(t)∣∣ ≤ b∑
s=a+1

G1(t, s)|f1(s, u1(s), u2(s))|

≤
b∑

s=a+1

G1(t, s)|f1(s, u1(s), u2(s))− f1(s, 0, 0)|

+

b∑
s=a+1

G1(t, s)|f1(s, 0, 0)|

≤
b∑

s=a+1

G1(t, s)
[
L1|u1(s)|+ L2|u2(s)|

]
+M1

b∑
s=a+1

G1(t, s)

≤ λ1
[
(L1 + L2)R+M1

]
,

implying that ∥∥T1(u1, u2)∥∥X ≤ λ1[(L1 + L2)R+M1

]
. (15)

Similarly, we obtain ∥∥T2(u1, u2)∥∥X ≤ λ2[(L3 + L4)R+M2

]
. (16)

Thus, from (15) and (16), we have

‖T (u1, u2)‖X×X =
∥∥T1(u1, u2)∥∥X +

∥∥T2(u1, u2)∥∥X
≤
[
λ1(L1 + L2) + λ2(L3 + L4)

]
R+ (λ1M1 + λ2M2) ≤ R,

implying that (14) holds. Therefore, by Banach fixed point theorem, T has a unique fixed
point (u1, u2) ∈ BR. The proof is complete. �

We apply Brouwer fixed point theorem to establish existence of solutions of (1).

Theorem 3.3. [37] Let C be a compact convex subset of Rn, and T : C → C be a
continuous mapping. Then, f has a fixed point in C.

Theorem 3.4. Assume (H1), (H4) and (H6) hold. If we choose

R ≥ (λ1N3 + λ2N6)

1− [λ1(N1 +N2) + λ2(N4 +N5)]
,

then the system (1) has at least one solution (u1, u2) ∈ BR. Here λ1 and λ2 are given by
(10) and (11), respectively.
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Proof. Clearly, BR is a compact convex subset of X×X. First, we show that T : BR → BR.
To see this, let (u1, u2) ∈ BR, t ∈ Nba, and consider∣∣T1(u1, u2)(t)∣∣ ≤ b∑

s=a+1

G1(t, s)
∣∣f1(s, u1(s), u2(s))∣∣

≤
b∑

s=a+1

G1(t, s)
[
N1|u1(s)|+N2|u2(s)|+N3

]
≤ λ1

[
(N1 +N2)R+N3

]
,

implying that ∥∥T1(u1, u2)∥∥X ≤ λ1[(N1 +N2)R+N3

]
. (17)

Similarly, we obtain ∥∥T2(u1, u2)∥∥X ≤ λ2[(N4 +N5)R+N6

]
. (18)

Thus, from (17) and (18), we have

‖T (u1, u2)‖X×X =
∥∥T1(u1, u2)∥∥X +

∥∥T2(u1, u2)∥∥X
≤ λ1(N1 +N2)R+ λ2(N4 +N5)R+ (λ1N3 + λ2N6)

]
≤ R,

implying that T : BR → BR. Since T is a summation operator on a discrete finite set, T
is trivially continuous on BR. Therefore, by Brouwer fixed point theorem, T has at least
one fixed point (u1, u2) ∈ BR. The proof is complete. �

4. Stability of Solutions of (1)

We use Urs’s [42] approach to establish Ulam–Hyers stability of solutions of (1).

Theorem 4.1. [42] Let X be a Banach space and T1, T2 : X ×X → X be two operators.
Then, the operational equations system{

u1 = T1(u1, u2),

u2 = T2(u1, u2),
(19)

is said to be Ulam–Hyers stable if there exist C1, C2, C3, C4 > 0 such that for each ε1,
ε2 > 0 and each solution-pair (u∗1, u

∗
2) ∈ X ×X of the inequalities:{

‖u1 − T1(u1, u2)‖X ≤ ε1,
‖u2 − T2(u1, u2)‖X ≤ ε2,

(20)

there exists a solution (v∗1, v
∗
2) ∈ X ×X of (19) such that{
‖u∗1 − v∗1‖X ≤ C1ε1 + C2ε2,

‖u∗2 − v∗2‖X ≤ C3ε1 + C4ε2.
(21)

Theorem 4.2. [42] Let X be a Banach space, T1, T2 : X ×X → X be two operators such
that {

‖T1(u1, u2)− T1(v1, v2)‖X ≤ k1‖u1 − v1‖X + k2‖u2 − v2‖X ,
‖T2(u1, u2)− T2(v1, v2)‖X ≤ k3‖u1 − v1‖X + k4‖u2 − v2‖X ,

(22)

for all (u1, u2), (v1, v2) ∈ X ×X. Suppose

H =

(
k1 k2
k3 k4

)
converges to zero. Then, the operational equations system (19) is Ulam–Hyers stable.
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Set

H =

(
λ1L1 λ1L2

λ2L3 λ2L4

)
. (23)

Theorem 4.3. Assume (H1), (H2), (H3), and (H4) hold. Choose

R ≥ (λ1M1 + λ2M2)

1− [λ1(L1 + L2) + λ2(L3 + L4)]
.

Further, assume the spectral radius of H is less than one. Then, the solution of system
(1) is Ulam–Hyers stable. Here λ1 and λ2 are given by (10) and (11), respectively.

Proof. In view of Theorem 3.2, we have{∥∥T1(u1, u2)− T1(v1, v2)∥∥X ≤ λ1[L1‖u1 − v1‖X + L2‖u2 − v2‖X
]
,∥∥T2(u1, u2)− T2(v1, v2)∥∥X ≤ λ2[L3‖u1 − v1‖X + L4‖u2 − v2‖X
]
,

(24)

which implies that

‖T (u1, u2)− T (v1, v2)‖X×X ≤ H
(
‖u1 − v1‖X
‖v2 − v2‖X

)
. (25)

Since the spectral radius of H is less than one, the solution of (1) is Ulam–Hyers stable.
The proof is complete. �

5. Example

Consider the following coupled system of two-point nabla fractional difference boundary
value problems

(
∇0.5
ρ(0)

(
∇u1

))
(t) + (0.01)e−t

[
1 + tan−1 u1(t) + tan−1 u2(t)

]
= 0, t ∈ N9

2,(
∇0.5
ρ(0)

(
∇u2

))
(t) + (0.02)

[
e−t + sinu1(t) + sinu2(t)

]
= 0, t ∈ N9

2,

u1(0) = 0, u1(9) = 0,

u2(0) = 0, u2(9) = 0.

(26)

Comparing (1) and (26), we have a = 0, b = 9, α1 = α2 = 1.5,

f1(t, u1, u2) = (0.01)e−t
[
1 + tan−1 u1 + tan−1 u2

]
,

and
f2(t, u1, u2) = (0.02)

[
e−t + sinu1 + sinu2

]
,

for all (t, u1, u2) ∈ N9
0×R2. Clearly, f1 and f2 are continuous on N9

0×R2. Next, f1 and f2
satisfy assumption (H2) with L1 = 0.01, L2 = 0.01, L3 = 0.02 and L4 = 0.02. We have,

M1 = max
t∈N9

1

|f1(t, 0, 0)| = 0.01

e
,

M2 = max
t∈N9

1

|f2(t, 0, 0)| = 0.02

e
,

λ1 =

(
b− a− 1

α1Γ(α1 + 1)

)(
(α1 − 1)(b− a) + 1

α1

)α1−1
≈ 7.4259,

and

λ2 =

(
b− a− 1

α2Γ(α2 + 1)

)(
(α2 − 1)(b− a) + 1

α2

)α2−1
≈ 7.4259.

Also,
L = λ1(L1 + L2) + λ2(L3 + L4) ≈ 0.4456 < 1,
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implying that (H5) holds. Thus, by Theorem 3.2, the system (26) has a unique solution
(u1, u2) ∈ BR, where

R ≥ (λ1M1 + λ2M2)

1− [λ1(L1 + L2) + λ2(L3 + L4)]
= 0.1479.

Further,

H =

(
λ1L1 λ1L2

λ2L3 λ2L4

)
=

(
0.0743 0.0743
0.1486 0.1486

)
.

The spectral radius of H is 0.0223 which is less than one. Hence, by Theorem 4.3 the
solution of (26) is Ulam–Hyers stable.

6. Conclusions

In this article, we obtained sufficient conditions on existence, uniqueness and Ulam–
Hyers stability of solutions for a coupled system of two-point nabla fractional difference
boundary value problems, using Banach, Brouwer fixed point theorems and Urs’s ap-
proach. Finally, we illustrated the applicability of established results through an example.
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