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ALMOST PERIODIC POSITIVE SOLUTIONS FOR A DELAYED

NONLINEAR DENSITY DEPENDENT MORTALITY NICHOLSON’S

BLOWFLIES MODEL ON TIME SCALES

K. R. PRASAD1, M. KHUDDUSH1, K. V. VIDYASAGAR1, §

Abstract. In this paper we discuss a nonlinear density dependent mortality Nicholson’s
blowflies equation with multiple pairs of time varying delays. By contraction mapping
theorem, we derived the necessary conditions for the existence of almost periodic posi-
tive solutions and by selecting suitable Lyapunov functionnal we study global asymptotic
stability of the addressed model. Finally, some numerical simulations are listed to show
the validity of our methods.
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1. Introduction

The delay differential equation

ϑ′(t) = αϑ(t) + βϑ(t− τ)e−γϑ(t−τ), t ∈ R

describes a population of the Australian sheep blowfly proposed by Gurney [10] in 1980
and is agreed with the experimental data obtained by Nicholson [18] in 1954. Since this
equation explains Nicholson blowfly more accurately, the model and it’s modifications
have been now refereed to as the Nicholson’s blowflies model. The theory of Nicholson’s
blowflies model has made remarkable progress (see[6, 12, 17, 21] and references therein).
Recently, Qian and Wang [22], studied a nonlinear density dependent mortality Nicholson’s
blowflies equation with multiple pairs of time-varying delays

ϑ′(t) = a(t) + b(t)e−ϑ(t) +
m∑
j=1

βj(t)ϑ(t− hj(t))e−γj(t)ϑ(t−gj(t)), t ∈ R, (1)
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and by utilising differential inequality techniques and the fluctuation lemma, a delay-
independent criterion was determined to ensure the global asymptotic stability of the
model.

Many authors [1, 9] believe that the discrete time model governed by difference equations
are more appropriate than the continuous ones when the populations have non-overlapping
generations. Discrete time models can also provide efficient computational models of
continuous models for numerical simulations. Recently, Zhu [25] considered the following
discrete delayed Ricker model with survival rate,

ϑ(t+ 1) = γ(t)ϑ(t) + ϑ(τ(t))e
r(t)

[
1−ϑ(τ(t))

k(t)

]
, t ∈ Z+, (2)

and established global attractivity, extreme stability, and the periodicity of the solution
of the model.

The differential, difference and dynamic equations on time scales are three theories
which play important role for modeling in the environment. Among them, the theory
of dynamic equations on time scales is the most recent and was introduced by Stefan
Hilger in his PhD thesis in 1988 with three main features: unification, extension and
discretization. Since a time scale is any closed and nonempty subset of the real numbers
set, so we can extend known results from continuous and discrete analysis to a more
general setting. As a matter of fact, this theory allows us to consider time scales which
possess hybrid behaviours (both continuous and discrete). These types of time scales
play an important role for applications, since most of the phenomena in the environment
are neither only discrete nor only continuous, but they possess both behaviors [4, 5, 23].
Moreover, basic results on this issue have been well documented in the articles [2, 3]
and monographs of Bohner and Peterson [7, 8]. In the real world phenomena, since the
almost periodic variation of the environment plays a crucial role in many biological and
ecological dynamical systems and is more frequent and general than the periodic variation
of the environment. In this paper we systematically unify the existence of almost periodic
solutions for nonlinear density dependent mortality Nicholson’s blowflies equation with
multiple pairs of time varying delays modelled by ordinary differential equations and their
discrete analogues in the form of difference equations and to extend these results to more
general time scales. The concept of almost periodic time scales was proposed by Li and
Wang [13]. Based on this concept, some works have been done (see [14, 15, 16, 19, 20]).

Motivated by aforementioned works, in this paper we study almost periodic positive
solutions of a nonlinear density dependent mortality Nicholson’s blowflies equation with
multiple pairs of time-varying delays,

ϑ∆(t) = −a(t)ϑ(t) + b(t)e−ϑ(t) +

n∑
`=1

β`(t)ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)), (3)

where t ∈ T (T is an arbitrary almost periodic time scale), a(t)ϑ(t)− b(t)e−ϑ(t) represents

the death rate of the population, β`(t)ϑ(t − h`(t)) e−γ`(t)ϑ(t−g`(t)) describes the time de-
pendent birth function which involves maturation delay h`(t) and incubation delay g`(t)
and gains the reproduces at its maximum rate 1

γ`(t)
, all parameter functions of (3) are

nonnegative, bounded positive almost periodic functions, and ` ∈ J := {1, 2, ..., n}. When
T = Z+, the model (3) is similar to the model (2).

For any bounded function f(t), we denote f+ = sup
t∈T

f(t), f− = inf
t∈T

f(t).

We assume the following conditions are true throughout the paper:
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(H1) We assume that the bounded almost periodic functions a(t), b(t), β`(t), g`(t), h`(t)
satisfy 0 < a− ≤ a(t) ≤ a+, 0 < b− ≤ b(t) ≤ b+, 0 < β−` ≤ β`(t) ≤ β+

` ,

0 < g−` ≤ g`(t) ≤ g
+
` , 0 < h−` ≤ h`(t) ≤ h

+
` for ` = 1, 2, 3, · · · , n.

(H2) The initial functions associated with equation (3) is given by

ϑ(t;ϕ) = ϕ(t) for t ∈ [−%∗, 0]T, %
∗ = max

{
max
`∈J

g+
` , max

`∈J
h+
`

}
where ϕ(·) denotes a real-valued bounded and continuous functions defined on
[−%∗, 0]T.

Due to biological reasons of the model (3), positive solutions are only meaningful. So, we
restrict our attention to positive solutions of equation (3).

2. Preliminaries

In this section, we introduce some definitions and state some preliminary results which
are useful in the sequel.

Definition 2.1. [7] A time scale T is a nonempty closed subset of the real numbers R.
T has the topology that it inherits from the real numbers with the standard topology. It
follows that the jump operators σ, ρ : T→ T, and the graininess µ : T→ [0,∞) are defined
by σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t} and µ(t) = ρ(t)− t, respectively.
• In this definition we put inf ∅ = supT and sup ∅ = inf T.
• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) <
t, σ(t) = t, σ(t) > t, respectively.
• A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all
rd-continuous functions f : T→ R is denoted by Crd = Crd(T) = Crd(T,R).
• A function f : T → R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set of
all ld-continuous functions f : T→ R is denoted by Cld = Cld(T) = Cld(T,R).
• By an interval time scale, we mean the intersection of a real interval with a given time
scale. i.e., [a, b]T = [a, b] ∩ T other intervals can be defined similarly.

Definition 2.2. [7] A function p : T → R is called regressive provided 1 + µ(t)p(t) 6= 0
for all t ∈ Tk; p : T → R is called positively regressive provided 1 + µ(t)p(t) > 0 for all
t ∈ Tk The set of all regressive and rd-continuous functions p : T → R will be denoted by
R = R(T,R) and the set of all positively regressive functions and rd-continuous functions
will be denoted by R+ = R+(T,R).

Definition 2.3. [7] If p is regressive function, then the generalized exponential function
ep is defined by

ep(t, s) = exp
{∫ t

s
ξµ(x)(p(x))∆x

}
with the cylinder transformation

ξh(z) =

{
Log(1 + hz)

h
, h 6= 0,

z, h = 0.

Lemma 2.1. [7] Assume that p, q : T→ R are two regressive functions; then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1; (ii) ep(t, s) = 1/ep(s, t) = e	p(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r); (iv) (ep(·, s))∆ = p(t)ep(t, s).
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Lemma 2.2. [7] Suppose that p ∈ R+, then

(i) ep(t, s) > 0 for all t, s ∈ T;
(ii) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Lemma 2.3. [7] If p ∈ R and a, b, c ∈ T, then [ep(c, ·)]∆ = −p[ep(c, ·)]σ, and∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Lemma 2.4. [7] Let p : T → R be right-dense continuous and regressive, a ∈ T and
ua ∈ R. Then the unique solution of the initial value problem

u∆(t) = p(t)u(t) + f(t), u(a) = ua

is given by

u(t) = er(t, a)ua +

∫ t

a
er(t, σ(s))f(s)∆s.

Lemma 2.5 ([7], Corollary 6.7, pp 257). Let p ∈ R+(T,R), p(t) ≥ 0, u(t) ∈ R and α ∈ R.
Then

u(t) ≤ α +

∫ t

t0

u(s)p(s)∆(s), ∀t ∈ T,

implies
u(t) ≤ αep(t, t0), ∀t ∈ T.

Definition 2.4. [13] A time scale T is called an almost periodic time scale if

Π := {τ ∈ R : t+ τ ∈ T,∀t ∈ T} 6= {0}.

Definition 2.5. [13] Let T be an almost periodic time scale. A function f ∈ C(T,R) is
said to be almost periodic on T, if, for any ε > 0, the set

E(ε, f) = {τ ∈ Π : |f(t+ τ)− f(t)| < ε,∀t ∈ T}
is relatively dense in T; that is, for any ε > 0, there exists a constant l(ε) > 0 such that
each interval of length l(ε) contains at least one τ ∈ E(ε, f) such that

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.
The set E(ε, f) is called the ε−translation number of f(t). We denote the set of all such
functions by AP (T).

Lemma 2.6. [13] If f ∈ C(T,R) is an almost periodic function, then f is bounded on T.

Lemma 2.7. [13] If f, g ∈ C(T,R) are almost periodic functions, then f + g, fg are also
almost periodic.

Definition 2.6. [24] Let ϑ ∈ Rm and A(t) be an m ×m rd-continuous matrix on T; the
linear system

ϑ∆(t) = A(t)ϑ(t), t ∈ T, (4)

is said to admit an exponential dichotomy on T if there exist positive constants k,α,
projection P , and the fundamental solution matrix ϑ(t) of (4) satisfying

|ϑ(t)Pϑ−1(σ(τ))|0 ≤ ke	α(t,σ(τ)), τ, t ∈ T, t ≥ τ,

|ϑ(t)(I − P)ϑ−1(σ(s))|0 ≤ ke	α(σ(τ), t), τ, t ∈ T, t ≤ τ,

where | · |0 is a matrix norm on T; that is, if A = (aij)m×m, then we can take |A|0 =

(
∑m

i=1

∑m
j=1 |aij |2)1/2.
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Lemma 2.8. [13] If the linear system (4) admits an exponential dichotomy, then the
following system ϑ∆(t) = A(t)ϑ(t) + f(t), t ∈ T, has a solution as follows:

ϑ(t) =

∫ t

−∞
ϑ(t)Pϑ−1(σ(τ))f(τ)∆τ−

∫ +∞

t
ϑ(t)(I − P)ϑ−1(σ(τ))f(τ)∆τ,

where ϑ(t) is the fundamental solution matrix of (4).

Lemma 2.9. [13] Let A(t) be a regressive n× n matrix-valued function on T. Let t0 ∈ T
and ϑ0 ∈ Rn, then the initial value problem ϑ∆(t) = A(t)ϑ(t), ϑ(t0) = ϑ0 has a unique
solution ϑ(t) = eA(t, t0)ϑ0.

Lemma 2.10. [13] Let di(t) > 0 be a function on T such that −di(t) ∈ R+ for all t ∈ T
and min

1≤i≤m

{
inf
t∈T

di(t)
}
> 0. Then the linear system

ϑ∆(t) = diag
(
− d1(t),−d2(t), · · · ,−dm(t)

)
ϑ(t)

admits an exponential dichotomy on T.

3. Existence of the unique positive almost periodic solution

Let B = {ϑ(t) : ϑ ∈ C(T,R), ϑ(t) is almost periodic function} with norm

‖ϑ‖B = sup
t∈T
|ϑ(t)|.

Then B is a Banach space.

Theorem 3.1. Assume that (H1) and (H2) hold. Let M > m be two positive constants
satisfy

(i) M = (‖ϕ‖B + b∗)e+, b∗ = max
t∈[t0,+∞)T

∫ t

t0

b(τ)∆τ, e+ = max
t∈[t0,+∞)T

e
∫ t
t0

∑n
`=1 β`(s)∆s.

(ii)
1

a+

[
b−e−M +

n∑
`=1

β−` e
−γ+

` M

]
≥ m ≥ 1

a+

n∑
`=1

β−` e
−γ+

` M.

Then the solution ϑ(t) = ϑ(t, t0, ϕ) ≥ 0 for all t ∈ [t0,η(ϕ))T, of (3) satisfies

m ≤ ϑ(t) ≤M, t ∈ [t0,+∞)T.

Proof. Let ϑ(t) = ϑ(t, t0, ϕ) is a solution of (3) with the initial condition ϑ(t0) = ϕ, where
ϕ(·) denotes a real-valued bounded and continuous functions defined on [−%∗, 0]T. At first,
we prove that ϑ(t) ≤M, t ∈ [t0,η(ϕ))T, where [t0,η(ϕ))T is the maximal right interval of
existence of ϑ(t, t0, ϕ). For all t ∈ [t0,η(ϕ))T, let $(t) = max

t0−%≤τ≤t
ϑ(τ), we get

ϑ∆(t) = − a(t)ϑ(t) + b(t)e−ϑ(t) +
n∑
`=1

β`(t)ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t))

≤ b(t) +
n∑
`=1

β`(t)ϑ(t− h`(t)) ≤ b(t) +
n∑
`=1

β`(t)$(t).

So,

ϑ(t) ≤ϑ(t0) + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)$(τ)

]
∆τ

≤‖ϕ‖B + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)

]
$(τ)∆τ, t ∈ [t0,η(ϕ))T.

(5)
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Since (5) is true for every t ∈ [t0,η(ϕ))T and $(t) = max
t0−%≤τ≤t

ϑ(τ), it follows that

$(t) ≤ ‖ϕ‖B + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)

]
$(τ)∆τ, t ∈ [t0,η(ϕ))T.

Now by Lemma 2.5, we get

ϑ(t) ≤ $(t) ≤ (‖ϕ‖B + b∗) exp

{∫ t

t0

[
n∑
`=1

β`(τ)

]
∆τ

}
, t ∈ [t0,η(ϕ))T.

Thus,

ϑ(t) ≤M, t ∈ [t0,η(ϕ))T.

Next, we show that

m ≤ ϑ(t), t ∈ [t0,η(ϕ))T. (6)

To prove this claim, we show that for any λ < 1, the following inequality holds

ϑ(t) > λm, t ∈ [t0,η(ϕ))T. (7)

By way of contradiction, assume that (7) does not hold. Then, there exists t∗ ∈ [t0,η(ϕ))T
such that

ϑ(t∗) ≤ λm, ϑ(t) > λ, t ∈ [t0 − %, t∗)T.
Therefore, there must be a positive constant µ ≤ 1 such that

ϑ(t∗) = λµm, ϑ(t) > λµ, t ∈ [t0 − %, t∗)T.

Since λµ < 1, it follows that

0 ≥ ϑ∆(t∗) = −a(t∗)ϑ(t∗) + b(t∗)e−ϑ(t∗) +
n∑
`=1

β`(t
∗)ϑ(t∗ − h`(t∗))e−γ`(t

∗)ϑ(t∗−g`(t∗))

≥− a+λµm + b−e−M +
n∑
`=1

β−` λµe
−γ+

` M ≥ b−e−M − λµ

[
a+m−

n∑
`=1

β−` e
−γ+

` M

]

≥b−e−M −

[
a+m−

n∑
`=1

β−` e
−γ+

` M

]
> 0.

Which is a contradiction and hence (7) holds. Letting λ → 1, we get (6). Similar to the
proof of Theorem 2.3.1 in [11], we can obtain that η(ϕ) = +∞. Therefore,

m ≤ ϑ(t) ≤M, t ∈ [t0,+∞)T.

�

For $ ∈ B, consider the equation

ϑ∆(t) = −a(t)ϑ(t) + b(t)e−$(t) +
n∑
`=1

β`(t)$(t− h`(t))e−γ`(t)$(t−g`(t)). (8)

Since inft∈T a(t) = a− > 0, then from Lemma 2.10 the linear equation ϑ∆(t) = −a(t)ϑ(t)
admits exponential dichotomy on T. Hence, by Lemma 2.8, the equation (8) has exactly
one almost periodic solution,

ϑ$(t) =

∫ t

−∞
e−a(t,σ(τ))

[
b(τ)e−$(τ) +

n∑
`=1

β`(τ)$(τ− h`(τ))e−γ`(τ)$(τ−g`(τ))

]
∆τ.
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Define the operator ℵ : B → B,

(ℵ$)(t) =

∫ t

−∞
e−a(t,σ(τ))

[
b(τ)e−$(τ) +

n∑
`=1

β`(τ)$(τ− h`(τ))e−γ`(τ)$(τ−g`(τ))

]
∆τ.

It is clear that, $(t) is the almost periodic solution of equation (3) if and only if $ is the
fixed point of the operator ℵ.

For convenience, we take M = max
{∑n

`=1 β
+
` ‖ϕ‖Be

+, a+M
}
,

Theorem 3.2. Suppose that the hypothesis of Theorem 3.1 satisfied. Then equation (3)
has a unique almost periodic positive solution.

Proof. It is clear from the Theorem 3.1 that ℵ is self mapping on Ξ, where

Ξ =
{
$(t) ∈ B : m ≤ $(t) ≤M, t ∈ T

}
.

Next, we prove that ℵ is a contraction mapping on Ξ. For ϑ,$ ∈ Ξ, consider

‖ℵϑ− ℵ$‖B = sup
t∈T
|(ℵϑ)(t)− (ℵ$)(t)|

≤ sup
t∈T

{∫ t

−∞
e−a(t,σ(τ))

[
− b(τ)

(
e−ϑ(τ) − e−$(τ)

)
+

n∑
`=1

β`(τ)
([
ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))

]
+

∫ τ−h`(τ)

τ−g`(τ)
ϑ∆(s)e−γ`(τ)ϑ(τ−g`(τ))∆s−

∫ τ−h`(τ)

τ−g`(τ)
$∆(s)e−γ`(τ)$(τ−g`(τ))∆s

)]
∆τ

}
From Theorem 3.1, we note that

ϑ∆(t) ≤
n∑
`=1

β`(t)$(t) ≤
n∑
`=1

β`(t)‖ϕ‖B exp

{∫ t

t0

n∑
`=1

β`(s)∆s

}
≤

n∑
`=1

β+
` ‖ϕ‖Be

+,

and $∆(t) ≥ −a(t)$(t) ≥ −a+M. Therefore,

‖ℵϑ− ℵ$‖B ≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+
∣∣∣e−ϑ(τ) − e−$(τ)

∣∣∣
+

n∑
`=1

β+
`

∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))
∣∣∣

+
n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]∣∣∣ n∑
`=1

β+
` ‖ϕ‖Be

+e−γ`(τ)ϑ(τ−g`(τ)) − (d+ + a+M)e−γ`(τ)$(τ−g`(τ))
∣∣∣]∆τ

≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+
∣∣∣e−ϑ(τ) − e−$(τ)

∣∣∣
+

n∑
`=1

β+
`

∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))
∣∣∣

+
n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]
M
∣∣∣e−γ`(τ)ϑ(τ−g`(τ)) − e−γ`(τ)$(τ−g`(τ))

∣∣∣]∆τ.
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By mean value theorem, we have
∣∣e−ϑ(τ) − e−$(τ)

∣∣ ≤ e−ξ1
∣∣ϑ(τ) − $(τ)

∣∣ where ξ1 lies
between ϑ(τ) and $(τ),∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))

∣∣∣
≤ (1− γ`ξ2)e−γ

−
` ξ2
∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))

∣∣∣,
where ξ2 lies between ϑ(τ− g`(τ)) and $(τ− g`(τ)), and∣∣∣e−γ`(τ)ϑ(τ−g`(τ)) − e−γ`(τ)$(τ−g`(τ))

∣∣∣ ≤ γ+
` e
−γ−` ξ3

∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))
∣∣∣,

where ξ3 lies between ϑ(τ− g`(τ)) and $(τ− g`(τ)).
Hence,

‖ℵϑ− ℵ$‖B ≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+e−ξ1

∣∣ϑ(τ)−$(τ)
∣∣

+
n∑
`=1

β+
` (1− γ`ξ2)e−γ

−
` ξ2
∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))

∣∣∣
+M

n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]
γ+
` e
−γ−` ξ3

∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))
∣∣∣]∆τ

≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2

+M
n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
∆τ ‖ϑ−$‖B

≤ 1

a−

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2 +M

n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
‖ϑ−$‖B

Since
1

a−

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2 +M

n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
< 1, it follows that

ℵ is a contraction mapping. Thus, by the contraction mapping fixed point theorem, the
operator ℵ has a unique fixed point ϑ∗ in Ξ. This implies that the equation (3) has a
unique almost periodic positive solution ϑ∗(t) and m ≤ ϑ∗(t) ≤M. �

For convenience, we take

Γ = 2

[
b− −

n∑
`=1

β+
` −M

n∑
`=1

β+
` γ
−
` −M

n∑
`=1

β+
` g

+
` γ

+
`

]

×
[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]−2

.

Theorem 3.3. Suppose that the hypothesis of the Theorem 3.2 is satisfied and for any
t0 ∈ [−%∗,+∞)T, ∫ t

t0

(Γ− µ(τ))∆τ→ +∞ as t→ +∞.

Then equation (3) has unique globally asymptotically stable almost periodic positive solu-
tion.
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Proof. By Theorem 3.2, we know that (3) has a unique almost periodic positive solution
ϑ∗(t), and m ≤ ϑ∗(t) ≤ M. Suppose ϑ(t) is any arbitrary solution of (8) with initial
function ϕ(t) > 0, t ∈ [%∗, 0]T. Now we prove that ϑ∗(t) is globally asymptotically stable.

Let $(t) = ϑ(t)− ϑ∗(t) and define V($) = $2. Then, we have

V∆($) = 2$(t)$∆(t) + µ(t)($∆(t))2

= 2$
[
− a(t)

(
ϑ(t)− ϑ∗(t)

)
+ b(t)

(
e−ϑ(t) − e−ϑ∗(t)

)
+

n∑
`=1

β`(t)
(
ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)) − ϑ∗(t− h`(t))e−γ`(t)ϑ

∗(t−g`(t))
) ]

+ µ(t)

[
− a(t)

(
ϑ(t)− ϑ∗(t)

)
+ b(t)

(
e−ϑ(t) − e−ϑ∗(t)

)
+

n∑
`=1

β`(t)
(
ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)) − ϑ∗(t− h`(t))e−γ`(t)ϑ

∗(t−g`(t))
)]2

Similar argument employed in Theorem 3.2 yields,

V∆($) =2

[
−b− +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]
‖$‖B

+ µ(t)

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2

‖$‖B

=−

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2 [
Γ− µ(t)

]
‖$‖B.

Let Ω(ϑ) =

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2

ϑ2, then

V∆($(t)) ≤ −
[
Γ− µ(t)

]
Ω(‖ϑ‖B).

Integrating from t0 to t, we obtain

V($(t)) ≤ V($(t0))−
∫ t

t0

[
Γ− µ(τ)

]
Ω(‖ϑ‖B)∆τ.

So, we get∫ t

t0

[
Γ− µ(τ)

]
Ω(‖ϑ‖B)∆τ ≤ V($(t0))− V($(t)) < V($(t0)) < +∞.

Since ∫ t

t0

(Γ− µ(τ))∆τ→ +∞ as t→ +∞,

it follows that

Ω(‖ϑ‖B)→ 0, i.e., ‖ϑ(t)− ϑ∗(t)‖B → 0.

Hence, ϑ∗(t) is globally asymptotically stable. �
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4. Examples

Example 4.1. Consider following nonlinear density dependent mortality Nicholson’s blowflies
model for T = R.

ϑ∆(t) =− (2 + sin(2t))ϑ(t) + | cos(t)|e−ϑ(t)

+ | sin(t)|ϑ
(
t− 2ecos(

√
2t)
)
e
−(2+sin(t))ϑ

(
t−(4+2esin(

√
2t))
)
,

ϑ(0) = 0.1.

 (9)

It is clear that (9) satisfies all the assumptions of Theorem 3.3. Therefore, equation
(9) has a unique almost periodic positive solution ϑ∗(t) which is globally asymptotically
stable. The numerical simulations in Fig. 1 strongly support the conclusion.

Example 4.2. Consider following nonlinear density dependent mortality Nicholson’s blowflies
model for T = Z+.

ϑ(t+ 1) =ϑ(t)− (1 + cos t)ϑ(t) + | sin(t)|e−ϑ(t)

+ | sin(t)|ϑ
(
t− esin(

√
2t)
)
e
−(2+sin(t))ϑ

(
t−(4+2ecos(

√
2t))
)
,

ϑ(0) = 0.05.

 (10)

It is clear that (10) satisfies all the assumptions of Theorem 3.3. Therefore, equation
(10) has a unique almost periodic positive solution ϑ∗(t) which is globally asymptotically
stable. The numerical simulations in Fig. 2 strongly support the conclusion.

Figure 1. Numerical solution ϑ(t) of equation (9) for initial value ϕ(τ) =
0.1, 0.3, 0.5 τ ∈ [−(4 + 2e), 0].
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Figure 2. Numerical solution ϑ(t) of equation (9) for initial value ϕ(τ) =
0.3, 0.8, 1 τ ∈ [−(4 + 2e), 0].
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