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ON SOME RESULTS OF PERFECT DOMINATIONS OF SOME

GRAPHS

M. L. CAAY1, S. R. PALAHANG2, §

Abstract. A dominating set D ⊆ V (G) of a simple graph G is the set of all u such
that for every v ∈ V (G)\D, uv ∈ E(G). An independent set I ⊆ V (G) is a set of
non-adjacent vertices in G. An independent dominating set Di ⊆ V (G) is a subset of
V (G) that is both independent set and dominating set. A subset S of V (G) is called a
perfect dominating set of S if for each v belongs to V (G)\S, there exists a unique element
u ∈ S, such that v and u are adjacent. Define an independent perfect dominating set
Dip of G to be a dominating set that is both independent dominating set and perfect
dominating set. The minimum cardinality of an independent perfect dominating set of G
is called an independent perfect domination number of G, denoted by γip(G). If a graph
has a perfect dominating set, we say that the graph G is γip-graph. In this study, we
determine some bounds and parameters of the graph as well as the existence existence
of this invariant to some graphs and graphs formed by some binary operations.

Keywords: perfect dominating set, independent dominating set, independent perfect
dominating set, independent perfect domination number.
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1. Introduction

Let G be a connected simple graph. Suppose v ∈ V , the neighborhood of v is the set
NG(v) = {u ∈ V (G) : uv ∈ E(G).}. Given D ⊆ V , the set NG(D) = N(D) =

⋃
v∈DNG(v)

and the set NG[D] = N [D] = D
⋃
N(D) are the open neighborhood and the closed

neighborhood of D respectively. In this paper, we denote ∆(G) and δ(G) to be the
minimum and maximum degree of G, respectively. That is,

∆(G) = max
v∈V

deg (v)

and

δ(G) = min
v∈V

deg (v),
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of Mathematics, 2022; all rights reserved.

600



M. CAAY, S. PALAHANG: ON SOME RESULTS OF PERFECT DOMINATIONS ... 601

respectively.

The concept of domination has been so popular in Graph Theory and its applications
anchored to some applications on computer engineering, finance and other allied sciences
in mathematics. We say that D is the dominating set of G if for every v ∈ V (G)\D, there
exists u ∈ D such that uv ∈ E(G), that is, u is said to dominate v. Thus, N [D] = V . The
domination number γ(G) of G is the smallest cardinality of a dominating set of G.

One of the concepts of independent set was used by DeMaio and Jacobson [4] in 2014, in
which they used the independent set to show the fibonacci and lucas relationship present
in a Tadpole graph. A set I ⊆ V (G) is an independent set of vertices if no two vertices
in I are adjacent. The concept of the independent domination was introduced by Allan
and Laskar in [3]. A subset Di ∈ V (G) is an independent dominating set of G if Di is
both an independent set and dominating set. The minimum cardinality of an independent
dominating set of G is called an independent domination number of G, denoted by γi(G).
The concept of perfect dominating set was established by Livingston and Stout in [8] on
their work involving the resource allocation and placement in parallel computers. Another
concept of the perfect dominating set was used by Caay and Arugay in [2] when they in-
troduced the perfect equitable dominating set. A subset S of V (G) is called a perfect
dominating set of S if for each v belongs to V (G)\S, there exists a unique element u ∈ S,
such that v and u are adjacent. The minimum cardinality of the perfect dominating set
of G is called a perfect domination number of G, denoted by γp(G).

The independent perfect domination was introduced by Jaeun Lee in July 2001 [7]. The
authors propose to study the independent perfect domination number for some standard
graphs and some graphs operations in particular join graph and corona product. Define
an independent perfect dominating set Dip of G to be a dominating set that is both in-
dependent dominating set and perfect dominating set. The minimum cardinality of an
independent perfect dominating set of G is called an independent perfect domination num-
ber of G, denoted by γip(G). If a graph has a perfect dominating set, we say that the
graph G is γip-graph.

Consider the graph G below.
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Observe that a3 is adjacent to all vertices of G. This is a singleton set which implies
that a3 is an element of an independent set and so is an element of an independent perfect
dominating set. Thus, γip(G) = 1.

The graphs we consider here are simple and connected. For further terminologies, you
may refer to [6].

By the definition of the independent perfect domination, we have an immediate results:

Remark 1.1. Given a graph G

i. If a, b ∈ Dip, then ab /∈ E(G).
ii. An independent perfect dominating set is an independent dominating set but the

converse does not necessarily hold.
iii. An independent perfect dominating set is a perfect dominating set but the converse

does not necessarily hold.

The study has been motivated by a real-life scenario: Consider the fact that there are
many food suppliers in the area with the same supply of food. The rule is they have to
acquire many customers as they can such that they would not have conflict with other
suppliers. That is if one has gotten a customer, such customer will not be dealt anymore
by another supplier. This scenario can be applied in many business networking that re-
quires many retailers retailing products in the area.

2. Some Results on Some Graphs

The following are the results of the independent perfect domination of graphs.

Proposition 2.1. For a path graph Pn, γip(G) =
⌈n

3

⌉
. That is, Pn is γip-graph.

Proof. We will consider the following cases:

• Case 1: If n ≡ 0 mod 3.

We divide the vertices in a group of 3. Without loss of generality, suppose the
first group of three vertices are labeled in consecutive manner as v1, v2, v3. If v1
dominates v2, v3 is not dominated. If v3 dominates v2, v1 is not dominated. If
v2 dominates v1, it also dominates v3. Simlarly, for the second group of vertices
v4, v5, v6, we have v5 that dominates v4 and v6. Continuing the process, we obtain
vertices place in the middle of every group that can dominate the rest. Since 3

divides n and the number of vertices are divided by 3. We have
⌈n

3

⌉
.

• Case 2: If n ≡ 1 mod 3.

Dividing the vertices in a group of 3 vertices per group, we have one group of
one vertex. Without a loss of generality, we label such vertex as v1 and the vertices
next to it are v2, v3, v4. Further suppose v1 dominates v2. Then we may assume v4
dominates v3. Suppose that the next group of vertices are labeled v5, v6, v7. Then
v4 from the previous group dominate v5 and so we may assume v7 dominates v6.
Continuing this process, we can find out that the dominating vertices are the third
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vertex in each group. There are
n− 1

3
groups of three vertices. Since v1 is also a

dominating vertex, it follows that the dominating vertices are
n− 1

3
+ 1 or in this

case is
⌈n

3

⌉
.

• Case 3: If n ≡ 2 mod 3.

Dividing the vertices in a group of 3 vertices per group, we have one group of
one vertex. Without a loss of generality, we label such verteices as v1 and v2,
and the vertices next to it are v3, v4, v5. Further suppose v2 dominates v1. Then

following the same processwith case 2, we arrive at the same answer as
n− 1

3
+ 1

or in this case is
⌈n

3

⌉
.

�

Proposition 2.2. For all integer n ≥ 1, γip(C3n) = n. That is, Cn is γip-graph if n is
divisible by 3.

Proof. Let ai ∈ V (C3n) such that ai dominates ai+1 and ai−1. Suppose further that the
the vertices are labeled orderly such that ai+1 is next to ai and ai+2 is next to ai+1 and
so on. This means that since ai dominates ai+1 and ai−1, we can partition the vertices
in a partition of 3. That is, in every 3 consecutive vertices, there is a dominating vertex
placed at the center. Diving 3n by 3, we have n number of vertices dominating the others.
This proves the claim. �

Corollary 2.1. For any integer n not divisible by 3, Cn is not a γip-graph.

Proposition 2.3. The following are graphs of any order having γip(G) = 1.

i. Complete graph, Kn

ii. Star graph, Sn
iii. Wheel graph, Wn

3. Some Results on Corona and Join of Graphs

Definition 3.1. The join G+H of two graphs G and H is the graph with vertex set

V (G+H) = V (G)
⋃
V (H)

and edge set

E(G+H) + E(G)
⋃
E(H)

⋃
{uv : u ∈ V (G), v ∈ V (H)}.

Definition 3.2. The corona G◦H of two graphs G and H is the graph obtained by taking
one copy of G of order n and n copies of H, and then joining the ith vertex of G to every
vertex in the ith copy of H.

Theorem 3.1. Given graphs G and H of order m and n, respectively, the γip(G+H) = 1
if and only if either ∆(G) = m− 1 or ∆(H) = n− 1.
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Proof. Supppose γpi(G + H) = 1. Then there exists a vertex, say a in Dip(G + H)
that is either in V (G) or V (H) but not both. If a ∈ V (G), then for all bi ∈ V (G),
i = {1, 2, · · · ,m−1}, abi ∈ E(G). This means that deg(a) = m−1. Hence, ∆(G) = m−1.
If a ∈ V (H), then for all cj ∈ V (G), j = {1, 2, · · · , n− 1}, acj ∈ E(G). This means that
deg(a) = n− 1. Hence, ∆(H) = n− 1.

Conversely, assume that either ∆(G) = m − 1 or ∆(H) = n − 1. Without loss of
generality, take ∆(G) = m − 1. Then there exists a vertex say v ∈ V (G) such that
deg(a) = m − 1. Since a ∈ V (G + H), it follows that a is adjacent to all vertices of
V (G+H). Thus, a dominates all vertices of G+H. That is, γip(G+H) = 1. �

Theorem 3.2. Let Gn be any graph and Kp be a complete graph. Then Gn ◦Kp is γip-
graph if Gn

∼= (Pn or Cn). Then γip(Gn ◦Kp) = n.

Proof. Let Gn
∼= Pn. By Proposition 2.1, Pn is γip-graph. Thus, it follows that Gn ◦Kp

is also a γip-graph. Suppose Gn
∼= Cn. If 3 divides n, then by Proposition 2.2, Cn is a

γip-graph and and so Gn ◦Kp is also a γip-graph. If 3 does not divide n, then Cn is not a
Gn ◦Kp is also a γip-graph. However, by Proposition 2.3, Kp is γip-graph. Thus, Gn ◦Kp

is also a γip-graph. Moreover, since Kp is complete, there are n copies of Kp. Since all
vertices of Kp is adjacent to all vertices including the vertex from Gn incident to it, it
follows that if we pick one vertex from each Kp to be a dominating set, it also dominates
each vertex from Gn incident to it. Thus, it is enough to pick one vertex from each Kp.
Hence, γip(Gn ◦Kp) = n. �

Theorem 3.3. Let Kp be any complete graph of order p ≥ 2 and Gn be any graph iso-
morphic to Pn or Cn. Then Kp ◦Gn is not γip-graph if n > 3.

Proof. Suppose on the contrary that Kp ◦Gn is a γip-graph. Then either we can pick an
element of Dip that is in V (Kp) or V (Gn). If a ∈ V (Kp) be an element of Dip, then a
dominates uj ∈ V (G1

n) where G1
n is the graph isomorphic to Pn or Cn incident to a. Also, a

dominates bi ∈ V (Kp), i = 1, · · · , p−1. But cj ∈ V (Gt
n), t = 1, · · · , p−1, j = 1, 2, · · · , n

is not dominated by a. If we pick an element from V (Gt
n), t = 1, · · · , p−1, j = 1, 2, · · · , n,

it also dominates bi ∈ V (Kp), i = 1, 2, · · · , p−1 that is already dominated by a. Hence, we
cannot pick a vertex from Kp to be in Dip. Let vt ∈ V (Gt

n), t = 1, 2, · · · , p be an element
of Dip instead. Since n > 3, it follows that there must be possible 2 vertices of each Gt

n

to be in dominating set. This means that two possible vertices dominate the vertex from
Kp incident to each Gt

n. Hence, we cannot pick a vertex from Gt
n to be in Dip. The two

cases show contradiction. Therefore, Kp ◦Gn is not a γip-graph. �

The following are consequences of Theorem 3.3 and the proofs are obvious.

Corollary 3.1. Let Kp be any complete graph of order p ≥ 2 and Gn be any graph
isomorphic to Pn or Cn. Then Kp ◦Gn is a γip-graph if n ≤ 3. In fact, γip(Kp ◦Gn) = p.

Corollary 3.2. Let G be any graph. Then K1 ◦G is a γip-graph. In fact, γip(Kp ◦G) = 1.
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Corollary 3.3. Let G be any graph. Then G ◦K1 is a γip-graph. In fact, γip(G ◦K1) =
|V (G)| .

4. Some Results on Cartesian Product and Tensor Product of Graphs

Definition 4.1. The cartesian product G � H of two graphs G and H is the graph
with vertex set V (G�H) = V (G)× V (H) and e is an edge of G × H if and only if
e = (ui, vj) (uk, vl) where either

i. i = k and vjvl ∈ E(H)
ii. j = l and uiuk ∈ E(G).

Definition 4.2. The tensor product G × H of two graphs G and H is the graph with
vertex set V (G×H) = V (G)× V (H) and and edge set

E(G×H) = {(a, b)(c, d) | ac ∈ E(G) and bd ∈ E(H)}.

Proposition 4.1. For every integer n ≥ 2, Kn � Kn is non-γip-graph.

Proof. If n is the number of vertices of a complete graph Kn, then Kn � Kn has n2

vertices. Suppose Kn � Kn is γip-graph and let (a, b) ∈ V (Kn � Kn) where a is the
vertex of the first Kn and b is the vertex of the second Kn. Then (a, b) is adjacent to
n− 1 vertices of the form (a, bi) where bi are n− 1 vertices of the second Kn. Thus, (a, b)
has dominated 2(n − 1) vertices of Kn � Kn implying that (a, b) ∈ Dip. Thus, we will
pick another elements for Dip from the remaining n2 − 2(n− 1) vertices. Without loss of

generality, suppose (a, b) is one of the n2−2(n−1) vertices which are not adjacent to (a, b).
Then we can pick (a, b) to be element of Dip. But, (a, b) is adjacent to one of the vertices
adjacent to (a, b). This is a contradiction to the perfect domination. Thus, there is not
independent perfect dominating set in Kn � Kn. That is, Kn � Kn is non-γip-graph for
n ≥ 2. �

Proposition 4.2. Let G be any graph. K1 � G and G � K1 is γip-graph. Moreover,
γip (K1 � G) = γip (G � K1) = 1.

Proof. Let V (K1) = {a}. Then a dominates all vertices in G. Thus, a ∈ Dip and so
K1 � G is γip-graph. Moreover, γip (K1 � G) = 1. The same goes with G � K1. �

Theorem 4.1. For an integer n and m with n ≥ 3,m ≥ 2, Kn � Pm is non-γip-graph.

Proof. Let V (Kn) = {k1, k2, · · · , kn} and V (Pm) = {p1, p2, · · · , pm}. Then there nm num-
ber of vertices. Suppose that Kn � Pm is γip-graph. Without loss of generality, let
(k1, p1) ∈ Dip. Then (k1, p1) dominates (k1, p2) and (kj , p1), for some j = 2, 3, · · · , n.
Note that (ki, p2) /∈ Dip since (ki, p1)(ki, p2) ∈ E(Kn � PM ), for some i = 1, 2, · · · , n.
Thus, (ki, p3) can dominate (ki, p12) but (k1, p2) is already dominated by (k1, p1). This
is a contradiction to the definition of perfect domination. Thus, Kn � Pm is non-γip-
graph. �
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Theorem 4.2. For every integer odd n, K2 � Pn is γip-graph. In particular,

γip (K2 � Pn) =
⌈n

2

⌉
.

Corollary 4.1. K2 � Pn is non-γip-graph if n is even.

Proposition 4.3. Given any integer n ≥ 2, Pn × Pn is a γip-graph. In fact,

γip (Pn × Pn) = n
⌈n

3

⌉
Proof. Let V (Pn) = {a1, a2, · · · , an}. Then we can arrange the vertices of Pn × Pn in the
form

(a1, b1) (a2, b1) · · · (an, b1)

(a1, b2) (a2, b2) · · · (an, b2)

...

...

(a1, bn) (a2, bn) · · · (an, bn).

Without of loss of generality, if we take (a2, b2) dominates (a1, b1), it also dominates (a3, b3)
but not on (a1, b2) and (a3, b2). Thus, (a1, b2) and (a3, b2) can also be members of the
dominating set. Hence, the importance to check is the path connecting the vertices of the

form (ai, bi), i = 1, 2, · · · , n. By Proposition 2.1, there are
⌈n

3

⌉
vertices to choose from a

path connecting the vertices of the form (ai, bi), i = 1, 2, · · · , n. Since there n vertices not
adjacent in each selected vertices in the path connecting the vertices of the form (ai, bi),

it follows that there are n
⌈n

3

⌉
members of the dominating set. �

Proposition 4.4. For every integer n ≥ 3,m ≥ 3, Kn × Pm is non-γip-graph.

5. Conclusions

In this paper, we have evaluated the parameters of independent perfect dominations
to some graphs and some graphs resulting to binary operations such as join, corona,
cartesian product and tensor product. Further, we examine some graphs and operations
with the existence of independent perfect domination because not all graphs have this set.
The study is beyond helpful in the application of real-life scenario. Fact is, it has been
mentioned in the introduction of this paper on how this work has been motivated.
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