
Software Impacts 12 (2022) 100274

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Battle Royale Optimizer for solving binary optimization problems
Taymaz Akan a,b, Saeid Agahian c, Rahim Dehkharghani d,∗

a Istanbul Ayvansaray University, Istanbul, Turkey
b Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic
c Erzurum Technical University, Erzurum, Turkey
d Department of Computer Engineering, Işik University, Istanbul, Turkey

A R T I C L E I N F O

Keywords:
Optimization
Discrete optimization
Battle Royale Optimization
Binary Battle Royale Optimization

A B S T R A C T

Battle Royale Optimizer (BRO) is a recently proposed metaheuristic optimization algorithm used only in
continuous problem spaces. The BinBRO is a binary version of BRO. The BinBRO algorithm employs a
differential expression, which utilizes a dissimilarity measure between binary vectors instead of a vector
subtraction operator, used in the original BRO algorithm to find the nearest neighbor. To evaluate BinBRO,
we applied it to two popular benchmark datasets: the uncapacitated facility location problem (UFLP) and
the maximum-cut (Max-Cut) graph problems from OR-Library. An open-source MATLAB implementation of
BinBRO is available on CodeOcean and GitHub websites.

Code metadata

Current code version V1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-12
Permanent link to Reproducible Capsule https://codeocean.com/capsule/8988211/tree/v1
Legal Code License MIT license
Code versioning system used Created with MATLAB R2020b
Software code languages, tools, and services used MATLAB
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual https://github.com/tami64/BinBRO_Max_UFLP/
Support email for questions taymazakan@ayvansaray.edu.tr

saeid.agahian@erzurum.edu.tr
rahim.dehkharghani@isikun.edu.tr

1. Introduction

The process of choosing the best potential solution out of a set
of candidate solutions for a given problem is known as optimiza-
tion [1]; Deterministic or stochastic methods can make this choice.
Deterministic approaches navigate the whole state space of a problem
and find the optimum solution; however, these methods would be
prohibitively expensive for problems with non-polynomial (NP) nature.
Stochastic methods are an alternative for dealing with this problem.
Many real-world problems in both scientific and industrial fields can

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Correspondence to: Department of Computer Engineering, Işik University, Istanbul, 34980, Turkey.
E-mail addresses: taymazakan@topkapi.edu.tr (T. Akan), saeid.agahian@erzurum.edu.tr (S. Agahian), rahim.dehkharghani@isikun.edu.tr (R. Dehkharghani).

be solved by optimization techniques. Metaheuristic algorithms have
been frequently used to tackle optimization problems for the past
two decades [2]. Evolutionary Algorithms (EA), physical phenomena
algorithms, and Swarm Intelligence (SI) are the three main stochastic
metaheuristics optimization tools.

Darwin’s theory of evolution inspired evolutionary optimization
algorithms, which share a typical process of mutation, selection, and
recombination operations [3–7]. The physical laws such as electro-
magnetic force, gravitational force, and inertia force are emulated by
https://doi.org/10.1016/j.simpa.2022.100274
Received 20 February 2022; Received in revised form 12 March 2022; Accepted 24 March 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100274
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100274&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-12
https://codeocean.com/capsule/8988211/tree/v1
https://github.com/tami64/BinBRO_Max_UFLP/
mailto:taymazakan@ayvansaray.edu.tr
mailto:saeid.agahian@erzurum.edu.tr
mailto:rahim.dehkharghani@isikun.edu.tr
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:taymazakan@topkapi.edu.tr
mailto:saeid.agahian@erzurum.edu.tr
mailto:rahim.dehkharghani@isikun.edu.tr
https://doi.org/10.1016/j.simpa.2022.100274
http://creativecommons.org/licenses/by/4.0/


T. Akan, S. Agahian and R. Dehkharghani Software Impacts 12 (2022) 100274

p
m
l
o
p
c
a
r
s
a
a
i
l
p
a
C

2

r
t
f
v
o
s

f
t
n
J
n
f
o
t
a
o
f
w
a
l
i
p
u
I
g
T
t
o
h
a
v
B
r

Fig. 1. The flow diagram of the software program for the BinBRO pipeline.

hysical phenomena algorithms. These laws perform individuals’ move-
ents and interactions [8–16]. Finally, the group activity of diverse

iving beings, such as animals and insects, has inspired the invention
f Swarm Intelligence algorithms. The BRO algorithm is not only a
opulation-based algorithm; its creation in 2020 has added a new
ategory to optimization algorithms named game-based optimization
lgorithms [17]. In game-based algorithms, players explore their sur-
oundings and compete with their neighboring players as potential
olutions. Unlike SI-based algorithms, players do not collaborate to
chieve a common goal; instead, they attempt to defeat all opponents
nd win the game individually. In this work, an open-source MATLAB
mplementation of the BinBRO applied to the uncapacitated facility
ocation problem (UFLP) and the maximum-cut graph (Max-cut) binary
roblems have been explained in detail. The complete source code
nd the dataset, results, and diagrams have been recently published in
odeOcean and GitHub [18,19].

. The BinBRO algorithm

The BinBRO approach, similar to other optimization algorithms,
andomly initializes 𝑛 Candidate Solutions (𝐶𝑆𝑠) using a uniform dis-
ribution, as though players are randomly dispersed over the game
ield from scratch. In the uniform distribution, if the generated random
alue is smaller than 0.5, a given facility will be initialized by 0
r 1 otherwise. The number of facilities is equal to the number of
olutions. Each solution is a binary vector with d dimensions, 𝑥_𝑖 =
(𝑥_𝑖1, 𝑥_𝑖2,… , 𝑥_𝑖𝑑). This vector can be interpreted differently for dif-
ferent problems; for example, in the UFLP, 𝑥𝑖𝑗 corresponds to the 𝑗𝑡ℎ
acility (0 as closed and 1 as open) of the 𝑖𝑡ℎ solution. The procedure is
hen repeated for several iterations. Each CS is compared to its nearest
eighbor in each iteration. The nearest neighbor is determined using
accard’s similarity coefficient [20]. When a CS is compared to its
earest neighbor, the solution with a greater fitness value -generated
rom the fitness function- would be named as the winner and the
ther as the loser. The BinBRO algorithm employs various strategies
o handle both the winner and the loser. The algorithm always applies
mutation task to the winner–as in the battle royale game. The position
f the current winner player will be changed to help him become the
inal winner. Only two randomly chosen bits of the winner solution
ould be flipped in the mutation process for this aim. The BinBRO
lgorithm [21], on the other hand, performs a crossover task on the
oser solution if it has not achieved the maximum number of losses (if
t has not died yet). The ‘‘maximum number of losses’’ is a BinBRO
arameter that must be defined in advance. This crossover has been
tilized in three configurations: single-point, two-points, and uniform.
f the loser achieves the maximum number of losses or dies in the
ame, it will be re-spawned after completing a primary mutation task.
he deceased player will be re-spawned in another legal location on
he field, as in the Battle Royale game. This basic mutation depends
n the iteration, i.e., the intensity of mutation at the beginning is
igh, but it decreases while the game field is shrinking. The BinBRO
lgorithm flips the loser (dead) solution’s bits from 1 to 0 or vice
ersa. The intuition behind this is that, like the Battle Royale game,
inBRO constrains the solutions to converge to the global optimum by
educing the space in which the solutions compete with one another.

This procedure is repeated until an acceptable solution is found or the
‘‘maximum number of iterations’’ criteria are met. Note that a 2-bit
mutation is applied to the best solution after each solution update of the
loser or the winner solution found so far. If a superior fitness value can
be achieved after this mutation, the optimal solution will be modified;
otherwise, it will remain unchanged.

3. Software description

The BinBRO algorithm has been implemented in MATLAB. The
approach has been applied to two well-known benchmark datasets:
uncapacitated facility location and maximum-cut graph binary opti-
mization problems. The flow diagram of a BinBRO pipeline is illustrated
in Fig. 1. The program’s key modules are listed as follows.

• The Get_Dataset function returns the file address and the desired
optimal value for the 𝑖𝑡ℎ instance.

• The creat _model function returns the structure of the 𝑖𝑡ℎ instance.
• The BRO_Fun function applies the BinBRO algorithm to the 𝑖𝑡ℎ

instance and returns the structure and convergence curve. The
structure is a group of items of performance evaluation criteria.

• The write_on_text function generates a text file for the 𝑖𝑡ℎ in-
stance and stores all performance criteria in this text file after
a predetermined number of algorithms runs.

• The write_on_text_all function generates a text file for all instances
and stores all performance criteria in it after a predetermined
number of algorithm runs.

4. Impact

The BinBRO algorithm has been proposed as one of the most recent
optimization algorithms [21]; It is a reliable technique for solving
binary optimization problems. This algorithm has been applied to two
benchmark datasets, explained in the following subsections. However,
to utilize this software for solving other binary optimization prob-
lems, the MATLAB function file (of a given objective function) should
be added to a folder that includes ‘‘main_all.m’’, and the name of
this MATLAB file should be assigned to the Eval variable, e.g.’’, Eval
=@MaxCut;", in the same folder.

4.1. Uncapacitated facility location problem

In the uncapacitated facility location problem (UFLP), the goal is to
identify which facility site should be open out of a predetermined set of
facility sites and which one should be closed. The facilities are supposed
to serve a predetermined set of clients who would receive service from
their nearest facility. We are interested in minimizing the overall cost
of this service. This cost includes the cost of opening a facility plus the
distance of a client from a facility. In the UFLP problem, also known as
the ‘‘simple’’ facility location problem, SFLP, clients and the facilities
are discrete points on the plane; therefore, the continuous optimization
algorithms cannot solve this problem.

Consequently, instead of using the continuous version of the Battle
Royale Algorithm, we used its binary version, the BinBRO algorithm,
to solve binary optimization probles. The BinBRO algorithm has been
2



T. Akan, S. Agahian and R. Dehkharghani Software Impacts 12 (2022) 100274
Table 1
Quantitative evaluation of results for three instances in the UFLP.

Instances Crossover Mean Best Worst STD Hit Gap NFE Time

Cap-71
single-point 932615.8 932615.8 932615.8 0 1 0 430.36 0.05
two-point 932615.8 932615.8 932615.8 0 1 0 851.64 0.11
Uniform 932615.8 932615.8 932615.8 0 1 0 371.44 0.6

Cap-101
single-point 796786.08 796648.4 797508.73 321.89 0.84 0.02 28631.96 11.37
two-point 796751.67 796648.4 797508.73 285.325 0.88 0.01 30040.72 4.95
Uniform 796648.4 796648.4 796648.4 0 1 0 11010.16 3.33

Cap-131
single-point 793749.27 793439.6 794299.9 421.453 0.64 0.04 73540.2 22.01
two-point 793680.44 793439.6 794299.9 394.233 0.72 0.03 64445.68 22.12
Uniform 793508.4 793439.6 794299.9 238.203 0.92 0.01 44500.28 15.90

Table 2
Quantitative evaluation of results for three instances in the UFLP.

Instances Crossover Mean Best Worst STD NFE Time

pw01- 100.0
single-point 1948.1 1988 1901 34.959 57300.9 2181.9
two-point 1973.6 1986 1940 13.243 57347.9 2163.45
Uniform 1954.7 2000 1918 21.94 57270.6 2099.07

pw05- 100.0
single-point 8076.3 8166 7973 54.805 57271.2 2484.92
two-point 8074.9 8164 8013 42.459 57356.20 2193.63
Uniform 8085.3 8160 7986 48.792 57271.4 2159.05

pw09- 100.0
single-point 13485.7 13567 13367 67.335 57307.7 1971.88
two-point 13494.9 13558 13398 51.898 57304.2 2080.49
Uniform 13477.1 13551 13411 42.354 57241.9 2936.37

tested on the standard, publicly accessible UFLP dataset from OR-
Lib [22]. Table 1 shows the numerical results of BinBRO with different
types of crossover (single-point, two-point, and uniform) for various
performance measures obtained from some benchmark suites. The ob-
tained results approve that the Bin-BRO algorithm can yield promising
results for the UFLP. We provide the obtained results for only a subset
of the benchmark datasets. In this table, the best value in each row is
bold. The first column includes the name of benchmark suits taken from
OR-Lib; the second column indicates the crossover type, and the other
columns show the obtained values for each performance criterion.

4.2. The max-cut problem

A maximum cut in a graph is a cut that is at least the size of
any other cut. In other words, it is a division of the graph’s vertices
into two complementary sets, S and T, with as many edges as possible
between both sets. The issue can be expressed as follows: the goal is
to find a subset S of the vertex set with as many edges as possible
between itself and the complementary subset. Alternatively, a bipartite
subgraph with as many edges as possible is desired. The BinBRO has
also been tested over the standard publicly accessible Max-Cut dataset
from OR-Lib [22]. Table 2 shows the numerical results obtained by the
BinBRO with different crossover types for various performance mea-
sures obtained from some benchmark suites. We provide the obtained
results for only a subset of the benchmark datasets. The obtained results
demonstrate that the Bin-BRO can produce promising results for Max-
Cut. In this table, the best value in each row is bold. The first column
includes the name of benchmark suits taken from OR-Lib; the second
column indicates the crossover type, and the other columns show the
obtained values for each performance criterion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] R.D. Norton, P.B. Hazell, Mathematical Programming for Economic Analysis in
Agriculture, Macmillan, 1986.

[2] A. Lazar, Heuristic Knowledge Discovery for Archaeological Data using Genetic
Algorithms and Rough Sets Heuristic and Optimization for Knowledge Discovery,
IGI Global, 2002, pp. 263–278.

[3] J. Holland, Adaptation in natural and artificial systems: An introductory analysis
with application to biology, Control Artif. Intell. (1975).

[4] H.-P. Schwefel, Evolution strategies: A family of non-linear optimization tech-
niques based on imitating some principles of organic evolution, Ann. Oper. Res.
1 (2) (1984) 165–167.

[5] F. Glover, Future paths for integer programming and links to artificial intelli-
gence, Comput. Oper. Res. 13 (5) (1986) 533–549, http://dx.doi.org/10.1016/
0305-0548(86)90048-1.

[6] P.J. Van Laarhoven, E.H. Aarts, Simulated Annealing Simulated Annealing:
Theory and Applications, Springer, 1987, pp. 7–15.

[7] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. 12 (6)
(2008) 702–713, http://dx.doi.org/10.1109/TEVC.2008.919004.

[8] R.A. Formato, Central force optimization, Prog. Electromagn. Res. 77 (2007)
425–491.

[9] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, Gsa: A gravitational search algo-
rithm, Inform. Sci. 179 (13) (2009) 2232–2248, http://dx.doi.org/10.1016/j.ins.
2009.03.004.

[10] A. Husseinzadeh Kashan, A new metaheuristic for optimization: Optics inspired
optimization (oio), Comput. Oper. Res. 55 (2015) 99–125, http://dx.doi.org/10.
1016/j.cor.2014.10.011.

[11] A. Kaveh, T. Bakhshpoori, Water evaporation optimization: A novel physically
inspired optimization algorithm, Comput. Struct. 167 (2016) 69–85, http://dx.
doi.org/10.1016/j.compstruc.2016.01.008.

[12] A. Hatamlou, Black hole: A new heuristic optimization approach for data
clustering, Inform. Sci. 222 (2013) 175–184, http://dx.doi.org/10.1016/j.ins.
2012.08.023.

[13] A. Kaveh, S. Talatahari, A novel heuristic optimization method: Charged system
search, Acta Mech. 213 (3) (2010) 267–289, http://dx.doi.org/10.1007/s00707-
009-0270-4.

[14] V. Punnathanam, P. Kotecha, Yin-yang-pair optimization: A novel lightweight
optimization algorithm, Eng. Appl. Artif. Intell. 54 (2016) 62–79, http://dx.doi.
org/10.1016/j.engappai.2016.04.004.

[15] A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: Thermal
exchange optimization, Adv. Eng. Softw. 110 (2017) 69–84, http://dx.doi.org/
10.1016/j.advengsoft.2017.03.014.

[16] H. Abedinpourshotorban, S. Mariyam Shamsuddin, Z. Beheshti, D.N.A. Jawawi,
Electromagnetic field optimization: A physics-inspired metaheuristic optimization
algorithm, Swarm Evol. Comput. 26 (2016) 8–22, http://dx.doi.org/10.1016/j.
swevo.2015.07.002.

[17] T. Rahkar Farshi, Battle royale optimization algorithm, Neural Comput. Appl.
(2020) http://dx.doi.org/10.1007/s00521-020-05004-4.
3

http://refhub.elsevier.com/S2665-9638(22)00029-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb2
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb2
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb2
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb2
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb2
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb3
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb3
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb3
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb4
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb6
http://dx.doi.org/10.1109/TEVC.2008.919004
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb8
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb8
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb8
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.cor.2014.10.011
http://dx.doi.org/10.1016/j.cor.2014.10.011
http://dx.doi.org/10.1016/j.cor.2014.10.011
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.swevo.2015.07.002
http://dx.doi.org/10.1016/j.swevo.2015.07.002
http://dx.doi.org/10.1016/j.swevo.2015.07.002
http://dx.doi.org/10.1007/s00521-020-05004-4


T. Akan, S. Agahian and R. Dehkharghani Software Impacts 12 (2022) 100274
[18] T. Akan, S. Agahian, R. Dehkharghani, Binbro: Binary battle royale optimizer
algorithm [source code], 2022, http://dx.doi.org/10.24433/CO.3120150.v1.

[19] T. Akan, S. Agahian, R. Dehkharghani, Binbro_uflp, 2022, Retrieved from https:
//github.com/tami64/BinBRO_Max_UFLP.

[20] P.H. Sneath, Some thoughts on bacterial classification, Microbiology 17 (1)
(1957) 184–200.

[21] T. Akan, S. Agahian, R. Dehkharghani, Binbro: Binary battle royale optimizer
algorithm, Expert Syst. Appl. (2022) http://dx.doi.org/10.1016/j.eswa.2022.
116599.

[22] Beasley J. E., Or-library: Distributing test problems by electronic mail, J. Oper.
Res. Soc. 41 (11) (1990) 1069–1072.
4

http://dx.doi.org/10.24433/CO.3120150.v1
https://github.com/tami64/BinBRO_Max_UFLP
https://github.com/tami64/BinBRO_Max_UFLP
https://github.com/tami64/BinBRO_Max_UFLP
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb20
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb20
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb20
http://dx.doi.org/10.1016/j.eswa.2022.116599
http://dx.doi.org/10.1016/j.eswa.2022.116599
http://dx.doi.org/10.1016/j.eswa.2022.116599
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb22
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb22
http://refhub.elsevier.com/S2665-9638(22)00029-X/sb22

	Battle Royale Optimizer for solving binary optimization problems
	Introduction
	The BinBRO algorithm
	Software description
	Impact
	Uncapacitated facility location problem
	The max-cut problem

	Declaration of competing interest
	References


